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Abstract

We introduce a method for approximate smoothed inference in a class of switching linear dynamical
systems, based on a novel form of Gaussian Sum smoother. This class includes the switching
Kalman ‘Filter’ and the more general case of switch transitions dependent on the continuous latent
state. The method improves on the standard Kim smoothing approach by dispensing with one of the
key approximations, thus making fuller use of the available future information. Whilst the central
assumption required is projection to a mixture of Gaussians, we show that an additional conditional
independence assumption results in a simpler but accurate alternative. Our method consists of
a single Forward and Backward Pass and is reminiscent of the standard smoothing ‘correction’
recursions in the simpler linear dynamical system. The method is numerically stable and compares
favourably against alternative approximations, both in cases where a single mixture component
provides a good posterior approximation, and where a multimodal approximation is required.
Keywords: Gaussian sum smoother, switching Kalman filter, switching linear dynamical system,
expectation propagation, expectation correction

1. Switching Linear Dynamical System

The Linear Dynamical System (LDS) (Bar-Shalom and Li, 1998; West and Harrison, 1999) is a
key temporal model in which a latent linear process generates the observed time-series. For more
complex time-series which are not well described globally by a single LDS, we may break the
time-series into segments, each modeled by a potentially different LDS. This is the basis for the
Switching LDS (SLDS) where, for each time-step t, a switch variable s; € 1,...,S describes which
of the LDSs is to be used.* The observation (or ‘visible’ variable) v € R is linearly related to the
hidden state hy € ®H by

Vi = B(st)he +n"(st), n'(st) ~ AC(V(st), Z¥(st)) 1)

where A’ (W, Z) denotes a Gaussian distribution with mean p and covariance Z. The transition dy-
namics of the continuous hidden state h; is linear

he=AGsOh 14050, n"(s) ~ A (n(s0), 2"(s0)) @

1. These systems also go under the names Jump Markov model/process, switching Kalman Filter, Switching Linear
Gaussian State-Space model, Conditional Linear Gaussian Model.

(©2006 David Barber.



BARBER

S1

Figure 1: The independence structure of the aSLDS. Square nodes denote discrete variables, round
nodes continuous variables. In the SLDS links from h to s are not normally considered.

The dynamics of the switch variables is Markovian, with transition p(s;|s;—1). The SLDS is used in
many disciplines, from econometrics to machine learning (Bar-Shalom and Li, 1998; Ghahramani
and Hinton, 1998; Lerner et al., 2000; Kitagawa, 1994; Kim and Nelson, 1999; Pavlovic et al.,
2001). See Lerner (2002) and Zoeter (2005) for recent reviews of work.

AUGMENTED SWITCHING LINEAR DYNAMICAL SYSTEM

In this article, we will consider the more general model in which the switch s; is dependent on
both the previous s;_1 and h;_1. We call this an augmented Switching Linear Dynamical System?
(aSLDS), in keeping with the terminology in Lerner (2002). An equivalent probabilistic model is,
as depicted in Figure (1),

.
P(VLT,heT,817) = p(Vilhy,s1)p(h|s1)p(s1) rlp(Vt|htaSt)p(ht|htflaSt)p(3t|ht71,5t71)-
t=

The notation x1.1 is shorthand for xy,...,xt. The distributions are parameterized as
p(vilhe,St) = AC(V(se) +Blso)h 2Y(s)) . P(hlhe-s,5) = A ((s) + A(she1,2"(s1) )

where p(h1|s1) = A (K(s1),Z(s1)). The aSLDS has been used, for example, in state-duration mod-
eling in acoustics (Cemygil et al., 2006) and econometrics (Chib and Dueker, 2004).

INFERENCE

The aim of this article is to address how to perform inference in both the SLDS and aSLDS. In par-
ticular we desire the so-called filtered estimate p(h;,st|v1t) and the smoothed estimate p(h,st|v1.T),
foranyt,1 <t <T. Both exact filtered and smoothed inference in the SLDS is intractable, scaling
exponentially with time (Lerner, 2002). To see this informally, consider the filtered posterior, which
may be recursively computed using

p(st,ht|vit) = Z/h[ P(st, he[st—1,he—1,Ve) P(St—1, he—1|Vat—1). (3
§-—1Y -1

Attimestep 1, p(s1,h1|vi) = p(h1|s1,v1)p(s1|va) is an indexed set of Gaussians. At time-step 2, due
to the summation over the states s1, p(sz, h2|v1:2) will be an indexed set of S Gaussians; similarly at

2. These models are closely related to Threshold Regression Models (Tong, 1990).
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time-step 3, it will be S? and, in general, gives rise to St~ Gaussians. More formally, in Lauritzen
and Jensen (2001), a general exact method is presented for performing stable inference in such
hybrid discrete models with conditional Gaussian potentials. The method requires finding a strong
junction tree which, in the SLDS case, means that the discrete variables are placed in a single cluster,
resulting in exponential complexity.

The key issue in the (a)SLDS, therefore, is how to perform approximate inference in a numer-
ically stable manner. Our own interest in the SLDS stems primarily from acoustic modeling, in
which the time-series consists of many thousands of time-steps (Mesot and Barber, 2006; Cemgil
et al., 2006). For this, we require a stable and computationally feasible approximate inference,
which is also able to deal with state-spaces of high hidden dimension, H.

2. Expectation Correction

Our approach to approximate p(ht,st|viT) ~ p(ht,St|viT) mirrors the Rauch-Tung-Striebel (RTS)
‘correction’ smoother for the LDS (Rauch et al., 1965; Bar-Shalom and Li, 1998). Readers unfa-
miliar with this approach will find a short explanation in Appendix (A), which defines the important
functions LDSFORWARD and LDSBACKWARD, which we shall make use of for inference in the
aSLDS. Our correction approach consists of a single Forward Pass to recursively find the filtered
posterior f(ht,st|vit), followed by a single Backward Pass to correct this into a smoothed posterior
p(ht,st|veT). The Forward Pass we use is equivalent to Assumed Density Filtering (Alspach and
Sorenson, 1972; Boyen and Koller, 1998; Minka, 2001). The main contribution of this paper is a
novel form of Backward Pass, based on collapsing the smoothed posterior to a mixture of Gaussians.

Unless stated otherwise, all quantities should be considered as approximations to their exact
counterparts, and we will therefore usually omit the tildes™throughout the article.

2.1 Forward Pass (Filtering)

Readers familiar with Assumed Density Filtering (ADF) may wish to continue directly to Section
(2.2). The basic idea is to represent the (intractable) posterior using a simpler distribution. This
is then propagated forwards through time, conditioned on the new observation, and subsequently
collapsed back to the tractable distribution representation—see Figure (2). Our aim is to form a
recursion for p(st, ht|v1:t), based on a Gaussian mixture approximation of p(h|st,Vv1:t). Without loss
of generality, we may decompose the filtered posterior as

p(he,st|vit) = p(he|st, Var) P(St|VLt)-
We will first form a recursion for p(h|st, V1), and discuss the switch recursion p(st|v1:) later. The
full procedure for computing the filtered posterior is presented in Algorithm (1).
The exact representation of p(hg|st,vi) is a mixture with O(St) components. We therefore
approximate this with a smaller I;.-component mixture

It

p(he|st,vat) = p(he|st,vit) = Z P(heit, st,vat) P(it|st, Vat)
=

where {(h i, st, V1) is a Gaussian parameterized with mean® f (i, s;) and covariance F (i;,s;). The
Gaussian mixture weights are given by f(it|st,v1:t). In the above, fi represent approximations to the

3. Strictly speaking, we should use the notation f;(it,s) since, for each time t, we have a set of means indexed by it, .
This mild abuse of notation is used elsewhere in the paper.
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Figure 2: Structure of the mixture representation of the Forward Pass. Essentially, the Forward
Pass defines a “prior’ distribution at time t which contains all the information from the
variables v1.. This prior is propagated forwards through time using the exact dynamics,
conditioned on the observation, and then collapsed back to form a new prior approxima-
tion at time t + 1.

corresponding exact p distributions. To find a recursion for these parameters, consider

P(hey1/St41,Vit41) = Z B(het1,St, it[St4+1,Vit41)
S,lt

= Z P(het1it,St, St41,Vat+1) B(St, it [St+1, Vit+1) 4)
S,lt

where each of the factors can be recursively computed on the basis of the previous filtered results
(see below). However, this recursion suffers from an exponential increase in mixture components.
To deal with this, we will later collapse p(htt1|St+1,V1t+1) back to a smaller mixture. For the
remainder, we drop the p notation, and concentrate on computing the r.h.s of Equation (4).

EVALUATING p(htra|st, it,St+1,V1t+1)

We find p(htyalst, it,St+1,V1t+1) from the joint distribution p(hty1,Vit1|St, i, St+1, Vi), Which is a
Gaussian with covariance and mean elements*

hh = A(st1)F (it SOAT (St41) + Z"(St41), Zw = B(St+1) ZhnBT (t41) + Z¥(St41)

Zun = B(st+2)F (it,8t), My =B(st1)A(st+1) f(it,st), Bh = Alse41) f (i, st)- (5)
These results are obtained from integrating the forward dynamics, Equations (1,2) over h, using
the results in Appendix (B). To find p(h1|St,it,St+1,V1t+1) We may then condition p(hty1,Vey1]
St, It, St+1,V1:t) ON Vit1 USing the results in Appendix (C)—see also Algorithm (4).

EVALUATING p(St, it[St+1,Va:t+1)
Up to a trivial normalization constant the mixture weight in Equation (4) can be found from the
decomposition

P(St, it[St+1,Vit+1) O P(Vesalit, St,Ste1,Vat) P(Ste-alit, St, Vi) P(it[St, Vi) P(St[Vast).- (6)

4, We derive this for Ht+17\7t+1 =0, to ease notation.
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Algorithm 1aSLDS Forward Pass. Approximate the filtered posterior p(st|vit) = pt, p(ht|st,Vit) =
¥i W (iit, SO AC(fe (e, St), R (i, 8t ) ). Also we return the approximate log-likelihood log p(vy:T). We
require Iy = 1,1 < S,k < S x li_1. 8(s) = A(s),B(s),="(s),2¥(s),h(s),v(s) for t > 1. B4(s) =
A(S),B(S),(5), Z¥(5), 1($), V()
for s; < 1toSdo
{f1(1,s1),F1(1,51), p} = LDSFORWARD(0,0,Vv1;6(s1))
P1 < P(s1)P
end for

fort<2toT do
for ss — 1toSdo
fori<—1tolk_1,ands« 1toSdo
{le|y(i73)7 Zx‘y(i,S), ﬁ} = LDSFORWARD(ftfl(i’S)’ thl(ivs)vvt; Bt (st))
P*(stli;s) = (p(stlhe-1,8t-1 = S)>p(ht—l|it—1:i75t—1:5~,vl:t—1)
P'(St,1,8) < wi_1(i,8)p*(st]i,s)pt—1(s)P

%%(Ijlggge the l—1 x S mixture of Gaussians defined by pyy,Zyy, and weights
p(i,s|st) O p'(st,i,s) to a Gaussian with 1I; components, p(ht|st,vit) =~
Zille p(it|st, Vi) p(ht|st,it,Vvit). This defines the new means fi(it,st), covariances
R (it,st) and mixture weights w; (i, St) = p(it|St, Va:t)-
Compute pt(st) 0 ¥iP'(5t.1.5)

end for

normalize py = p(St|v1t)

L—L+logysish'(sti,8)

end for

The first factor in Equation (6), p(Vit+a|it,St,St+1,V1t), IS @ Gaussian with mean py and covariance
>, as given in Equation (5). The last two factors p(it|st,v1t) and p(s¢|vit) are given from the
previous iteration. Finally, p(St+1]it, St, V1) is found from

P(Stalit, St, Vi) = (P(St+2lNt,St)) prry e sova) (7

where <->p denotes expectation with respect to p. In the standard SLDS, Equation (7) is replaced
by the Markov transition p(si+1|st). In the aSLDS, however, Equation (7) will generally need to be
computed numerically. A simple approximation is to evaluate Equation (7) at the mean value of the
distribution p(h|it,St,v1t). To take covariance information into account an alternative would be to
draw samples from the Gaussian p(ht|it,St,Vv1t) and thus approximate the average of p(sty1|ht,St)
by sampling.®

CLOSING THE RECURSION

We are now in a position to calculate Equation (4). For each setting of the variable s¢, 1, we have
a mixture of I x S Gaussians. In order to avoid an exponential explosion in the number of mixture

5. Whilst we suggest sampling as part of the aSLDS update procedure, this does not render the Forward Pass as a form
of sequential sampling procedure, such as Particle Filtering. The sampling here is a form of exact sampling, for
which no convergence issues arise, being used only to numerically evaluate Equation (7).
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components, we numerically collapse this back to I, 1 Gaussians to form

lts1

P(ht41/St4+1,V1t4+1) = Z P(htt1|it41,St+1, Vaitr1) Pit+1]St+1, Vits1)-
itp1=1

Hence the Gaussian components and corresponding mixture weights p(it.1|St+1,V1:t+1) are defined
implicitly through a numerical (Gaussian-Mixture to smaller Gaussian-Mixture) collapse procedure,
for which any method of choice may be supplied. A straightforward approach that we use in our
code is based on repeatedly merging low-weight components, as explained in Appendix (D).

A RECURSION FOR THE SWITCH VARIABLES

A recursion for the switch variables can be found by considering

P(St+1|Vits1) O Z P(it, St, St-+1, Ve+1, V1)
it,&

The r.h.s. of the above equation is proportional to

> P(veralie, st,Seia, Vi) P(Styalit, St, Vae) P(itfst, Var) P(StVat)
Slt

where all terms have been computed during the recursion for p(ht1/St+1,Vi:t+1)-

THE LIKELIHOOD p(V1.T)

The likelihood p(vi.T) may be found by recursing p(Vi:t4+1) = p(Vi+1|Vat) p(Vat), where

P(Vit1|Vit) = Z P(Vet1|it,St, St+1, Vair) P(St+alit, St, Vi) P(it|St, Vit ) P(St| Vet )-
it, sS4 1

In the above expression, all terms have been computed in forming the recursion for the filtered
posterior p(ht 1,St+1/Vits1).

2.2 Backward Pass (Smoothing)

The main contribution of this paper is to find a suitable way to ‘correct’ the filtered posterior
p(st, ht|v1:t) obtained from the Forward Pass into a smoothed posterior p(st,ht|vi1). We initially
derive this for the case of a single Gaussian representation—the extension to the mixture case is
straightforward and given in Section (2.3). Our derivation holds for both the SLDS and aSLDS.
We approximate the smoothed posterior p(h;|st,Vv1.T) by a Gaussian with mean g(s;) and covariance
G(st), and our aim is to find a recursion for these parameters. A useful starting point is the exact
relation:

p(he,st|veT) = Z P(St41|VeT)P(Ne[St,St+1,VaT) P(St|St+1,VLT)-
S+1
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The term p(h|st, St+1,V1.T) may be computed as

p(ht|3tast+l,V1:T):/ p(he, Neg1St, Sto1,VaT)
ht 1
Z/h[ p(he|hts1,St,St4+1, VaT) P(Neta|St, St41,VaT)
+1
:/h[ p(he|hts1,St,St41, Vi) P(esa|St, St+1, Vi) (8)
+1

which is in the form of a recursion. This recursion therefore requires p(ht+1|st,St+1,V1:1), Which
we can write as

P(het1/St,St+1,VeT) O p(Neta|St+1, VaT) P(St[St+1, et 1, Vait)- 9)

The above recursions represent the exact computation of the smoothed posterior. In our approxi-
mate treatment, we replace all quantities p with their corresponding approximations f. A difficulty
is that the functional form of f(st|St-1, ht+1,V1:t) in the approximation of Equation (9) is not squared
exponential in hy. 1, so that f(hy.1|st,St+1,Va.T) Will not be a mixture of Gaussians.® One possibil-
ity would be to approximate the non-Gaussian p(hi;1|st,St+1,V1.T) (dropping the p notation) by a
Gaussian (mixture) by minimizing the Kullback-Leilbler divergence between the two, or performing
moment matching in the case of a single Gaussian. A simpler alternative is to make the assumption
p(hts+alst,St+1,VaT) =~ p(he+1/St+1,VeT), See Figure (3). This is a considerable simplification since
p(ht+1lst+1,vaT) is already known from the previous backward recursion. Under this assumption,
the recursion becomes

p(he,stlvir) & D P(st+alvet)p(stist+1,var) (P(Ne[her1, St St41,Vet)) pinsafsisaner) - (10)
S+1

We call the procedure based on Equation (10) Expectation Correction (EC) since it ‘corrects’ the
filtered results which themselves are formed from propagating expectations. In Appendix (E) we
show how EC is equivalent to a partial Discrete-Continuous factorized approximation.

Equation (10) forms the basis of the the EC Backward Pass. However, similar to the ADF
Forward Pass, the number of mixture components needed to represent the posterior in this recursion
grows exponentially as we go backwards in time. The strategy we take to deal with this is a form
of Assumed Density Smoothing, in which Equation (10) is interpreted as a propagated dynamics
reversal, which will subsequently be collapsed back to an assumed family of distributions—see
Figure (4). How we implement the recursion for the continuous and discrete factors is detailed
below.’

6. In the exact calculation, p(ht+1|s,S+1,v:T) IS a mixture of Gaussians since p(st|S+1,he+1,V1t) =
P(St;St+1, o1, VaT)/P(S+1, 1, va:T) so that the mixture of Gaussians denominator p(Si+1,ht+1,v1.T) cancels
with the first term in Equation (9), leaving a mixture of Gaussians. However, since in Equation (9) the two terms
p(ht+1|S+1,v1:7) and p(st|s+1,hi+1,Vva:t) are replaced by approximations, this cancellation is not guaranteed.

7. Equation (10) has the pleasing form of an RTS Backward Pass for the continuous part (analogous to LDS case),
and a discrete smoother (analogous to a smoother recursion for the HMM). In the Forward-Backward algorithm
for the HMM (Rabiner, 1989), the posterior vt = p(s|v1.1) is formed from the product of oy = p(st|vi:t) and Bt =
p(vi+1:7|S). This approach is also analogous to EP (Heskes and Zoeter, 2002). In the correction approach, a direct
recursion for y; in terms of yt_ 1 and ay is formed, without explicitly defining ;. The two approaches to inference are
known as a — B and a — y recursions.
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Figure 3: Our Backward Pass approximates p(hi;1|St+1,St, V1) by p(ht41/St+1,vaT). Motivation
for this is that s; only influences h¢ 1 through h¢. However, h; will most likely be heavily
influenced by v1, so that not knowing the state of s; is likely to be of secondary impor-
tance. The darker shaded node is the variable we wish to find the posterior state of. The
lighter shaded nodes are variables in known states, and the hashed node a variable whose
state is indeed known but assumed unknown for the approximation.

EVALUATING <p(ht\ht+17St7St+1,V1:t)>p(ht+1|st+1,vﬂ)

(p(ht\ht+1,st,st+1,v1;t))p(hM‘S%Vl:T) is a Gaussian in h¢, whose statistics we will now compute.
First we find p(h¢|ht+1,St,St+1, V1:t) which may be obtained from the joint distribution

p(he, het1|st,St+1,Vat) = P(hesa|he, St1) p(hefst, Vat) (11)

which itself can be found using the forward dynamics from the filtered estimate p(h|st,v1t). The
statistics for the marginal p(h;|st,St+1,V1:t) are simply those of p(ht|st, Vi), Since St+1 carries no
extra information about h;.2 The remaining statistics are the mean of h, 1, the covariance of hy, 1
and cross-variance between h; and he 1,

(ht+1) = A(St41) fi(st)
Sttt = At R (S)AT (st1) + 2 (st41), Ztrat = A(Str1)R(St)-

Given the statistics of Equation (11), we may now condition on h¢4 to find
p(ht|hts1,St,St+1,V1t). Doing so effectively constitutes a reversal of the dynamics,

-
he = A (st,St+1)hes1 + 1 (St,St1)

where (K(St,St_HL) and N (st,5t41) ~ N(P(st,5t41), <f(st,st+1)) are easily found using the condi-
tioned Gaussian results in Appendix (C)—see also Algorithm (5). Averaging the reversed dynamics

we obtain a Gaussian in h; for (p(ht|ht+1,st,st+1,v1;t))p(hw‘s%vm with statistics

«—

— — —
e = A (St,St4+1)9(St+1) + M (St,St+1), Ztr = A (St,5t+1)G(St1) AT (St,St1) + Z (St,St41)-

These equations directly mirror the RTS Backward Pass, see Algorithm (5).

8. Integrating over h;,1 means that the information from s 1 passing through h;;1 via the term p(hi+1|S+1, ht) van-
ishes. Also, since s is known, no information from s, 1 passes through  to h;.
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ONGD>

Figure 4: Structure of the Backward Pass for mixtures. Given the smoothed information at time-
step t + 1, we need to work backwards to ‘correct’ the filtered estimate at time t.

EVALUATING p(St|St+1,V1T)
The main departure of EC from previous methods is in treating the term

P(St/St+1,VaT) = (P(St/Nt+1, St42, Vi) phy.a s avar) - 12)
The term p(st|ht41,St+1,V1:t) IS given by

P(ht41/St, St+1, V1) P(St, St4+1|Vet)
>« P(heralst, Sto1,Vat) P(St; Sta|vVat)

D(St\ht+1,st+1,V1:t) = (13)
Here p(st,St+1|Vat) = P(St+a(St,Vit)P(St|v1t), Where p(st.1/st,Vat) occurs in the Forward Pass,
Equation (7). In Equation (13), p(ht1|St+1,5t, V1) is found by marginalizing Equation (11).

Performing the average over p(ht1|St+1,v1:7) in Equation (12) may be achieved by any nu-
merical integration method desired. Below we outline a crude approximation that is fast and often
performs surprisingly well.

MEAN APPROXIMATION

A simple approximation of Equation (12) is to evaluate the integrand at the mean value of the
averaging distribution. Replacing h;. 1 in Equation (13) by its mean gives the simple approximation

< ( |h )> 1 e_%ZIT+1(5¢aSHl)Zfl(S(,S[+1|V1;t)zt+l(s(7st+l)
St|Nt+1,St+1, V1t -
p o Pllann =z V/detZ (s, se41/Vid)

where zi11(St,St+1) = (he+a|St+1,VaT) — (Mita|St, St+1,Vat) and Z ensures normalization over s;.
This result comes simply from the fact that in Equation (12) we have a Gaussian with a mean
(ht+1]st,St+1, V1) and covariance X(st,St+1|V1t), being the filtered covariance of hi11 given st,St1+1
and the observations vi¢, which may be taken from X, in Equation (5). Then evaluating this
Gaussian at the specific point (h¢1|St+1,V1:T), We arrive at the above expression. An alternative
to this simple mean approximation is to sample from the Gaussian p(hi+1|St+1,V1-T), Which has
the potential advantage that covariance information is used.® Other methods such as variational

P(St|St+1,V1t)

9. This is a form of exact sampling since drawing samples from a Gaussian is easy. This should not be confused with
meaning that this use of sampling renders EC a sequential Monte-Carlo sampling scheme.
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Algorithm 2aSLDS: EC Backward Pass (Single Gaussian case | =J = 1). Approximates p(st|v1.T)
and p(h|st,viT) = AL(Gt(St), Ge(St)). This routine needs the results from Algorithm (1) for | = 1.
Gt « Fr, 071 « fr,
fort—T—1toldo
fors<—1toS,s’ — 1toSdo,
(W4, X)(s,8") = LDSBACKWARD(Gt+1(5'), Gt+1(5'), fi (S), R (S), Bt+1(5))
DISIS') = (P51 =SlPti1, 50 =5 V50 iy e s )
p(s,s'|VeT) < p(St+1 = s'|ve:T)p(s]s’)
end for

for s —1toSdo
Collapse the mixture defined by weights p(st+1 = §'|st,vi:T) O p(st,S'|vaT), means
u(st,s’) and covariances Z(st,s’) to a single Gaussian. This defines the new means
gt(st), covariances G (st).
P(st|veT) «— Yo P(St,S'|VeT)
end for
end for

approximations to this average (Jaakkola and Jordan, 1996) or the unscented transform (Julier and
Uhlmann, 1997) may be employed if desired.

CLOSING THE RECURSION

We have now computed both the continuous and discrete factors in Equation (10), which we wish
to use to write the smoothed estimate in the form p(h,st|viT) = p(st|vaT)p(ht|St,veT). The distri-
bution p(ht|st,v1T) is readily obtained from the joint Equation (10) by conditioning on s; to form
the mixture

p(hefst.var) = > P(st+alst, var)p(helst, St4a,var)
S+1
which may be collapsed to a single Gaussian (or mixture if desired). As in the Forward Pass, this
collapse implicitly defines the Gaussian mean g(s;) and covariance G(s;). The smoothed posterior
p(st|ve:T) is given by

p(st|veT) = z P(St+1|VeT)P(St|St+1,V1T)
S+1

= Z P(St+1/veT) <p(5t|ht+1,5t+1,V1:t)>p(ht+1\st+17V1:T) . (14)

S+1

The algorithm for the single Gaussian case is presented in Algorithm (2).

NUMERICAL STABILITY

Numerical stability is a concern even in the LDS, and the same is to be expected for the aSLDS.
Since the LDS recursions LDSFORWARD and LDSBACKWARD are embedded within the EC al-
gorithm, we may immediately take advantage of the large body of work on stabilizing the LDS
recursions, such as the Joseph form (Grewal and Andrews, 1993), or the square root forms (Park
and Kailath, 1996; Verhaegen and Van Dooren, 1986).
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RELAXING EC

The conditional independence assumption p(ht.t1|St,St+1,V1:T) &~ P(hey1/St+1,VeT) IS not strictly
necessary in EC. We motivate it by computational simplicity, since finding an appropriate moment
matching approximation of p(h¢,1|st,St+1,V1.7) in Equation (9) requires a relatively expensive non-
Gaussian integration. If we therefore did treat p(hi;1]St,St+1,vV1.T) more correctly, the central as-
sumption in this relaxed version of EC would be a collapse to a mixture of Gaussians (the additional
computation of Equation (12) may usually be numerically evaluated to high precision). Whilst we
did not do so, implementing this should not give rise to numerical instabilities since no potential
divisions are required, merely the estimation of moments. In the experiments presented here, we did
not pursue this option, since we believe that the effect of this conditional independence assumption
is relatively weak.

INCONSISTENCIES IN THE APPROXIMATION

The recursion Equation (8), upon which EC depends, makes use of the Forward Pass results,
and a subtle issue arises about possible inconsistencies in the Forward and Backward approxi-
mations. For example, under the conditional independence assumption in the Backward Pass,
p(ht|st—1,5T,v1.T) =~ p(ht|sT,viT), Which is in contradiction to Equation (5) which states that
the approximation to p(ht|st—1,5t,Vv1.1) will depend on st_;. Similar contradictions occur also for
the relaxed version of EC. Such potential inconsistencies arise because of the approximations made,
and should not be considered as separate approximations in themselves. Furthermore, these incon-
sistencies will most likely be strongest at the end of the chain, t = T, since only then is Equation (8)
in direct contradiction to Equation (5). Such potential inconsistencies arise since EC is not founded
on a consistency criterion, unlike EP—see Section (3)—»but rather an approximation of the exact
recursions. Our experience is that compared to EP, which attempts to ensure consistency based on
multiple sweeps through the graph, such inconsistencies are a small price to pay compared to the
numerical stability advantages of EC.

2.3 Using Mixturesin the Backward Pass
The extension to the mixture case is straightforward, based on the representation
Jt - -
p(helse.vair) = 5 p(helst, ji,var)p(itlse, vur)-
jt=1
Analogously to the case with a single component,

p(he,stlveT) = z P(St+1VeT)P(ht+1[St+1,VeT) P(Nt| fe+1, St1, 1t, St, VaeT)
it Jt41,S+1

(Pt Stlhera, e, SHl’Vlzt)>p(ht+1|jt+1,$4+1,V1:T> )

The average in the last line of the above equation can be tackled using the same techniques as
outlined in the single Gaussian case. To approximate p(ht|ji+1,St+1, It,St,V1:T) We consider this as
the marginal of the joint distribution

p(he, hepa|ie, Sty Jeo1,St+1,VeT) = P(he|Neta, e, Sty Je1, St+1, Var) P(Neralie, Sty Jer1s Sto1,VLT)-
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Algorithm 3 aSLDS: EC Backward Pass.  Approximates p(si|vit) and p(h¢|st,viT) =
zi:l Ut (Jt, St)AC(9t (i, St), Ge (i, St ) ) using a mixture of Gaussians. Jr = It,J; < S x I x J41. This
routine needs the results from Algorithm (1).
Gt —Fr, 071 — fr,ut —wy (*)
fort—T—1toldo
for s« 1toS,s’—1toS,i<—1tol, j < 1toJ1do
(u,Z)(i,S, j/)S,) = LDSBACKWARD(gt+1(j/78/)7Gt-‘rl(j/vsl)? ft(i’s)7 Ft(iﬂs)vet-Fl(S,))
p(i.s|i’;s") = (p(st =s,it = i[Nt11,St11 =, Jerr = J', V1)) pihsasisams josa—ivar)
p(i757 j,,S/|V1;T) — p(SH—l = s,‘vliT)ut-&-l(j/aS,) p(i,S’j/,S,)
end for
for ss —1toSdo
Collapse the mixture defined by weights p(it = i,St+1 = 8, jiv1 = J[st,VaT) U
p(i,st, j',5'|vaT), means p(i,St, j', ') and covariances X (it,St, j',s") to a mixture with
Ji components. This defines the new means g ( jt,St), covariances Gt (jt,St) and mix-
ture weights u; ( j, St ).
p(st|veT) < S, s PCit,St, I, [VeT)
end for
end for

(*) If I1 < Iy then the initialization is formed by collapsing the Forward Pass results at time T to Jy
components.

As in the case of a single mixture, the problematic term is p(h¢1|it, St, ji+1,St+1,V1T). Analogously
to before, we may make the assumption

p(heyalit,St, jt+1,St+1,VeT) =~ P(Netal Ji+1,St+1,VeT)

meaning that information about the current switch state s, i is ignored.1® We can then form

p(he|st,viT) = z P(it, Jt+1,St41/St, VeT) P(he|it, St fes1,St+1,VLT)-
it Jt41,S+1

This mixture can then be collapsed to smaller mixture using any method of choice, to give

X
p(he|st,viT) ~ Z p(he|jt, St vaT)P(tlst, vVaT)
jt=1

The collapse procedure implicitly defines the means g( jt, St) and covariances G( j;, st ) of the smoothed
approximation. A recursion for the switches follows analogously to the single component Backward
Pass. The resulting algorithm is presented in Algorithm (3), which includes using mixtures in both
Forward and Backward Passes. Note that if J; < I, an extra initial collapse is required of the Iy
component Forward Pass Gaussian mixture at time T to J;t components.

EC has time complexity O(S?IJK) where S are the number of switch states, | and J are the
number of Gaussians used in the Forward and Backward passes, and K is the time to compute the
exact Kalman smoother for the system with a single switch state.

10. As in the single component case, in principle, this assumption may be relaxed and a moment matching approximation
be performed instead.
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3. Relation to Other Methods

Approximate inference in the SLDS is a long-standing research topic, generating an extensive liter-
ature. See Lerner (2002) and Zoeter (2005) for reviews of previous work. A brief summary of some
of the major existing approaches follows.

Assumed Density Filtering Since the exact filtered estimate p(h|st, V1) is an (exponentially large)
mixture of Gaussians, a useful remedy is to project at each stage of the recursion Equation (3)
back to a limited set of K Gaussians. This is a Gaussian Sum Approximation (Alspach and
Sorenson, 1972), and is a form of Assumed Density Filtering (ADF) (Minka, 2001). Simi-
larly, Generalized Pseudo Bayes2 (GPB2) (Bar-Shalom and Li, 1998) also performs filtering
by collapsing to a mixture of Gaussians. This approach to filtering is also taken in Lerner
et al. (2000) which performs the collapse by removing spatially similar Gaussians, thereby
retaining diversity.

Several smoothing approaches directly use the results from ADF. The most popular is Kim’s
method, which updates the filtered posterior weights to form the smoother (Kim, 1994; Kim
and Nelson, 1999). In both EC and Kim’s method, the approximation

p(htt1lst,St+1,VeT) = P(hty1|St+1, V1), is used to form a numerically simple Backward Pass.
The other approximation in EC is to numerically compute the average in Equation (14). In
Kim’s method, however, an update for the discrete variables is formed by replacing the re-
quired term in Equation (14) by

(P(StINt+2,St+2, Vi) phyafsieaver) = P(StlSt+1,Va)- (15)

This approximationt! decouples the discrete Backward Pass in Kim’s method from the con-
tinuous dynamics, since p(St|St+1,Vat) O P(St+1/St)P(st|Vat)/P(St+1/vit) can be computed
simply from the filtered results alone (the continuous Backward Pass in Kim’s method, how-
ever, does depend on the discrete Backward Pass). The fundamental difference between EC
and Kim’s method is that the approximation (15) is not required by EC. The EC Backward
Pass therefore makes fuller use of the future information, resulting in a recursion which in-
timately couples the continuous and discrete variables. The resulting effect on the quality of
the approximation can be profound, as we will see in the experiments.

Kim’s smoother corresponds to a potentially severe loss of future information and, in general,
cannot be expected to improve much on the filtered results from ADF. The more recent work
of Lerner et al. (2000) is similar in spirit to Kim’s method, whereby the contribution from
the continuous variables is ignored in forming an approximate recursion for the smoothed
p(st|viT). The main difference is that for the discrete variables, Kim’s method is based on a
correction smoother (Rauch et al., 1965), whereas Lerner’s method uses a Belief Propagation
style Backward Pass (Jordan, 1998). Neither method correctly integrates information from the
continuous variables. How to form a recursion for a mixture approximation which does not
ignore information coming through the continuous hidden variables is a central contribution
of our work.

Kitagawa (1994) used a two-filter method in which the dynamics of the chain are reversed.
Essentially, this corresponds to a Belief Propagation method which defines a Gaussian sum

11. In the HMM this is exact, but in the SLDS the future observations carry information about s;.

2527



BARBER

EC | Relaxed EC | EP | Kim
Mixture Collapsing to Single X
Mixture Collapsing to Mixture X X X
Cond. Indep. p(ht+1ls, S+1,vaT) = p(heralSea,var) | X X
Approx. of p(st|s+1,V1:T), average Equation (12) X X
Kim’s Backward Pass X
Mixture approx. of p(hyy1|s,S+1,Vv1:T), Equation (9) X

Table 1: Relation between methods. In the EC methods, the mean approximation may be replaced
by an essentially exact Monte Carlo approximation to Equation (12). EP refers to the
Single Gaussian approximation in Heskes and Zoeter (2002). In the case of using Relaxed
EC with collapse to a single Gaussian, EC and EP are not equivalent, since the underlying
recursions on which the two methods are based are fundamentally different.

approximation for p(vi+17|ht,St). However, since this is not a density in h,s;, but rather
a conditional likelihood, formally one cannot treat this using density propagation methods.
In Kitagawa (1994), the singularities resulting from incorrectly treating p(vi+1.7|ht,St) as a
density are heuristically finessed.

Expectation Propagation EP (Minka, 2001), as applied to the SLDS, corresponds to an approxi-
mate implementation of Belief Propagation®? (Jordan, 1998; Heskes and Zoeter, 2002). EP
is the most sophisticated rival to Kim’s method and EC, since it makes the least assumptions.
For this reason, we’ll explain briefly how EP works. Unlike EC, which is based on an ap-
proximation of the exact filtering and smoothing recursions, EP is based on a consistency
criterion.

First, let’s simplify the notation, and write the distribution as p = [y @(Xt—1,Vt—1, %, Vt), where
X = hy @5y, and @(X¢_1,Vi_1, %, Ve) = p(Xe|Xt_1) p(ve|X;). EP defines ‘messages’ p, A*2 which
contain information from past and future observations respectively.’* Explicitly, we define
pt(Xt) O p(x¢|v1t) to represent knowledge about x; given all information from time 1 to t.
Similarly, A¢(x;) represents knowledge about state x; given all observations from time T to
time t + 1. In the sequel, we drop the time suffix for notational clarity. We define A(xt)
implicitly through the requirement that the marginal smoothed inference is given by

P(Xt|veT) O p(Xe) A (Xt) - (16)

Hence A (x;) O p(Vi+11|%,V1t) = P(Ve+17|%) and represents all future knowledge about
p(X¢|vaT). From this

P(Xt—1,%|VeT) O P (Xe—1) @(Xt—1, Vi—1, Xt, Ve ) A (Xt) - (17)

12. Non-parametric belief propagation (Sudderth et al., 2003), which performs approximate inference in general contin-
uous distributions, is also related to EP applied to the aSLDS, in the sense that the messages cannot be represented
easily, and are approximated by mixtures of Gaussians.

13. These correspond to the a and 3 messages in the Hidden Markov Model framework (Rabiner, 1989).

14. In this Belief Propagation/EP viewpoint, the backward messages, traditionally labeled as 3, correspond to conditional
likelihoods, and not distributions. In contrast, in the EC approach, which is effectively a so-called a — y recursion,
the backward y messages correspond to posterior distributions.
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Taking the above equation as a starting point, we have

p(X¢|veT) O P (Xt—1) @(Xt—1,Ve—1,Xt, Vi) A (X¢t) -
Xe—1

Consistency with Equation (16) requires (neglecting irrelevant scalings)
P (X) A (Xt) D/ P (Xt—1) @(Xe—1,Vi-1, %, Vi) A (%) -
X-1

Similarly, we can integrate Equation (17) over Xx; to get the marginal at time x;_1 which, by
consistency, should be proportional to p (X;—1) A (x—1). Hence

0 fxt,lp(xt—l)(p(xt—laxt))\(Xt)

p(x) A ) A(x_1) O fxt P (Xt—1) @(Xt—1,% ) A (%)

P (Xt-1)

where the divisions can be interpreted as preventing over-counting of messages. In an exact
implementation, the common factors in the numerator and denominator cancel. EP addresses
the fact that A(x;) is not a distribution by using Equation (18) to form the projection (or
‘collapse’). In the numerator, [, . P (Xt—1) @(X—1,%)A () and [, p(X—1) @(Xt—1,X0) A (%)
represent p(x¢|vi1) and p(x—1|viT). Since these are distributions (an indexed mixture of
Gaussians in the SLDS), they may be projected/collapsed to a single indexed Gaussian. The
update for the p message is then found from division by the A potential, and vice versa.
In EP the explicit division of potentials only makes sense for members of the exponential
family. More complex methods could be envisaged in which, rather than an explicit divi-
sion, the new messages are defined by minimizing some measure of divergence between
P(x)A(Xt) and [, . P (X—1) @(Xt—1,%) A (%), such as the Kullback-Leibler divergence. In this
way, non-exponential family approximations (such as mixtures of Gaussians) may be consid-
ered. Whilst this is certainly feasible, it is somewhat unattractive computationally since this
would require for each time-step an expensive minimization.

(18)

For the single Gaussian case, in order to perform the division, the potentials in the numerator
and denominator are converted to their canonical representations. To form the p update,
the result of the division is then reconverted back to a moment representation. The resulting
recursions, due to the approximation, are no longer independent and Heskes and Zoeter (2002)
show that using more than a single Forward and Backward sweep often improves on the
quality of the approximation. This coupling is a departure from the exact recursions, which
should remain independent.

Applied to the SLDS, EP suffers from severe numerical instabilities (Heskes and Zoeter,
2002) and finding a way to minimize the corresponding EP free energy in an efficient, robust
and guaranteed way remains an open problem. Our experience is that current implementa-
tions of EP are unsuitable for large scale time-series applications. Damping the parameter
updates is one suggested approach to heuristically improve convergence. The source of these
numerical instabilities is not well understood since, even in cases when the posterior ap-
pears uni-modal, the method is problematic. The frequent conversions between moment and
canonical parameterizations of Gaussians are most likely at the root of the difficulties. An
interesting comparison here is between Lauritzen’s original method for exact computation on
conditional Gaussian distributions (for which the SLDS is a special case) Lauritzen (1992),
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which is numerically unstable due to conversion between moment and canonical representa-
tions, and Lauritzen and Jensen (2001), which improves stability by avoiding using canonical
parameterizations.

Variational Methods Ghahramani and Hinton (1998) used a variational method which approxi-
mates the joint distribution p(hyt,S1.7|veT) rather than the marginal p(h;,st|vi.T)—related
work is presented in Lee et al. (2004). This is a disadvantage when compared to other methods
that directly approximate the marginal. The variational methods are nevertheless potentially
attractive since they are able to exploit structural properties of the distribution, such as a fac-
tored discrete state-transition. In this article, we concentrate on the case of a small number of
states S and hence will not consider variational methods further here.1®

Sequential Monte Carlo (Particle Filtering) These methods form an approximate implementation
of Equation (3), using a sum of delta functions to represent the posterior—see, for example,
Doucet et al. (2001). Whilst potentially powerful, these non-analytic methods typically suffer
in high-dimensional hidden spaces since they are often based on naive importance sampling,
which restricts their practical use. ADF is generally preferential to Particle Filtering, since in
ADF the approximation is a mixture of non-trivial distributions, which is better at capturing
the variability of the posterior. Rao-Blackwellized Particle Filters (Doucet et al., 2000) are an
attempt to alleviate the difficulty of sampling in high-dimensional state spaces by explicitly
integrating over the continuous state.

Non-Sequential Monte Carlo

For fixed switches s1.1, p(vit|s1T) is easily computable since this is just the likelihood of
an LDS. This observation raises the possibility of sampling from the posterior p(Si.t|viT) O
p(viT|S1T)p(s1T) directly. Many possible sampling methods could be applied in this case,
and the most immediate is Gibbs sampling, in which a sample for each t is drawn from
p(st|s\t,va.T)—see Neal (1993) for a general reference and Carter and Kohn (1996) for an
application to the SLDS. This procedure may work well in practice provided that the initial
setting of s1.1 is in a region of high probability mass—otherwise, sampling by such individual
coordinate updates may be extremely inefficient.

4. Experiments

Our experiments examine the stability and accuracy of EC against several other methods on long
time-series. In addition, we will compare the absolute accuracy of EC as a function of the number
of mixture components on a short time-series, where exact inference may be explicitly evaluated.
Testing EC in a problem with a reasonably long temporal sequence, T, is important since nu-
merical stabilities may not be apparent in time-series of just a few time-steps. To do this, we
sequentially generate hidden states hg,s; and observations v; from a given model. Then, given only
the parameters of the model and the observations (but not any of the hidden states), the task is to
infer p(ht|st,v1.T) and p(st|viT). Since the exact computation is exponential in T, a formally exact
evaluation of the method is infeasible. A simple alternative is to assume that the original sam-
ple states s;.1 are the ‘correct’ inferred states, and compare our most probable posterior smoothed

15. Lerner (2002) discusses an approach in the case of a large structured discrete state transition. Related ideas could
also be used in EC.
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(a) Easy problem (b) Hard problem

Figure 5: SLDS: Throughout, S =2,V = 1 (scalar observations), T = 100, with zero output bias.

A(s) = 0.9999  orth(randn(H, H)), B(s) = randn(V,H), v{ =0, hy = 10« randn(H, 1),
ht=1 =0, 2 = Iyy, p1 = uniform. The figures show typical examples for each of the two
problems: (a) Easy problem. H = 3, Z"(s) = Iy, ZV(s) = 0.1k, p(sty1/st) O 1sxs+Is.
(b) Hard problem. H = 30, ZV(s) = 30ly,X"(s) = 0.01ly, p(st+1/st) O 1sxs.
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Figure 6: SLDS “Easy’ problem: The number of errors in estimating a binary switch p(s¢|v1.1) over

a time series of length T = 100. Hence 50 errors corresponds to random guessing. Plotted
are histograms of the errors over 1000 experiments. The histograms have been cutoff at 20
errors in order to improve visualization. (PF) Particle Filter. (RBPF) Rao-Blackwellized
PF. (EP) Expectation Propagation. (ADFS) Assumed Density Filtering using a Single
Gaussian. (KimS) Kim’s smoother using the results from ADFS. (ECS) Expectation
Correction using a Single Gaussian (I =J = 1). (ADFM) ADF using a multiple of | =4
Gaussians. (KimM) Kim’s smoother using the results from ADFM. (ECM) Expectation
Correction using a mixture with I = J = 4 components. In Gibbs sampling, we use the
initialization from ADFM.

estimates argmaxs, p(st|v1T) with the assumed correct sample s;.*6 We look at two sets of experi-
ments, one for the SLDS and one for the aSLDS. In both cases, scalar observations are used so that
the complexity of the inference problem can be visually assessed.

16.

We could also consider performance measures on the accuracy of p(ht|s,vi.1). However, we prefer to look at approx-
imating argmaxs, p(s|v1.7) since the sampled discrete states are likely to correspond to the exact argmaxs, p(s|ViT).
In addition, if the posterior switch distribution is dominated by a single state sj., then provided they are correctly
estimated, the model reduces to an LDS, for which inference of the continuous hidden state is trivial.
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Figure 7: SLDS “Hard’ problem: The number of errors in estimating a binary switch p(s;|vi.T) over
a time series of length T = 100. Hence 50 errors corresponds to random guessing. Plotted
are histograms of the errors over 1000 experiments.

SLDS EXPERIMENTS

We chose experimental conditions that, from the viewpoint of classical signal processing, are dif-
ficult, with changes in the switches occurring at a much higher rate than the typical frequencies in
the signal. We consider two different toy SLDS experiments : The ‘easy’ problem corresponds to
a low hidden dimension, H = 3, with low observation noise; The ‘hard’ problem corresponds to
a high hidden dimension, H = 30, and high observation noise. See Figure (5) for details of the
experimental setup.

We compared methods using a single Gaussian, and methods using multiple Gaussians, see Fig-
ure (6) and Figure (7). For EC we use the mean approximation for the numerical integration of
Equation (12). For the Particle Filter 1000 particles were used, with Kitagawa re-sampling (Kita-
gawa, 1996). For the Rao-Blackwellized Particle Filter (Doucet et al., 2000), 500 particles were
used, with Kitagawa re-sampling. We included the Particle Filter merely for a point of comparison
with ADF, since they are not designed to approximate the smoothed estimate.

An alternative MCMC procedure is to perform Gibbs sampling of p(sy.t|viT) using p(st|s\¢,ve:T) O
P(ViT|S1:T)P(S1T), Where p(viT|s1T) is simply the likelihood of an LDS—see for example Carter
and Kohn (1996).1" We initialize the state s;.t by using the most likely states s; from the filtered
results using a Gaussian mixture (ADFM), and then swept forwards in time, sampling from the state
P(st|s\¢, V1) until the end of the chain. We then reversed direction, sampling from time T back to
time 1, and continued repeating this procedure 100 times, with the mean over the last 80 sweeps
used as the posterior mean approximation. This procedure is expensive since each sample requires
computing the likelihood of an LDS defined on the whole time-series. The procedure therefore
scales with GT 2 where G is the number of sweeps over the time series. Despite using a reasonable
initialization, Gibbs sampling struggles to improve on the filtered results.

We found that EP was numerically unstable and often struggled to converge. To encourage

convergence, we used the damping method in Heskes and Zoeter (2002), performing 20 iterations
with a damping factor of 0.5. The disappointing performance of EP is most likely due to conflicts

17. Carter and Kohn (1996) proposed an overly complex procedure for computing the likelihood p(vi.T|si:t). This is
simply the likelihood of an LDS (since s;.1 are assumed known), and is readily computable using any of the standard
procedures in the literature.
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Figure 8: aSLDS: Histogram of the number of errors in estimating a binary switch p(s¢|v1.7) over a
time series of length T = 100. Hence 50 errors corresponds to random guessing. Plotted
are histograms of the errors over 1000 experiments. Augmented SLDS results. ADFM
used | = 4 Gaussians, and ECM used | = J = 4 Gaussians. We used 1000 samples to
approximate Equation (12).

| 1 4 4 16 16 64 64 256 256
J 1 1 4 1 16 1 64 1 256
error | 0.0989 | 0.0624 | 0.0365 | 0.0440 | 0.0130 | 0.0440 | 4.75e-4 | 0.0440 | 3.40e-8

Table 2: Errors in approximating the states for the multi-path problem, see Figure (9). The mean
absolute deviation |p®(s¢|vy.T) — p®@®(sy|vy.T)| averaged over the S = 4 states of s; and
over the timest =1,...,5, computed for different numbers of mixture components in EC.
The mean approximation of Equation (12) is used. The exact computation uses ST~ = 256
mixtures.

resulting from numerical instabilities introduced by the frequent conversions between moment and
canonical representations.

The various algorithms differ widely in performance, see Figures (6,7). Not surprisingly, the
best filtered results are given using ADF, since this is better able to represent the variance in the
filtered posterior than the sampling methods. Unlike Kim’s method, EC makes good use of the
future information to clean up the filtered results considerably. One should bear in mind that both
EC, Kim’s method and the Gibbs initialization use the same ADF results. These results show that
EC may dramatically improve on Kim’s method, so that the small amount of extra work in making
a numerical approximation of p(st|st+1,Vv1.T), Equation (12), may bring significant benefits.

AUGMENTED SLDS EXPERIMENTS

In Figure (8), we chose a simple two state S = 2 transition distribution p(s¢+1 =1|st,ht) =0 (h{w(s;)),
where o(x) = 1/(1+e7*). Some care needs to be taken to make a model so for which even exact
inference would produce posterior switches close to the sampled switches. If the switch variables
Si.1 changes wildly (which is possible given the above formula since the hidden state h may have a
large projected change if the hidden state changes) essentially no information is left in the signal for
any inference method to produce reasonable results. We therefore set w(s) to a zero vector except
for the first two components, which are independently sampled from a zero mean Gaussian with
standard deviation 5. For each of the two switch states, s, we have a transition matrix A(s), which
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Figure 9: (a) The multi-path problem. The particle starts from (0,0) at time t = 1. Subsequently,
at each time-point, either the vector (10,10) (corresponding to states s =1 and s = 3)
or (—10,10) (corresponding to states s = 2 and s = 4), is added to the hidden dynamics,
perturbed by a small amount of noise, " = 0.1. The observations are v =h-+nV(s). For
states s = 1,2 the observation noise is small, ZV = 0.1I, but for s = 3,4 the noise in the
horizontal direction has variance 1000. The visible observations are given by the x’. The
true hidden states are given by ‘+°. (b) The exact smoothed state posteriors p®&* (s;|vy.1)
computed by enumerating all paths (given by the dashed lines).

we set to be block diagonal. The first 2 x 2 block is set to 0.9999Rg, Where Rg is a 2 x 2 rotation
matrix with angle 6 chosen uniformly from 0 to 1 radians. This means that s¢, 1 is dependent on the
first two components of hy which are rotating at a restricted rate. The remaining H — 2 x H — 2 block
of A(s) is chosen as (using MATLAB notation) 0.9999 x orth(rand(H — 2)), which means a scaled
randomly chosen orthogonal matrix. Throughout, S =2,V =1, H =30, T = 100, with zero output
bias. Using partly MATLAB notation, B(s) = randn(V,H), vi =0, hy = 10 «randn(H, 1), hi~1 =0,
3N = Iy, p1 = uniform. =V = 30ly, =" = 0.11y.

We compare EC only against Particle Filters using 1000 particles, since other methods would
require specialized and novel implementations. In ADFM, | = 4 Gaussians were used, and for
ECM, | =J =4 Gaussians were used. Looking at the results in Figure (8), we see that EC performs
well, with some improvement in using the mixture representation 1,J = 4 over a single Gaussian
I =J = 1. The Particle Filter most likely failed since the hidden dimension is too high to be explored
well with only 1000 particles.

EFFECT OF USING MIXTURES

Our claim is that EC should cope in situations where the smoothed posterior p(ht|st,vi.T) is multi-
modal and, consequently, cannot be well represented by a single Gaussian.’® We therefore con-
structed an SLDS which exhibits multi-modality to see the effect of using EC with both | and J
greater than 1. The ‘multi-path’ scenario is described in Figure (9), where a particle traces a path
through a two dimensional space. A small number of time-steps was chosen so that the exact
p(st|ve.T) can be computed by direct enumeration. The observation of the particle is at times ex-
tremely noisy in the horizontal direction. This induces multi-modality of p(h¢|st,v1.T) since there

18. This should not be confused with the multi-modality of p(h¢|vi:t) = Y5 p(ht|s, Vo) p(S|veT)-
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are several paths that might plausibly have been taken to give rise to the observations. The accuracy
with which EC predicts the exact smoothed posterior is given in Table (2). For this problem we
see that both the number of Forward (I) and Backward components (J) affects the accuracy of the
approximation, generally with improved accuracy as the number of mixture components increases.
For a ‘perfect’ approximation method, one would expect that when | = J = ST—! = 256, then the
approximation should become exact. The small error for this case in Table (2) may arise for several
reasons: the extra independence assumption used in EC, or the simple mean approximation used
to compute Equation (12), or numerical roundoff. However, at least in this case, the effect of these
assumptions on the performance is very small.

5. Discussion

Expectation Correction is a novel form of Backward Pass which makes less approximations than the
widely used approach from Kim (1994). In Kim’s method, potentially important future information
channeled through the continuous hidden variables is lost. EC, along with Kim’s method, makes the
additional assumption p(ht1]st,St+1,V1:T) = pP(ht+1St+1, V1. ). However, our experience is that this
assumption is rather mild, since the state of h;,1 will be most heavily influenced by its immediate
parent S 1.

Our approximation is based on the idea that, although exact inference will consist of an expo-
nentially large number of mixture components, due to the forgetting which commonly occurs in
Markovian models, a finite number of mixture components may provide a reasonable approxima-
tion. In tracking situations where the visible information is (temporarily) not enough to specify
accurately the hidden state, then representing the posterior p(h;|st,vi.T) using a mixture of Gaus-
sians may improve results significantly. Clearly, in systems with very long correlation times our
method may require too many mixture components to produce a satisfactory result, although we are
unaware of other techniques that would be able to cope well in that case.

We hope that the straightforward ideas presented here may help facilitate the practical appli-
cation of dynamic hybrid networks to machine learning and related areas. Whilst models with
Gaussian emission distributions such as the SLDS are widespread, the extension of this method to
non-Gaussian emissions p(vt|ht,st) would clearly be of considerable interest.

Software for Expectation Correction for this augmented class of Switching Linear Gaussian
models is available from www. i di ap. ch/ ~bar ber .
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Algorithm 4 LDS Forward Pass. Compute the filtered posteriors p(ht|vi) = A(fi,R) for
a LDS with parameters 6, = A,B,>", 3V, h,v, for t > 1. At time t = 1, we use parameters
01 = A,B,X,2V.1,v, where Z and u are the prior covariance and mean of h. The log-likelihood
L =log p(v1:1) is also returned.
Fp«+0, fog«—0,L—0
fort— 1, T do
{ft,R, pt} = LDSFORWARD( fi_1,R_1,Vi; 6)
L — L+logpt
end for
function LDSFORWARD(f, F,v; 0)
Compute joint p(hg, Vi |V1:t—1):
Hh — Af +h, by < Bpp +Vv
2hh — AFAT + Zh, 2w — BzthT + 2V, 2vh < BZph
Find p(ht|v1:) by conditioning:
f—pn+ ISt (v—py),  F e Zp— s
Compute p(Vt[Vy:—1):
P exp (3 (v— ) Et (v — ) ) /VEeT2TE
return f',F’, p/
end function

Appendix A. Inferencein theLDS

The LDS is defined by Equations (1,2) in the case of a single switch S =1. The LDS Forward
and Backward passes define the important functions LDSFORWARD and LDSBACKWARD, which
we shall make use of for inference in the aSLDS.

FORWARD PASS (FILTERING)

The filtered posterior p(ht|vi:t) is a Gaussian which we parameterize with mean f; and covariance
R. These parameters can be updated recursively using p(ht|vi:t) O p(ht, V¢ |Vit—1), where the joint
distribution p(h,v¢|v1t—1) has statistics (see Appendix (B))

Mh=Af1+h, P =Bn+V

Shh=AR_AT+35" 5, =BZmBT+5', =i =BZm.

We may then find p(ht|v1:t) by conditioning p(ht,vi|vit—1) on v, see Appendix (C). This gives rise
to Algorithm (4).

BACKWARD PASS

The smoothed posterior p(h;|vi.T) = N (g, Gt) can be computed recursively using:

p(hilvit) = /h p(helhes,vir ) p(hesajvat) = / p(he|hes,va) p(hes 1 [vet)

+1 +1

where p(ht|ht;1,V1:t) may be obtained from the joint distribution

p(he, heya|vat) = p(hesa|he) p(he|vay) (19)
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Algorithm 5 LDS Backward Pass. Compute the smoothed posteriors p(h¢|vi.1). This requires the
filtered results from Algorithm (4).
Gr—Fr,gr<fr
fort—T—-1,1do
{9t,Gt} = LDSBACKWARD(Gt +1, Gt 11, ft, R 6t11)

end for
function LDSBACKWARD(g,G, f,F;0)
Hp «— Af +h, Tty — AFAT + 2N, Tih < AF

5 T s-1 N T 51 N
Z — Ft — zh/hzh/h/zh/h, A — zh/hzh/h/, ﬁ — f — A uh
g’<—<Kg+ﬁ G — AGAT+ 3
returng’,G’

end function

which itself can be obtained by forward propagation from p(h¢|v1:t). Conditioning Equation (19) to
find p(h¢|hi+1, V1) effectively reverses the dynamics,

_
he = Ache g + e

where E and ¢ ~ AL(g, Z) are found using the conditioned Gaussian results in Appendix (C)—
these are explicitly given in Algorithm (5). Then averaging the reversed dynamics over p(h1|viT)
we find that p(h;|vy.7) is a Gaussian with statistics

— — — —
O = AtOti1+ M, Gr = AGri1A' + 5.

This Backward Pass is given in Algorithm (5). For parameter learning of the A matrix, the smoothed
statistic (hihy, ) is required. Using the above formulation, this is given by A;Gy 1+ (h) (h.,).
This is much simpler than the standard expressions cited in Shumway and Stoffer (2000) and Roweis
and Ghahramani (1999).

Appendix B. Gaussian Propagation

Let y be linearly related to x through y = Mx +n, where n ~ A (W,Z), and x ~ A (Ux,2x). Then
p(y) = [ P(y[X)p(x) is a Gaussian with mean My + p1 and covariance MEMT + %.

Appendix C. Gaussian Conditioning

For a joint Gaussian distribution over the vectors x and y with means iy, {y and covariance elements
Ty Zxy,2yy, the conditional p(x]y) is a Gaussian with mean py + ZXyZ;yl (y —Hy) and covariance
i — nyZ;ylzyx.

Appendix D. Collapsing Gaussians

The user may provide any algorithm of their choice for collapsing a set of Gaussians to a smaller
set of Gaussians (Titterington et al., 1985). Here, to be explicit, we present a simple one which is
fast, but has the disadvantage that no spatial information about the mixture is used.
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First, we describe how to collapse a mixture to a single Gaussian: We may collapse a mix-
ture of Gaussians p(x) = 3 PiAL(X|i, Zi) to a single Gaussian with mean ¥ pipi and covariance
i Pi (Zi+ ) — '

To collapse a mixture to a K-component mixture we retain the K — 1 Gaussians with the largest
mixture weights—the remaining N — K Gaussians are simply merged to a single Gaussian using the
above method. The alternative of recursively merging the two Gaussians with the lowest mixture
weights gave similar experimental performance.

More sophisticated methods which retain some spatial information would clearly be potentially
useful. The method presented in Lerner et al. (2000) is a suitable approach which considers remov-
ing Gaussians which are spatially similar (and not just low-weight components), thereby retaining
diversity over the possible solutions.

Appendix E. The Discrete-Continuous Factorization Viewpoint

An alternative viewpoint is to proceed analogously to the Rauch-Tung-Striebel correction method
for the LDS (Grewal and Andrews, 1993):

p(hesselvar) = 3 [ plst b, sesalvar)
+1

S+1

= 3 plsuavar) [ plh i S Vi) plhsalsen ver)

St+1 +1

= Z P(St+1VeT) (P(ht|hey1, St1,St, Var) P(St N1, St1, Vi)
S+1

~ Z P(St+1/VeT) (P(ht|Nts1,St4+1,5t, Vait)) (P(St|St+1,VeT)) (20)
— ~——————
e p(st[St41,veT)

where angled brackets (-) denote averages with respect to p(hts1|St+1,v1:1). Whilst the factorized
approximation in Equation (20) may seem severe, by comparing Equations (20) and (10) we see that
it is equivalent to the apparently milder assumption p(ht.+1|st,St+1,V1:1) =~ p(ht+1|St+1,V1:T). Hence
this factorized approximation is equivalent to the ‘standard’ EC approach in which the dependency
on s; is dropped.
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