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Abstract

We present worst case bounds for the learning rate of a knoadigtion method that is based on
hierarchical applications of binary context tree weighi@ TW) predictors. A heuristic application
of this approach that relies on Huffman’s alphabet decoitipasis known to achieve state-of-
the-art performance in prediction and lossless compredstmchmarks. We show that our new
bound for this heuristic is tighter than the best known panfince guarantees for prediction and
lossless compression algorithms in various settings. fHsislt substantiates the efficiency of this
hierarchical method and provides a compelling explandtoits practical success. In addition, we
present the results of a few experiments that examine othesilglities for improving the multi-
alphabet prediction performance of CTW-based algorithms.

Keywords: sequential prediction, the context tree weighting metlhradable order Markov mod-
els, error bounds

1. Introduction

Sequence prediction and entropy estimation are fundamental tasks in msmeachine learning
and data mining applications. Here we consider a standard discrete sequrediction setting
where performance is measured via the log-loss (self-information). kliswwown that this setting
is intimately related to lossless compression, where in fact high quality predistiessentially
equivalent to high quality lossless compression.

Despite the major interest in sequence prediction and the existence of amoimiméversal
prediction algorithms, some fundamental issues related to learning from finies(nall) samples
are still open. One issue that motivated the current research is that iteesample behavior of
prediction algorithms is still not sufficiently understood.

Among the numerous compression and prediction algorithms there are wetlydeoffer both
finite sample guarantees and good practical performancecditext tree weightin¢cTw) method
of Willems et al. (1995) is a member of this exclusive family of algorithms. Thes algorithm is
an “ensemble method,” mixing the predictions of many underlying variabler dddekov models
(VMMSs), where each such model is constructed using zero-ordelitbmmal probability estimators.
The algorithm isuniversalwith respect to the class of bounded-order VMM tree-sources. Mereo
the algorithm has a finite sample point-wise redundancy bound (for atigyar sequence).
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The high practical performance of the origimatw algorithm is most apparent when applied to
binary prediction problems, in which case it uses the well-known (binary) KT-estingrichevsky
and Trofimov, 1981). When the algorithm is applied to non-binary predictonpression problems
(using the multi-alphabet KT-estimator), its empirical performance is medioongared to the best
known results (Tjalkens et al., 1997). Nevertheless, a clapdrabet decompositiomeuristic, sug-
gested by Tjalkens et al. (1994) and further developed by Volf (2@8s achieve state-of-the-art
compression and prediction performance on standard benchmarkse.@Gge&0olf, 2002; Sadakane
et al., 2000; Shkarin, 2002; Begleiter et al., 2004). In this approacmtiié-alphabet problem
is hierarchically decomposed into a number of binary prediction problemstekifethe resulting
procedure “thepeco algorithm.” Volf suggested applying theeco algorithm using Huffman’s
tree as the decomposition structure, where the tree construction is bakdtbofrequencies. We
are not aware of any previous compelling explanation for the striking erapgicccess obeco.

Our main contribution is a general worst case redundancy bound forithign DECO applied
with any alphabet decomposition structure. The bound proves that thdttahgds universalwith
respect to VMMSs. A specialization of the bound to the case of Huffmanrdpositions results in a
tight redundancy bound. To the best of our knowledge, this new bsutheé sharpest available for
prediction and lossless compression for sufficiently large alphabetegunérsces.

We also present a few empirical results that provide some insight into theviiofajuestions:
(1) Can we improve on the Huffman decomposition structure using an optimeeshtposition
tree? (2) Can other, perhaps “flat” types of alphabet decompositieamshoutperform the hierar-
chical approach? (3) Can standardw multi-alphabet prediction be improved with other types of
(non-KT) zero-order estimators?

Before we start with the technical exposition, we introduce some standars é&d definitions.
Throughout the papeb. denotes a finite alphabet with= |Z| symbols. Suppose we are given
a sequence’ = x1X2---Xn. Our goal is to generate a probabilistic predictl@@xnﬂ\xﬁ) for the
next symbol given the previous symbols. Clearly this is equivalent to bahgyto estimate the
probability P(x}) of any complete sequence, siree. 1|x]) = P(x]™1) /P(x]) (provided that the
marginality conditiony ; P(x]a) = P(x}) holds).

We consider a setting where the performance of the prediction algorithm sunegwith re-
spect to the best predictor in some reference, which we call heoengarison classin our case
the comparison class is the set of all variable order Markov models (sgésdmlow). LetaLG be
a prediction algorithm that assigns a probability estinfage (x]) for any givenx]. The point-
wise redundancyf ALG with respect to the predictd? and the sequence] is Ry ¢ (X],P) =
logP(x7]) — logPas(x}). The per-symbol point-wise redundancy%i@ALG (x],P). ALG is called
universalwith respect to a comparison clagsif

. 1
lim supmax- R (x],P) =0. (1)

N=0pcr X3

2. Preliminaries

This section presents the relevant technical background for thenpresek. The contextual back-
ground appears in Section 7. We start by presenting the classeo§ources We then describe
the cTw algorithm and discuss some of its known properties and performancangeas. Finally,
we conclude this section with a description of theco method for predicting multi-alphabet se-
guences using binaryTw predictors.
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2.1 Tree Sources

The parametric distribution estimated by the&w algorithm is the set of depth-bounded tree-
sources. A tree-source is a variable order Markov model (VMM). X & an alphabet of size
k andD a non-negative integer. B-bounded tree sourds any full k-ary treé whose heigh& D.
Each leaf of the tree is associated with a probability distribution avefor example, in Figure 1
we depict three tree-sources over a binary alphabet. In this casegdiseane full binary trees. The
single node tree in Figure 1(c) is a zero-order (Bernoulli) source andttier two trees (Figure 1(a)
and (b)) are 2-bounded sources. Another useful way to view astese is as a set C =P of
“suffixes” in which eachs € § is a path (of length up t®) froma (unique) leaf to the root. We also
refer toS as the (tree-sourcédpology For exampleS = {0,01,11} in Figure 1(b). The path from
the middle leaf to the root corresponds to the sequenedl and therefore we refer to this leaf
simply ass. For convenience we also refer to an internal node by the (uniquefnpathithat node
to the root. Observe that this path is a suffix of s@wes. For example, the right child of the root
in Figure 1(b) is denoted by the suffix

The (zero-order) distribution associated with the kafdenoteds(o), Vo € %, wherey ; z5(0) =
1 andzs(-) > 0.

(:5,.5) (.15,.85) (.7,.3) (.55,.45) (:35,.65) (.12,.88)

Figure 1: Three examples fdd = 2 bounded tree-sources ovEr= {0,1}. The correspond-
ing suffix-sets areS = {00,10,01,11}, Sy = {0,01,11}, and S = {€} (€ is the
empty sequence). The probabilities for generatiig= 100 given initial context00
areP(a)(loo\OO) = P(a)(l‘OO)P(a)(O’Ol)P(a)(OHO) =0.5-0.7-0.15, P(b)(100|00) =0.75-
0.35-0.25, andP(100/00) = 0.75-0.25-0.25.

We denote the set of alb-bounded tree-source topologies (suffix sets)y For example,
Co={{e}} and1 = {{¢}, {0,1}}, wheree is the empty sequence.

For eachn, aD-bounded tree-source induces a probability distribution over thE"set all n-
length sequences. This distribution depends on an initial “context” (mef"sta((l’_D =X1_p - X0,
which can be any sequence #¥. The tree-source induced probability of the sequexite-
X1X2 - - - X IS, by the chain rule,

Ps(x1) = t|:l Ps(%/X_5), (2)

wherePs(x|X5) is zs(%) = Ps(x/|s) ands is the (unique) suffix ok!"% in $. Clearly, a tree-

source can generate sequencesittheymbol is randomly drawn using the conditional distribution

1. Afull k-ary tree is a tree in which each node has exactly zekocbildren.
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P5(-]x}:%). Let suBs(x]) be theorderednon-contiguous sub-sequence of symbols appearing after
the contexsin xJ. For example, ik = 01100101, ands = 0, then,suBs(x§) = 1011. Letsbe any
suffix in § andy]" = suBs(x]). For everyx] # € we definezs(x]) = [ zs(yi) and for the empty
sequences(e) = 1. Thus, we can rewrite Equation (2) as

Ps(x]) = [ 2s00). (3)
E<X)

2.2 The Context-Tree Weighting Method

Here we describe theTtw prediction algorithm (Willems et al., 1995), originally presented as a
lossless compression algorittfniThe goal of thecTw algorithm is to predict a sequence (nearly)
as good as the the best tree-source. This goal can be divided into bwaralems. The first is to
guess the topology of the best tree-source, and the second is to estindistrthetions associated
with its leaves.

Suppose, first, that the best tree topology (i.e., the suffixs¥és known. A good solution
assigns to each € § a zero-order estimatof s that estimates the true probability distributian
associated witls. This can be done using standard statistical methods; that is, by congidérin
occurrences ain x] and constructings via counting and smoothing. We currently considgas
a generic estimator and discuss specific implementations later on.

In practice, however, the best tree-source’s topology is unknavatead of guessing this topol-
ogy, CTw considers all possibl®-bounded topologies (each is a subtree of the perfdcary
tree), and for eacly it constructs a predictor by estimating its zero-order leaf probabilittasv
then takes a weighted mixture of all these predictors, corresponding tpalbtpes. Clearly, there
are exponentially manfp-bounded topologies. The beauty of thgw algorithm is the efficient
computation of this mixture of exponential size.

In the following description of theTw algorithm, the output of the algorithm is a probability
P.rw(X7) for the entire sequencg. Observe that this is equivalent to estimating the next-symbol
probabilities because

Perw(0[X1) = Perw(X10) /Perw(X1) (4)

for eacho € X (provided that these probabilities can be marginalized J £B:1w(X10) = Pcrw/(X})).

We require the following definitions. Led] be any sequence (") and fix a bound and
an initial contextx{ . Letsbe any context ins, andy]' = suBs(x]). Thesequentiakzero-order
estimation fox] is, by the chain-rule,

m

25(x7) = uf(yi\y‘{l% (5)

whereyg =¢ and z“(yi\yifl) is a zero-order probability estimate based on the symbol counts in
yifl. The product of such predictionsig(X7), and hence, we refer to it as a sequential zero-order
estimate.

We now describe the maioTw idea via a simple example and then provide a pseudo-code for
the generatTw algorithm. Consider a binary alphabet and the dase 1. Here,cTw works on
the perfect binary tree of height one and therefore should mix the picassociated with two

2. As mentioned above, any lossless compression algorithm can blateariato a sequence prediction algorithm and
vice versa (see, e.g., Merhav and Feder, 1998).
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topologies:So = {€} (wheree is the empty sequence), asgd= {0,1}. Note thatSy corresponds
to the zero-order topology as in Figure 1(c). The algorithm takes a mixfurea@ero-order esti-
matez;(x]) and the one-order estimate. The latter is examgl]) - 21(x]) becauseg andz; are
independent. Thus, the final estimate is

Peru(X]) = 52e(0) + 3 (20(x}) - 21x}).
For larger trees§ > 1), cTw uses the same idea, but now, instead of taking zero-order estimates
for the root’s children, theTw algorithm recursively computes their estimates. The pseudo-code
of the CTw recursive mixture computation appears in Algorithm 1. We later show in Lemma 3
that this code calculates the mixture of BHbounded tree-source predictions weighted by their
complexities, which are defined as follows.

Algorithm 1 The context-tree weighting algorithm

/* This code calculates theTw probability for the (whole) sequencd, PCTW(x’ﬂx(l’_D). The input argu-
ments include the sequencg an initial contextx$_, (that determines the suffixes for predicting the first
symbols), a bound D on the order, and an implementation fersgquential zero-order estimatazs(-).
The code uses thmix procedure (see below)*/

CTW(x], x}_p, D, 25()) {
for everysc =P do
calculate and storaes(x]) as given in Equation (5).
end for
return Perw(x]) = mi x(g,x7,x3_p).

}

[* This procedure mixes the predictions of all continuatioissa$ s =P, such that & is also inZ=P.
Note that the context of the first few symbols is determinetieinitial contexixd_p. */
MiX (s,x3,%7_p) {
if |s| =D then
return Zs(x7).
else
return 325(x7) + 3 Moz M x(08,X7,X3_p).
end if

}

Definition 1 Let T; denote the tree associated with the suffixsethe complexityf T is defined
to be

|S|-1

k—1°

Recall that the number of leaves ig iB exactly|5| and there are'i'%ll internal nodes in any full

k-ary tree. Therefore|Ts| is the number of nodes insTminus the number of leavesesS with
maximal depth D.

Tsl=H{ses:[s <D} +

For example, leT,) be the tree of Figure 1(a) (resp. f) and(c)); [Tzl =0+3=3; [Tp)| =
1+2=3(=[Ta)); ITgl =1+0=1.
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Observation 2 LetS; = {s: so € §}. For any D-bounded topology, |5| > 1,

Ts| =1+ ZZ|T5J-
oc

Note thatSs is a (D — 1)-bounded topology. Note also that the complexity depends on D. Therefor
for the base case (whes| = 1), the complexity of Jis zero if D= 0 and one if D> 1.

The proof of the following lemma is a straightforward generalization of thef@niginary alphabets
by Willems et al. (1995).

Lemma 3 Let0<d < D and se 29. Then,

mix (Sa XT,X?_D) = Z 2_|Tm |_| 2US(XT)'
Uep-d ueu

Recall that(yy, is the set of all m-bounded topologiesix is defined in Algorithm 1.

Proof By induction onD —d. WhenD —d =0, (p_g4 = (p contains only the single-node topology
U = {&}. In this casgTy| =0+ H = 0, by Definition 1. Notice that the sizg =d = D, so
m x(s,x7,x9_5) = 25(x]). We conclude that,

mix(s X058 p) =25(x]) =270 Fiz(x) = F 27Tl [ 2ug(x]).
Ueo ued
Assume that the statement holds for somg O —d — 1 and consider the cage— d; that
is, |s| =d < D. In this casel € (p—_q4. In the following derivations we also refer to alphabet
symbols by their indiced,= 1,.. .,k (according to some fixed order) or loy. For examplej; is
the topology corresponding to the subtreeTafwhose root is defined bg;; thus, U is aD —d
bounded tree-source. We thus have

1 1
mx(s,x3,x3 p) = 52s(x])+ 5 [ mx(os,x3,x]_p) (6)

2 ZC!;L

— 1"\ n } —|Ta| 5 n

= 2]+ |_L > 2 [ Zuos(x1) 7)

ae Uelp-d ueu

1,

= EZS(XT)"‘
Sy 2 R T 200 [T ZuasOX)) 8)
U Uy ue ue Uy

= Z 2*|T'u‘ |—| 2US(XT)7 (9)
UeCp_¢ ueu

where step (6) is by the definition fo(s,xg,x‘l)_D); (7) is by the induction hypothesis; (8) is by
exchanging the product of sums with sums of products; and finally, ([@nfe from Observation 2.
|

The next corollary expresses thaw prediction as a mixture of alD-bounded tree-sources. The
proof of this corollary directly follows from Lemma 3 and from the definitiorPefy, (x7) in Algo-
rithm 1.
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Corollary 4
Perw(X]) = mix (S,XT,X(l),D) = Z 21Tl I_I 25(x7). (10)
S€0b ses

Remark 5 The number of tree-source topologiegis is superexponential (recall that eache C

is a pruning of the perfect k-ary tree of height D). Thus, for practiessons, the calculation of
Equation (10) must be efficient. The pseudo-code o€ttt in Algorithm 1 is conceptual rather
than efficient. However, the beauty of thew is that it can calculate the tree-source mixture in
linear time with respect to n. For a description of an efficient implementatidimesc Tw algorithm,
see for example, Sadakane et al. (2000) and Chapter 4.4 of VoIf 2002 Java implementation
of thecTw algorithm can be found dtttp://www.cs.technion.ac.il/"rani/code/

vmm

2.3 Analysis of CTW for Multi-Alphabets

The analysis otTw for multi-alphabets (multeTw) relies upon specific implementations of the
sequential zero-order estimataks-). Such estimators are in general counters of past events. How-
ever, these estimators should not neglect unobserved events. Imtieetaaf log-loss prediction,
assigning zero probability to these “zero frequency” events is harngithulise the log-loss of an
unobserved but possible event is infinite. The problem of assignifzapility mass to unobserved
events is also called the “missing-mass problem” (or the “zero frequendygm”).

The originalcTw algorithm applies the well-knowrT estimator (Krichevsky and Trofimov,
1981).

Definition 6 Fix anyx] and let N; be the frequency af € X in xj. TheKT estimator assigns the
following (sequential zero-order) probability to the sequerfe

Ny, +1/2

Zoez Ny + k/27 (11)

24T (x]) = 2T (x] )

wherez"T(g) = 1.

Observe that the teri(a|x?) = z;:;ﬁiolﬁ/z
add-constant predictofs.

TheKT estimator provides a prediction that is uniformly close to theZset zero-order distri-
butions overZ. Each distributiore € Z is a probability vector fron{RR. )%, andz(c) denotes the
probability ofa. Thus,z(x]) = [1¢z(0)™e. The next theorem provides a performance guarantee on
the worst-case redundancy of tke estimator. This guarantee is for a whole sequetjceéNotice
that the per-symbol redundancytof diminishes withn at a rate'o%. For completeness, the proof

of the following theorem is provided in Appendix A.

is anadd-half predictor that belongs to the family of

Theorem 7 (Krichevsky and Trofimov) LetX be any alphabet withy| = k > 2. For any sequence
xj e 2",

R¢r (X]) = logsupz(x]) — logZ"T (x]) < k%l logn+logk. (12)

ez

3. Another famous add-constant predictor is the add-one preditdorcalledLaplace’s law of successidfaplace,
1995).
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Remark 8 Krichevsky and Trofimov (1981) originally defined to be a mixture of all zero-order
distributions inZ, weighted by the Dirichletl(/2) distribution. Thus, this mixture is

2KT(xD) = /Z w(dz)z(x7),

where wdz) is the Dirichlet distribution with parametet/2 defined by

w(dz) = - ﬁz(i)l/zx(dz), (13)

M(X) = [g- t* Texp(—t)dt is the gamma function (see, for example, Courant and John, 1988), a
A(+) is @ measure or. Shtarkov (1987) was the first to show that this mixture can be calculated
sequentially as in Definition 6.

The upper bound of Theorem 7 on the redundancy oftheestimator is a key element in
the proof of the following theorem, providing a finite-sample point-wise redaoy bound for the
multi-cTw (see, e.g., Tjalkens et al., 1993; Catoni, 2004).

Theorem 9 (Willems et al.) Let be any alphabet withx| = k > 2. For any sequence] € >" and
any D-bounded tree-source with a topolagand distribution R, the following holds:

nlogk+ K51 n<|Sl;
X0,Ps) << genys KL = |
Rerw(X] 5){ - Plog 1 11| logk+ 42 n> 5.

Proof

Rerw(X,Ps) = logPs(x]) —logPerw(X])
Ps(x]) Mses Zs(X1)
= +lo 14
Meos 2500 9 Poru(X)) (1)
(i) (i)

= log

We now bound the term (14)(and define the following auxiliary function:

F(x) = xlogk ,0<x< 1,
| 5t logx+logk x> 1.
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Note that this function is continuous and concavélino). Let Ny (s) denote the frequency af in

SUBg(X]). Thus,

log

Ps(x1)

Mses Zs(X])

IN

zs(x7)
log = (15)
s€25 Zs(x7])
Z <ulog ZN" +Iogk> (16)
SES, st
> No(s)>0
SIS (3 Na(s)
seS ‘5‘
’5“(M) (17)
|51
S|f
It
nlogk, n<|S|;
{ (Disliog . +[S]logk, n>|s], (18)

where step (15) follows from an application of Equation (3); step (16Yy ik performance guar-
antee for thexT prediction, as given in Theorem 7; and step (17) is by Jensen’s iliggua
We now bound the term (140}

log

|_|se5zs(X2)

PCTW(XT)

Mses 2s(X])
log - (19)
2 5€t 27T Mees Z5(x1)
Z5(x?
< log I_ISk‘GS.‘S . ( 1) (20)
Ssew? ©T [NsesZs(X])
Zs(X
S IOg kLl;ISlES (1)
27 kT MeesZs(X7)
= IogZ T
_ Kis[-

where in step (19) we applied Equation (10) and the justification for (20at${the S : |s| < D}| <

5]. Thus, according to Definition 1Ts| < [5|+ 5- Isl=1 1
up (18) and (21).

Remark 10 ThecTtw bound used by Catoni (2004) is somewhat tighter than the bound of Theo

k|5| 1
|

rem 9 but contains some implicit terms.

Remark 11 Willems (1998) provided extensions for thew algorithm that eliminate its depen-
dency on the maximal bound D and the initial contékt,. For the extended algorithm and binary
prediction problems, Willems derived a point-wise redundancy bound of

81,
2

B n
o9 n— Ag(X7)

|51

387
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whereAs(x}]) < D denotes the number of symbols in the prefixjdhat do not appear after a suffix
ses.

Remark 12 Interestingly, it can be shown that tkkew algorithm is an instance of the well-known
genericexpert-advicalgorithm of Vovk (1990). This observation is new, to the best of ouwvkno
edge, although there are citations that connect ¢thiev algorithm with the expert-advice scheme
(see, e.g., Merhav and Feder, 1998; Helmbold and Schapire, 1997).

It can be shown that these two algorithms are identical when Vovk's itgis applied with
the log-loss (see, e.g., Haussler et al., 1998, example 3.12). In this ttesseet of experts in
Vovk’s algorithm consists of all D-bounded tree-souragss, the initial weight of each experts,
corresponds to its complexitys|; and the weight of each expert at round t eqL@TéTS‘PS(xtl‘l).
Note, however, that the power of thew method is in its efficiency in mixing exponentially many
sources (or experts). Vovk’s algorithm is not concerned with howngpete this average.

2.4 Hierarchical CTW Decompositions

ThecTw algorithm is known to achieve excellent empirical performandaniary prediction prob-
lems. However, when applyingtTw on sequences over larger alphabets, the resulting performance
falls short of the best known (Tjalkens et al., 1997). This fact motivditésrent approaches for
applying thectw algorithm on multi-alphabet sequences. Volf targeted this issue in his Ph:D. the
sis (2002). Following Tjalkens et al. (1994), who proposed a rudimgmatigahabet decomposition
approach, he studied a solution to the multi-alphabet prediction problem thedésl on a tree hi-
erarchy of binary problems. Each of these binary problems is solved asslight variation of the
binaryctw algorithm. We now describe the resulting ‘decomposed’ approach, which we term

for short the bECO’ algorithm.

Consider a full binarydecomposition tree Tith k = |Z| leaves, where each leaf is uniquely
associated with a symbol iB. Each internal node of T corresponds to the binary problem of
predicting whether the next symbol is a leaf\wsleft subtree or a leaf ow's right subtree. For ex-
ample, forx ={a, b, c, d, r }, Figure 2 depicts a decomposition tfEsuch that its root corresponds
to the problem of predicting whether the next symbal @& one of the symbols ifb,c,d,r }. The
idea is to learn a binary predictor that is based onahe algorithm, for each internal node.

Letvbe any internal node af and letL (v) (resp.,R(v)) be the left (resp., right) child of. Also,
let Z, be the set of leaves (symbols) in the sub-tree rooted. biWe denote bycTw, any perfect
k-ary tree that provides binary predictions over the binary alph&@gtl,}. The supersymbol
Ov (resp., 1) representsny of the symbols in&, ) (resp.,Zgy)). While cTwy generates binary
predictions (for its supersymbols), it still depends on a suffix set oweettirek-ary alphabet.
Thus, internal node yields the probabilityPcrw, (Tsuper |S), Wwheredsyper € {Oy,1,} andse § C
>=D. For example, in Figure 2(b) we depictws. Observe that estimates a binary distribution
that is based on the counts appearing in the table of Figure 2(b).

Let x be any sequence arale 2. Algorithm DECO generates the multi-alphabet prediction
Poeco(0|X) by multiplying the binary predictions of atTw, along the path from the root df to
the leafo. Hence Poeco(T[X) = [y, st.0ex, Perw, (0]X), WherePery, (a|x) is the binary prediction
of the appropriate supersymbol (eithgrdd 1,).
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CTW4

@

CTWs (for x = redr)
s | Nic,a1(5) [ Ny (s)
€ 1 1
c 1 0
d 0 1
r 0 0
rc 1 0
cd 0 1
cc 0 0
rr 0 0

(b)

Figure 2: ADEco predictor corresponding to the sequeabeacadabr a. (a) depicts the decom-
position treeT. Each internal node iff utilizes acTw predictor to “solve” a binary
problem. In (b) we depiatTws, a 2-bounded predictor whose binary problem is: “deter-
mine ifo € {c, d} (oro=r).” (Ns(s) denotes the frequency ofin sus(x) and dashed
lines mark tree paths with zero counts).

There are many possibilities for constructing the decompositiorTtfe& major open problem
is how to identify useful decompaosition trees. Intuitively, it appears thatipgahigh frequency
symbols close to the root is a good idea for two reasons: (i) When tragettsintree from the
root to such symbols, the number of visits to other internal nodes is minimizesdrgducing extra
loss; (ii) High frequency symbols appearing closer to the root could ¥vied in “easier” binary
problems because of the denser statistics we have on them.

Tjalkens et al. (1997) and Volf (2002, Chapter 5) suggested takiagthe Huffman coding tree
computed with respect to the frequency counts of the symbot§.iWhile intuitively appealing,
there is currently no compelling explanation for this heuristic. In Section 3.prexdde a formal
motivation for Huffman decompositions.

4. We can map every decomposition tree with the partition of 1 into surksesfms, each of which is a power of2,
where each leaf at level /5 defines the powef1/2)%. (This is possible due to Kraft's inequality.) Therefore,
the number of such decomposition trees is obtained by multiplidr{gll permutations of) with this number of
partitions. The former is known as sequence A002572 in Sloane anffd(@095). For example, fok = 26 we
have 26! 565168= 227927428502001453851738112000000 possible decompositsn tre
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3. Redundancy Bounds For the DECO Algorithm

We start this section with some definitions that formalize the hierarchical adpligicomposition
approach. We also define a new category of sources called “decethgosirces,” which will
aid in the analysis of algorithmeco. To this end, we use an equivalence between decomposed
sources and the ordinary tree-sources of Section 2.1. The main rethidt section is Theorem 19,
providing a pointwise redundancy bound for theco algorithm. This bound, in particular, implies
a performance guarantee for Huffman decomposition trees, which is giv@orollary 23.

Let = be a multi-alphabet witk symbols and fix some order bouBdand initial context? .
We refer to a decomposition-tree (see Section 2.4) simplyteeand to an ordinary tree source as
amulti-source denoted byM = (§, Ps).

Definition 13 (Decomposed SourceA (D-bounded) decomposed soufEevers is a pair

T= (T7 {Mlv M27 ) Mk*l}))

where T is a (decomposition) tree ovErand for each internal node, & T, there is a matching
source M = (S, R/) whose suffix set$y, contains all paths of some full k-ary tree (of maximal
height D). Additionally, for everys Sy, R,(+|s) is abinarydistribution over{0,, 1,}. Note that Mis
not a standard multi-source because it predicts binary sequencegpefs/mbols while depending
on multi-alphabet contexts. Such sources will always be denoted, fgridome internal node v.
Letx € =P be any sequence ammc 3. The prediction induced by is

Pro) =[] Puolx. (22)

V, st,0€2y

We say that two probabilistic tree-sources okeareequivalentf they agree on the probability
of every sequence € 2*. Note that two structurally different tree-sources can be equivalent. A
multi-source isminimalif it has no redundant suffixes. A decomposed source is minimal if all its
My models are minimal. The formal definitions follow.

Definition 14 (Minimal Sources) (i) A multi-source M= (S, Ps) is minimalif there is no sz <P
for which R (-|ais) = Ps(-|ajs) for all o; # o; and botho;s andojs are inS. (ii) We say that
T = (T,{M,}) is a minimal decomposed sourééor all internal nodes v of T, Mis minimal.

For example, we depict in Figure 3 two equivalent multi-sources. The multiean Figure 3 (a)
is a minimal multi-source while the multi-source in Figure 3 (b) is not minimal.

There is a simple procedure for transforming a non-minimal source into itgadept minimal
form: Replace each redundant suffps, with its suffixs. That is, trim all children of and assign
Ps(+|s) = Ps(-|os) for someo.

The following two lemmas facilitate a “translation” between decomposed and muttas

Lemma 15 For every multi-source M and tree T there exists a minimal decomposedesd =
(T,{My}) such that M andI" are equivalent.

Proof LetM = (S, P) be aD-bounded multi-source and [€tbe a tree. We start with the definition
of the modeldM, = (S, R,) and set the suffix sef, = S, for every internal node. Let Ps(0y|s) =
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(5,.1,.4) (.3,.3,.4) (.9,.1,0)

(5,.1,.4) (.5,.1,.4) (5,.1,.4)

Figure 3: An example of two equivalent multi-sources. Both sourcesrgnthe same probability
to every sequence of length larger than two. Take for exampieaaba with initial
contextba. Both sources will induce the following predictioR(aabalba) = 0.5-0.5-
0.1-0.3=0.0075. Observe that the source in (a) is minimal while the other source is not.

S seo, Ps(als) for any (internal nodey ands € S, (= $). Similarly, Ps(1y|S) = 3 5c1, Ps(a]s). Let
par ent (v) denote the parent of node For every internal nodeands € ., we define

P (0v[s) = Ps(0v|S) /Pparent (v) (OvU 1y[s),

and similarly forR,(1y|s). For the base case (i.e., the root) we do not divide by the denominator.
Clearly, R,(+|s) is a valid distribution and the resulting structufe= (T, {M,}) is a decomposed
source.

We shall now prove thal andM are equivalent. Recall that= S, for every internal nods.
Let v (# root) be any internal node ifi andu = par ent (v). Assume, without loss of generality,
that Q, C 1,, and therefore,\0J 1, = 1,. Note that, for everg < S,

Pu(LulS)Ry(Ov[s) = Pu(1u[s) (Ps(Ov[s)/Pu(Oy U 1y[s)) = Ps(Ov]s).

Therefore,Pz(a|s) of Equation (22) is a telescopic product; hence, for every X ands € S,
Pr(o|s) = Ps(als). This proves thaM and 7 are equivalent. Finally, for minimality, we replace
every.S, with its minimal source. [ ]

Lemma 16 For every decomposed sourgéethere exists a minimal multi-source M that is equiva-
lentto7.

Proof Let7 = (T, {My={S,R/}}) be a decomposed source. We provide the following construc-
tive scheme for building the equivalent multi-sourte= ($, Ps). Start withM = M, 4, (the model
corresponding to the root af). We traverse the internal vertices Bf(minus the root) such that
parent nodes are visited before their descendants (i.e., using peovde start with one of the
root’s children and for each internal nodeTirwe do the following. For each (internal nodeg T

and for eveny, € S, exactly one of the following three cases holds (because fyadind S form a

full k-ary tree): (ap, = s < S, or (b) ds € S such thasis a suffix ofs,; or (¢c) s € § such thas, is

a suffix ofs. We treat these cases as follows. For the first case, we refine thersappofPs(-|s)
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by replacing the supersymbol corresponding.,to/ @, with the two (super) symbols,@nd 1,, and
define,

Ps(Ovls) = Ps(OvULils)-Ri(0ys);
Ps(L]s) = Ps(O,UL/s)-Pu(L]9). (23)

Note thatPs (0, U 1,|s) has been already assigned (due to the preorder node traversa3.(Bpand
(c) are treated in exactly the same manner. In case (b) also rephatteits extensiors,.

We should now prove that the resultiy= (S, Ps) is a multi-source and thad is equivalent
to 7. Both proofs are by induction x| = k. Fork = 2, 7" consists only oM, , which is a binary
tree source. Hence, obviousM, = M, iS a tree source equivalent 8. Assume the statement
holds fork—1> 2 and examin€&| =k. Letve T be the last visited node in the constructive scheme.
Clearly, by the preorder traversal, the childrervare both leaves (both,@&nd 1, are singletons).
Merge the two symbols i&, C X into some supersymbal, and consideZ’ = (T',{My}), which
is the decomposed source induced by this replacement. The number af &§ave which can
be denoted’ = 3\ Z, U {0y}, is equal tok— 1. Thus, by the inductive hypothesis, we construct
M’ = {S’,Ps}, a multi-source that is equivalent 6. We now apply the constructive step bH
andy, resulting withM = ($, Ps). Case (b) of the constructive scheme is the only place that we
changes’ (to retrieveS). S’ is a tree source topology by the induction hypothesis; s§ iand
clearly, the treatment of case (b) induces a valid tree-source topolagtycdhresponds to a full
k-ary tree). Therefore§ is a tree-source topology. It is also easy to see that the refinement of the
support set of’, as in (23), induces a valid distribution ov®r We conclude thal = ($, Ps) is a
multi-source ovek.

We now turn to prove the equivalence. For every S and any symbob € X\ Z,, we have by
Equation (22) thaPr(a|s) = Py (a|s), and by the induction hypothesi; (o|s) = Py (o|s). Note
that, by the construction, evesye §’ is asuffixof somes € §. Therefore, for symbols € X\ %,

P¢ (0|s) = Pg(0|s) = Ps(als) (wheres' is the suffix ofs). Now for symbolso € %, recall that
|~y| = 2 and therefore, Orepresents some (ordinary) symimok = (resp., 1). Thus,

Ps(als) = Ps(ov[s)R(als) (24)
= Pr(ovs)R(als) (25)
= ( |_| Pu(o|s)> R/(ols) (26)
U, stueT’Aoe
= D P.(als) 27)
U stucTAOEZ,
= P‘T(O-’S)a

where (24) is by the construction (23) withe {0y, 1,}; (25) is by the induction hypothesis; (26)
and (27) are by Equation (22). This proves tNais equivalent to7. Finally, for satisfying the
minimality of M, we take its equivalent minimal multi-source. [ |

Remark 17 It can be shown that a minimal decomposed source (resp., multi@pigrainique.
Hence, Lemmas 15 and 16 imply that, for a given tree T, there is a oneetorapping between the
minimal decomposed sources and multi-sources.
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Consider algorithnbeco applied with a tredpeco. The redundancy of theeco algorithm on
a sequence’, with respect to any decomposed soutce- (T,{M,}), is

Roeco(X],T) = logPr (X]) — l0gPoeco(X7).

We do not know how to express this redundancy directly in terms of theawrksourceZ'. How-
ever, we can express it in terms of an equivalent decomposed sbUtkat has the same tree as in
the algorithm. This “translation” is done using an equivalent multi-source redreat can be con-
structed according to Lemmas 15 and 16. To facilitate this discussion, we defira decomposed
sourceZ = (T,{M,}), its T’-equivalentsource to be any equivalent decomposition source with tree
T’. By Lemmas 15 and 16 this source exists.

Corollary 18 For any decomposed sour@e= (T,{M,}) and a tree T there exists a Fequivalent
sourceT’ = (T, {M/}).

Theorem 19 Let Toeco be any tree and’! a sequence. For every internal node Vpeco, denote
by cTwy the correspondingcTw predictor of thepeco algorithm applied with Jzco. Let7 =
(T,{M}) be any decomposed source. Theps&B(x},Pr) < SK-IR (x]), where i is an internal-
node in Feco, and

Bliog & 185+ 55 > sl
Ri(x]) = q m+ 932 0<nm < [S]; (28)
0 ,ni =0.

Si is the suffix set of the ith (internal) node of theéquivalent source aof’, and n is the number of
times this node is visited when predictixig

Proof LetT’ = (Tpeco, {Mv }) be theTpeco-equivalent decomposed source®df Fix any order on
the internal nodes ofeco. We will refer to internal nodes both by their order’s index and by the
notationv. By the chain-ruleR,(x]) = [ycs, P(%|X"h), whereR,(x |x"}) = P,(x|s) ands € 5,

is a suffix ofx|_ . Thus,

Pr(x1) = Pp(x]) (29)

n

= rlpfr'(xdxtl:lo)
t=
n

=M. M _Roh)
t=1vETpeco st % EZy

= P/(%[Xi p) = Ry(x1), (30)
Ve';lEcoXtE v +b VEElEco

where (29) follows from by Corollary 18.
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We show thaRoeco(X], Pr) < TEIR(X]).

Roeco(X1,Pr) = 10gPr(x]) —logPoeco(X]) (31)

= 10gP7(X1) —10gPoeco(X1) (32)
k—1 k-1

= Jleog P;(x]) — i; logPerw; (X7]) (33)
k—1

~ 5, (10gR(x) ~0gPer () (34
1

< TRED.

where (31) follows from Corollary 18; in Equations (32) and (33) thebabilitiesP; andP, refer to
internal nodes off”’; in (32) we used Equation (30); and finally, equality (34) directly follovesf
the proof of Theorem 9. In that proof, we applied the bound (18) fertémm (14i) with k = 2,
because the zero-order predictazg;) , of cTw, provide binary predictions. The bound on the
term (14ii) remains as is becausaw, uses &-ary tree. |

The precise values of the model ordésg in the above upper bound are unknown since the
decomposed source is unknown. Nevertheless, for gadh < kP. It follows that anypeco
scheme is universal with respect to the clasBdfounded (multi) tree-sources. Specifically, given
any multi-source, consider i eco-equivalent decomposed sourge For a sequence], by Theo-
rem 19 the per-symbol redundancytiRoeco(X], Pr) < L S¥ IR (x]), which vanishes witim since
n; < nfor every internal-nodée

Remark 20 The dependency of timecoalgorithm on the maximal bound D and the initial context
x?_p can be eliminated by using the extensions fordies algorithm suggested by Willems (1998).
Recall that Willems provided a point-wise redundancy bound for this cemeRemark 11). Thus,
we can straightforwardly use this result to derive a corresponding bdanthe bEco algorithm
(the details are omitted).

3.1 Huffman Decompositions

The general bound of Theorem 19 holds for any decomposition treevés, it is expected that
some trees will result in a tighter bound. Therefore, it is desirable to optim&édhbnd over all
trees. Unfortunately, the siz&§| are unknown. Even if the sizés,| were known, it is an NP-hard
problem even to decide on the optimal partition corresponding to the rooth&rdsiess result can
be obtained by a reduction from MAX-CUT (see, e.g., Papadimitriou, 188dpter 9.3). Hence,
we can only hope to approximate the optimal tree.

However, if we replace eadls;| value with its maximal valu&®, we are able to show that the
bound is optimized when the decomposition tree is the Huffman decoding tesee(ge Cover and
Thomas, 1991, Chapter 5.6) of the sequexice

For any decomposition trée and a sequencd], let n; be the number of times that the internal
nodei € T is visited when predicting; using thepEco algorithm. These are precisely theused
in Theorem 19, Equation (28). We call thegéthe counters ofl "
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Lemma 21 Letx] be a sequence and T a decomposition tree constructed using Huffrmacés p
dure, which is based on the empirical distributi®to) = Ng/n. Let{n;} be the counters of T.
Then,5 K- n and )5 i are both minimal with respect to any other decomposition tree.

Proof Any treeT induces the following prefix-code ové&: The codeword of a symbat € X is
the path from the root of to the leafo. The length of this code for somlg with respect to<, is
(X)) = i1 4(%), wherel(x) is the codeword length of the symbel It is not hard to see that

k—1

(x]) = z Ny -¢(0) = Zx n;. (35)

¢

If T is constructed using Huffman’s algorithm, the average code Ier%@a,No-E(o), is the
smallest possible. Therefor minimizesi sk In;.

To prove that Huffman’s tree also minimizq&‘ﬁ‘;l1 n;, we define the following lexicographic
order on the set of inner nodes of any tree. Given a tree, wg le¢ the counter corresponding to
inner nodev. We can order the inner nodes, first in ascending order of their caumteand then
(among nodes with equal counters), in ascending order of the heigtis séib-trees they root. Let
T be a Huffman tree, an@’ be any other tree. Lefn,} be the counters of and let{n,} be the
counters off . We already know th&af, n, < S n,. We can order (separately) both sets of counters
according to the above lexicographic order such thak --- < ny,_, (and similarly, forv}). We
prove, by induction ork, thatn,, < Ny, fori=1,...,k— 1. Fork = 2 the statement trivially holds.
Assume that for=1,...,k—1,ny, < ny. We examine now the case where 1,... k. According
to the construction scheme of the Huffman tree (see, Cover and Thontds, GBapter 5.6), we
have than,, < Ny, Note that the children of; andVv; are all leaves. Otherwise, the non-leaf child
must have the same counter as its parent and is rooting a sub-tree with sreiglter iherefore, by
our lexicographic order, the counter of this child must appear beforeoilneter of its parent, which
is a contradiction.

Replacev; (resp.,v}) with a leaf. Note that every node(resp.,V') in the resulting trees keeps
its original countem, (resp.,ny). Hence, nodes can change their order only with nodes of equal
counter. Thus, by applying the inductive hypothesis we concludedihatn, fori=1,....k. ®

Remark 22 After establishing Lemma 21, we found that Glassey and Karp (1976)eshthat if
f(-) is an arbitrary concave function, then the Huffman tree minim'gé‘q1L f(n). This general
result clearly implies Lemma 21.

From Lemma 21 it follows that the tree constructed by Huffman’s algorithm mineréasy
linear function of eithefy; n; or ¥;logn;, which proves, using Theorem 19, the following corollary.

Corollary 23 LetR be the Rof Equation (28) with everys;| replaced by its maximal valuePk
Then, Reco(X],Pr) < 3iRi(x]) and the Huffman coding tree minimizes this bound. The resulting
bound is given in Corollary 25.
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4. Mind the Gap

Here we compare our redundancy (upper) boundfco and the known bound for mult-Tw.
Relying on Corollary 23, we focus on the case wheee o uses the Huffman tree.

A clear advantage of theeco algorithm is that it “activates” only internal node (binary) pre-
dictors corresponding to observed symbols. This can be seen by thd bblrheorem 19, which
decreases with the number of unobserved symbols. Since theamwitbound is insensitive to al-
phabet sparsity, this suggests thaico will outperform the multicTw when predicting sequences
in which alphabet symbols are sparse.

In this section we prove that the redundancy bound®to is strictly better than the corre-
sponding multieTw bound, for any sufficiently long sequence. For this purpose, we exathé
difference between the two bounds using a worst-case expressicanE ¢o bound.

Let > be an alphabet withx| = k andx} be a sequence ovér Fix some ordeD and letS be
the topology corresponding to tilebounded tree-source that maximizes the probability]ajver
(pb. Denote byR.w the multi-ctw redundancy bound (see Theorem 9)

> omy . (K=1)[S] klS|—
Rerw(X]) = > Iog 5] + S| logk+ e 1 ) (36)
Similarly, letR.u denote the redundancy pEco applied with a Huffman-tree (see Theorem 19),
- K1y KW -1
n P — —
RHUFF(Xl)_iZl<2| gw+w+ K_1 )7 (37)

whereW is an upper-bound on the model-siZef§ (see Equation 28). We would like to bound
below the gaprcrw — Ryurr between these bounds. _
The next lemma and corollary provide a worst case upper bourfg,f@r.

Lemma 24 Letx] be a sequence ovér Let T be the corresponding Huffman decomposition tree
and {n;}¥_! its internal node counters. Then,

k—1

Zl logn; < (k—1)- (logn+1log(1+ logk) —log(k— 1)) (38)

Proof Recall that for every symbat € %, Ny denote the number of occurrencesdh xj and/(o)
denotes the Iength of the path from the rooffofo the leafo. Denote byH the empirical entropy,

H=-— Zoez IOg

k—1 1 k-1 1
i; 1 logn; < log (I; 1 Iogni> (39)
k-1
= log (ZIog ni> —log(k—1)
= log (%Noﬂ ) —log(k—1) (40)

< log(n-(1+H)) —log(k—1) (41)
< log(n-(1+logk)) —log(k—1) (42)
= logn+log(1+logk)—log(k—1). (43)
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In (39) we used Jensen’s inequality; (40) is an application of Equatis)) [3yields a Huffman
code with an average code length of.s N"E( 0) <1+ H (see, e.g., Cover and Thomas, 1991,
Section 5.4 and 5.8), which implies (41); finally, (42) follows from the faat th < logk (see, e.g.,
Cover and Thomas, 1991, Theorem 2.6.4). We conclude by multiplying loteth byk — 1. [ |

Corollary 25

Ruuee(X7) < (k—1)W <Iog%+log(1+logk) log(k—1)+2+ kz—k1>

2
Proof
Rore(X}) = ;(% =3
- Zl< Iogn,> <—%Iog( ) +WY+ k:) 11>
_ %Zl logny) + (k— )<—%Iog( ) 11>
< (k= 3 A (logn+log(1+logk) —log(k— 1)) +
(k=1) (5 loat) + w+ S ) (a4)
- (kzl)”’ (Iog% +log(1+logk) — log(k — 1)) +(k-1) <w+ k:J_11>
(k‘zl)w (Iog% +log(1-+logk) — log(k—1) +2+ szk1> . (45)
Here (44) follows by application of (38) and we obtained (45) uéfﬂf_rgl < % |

The next theorem characterizes cases wher@two algorithm has a strictly smaller redun-
dancy bound than the muliTw bound.

Theorem 26 Let Z be an alphabet withX| = k > 118andx] be a sequence ovérgenerated by
the (unknown) D-bounded multi-sour8é = (S, Ps). ThenRerw(X]) > Ruurr(X7).

Proof We take the upper bourid = |S|. By the proof of Lemma 15, when translatifig into its
equivalent decomposed source, the internal node topologies araifieged with § and then may
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be pruned to achieve minimality. Hends| is an upper bound on the sizgk|. Thus, we have

Reru0D) = Rure() = 5"l 1og 2+ Islogher 21
§<|5|' DRAe-=Y
> (k_21)|5| Iog| |+|5|ng+k|lf|__11(k_21)|5|><
<Iog ‘5|+Iog(1+logk)—log(k 1)+2+k2k1> (46)
= |S|logk+ k]&] 1
% <Iog(1+|ogk) —log(k—1)+2+ kZTk1> , 47)

where (46) is by Corollary 25. Using straightforward analysis it is nod @ show that (47) grows
with k and is positive fok > 118. This completes the proof. [ |

The gap, between therw andDEco bounds, shown in Theorem 26 is relevant when the inter-
nal node redundancies oEco areR = 5] Iog| +|Si| + k|5" ! . By a simple analysis of Equa-

tion (28) using the functiorf (x) = $log{ +x+ ¥ "X 1 , we can show that the gap is positive when
ni > max{0.17- ¥, S }.

We conclude that the redundancy boundaftco algorithm converges faster than the bound of
the cTw algorithm for alphabet of sizk > 118. Currently, thecTw algorithm is known to have
the best convergence rate (see Table 5). Therefore, the cuoemd lis the tightest one known for
prediction (and lossless compression) in realistic settings.

Remark 27 The result of Theorem 26 is obtained using a worst-case analysis farghe re-
dundancy. This analysis considered a sequence that contains alltepbkgmbols; each symbol
appears sufficiently many times. However, in many practical applicatgunsh as predictions of
ASCII sequences) most of the symbols are expected to have smadifcess (e.g., by Zipf's Law).
In this case, th@Eeco redundancy is even smaller than the worst case bound of Corollaryn@5 a
the gap between the two bounds is larger.

5. Examining Other Alphabet Decompositions

The bouncR,ue, given in Equation (37), is optimized using a Huffman decomposition treeo{Cor
lary 23). However, replacing eagls;| with its maximal value can affect the bound considerably.
For example, if we manage to place a very easy (binary) prediction proliléme @oot, it could
be the case that the “true” model order for this problem is very small. Sut$iderations are not
explicitly treated by the Huffman tree optimization. Therefore, it is of major isteie@ consider
other types of alphabet decomposition trees. Also, if our goal is to utilizestimzéssfulpinary
CTW in multi-alphabet problems, there is no apparent reason why we shotiittresirselves to
hierarchicalalphabet decompositions as discussed so far. The parallel study of Gatdgory de-
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compositions” in supervised learning suggests other approachesrsetats-all all-pairs, etc. (see,
e.g., Allwein etal., 2001).

We empirically targeted two questions: (i) Are there better alphabet decdiopdeees for the
DEco algorithm? (ii) Can the “flat” decomposition techniques of supervised leaberaffectively
applied in our sequential prediction setting?

To answer the first question, we developed a simple heuristic proceduigtrmpts to increase
log-likelihood performance of theeco algorithm, starting from any decomposition tree. This
procedure searches for a locally optimal tree using the actual perfoem@&mECO on a given
sequence. Starting from a given tree, this procedure attempts to swdphabet symbol from
one subtree to the other while recursively “optimizing” the resulting subtrEash such swap is
‘accepted’ only if it improves the actual performance. We applied thisguhoe using a Huffman
tree as the starting point and refer to the resulting algorithm as ‘Improved’.

Sequence Random| Improved | Huffman | Huffman Inverted
Comb | Huffman-Comb

bib 1.91 1.81 1.83 2.04 2.16
news 2.47 2.34 2.36 2.65 2.75
book1 2.26 2.20 2.21 2.28 2.38
book2 1.99 1.92 1.94 2.06 2.14
paperl 2.40 2.26 2.27 2.58 2.69
paper2 231 2.21 2.23 241 2.53
paper3 2.60 2.45 2.47 2.74 2.87
paper4 2.95 2.72 2.75 3.20 3.34
paper5 3.12 2.86 2.89 3.42 3.56
paper6 2.50 2.32 2.36 2.67 2.84
trans 1.52 1.40 1.43 171 1.89
progc 2.51 2.32 2.35 2.76 2.87
progl 1.74 1.64 1.67 1.88 2.01
progp 1.78 1.63 1.66 1.92 2.09
Average 2.29 2.15 2.17 2.45 2.58

Table 1: Comparing average log-lossoEco with different decomposition structures. The best
results appear in boldface. Results for the random decomposition i@flegerage on ten
random trees.

We experimented witlbEco, ‘Improved, and several others decomposition schemes. Follow-

ing standard convention in the lossless compression community, we examireddgdhithms over

the ‘Calgary Corpus.’ This Corpus serves as a standard benchoratésting log-loss prediction
and lossless compression algorithms (Bell et al., 1990; Witten and Bell, £364ry and Teahan,
1995; Begleiter et al., 2004). The corpus consists of 18 files of ninerdiit types. Most of the
files are pure ASCII files and four are binary files. The ASCII filessistnof English texts (books
1-2 and papers 1-6), a bibliography file (bib), a batch of unedited aetictes (news), some source
code of computer programs (prog c,l,p), and a transcript of a terminsibsedrans). The longest
file (bookl1) has 785kb symbols and the shortest (paper5) 12kb symbols
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In addition to the Huffman and ‘Improved’ decompositions, we include théopaance of a
random tree and two types of “Huffman Comb” trees. The random treearasgructed bottom-up
in agglomerative random fashion where symbol cluster pairs to be mergedselected uniformly
at random among all available nodes at each ‘merge’ step. Each of thedmb’ trees is a full
(binary) tree of heighk— 1. That is, such trees operate similarlydecision lists The comb tree
whose leaves (symbols) are ordered top-down according to theirdisgeinequencies irx] is
referred to as the “Huffman Comb,” and the comb tree whose leaves\anrsety ordered is called
the “Inverted Huffman Comb.” Obviously, it is expected at the outset thairtherted Huffman
comb will give rise to inferior performance.

In all the experimental results below we analyzed the statistical significdpegraise compar-
isons between algorithms using the Wilcoxon signed rank test (Wilcoxo)3@dth a confidence
level of 95%.

Table 1 shows the average prediction performanaezafo compared to several tree structures
over the text files of the Calgary Corpus. The slightly better but statisticalyfiignt performance
of the improvedpEco indicates that there are more effective trees than Huffman’s. It is alse inte
esting to see that the random tree (based on an average of 10 randsjrdrsignificantly better
than both the Huffman Comb trees. The latter observation suggests thatnd il@nstruct very
inefficient decomposition structures.

Sequencel0% | beco | All-Pairs | One-vs-All
progc 3.11 4.28 4.04
progl 1.66 2.27 2.16
progp 2.69 3.53 3.50
paperl 3.08 3.82 3.67
paper2 3.15 3.66 3.62
paper3 3.39 4.10 4.00
paper4 3.89 4.62 4.54
papers 3.91 4.82 5.02
paper6 3.32 411 4.00

Average 3.13 3.91 3.84

Table 2: Comparing three decomposition methods over a reduced verdioa Galgary Corpus.
The best results appear in boldface.

To investigate the second question, regarding other decomposition s¢heensplemented
the ‘one-vs-all' and ‘all-pairs’ schemes, straightforwardly adaptedutosequential setting. The
reader is referred to Rifkin and Klautau (2004) for a discussion ofetheshniques in standard
supervised learning. The prediction results, over a reduced verkiba Galgary text files, appear
in Table 2. In this reduced dataset we took 10% (from the start) of eagimalrsequence. The
reason for considering smaller texts (of shorter sequences) is thesaxeenemory requirements
of the ‘all-pairs’ algorithm, which require@) = 8128 different binary predictors (compared to the

5. The Wilcoxon signed rank test is a nonparametric alternative to thedpaiest, which is similar to the Fisher sign
test. This test assumes that there is information in the magnitudes of thenfés between paired observations, as
well as the signs.
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k — 1 andk binary predictors required bpeco and ‘one-vs-all’, respectivel\). The results of
Table 2 indicate that the hierarchical decompaosition is better than the othematvdefiomposition
schemes. (Note that the advantage of ‘one-vs-all’ over ‘all-pairs’ @®8&& confidence.)

6. On Applying CTW with Other Zero-Order Estimators

Another interesting direction when attempting to improve the performance oféhdadcTw on
multi-alphabet sequences is to use other, perhaps stronger (in soreg, gens-order estimators
instead of thexT estimator. In particular, it seems most appropriate to consider well-knotivn es
mators such as Good-Turing and the very recent ones proposeditskyet al. (2003), some of
which have strong performance guarantees in a certain worst cas®e sen

To this end, we compared the prediction quality of maftiw and DEco each applied with
four different sequential zero-order estimators: Good-Turing qtktv®"), “Improved add-one”
(denotedz*1), “improved Good-Turing” (denoted®™") and standar&T (denotedz®™). The de-
scription of the first three estimators is provided in Appendix B.

Sequencd 2KT | 271 | 26T | 26T
bib 247|2.35] 2.27| 2.29
news | 2.92|282|275]| 2.75
bookl | 2.50| 2.46| 2.42| 2.42
book2 | 2.32|2.24| 2.19| 2.20

paperl | 2.98| 2.83| 2.73| 2.75
paper2 | 2.77| 2.68| 2.60| 2.61
paper3 | 3.16| 3.08 | 3.00| 2.99
paper4 | 3.57| 3.50| 3.41| 3.38
paper5 | 3.76 | 3.66 | 3.57 | 3.56
paper6 | 3.10| 2.95| 2.84| 2.85
trans | 2.18|1.92| 1.76| 1.84
progc | 3.04| 2.89| 2.79| 2.82
progl 2.29| 2.14| 2.05| 2.08
progp | 2.26| 2.11| 2.00| 2.04
Average | 2.80| 2.69| 2.60| 2.61

Table 3: Comparing the average log-loss of maltiw with different sequential zero-order estima-
tors. The comparison is made with textug|(= 128) sequences taken from the Calgary
Corpus, and with parametBr= 5. Each numerical value is the average log-loss (the loss
per symbol). The best (minimal) result of each comparison is marked in loeldfa

All four estimators have worst-case performance guarantees basadmaximallikelihood
ratio, which is the ratio between the highest possible probability assigned by sigtribution
and the probability assigned by the estimators. The set of “all possible diginb” considered is
referred to as the comparison class. Orlitsky et al. analyzed the perfoentd these estimators

6. With our two gigabyte RAM machine the runs with the entire corpus woulddapkeoximately two months.
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Sequenced 2¥T | 2% | 76T | 26T

bib 1.84| 2.39| 2.02| 2.35
news |2.36|294|254| 2.85
bookl | 2.22|2.39| 2.23| 2.38
book2 | 1.94|2.27| 2.02| 2.26
paperl | 2.28| 3.03| 2.53| 2.93
paper2 | 2.23| 2.74| 2.39| 2.68
paper3 | 2.47| 3.08 | 2.66 | 2.98
paperd | 2.75| 3.52| 3.00| 3.36
paper5 | 2.90| 3.78 | 3.18 | 3.59
paper6 | 2.36| 3.16 | 2.63| 3.04
trans | 1.43| 2.43| 1.83]| 2.35
progc | 2.35| 3.16| 2.61| 3.03
progl 1.67|233|190| 2.26
progp | 1.66| 2.44| 1.95| 2.37

Average | 2.18| 2.83| 2.39| 2.74

Table 4: Comparing predictions bEcowith different sequential zero-order estimators. The com-
parison is made with textual¥| = 128) sequences taken from the Calgary Corpus, and
with parameteD = 5. Each numerical value resemble the average log-loss (the loss per-
symbol). The best (minimal) result of each comparison is marked in boldface.

for infinite discrete alphabets and a comparison class consistiaf] pbssible distributions over
n-length sequences. They showed that the avepagesymbotatio is infinite for sequential add-
constant estimators such ias. The Good-Turing and Improved add-one estimators assign to each
(‘large’) sequence a probability which is at most a factar'offor some constard > 1) smaller than
the maximal possible probability; the improved Good-Turing estimator assigreetosequence a
probability that is within a sub-exponential factor of the maximal probability.

In addition to the above, theT and Good-Turing estimators enjoy the following guarantees. In
Theorem 7 we statedfanite-sampleguarantee for the redundancy of tke estimator. Recall that
this guarantee refers fimite alphabets and a comparison class consisting of zero-order distributions.
Moreover, within this settingKT was shown to be (asymptotically) close, up to a constant, to the
best possible ratio (Xie and Barron, 2000; Freund, 2003), and thstanat is proportional to the
alphabet size. Thus, when considering the per-symbol natias asymptoticallyoptimal. Along
with the above worst-case guarantees, the Good-Turing estimator alacbagergence guarantee
to the “true” missing mass probability (McAllester and Schapire, 2000) naisgLthe existence of
a true underlying distribution that generated the sequence.

In Tables 3 and 4 we provide the respective per symbol log-loss obtaitiethese estimators
for all the textual (ASCII) sequences from the Calgary Corpus (1dsg##s). In all the experiments
below we analyzed the statistical significance of the results using the Wil&goed rank test at a
confidence of 95%.

Table 3 presents the log-loss of the four zero-order estimators whehassthe zero-order
predictor within the multieTw scheme. The support set of the zero-order estimators is of size 128.
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Observe that multeTw with Z¥T suffers the worst log-loss. On the other hand, when applying these
estimators irbECO (thus, when solving binary prediction problems), as depicted in Table 4the
outperforms all the other estimators. Also observe that the best amltiresult ¢©T in Table 3) is
worse than the bestecoresult @7 in Table 4).

In summarizing these results, we note that:

e For text sequences, tleerw algorithm can be significantly improved when applied with the
Good-Turing estimator (instead of the estimator).

e The improved Good-Turing estimator proposed by Orlitsky et al. (20083 dot improve the
Good-Turing.

e The Deco-Huffman algorithm achieves best performance with the oriffnadry) KT esti-
mator.

7. Related Work

To the best of our knowledge, hierarchical alphabet decompositions lagHoss prediction/comp-
ression setting were first considered by Tjalkens, Willems and Shtar®4)1 In this paper, the
authors study a hierarchical decomposition where each internal node detomposition tree is
associated with a (binary®T estimator (instead of binargTw instances irbECO). In this setting
the comparison class is the set of all zero order sources. The autirowsdda redundancy bound
of k—1+ % Sn>ologn; for this algorithm, where the; terms are the node counters as defined
in Theorem 19. This result is similar to a special case of our bouﬁd% Zn~ologn;, obtained
using Theorem 19 for the special ca3e= 0 (implying |5i| = 1). In that paper Tjalkens et al.
proposed the essence of theco algorithm as presented here; however, they did not provide the
details. A thorough study of algorithmeco and othercTw-based approaches for dealing with
multi-alphabets are presented in Volf’s Ph.D. thesis (Volf, 2002). In paaican in-depth empiri-
cal study ofbeco, over the Calgary and Canterbury Corpora, indicated that this algorithiaves
state-of-the-art performance in lossless compression. Thus, it matehgsod performance of the
prediction by partial matcifPPM) family of heuristic$. Further empirical evidence that substanti-
ated this observation appears in Sadakane et al. (2000); Shkar2) {Ba@leiter et al. (2004).

There are also many discrete prediction algorithms that are not CTW-b&%edestrict the
discussion here to some of the most popular algorithms that are known tavieesahwith respect
to some comparison class. Probably the most famous (and the first) ahiesdess compression
algorithms were proposed by Ziv and Lempel (1977; 1978). For exartipewell-known LZ78
algorithm is a fast dictionary method that avoids explicit statistical considegatibhis algorithm
is universal (with respect to the set of ergodic sources); howavenntrast to both conventional
wisdom and the algorithm’s phenomenal commercial success, it is not amergesh lossless
compressors (see, e.g., Bell et al., 1990).

Two more recent universal algorithms are the Burrows-Wheeler semsfBWT) (Burrows
and Wheeler, 1994) and grammar-based compression (Yang andrK2&f®). The public-domain

7. A similar paper by Tjalkens, Volf and Willems, proposing the same medéimaidresults, appeared a few years later
(Tjalkens et al., 1997).

8. As far as we know, the best PPM performance over the CalgapyuSas reported for the PPM-I1I variant, proposed
by Shkarin (2002).
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version of BWT, called BZIP, is considered to be a relatively strong cesgmr over the Calgary
Corpus, which is fast but somewhat inferior to PPM ar&to. The grammar-based compression
algorithm has the advantage of providing an “explanation” (grammar) éontly it compressed the
target sequence.

The point-wise (worst case) redundancy of the prediction game waslirted by Shtarkov
(1987). Given a comparison classof target distributiond® and some hypothesis clags from
which the prediction algorithm selects one approximating distribi®iche point-wise redundancy
of this game is
P(x7)

C) = inf supmaxlog =
Ra(C) Mpeg b gp(xl)

Shtarkov also presented the first asymptotic lower bound on the reduynftarthe case where both
the hypothesis and comparison classes are thB-setler Markov sources. To date, the tightest
asymptoticlower bound on the point-wise redundancy fargram Markov sources was recently
given by Jacquet and Szpankowski (2004, Theorem 3). Theyesdhthat for large (but unspecified)
n, the lower bound ié(D(';—_l) log 7 4 10gA(D, k) + log(1 + O(%)), whereA(D,k) is a constant de-
pending on the orddd and the alphabet sie In Table 5 we present known upper-bounds (leading
term) on the redundancy of the algorithms mentioned above. As can betlseerrw algorithm
enjoys the tightest bound. Note that there exist sequential predictiorithigerthat enjoy other
types of performance guarantees. One example ipthieabilistic suffix treegPST) algorithm
(Ron et al., 1996). The PST is a well-known algorithm that is mainly used in itiiefrmatic
community (see, e.g., Bejerano and Yona, 2001). The algorithm enjoy<dilk&A performance
guarantee with respect to the class of VMMs (which is valid only if the predisegjuence was
generated by a VMM).

Algorithm Per Symbol Comparison Class Source
Point-wise Redundancy
LZ78 O(1/logn) Markov Sources Savari (1997);
Kieffer and Yang (1999)
Potapov (2004)
CTW % logn Markov sources Willems et al. (1995);
Willems (1998)
BWT % logn D-order Markov sources Effros et al. (2002)
(average redundancy)
Grammar Based O(loglogn/logn) Ergodic sources Yang and Kieffer (2000)
Asymptotic
Lower Bound % logn D-order Markov sources Shtarkov (1987)

Table 5: Point-wise redundancy (leading term) of several universaldss compression (and pre-
diction) algorithms. The predicted sequence is of lengthNote that the stated BWT
redundancy matches ttaverage redundangyhence, it bounds the BWT point-wise re-
dundancy from below.
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8. Concluding Remarks

Our main result is the first redundancy bound for tie|co algorithm. Our bounding technique
can be adapted eco-like decomposition schemes using any binary predictor that has a (binary)
point-wise redundancy bound with respect to VMMs. To the best of oomedge, our bound
for the Huffmann decomposition algorithm (proposed by Volf) is the tightesin for predic-
tion under the log-loss and therefore, for lossless compression. ik peovides a compelling
justification for the superior empirical performance of thieco-Huffman predictor/compressor as
indicated in several works (see, e.g., Volf, 2002; Sadakane et aD).200

Our experiments with random decomposition structures indicate thathe scheme is quite
robust to the choice of the tree, and even a random tree is likely to outpetfe multicTw.
However, the excellent performance of the Huffman decomposition clezotivates attempts to
optimize it. Our local optimization procedure is able to generate better trees tifima#n’s, sug-
gesting that better prediction can be obtained with better optimization of the tnetusg. Similar
observations were also reported in Volf (2002). Since finding the leestrdposition is an NP-hard
problem, a very interesting research question is whether one could optireire ¢o redundancy
bound over the possible decompositions.

Interestingly, our numerical examples strongly indicate that hierarchécalrdpositions are bet-
ter suited to sequential prediction than the standard ‘flat’ approaches-{®-all’ and 'all-pairs’)
commonly used in supervised learning. This result may further motivate ttsédayation of hierar-
chical decompositions in supervised learning (e.g., as suggested byt Hua?©02; Cheong et al.,
2004; El-Yaniv and Etzion-Rosenberg, 2004).

The fact that the other zero-order estimators can improve the gmti-performance (with
larger alphabets) motivates further research along these lines. Firstlid Wwe interesting to try
combiningcTw with other zero-order estimators. Second, it would be interesting to antilgze
combined algorithm(s), possibly by relying on the worst case results of Kyrktsal. (2003).

But perhaps the most important research target at this time is the develapiradatver bound
on the redundancy of predictors for finite (and short) sequenceie b Jacquet and Szpankowski
(2004) lower bound is indicative on the asymptotical achievable rates, itdsingdess in the finite
(and small) sample context. For example, our bounds, and even theanulibounds known today,
are smaller than the Jacquet and Szpankolesker bound.
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Appendix A. On the KT Estimator - Proof of Theorem 7

We provide a proof for the (worst-case) performance guaranteeecfthestimator as stated in
Theorem 7. This proof is based on lecture notes by Catoni (2004).

9. Krichevsky and Trofimov (1981) proved an asymptotic versiontadrem 7 for the average redundancy; Willems
et al. (1995) provided a proof for binary alphabets.
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Lemma 28 Consider the case wheter counts all the symbols of the sequenge(i.e., s= ¢).

Then, )

5KT (N _ r(?)HGEZF(NG"i'%)

z (Xl) - 1\k ky?
r(i) r(ZceZ No + i)

whererl (X) = [+ X texp(—t)dt is the gamma functiot

(48)

Proof
The proof is based on the identifyfx+ 1) = xI" (x) and on a rewriting of Definition 6,

. skt ron1n N +1/2
ZKT Xn — ZKT Xn 1 Xn
o) s 2

Moes ((1/2)-(14+1/2)-(2+1/2)---(No +1/2))
(k/2)-(14+k/2)- (2+Kk/2) - (Foezs No +K/2)

loc ( rNo+3))
r(ZerN0+ )

)

and (48) is obtained by rearranging the terms. |

We now provide a proof for Theorem 7. Recall that this theorem statagpper bound of
% logn+ logk for the worst-case redundancy@f {x7).
Proof It is sufficient to prove that

5 KT n
SURc £ Z(X7) k

Leta= (a.)I 1€ INK be a vector of arbitrary symbol counts for some sequedicé For these

counts, by Lemma 28T would assign the prObabI|Ithp'217(+)) Let z be the correspond-
=1 &

ing empirical distributionz(x]) = 1%, (k—a) , wheren =S¥, &. Itis well known that, given

the counts, the distribution that maximizléls the probabilityxjfis z, the maximum likelihood dis-
tribution (see, e.g., Cover and Thomas, 1991, Theorem 12.1.2). TRirgy ta= argmax. , 7 (X}),
inequality (49) becomes

M%) Mar@+3) (3k,a)3+7
FGFrsia+s) N
We have to show that for arg/+ (0,0, ...,0), A(a) > %.

Observe thaf\(a) is invariant under any permutation of the coordinationa.oflso note that,
by the identity" (x4 1) = X" (x),

Aa) = > %

rera+d) 1
A((l,O,...,O))—%_E'

10. It can be shown th&t(1) = 1 and thaf (x+ 1) = xI"(x). Therefore, ifn > 1 is an integer (n+ 1) = nl. For further
information see, e.g., Courant and John (1989).
11. In information theory is called atype See, e.g., Cover and Thomas (1991, Chapter 12).
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It is sufficient to prove that for ang = (as1,ap,...,an) with a; > 1,A(a) > A((a1 — 1,a2,...,&)).
Observe that

_ k=1
M@ = Bas — L2y, .., a0 B2 @D il |
R a’ (n+X—1) (-7
Thus, it is enough to show that
(ar—3)(a— 1" 2

— >1 wherea; >1,n> 2.
aiil (n—‘—lé(—l)(n_l)ni]:‘»%

This can be done by showing that

fit) = Iog<(t_%)(t_1)tl>2—l;

tt

ot
= lo > 1.
- Na+s-pE-pets )~
Recall that lim— . (1+ ¥)* = & and observe that,

t—4o0

. . k—1 1 k—2
qL'ng(q) = qlirnm—<q—l+7>log<l—a>—Iog(l+2—q>—1.

We conclude by showing that both functions decreasing monotone to their livaitse,f’(t) <0
andd'(q) < 0. For f’(t) we next show that it is a a non-decreasing function (fé(t) > 0) that is
bounded from above by zero.

1 t—1
f'(t) = t_—l+log <T> ;
2

lim f(t) = tErllmlog <1—%>+(t—1)log (1—%) =-1;

. / o .
tL'wa t) = 0
1 1
f't) = ;
O = i
1 1

37 -37-}

Therefore,f’(t) > 0 for anyt > 1. In a similar manner,

g(@ = Iog( | >+k_l<}— : )— o
- 1-q/ 2 \a a-1) g+5-1

lim d'(q) = O

q~>+oo

g'(qg > O
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Appendix B. Zero Order Estimators

In this appendix we describe the sequential zero-order estimators:-Good), “Improved add-
one”, “improved Good-Turing” by their “next-symbol” probability assigmme These estimators
are compared along witkT in Section 6.

Recall that, by the chain-rule(X]) = [+ 2 (%;1/x} ), wherex? is the empty sequence. Hence,
it is sufficient to define the next-symbol predictiarix’.1|x} ), which is based on the symbol counts
Ny in X} We require the following definition. Le¢, be a sequence. Defig, to be the number of
symbols that appear exactiytimes inx}, i.e.,an = |{0 € £: Ng = m}|. We denote the “improved
add-one” estimator by** and the “improveds 1" by 26™ .12

The Good-Turing ¢T) estimator (Good, 1953) is well known and most commonly used in
language modeling for speech recognition (see, e.g., Chen and Goofi@®8)® The next-
symbol probability generated by is

a .
1 txl ) If NOZO;
7°T(o]x}) = — x o 50
(obxa) S+1 %%, otherwise, (50)

wherea/,, is a smoothed version @f, andS ;1 is a normalization factor? In the following experi-
ments we used the simple smoothing suggested by Orlitsky et al. (2003) &herenax(am, 1).

Denote bym the number of distinct symbols i (i.e., m= z}zlai). The next-symbol proba-
bility of the improved add-one estimator is

oo L {%1 if Ng = 0;

— X 51
SJrl (t—m—Fl)%, N0>07 ( )

whereS . ; is a normalization factor.

For any natural numbee, define the functionf;(a) = max(a,c). Also define the integer-
sequence, = [n%/3]. The next-symbol probability assigned by the improeatestimator is
1 W’ if Ng = O

St ) (Not 1) faal@e) ©2

2°T (olx}) = .
otherwise
foq (@) ’

whereS. 1 is a normalization factor. The improvesir estimator ¢57°) is optimal with respect to
the worst-case criterion of Orlitsky et al. (2003).
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