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Göteborg University
P.O. Box 462
40530 G̈oteborg, Sweden

Peter Damaschke PTR@CS.CHALMERS.SE

Department of Computer Science and Engineering
Chalmers University
41296 G̈oteborg, Sweden
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Abstract
We consider an optimization problem in probabilistic inference: Givenn hypothesesH j , m possi-
ble observationsOk, their conditional probabilitiespk j, and a particularOk, select a possibly small
subset of hypotheses excluding the true target only with some error probabilityε. After specifying
the optimization goal we show that this problem can be solvedthrough a linear program inmnvari-
ables that indicate the probabilities to discard a hypothesis given an observation. Moreover, we can
compute optimal strategies where onlyO(m+n) of these variables get fractional values. The man-
ageable size of the linear programs and the mostly deterministic shape of optimal strategies makes
the method practicable. We interpret the dual variables as worst-case distributions of hypotheses,
and we point out some counterintuitive nonmonotonic behaviour of the variables as a function of
the error boundε. One of the open problems is the existence of a purely combinatorial algorithm
that is faster than generic linear programming.
Keywords: probabilistic inference, error probability, linear programming, cycle-free graphs, net-
work flows

1. Introduction

Suppose that we are given one ofm possibleobservations Ok, k = 1, . . . ,m, andn hypotheses Hj ,
j = 1, . . . ,n, each of which might have caused the observedOk. Moreover we know the conditional
probabilitiespk j = P(Ok|H j) to observeOk if H j is the true hypothesis, also called thetarget. Since
exactly oneOk is observed, thepk j must satisfy∑m

k=1 pk j = 1 for every j. The pk j may come from
background knowledge of causal relations, or they may be estimated fromstatistical data.

Our aim is to devise a strategy that, for any observedOk, selects a subset of hypotheses so as
to minimize two conflicting parameters at the same time: the probability to discard (that is, not
to select) the target, and the size of the selection. We imagine that the selected hypotheses are
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then examined closer, in order to identify the target, whereas we would come back to discarded
hypotheses only if we missed the target in our selection. In Section 2 we will state this problem
formally as an optimization problem, namely, the minimization of the expected weight ofexcluded
hypotheses, given an error probability bound for each target. We thinkthat the problem is very
fundamental and its optimization view could be interesting for any setting where one has to guess
hypotheses from data with known conditional distributions.

An obvious application scenario is diagnosis. The probabilities of various syndromes caused
by any disease may be known from a database. In each particular case with a given syndrome, one
wants to narrow down the set of suspects, that is, of possible diseases tobe examined more carefully.
But the true hypothesis should, with high probability, not be discarded in thebeginning. See the
discussion by Szolovits et al. (1988) which refers, however, to complexand structured models rather
than “atomic” hypotheses and data.

Our particular motivation however came from a protein structure prediction project. Proteins
are sequences of residues, each residue being derived from one of 20 possible amino acids. The
3D structure of the protein backbone is uniquely determined by its torsion angles. Since it is dif-
ficult and costly to determine them experimentally, various methods have been developed to infer
torsion angles and other structure elements from easier measurable, correlated data, partly with help
of sequence homology. Nuclear magnetic resonance (NMR) chemical shifts of nuclei in the amino
acids are certain spectroscopic data influenced by the local molecular conformation, see Beger and
Bolton (1997); Cornilescu et al. (1999); Wang and Jardetzky (2002); Xu and Case (2002) for more
background information. Due to the correlations, it is a natural idea to infertorsion angles from
measured chemical shifts. Torsion angle restraints that are narrow but still contain the (unknown)
true torsion angle values in the majority of cases are important for correct 3D structure reconstruc-
tion of whole protein sequences. Since the correlations are complicated andcan hardly be put in
a neat formula, we have chosen a statistical approach based on large samples of data. That is, the
“local” task of predicting single torsion angle restraints leads to instances ofthe optimization prob-
lem as considered here: Our hypotheses are torsion angles, our observations are measured chemical
shifts, both discretized in finitely many intervals, and thepk j are estimated from a database. Our
raw data are scatterplots of chemical shift vs. torsion angle values from public databases. The dis-
cretization is done in a preprocessing phase, with the aim to partition the scatterplot into a coarse
grid where the data points in each rectangle are approximately evenly distributed (so that further
splitting would be meaningless). The current partitioning heuristic is described by Christin (2006).
Then, we apply different prediction heuristics to the discretized scatterplots, that is, point count
matrices. The role of optimization in this application is discussed after the main partof the paper,
in Section 7. We have to treat in a semi-automated way a huge number of probleminstances: for 6
different nuclei, 20 different amino acids, and 2 torsion angles we get nearly 240 data sets. (A few
are empty.) Actually, the number of instances is a multiple of this number when we consider several
error probability bounds and their combinations, maybe several discretizations, different sources of
raw data, etc. In this sense our application is large-scale, even though thesingle problem instances
are not. On the contrary, we need to reduce every instance to some efficiently solvable optimization
problem in order to keep the project feasible. In this paper we will show several beneficial properties
of the optimization problem that comply with this goal:

• We end up with a linear program inmnvariables, which is a manageable size (see Section 2).
Note that, since a selection rule conditional on the observation can be randomized, the possi-
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ble strategies are described in the first place by variables for the probabilities of all 2n subsets
of hypotheses. However, by the nature of our objective function and by linearity of expec-
tation, we actually need only variables for the probability to exclude any singlehypothesis
under any observation.

• We can always find an optimal solution where at most min{m,n}+ n of the mn variables
are strictly between 0 and 1 (Section 4). We conjecture that the actual number of fractional
variables is even somewhat smaller. Hence, most decisions are deterministic,which greatly
simplifies the practical use of our approach.

• The linear program formulation is quite flexible. We can work, for example, with larger error
probabilities for hypotheses that are unlikely to appear as target, or hardto discriminate from
others. We will also assign a weightw j to every hypothesisH j . Our goal is then to minimize
the total weight of selected hypotheses, under given error probability constraints. The weights
are just coefficients that do not complicate the problem to solve, but give us further modelling
options (see below).

• It is easy to combine predictions from several unrelated observations, iftheir conditional dis-
tributions are available for the considered set of hypotheses. This can further reduce the se-
lected set of hypotheses, for prescribed bounds on the error probability. Since most variables
in optimal strategies are 0 or 1, the necessary calculations are fast (Section 6).

• Since the predictors are just linear programs, it is straightforward to implement the approach
using standard software packages.

Regarding the weights, in the simplest case allw j are equal. Otherwise, weightw j may be
used, for example, to indicate the time needed to verify or falsifyH j , so that the total weight of the
selected set corresponds to the time to actually identify the target. In the diagnosis example, weights
may also be proportional to time or costs to check the hypotheses, however we may divide each by a
factor for the seriousness of the disease. In interval prediction applications like protein torsion angle
prediction, it is sensible to choose the weight of each interval proportional to the interval length.

In Section 3 we also connect a game-theoretic interpretation of the problem tosome Lagrange
dual giving the worst-case probability distribution of hypotheses (in the sense that the achievable
exlusiveness is minimized). We discuss the use of the dual optimum. Moreoverwe disprove in
Section 4 the tempting conjecture that the exclusion probabilities in optimal strategies are always
monotone in the error bounds. Such counterintuitive behaviour suggeststhat our optimization prob-
lem does not exhibit a simple structure that would also allow a simpler algorithm. Despite the fact
that linear programs are a standard task being well solvable in practice, it would be interesting to
devise a faster, purely combinatorial algorithm for our special class. This would speed up applica-
tions with massive sets of instances. We must leave this as an open question. Hints may come from
some relationship to flow problems in lossy networks (briefly discussed in Section 5) for which such
algorithms exist.

We are not aware of earlier work where optimization has been used for inference in such frame-
works. A number of other machine learning tasks, for example, in classification and neural net-
work training, have been cast as linear programs, as in Bennett (1992); Bennett and Mangasarian
(1992a,b, 1993); Bradley (1998); Glover (1990). Damaschke (2004) studied target search problems
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in finite probabilistic inference models with the goal to minimize the expected searchtime, when
switching between the hypotheses (preemptive scheduling of verification jobs) is possible.

One may compare our optimization to very common and simple heuristic inference rules such
as the maximum likelihood (ML) and the maximum a-posteriori (MAP) rule: For anobservedOk,
ML selects the desired number of hypothesesH j with the highestpk j. MAP proceeds similarly
with the posterior probabilities of theH j , for prior probabilities given along with thepk j, whereas
ML ignores prior probabilities. Both ML and MAP can easily exclude some potential targetsH j

completely even though they appear considerably often. This happens ifpk j is not among the top
values for anyk. In our approach we explicitly take care of the probabilities to wrongly discard the
target (below denotedε j ). Similarly to ML we do not make explicit use of prior probabilities, but we
can, for example, assign higherε j to rareH j . Finally we optimize the specificity of our hypotheses
selection for the desired prescribed error bounds.

2. Hypothesis Selection by Linear Programs

Now we treat our problem more formally. Recall thatpk j is the (known) probability to observeOk

if H j is the target. Based on an observedOk, a player wants to discard a set of hypotheses that
should have large weight but should not contain the target. Astrategyσ is completely characterized
by a probability distribution on the set of subsets (power set) of{H1, . . . ,Hn}, depending onOk. It
specifies the probability to discard any set. This is in fact the most general form of a strategy, since
the selection can be randomized, and the player does not learn more than just Ok. Next, we also
make our optimization goal explicit.

Definition 1 Consider a fixed strategyσ. Theerror probabilityof σ for target Hj is the probability
to discard the target. Theexclusivenessof σ for any fixed target Hj is the expected total weight of
the hypotheses discarded byσ. (Here, randomness comes from the choice of Ok according to the
pk j and fromσ’s randomized choices.) Finally, the exclusiveness ofσ is defined to be the worst
(smallest) exclusiveness for all Hj .

HYPOTHESISSELECTION WITH ERROR BOUNDS is the following problem: Given an m×n
matrix P= (pk j) and error probabilitiesε j for all H j , devise a strategy with maximum exclusiveness.

Comments:
(1) By defining the exclusiveness as the minimum over all hypotheses we optimize the guaran-

teed exclusiveness (in the sense of an expectation in the long run), independently of the frequencies
of hypotheses which may be unknown or subject to changes: In the diagnosis example, the rela-
tive frequencies of diseases can vary a lot in time, and in torsion angle prediction, the distribution
of angles in a protein under consideration is not known in advance. We avoid the explicit use of
questionable prior probabilities.

(2) In the simplest case, allε j may be equal to some global error probabilityε. However, we
also allow individual error probabilities. This will not make our problem morecomplicated, but it
gives us the option to assign higher error probabilities to certain hypotheses, and thus to raise the
exclusiveness. The choice of theε j is up to the application, but, generally speaking, higherε j are
advisable ifH j is considered unlikely, or if the vector of thepk j for H j ( jth column ofP) is in the
convex hull of other columns ofP, so that none of theOk is characteristic forH j alone.

(3) For entries withpk j = 0 we would immediately discard hypothesisH j upon observation
Ok. Alternatively we may forbid zero entries and consider only instances with positive conditional
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probabilities. In applications, typically thepk j are estimated from statistical data, and instead of
settingpk j = 0 in the absence of cases, it is common in statistical learning methods to apply some
correction rules that yield small positive values.

Note that a strategy is described by as many asm2n variables. However, for maximizing exclu-
siveness we actually need onlymnvariables, and this makes the approach feasible. Namely, letxk j

be the probability thatσ discards hypothesisH j if Ok has been observed. LetX be them×n matrix
X = (xk j). Matrix X is well-defined, andX is uniquely determined byσ. (The converse is not true:
The sameX can be “realized” by many differentσ, we come back to this point later.)

Theorem 2 Matrix X of an optimal strategy forHYPOTHESISSELECTION WITH ERRORBOUNDS

is the solution to the linear program written below.

maxu (1)

∀ j :
m

∑
k=1

pk jxk j ≤ ε j (2)

∀ j :
m

∑
k=1

pk j

n

∑
i=1

wixki ≥ u (3)

∀k, j : 0≤ xk j ≤ 1 (4)

Proof The left-hand side of (2) is obviously the probability to discardH j if H j is the target. The
left-hand side of (3) is the exclusiveness forH j , hence (3) says that the exclusiveness for everyH j

is at least someu that is maximized in (1). That is, we are maximizing the exclusiveness of the
strategy as desired. Constraint (4) just ensures that thexk j are probabilities.

Corollary 3 We can compute an optimal strategyσ for HYPOTHESISSELECTION WITH ERROR

BOUNDS through a linear program in only mn variables.

In particular, it follows that the problem has polynomial time complexity inn,m. We remark
that, because of (3), the exclusiveness actually depends only on the weighted sum of variables in
each row ofX, defined byxk := ∑n

i=1wixki. Corollary 3 needs some discussion. Strategyσ is not
uniquely determined byX, but it is easy to obtain someσ. To mention only two natural options: We
may take a random numberrand uniformly from interval[0,1] and discard allH j with xk j ≥ rand,
or we may discard theH j independently with probabilitiesxk j. This arbitrariness is not an issue
here. Firstly, allσ with the sameX have also the same exclusiveness. Thus we will henceforth
consider the exclusion probabilitiesxk j as the strategy variables. Accordingly, we also call a matrix
X a strategy. Secondly, we will show later that there always exist optimal strategies where only a
limited number of variables inX is fractional, so that most decisions are in fact deterministic.

Some applications may prefer hypotheses of some guaranteed weight for every Ok (although
this can be rather unnatural, especially when rows ofP contain very different numbers of safely
discarded small entriespk j). Then, a similar linear program where constraint (3) is replaced with
∀ j : ∑n

i=1wixki ≥ u can be applied.
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3. Game-theoretic Interpretation, Knapsack Strategies, and the Dual

Our linear program from Theorem 2 is equivalent to a matrix game between aplayer who selects
hypotheses and an adversary (“Nature”) which tries to make a successful choice as difficult as
possible. More precisely, the player can choose a strategyX that respects (2) and (4), the adversary
chooses a hypothesis, and the payoff to the player is exclusivenessu in (3). The set of possible
strategiesX is infinite, but we can turn the game into an equivalent finite game, by observing that
(a) exclusiveness is linear inX, and (b) all feasibleX build a polytope with finitely many vertices.
Hence it suffices to consider only these vertices as the player’s pure strategies, all otherX are convex
linear combinations of them. Claim (a) is obvious from the left-hand side of (3), and (b) is clear
since theX form a (bounded) feasible region of a linear program. The adversary’s mixed strategies
can be interpreted as prior probabilitiesq j of the H j . In the following, q = (q1, . . . ,qn) denotes
a vector of prior probabilities. By von Neumann’s minmax theorem, there existsa pairX∗,q∗ of
optimal mixed strategies for both opponents, and the expected payoff forX∗,q∗ is the value of the
game.

For the moment assume that the player knowsq = (q1, . . . ,qn). The optimal solutions againstq
are easy to characterize by means of the following definitions. In every column j of X we set up an
instance of the fractional knapsack problem, with capacityε j and itemsk= 1, . . . ,mhaving sizespk j

and utilitiesw j ∑n
i=1 pkiqi ; see Martello and Toth (1990) for an introduction to knapsack problems.

Note that the fractional knapsack problem is trivially solved by a greedy algorithm: Start fromxk j :=
0 for all k, and then setxk j := 1 for k with decreasing utility-to-size ratiork j := w j ∑n

i=1 pkiqi/pk j,
until the capacity is exhausted. The lastxk j > 0 can be fractional. (Possible division by 0 does not
cause problems, cf. Comment (3) below Definition 1. Ifpk j = 0, we getrk j = ∞ and alsoxk j = 1.
If the wholekth row ofP is zero, we can even ignore it right from the beginning.)

Now, we call a matrixX a knapsack strategy against prior qif each column ofX is an optimal
solution to the fractional knapsack problem introduced above.

Proposition 4 The optimal strategies X against a prior q are exactly the knapsack strategies against
that prior q. In particular, if X∗ is optimal then X∗ is a knapsack strategy against every optimal q∗.

Proof The first assertion is obvious, since the utility termw j ∑n
i=1 pkiqi is the coefficient ofxk j in

the exclusiveness. Letq∗ be any optimal strategy of the adversary. A player’s strategy achieving
the value of the game must be optimal under priorq∗. But since the latter strategies are knapsack
strategies againstq∗, the second assertion follows.

We remark that the converse cannot be concluded: A knapsack strategy against the optimalq∗

is not necessarily optimal in the whole game, since it may be worse against other priors. Optimality
requires an additional condition that we can get from duality theory of linear programs. The fact
that a worst-case priorq∗ corresponds to a certain Lagrangian dual might be an interesting structural
property in itself:

Proposition 5 When we dualize constraints (3), then the vector of the n Lagrange multipliersλ j ≥ 0
in the dual optimal solution is a worst-case prior q∗.
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Proof The Lagrange function is given by

L(X,u,λ) = u+
n

∑
j=1

λ j

(

m

∑
k=1

pk j

n

∑
i=1

wixki −u

)

.

For any fixed vectorλ = (λ1, . . . ,λn), the Lagrangian subproblemθ(λ) = maxX,uL(X,u,λ) can be
separated foru andX:

θ(λ) = max
u

u(1−
n

∑
j=1

λ j)+max
X

n

∑
j=1

λ j

m

∑
k=1

pk j

n

∑
i=1

wixki.

The Lagrangian dual is minλ θ(λ). We observe that∑n
j=1 λ j ≥ 1, otherwiseθ(λ) is unbounded.

Since theX term is increasing in theλ j , and the same matricesX give the maximum when vectorλ
is multiplied with any positive factor,θ(λ) attains its minimum for someλ with ∑n

j=1 λ j = 1. Thus
the Lagrangian dual simplifies to

min
λ

θ(λ) = min
λ

max
X

n

∑
j=1

λ j

m

∑
k=1

pk j

n

∑
i=1

wixki

subject to∑n
j=1 λ j = 1 and the original constraints (2),(4). Note also thatθ(λ) is precisely the ex-

clusiveness for priorλ, thusλ = q∗.

Theorem 6 (X,q) is a pair of optimal solutions if and only if: X is a knapsack strategy against q,
and X has its lowest exclusiveness for all Hj where qj > 0.

Proof As we have dualized constraints (3), we get from the complementary slackness conditions
that(X,q) is optimal if and only ifX has optimal exclusiveness againstq, and the following alter-
native holds true for everyj: Variableq j is zero, or the slackness in constraint (3) is zero, which
means thatX’s exclusiveness for targetH j is exactlyu (and not larger). Together with Proposition
4 the criterion follows.

Note that this optimality criterion can be checked inO(mn) time for givenX andq: One just
has to solve the fractional knapsack instances for all columnsj and to compare the left-hand sides
of constraints (3). Since optimality is that easy to check, and the Lagrangiansubproblem (fractional
knapsack) is trivial, a gradient descent method for the Lagrangian dual is efficient in every step.
Therefore it would be interesting to study whether some gradient descentheuristic approachesq∗

already in a few iterations. This would be valuable for applications with many instances like our
torsion angle prediction project.

Calculatingq∗ appears to be useful also in another respect: Although we did not explicitlyuse
prior probabilities of theH j , we know in general whichH j appear frequently or rarely. Now, ifq∗j is
large for some rare hypothesisH j , this indicates thatX∗ has been optimized for an unlikely distribu-
tion of targets. (Recall thatX∗ has the worst exclusiveness even for allH j with positiveq∗j .) We may
then drop constraint (3) for such indicesj and optimize again, in order to raise the exclusiveness for
the more frequent targets only. Such modifications are natural and easy toimplement, and they may
improve the global results in, for example, protein structure prediction. Thishas to be tested more
extensively within the particular applications.
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4. Structural Properties of Optimal Solutions

In the following we consider, for simplicity, a special case of our linear program from Theorem 2
where allε j are equal to someε. Regarding the dependency ofu from this parameter we have:

Proposition 7 For any fixed likelihood matrix P, the optimal exclusiveness u is a monotone increas-
ing and concave function inε.

Proof Monotonicity: Parameterε appears only in constraints (2). If one raisesε then, obviously,
the set of feasible solutions becomes only larger, and since we have a maximization problem, the
optimalu increases.

Concavity:Consider the(mn+2)-dimensional space with themnvariablesxk j and, additionally,
ε andu as coordinates. LetF be the feasible region of our linear program in this space, that is, the
set of(mn+2)-vectors that fulfill constraints (2),(3),(4). Clearly,F is convex. Hence the projection
F |ε,u of F to theε vs. u plane is convex, too. (F |ε,u is the set of all pairs(ε,u) for which there
exist values of thexk j so that the constraints are satisfied.) Remember that we have to maximizeu
for a givenε. Geometrically this means to take the point at the upper boundary ofF |ε,u at abscissa
ε. SinceF |ε,u is convex, the upper boundary is the graph of a (piecewise linear) concave function.
(Figure 1.)

6

-�
�
�
�
�

�
������u

ε

Figure 1. u is monotone and concave inε. The graph limits the the feasible region from above.

One might expect that also every single variablexk j in the strategy matrixX is monotone in the
error boundε, but this is not true in general. A small example demonstrates the reason. Recall the
notationspk j for the probability to observeOk given H j , the weighted row sumsxk := ∑n

i=1wixki,
and the utility-to-size ratiosrk j := w j ∑n

i=1 pkiqi/pk j from the fractional knapsack problems.

Example 1 Suppose that all hypotheses have unit weights wj = 1. Consider the following matrix P
of conditional probabilities pk j:

P =

[

0.1 0.5 0.8
0.9 0.5 0.2

]

.

First let ε = 0.1. For the prior (q1,q2,q3) = (1,0,0) it is easy to check that any knapsack solution
has exclusiveness u= 0.73. Moreover, against this prior, every knapsack solution with x1 ≥ x2
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satisfies the criterion in Theorem 6. Hence

X∗ =

[

0.73+x 0 0
0.03−x 0.2 0.5

]

with 0≤ x≤ 0.03 (arbitrary) is optimal, and(1,0,0) is a worst prior. This in turn implies that every
optimal X must be a knapsack solution against(1,0,0). In particular, x22 = 0.2 is enforced.

Now letε = 0.2 instead. Then, every knapsack solution against(1,0,0) has x1 < x2, so that
prior (0,0,1) would be worse. But, similarly, every knapsack solution against(0,0,1) has x1 > x2,
so that prior(1,0,0) would be worse. It follows that x1 = x2 holds in every optimal X, and that an
optimal q∗ differs from these two priors. But each prior except the mentioned two gives r11 > r21

and r23 > r13, which determines column 1 and 3 of X∗ uniquely. Together with x1 = x2 this finally
yields (matrix entries rounded to three decimals):

X∗ =

[

1 0.256 0
0.111 0.144 1

]

.

Note that x22 is smaller than before! The explanation is that x11 reached 1, thus only x21 could
increase, and x22 decreased in favour of x12, in order to keep x1 and x2 balanced.

Next we consider arbitrary individual error boundsε j again. As announced, we show that our
linear programs from Theorem 2 have optimal solutions where only a minority ofthemnvariables
xk j is fractional, that is, properly between 0 and 1. It means that these selection strategies are to a
large extent deterministic, which makes them much easier to handle in practice.

Theorem 8 Any optimal solution being a vertex of the feasible region has at most2n fractional
variables.

Proof Some optimal solutionX of a linear program is always a vertex of the feasible region. Con-
straints (4) describe the hypercube inmn-dimensional space where all vertices have coordinates 0
or 1. Furthermore, the number of binding constraints in a vertexX is at least the dimensionmn, but
only one of any two constraintsxk j ≥ 0, xk j ≤ 1 can be binding. Thus, in a vertexX with more than
2n fractional coordinates, more than 2n other constraints must be binding. Since we have only 2n
constraints (2),(3), the assertion follows.

We can also say something about thepositionsof fractional entries in optimal strategy matrices
X and get a better bound in case thatm≤ n. Let B(X) be the bipartite graph with verticesrk for
all rows k, and verticesc j for all columns j, where an edge betweenrk andc j exists iff xk j is a
fractional value.

Theorem 9 There exists an optimal solution X with cycle-free B(X), and thus at most m+ n−1
fractional entries.

Proof Suppose thatB(X) contains a cycleC with verticesr1,c1, r2,c2, . . . , r l ,cl (in this cyclic order).
That is, edgesr ici , cir i+1 andcl r1 exist, where 2l is the length of the cycle. Note that the indexing of
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rows and columns inX is arbitrary, hence we may rename them such that, without loss of generality,
indices inC are 1,2, . . . , l as defined above.

Let d be some real number that we fix later. We change the matrix entries corresponding to the
edges inC by the following procedure. First, defined11 = d and replacex11 with x11−d11. Define
d21 = p11

p21
d11 and replacex21 with x21 + d21. Obviously, the error bound constraint (2) remains

valid for column j = 1. Next, defined22 = w1
w2

d21 and replacex22 with x22−d22. The effect is that
xk := ∑n

i=1wixki remains unchanged for rowk = 2. We walk the cycleC and continue in this way.
The general step is: Definedii = wi−1

wi
di,i−1 and replacexii with xii −dii , then definedi+1,i = pii

pi+1,1
dii

and replacexi+1,i with xi+1,i +di+1,1. Following this scheme we finally we updatex1l , according to
l +1 modl = 1.

Note that all these changes neither affect the left-hand sides of constraints (2) nor the weighted
row sumsxk defined above, withx1 as the only exception. Ifx1 has not decreased, constraints (3)
remain satisfied, too. Ifx1 has decreased, we use−d instead ofd, so thatx1 now increases. Since
all xk j on edges ofC are fractional, constraints (4) also remain valid for small enough|d|. Hence we
get a new feasible solution for anyd which has the suitable sign and small enough absolute value.
Finally we adjust ourd so that some entry inC becomes exactly 0 or 1.

Hence we can destroy some cycleC of fractional entries. Since the optimal valueu is monotone
in thexk, the new solutionX is no worse. Applying the same procedure repeatedly we destroy all
such cycles. Since every step also properly decreases the number of fractional entries, the process
terminates with anX as desired. Since a cycle-free graph has fewer edges than vertices,the bound
m+n−1 follows.

We remark that this proof gives also a polynomial algorithm that computes a cycle-free optimal
solution.

The 3×2 instances from Example 1 admit optimal solutions withn = 3 fractional entries.
An obvious question is whether our combinatorial bounds are already tight. More precisely:

Given numbersm,n, let f (m,n) denote the largest number such that there exists anm×n instance
P of HYPOTHESISSELECTION WITH ERROR BOUNDS where every optimal solutionX needs at
least f (m,n) fractional variables. We have shownf (m,n) ≤ min{m,n}+n, and it is trivial to give
general examples where the number of fractional variables must ben, so that f (m,n) ≥ n. On
the other hand, note that the “fractional knapsack” property of optimal solutions does not imply
f (m,n) ≤ n: Knapsack solutions are not always unique and may allow several fractional variables
in a columnj (namely if severalrk j are equal), and since a knapsack solution against a dual optimal
q∗ is not necessarily already optimal, we may have to take a solution with more fractional variables.
We must leave the exactf (m,n) as an open problem.

5. Is There a Faster Algorithm?

In this more informal section we briefly discuss another open problem: to devise a purely combina-
torial algorithm for our class of linear programs that is faster than a generic linear program solver.
We point out two ways, but also the reasons why these attempts have not been successful so far.

(1) Example 1 in the previous section shows (besides non-monotonicity of thexk j in the error
bounds) that, in an optimal solution, thexk j in a row k are in general not simply filled up to 1 in
increasing order of thepk j. This is an effect of the columnwise error constraints. Nevertheless,
intuition tells that largerxk j are mostly assigned to smallerpk j. Exceptions are structurally limited,
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due to the following discussion. Let us call two matrix entries in the same row or column amonotone
pair if the values of these entries inX andP stand in thesamerelation (larger or smaller). For an
input P and a strategyX, define a directed graphC(X) whose vertices are the columns, with a
directed arc fromi to j if pki > pk j andxki > xk j holds for somek. The directed graphR(X) whose
vertices are rows is defined similarly. By an argument similar to the proof of Theorem 9 we can
show the existence of an optimal solutionX whereB(X) is cycle-free and alsoC(X) andR(X) are
free ofdirectedcycles. Hence there is some topological order of the rows and columns such that all
monotone pairs in rows and columns decrease in the same direction, for example, to the right and
downwards, respectively. However this does not limit thenumberof monotone pairs. Moreover,
the topological orders are not obvious fromP, and even if we knew them, we could not compute
the optimalX from them in a simple way. In summary, the observation above did not lead us toan
efficient algorithm.

(2) Another idea is a reduction to flow problems in bipartite lossy networks. For that problem
which has many other applications in transportation and finance (for example, currency exchange),
purely combinatorial polynomial-time algorithms have been given by Tardos and Wayne (1998);
Wayne (2002). However, the idea works only for a variant of HYPOTHESIS SELECTION WITH

ERRORBOUNDS with “observation-wise” exclusiveness demands instead of a global exclusiveness
objective: Recall again the weighted row sumsxk := ∑n

i=1wixki. For given parametersε j andyk

for all j and k, respectively, we may raise the following existence problem: Is there a solution
X with error probabilities at mostε j for all H j , andxk ≥ yk for all Ok? This problem is easily
seen to be a flow problem in a bipartite lossy network with arc capacities 1 and gain factors 1/pk j;
see Tardos and Wayne (1998); Wayne (2002) for the definitions. In contrast, a reduction from
HYPOTHESISSELECTION WITH ERROR BOUNDS does not seem to exist, for the intuitive reason
that flow variables cannot be “copied” in order to “participate” in several linear combinations of
the xk. Still, algorithmic techniques similar to those used for flows in lossy networks mightbe
applicable. We have to leave this subject for future research.

6. Combining Data

Suppose that we have several matricesP(1),P(2), . . . of conditional probabilities for the same set
of hypotheses but for different types of observations, such as different groups of symptomes in
diagnosis, or chemical shifts of several nuclei in protein torsion angle prediction. We do not assume
that the joint distribution of vectors of observations is known: Since the number of vectors is the
product ofm(1),m(2), . . ., there may be not enough cases in the database that would allow meaningful
probability estimates for all these vectors. Still, combining these data sets can further narrow down
the selected hypotheses (if the observations “complement each other” well), and at the same time
preserve guaranteed error bounds. For ease of presentation we describe the method for two matrices,
but it can be readily extended to any number.

Proposition 10 Let P and P′ be the conditional probability matrices of size m× n and m′ × n,
respectively, andε j ,ε′j the error bounds of two instances ofHYPOTHESISSELECTION WITH ERROR

BOUNDS for the same set of hypotheses Hj , j = 1, . . . ,n. Furthermore let X and X′ be strategies for
these two instances that respect the given error bounds. For any pair of observations Ok,O′

l from
both instances (where k= 1, . . . ,m and l= 1, . . . ,m′), we define for all Hj the exclusion probabilities
xk j + x′l j − xk jx′l j . Then the resulting mm′×n matrix is a strategy for combined observations with
upper boundε j + ε′j on the probability to wrongly discard target Hj .
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Proof In fact, the combined strategy is designed so that we discard anyH j if at least one of the pre-
dictorsX or X′ does. The decision to discard a hypothesis is taken independently in both instances.
Hence, ifOk,O′

l are observed, we keepH j with probability

(1−xk j)(1−x′l j ) = 1− (xk j +x′l j −xk jx
′
l j ).

On the other hand, since the probability of a union of events is at most the sumof probabilities of
the single events, we discard targetH j with at mostthe probabilityε j + ε′j .

Proposition 10 gives only a guarantee on the error probabilities. However, concavity of exclu-
siveness (see Proposition 7) suggests that combining two predictors with half error bound in general
improves the exclusiveness. For concrete instances and a desired totalerror probability we may try
various partitions into summands, with some resonable step length, and take the combination that
works best. We also remark that, since by Theorem 8 and 9 most strategy variablesxk j,x′l j are 0 or
1, the calculations are fast.

If severalP(i) are available (for example, in our protein structure application, the chemicalshifts
of 6 nuclei, and also from neighbored residues), then exhaustive search is expensive, but we may
choose to combine only the most informative data, that is, only thoseP(i) with largest exclusiveness.

Finally, a deliberately very simple, symmetric toy example with two hypotheses of equal weight
illustrates the principle of combining predictions.

Example 2

P =

[

1 0.5
0 0.5

]

P′ =

[

0.5 1
0.5 0

]

We chooseε = 0.2 for both hypotheses in both instances. Then the optimal solutions for the
separate instances are, rather obviously:

X =

[

0.2 0.4
1 0

]

X′ =

[

0.4 0.2
0 1

]

.

In the first instance, the exclusiveness is only 0.6 if H1 is the target (since always O1 is observed),
and for H2 we get exclusiveness 0.8 (average of both rows), the second instanceis symmetric. If
we use the information from both instances, we can improve the exclusiveness for the sameε = 0.2.
First we optimize both instances separately, but now with half error bound0.1:

X =

[

0.1 0.2
1 0

]

X′ =

[

0.2 0.1
0 1

]

.

For the four combinations(k, l) = (1,1),(1,2),(2,1),(2,2) we compute new exclusion proba-
bilities as specified above:









0.28 0.28
0.1 1
1 0.1
1 1









.

Since target H1 causes the pair of observations(1,1) or (1,2), each with probability0.5, the
exclusiveness is0.5· (0.56+1.1) = 0.83, and target H2 yields the same exclusiveness by symmetry.
This is considerably better than the worst case above, and even slightly larger than the best case
above.
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7. Application Note: Protein Torsion Angle Prediction

We studied properties of a class of linear programs for hypotheses selection in probabilistic infer-
ence which is hopefully of fundamental interest. We were led to the problem class by a concrete
challenge: a project where we are comparing different methods for predicting protein torsion angles
from NMR chemical shifts, see Section 1. Characteristic features of our scatterplot data are large
empty regions with almost no data points, in them clouds of data points with a varietyof shapes and
different densities. Optimization assists in the creation of a predictor:

Any prediction heuristic has to take a measured chemical shift value and output predicted torsion
angle values. In a statistical approach it is sensible to precompute the predictions, based on the
sampled data. The actual application is then a simple table look-up, done by an auxiliary program.
The main relevant question for spectroscopists is the achievable confidence when predicting torsion
angle intervals of a prescribed length (error probability vs. exclusiveness, in our terminology).
Then they can make their specific decisions using this tradeoff. Besides theactual predictions, the
optimization results also quantify how informative the chemical shifts of different nuclei (or their
combinations) are for this purpose.

Basic heuristics working purely “row-wise” (MAP, ML, or similar) do not pay attention to error
probabilities for specific hypothesis intervals and easily discard certain torsion angles completely,
despite a considerable frequency of occurrence. Hence such heuristics generate systematically mis-
leading predictions when these neglected ranges of torsion angles appear. Even worse, they can
appear more frequently in a protein under consideration than in the database: Recall that the scatter-
plots are sampled from a large collection of various proteins so that we knowonly average torsion
angle frequencies. A more even distribution of errors to different torsion angles gives more robust-
ness against varying torsion angle frequencies. We can also expect that the global structure recon-
struction process itself works smoother if the local restraints have balanced errors: Most wrong
sequences of torsion angles, that is, sequences with errors injected, are already geometrically im-
possible, which gives us a chance to correct such occasional errors.1 Since the precise effects are
hard to know beforehand, free parametersε j seem to be a valuable feature.

A simple MAP heuristics, for example, would take the measured chemical shift value and select
the torsion angle ranges (columns) with highest point densities in the row containing the measured
value. Other preferences may be taken into account, for instance, one interval is easier to handle as
a restraint than a union of several intervals. In either case, a selection yields a matrixX and a vector
of error probabilitiesε j which are typically low (high) in densely (sparsely) populated columns.
Now we can adjust error probabilities for individual torsion angle intervals in any desired direction
and re-optimize.

As an illustration we discuss an arbitrary example (point count matrix) from the real data: As-
partic Acid, nucleusCα, and torsion angleφ, partitioned into homogeneous regions using the method
from Christin (2006):

1. As a linguistic analogy, typos scattered in a text can be erased promptly,whereas systematic errors make words
unrecognizable, or even smuggle in other words that fit in the context but were not intended.
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



























1 0 7 12 4 1 1 0
0 0 0 19 18 1 2 0
5 4 22 212 116 16 4 0
2 3 21 90 32 3 5 0

10 6 38 93 28 7 39 3
98 86 304 193 39 11 63 5
34 43 86 27 4 0 7 3
22 60 67 18 1 1 2 2
3 12 19 6 4 0 2 0





























[

40 30 30 20 15 80 45 100
]

.

The bottom line gives the torsion angle interval lengths in degrees, that is, our weights. The
frequencies of hypotheses in the database are (in percent, rounded):

[

8.5 10.5 27.5 33.0 12.0 2.0 6.0 0.5
]

.

Suppose we want to predict torsion angle intervals of about 60 degreesand start with a naive
MAP heuristic that takes the intervals of exactly 60 degrees with maximum densityin each row.
It leads to the following matrixX (entries indicate the discarded fractions of intervals, values are
rounded):





























1 1 0.17 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0.17 0 0 1 1 1
1 1 0.17 0 0 1 1 1
1 1 0.17 0 0 1 1 1
1 0.67 0 0 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1





























[

100.0 33.0 2.5 7.5 19.5 99.0 100.0 100.0
]

.

The bottom line indicates the error boundsε j in percent (rounded). For the prior probabilities
from the database, the overall error probability would be about 26%. Optimization with the sameε j

yields only marginal changes:




























1 1 0 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0.18 0 0 1 1 1
1 1 0.16 0 0 1 1 1
1 1 0.17 0 0 1 1 1
1 0.67 0 0 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0.06 1 1 1 1 1





























.
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Columns 6 and 8 are completely discarded, which is reasonable because only 2.5% of cases
are to be expected in the corresponding large intervals. The separate cluster in column 7 which
appeared with 6% is always discarded, too. We may accept this error when we prefer a single
predicted interval to a union of two (see the remark above). The most relevant part is the dense
region in columns 1 to 5. Observe that also column 1 is completely discarded, even though it
contains a considerable cluster of points. This makes up for 8.5 of the 26% total error. Let us reduce
ε1 and see how this affects the predictions. For instance, after changingε1 to 0.4, optimization
(followed by raising some sporadicxk j < 1 to 1 whenpk j is small) yields thisX:





























1 1 0 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0 0 0 1 1 1
0.76 0 0 0 0 1 1 1
1 1 0 0 0 1 1 1
0.26 0.7 0 0.03 1 1 1 1
0.16 0 0.16 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1





























.

We remark that the optimal dual solution moved fromq3 = 1 toq1 = 1. The (expected) length of
predicted intervals increased to 84 degrees. On the other hand, the global error went down to 21%,
and we can afford to raise the very small initialε3. For instance, withε3 = 0.2 we are back to the
initial total error of 26%, now with an expected hypothesis length of 77 degrees and the following
X:





























1 1 0 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0 0 0 1 1 1
1 0.06 0 0 0 1 1 1
1 1 0 0 0 1 1 1
0.46 0.7 0 0 1 1 1 1
0 0 1 1 1 1 1 1
0.16 0 0.4 1 1 1 1 1
1 0 0 1 1 1 1 1





























.

Interestingly, this step pressed the predictions in rows 7,8 more to the lower left corner, while
x61 became higher again. The apparent reason is that, in row 6, the element in column 1 has strong
competitors in columns 3 and 4. Hence it is not predicted definitely, even though p61 > p71, p81. The
result in row 6 suggests to choose either columns 1-2 or 3-4. In order to avoid predicting intervals
of excessive lengths in some rows, we may cut the longest intervals down,for example, at the end
with the smallest increase of error. In our example, the longest predicted interval, with 93 degrees,
appears in row 4. Changingx42 to 1 increasesε2 marginally to 0.345 but shortens this interval to 65
degrees. In row 8 we may cut at column 3, etc.

This example merely served to demonstrate that desirable improvements can be made after
quick manual checking, while the main calculations are left to any linear programming tool. For
processing hundreds of instances with different desired interval lengths we fix the initialε j (sub-
ject to a proportional factor which is used for the error vs. exclusiveness tradeoff) also by other
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plausible heuristics:ε j proportional to the weight-by-frequency ratio, equalε j , and combinations
of them. However, since no simple automatic rule seems to be satisfactory forall diverse shapes of
scatterplots (apparently bad examples exist for each), some minor intervention as shown above is
required.
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