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Abstract

We present worst case bounds for the learning rate of a known prediction method that is based on
hierarchical applications of binary context tree weighting (CTW) predictors. A heuristic application
of this approach that relies on Huffman’s alphabet decomposition is known to achieve state-of-
the-art performance in prediction and lossless compression benchmarks. We show that our new
bound for this heuristic is tighter than the best known performance guarantees for prediction and
lossless compression algorithms in various settings. Thisresult substantiates the efficiency of this
hierarchical method and provides a compelling explanationfor its practical success. In addition, we
present the results of a few experiments that examine other possibilities for improving the multi-
alphabet prediction performance of CTW-based algorithms.

Keywords: sequential prediction, the context tree weighting method,variable order Markov mod-
els, error bounds

1. Introduction

Sequence prediction and entropy estimation are fundamental tasks in numerous machine learning
and data mining applications. Here we consider a standard discrete sequence prediction setting
where performance is measured via the log-loss (self-information). It is well known that this setting
is intimately related to lossless compression, where in fact high quality predictionis essentially
equivalent to high quality lossless compression.

Despite the major interest in sequence prediction and the existence of a number of universal
prediction algorithms, some fundamental issues related to learning from finite (and small) samples
are still open. One issue that motivated the current research is that the finite-sample behavior of
prediction algorithms is still not sufficiently understood.

Among the numerous compression and prediction algorithms there are very few that offer both
finite sample guarantees and good practical performance. Thecontext tree weighting(CTW) method
of Willems et al. (1995) is a member of this exclusive family of algorithms. TheCTW algorithm is
an “ensemble method,” mixing the predictions of many underlying variable order Markov models
(VMMs), where each such model is constructed using zero-order conditional probability estimators.
The algorithm isuniversalwith respect to the class of bounded-order VMM tree-sources. Moreover,
the algorithm has a finite sample point-wise redundancy bound (for any particular sequence).
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The high practical performance of the originalCTW algorithm is most apparent when applied to
binaryprediction problems, in which case it uses the well-known (binary) KT-estimator (Krichevsky
and Trofimov, 1981). When the algorithm is applied to non-binary prediction/compression problems
(using the multi-alphabet KT-estimator), its empirical performance is mediocre compared to the best
known results (Tjalkens et al., 1997). Nevertheless, a cleveralphabet decompositionheuristic, sug-
gested by Tjalkens et al. (1994) and further developed by Volf (2002), does achieve state-of-the-art
compression and prediction performance on standard benchmarks (see, e.g., Volf, 2002; Sadakane
et al., 2000; Shkarin, 2002; Begleiter et al., 2004). In this approach themulti-alphabet problem
is hierarchically decomposed into a number of binary prediction problems. Weterm the resulting
procedure “theDECO algorithm.” Volf suggested applying theDECO algorithm using Huffman’s
tree as the decomposition structure, where the tree construction is based onletter frequencies. We
are not aware of any previous compelling explanation for the striking empirical success ofDECO.

Our main contribution is a general worst case redundancy bound for algorithm DECO applied
with any alphabet decomposition structure. The bound proves that the algorithm is universalwith
respect to VMMs. A specialization of the bound to the case of Huffman decompositions results in a
tight redundancy bound. To the best of our knowledge, this new boundis the sharpest available for
prediction and lossless compression for sufficiently large alphabets and sequences.

We also present a few empirical results that provide some insight into the following questions:
(1) Can we improve on the Huffman decomposition structure using an optimized decomposition
tree? (2) Can other, perhaps “flat” types of alphabet decomposition schemes outperform the hierar-
chical approach? (3) Can standardCTW multi-alphabet prediction be improved with other types of
(non-KT) zero-order estimators?

Before we start with the technical exposition, we introduce some standard terms and definitions.
Throughout the paper,Σ denotes a finite alphabet withk = |Σ| symbols. Suppose we are given
a sequencexn

1 = x1x2 · · ·xn. Our goal is to generate a probabilistic predictionP̂(xn+1|xn
1) for the

next symbol given the previous symbols. Clearly this is equivalent to beingable to estimate the
probability P̂(xn

1) of any complete sequence, sinceP̂(xn+1|xn
1) = P̂(xn+1

1 )/P̂(xn
1) (provided that the

marginality condition∑σ P̂(xn
1σ) = P̂(xn

1) holds).
We consider a setting where the performance of the prediction algorithm is measured with re-

spect to the best predictor in some reference, which we call here acomparison class. In our case
the comparison class is the set of all variable order Markov models (see details below). LetALG be
a prediction algorithm that assigns a probability estimatePALG(xn

1) for any givenxn
1. The point-

wise redundancyof ALG with respect to the predictorP and the sequencexn
1 is RALG(xn

1,P) =
logP(xn

1)− logPALG(xn
1). The per-symbol point-wise redundancy is1

nRALG(xn
1,P). ALG is called

universalwith respect to a comparison classC , if

lim
n→∞

sup
P∈C

max
xn

1

1
n

RALG(xn
1,P) = 0. (1)

2. Preliminaries

This section presents the relevant technical background for the present work. The contextual back-
ground appears in Section 7. We start by presenting the class oftree sources. We then describe
the CTW algorithm and discuss some of its known properties and performance guarantees. Finally,
we conclude this section with a description of theDECO method for predicting multi-alphabet se-
quences using binaryCTW predictors.
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2.1 Tree Sources

The parametric distribution estimated by theCTW algorithm is the set of depth-bounded tree-
sources. A tree-source is a variable order Markov model (VMM). LetΣ be an alphabet of size
k andD a non-negative integer. AD-bounded tree sourceis any full k-ary tree1 whose height≤ D.
Each leaf of the tree is associated with a probability distribution overΣ. For example, in Figure 1
we depict three tree-sources over a binary alphabet. In this case, the trees are full binary trees. The
single node tree in Figure 1(c) is a zero-order (Bernoulli) source and the other two trees (Figure 1(a)
and (b)) are 2-bounded sources. Another useful way to view a tree-source is as a setS ⊆ Σ≤D of
“suffixes” in which eachs∈ S is a path (of length up toD) froma (unique) leaf to the root. We also
refer toS as the (tree-source)topology. For example,S = {0,01,11} in Figure 1(b). The path from
the middle leaf to the root corresponds to the sequences= 01 and therefore we refer to this leaf
simply ass. For convenience we also refer to an internal node by the (unique) pathfrom that node
to the root. Observe that this path is a suffix of somes∈ S . For example, the right child of the root
in Figure 1(b) is denoted by the suffix1.

The (zero-order) distribution associated with the leafs is denotedzs(σ), ∀σ∈Σ, where∑σ zs(σ)=
1 andzs(·) ≥ 0.

(a) (b) (c)
ε

0

(.5, .5)

0

(.15, .85)

1

1

(.7, .3)

0

(.55, .45)

1

ε

(.25, .75)

0 1

(.35, .65)

0

(.12, .88)

1

ε

(.25, .75)

Figure 1: Three examples forD = 2 bounded tree-sources overΣ = {0,1}. The correspond-
ing suffix-sets areS(a) = {00,10,01,11}, S(b) = {0,01,11}, and S(c) = {ε} (ε is the
empty sequence). The probabilities for generatingx3

1 = 100 given initial context00
areP(a)(100|00) = P(a)(1|00)P(a)(0|01)P(a)(0|10) = 0.5·0.7·0.15,P(b)(100|00) = 0.75·
0.35·0.25, andP(c)(100|00) = 0.75·0.25·0.25.

We denote the set of allD-bounded tree-source topologies (suffix sets) byCD. For example,
C0 = {{ε}} andC1 = {{ε}, {0,1}}, whereε is the empty sequence.

For eachn, a D-bounded tree-source induces a probability distribution over the setΣn of all n-
length sequences. This distribution depends on an initial “context” (or “state”), x0

1−D = x1−D · · ·x0,
which can be any sequence inΣD. The tree-source induced probability of the sequencexn

1 =
x1x2 · · ·xn is, by the chain rule,

PS (xn
1) =

n

∏
t=1

PS (xt |xt−1
t−D), (2)

wherePS (xt |xt−1
t−D) is zs(xt) = PS (xt |s) ands is the (unique) suffix ofxt−1

t−D in S . Clearly, a tree-
source can generate sequences: theith symbol is randomly drawn using the conditional distribution

1. A full k-ary tree is a tree in which each node has exactly zero ork children.
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PS (·|xi−1
i−D). Let SUBs(xn

1) be theorderednon-contiguous sub-sequence of symbols appearing after
the contexts in xn

1. For example, ifx8
1 = 01100101, ands= 0, then,SUBs(x8

1) = 1011. Let sbe any
suffix in S andym

1 = SUBs(xn
1). For everyxn

1 6= ε we definezs(xn
1) = ∏m

i=1zs(yi) and for the empty
sequencezs(ε) = 1. Thus, we can rewrite Equation (2) as

PS (xn
1) = ∏

s∈S

zs(xn
1). (3)

2.2 The Context-Tree Weighting Method

Here we describe theCTW prediction algorithm (Willems et al., 1995), originally presented as a
lossless compression algorithm.2 The goal of theCTW algorithm is to predict a sequence (nearly)
as good as the the best tree-source. This goal can be divided into two sub-problems. The first is to
guess the topology of the best tree-source, and the second is to estimate thedistributions associated
with its leaves.

Suppose, first, that the best tree topology (i.e., the suffix-setS ) is known. A good solution
assigns to eachs∈ S a zero-order estimator̂zs that estimates the true probability distributionzs

associated withs. This can be done using standard statistical methods; that is, by considering all
occurrences ofs in xn

1 and constructing ˆzs via counting and smoothing. We currently consider ˆzs as
a generic estimator and discuss specific implementations later on.

In practice, however, the best tree-source’s topology is unknown. Instead of guessing this topol-
ogy, CTW considers all possibleD-bounded topologiesS (each is a subtree of the perfectk-ary
tree), and for eachS it constructs a predictor by estimating its zero-order leaf probabilities.CTW

then takes a weighted mixture of all these predictors, corresponding to all topologies. Clearly, there
are exponentially manyD-bounded topologies. The beauty of theCTW algorithm is the efficient
computation of this mixture of exponential size.

In the following description of theCTW algorithm, the output of the algorithm is a probability
PCTW(xn

1) for the entire sequencexn
1. Observe that this is equivalent to estimating the next-symbol

probabilities because
PCTW(σ|xn

1) = PCTW(xn
1σ)/PCTW(xn

1) (4)

for eachσ∈Σ (provided that these probabilities can be marginalized, i.e.,∑σ PCTW(xn
1σ)= PCTW(xn

1)).
We require the following definitions. Letxn

1 be any sequence (inΣn) and fix a boundD and
an initial contextx0

1−D. Let s be any context inS , andym
1 = SUBs(xn

1). Thesequentialzero-order
estimation forxn

1 is, by the chain-rule,

ẑs(xn
1) =

m

∏
i=1

ẑ(yi |yi−1
1 ), (5)

wherey0
1 = ε and ẑ(yi |yi−1

1 ) is a zero-order probability estimate based on the symbol counts in
yi−1

1 . The product of such predictions is ˆzs(xn
1), and hence, we refer to it as a sequential zero-order

estimate.
We now describe the mainCTW idea via a simple example and then provide a pseudo-code for

the generalCTW algorithm. Consider a binary alphabet and the caseD = 1. Here,CTW works on
the perfect binary tree of height one and therefore should mix the predictions associated with two

2. As mentioned above, any lossless compression algorithm can be translated into a sequence prediction algorithm and
vice versa (see, e.g., Merhav and Feder, 1998).
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topologies:S0 = {ε} (whereε is the empty sequence), andS1 = {0,1}. Note thatS0 corresponds
to the zero-order topology as in Figure 1(c). The algorithm takes a mixture of the zero-order esti-
mateẑε(xn

1) and the one-order estimate. The latter is exactly ˆz0(xn
1) · ẑ1(xn

1) because ˆz0 andẑ1 are
independent. Thus, the final estimate is

PCTW(xn
1) =

1
2
ẑε(xn

1)+
1
2

(ẑ0(xn
1) · ẑ1(xn

1)) .

For larger trees (D > 1), CTW uses the same idea, but now, instead of taking zero-order estimates
for the root’s children, theCTW algorithm recursively computes their estimates. The pseudo-code
of the CTW recursive mixture computation appears in Algorithm 1. We later show in Lemma 3
that this code calculates the mixture of allD-bounded tree-source predictions weighted by their
complexities, which are defined as follows.

Algorithm 1 The context-tree weighting algorithm

/* This code calculates theCTW probability for the (whole) sequencexn
1, PCTW(xn

1|x0
1−D). The input argu-

ments include the sequencexn
1, an initial contextx0

1−D (that determines the suffixes for predicting the first
symbols), a bound D on the order, and an implementation for the sequential zero-order estimatorsẑs(·).
The code uses themix procedure (see below).*/

CTW(xn
1, x0

1−D, D, ẑs(·)) {
for everys∈ Σ≤D do

calculate and store ˆzs(xn
1) as given in Equation (5).

end for
return PCTW(xn

1) = mix(ε,xn
1,x

0
1−D).

}

/* This procedure mixes the predictions of all continuations s′s of s∈ Σ≤D, such that s′s is also inΣ≤D.
Note that the context of the first few symbols is determined bythe initial contextx0

1−D. */
mix (s,xn

1,x
0
1−D) {

if |s| = D then
return ẑs(xn

1).
else

return 1
2 ẑs(xn

1)+ 1
2 ∏σ∈Σ mix(σs,xn

1,x
0
1−D).

end if
}

Definition 1 Let TS denote the tree associated with the suffix setS . The complexityof TS is defined
to be

|TS | = |{s∈ S : |s| < D}|+ |S |−1
k−1

.

Recall that the number of leaves in TS is exactly|S | and there are|S |−1
k−1 internal nodes in any full

k-ary tree. Therefore,|TS | is the number of nodes in TS minus the number of leaves s∈ S with
maximal depth D.

For example, letT(a) be the tree of Figure 1(a) (resp. for(b) and(c)); |T(a)| = 0+ 3 = 3; |T(b)| =
1+2 = 3 (= |T(a)); |T(c)| = 1+0 = 1.
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Observation 2 Let Sσ = {s : sσ ∈ S}. For any D-bounded topologyS , |S | > 1,

|TS | = 1+ ∑
σ∈Σ

|TSσ |.

Note thatSσ is a(D−1)-bounded topology. Note also that the complexity depends on D. Therefore,
for the base case (when|S | = 1), the complexity of TS is zero if D= 0 and one if D≥ 1.

The proof of the following lemma is a straightforward generalization of the onefor binary alphabets
by Willems et al. (1995).

Lemma 3 Let0≤ d ≤ D and s∈ Σd. Then,

mix (s,xn
1,x

0
1−D) = ∑

U∈CD−d

2−|TU | ∏
u∈U

ẑus(xn
1).

Recall thatCm is the set of all m-bounded topologies;mix is defined in Algorithm 1.

Proof By induction onD−d. WhenD−d = 0, CD−d = C0 contains only the single-node topology
U = {ε}. In this case|TU | = 0+ 1−1

k−1 = 0, by Definition 1. Notice that the size|s| = d = D, so
mix(s,xn

1,x
0
1−D) = ẑs(xn

1). We conclude that,

mix(s,xn
1,x

0
1−D) = ẑs(xn

1) = 2−0− 1−1
k−1 ẑs(xn

1) = ∑
U∈C0

2−|TU | ∏
u∈U

ẑus(xn
1).

Assume that the statement holds for some 0≤ D− d− 1 and consider the caseD− d; that
is, |s| = d < D. In this caseU ∈ CD−d. In the following derivations we also refer to alphabet
symbols by their indices,i = 1, . . . ,k (according to some fixed order) or byσi . For example,Ui is
the topology corresponding to the subtree ofTU whose root is defined byσi ; thus,Ui is a D−d
bounded tree-source. We thus have

mix(s,xn
1,x

0
1−D) =

1
2
ẑs(xn

1)+
1
2 ∏

σ∈Σ
mix(σs,xn

1,x
0
1−D) (6)

=
1
2
ẑs(xn

1)+
1
2 ∏

σ∈Σ

{

∑
U∈CD−d

2−|TU | ∏
u∈U

ẑuσs(xn
1)

}

(7)

=
1
2
ẑs(xn

1)+

∑
U1

· · ·∑
Uk

2−(1+∑k
i=1 |TUi |) ∏

u∈U1

ẑuσ1s(xn
1) · · · ∏

u∈Uk

ẑuσks(xn
1) (8)

= ∑
U∈CD−d

2−|TU | ∏
u∈U

ẑus(xn
1), (9)

where step (6) is by the definition ofmix(s,xn
1,x

0
1−D); (7) is by the induction hypothesis; (8) is by

exchanging the product of sums with sums of products; and finally, (9) follows from Observation 2.

The next corollary expresses theCTW prediction as a mixture of allD-bounded tree-sources. The
proof of this corollary directly follows from Lemma 3 and from the definition ofPCTW(xn

1) in Algo-
rithm 1.
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Corollary 4
PCTW(xn

1) = mix (ε,xn
1,x

0
1−D) = ∑

S∈CD

2−|TS |∏
s∈S

ẑs(xn
1). (10)

Remark 5 The number of tree-source topologies inCD is superexponential (recall that eachS ∈ C

is a pruning of the perfect k-ary tree of height D). Thus, for practical reasons, the calculation of
Equation (10) must be efficient. The pseudo-code of theCTW in Algorithm 1 is conceptual rather
than efficient. However, the beauty of theCTW is that it can calculate the tree-source mixture in
linear time with respect to n. For a description of an efficient implementation of theCTW algorithm,
see for example, Sadakane et al. (2000) and Chapter 4.4 of Volf (2002). Our Java implementation
of theCTW algorithm can be found athttp://www.cs.technion.ac.il/˜rani/code/
vmm.

2.3 Analysis of CTW for Multi-Alphabets

The analysis ofCTW for multi-alphabets (multi-CTW) relies upon specific implementations of the
sequential zero-order estimators ˆzs(·). Such estimators are in general counters of past events. How-
ever, these estimators should not neglect unobserved events. In the context of log-loss prediction,
assigning zero probability to these “zero frequency” events is harmful because the log-loss of an
unobserved but possible event is infinite. The problem of assigning probability mass to unobserved
events is also called the “missing-mass problem” (or the “zero frequency problem”).

The originalCTW algorithm applies the well-knownKT estimator (Krichevsky and Trofimov,
1981).

Definition 6 Fix anyxn
1 and let Nσ be the frequency ofσ ∈ Σ in xn

1. TheKT estimator assigns the
following (sequential zero-order) probability to the sequencexn

1,

ẑ KT(xn
1) = ẑ KT(xn−1

1 )
Nxn +1/2

∑σ∈Σ Nσ +k/2
, (11)

whereẑ KT(ε) = 1.

Observe that the termP(σ|xn
1) = Nσ+1/2

∑σ∈Σ Nσ+k/2, is anadd-half predictor that belongs to the family of

add-constant predictors.3

TheKT estimator provides a prediction that is uniformly close to the setZ of zero-order distri-
butions overΣ. Each distributionz ∈ Z is a probability vector from(

�
+)k, andz(σ) denotes the

probability ofσ. Thus,z(xn
1) = ∏σ z(σ)Nσ . The next theorem provides a performance guarantee on

the worst-case redundancy of theKT estimator. This guarantee is for a whole sequencexn
1. Notice

that the per-symbol redundancy ofKT diminishes withn at a ratelogn
n . For completeness, the proof

of the following theorem is provided in Appendix A.

Theorem 7 (Krichevsky and Trofimov) LetΣ be any alphabet with|Σ|= k≥ 2. For any sequence
xn

1 ∈ Σn,

RKT(xn
1) = logsup

z∈Z

z(xn
1)− logẑ KT(xn

1) ≤
k−1

2
logn+ logk. (12)

3. Another famous add-constant predictor is the add-one predictor, also calledLaplace’s law of succession(Laplace,
1995).
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Remark 8 Krichevsky and Trofimov (1981) originally definedKT to be a mixture of all zero-order
distributions inZ, weighted by the Dirichlet (1/2) distribution. Thus, this mixture is

ẑ KT(xn
1) =

Z

Z

w(dz)z(xn
1),

where w(dz) is the Dirichlet distribution with parameter1/2 defined by

w(dz) =
1√
k

Γ( k
2)

Γ(1
2)k

k

∏
i=1

z(i)−1/2λ(dz), (13)

Γ(x) =
R�

+ tx−1exp(−t)dt is the gamma function (see, for example, Courant and John, 1989), and
λ(·) is a measure onZ. Shtarkov (1987) was the first to show that this mixture can be calculated
sequentially as in Definition 6.

The upper bound of Theorem 7 on the redundancy of theKT estimator is a key element in
the proof of the following theorem, providing a finite-sample point-wise redundancy bound for the
multi-CTW (see, e.g., Tjalkens et al., 1993; Catoni, 2004).

Theorem 9 (Willems et al.) LetΣ be any alphabet with|Σ|= k≥ 2. For any sequencexn
1 ∈ Σn and

any D-bounded tree-source with a topologyS and distribution PS , the following holds:

RCTW(xn
1,PS ) ≤

{

nlogk+ k|S |−1
k−1 , n < |S |;

(k−1)|S |
2 log n

|S | + |S | logk+ k|S |−1
k−1 , n≥ |S |.

Proof

RCTW(xn
1,PS ) = logPS (xn

1)− logPCTW(xn
1)

= log
PS (xn

1)

∏s∈S ẑs(xn
1)

︸ ︷︷ ︸

(i)

+ log
∏s∈S ẑs(xn

1)

PCTW(xn
1)

︸ ︷︷ ︸

(ii)

(14)

We now bound the term (14)(i) and define the following auxiliary function:

f (x) =

{

xlogk ,0≤ x < 1;
k−1

2 logx+ logk ,x≥ 1.
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Note that this function is continuous and concave in[0,∞). Let Nσ(s) denote the frequency ofσ in
SUBs(xn

1). Thus,

log
PS (xn

1)

∏s∈S ẑs(xn
1)

= ∑
s∈S

log
zs(xn

1)

ẑs(xn
1)

(15)

≤ ∑
s∈S , s.t.

∑Nσ(s)>0

(

k−1
2

log(∑
σ

Nσ(s))+ logk

)

(16)

= |S |∑
s∈S

1
|S | f (∑

σ
Nσ(s))

≤ |S | f (∑s∈S ∑σ Nσ(s)
|S | ) (17)

= |S | f ( n
|S |)

=

{

nlogk, n < |S |;
(k−1)|S |

2 log n
|S | + |S | logk, n≥ |S |, (18)

where step (15) follows from an application of Equation (3); step (16) is by the performance guar-
antee for theKT prediction, as given in Theorem 7; and step (17) is by Jensen’s inequality.

We now bound the term (14)(ii )

log
∏s∈S ẑs(xn

1)

PCTW(xn
1)

= log
∏s∈S ẑs(xn

1)

∑S∈CD
2−|TS | ∏s∈S ẑs(xn

1)
(19)

≤ log
∏s∈S ẑs(xn

1)

∑S∈CD
2−

k|S |−1
k−1 ∏s∈S ẑs(xn

1)
(20)

≤ log
∏s∈S ẑs(xn

1)

2−
k|S |−1

k−1 ∏s∈S ẑs(xn
1)

= log2
k|S |−1

k−1

=
k|S |−1

k−1
, (21)

where in step (19) we applied Equation (10) and the justification for (20) is that |{s∈ S : |s| < D}| ≤
|S |. Thus, according to Definition 1,|TS | ≤ |S |+ |S |−1

k−1 = k|S |−1
k−1 . We complete the proof by summing

up (18) and (21).

Remark 10 TheCTW bound used by Catoni (2004) is somewhat tighter than the bound of Theo-
rem 9 but contains some implicit terms.

Remark 11 Willems (1998) provided extensions for theCTW algorithm that eliminate its depen-
dency on the maximal bound D and the initial contextx0

1−D. For the extended algorithm and binary
prediction problems, Willems derived a point-wise redundancy bound of

|S |
2

log
n−∆s(xn

1)

|S | +2|S |−1+∆s(xn
1),
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where∆s(xn
1)≤ D denotes the number of symbols in the prefix ofxn

1 that do not appear after a suffix
s∈ S .

Remark 12 Interestingly, it can be shown that theCTW algorithm is an instance of the well-known
genericexpert-advicealgorithm of Vovk (1990). This observation is new, to the best of our knowl-
edge, although there are citations that connect theCTW algorithm with the expert-advice scheme
(see, e.g., Merhav and Feder, 1998; Helmbold and Schapire, 1997).

It can be shown that these two algorithms are identical when Vovk’s algorithm is applied with
the log-loss (see, e.g., Haussler et al., 1998, example 3.12). In this case, the set of experts in
Vovk’s algorithm consists of all D-bounded tree-sources,CD; the initial weight of each expert,S ,
corresponds to its complexity|TS |; and the weight of each expert at round t equals2−|TS |PS (xt−1

1 ).
Note, however, that the power of theCTW method is in its efficiency in mixing exponentially many
sources (or experts). Vovk’s algorithm is not concerned with how to compute this average.

2.4 Hierarchical CTW Decompositions

TheCTW algorithm is known to achieve excellent empirical performance inbinaryprediction prob-
lems. However, when applyingCTW on sequences over larger alphabets, the resulting performance
falls short of the best known (Tjalkens et al., 1997). This fact motivatesdifferent approaches for
applying theCTW algorithm on multi-alphabet sequences. Volf targeted this issue in his Ph.D. the-
sis (2002). Following Tjalkens et al. (1994), who proposed a rudimentary alphabet decomposition
approach, he studied a solution to the multi-alphabet prediction problem that isbased on a tree hi-
erarchy of binary problems. Each of these binary problems is solved using a slight variation of the
binaryCTW algorithm. We now describe the resulting ‘decomposedCTW’ approach, which we term
for short the “DECO” algorithm.

Consider a full binarydecomposition tree Twith k = |Σ| leaves, where each leaf is uniquely
associated with a symbol inΣ. Each internal nodev of T corresponds to the binary problem of
predicting whether the next symbol is a leaf onv’s left subtree or a leaf onv’s right subtree. For ex-
ample, forΣ = {a,b,c,d,r}, Figure 2 depicts a decomposition treeT such that its root corresponds
to the problem of predicting whether the next symbol isa or one of the symbols in{b,c,d,r}. The
idea is to learn a binary predictor that is based on theCTW algorithm, for each internal node.

Let v be any internal node ofT and letL(v) (resp.,R(v)) be the left (resp., right) child ofv. Also,
let Σv be the set of leaves (symbols) in the sub-tree rooted byv. We denote byCTWv any perfect
k-ary tree that provides binary predictions over the binary alphabet{0v,1v}. The supersymbol
0v (resp., 1v) representsany of the symbols inΣL(v) (resp.,ΣR(v)). While CTWv generates binary
predictions (for its supersymbols), it still depends on a suffix set over the entirek-ary alphabetΣ.
Thus, internal nodev yields the probabilityPCTWv(σsuper|s), whereσsuper ∈ {0v,1v} ands∈ S ⊆
Σ≤D. For example, in Figure 2(b) we depictCTW3. Observe that ˆzs estimates a binary distribution
that is based on the counts appearing in the table of Figure 2(b).

Let x be any sequence andσ ∈ Σ. Algorithm DECO generates the multi-alphabet prediction
PDECO(σ|x) by multiplying the binary predictions of allCTWv along the path from the root ofT to
the leafσ. Hence,PDECO(σ|x) = ∏v, s.t.,σ∈Σv

PCTWv(σ|x), wherePCTWv(σ|x) is the binary prediction
of the appropriate supersymbol (either 0v or 1v).
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ctw1
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CTW3 (for x = rcdr)
s N{c,d}(s) N{r}(s)

ε 1 1
c 1 0
d 0 1
r 0 0
rc 1 0
cd 0 1
cc 0 0
...

...
...

rr 0 0
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d

r

r
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Figure 2: ADECO predictor corresponding to the sequenceabracadabra. (a) depicts the decom-
position treeT. Each internal node inT utilizes aCTW predictor to “solve” a binary
problem. In (b) we depictCTW3, a 2-bounded predictor whose binary problem is: “deter-
mine if σ ∈ {c,d} (or σ = r).” (Nσ(s) denotes the frequency ofσ in SUBs(x) and dashed
lines mark tree paths with zero counts).

There are many possibilities for constructing the decomposition treeT.4 A major open problem
is how to identify useful decomposition trees. Intuitively, it appears that placing high frequency
symbols close to the root is a good idea for two reasons: (i) When traversing the tree from the
root to such symbols, the number of visits to other internal nodes is minimized, thus reducing extra
loss; (ii) High frequency symbols appearing closer to the root could be involved in “easier” binary
problems because of the denser statistics we have on them.

Tjalkens et al. (1997) and Volf (2002, Chapter 5) suggested takingT as the Huffman coding tree
computed with respect to the frequency counts of the symbols inxn

1. While intuitively appealing,
there is currently no compelling explanation for this heuristic. In Section 3.1 weprovide a formal
motivation for Huffman decompositions.

4. We can map every decomposition tree with the partition of 1 into sums ofk terms, each of which is a power of 1/2,
where each leafσ at level `σ defines the power(1/2)`σ . (This is possible due to Kraft’s inequality.) Therefore,
the number of such decomposition trees is obtained by multiplyingk! (all permutations ofΣ) with this number of
partitions. The former is known as sequence A002572 in Sloane and Plouffe (1995). For example, fork = 26 we
have 26!·565168= 227927428502001453851738112000000 possible decomposition trees.
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3. Redundancy Bounds For the DECO Algorithm

We start this section with some definitions that formalize the hierarchical alphabet decomposition
approach. We also define a new category of sources called “decomposed sources,” which will
aid in the analysis of algorithmDECO. To this end, we use an equivalence between decomposed
sources and the ordinary tree-sources of Section 2.1. The main result of this section is Theorem 19,
providing a pointwise redundancy bound for theDECOalgorithm. This bound, in particular, implies
a performance guarantee for Huffman decomposition trees, which is given in Corollary 23.

Let Σ be a multi-alphabet withk symbols and fix some order boundD and initial contextx0
1−D.

We refer to a decomposition-tree (see Section 2.4) simply as atreeand to an ordinary tree source as
amulti-source, denoted byM = (S ,PS ).

Definition 13 (Decomposed Source)A (D-bounded) decomposed sourceT overΣ is a pair

T = (T, {M1, M2, · · · , Mk−1}) ,

where T is a (decomposition) tree overΣ and for each internal node, v∈ T, there is a matching
source Mv = (Sv, Pv) whose suffix set,Sv, contains all paths of some full k-ary tree (of maximal
height D). Additionally, for every s∈ Sv, Pv(·|s) is abinarydistribution over{0v,1v}. Note that Mi is
not a standard multi-source because it predicts binary sequences of supersymbols while depending
on multi-alphabet contexts. Such sources will always be denoted by Mv for some internal node v.
Letx ∈ ΣD be any sequence andσ ∈ Σ. The prediction induced byT is

PT (σ|x) = ∏
v, s.t.,σ∈Σv

Pv(σ|x). (22)

We say that two probabilistic tree-sources overΣ areequivalentif they agree on the probability
of every sequencex ∈ Σ∗. Note that two structurally different tree-sources can be equivalent. A
multi-source isminimal if it has no redundant suffixes. A decomposed source is minimal if all its
Mv models are minimal. The formal definitions follow.

Definition 14 (Minimal Sources) (i) A multi-source M= (S , PS ) is minimalif there is no s∈ Σ<D

for which PS (·|σis) = PS (·|σ js) for all σi 6= σ j and bothσis andσ js are in S . (ii) We say that
T = (T, {Mv}) is a minimal decomposed sourceif for all internal nodes v of T , Mv is minimal.

For example, we depict in Figure 3 two equivalent multi-sources. The multi-source in Figure 3 (a)
is a minimal multi-source while the multi-source in Figure 3 (b) is not minimal.

There is a simple procedure for transforming a non-minimal source into its equivalent minimal
form: Replace each redundant suffix,σs, with its suffixs. That is, trim all children ofs and assign
PS (·|s) = PS (·|σs) for someσ.

The following two lemmas facilitate a “translation” between decomposed and multi sources.

Lemma 15 For every multi-source M and tree T there exists a minimal decomposed source T =
(T,{Mv}) such that M andT are equivalent.

Proof Let M = (S , P) be aD-bounded multi-source and letT be a tree. We start with the definition
of the modelsMv = (Sv,Pv) and set the suffix setSv = S , for every internal nodev. Let PS (0v|s) =
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(a)

(.5, .1, .4)

a

(.3, .3, .4)

b

(.9, .1, 0)
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(b)
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(.5, .1, .4)
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(.5, .1, .4)
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c

Figure 3: An example of two equivalent multi-sources. Both sources generate the same probability
to every sequence of length larger than two. Take for examplex = aaba with initial
contextba. Both sources will induce the following prediction:P(aaba|ba) = 0.5 ·0.5 ·
0.1·0.3= 0.0075. Observe that the source in (a) is minimal while the other source is not.

∑σ∈0v
PS (σ|s) for any (internal node)v ands∈ Sv(= S). Similarly, PS (1v|s) = ∑σ∈1v

PS (σ|s). Let
parent(v) denote the parent of nodev. For every internal nodev ands∈ Sv we define

Pv(0v|s) = PS (0v|s)/Pparent(v)(0v∪1v|s),

and similarly forPv(1v|s). For the base case (i.e., the root) we do not divide by the denominator.
Clearly, Pv(·|s) is a valid distribution and the resulting structureT = (T, {Mv}) is a decomposed
source.

We shall now prove thatT andM are equivalent. Recall thatS = Sv for every internal nodev.
Let v ( 6= root) be any internal node inT andu = parent(v). Assume, without loss of generality,
that 0v ⊂ 1u, and therefore, 0v∪1v = 1u. Note that, for everys∈ S ,

Pu(1u|s)Pv(0v|s) = Pu(1u|s)(PS (0v|s)/Pu(0v∪1v|s)) = PS (0v|s).

Therefore,PT (σ|s) of Equation (22) is a telescopic product; hence, for everyσ ∈ Σ and s∈ S ,
PT (σ|s) = PS (σ|s). This proves thatM andT are equivalent. Finally, for minimality, we replace
everySv with its minimal source.

Lemma 16 For every decomposed sourceT there exists a minimal multi-source M that is equiva-
lent toT .

Proof Let T = (T, {Mv = {Sv,Pv}}) be a decomposed source. We provide the following construc-
tive scheme for building the equivalent multi-source,M = (S , PS ). Start withM = Mroot (the model
corresponding to the root ofT). We traverse the internal vertices ofT (minus the root) such that
parent nodes are visited before their descendants (i.e., using preorder). We start with one of the
root’s children and for each internal node inT we do the following. For each (internal node)v∈ T
and for everysv ∈ Sv, exactly one of the following three cases holds (because bothSv andS form a
full k-ary tree): (a)sv = s∈ S ; or (b)∃s∈ S such thats is a suffix ofsv; or (c)∃s∈ S such thatsv is
a suffix ofs. We treat these cases as follows. For the first case, we refine the support set ofPS (·|s)
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by replacing the supersymbol corresponding to 0v∪1v with the two (super) symbols 0v and 1v, and
define,

PS (0v|s) = PS (0v∪1v|s) ·Pv(0v|s);
PS (1v|s) = PS (0v∪1v|s) ·Pv(1v|s). (23)

Note thatPS (0v∪1v|s) has been already assigned (due to the preorder node traversal). Cases (b) and
(c) are treated in exactly the same manner. In case (b) also replaceswith its extensionsv.

We should now prove that the resultingM = (S , PS ) is a multi-source and thatM is equivalent
to T . Both proofs are by induction on|Σ|= k. Fork = 2, T consists only ofMroot, which is a binary
tree source. Hence, obviously,M = Mroot is a tree source equivalent toT . Assume the statement
holds fork−1≥ 2 and examine|Σ|= k. Letv∈T be the last visited node in the constructive scheme.
Clearly, by the preorder traversal, the children ofv are both leaves (both 0v and 1v are singletons).
Merge the two symbols inΣv ⊆ Σ into some supersymbolσv and considerT ′ = (T ′,{Mv′}), which
is the decomposed source induced by this replacement. The number of leaves of T ′, which can
be denotedΣ′ = Σ \Σv∪{σv}, is equal tok−1. Thus, by the inductive hypothesis, we construct
M′ = {S ′,PS ′}, a multi-source that is equivalent toT ′. We now apply the constructive step onM′

andv, resulting withM = (S , PS ). Case (b) of the constructive scheme is the only place that we
changeS ′ (to retrieveS ). S ′ is a tree source topology by the induction hypothesis; so isSv and
clearly, the treatment of case (b) induces a valid tree-source topology (that corresponds to a full
k-ary tree). Therefore,S is a tree-source topology. It is also easy to see that the refinement of the
support set ofS ′, as in (23), induces a valid distribution overΣ. We conclude thatM = (S , PS ) is a
multi-source overΣ.

We now turn to prove the equivalence. For everys∈ S and any symbolσ ∈ Σ\Σv, we have by
Equation (22) thatPT (σ|s) = PT ′(σ|s), and by the induction hypothesis,PT ′(σ|s) = PS ′(σ|s). Note
that, by the construction, everys′ ∈ S ′ is asuffixof somes∈ S . Therefore, for symbolsσ ∈ Σ\Σv,
PS ′(σ|s′) = PS ′(σ|s) = PS (σ|s) (wheres′ is the suffix ofs). Now for symbolsσ ∈ Σv, recall that
|Σv| = 2 and therefore, 0v represents some (ordinary) symbolσ ∈ Σ (resp., 1v). Thus,

PS (σ|s) = PS ′(σv|s)Pv(σ|s) (24)

= PT ′(σv|s)Pv(σ|s) (25)

=

(

∏
u, s.t.,u∈T ′∧σ∈Σu

Pu(σ|s)
)

Pv(σ|s) (26)

= ∏
u, s.t.,u∈T∧σ∈Σu

Pu(σ|s) (27)

= PT (σ|s),

where (24) is by the construction (23) withσ ∈ {0v,1v}; (25) is by the induction hypothesis; (26)
and (27) are by Equation (22). This proves thatM is equivalent toT . Finally, for satisfying the
minimality of M, we take its equivalent minimal multi-source.

Remark 17 It can be shown that a minimal decomposed source (resp., multi-source) is unique.
Hence, Lemmas 15 and 16 imply that, for a given tree T , there is a one-to-one mapping between the
minimal decomposed sources and multi-sources.
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Consider algorithmDECO applied with a treeTDECO. The redundancy of theDECO algorithm on
a sequencexn

1, with respect to any decomposed sourceT = (T,{Mv}), is

RDECO(xn
1,T ) = logPT (xn

1)− logPDECO(xn
1).

We do not know how to express this redundancy directly in terms of the unknown sourceT . How-
ever, we can express it in terms of an equivalent decomposed sourceT ′ that has the same tree as in
the algorithm. This “translation” is done using an equivalent multi-source mediator that can be con-
structed according to Lemmas 15 and 16. To facilitate this discussion, we define, for a decomposed
sourceT = (T,{Mv}), its T ′-equivalentsource to be any equivalent decomposition source with tree
T ′. By Lemmas 15 and 16 this source exists.

Corollary 18 For any decomposed sourceT = (T,{Mv}) and a tree T′ there exists a T′-equivalent
sourceT ′ = (T ′,{M′

i}).

Theorem 19 Let TDECO be any tree andxn
1 a sequence. For every internal node v∈ TDECO, denote

by CTWv the correspondingCTW predictor of theDECO algorithm applied with TDECO. Let T =
(T,{Mv}) be any decomposed source. Then, RDECO(xn

1,PT ) ≤ ∑k−1
i=1 Ri(xn

1), where i is an internal-
node in TDECO, and

Ri(xn
1) =







|Si |
2 log ni

|Si | + |Si |+ k|Si |−1
k−1 ,ni ≥ |Si |;

ni +
k|Si |−1

k−1 ,0 < ni < |Si |;
0 ,ni = 0.

(28)

Si is the suffix set of the ith (internal) node of the T′-equivalent source ofT , and ni is the number of
times this node is visited when predictingxn

1.

Proof Let T ′ = (TDECO,{Mv′}) be theTDECO-equivalent decomposed source ofT . Fix any order on
the internal nodes ofTDECO. We will refer to internal nodes both by their order’s index and by the
notationv. By the chain-rule,Pv(xn

1) = ∏xt∈Σv
Pv(xt |xt−1

1−D), wherePv(xt |xt−1
1−D) = Pv(xt |s) ands∈ Sv

is a suffix ofxt−1
1−D. Thus,

PT (xn
1) = PT ′(xn

1) (29)

=
n

∏
t=1

PT ′(xt |xt−1
1−D)

=
n

∏
t=1

∏
v∈TDECO, s.t.,xt∈Σv

Pv(xt |xt−1
1−D)

= ∏
v∈TDECO

∏
xt∈Σv

Pv(xt |xt−1
1−D) = ∏

v∈TDECO

Pv(xn
1), (30)

where (29) follows from by Corollary 18.
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We show thatRDECO(xn
1,PT ) ≤ ∑k−1

i=1 Ri(xn
1).

RDECO(xn
1,PT ) = logPT (xn

1)− logPDECO(xn
1) (31)

= logPT ′(xn
1)− logPDECO(xn

1) (32)

=
k−1

∑
j=1

logPj(xn
1)−

k−1

∑
i=1

logPCTWi (x
n
1) (33)

=
k−1

∑
i=1

(logPi(xn
1)− logPCTWi (x

n
1)) (34)

≤
k−1

∑
i=1

Ri(xn
1),

where (31) follows from Corollary 18; in Equations (32) and (33) the probabilitiesPj andPi refer to
internal nodes ofT ′; in (32) we used Equation (30); and finally, equality (34) directly follows from
the proof of Theorem 9. In that proof, we applied the bound (18) for the term (14i) with k = 2,
because the zero-order predictors,zs(·) , of CTWv provide binary predictions. The bound on the
term (14ii ) remains as is becauseCTWv uses ak-ary tree.

The precise values of the model orders|Si | in the above upper bound are unknown since the
decomposed source is unknown. Nevertheless, for eachi, |Si | ≤ kD. It follows that anyDECO

scheme is universal with respect to the class ofD-bounded (multi) tree-sources. Specifically, given
any multi-source, consider itsTDECO-equivalent decomposed sourceT . For a sequencexn

1, by Theo-
rem 19 the per-symbol redundancy is1

nRDECO(xn
1,PT ) ≤ 1

n ∑k−1
i=1 Ri(xn

1), which vanishes withn since
ni ≤ n for every internal-nodei.

Remark 20 The dependency of theDECOalgorithm on the maximal bound D and the initial context
x0

1−D can be eliminated by using the extensions for theCTW algorithm suggested by Willems (1998).
Recall that Willems provided a point-wise redundancy bound for this case (see Remark 11). Thus,
we can straightforwardly use this result to derive a corresponding boundfor the DECO algorithm
(the details are omitted).

3.1 Huffman Decompositions

The general bound of Theorem 19 holds for any decomposition tree. However, it is expected that
some trees will result in a tighter bound. Therefore, it is desirable to optimize the bound over all
trees. Unfortunately, the sizes|Si | are unknown. Even if the sizes|Si | were known, it is an NP-hard
problem even to decide on the optimal partition corresponding to the root. Thishardness result can
be obtained by a reduction from MAX-CUT (see, e.g., Papadimitriou, 1994,Chapter 9.3). Hence,
we can only hope to approximate the optimal tree.

However, if we replace each|Si | value with its maximal valuekD, we are able to show that the
bound is optimized when the decomposition tree is the Huffman decoding tree (see, e.g., Cover and
Thomas, 1991, Chapter 5.6) of the sequencexn

1.
For any decomposition treeT and a sequencexn

1, let ni be the number of times that the internal
nodei ∈ T is visited when predictingxn

1 using theDECO algorithm. These are precisely theni used
in Theorem 19, Equation (28). We call theseni “the counters ofT”.

394



SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

Lemma 21 Let xn
1 be a sequence and T a decomposition tree constructed using Huffman’s proce-

dure, which is based on the empirical distributionP̂(σ) = Nσ/n. Let{ni} be the counters of T .
Then,∑k−1

i=1 ni and∏k−1
i=1 ni are both minimal with respect to any other decomposition tree.

Proof Any treeT induces the following prefix-code overΣ. The codeword of a symbolσ ∈ Σ is
the path from the root ofT to the leafσ. The length of this code for someT, with respect toxn

1, is
`(xn

1) = ∑n
t=1`(xt), where`(xt) is the codeword length of the symbolxt . It is not hard to see that

`(xn
1) = ∑

σ
Nσ · `(σ) =

k−1

∑
i=1

ni . (35)

If T is constructed using Huffman’s algorithm, the average code length,1
n ∑σ Nσ · `(σ), is the

smallest possible. Therefore,T minimizes1
n ∑k−1

i=1 ni .

To prove that Huffman’s tree also minimizes∏k−1
i=1 ni , we define the following lexicographic

order on the set of inner nodes of any tree. Given a tree, we letnv be the counter corresponding to
inner nodev. We can order the inner nodes, first in ascending order of their counters nv, and then
(among nodes with equal counters), in ascending order of the heights ofthe sub-trees they root. Let
T be a Huffman tree, andT ′ be any other tree. Let{nv} be the counters ofT and let{nv′} be the
counters ofT ′. We already know that∑vnv ≤∑v′ nv′ . We can order (separately) both sets of counters
according to the above lexicographic order such thatnv1 ≤ ·· · ≤ nvk−1 (and similarly, forv′i). We
prove, by induction onk, thatnvi ≤ nv′i

, for i = 1, . . . ,k−1. Fork = 2 the statement trivially holds.
Assume that fori = 1, . . . ,k−1, nvi ≤ nv′i

. We examine now the case wherei = 1, . . . ,k. According
to the construction scheme of the Huffman tree (see, Cover and Thomas, 1991, Chapter 5.6), we
have thatnv1 ≤ nv′1

. Note that the children ofv1 andv′1 are all leaves. Otherwise, the non-leaf child
must have the same counter as its parent and is rooting a sub-tree with smaller height. Therefore, by
our lexicographic order, the counter of this child must appear before thecounter of its parent, which
is a contradiction.

Replacev1 (resp.,v′1) with a leaf. Note that every nodev (resp.,v′) in the resulting trees keeps
its original counternv (resp.,nv′). Hence, nodes can change their order only with nodes of equal
counter. Thus, by applying the inductive hypothesis we concluded thatnvi ≤ nv′i

for i = 1, . . . ,k.

Remark 22 After establishing Lemma 21, we found that Glassey and Karp (1976) showed that if
f (·) is an arbitrary concave function, then the Huffman tree minimizes∑k−1

i=1 f (ni). This general
result clearly implies Lemma 21.

From Lemma 21 it follows that the tree constructed by Huffman’s algorithm minimizes any
linear function of either∑i ni or ∑i logni , which proves, using Theorem 19, the following corollary.

Corollary 23 Let R̄i be the Ri of Equation (28) with every|Si | replaced by its maximal value, kD.
Then, RDECO(xn

1,PT ) ≤ ∑i R̄i(xn
1) and the Huffman coding tree minimizes this bound. The resulting

bound is given in Corollary 25.
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4. Mind the Gap

Here we compare our redundancy (upper) bound forDECO and the known bound for multi-CTW.
Relying on Corollary 23, we focus on the case whereDECO uses the Huffman tree.

A clear advantage of theDECO algorithm is that it “activates” only internal node (binary) pre-
dictors corresponding to observed symbols. This can be seen by the bound of Theorem 19, which
decreases with the number of unobserved symbols. Since the multi-CTW bound is insensitive to al-
phabet sparsity, this suggests thatDECO will outperform the multi-CTW when predicting sequences
in which alphabet symbols are sparse.

In this section we prove that the redundancy bound ofDECO is strictly better than the corre-
sponding multi-CTW bound, for any sufficiently long sequence. For this purpose, we examine the
difference between the two bounds using a worst-case expression of the DECO bound.

Let Σ be an alphabet with|Σ| = k andxn
1 be a sequence overΣ. Fix some orderD and letS be

the topology corresponding to theD-bounded tree-source that maximizes the probability ofxn
1 over

CD. Denote byR̄CTW the multi-CTW redundancy bound (see Theorem 9),

R̄CTW(xn
1) =

(k−1)|S |
2

log
n
|S | + |S | logk+

k|S |−1
k−1

. (36)

Similarly, letR̄HUFF denote the redundancy ofDECO applied with a Huffman-tree (see Theorem 19),

R̄HUFF(xn
1) =

k−1

∑
i=1

(
Ψ
2

log
ni

Ψ
+Ψ+

kΨ−1
k−1

)

, (37)

whereΨ is an upper-bound on the model-sizes|Si | (see Equation 28). We would like to bound
below the gapR̄CTW − R̄HUFF between these bounds.

The next lemma and corollary provide a worst case upper bound forR̄HUFF.

Lemma 24 Let xn
1 be a sequence overΣ. Let T be the corresponding Huffman decomposition tree

and{ni}k−1
i=1 its internal node counters. Then,

k−1

∑
i=1

logni < (k−1) · (logn+ log(1+ logk)− log(k−1)) (38)

Proof Recall that for every symbolσ ∈ Σ, Nσ denote the number of occurrences ofσ in xn
1 and`(σ)

denotes the length of the path from the root ofT to the leafσ. Denote byĤ the empirical entropy,
Ĥ = −∑σ∈Σ

Nσ
n log Nσ

n .

k−1

∑
i=1

1
k−1

logni ≤ log

(
k−1

∑
i=1

1
k−1

logni

)

(39)

= log

(
k−1

∑
i=1

logni

)

− log(k−1)

= log

(

∑
σ∈Σ

Nσ`(σ)

)

− log(k−1) (40)

< log
(
n· (1+ Ĥ)

)
− log(k−1) (41)

≤ log(n· (1+ logk))− log(k−1) (42)

= logn+ log(1+ logk)− log(k−1). (43)
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In (39) we used Jensen’s inequality; (40) is an application of Equation (35); T yields a Huffman
code with an average code length of∑σ∈Σ

Nσ
n `(σ) < 1+ Ĥ (see, e.g., Cover and Thomas, 1991,

Section 5.4 and 5.8), which implies (41); finally, (42) follows from the fact that Ĥ ≤ logk (see, e.g.,
Cover and Thomas, 1991, Theorem 2.6.4). We conclude by multiplying both sides byk−1.

Corollary 25

R̄HUFF(xn
1) <

(k−1)Ψ
2

(

log
n
Ψ

+ log(1+ logk)− log(k−1)+2+
2k

k−1

)

.

Proof

R̄HUFF(xn
1) =

k−1

∑
i=1

(
Ψ
2

log
ni

Ψ
+Ψ+

kΨ−1
k−1

)

=
k−1

∑
i=1

(
Ψ
2

logni

)

+
k−1

∑
i=1

(

−Ψ
2

log(Ψ)+Ψ+
kΨ−1
k−1

)

=
Ψ
2

k−1

∑
i=1

(logni)+(k−1)

(

−Ψ
2

log(Ψ)+Ψ+
kΨ−1
k−1

)

<
(k−1)Ψ

2
(logn+ log(1+ logk)− log(k−1))+

(k−1)

(

−Ψ
2

log(Ψ)+Ψ+
kΨ−1
k−1

)

(44)

=
(k−1)Ψ

2

(

log
n
Ψ

+ log(1+ logk)− log(k−1)
)

+(k−1)

(

Ψ+
kΨ−1
k−1

)

<
(k−1)Ψ

2

(

log
n
Ψ

+ log(1+ logk)− log(k−1)+2+
2k

k−1

)

. (45)

Here (44) follows by application of (38) and we obtained (45) usingkΨ−1
k−1 < kΨ

k−1.

The next theorem characterizes cases where theDECO algorithm has a strictly smaller redun-
dancy bound than the multi-CTW bound.

Theorem 26 Let Σ be an alphabet with|Σ| = k ≥ 118andxn
1 be a sequence overΣ generated by

the (unknown) D-bounded multi-sourceM = (S ,PS ). Then,R̄CTW(xn
1) > R̄HUFF(xn

1).

Proof We take the upper boundΨ = |S |. By the proof of Lemma 15, when translatingM into its
equivalent decomposed source, the internal node topologies are firstinitiated withS and then may
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be pruned to achieve minimality. Hence,|S | is an upper bound on the sizes|Si |. Thus, we have

R̄CTW(xn
1)− R̄HUFF(xn

1) =
(k−1)|S |

2
log

n
|S | + |S | logk+

k|S |−1
k−1

−

k−1

∑
i=1

( |S |
2

log
ni

|S | + |S |+ k|S |−1
k−1

)

>
(k−1)|S |

2
log

n
|S | + |S | logk+

k|S |−1
k−1

− (k−1)|S |
2

×
(

log
n
|S | + log(1+ logk)− log(k−1)+2+

2k
k−1

)

(46)

= |S | logk+
k|S |−1

k−1
−

(k−1)|S |
2

(

log(1+ logk)− log(k−1)+2+
2k

k−1

)

, (47)

where (46) is by Corollary 25. Using straightforward analysis it is not hard to show that (47) grows
with k and is positive fork≥ 118. This completes the proof.

The gap, between theCTW andDECO bounds, shown in Theorem 26 is relevant when the inter-
nal node redundancies ofDECO areRi = |Si |

2 log ni
|Si | + |Si |+ k|Si |−1

k−1 . By a simple analysis of Equa-

tion (28) using the functionf (x) = x
2 log n

x + x+ kx−1
k−1 , we can show that the gap is positive when

ni ≥ max{0.17·Ψ,Si}.
We conclude that the redundancy bound ofDECO algorithm converges faster than the bound of

the CTW algorithm for alphabet of sizek ≥ 118. Currently, theCTW algorithm is known to have
the best convergence rate (see Table 5). Therefore, the current bound is the tightest one known for
prediction (and lossless compression) in realistic settings.

Remark 27 The result of Theorem 26 is obtained using a worst-case analysis for theDECO re-
dundancy. This analysis considered a sequence that contains all alphabet symbols; each symbol
appears sufficiently many times. However, in many practical applications(such as predictions of
ASCII sequences) most of the symbols are expected to have small frequencies (e.g., by Zipf ’s Law).
In this case, theDECO redundancy is even smaller than the worst case bound of Corollary 25 and
the gap between the two bounds is larger.

5. Examining Other Alphabet Decompositions

The boundR̄HUFF, given in Equation (37), is optimized using a Huffman decomposition tree (Corol-
lary 23). However, replacing each|Si | with its maximal value can affect the bound considerably.
For example, if we manage to place a very easy (binary) prediction problem at the root, it could
be the case that the “true” model order for this problem is very small. Such considerations are not
explicitly treated by the Huffman tree optimization. Therefore, it is of major interest to consider
other types of alphabet decomposition trees. Also, if our goal is to utilize the (successful)binary
CTW in multi-alphabet problems, there is no apparent reason why we should restrict ourselves to
hierarchicalalphabet decompositions as discussed so far. The parallel study of “multi-category de-
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compositions” in supervised learning suggests other approaches suchone-vs-all, all-pairs, etc. (see,
e.g., Allwein et al., 2001).

We empirically targeted two questions: (i) Are there better alphabet decomposition trees for the
DECO algorithm? (ii) Can the “flat” decomposition techniques of supervised learningbe effectively
applied in our sequential prediction setting?

To answer the first question, we developed a simple heuristic procedure that attempts to increase
log-likelihood performance of theDECO algorithm, starting from any decomposition tree. This
procedure searches for a locally optimal tree using the actual performance of DECO on a given
sequence. Starting from a given tree, this procedure attempts to swap an alphabet symbol from
one subtree to the other while recursively “optimizing” the resulting subtrees. Each such swap is
‘accepted’ only if it improves the actual performance. We applied this procedure using a Huffman
tree as the starting point and refer to the resulting algorithm as ‘Improved’.

Sequence Random Improved Huffman Huffman Inverted
Comb Huffman-Comb

bib 1.91 1.81 1.83 2.04 2.16
news 2.47 2.34 2.36 2.65 2.75
book1 2.26 2.20 2.21 2.28 2.38
book2 1.99 1.92 1.94 2.06 2.14
paper1 2.40 2.26 2.27 2.58 2.69
paper2 2.31 2.21 2.23 2.41 2.53
paper3 2.60 2.45 2.47 2.74 2.87
paper4 2.95 2.72 2.75 3.20 3.34
paper5 3.12 2.86 2.89 3.42 3.56
paper6 2.50 2.32 2.36 2.67 2.84
trans 1.52 1.40 1.43 1.71 1.89
progc 2.51 2.32 2.35 2.76 2.87
progl 1.74 1.64 1.67 1.88 2.01
progp 1.78 1.63 1.66 1.92 2.09

Average 2.29 2.15 2.17 2.45 2.58

Table 1: Comparing average log-loss ofDECO with different decomposition structures. The best
results appear in boldface. Results for the random decomposition reflectan average on ten
random trees.

We experimented withDECO, ‘Improved,’ and several others decomposition schemes. Follow-
ing standard convention in the lossless compression community, we examined thealgorithms over
the ‘Calgary Corpus.’ This Corpus serves as a standard benchmark for testing log-loss prediction
and lossless compression algorithms (Bell et al., 1990; Witten and Bell, 1991;Cleary and Teahan,
1995; Begleiter et al., 2004). The corpus consists of 18 files of nine different types. Most of the
files are pure ASCII files and four are binary files. The ASCII files consist of English texts (books
1-2 and papers 1-6), a bibliography file (bib), a batch of unedited newsarticles (news), some source
code of computer programs (prog c,l,p), and a transcript of a terminal session (trans). The longest
file (book1) has 785kb symbols and the shortest (paper5) 12kb symbols.
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In addition to the Huffman and ‘Improved’ decompositions, we include the performance of a
random tree and two types of “Huffman Comb” trees. The random tree wasconstructed bottom-up
in agglomerative random fashion where symbol cluster pairs to be merged were selected uniformly
at random among all available nodes at each ‘merge’ step. Each of the two‘comb’ trees is a full
(binary) tree of heightk−1. That is, such trees operate similarly todecision lists. The comb tree
whose leaves (symbols) are ordered top-down according to their ascending frequencies inxn

1 is
referred to as the “Huffman Comb,” and the comb tree whose leaves are reversely ordered is called
the “Inverted Huffman Comb.” Obviously, it is expected at the outset that the inverted Huffman
comb will give rise to inferior performance.

In all the experimental results below we analyzed the statistical significance of pairwise compar-
isons between algorithms using the Wilcoxon signed rank test (Wilcoxon, 1945)5 with a confidence
level of 95%.

Table 1 shows the average prediction performance ofDECO compared to several tree structures
over the text files of the Calgary Corpus. The slightly better but statistically significant performance
of the improved-DECO indicates that there are more effective trees than Huffman’s. It is also inter-
esting to see that the random tree (based on an average of 10 random trees) is significantly better
than both the Huffman Comb trees. The latter observation suggests that it is hard to construct very
inefficient decomposition structures.

Sequence∗10% DECO All-Pairs One-vs-All
progc 3.11 4.28 4.04
progl 1.66 2.27 2.16
progp 2.69 3.53 3.50
paper1 3.08 3.82 3.67
paper2 3.15 3.66 3.62
paper3 3.39 4.10 4.00
paper4 3.89 4.62 4.54
paper5 3.91 4.82 5.02
paper6 3.32 4.11 4.00

Average 3.13 3.91 3.84

Table 2: Comparing three decomposition methods over a reduced version ofthe Calgary Corpus.
The best results appear in boldface.

To investigate the second question, regarding other decomposition schemes, we implemented
the ‘one-vs-all’ and ‘all-pairs’ schemes, straightforwardly adapted to our sequential setting. The
reader is referred to Rifkin and Klautau (2004) for a discussion of these techniques in standard
supervised learning. The prediction results, over a reduced version of the Calgary text files, appear
in Table 2. In this reduced dataset we took 10% (from the start) of each original sequence. The
reason for considering smaller texts (of shorter sequences) is the excessive memory requirements
of the ‘all-pairs’ algorithm, which requires

(k
2

)
= 8128 different binary predictors (compared to the

5. The Wilcoxon signed rank test is a nonparametric alternative to the paired t-test, which is similar to the Fisher sign
test. This test assumes that there is information in the magnitudes of the differences between paired observations, as
well as the signs.
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k− 1 andk binary predictors required byDECO and ‘one-vs-all’, respectively).6 The results of
Table 2 indicate that the hierarchical decomposition is better than the other two flat decomposition
schemes. (Note that the advantage of ‘one-vs-all’ over ‘all-pairs’ is at90% confidence.)

6. On Applying CTW with Other Zero-Order Estimators

Another interesting direction when attempting to improve the performance of the standardCTW on
multi-alphabet sequences is to use other, perhaps stronger (in some sense), zero-order estimators
instead of theKT estimator. In particular, it seems most appropriate to consider well-known esti-
mators such as Good-Turing and the very recent ones proposed by Orlitsky et al. (2003), some of
which have strong performance guarantees in a certain worst case sense.

To this end, we compared the prediction quality of multi-CTW and DECO each applied with
four different sequential zero-order estimators: Good-Turing (denoted ẑGT), “Improved add-one”
(denoted ˆz+1), “improved Good-Turing” (denoted ˆzGT* ) and standardKT (denoted ˆzKT). The de-
scription of the first three estimators is provided in Appendix B.

Sequence ẑKT ẑ+1 ẑGT ẑGT*

bib 2.47 2.35 2.27 2.29
news 2.92 2.82 2.75 2.75
book1 2.50 2.46 2.42 2.42
book2 2.32 2.24 2.19 2.20
paper1 2.98 2.83 2.73 2.75
paper2 2.77 2.68 2.60 2.61
paper3 3.16 3.08 3.00 2.99
paper4 3.57 3.50 3.41 3.38
paper5 3.76 3.66 3.57 3.56
paper6 3.10 2.95 2.84 2.85
trans 2.18 1.92 1.76 1.84
progc 3.04 2.89 2.79 2.82
progl 2.29 2.14 2.05 2.08
progp 2.26 2.11 2.00 2.04

Average 2.80 2.69 2.60 2.61

Table 3: Comparing the average log-loss of multi-CTW with different sequential zero-order estima-
tors. The comparison is made with textual (|Σ| = 128) sequences taken from the Calgary
Corpus, and with parameterD = 5. Each numerical value is the average log-loss (the loss
per symbol). The best (minimal) result of each comparison is marked in boldface.

All four estimators have worst-case performance guarantees based ona maximallikelihood
ratio, which is the ratio between the highest possible probability assigned by some distribution
and the probability assigned by the estimators. The set of “all possible distributions” considered is
referred to as the comparison class. Orlitsky et al. analyzed the performance of these estimators

6. With our two gigabyte RAM machine the runs with the entire corpus would takeapproximately two months.
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Sequence ẑKT ẑ+1 ẑGT ẑGT*

bib 1.84 2.39 2.02 2.35
news 2.36 2.94 2.54 2.85
book1 2.22 2.39 2.23 2.38
book2 1.94 2.27 2.02 2.26
paper1 2.28 3.03 2.53 2.93
paper2 2.23 2.74 2.39 2.68
paper3 2.47 3.08 2.66 2.98
paper4 2.75 3.52 3.00 3.36
paper5 2.90 3.78 3.18 3.59
paper6 2.36 3.16 2.63 3.04
trans 1.43 2.43 1.83 2.35
progc 2.35 3.16 2.61 3.03
progl 1.67 2.33 1.90 2.26
progp 1.66 2.44 1.95 2.37

Average 2.18 2.83 2.39 2.74

Table 4: Comparing predictions ofDECOwith different sequential zero-order estimators. The com-
parison is made with textual (|Σ| = 128) sequences taken from the Calgary Corpus, and
with parameterD = 5. Each numerical value resemble the average log-loss (the loss per-
symbol). The best (minimal) result of each comparison is marked in boldface.

for infinite discrete alphabets and a comparison class consisting ofall possible distributions over
n-length sequences. They showed that the averageper-symbolratio is infinite for sequential add-
constant estimators such asKT. The Good-Turing and Improved add-one estimators assign to each
(‘large’) sequence a probability which is at most a factor ofcn (for some constantc> 1) smaller than
the maximal possible probability; the improved Good-Turing estimator assigns to each sequence a
probability that is within a sub-exponential factor of the maximal probability.

In addition to the above, theKT and Good-Turing estimators enjoy the following guarantees. In
Theorem 7 we stated afinite-sampleguarantee for the redundancy of theKT estimator. Recall that
this guarantee refers tofinitealphabets and a comparison class consisting of zero-order distributions.
Moreover, within this setting,KT was shown to be (asymptotically) close, up to a constant, to the
best possible ratio (Xie and Barron, 2000; Freund, 2003), and the constant is proportional to the
alphabet size. Thus, when considering the per-symbol ratio,KT is asymptoticallyoptimal. Along
with the above worst-case guarantees, the Good-Turing estimator also hasa convergence guarantee
to the “true” missing mass probability (McAllester and Schapire, 2000), assuming the existence of
a true underlying distribution that generated the sequence.

In Tables 3 and 4 we provide the respective per symbol log-loss obtainedwith these estimators
for all the textual (ASCII) sequences from the Calgary Corpus (14 datasets). In all the experiments
below we analyzed the statistical significance of the results using the Wilcoxonsigned rank test at a
confidence of 95%.

Table 3 presents the log-loss of the four zero-order estimators when used as the zero-order
predictor within the multi-CTW scheme. The support set of the zero-order estimators is of size 128.
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Observe that multi-CTW with ẑKT suffers the worst log-loss. On the other hand, when applying these
estimators inDECO (thus, when solving binary prediction problems), as depicted in Table 4, theẑKT

outperforms all the other estimators. Also observe that the best multi-CTW result (ẑGT in Table 3) is
worse than the bestDECO result (ẑKT in Table 4).

In summarizing these results, we note that:

• For text sequences, theCTW algorithm can be significantly improved when applied with the
Good-Turing estimator (instead of theKT estimator).

• The improved Good-Turing estimator proposed by Orlitsky et al. (2003) does not improve the
Good-Turing.

• The Deco-Huffman algorithm achieves best performance with the original(binary) KT esti-
mator.

7. Related Work

To the best of our knowledge, hierarchical alphabet decompositions in the log-loss prediction/comp-
ression setting were first considered by Tjalkens, Willems and Shtarkov (1994).7 In this paper, the
authors study a hierarchical decomposition where each internal node in the decomposition tree is
associated with a (binary)KT estimator (instead of binary-CTW instances inDECO). In this setting
the comparison class is the set of all zero order sources. The authors derived a redundancy bound
of k− 1+ 1

2 ∑ni>0 logni for this algorithm, where theni terms are the node counters as defined
in Theorem 19. This result is similar to a special case of our bound, 2+ 1

2 ∑ni>0 logni , obtained
using Theorem 19 for the special caseD = 0 (implying |Si | = 1). In that paper Tjalkens et al.
proposed the essence of theDECO algorithm as presented here; however, they did not provide the
details. A thorough study of algorithmDECO and otherCTW-based approaches for dealing with
multi-alphabets are presented in Volf’s Ph.D. thesis (Volf, 2002). In particular, an in-depth empiri-
cal study ofDECO, over the Calgary and Canterbury Corpora, indicated that this algorithm achieves
state-of-the-art performance in lossless compression. Thus, it matchesthe good performance of the
prediction by partial match(PPM) family of heuristics.8 Further empirical evidence that substanti-
ated this observation appears in Sadakane et al. (2000); Shkarin (2002); Begleiter et al. (2004).

There are also many discrete prediction algorithms that are not CTW-based. We restrict the
discussion here to some of the most popular algorithms that are known to be universal with respect
to some comparison class. Probably the most famous (and the first) universal lossless compression
algorithms were proposed by Ziv and Lempel (1977; 1978). For example, the well-known LZ78
algorithm is a fast dictionary method that avoids explicit statistical considerations. This algorithm
is universal (with respect to the set of ergodic sources); however,in contrast to both conventional
wisdom and the algorithm’s phenomenal commercial success, it is not among the best lossless
compressors (see, e.g., Bell et al., 1990).

Two more recent universal algorithms are the Burrows-Wheeler transform (BWT) (Burrows
and Wheeler, 1994) and grammar-based compression (Yang and Kieffer, 2000). The public-domain

7. A similar paper by Tjalkens, Volf and Willems, proposing the same methodand results, appeared a few years later
(Tjalkens et al., 1997).

8. As far as we know, the best PPM performance over the Calgary Corpus is reported for the PPM-II variant, proposed
by Shkarin (2002).
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version of BWT, called BZIP, is considered to be a relatively strong compressor over the Calgary
Corpus, which is fast but somewhat inferior to PPM andDECO. The grammar-based compression
algorithm has the advantage of providing an “explanation” (grammar) for the way it compressed the
target sequence.

The point-wise (worst case) redundancy of the prediction game was introduced by Shtarkov
(1987). Given a comparison classC of target distributionsP and some hypothesis classP , from
which the prediction algorithm selects one approximating distributionP̂, the point-wise redundancy
of this game is

R∗
n(C ) = inf

P̂∈P

sup
P∈C

max
xn

1

log
P(xn

1)

P̂(xn
1)

.

Shtarkov also presented the first asymptotic lower bound on the redundancy for the case where both
the hypothesis and comparison classes are the setD-order Markov sources. To date, the tightest
asymptoticlower bound on the point-wise redundancy forD-gram Markov sources was recently
given by Jacquet and Szpankowski (2004, Theorem 3). They showed that for large (but unspecified)

n, the lower bound isk
D(k−1)

2 log n
2π + logA(D,k)+ log(1+ O(1

n)), whereA(D,k) is a constant de-
pending on the orderD and the alphabet sizek. In Table 5 we present known upper-bounds (leading
term) on the redundancy of the algorithms mentioned above. As can be seen,the CTW algorithm
enjoys the tightest bound. Note that there exist sequential prediction algorithms that enjoy other
types of performance guarantees. One example is theprobabilistic suffix trees(PST) algorithm
(Ron et al., 1996). The PST is a well-known algorithm that is mainly used in the bioinformatic
community (see, e.g., Bejerano and Yona, 2001). The algorithm enjoys a PAC-like performance
guarantee with respect to the class of VMMs (which is valid only if the predicted sequence was
generated by a VMM).

Algorithm Per Symbol Comparison Class Source
Point-wise Redundancy

LZ78 O(1/ logn) Markov Sources Savari (1997);
Kieffer and Yang (1999);
Potapov (2004)

CTW |S |(|Σ|−1)
2n logn Markov sources Willems et al. (1995);

Willems (1998)

BWT |S |(|Σ|+1)
2n logn D-order Markov sources Effros et al. (2002)

(average redundancy)

Grammar Based O(log logn/ logn) Ergodic sources Yang and Kieffer (2000)
Asymptotic

Lower Bound |S |(|Σ|−1)
2n logn D-order Markov sources Shtarkov (1987)

Table 5: Point-wise redundancy (leading term) of several universal lossless compression (and pre-
diction) algorithms. The predicted sequence is of lengthn. Note that the stated BWT
redundancy matches theaverage redundancy; hence, it bounds the BWT point-wise re-
dundancy from below.
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8. Concluding Remarks

Our main result is the first redundancy bound for theDECO algorithm. Our bounding technique
can be adapted toDECO-like decomposition schemes using any binary predictor that has a (binary)
point-wise redundancy bound with respect to VMMs. To the best of our knowledge, our bound
for the Huffmann decomposition algorithm (proposed by Volf) is the tightest known for predic-
tion under the log-loss and therefore, for lossless compression. This result provides a compelling
justification for the superior empirical performance of theDECO-Huffman predictor/compressor as
indicated in several works (see, e.g., Volf, 2002; Sadakane et al., 2000).

Our experiments with random decomposition structures indicate that theDECO scheme is quite
robust to the choice of the tree, and even a random tree is likely to outperform the multi-CTW.
However, the excellent performance of the Huffman decomposition clearlymotivates attempts to
optimize it. Our local optimization procedure is able to generate better trees than Huffman’s, sug-
gesting that better prediction can be obtained with better optimization of the tree structure. Similar
observations were also reported in Volf (2002). Since finding the best decomposition is an NP-hard
problem, a very interesting research question is whether one could optimize the DECO redundancy
bound over the possible decompositions.

Interestingly, our numerical examples strongly indicate that hierarchical decompositions are bet-
ter suited to sequential prediction than the standard ‘flat’ approaches (‘one-vs-all’ and ’all-pairs’)
commonly used in supervised learning. This result may further motivate the consideration of hierar-
chical decompositions in supervised learning (e.g., as suggested by Huo et al., 2002; Cheong et al.,
2004; El-Yaniv and Etzion-Rosenberg, 2004).

The fact that the other zero-order estimators can improve the multi-CTW performance (with
larger alphabets) motivates further research along these lines. First, it would be interesting to try
combiningCTW with other zero-order estimators. Second, it would be interesting to analyzethe
combined algorithm(s), possibly by relying on the worst case results of Orlitsky et al. (2003).

But perhaps the most important research target at this time is the developmentof a lower bound
on the redundancy of predictors for finite (and short) sequences. While the Jacquet and Szpankowski
(2004) lower bound is indicative on the asymptotical achievable rates, it is meaningless in the finite
(and small) sample context. For example, our bounds, and even the multi-CTW bounds known today,
are smaller than the Jacquet and Szpankowskilower bound.
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Appendix A. On the KT Estimator - Proof of Theorem 7

We provide a proof for the (worst-case) performance guarantee of the KT estimator as stated in
Theorem 7. This proof is based on lecture notes by Catoni (2004).9

9. Krichevsky and Trofimov (1981) proved an asymptotic version of Theorem 7 for the average redundancy; Willems
et al. (1995) provided a proof for binary alphabets.
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Lemma 28 Consider the case whereKT counts all the symbols of the sequencexn
1 (i.e., s= ε).

Then,

ẑ KT(xn
1) =

Γ( k
2)∏σ∈Σ Γ(Nσ + 1

2)

Γ(1
2)kΓ(∑σ∈Σ Nσ + k

2)
, (48)

whereΓ(x) =
R�

+ tx−1exp(−t)dt is the gamma function.10

Proof
The proof is based on the identityΓ(x+1) = xΓ(x) and on a rewriting of Definition 6,

ẑKT(xn
1) = ẑKT(xn−1

1 )
Nxn +1/2

∑σ∈Σ Nσ +k/2

=
∏σ∈Σ ((1/2) · (1+1/2) · (2+1/2) · · ·(Nσ +1/2))

(k/2) · (1+k/2) · (2+k/2) · · ·(∑σ∈Σ Nσ +k/2)

=
∏σ∈Σ

(
1

Γ( 1
2)k Γ(Nσ + 1

2)
)

1
Γ( k

2)
Γ(∑σ∈Σ Nσ + k

2)
,

and (48) is obtained by rearranging the terms.

We now provide a proof for Theorem 7. Recall that this theorem states anupper bound of
k−1

2 logn+ logk for the worst-case redundancy of ˆzKT(xn
1).

Proof It is sufficient to prove that

ẑKT(xn
1)

supz∈Z z(xn
1)

n
k−1

2 ≥ 1
k
. (49)

Let a = (ai)
k
i=1 ∈ � k be a vector of arbitrary symbol counts for some sequencexn

1.11 For these

counts, by Lemma 28,KT would assign the probability,
Γ( k

2)

Γ( 1
2)k

∏k
i=1 Γ(ai+

1
2)

Γ(∑k
i=1 ai+

k
2)

. Let z be the correspond-

ing empirical distribution:z(xn
1) = ∏k

i=1

(
ai

∑k
i=1 ai

)ai

, wheren = ∑k
i=1ai . It is well known that, given

the countsa, the distribution that maximizes the probability ofxn
1 is z, the maximum likelihood dis-

tribution (see, e.g., Cover and Thomas, 1991, Theorem 12.1.2). Thus, taking z= argmaxz′∈Z z′(xn
1),

inequality (49) becomes

∆(a) =
Γ( k

2)

Γ(1
2)k

∏k
i=1 Γ(ai +

1
2)

Γ(∑k
i=1ai +

k
2)

(∑k
i=1ai)∑i ai+

k−1
2

∏k
i=1aai

i

≥ 1
k
.

We have to show that for anya 6= (0,0, . . . ,0), ∆(a) ≥ 1
k .

Observe that∆(a) is invariant under any permutation of the coordinations ofa. Also note that,
by the identity,Γ(x+1) = xΓ(x),

∆((1,0, . . . ,0)) =
Γ( k

2)Γ(1+ 1
2)

Γ(1
2)Γ(1+ k

2)
=

1
k
.

10. It can be shown thatΓ(1) = 1 and thatΓ(x+1) = xΓ(x). Therefore, ifn≥ 1 is an integer,Γ(n+1) = n!. For further
information see, e.g., Courant and John (1989).

11. In information theorya is called atype. See, e.g., Cover and Thomas (1991, Chapter 12).
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It is sufficient to prove that for anya = (a1,a2, . . . ,an) with a1 > 1, ∆(a) ≥ ∆((a1−1,a2, . . . ,ak)).
Observe that

∆(a) = ∆(a1−1,a2, . . . ,ak)
(a1− 1

2)(a1−1)a1−1

aa1
1

nn+ k−1
2

(n+ k
2 −1)(n−1)n−1+ k−1

2

.

Thus, it is enough to show that

(a1− 1
2)(a1−1)a1−1

aa1
1

nn+ k−1
2

(n+ k
2 −1)(n−1)n−1+ k−1

2

≥ 1, wherea1 ≥ 1, n≥ 2.

This can be done by showing that

f (t) = log

(

(t − 1
2)(t −1)t−1

tt

)

≥−1;

g(q) = log

(

qq+ k−1
2

(q+ k
2 −1)(q−1)q−1+ k−1

2

)

≥ 1.

Recall that limx→+∞(1+ y
x)

x = ey and observe that,

lim
t→+∞

f (t) = lim
t→+∞

log

(

1− 1
2t

)

+(t −1) log

(

1− 1
t

)

= −1;

lim
q→+∞

g(q) = lim
q→+∞

−
(

q−1+
k−1

2

)

log

(

1− 1
q

)

− log

(

1+
k−2
2q

)

= 1.

We conclude by showing that both functions decreasing monotone to their limits,hence,f ′(t) ≤ 0
andg′(q) ≤ 0. For f ′(t) we next show that it is a a non-decreasing function (i.e.,f ′′(t) ≥ 0) that is
bounded from above by zero.

f ′(t) =
1

t − 1
2

+ log

(
t −1

t

)

;

lim
t→+∞

f ′(t) = 0;

f ′′(t) =
−1

(t − 1
2)2

+
1

t(t −1)
;

=
−1

(t − 1
2)2

+
1

(t − 1
2)2− 1

4

≥ 0.

Therefore,f ′(t) ≥ 0 for anyt > 1. In a similar manner,

g′(q) = log

(
q

1−q

)

+
k−1

2

(
1
q
− 1

q−1

)

− 1

q+ k
2 −1

;

lim
q→+∞

g′(q) = 0;

g′′(q) ≥ 0.
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Appendix B. Zero Order Estimators

In this appendix we describe the sequential zero-order estimators: Good-Turing, “Improved add-
one”, “improved Good-Turing” by their “next-symbol” probability assignment. These estimators
are compared along withKT in Section 6.

Recall that, by the chain-rule, ˆz(xn
1) = ∏n−1

t=0 ẑ(xt+1|xt
1), wherex0

1 is the empty sequence. Hence,
it is sufficient to define the next-symbol prediction, ˆz(xt+1|xt

1), which is based on the symbol counts
Nσ in xt

1. We require the following definition. Letxt
1 be a sequence. Defineam to be the number of

symbols that appear exactlym times inxt
1, i.e.,am = |{σ ∈ Σ : Nσ = m}|. We denote the “improved

add-one” estimator by ˆz+1 and the “improvedGT” by ẑGT* .12

The Good-Turing (GT) estimator (Good, 1953) is well known and most commonly used in
language modeling for speech recognition (see, e.g., Chen and Goodman,1996).13 The next-
symbol probability generated byGT is

ẑGT(σ|xt
1) =

1
St+1

×







a′1
t×a0

, if Nσ = 0;
Nσ+1

t
a′Nσ+1

a′Nσ
, otherwise,

(50)

wherea′m is a smoothed version ofam andSt+1 is a normalization factor.14 In the following experi-
ments we used the simple smoothing suggested by Orlitsky et al. (2003) wherea′m = max(am,1).

Denote bym the number of distinct symbols inxt
1 (i.e., m= ∑t

i=1ai). The next-symbol proba-
bility of the improved add-one estimator is

ẑ+1(σ|xt
1) =

1
St+1

×
{ m+1

a0
, if Nσ = 0;

(t −m+1)Nσ
t , Nσ > 0,

(51)

whereSt+1 is a normalization factor.
For any natural numberc, define the functionfc(a) = max(a,c). Also define the integer-

sequencecn = dn1/3e. The next-symbol probability assigned by the improvedGT estimator is

ẑGT* (σ|xt
1) =

1
St+1

×







fct+1(a1+1)

a0
, if Nσ = 0;

(Nσ +1)
fct+1(aNσ+1)

fct+1(aNσ ) , otherwise,
(52)

whereSt+1 is a normalization factor. The improvedGT estimator (ˆzGT* ) is optimal with respect to
the worst-case criterion of Orlitsky et al. (2003).
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