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Abstract

We consider an optimization problem in probabilistic irfiece: Givem hypothesesd;, m possi-
ble observation€, their conditional probabilitiegyj, and a particula®y, select a possibly small
subset of hypotheses excluding the true target only withesemor probabilitye. After specifying
the optimization goal we show that this problem can be sallisuligh a linear program imnvari-
ables that indicate the probabilities to discard a hypashgigen an observation. Moreover, we can
compute optimal strategies where o@ym+ n) of these variables get fractional values. The man-
ageable size of the linear programs and the mostly detestitirshape of optimal strategies makes
the method practicable. We interpret the dual variablesastvease distributions of hypotheses,
and we point out some counterintuitive nonmonotonic behavof the variables as a function of
the error bound. One of the open problems is the existence of a purely cortdrinhalgorithm
that is faster than generic linear programming.

Keywords: probabilistic inference, error probability, linear pragiming, cycle-free graphs, net-
work flows

1. Introduction

Suppose that we are given onerofpossibleobservations @ k= 1,...,m, andn hypotheses H
j=1,...,n, each of which might have caused the obse®gdMoreover we know the conditional
probabilitiespy; = P(Ok|H;) to observedy if H; is the true hypothesis, also called taeget Since
exactly oneO is observed, thgy; must satisfyy ;! ; pxj = 1 for everyj. The pj may come from
background knowledge of causal relations, or they may be estimatedsfatistical data.
Our aim is to devise a strategy that, for any obser@gdselects a subset of hypotheses so as

to minimize two conflicting parameters at the same time: the probability to discard (thattis
to select) the target, and the size of the selection. We imagine that the seleptegtdses are
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then examined closer, in order to identify the target, whereas we would caoketb discarded
hypotheses only if we missed the target in our selection. In Section 2 we wél thiig problem
formally as an optimization problem, namely, the minimization of the expected weigxcbaided
hypotheses, given an error probability bound for each target. We thatkthe problem is very
fundamental and its optimization view could be interesting for any setting wherdasto guess
hypotheses from data with known conditional distributions.

An obvious application scenario is diagnosis. The probabilities of varipandremes caused
by any disease may be known from a database. In each particular ithsegiven syndrome, one
wants to harrow down the set of suspects, that is, of possible disedseexamined more carefully.
But the true hypothesis should, with high probability, not be discarded ibegéning. See the
discussion by Szolovits et al. (1988) which refers, however, to congpldstructured models rather
than “atomic” hypotheses and data.

Our particular motivation however came from a protein structure predictiojegt. Proteins
are sequences of residues, each residue being derived fronf 80epossible amino acids. The
3D structure of the protein backbone is uniquely determined by its torsidesangince it is dif-
ficult and costly to determine them experimentally, various methods have legeloped to infer
torsion angles and other structure elements from easier measural#ateatdata, partly with help
of sequence homology. Nuclear magnetic resonance (NMR) chemicdal shifuclei in the amino
acids are certain spectroscopic data influenced by the local molecufarmation, see Beger and
Bolton (1997); Cornilescu et al. (1999); Wang and Jardetzky (2002gand Case (2002) for more
background information. Due to the correlations, it is a natural idea to iofsion angles from
measured chemical shifts. Torsion angle restraints that are narrovilbatistain the (unknown)
true torsion angle values in the majority of cases are important for corestr8cture reconstruc-
tion of whole protein sequences. Since the correlations are complicatezhartthrdly be put in
a neat formula, we have chosen a statistical approach based on langlesaf data. That is, the
“local” task of predicting single torsion angle restraints leads to instancée afjptimization prob-
lem as considered here: Our hypotheses are torsion angles, owailuses are measured chemical
shifts, both discretized in finitely many intervals, and g are estimated from a database. Our
raw data are scatterplots of chemical shift vs. torsion angle values fublicglatabases. The dis-
cretization is done in a preprocessing phase, with the aim to partition the ptmtieto a coarse
grid where the data points in each rectangle are approximately evenly distrifgo that further
splitting would be meaningless). The current partitioning heuristic is descbp&hristin (2006).
Then, we apply different prediction heuristics to the discretized scatterphmat is, point count
matrices. The role of optimization in this application is discussed after the maiofithe paper,
in Section 7. We have to treat in a semi-automated way a huge number of prioktamces: for 6
different nuclei, 20 different amino acids, and 2 torsion angles we emtiy1240 data sets. (A few
are empty.) Actually, the number of instances is a multiple of this number whennséleo several
error probability bounds and their combinations, maybe several disdretigadifferent sources of
raw data, etc. In this sense our application is large-scale, even thougimgie problem instances
are not. On the contrary, we need to reduce every instance to somenglffisi@vable optimization
problem in order to keep the project feasible. In this paper we will sheerakbeneficial properties
of the optimization problem that comply with this goal:

e We end up with a linear program mnvariables, which is a manageable size (see Section 2).
Note that, since a selection rule conditional on the observation can bemaeth the possi-
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ble strategies are described in the first place by variables for the plitbalof all 2" subsets
of hypotheses. However, by the nature of our objective function grithbarity of expec-
tation, we actually need only variables for the probability to exclude any smglethesis
under any observation.

e We can always find an optimal solution where at most{mim} + n of the mn variables
are strictly between 0 and 1 (Section 4). We conjecture that the actual nafriipactional
variables is even somewhat smaller. Hence, most decisions are determiviistic,greatly
simplifies the practical use of our approach.

e The linear program formulation is quite flexible. We can work, for exampith larger error
probabilities for hypotheses that are unlikely to appear as target, otddrscriminate from
others. We will also assign a weigh to every hypothesiblj. Our goal is then to minimize
the total weight of selected hypotheses, under given error probalahigtiaints. The weights
are just coefficients that do not complicate the problem to solve, but gifriiher modelling
options (see below).

e Itis easy to combine predictions from several unrelated observatidhgjrifconditional dis-
tributions are available for the considered set of hypotheses. Thisuddeif reduce the se-
lected set of hypotheses, for prescribed bounds on the errorlgligheSince most variables
in optimal strategies are 0 or 1, the necessary calculations are fast (S8&ctio

e Since the predictors are just linear programs, it is straightforward to implaimeapproach
using standard software packages.

Regarding the weights, in the simplest casevgllare equal. Otherwise, weight; may be
used, for example, to indicate the time needed to verify or falsjfyso that the total weight of the
selected set corresponds to the time to actually identify the target. In the diagmample, weights
may also be proportional to time or costs to check the hypotheses, howeweaywivide each by a
factor for the seriousness of the disease. In interval prediction apptisdike protein torsion angle
prediction, it is sensible to choose the weight of each interval propottioriae interval length.

In Section 3 we also connect a game-theoretic interpretation of the probleomi® Lagrange
dual giving the worst-case probability distribution of hypotheses (in thees¢éhat the achievable
exlusiveness is minimized). We discuss the use of the dual optimum. Moreevdisprove in
Section 4 the tempting conjecture that the exclusion probabilities in optimal stsatgialways
monotone in the error bounds. Such counterintuitive behaviour sugbastsur optimization prob-
lem does not exhibit a simple structure that would also allow a simpler algorithspit®dhe fact
that linear programs are a standard task being well solvable in practiceulitiwe interesting to
devise a faster, purely combinatorial algorithm for our special clasts. Would speed up applica-
tions with massive sets of instances. We must leave this as an open quesgtisrmbély come from
some relationship to flow problems in lossy networks (briefly discussed tio8éx) for which such
algorithms exist.

We are not aware of earlier work where optimization has been used éveimde in such frame-
works. A number of other machine learning tasks, for example, in clagsficand neural net-
work training, have been cast as linear programs, as in Bennett (1B82)ett and Mangasarian
(1992a,b, 1993); Bradley (1998); Glover (1990). Damaschke4peiidied target search problems
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in finite probabilistic inference models with the goal to minimize the expected séarehwhen
switching between the hypotheses (preemptive scheduling of verificabshippossible.

One may compare our optimization to very common and simple heuristic inferelesestich
as the maximum likelihood (ML) and the maximum a-posteriori (MAP) rule: FoolaservedOy,
ML selects the desired number of hypotheggswith the highestp,;. MAP proceeds similarly
with the posterior probabilities of thd;, for prior probabilities given along with thgyj, whereas
ML ignores prior probabilities. Both ML and MAP can easily exclude someni@ktargetsH;
completely even though they appear considerably often. This happpgsisfnot among the top
values for ank. In our approach we explicitly take care of the probabilities to wrongly distize
target (below denoteg}). Similarly to ML we do not make explicit use of prior probabilities, but we
can, for example, assign highgrto rareH;. Finally we optimize the specificity of our hypotheses
selection for the desired prescribed error bounds.

2. Hypothesis Selection by Linear Programs

Now we treat our problem more formally. Recall thaj is the (known) probability to obser@

if H; is the target. Based on an observed a player wants to discard a set of hypotheses that
should have large weight but should not contain the targetrategyo is completely characterized
by a probability distribution on the set of subsets (power sefHif ..., Hn}, depending or®y. It
specifies the probability to discard any set. This is in fact the most gemenaldf a strategy, since
the selection can be randomized, and the player does not learn more th@p.jldext, we also
make our optimization goal explicit.

Definition 1 Consider a fixed strategy. Theerror probabilityof o for target H; is the probability
to discard the target. Thexclusivenessf o for any fixed target His the expected total weight of
the hypotheses discarded by (Here, randomness comes from the choice ph€rording to the
pkj and froma’s randomized choices.) Finally, the exclusivenese & defined to be the worst
(smallest) exclusiveness for al{H

HYPOTHESISSELECTION WITH ERROR BOUNDS is the following problem: Given an mn
matrix P= (px;) and error probabilities; for all H;, devise a strategy with maximum exclusiveness.

Comments:

(1) By defining the exclusiveness as the minimum over all hypotheses tiveiogpthe guaran-
teed exclusiveness (in the sense of an expectation in the long run)emilegly of the frequencies
of hypotheses which may be unknown or subject to changes: In theadisgexample, the rela-
tive frequencies of diseases can vary a lot in time, and in torsion angletioa, the distribution
of angles in a protein under consideration is not known in advance. id e explicit use of
guestionable prior probabilities.

(2) In the simplest case, &l may be equal to some global error probabiktyHowever, we
also allow individual error probabilities. This will not make our problem mooeplicated, but it
gives us the option to assign higher error probabilities to certain hypathasé thus to raise the
exclusiveness. The choice of theis up to the application, but, generally speaking, higheare
advisable ifH; is considered unlikely, or if the vector of th®; for H; (jth column ofP) is in the
convex hull of other columns d?, so that none of th®y is characteristic foH; alone.

(3) For entries withpy; = 0 we would immediately discard hypothesis upon observation
Ok. Alternatively we may forbid zero entries and consider only instances wiiftipe conditional

1342



LINEAR PROGRAMS FORHYPOTHESESSELECTION

probabilities. In applications, typically thgx; are estimated from statistical data, and instead of
settingpxj = O in the absence of cases, it is common in statistical learning methods to apply some
correction rules that yield small positive values.

Note that a strategy is described by as mangn2svariables. However, for maximizing exclu-
siveness we actually need onfynvariables, and this makes the approach feasible. Namely;let
be the probability thadr discards hypothesid; if Ox has been observed. Létbe themx n matrix
X = (x;j). Matrix X is well-defined, an is uniquely determined by. (The converse is not true:
The sameX can be “realized” by many differeit, we come back to this point later.)

Theorem 2 Matrix X of an optimal strategy foHlYPOTHESISSELECTION WITH ERRORBOUNDS
is the solution to the linear program written below.

maxu (1)
) m
Vj: z PkjXkj < €j (2)
K=1
m n
Vit pkj ) Wixk >u 3)
2,71 2,
VK j:0<x;<1 (4)

Proof The left-hand side of (2) is obviously the probability to discaidif H; is the target. The
left-hand side of (3) is the exclusiveness Ky, hence (3) says that the exclusiveness for evgry

is at least some that is maximized in (1). That is, we are maximizing the exclusiveness of the
strategy as desired. Constraint (4) just ensures thag{tere probabilities. |

Corollary 3 We can compute an optimal strategyfor HYPOTHESISSELECTION WITH ERROR
BounDsthrough a linear program in only mn variables.

In particular, it follows that the problem has polynomial time complexitnim. We remark
that, because of (3), the exclusiveness actually depends only on itjetecesum of variables in
each row ofX, defined byx, := S ; wix. Corollary 3 needs some discussion. Strategg not
uniguely determined b¥(, but it is easy to obtain sonwe To mention only two natural options: We
may take a random numbgand uniformly from interval[0, 1] and discard alH; with xc; > rand,
or we may discard thél; independently with probabilitieg. This arbitrariness is not an issue
here. Firstly, allo with the sameX have also the same exclusiveness. Thus we will henceforth
consider the exclusion probabilitigg; as the strategy variables. Accordingly, we also call a matrix
X astrategy Secondly, we will show later that there always exist optimal strategiesendmdy a
limited number of variables iX is fractional, so that most decisions are in fact deterministic.

Some applications may prefer hypotheses of some guaranteed weighefgiQg (although
this can be rather unnatural, especially when row® @bntain very different numbers of safely
discarded small entriegyj). Then, a similar linear program where constraint (3) is replaced with
Vi S, wiXi > ucan be applied.
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3. Game-theoretic Interpretation, Knapsack Strategies, ad the Dual

Our linear program from Theorem 2 is equivalent to a matrix game betweéyar who selects
hypotheses and an adversary (“Nature”) which tries to make a stigkcehsice as difficult as
possible. More precisely, the player can choose a strafabgt respects (2) and (4), the adversary
chooses a hypothesis, and the payoff to the player is exclusivernias®). The set of possible
strategieX is infinite, but we can turn the game into an equivalent finite game, by obgetvér
(a) exclusiveness is linear i, and (b) all feasiblé&X build a polytope with finitely many vertices.
Hence it suffices to consider only these vertices as the player’s pategts, all otheX are convex
linear combinations of them. Claim (a) is obvious from the left-hand side ofaf8) (b) is clear
since theX form a (bounded) feasible region of a linear program. The advessaiyed strategies
can be interpreted as prior probabilitigs of the H;. In the following, q = (qs,...,qn) denotes
a vector of prior probabilities. By von Neumann’s minmax theorem, there exiptsrX*,q* of
optimal mixed strategies for both opponents, and the expected paydff fgr is the value of the
game.

For the moment assume that the player knqws(as, ...,0n). The optimal solutions againgt
are easy to characterize by means of the following definitions. In evéuyncoj of X we set up an
instance of the fractional knapsack problem, with capagignd itemsk =1, ..., mhaving sizegy;
and utilitiesw; 3, piti; see Martello and Toth (1990) for an introduction to knapsack problems.
Note that the fractional knapsack problem is trivially solved by a grekpyrighm: Start fromx; :=
0 for all k, and then sexy; := 1 for k with decreasing utility-to-size ratij := w;j 31 PwiGi/ Pkj.
until the capacity is exhausted. The lagt > 0 can be fractional. (Possible division by 0 does not
cause problems, cf. Comment (3) below Definition 1pdf = 0, we getryj = « and alsaxj = 1.

If the wholekth row of P is zero, we can even ignore it right from the beginning.)

Now, we call a matriXX a knapsack strategy against priorifjeach column ofX is an optimal

solution to the fractional knapsack problem introduced above.

Proposition 4 The optimal strategies X against a prior g are exactly the knapsack steatagainst
that prior g. In particular, if X* is optimal then X is a knapsack strategy against every optinial g

Proof The first assertion is obvious, since the utility tenmy ., p«ig; is the coefficient of; in

the exclusiveness. Le&f be any optimal strategy of the adversary. A player’s strategy achieving
the value of the game must be optimal under pegiar But since the latter strategies are knapsack
strategies againsgt, the second assertion follows. |

We remark that the converse cannot be concluded: A knapsack gtefeinst the optimad*
is not necessarily optimal in the whole game, since it may be worse againspdtirs. Optimality
requires an additional condition that we can get from duality theory of lipeagrams. The fact
that a worst-case pri@* corresponds to a certain Lagrangian dual might be an interesting sauctur
property in itself:

Proposition 5 When we dualize constraints (3), then the vector of the n Lagrange mukiplierO
in the dual optimal solution is a worst-case priof.q
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Proof The Lagrange function is given by

n m n
LOX,uA) =u+ Y A Prj » WiXi—U | .
Z<Z P )

For any fixed vectoh = (Aq,...,An), the Lagrangian subproblefil) = max ,L(X,u,A) can be
separated fou andX:

n
B(A) = ml?xu(l— ;1)\ + male)\ Z Pk ZIW|XK|

The Lagrangian dual is mi®(A). We observe thaf''_;Aj > 1, otherwised(A) is unbounded.
Since theX term is increasing in thij, and the same matricésgive the maximum when vectar
is multiplied with any positive factof(A) attains its minimum for somz with Z?:ﬁ‘j = 1. Thus
the Lagrangian dual simplifies to

n n
iNO(A) = mi A . AL
min ) rrynmxaxgl Jk;pkj i;WIXkI

subject tOZ?:l)\j =1 and the original constraints (2),(4). Note also t#@t) is precisely the ex-
clusiveness for priok, thusA = g*. |

Theorem 6 (X, q) is a pair of optimal solutions if and only if: X is a knapsack strategy against q,
and X has its lowest exclusiveness for ajlwhere g > 0.

Proof As we have dualized constraints (3), we get from the complementary skxkoaditions
that (X, q) is optimal if and only ifX has optimal exclusiveness agaigsend the following alter-
native holds true for every. Variableq; is zero, or the slackness in constraint (3) is zero, which
means thak’s exclusiveness for targét; is exactlyu (and not larger). Together with Proposition
4 the criterion follows. |

Note that this optimality criterion can be checkeddfmn) time for givenX andqg: One just
has to solve the fractional knapsack instances for all colupjrared to compare the left-hand sides
of constraints (3). Since optimality is that easy to check, and the Lagrasgiigmoblem (fractional
knapsack) is trivial, a gradient descent method for the Lagrangiahislefficient in every step.
Therefore it would be interesting to study whether some gradient delsearistic approaches'
already in a few iterations. This would be valuable for applications with martgnss like our
torsion angle prediction project.

Calculatingg” appears to be useful also in another respect: Although we did not explisitly
prior probabilities of theH;, we know in general whichlj appear frequently or rarely. Now,df is
large for some rare hypothests, this indicates thaX* has been optimized for an unlikely distribu-
tion of targets. (Recall that* has the worst exclusiveness even forrgllwith positiveqj.) We may
then drop constraint (3) for such indicgand optimize again, in order to raise the exclusiveness for
the more frequent targets only. Such modifications are natural and elagylémnent, and they may
improve the global results in, for example, protein structure prediction. Hdggo be tested more
extensively within the particular applications.
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4. Structural Properties of Optimal Solutions

In the following we consider, for simplicity, a special case of our lineagmm from Theorem 2
where allej are equal to some Regarding the dependencywfrom this parameter we have:

Proposition 7 For any fixed likelihood matrix P, the optimal exclusiveness u is a monotoresis:
ing and concave function ia1

Proof Monotonicity: Parametee appears only in constraints (2). If one raigethen, obviously,
the set of feasible solutions becomes only larger, and since we have a natiomigroblem, the
optimalu increases.

Concavity:Consider thémn+2)-dimensional space with thenvariables; and, additionally,
€ andu as coordinates. Ldt be the feasible region of our linear program in this space, that is, the
set of(mn+ 2)-vectors that fulfill constraints (2),(3),(4). Clearly,is convex. Hence the projection
Fleu Of F to thee vs. u plane is convex, too.H|e is the set of all pairge,u) for which there
exist values of thex; so that the constraints are satisfied.) Remember that we have to maximize
for a givene. Geometrically this means to take the point at the upper bounddfy gfat abscissa
€. SinceF | is convex, the upper boundary is the graph of a (piecewise linearpeerfanction.
(Figure 1.) |

Figure 1. uis monotone and concave én The graph limits the the feasible region from above.

One might expect that also every single variatplgin the strategy matriX is monotone in the
error bounck, but this is not true in general. A small example demonstrates the reasoall tRec
notationspy; for the probability to observ®y givenHj, the weighted row sums := 3 WX,
and the utility-to-size ratiosj := w;j 311 p«idi/ pkj from the fractional knapsack problems.

Example 1 Suppose that all hypotheses have unit weights-\i. Consider the following matrix P
of conditional probabilities p:

5_[01 05 08
~109 05 02|

First let € = 0.1. For the prior (q1,02,03) = (1,0,0) it is easy to check that any knapsack solution
has exclusiveness=4 0.73. Moreover, against this prior, every knapsack solution with>xx,
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satisfies the criterion in Theorem 6. Hence

X+ 073+x 0 O

0.03—x 02 05
with 0 < x < 0.03 (arbitrary) is optimal, and 1,0, 0) is a worst prior. This in turn implies that every
optimal X must be a knapsack solution agaifisD, 0). In particular, 2 = 0.2 is enforced.

Now lete = 0.2 instead. Then, every knapsack solution agais0,0) has x < xp, so that
prior (0,0,1) would be worse. But, similarly, every knapsack solution agdih& 1) has % > X,
so that prior(1,0,0) would be worse. It follows that;x= x, holds in every optimal X, and that an
optimal g differs from these two priors. But each prior except the mentioned twes giye> r2;
and r3 > ri3, which determines column 1 and 3 of Xniquely. Together withyx= x, this finally
yields (matrix entries rounded to three decimals):

X* — 1 0256 0
| 0111 Q144 1|°

Note that %, is smaller than before! The explanation is that xeached 1, thus only,x could
increase, and »% decreased in favour ofix, in order to keep xand »% balanced.

Next we consider arbitrary individual error bourgjsagain. As announced, we show that our
linear programs from Theorem 2 have optimal solutions where only a minorttyeohnvariables
Xyj is fractional, that is, properly between 0 and 1. It means that these salsttidegies are to a
large extent deterministic, which makes them much easier to handle in practice.

Theorem 8 Any optimal solution being a vertex of the feasible region has at 2mo$tactional
variables.

Proof Some optimal solutioiX of a linear program is always a vertex of the feasible region. Con-
straints (4) describe the hypercubenim-dimensional space where all vertices have coordinates 0
or 1. Furthermore, the number of binding constraints in a veftexat least the dimensiamn, but

only one of any two constraintg; > 0, Xc; < 1 can be binding. Thus, in a vertéxwith more than

2n fractional coordinates, more than Bther constraints must be binding. Since we have only 2
constraints (2),(3), the assertion follows. |

We can also say something about pusitionsof fractional entries in optimal strategy matrices
X and get a better bound in case that n. Let B(X) be the bipartite graph with verticeg for
all rowsk, and verticej for all columnsj, where an edge betweep andc; exists iff xj is a
fractional value.

Theorem 9 There exists an optimal solution X with cycle-freeX and thus at most mrn—1
fractional entries.

Proof Suppose thaB(X) contains a cycl€ with verticesr1,¢1,r2,Cz, . . ., 11, ¢ (in this cyclic order).
Thatis, edgesG, Ciri.1 andgrq exist, where Ris the length of the cycle. Note that the indexing of
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rows and columns iX is arbitrary, hence we may rename them such that, without loss of generality,
indicesinC are 12,...,| as defined above.

Letd be some real number that we fix later. We change the matrix entries candisgao the
edges irC by the following procedure. First, defimg, = d and replace;; with X1 — di1. Define
do1 = %dn and replace<; with X»1 + d21. Obviously, the error bound constraint (2) remains
valid for columnj = 1. Next, defined,, = %dn and replacex, with xo2 — dpo. The effect is that
Xc := YL WiXki remains unchanged for rolv= 2. We walk the cycleC and continue in this way.
The general step is: Defirtg = W\jv—*ild”_l and replaces; with x; — djj, then definali 1; = ST
and replace;1j with i1 +di+11. Following this scheme we finally we updatg, accordihg to
[ +1 modl =1.

Note that all these changes neither affect the left-hand sides of dots{(2) nor the weighted
row sumsx, defined above, witlx; as the only exception. d; has not decreased, constraints (3)
remain satisfied, too. K; has decreased, we usal instead ofd, so thatx; now increases. Since
all x¢j on edges o€ are fractional, constraints (4) also remain valid for small enqdgrHence we
get a new feasible solution for amywhich has the suitable sign and small enough absolute value.
Finally we adjust oud so that some entry i@ becomes exactly O or 1.

Hence we can destroy some cy€ef fractional entries. Since the optimal valués monotone
in the x, the new solutiorX is no worse. Applying the same procedure repeatedly we destroy all
such cycles. Since every step also properly decreases the numbaetififal entries, the process
terminates with atX as desired. Since a cycle-free graph has fewer edges than vettedsund
m+ n— 1 follows.

We remark that this proof gives also a polynomial algorithm that computesle-frge optimal
solution. [ |

The 3x 2 instances from Example 1 admit optimal solutions with 3 fractional entries.

An obvious question is whether our combinatorial bounds are already tighte precisely:
Given numbersn,n, let f(m,n) denote the largest number such that there exista am instance
P of HYPOTHESISSELECTION WITH ERROR BOUNDS where every optimal solutioX needs at
leastf (m,n) fractional variables. We have showiim, n) < min{m,n} 4+ n, and it is trivial to give
general examples where the number of fractional variables must be thatf(m,n) > n. On
the other hand, note that the “fractional knapsack” property of optimiatisns does not imply
f(m,n) < n: Knapsack solutions are not always unique and may allow severéibimatvariables
in a columnj (namely if severaty; are equal), and since a knapsack solution against a dual optimal
g" is not necessarily already optimal, we may have to take a solution with more fralct@riables.
We must leave the exa¢{m,n) as an open problem.

5. Is There a Faster Algorithm?

In this more informal section we briefly discuss another open problem: isaapurely combina-
torial algorithm for our class of linear programs that is faster than a geleear program solver.
We point out two ways, but also the reasons why these attempts haveemosnecessful so far.

(1) Example 1 in the previous section shows (besides non-monotonicity a;thethe error
bounds) that, in an optimal solution, thg in a rowk are in general not simply filled up to 1 in
increasing order of th@y;. This is an effect of the columnwise error constraints. Nevertheless,
intuition tells that larger,; are mostly assigned to smallggj. Exceptions are structurally limited,
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due to the following discussion. Let us call two matrix entries in the same roal@mn amonotone
pair if the values of these entries K andP stand in thesamerelation (larger or smaller). For an
input P and a strategy, define a directed grapB(X) whose vertices are the columns, with a
directed arc from to j if pxi > pxj andxy > X«; holds for somek. The directed grapR(X) whose
vertices are rows is defined similarly. By an argument similar to the proof ebidm 9 we can
show the existence of an optimal solutignvhereB(X) is cycle-free and als€(X) andR(X) are
free ofdirectedcycles. Hence there is some topological order of the rows and columhshaiall
monotone pairs in rows and columns decrease in the same direction, forlex&mpe right and
downwards, respectively. However this does not limit tlenberof monotone pairs. Moreover,
the topological orders are not obvious frdtnand even if we knew them, we could not compute
the optimalX from them in a simple way. In summary, the observation above did not leadaus to
efficient algorithm.

(2) Another idea is a reduction to flow problems in bipartite lossy networksted problem
which has many other applications in transportation and finance (for exaonptency exchange),
purely combinatorial polynomial-time algorithms have been given by Tardds\ayne (1998);
Wayne (2002). However, the idea works only for a variant ofPBTHESIS SELECTION WITH
ERRORBOUNDSwith “observation-wise” exclusiveness demands instead of a globhiswxeness
objective: Recall again the weighted row sums= 3 ; wix. For given parameters; andyj
for all j andk, respectively, we may raise the following existence problem: Is there déi@olu
X with error probabilities at most; for all Hj, andxx > y for all Ox? This problem is easily
seen to be a flow problem in a bipartite lossy network with arc capacities laandagtors ¥ py;;
see Tardos and Wayne (1998); Wayne (2002) for the definitions.omtrast, a reduction from
HYPOTHESISSELECTION WITH ERROR BOUNDS does not seem to exist, for the intuitive reason
that flow variables cannot be “copied” in order to “participate” in selvién@ar combinations of
the x. Still, algorithmic techniques similar to those used for flows in lossy networks nhight
applicable. We have to leave this subject for future research.

6. Combining Data

Suppose that we have several matrie€8, P ... of conditional probabilities for the same set

of hypotheses but for different types of observations, such asrdift groups of symptomes in
diagnosis, or chemical shifts of several nuclei in protein torsion angldigtion. We do not assume
that the joint distribution of vectors of observations is known: Since the eumbvectors is the
product ofm® m@ ..., there may be not enough cases in the database that would allow meaningful
probability estimates for all these vectors. Still, combining these data setsrtiaer foarrow down

the selected hypotheses (if the observations “complement each other,” anellat the same time
preserve guaranteed error bounds. For ease of presentatiosevideéhe method for two matrices,

but it can be readily extended to any number.

Proposition 10 Let P and P be the conditional probability matrices of sizexm and m x n,
respectively, and;, s’j the error bounds of two instancesle¥ POTHESISSELECTION WITH ERROR
Bounbsfor the same set of hypotheses H=1,...,n. Furthermore let X and Xbe strategies for
these two instances that respect the given error bounds. For any pabiservations ¢ O; from
both instances (wherek1,...,mandI=1,...,nT), we define for all Hithe exclusion probabilities
Xj +Xj — XjX;j- Then the resulting mix n matrix is a strategy for combined observations with
upper bound; + e’j on the probability to wrongly discard target;H
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Proof In fact, the combined strategy is designed so that we discardipifiyat least one of the pre-
dictorsX or X’ does. The decision to discard a hypothesis is taken independently in bathces.
Hence, ifOx, Of are observed, we keéfy with probability

(1=x) (L =xj) = 1= (% + X —XjX})-

On the other hand, since the probability of a union of events is at most thefsprababilities of
the single events, we discard targsfgtwith at mostthe probabilitye; + s’j. |

Proposition 10 gives only a guarantee on the error probabilities. Howeawecavity of exclu-
siveness (see Proposition 7) suggests that combining two predictorsalfidrior bound in general
improves the exclusiveness. For concrete instances and a desirestitotgdrobability we may try
various partitions into summands, with some resonable step length, and takerthimation that
works best. We also remark that, since by Theorem 8 and 9 most stratéglylesxj, ; are 0 or
1, the calculations are fast.

If severalPl) are available (for example, in our protein structure application, the chestiifed
of 6 nuclei, and also from neighbored residues), then exhaustivehsisaexpensive, but we may
choose to combine only the most informative data, that is, only tR&swith largest exclusiveness.

Finally, a deliberately very simple, symmetric toy example with two hypothesesiaf eegight
illustrates the principle of combining predictions.

Example 2

0 05 05 0

We choose = 0.2 for both hypotheses in both instances. Then the optimal solutions for the
separate instances are, rather obviously:

(02 04],, [04 02
<[ T[T

In the firstinstance, the exclusiveness is only 0.4 isHhe target (since alwaysi0ds observed),
and for H, we get exclusiveness 0.8 (average of both rows), the second ingsasyagametric. If
we use the information from both instances, we can improve the exclusifendse same = 0.2.
First we optimize both instances separately, but now with half error b@utid

x:[o.l 0.2] X,:[o.z 0.1]'

SRR

1 O 0 1

For the four combinationsk,l) = (1,1),(1,2),(2,1),(2,2) we compute new exclusion proba-
bilities as specified above:

0.28 028

0.1 1
1 01
1 1

Since target bl causes the pair of observatiof$,1) or (1,2), each with probability0.5, the
exclusiveness 85- (0.56+ 1.1) = 0.83, and target H yields the same exclusiveness by symmetry.
This is considerably better than the worst case above, and even slighabr ldran the best case
above.
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7. Application Note: Protein Torsion Angle Prediction

We studied properties of a class of linear programs for hypothesesiselgcprobabilistic infer-
ence which is hopefully of fundamental interest. We were led to the probless by a concrete
challenge: a project where we are comparing different methods fdigbirey protein torsion angles
from NMR chemical shifts, see Section 1. Characteristic features ofaattesplot data are large
empty regions with almost no data points, in them clouds of data points with a vaef&tgapes and
different densities. Optimization assists in the creation of a predictor:

Any prediction heuristic has to take a measured chemical shift value anat pugglicted torsion
angle values. In a statistical approach it is sensible to precompute thetjmeslikbased on the
sampled data. The actual application is then a simple table look-up, done bhyiaarg program.
The main relevant question for spectroscopists is the achievable cardidéren predicting torsion
angle intervals of a prescribed length (error probability vs. exclussgnin our terminology).
Then they can make their specific decisions using this tradeoff. Besidesttled predictions, the
optimization results also quantify how informative the chemical shifts of diffeneiclei (or their
combinations) are for this purpose.

Basic heuristics working purely “row-wise” (MAP, ML, or similar) do nayattention to error
probabilities for specific hypothesis intervals and easily discard certaiotoangles completely,
despite a considerable frequency of occurrence. Hence sudbtimugenerate systematically mis-
leading predictions when these neglected ranges of torsion angles.apyea worse, they can
appear more frequently in a protein under consideration than in the databesall that the scatter-
plots are sampled from a large collection of various proteins so that we &ntyaverage torsion
angle frequencies. A more even distribution of errors to different toraimles gives more robust-
ness against varying torsion angle frequencies. We can also expetiteglobal structure recon-
struction process itself works smoother if the local restraints have balarcers: Most wrong
sequences of torsion angles, that is, sequences with errors injextetlready geometrically im-
possible, which gives us a chance to correct such occasionas &rRince the precise effects are
hard to know beforehand, free parametgrseem to be a valuable feature.

A simple MAP heuristics, for example, would take the measured chemical shift end select
the torsion angle ranges (columns) with highest point densities in the raaicmy the measured
value. Other preferences may be taken into account, for instance,tenglris easier to handle as
a restraint than a union of several intervals. In either case, a sele@ids g matrixX and a vector
of error probabilitiess; which are typically low (high) in densely (sparsely) populated columns.
Now we can adjust error probabilities for individual torsion angle intsrimany desired direction
and re-optimize.

As an illustration we discuss an arbitrary example (point count matrix) fremehl data: As-
partic Acid, nucleu€®, and torsion angle, partitioned into homogeneous regions using the method
from Christin (2006):

1. As a linguistic analogy, typos scattered in a text can be erased promvptyeas systematic errors make words
unrecognizable, or even smuggle in other words that fit in the contéxtdne not intended.
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1 0 7 12 4 1 1 0
O 0 0 19 18 1 2 0
5 4 22 212 116 16 4 O
2 3 21 9 32 3 50
10 6 38 93 28 7 39 3
98 86 304 193 39 11 63 §
34 43 8 27 4 0 7 3
22 60 67 18 1 1 2 2

| 312 19 6 4 0 2 0

[40 30 30 20 15 80 45 10@).

The bottom line gives the torsion angle interval lengths in degrees, thatrisyeights. The
frequencies of hypotheses in the database are (in percent, rounded)

[8.5 105 275 330 120 20 60 0.5].

Suppose we want to predict torsion angle intervals of about 60 degnekstart with a naive
MAP heuristic that takes the intervals of exactly 60 degrees with maximum denstych row.
It leads to the following matrixX (entries indicate the discarded fractions of intervals, values are
rounded):

11 017 00 1 1 1T
11 1 00 069 1 1
11 017 001 11
11 017001 11
11 017 001 11
10670 011 11
170 0 111 11
170 0 111 11
10 0 111 1 1]

[ 1000 330 25 75 195 990 1000 1000 |.

The bottom line indicates the error bourgjsn percent (rounded). For the prior probabilities
from the database, the overall error probability would be about 26%miation with the same;
yields only marginal changes:

171 0 001 1 1
11 1 00 069 1 1
11 018001 11
11 016001 11
11 017 001 11
10670 011 11
170 0 111 11
170 0 111 11
10 o006 111 1 1]
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Columns 6 and 8 are completely discarded, which is reasonable becdysz58 of cases
are to be expected in the corresponding large intervals. The separster ¢giucolumn 7 which
appeared with 6% is always discarded, too. We may accept this errar wlerefer a single
predicted interval to a union of two (see the remark above). The mostrgleart is the dense
region in columns 1 to 5. Observe that also column 1 is completely discarded,tleough it
contains a considerable cluster of points. This makes up for 8.5 of the 26Pétmr. Let us reduce
€1 and see how this affects the predictions. For instance, after chaagiteg0.4, optimization
(followed by raising some sporadig; < 1 to 1 whenpy; is small) yields thisX:

1 1 0 0 01 1 17
1 1 1 0 0069 1 1
1 1 0 0 01 11
076 0 0 0 01 11
1 1 0 0 01 11
026 07 0 003 1 1 11
016 0 Q16 1 11 11
1 0 0O 1 11 11
1 0 0 0 11 1 1

We remark that the optimal dual solution moved frgge= 1 toq; = 1. The (expected) length of
predicted intervals increased to 84 degrees. On the other hand, théagimbavent down to 21%,
and we can afford to raise the very small initigl For instance, witlez = 0.2 we are back to the
initial total error of 26%, now with an expected hypothesis length of 77aegand the following
X:

P OOORRERERER
o
o

N
(o))
~

'_\
o
COO0OORORRBR

cNelNeNoNoNol o)
el ol eoNoNoNoNeNe)
PP ERPRPOOOOO
PP REPRPRPR SgIA

PRPRrRPRrRrRLPR
PR RrRPPRRPR PR

Interestingly, this step pressed the predictions in rows 7,8 more to the loweptekr, while
Xg1 became higher again. The apparent reason is that, in row 6, the elemehtrimcl has strong
competitors in columns 3 and 4. Hence itis not predicted definitely, eventhmuyg> p71, ps1. The
result in row 6 suggests to choose either columns 1-2 or 3-4. In ordeoid predicting intervals
of excessive lengths in some rows, we may cut the longest intervals domexample, at the end
with the smallest increase of error. In our example, the longest predidtzdah with 93 degrees,
appears in row 4. Changing to 1 increases, marginally to 0345 but shortens this interval to 65
degrees. In row 8 we may cut at column 3, etc.

This example merely served to demonstrate that desirable improvements cardéeiten
quick manual checking, while the main calculations are left to any linear @noging tool. For
processing hundreds of instances with different desired intervatismge fix the initiale; (sub-
ject to a proportional factor which is used for the error vs. excluggsriradeoff) also by other
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plausible heuristicse; proportional to the weight-by-frequency ratio, eqagland combinations
of them. However, since no simple automatic rule seems to be satisfact@ly fibrerse shapes of
scatterplots (apparently bad examples exist for each), some minor irttervas shown above is
required.
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