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Abstract
We study the computational and sample complexity of parameter and structure learning in graphical
models. Our main result shows that the class of factor graphs with bounded degree can be learned
in polynomial time and from a polynomial number of training examples, assuming that the data
is generated by a network in this class. This result covers both parameter estimation for a known
network structure and structure learning. It implies as a corollary that we can learn factor graphs for
both Bayesian networks and Markov networks of bounded degree, in polynomial time and sample
complexity. Importantly, unlike standard maximum likelihood estimation algorithms, our method
does not require inference in the underlying network, and so applies to networks where inference
is intractable. We also show that the error of our learned model degrades gracefully when the
generating distribution is not a member of the target class of networks. In addition to our main
result, we show that the sample complexity of parameter learning in graphical models has an O(1)
dependence on the number of variables in the model when using the KL-divergence normalized by
the number of variables as the performance criterion.1

Keywords: probabilistic graphical models, parameter and structure learning, factor graphs, Markov
networks, Bayesian networks

1. Introduction

Graphical models are widely used to compactly represent structured probability distributions over
(large) sets of random variables. Learning a graphical model from data is important for many
applications. This learning problem can vary along several axes, including whether the data is fully
or partially observed, and whether the structure of the network is given or needs to be learned from
data.

In this paper, we focus on the problem of learning both network structure and parameters from
fully observable data, restricting attention to discrete probability distributions over finite sets. We
focus on the problem of learning a factor graph representation (Kschischang et al., 2001) of the
distribution. Factor graphs subsume both Bayesian networks and Markov networks, in that every
Bayesian network or Markov network can be written as a factor graph of (essentially) the same
size.2

1. A preliminary version of some of this work was reported in Abbeel et al. (2005).
2. The factor graph corresponding to either a Bayesian network or a Markov network can be constructed in linear time

(as a function of the size of the original network). See, for example, Kschischang et al. (2001), and Yedidia et al.
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We provide a new parameterization of factor graph distributions, which forms the basis for
our results. In this new parameterization, every factor is written as a product of probabilities over
the variables in the factor and its neighbors. We will refer to such subsets of variables as “local
subsets of variables.” These local subsets of variables are of size at most d2 for factor graphs
of bounded degree d. Thus, for factor graphs of bounded degree d, the probabilities appearing
in our new parameterization are over at most d2 variables and can be estimated efficiently from
training examples.3 Hence this new parameterization naturally leads to an algorithm that solves the
parameter learning problem in closed-form by estimating the probabilities over these local subsets
of variables from training examples. We show that our closed-form estimation procedure results in
a good estimate of the true distribution. More specifically, for factor graphs of bounded degree, if
the generating distribution falls into the target class, we show that our estimation procedure returns
an accurate solution—one of low KL-divergence from the true distribution—given a polynomial
number of training examples.

In contrast to our new parameterization, the factors in a factor graph (or a Markov network) are
typically considered to have no probabilistic interpretation at all. One exception is the canonical
parameterization used in the Hammersley-Clifford theorem for Markov networks (Hammersley and
Clifford, 1971; Besag, 1974b). The Hammersley-Clifford canonical parameterization expresses the
distribution as a product of probabilities over all variables. However, the number of different in-
stantiations is exponential in the number of variables. Therefore such probabilities over all variables
cannot be estimated accurately from a small number of training examples. As a consequence the
Hammersley-Clifford canonical parameterization is not suited for parameter learning.

Our closed-form parameter learning algorithm is the first polynomial-time and polynomial
sample-complexity parameter learning algorithm for factor graphs of bounded degree, and thereby
for Markov networks of bounded degree. In contrast, we do not know how to do maximum like-
lihood (ML) estimation in Markov networks or factor graphs without evaluating the likelihood.
Evaluating the likelihood is equivalent to evaluating the partition function. Evaluating the parti-
tion function is known to be NP-hard, both exactly and approximately (Jerrum and Sinclair, 1993;
Barahona, 1982). Indeed, all known exact algorithms grow exponentially in the tree-width of the
graph, making the computation of the partition function intractable for many, even moderately sized,
factor graphs. (See, for example, Cowell et al., 1999, for more details on such exact algorithms.)
For example, n by n grids over binary variables (which have degree bounded by 4, independently
of n) have tree-width n and the computational complexity of known algorithms for computing the
partition function (and thus of known ML algorithms) is O(2n).

We analyze the sample complexity of parameter learning as a function of the number of variables
in the network. We show that (under some mild assumptions) the sample complexity of parameter
learning in graphical models has on O(1) dependence on the number of variables in the graphical
model when using KL-divergence normalized by the number of variables as the performance crite-
rion. This result is important since it gives theoretical support for the common practice of learning
large graphical models from a relatively small number of training examples. More specifically, the
number of training examples can be much smaller than the number of parameters when learning
large graphical models.

(2001), for more details on the equivalence and conversion between factor graphs, Bayesian networks and Markov
networks.

3. For a pairwise Markov network with degree of the undirected graph bounded by d, the local subsets are of size at
most 2d.
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Building on our closed-form parameter learning algorithm, we provide an algorithm for learning
not only the parameters, but also the structure. In our new parameterization, factors that are not
present in the distribution can be computed in the same way from local probabilities as factors that
are present in the distribution. As will become clear later, a key property of our new parameterization
is that the factors not present in the distribution have all entries equal to one. This gives a very
simple test to decide whether or not a factor is present in the distribution. Thus no iterative search
procedure—as is common for most structure learning algorithms—is needed. However, to compute
all the factors from local probabilities, we need to know which variables are its neighbors. So to
complete the structure learning algorithm, we need to show how to find each factor’s neighbors.
We show that local independence tests can be used to find the neighbors of each factor. Since local
independence tests use statistics over a small number of variables only, the neighbors can be found
efficiently from a small number of training examples.

Our structure learning algorithm provides the first polynomial-time and polynomial sample-
complexity structure learning algorithm for factor graphs, and thereby for Markov networks. Note
that our algorithm applies to any factor graph of bounded degree, including those (such as grids)
where inference is intractable.

We also show that our algorithms degrade gracefully, in that they return reasonable answers
even when the underlying distribution does not come exactly from the target class of networks.

We note that the proposed algorithms are unlikely to be useful in practice in their current form.
The structure learning algorithm does an exhaustive enumeration over the possible neighbor sets of
factors in the factor graph, a process which is—although polynomial—generally infeasible even in
moderately sized networks. Both the parameter and the structure learning algorithm do not make
good use of all the available data. Nevertheless, the techniques used in our analysis open new
avenues towards efficient parameter and structure learning in undirected, intractable models.

The remainder of this paper is organized as follows. Section 2 provides necessary background
about Gibbs distributions, the factor graph associated with a Gibbs distribution, Markov blankets
and the Hammersley-Clifford canonical parameterization. In its original form, the Hammersley-
Clifford theorem applies to Markov networks only. We provide an extension that applies to factor
graphs. In Section 3, building on the canonical parameterization for factor graphs, we derive our
novel parameterization, which forms the basis of our parameter estimation algorithm. We present
our algorithm and provide formal running time and sample complexity guarantees. We conclude the
section with an in-depth analysis of the relationship between the sample complexity and the number
of random variables. In Section 4, we present our structure learning algorithm, and its formal
guarantees. Section 5 discusses related work. For clarity of exposition, we provide the complete
proofs of all theorems and propositions in the appendix.

Table 1 gives an overview of the notation we use throughout this paper.

2. Preliminaries

In this section we first introduce Gibbs distributions, the factor graph associated with a Gibbs distri-
bution, Markov blankets and the canonical parameterization. Then we present an extension of the
Hammersley-Clifford theorem—which in its original form only applies to Markov networks—to
factor graphs. Throughout the paper we restrict attention to discrete probability distributions over
finite sets.
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Figure 1: Example factor graph.

2.1 Gibbs Distributions

The probability distributions we consider are referred to as Gibbs distributions.

Definition 1 (Gibbs distribution) A factor f with scope4 D is a mapping from val(D) to R
+. A

Gibbs distribution P over a set of random variables X = {X1, . . . ,Xn} is associated with a set of
factors { f j}J

j=1 with scopes {C j}J
j=1, such that

P(X1 = x1, . . . ,Xn = xn) =
1
Z

J

∏
j=1

f j(C j[x1, . . . ,xn]).

The normalizing constant Z is the partition function.

The factor graph associated with a Gibbs distribution is a bipartite graph whose nodes corre-
spond to variables and factors, with an edge between a variable X and a factor f j if the scope of f j

contains X . There is one-to-one correspondence between factor graphs and the sets of scopes. Fig-
ure 1 gives an example of a factor graph. Here the Gibbs distribution is over the variables X1, · · · ,X9,
which are represented by circles in the factor graph. The factors are represented by squares and
have the following respective scopes: {X1,X2,X3}, {X1,X2}, {X2,X3}, {X1,X4}, {X2,X5}, {X3,X6},
{X4,X5}, {X5,X6}, {X4,X7}, {X5,X8}, {X7,X9}, {X7,X8}, {X8,X9}. The corresponding Gibbs dis-
tribution is given by

P(X1 = x1, · · · ,X9 = x9) =
1
Z

f{X1,X2,X3}(x1,x2,x3) f{X1,X2}(x1,x2) · · · f{X8,X9}(x8,x9).

A Gibbs distribution also induces a Markov network—an undirected graph whose nodes corre-
spond to the random variables X and where there is an edge between two variables if there is a factor
in which they both participate. The set of scopes uniquely determines the structure of the Markov
network, but several different sets of scopes can result in the same Markov network. For example, a
fully connected Markov network can correspond both to a Gibbs distribution with

(n
2

)
factors over

pairs of variables, and to a distribution with a factor which is a joint distribution over X . We will

4. A function has scope X if its domain is val(X), the set of possible instantiations of the set of random variables X.
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use the more precise factor graph representation in this paper. Our results are easily translated into
results for Markov networks.

Definition 2 (Markov blanket) Let a set of scopes C = {C j}J
j=1 be given. The Markov blanket of

a set of random variables D ⊆ X is defined as

MB(D) = ∪{C j : C j ∈ C , C j ∩D 6= /0}−D.

Thus, the Markov blanket of a set of variables D is the minimal set of variables that separates D from
the other variables in the factor graph. For the factor graph distribution of Figure 1 we have, for ex-
ample, MB({X1}) = {X2,X3,X4}, MB({X1,X2}) = {X3,X4,X5}, and MB({X5}) = {X2,X4,X6,X8}.

For any Gibbs distribution, we have, for any subset of random variables D, that

D ⊥ X −D−MB(D) | MB(D), (1)

or in words: given its Markov blanket MB(D), the set of variables D is independent of all other
variables X −D−MB(D).5

A standard assumption for a Gibbs distribution, which is critical for identifying its structure
(see Lauritzen, 1996, Ch. 3), is that the distribution be positive—all of its entries be non-zero. Our
results use a quantitative measure for how positive P is. Let γ = minx,i P(Xi = xi|X−i = x−i), where
the −i subscript denotes all entries but entry i. Note that, if we have a fixed bound on the number
of factors in which a variable can participate, a fixed bound on the domain size for each variable,
and a fixed bound on how skewed each factor is (more specifically a bound on the ratio of its
lowest and highest entries), we are guaranteed a bound on γ that is independent of the number n
of variables in the network. Thus, under these assumptions, our sample complexity results, which
are expressed as a function of γ, have no hidden dependence on the number of variables n. In
contrast, γ̃ = minx P(X = x) generally has an exponential dependence on n. For example, if we
have n independent and identically distributed (i.i.d.) Bernoulli( 1

2 ) random variables, then γ = 1
2

(independent of n) but γ̃ = 1
2n .

2.2 The Canonical Parameterization

A Gibbs distribution is generally over-parameterized relative to the structure of the underlying fac-
tor graph, in that a continuum of possible parameterizations over the graph can all encode the same
distribution. The canonical parameterization (Hammersley and Clifford, 1971; Besag, 1974b) pro-
vides one specific choice of parameterization for a Gibbs distribution, with some nice properties
(see below). The canonical parameterization forms the basis for the Hammersley-Clifford theorem,
which asserts that any distribution that satisfies the independence assumptions encoded by a Markov
network can be represented as a Gibbs distribution with factors corresponding to each of the cliques
in the Markov network. In its original formulation, the canonical distribution is defined for Gibbs
distributions over Markov networks. We use a more refined parameterization, defined at the factor
level; results at the clique level (or, equivalently, results for Markov networks) are trivial corollaries.

The canonical parameterization is defined relative to an arbitrary (but fixed) set of “default”
assignments x̄ = (x̄1, . . . , x̄n). Let any subset of variables D = 〈Xi1 , . . . ,Xi|D|〉, and any assignment

5. By X ⊥ Y we denote that X is independent of Y. By X ⊥ Y | Z we denote that X is conditionally independent of Y
given Z.
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d = 〈xi1 , . . . ,xi|D|〉 be given. Let any U ⊆ D be given. We define σ·[·] such that for all i ∈ {1, . . . ,n}:

(σU[d])i =

{
xi if Xi ∈ U,
x̄i if Xi /∈ U.

In words, σU[d] keeps the assignments to the variables in U as specified in d, and augments it to
form a full assignment using the default values in x̄. Note that the assignments to variables outside
U are always ignored, and replaced with their default values. Thus, the scope of σU[·] is always U.

Let P be a positive Gibbs distribution.The canonical factor for D ⊆ X is defined as follows:

f ∗D(d) = exp
(
∑U⊆D(−1)|D−U| logP(σU[d])

)
. (2)

The sum is over all subsets of D, including D itself and the empty set /0.
The following theorem extends the Hammersley-Clifford theorem (which applies to Markov

networks) to factor graphs.

Theorem 3 Let P be a positive Gibbs distribution with factor scopes {C j}J
j=1. Let {C∗

j}J∗
j=1 =

∪J
j=12C j − /0 (where 2X is the power set of X—the set of all of its subsets). Then

P(x) = P(x̄)∏J∗
j=1 f ∗C∗

j
(c∗j),

where c∗j is the instantiation of C∗
j consistent with x.

The proof is in the appendix.
The parameterization of P using the canonical factors { f ∗C∗

j
}J∗

j=1 is called the canonical param-

eterization of P. Although typically J∗ > J, the additional factors are all subfactors of the original
factors. Note that first transforming a factor graph into a Markov network and then applying the
Hammersley-Clifford theorem to the Markov network generally results in a significantly less sparse
canonical parameterization than the canonical parameterization from Theorem 3.

We now give an example to clarify the definition of canonical factors and canonical parameter-
ization.

Example 1 Consider again the factor graph of Figure 1. Assume we take the fixed assignment to
be all zeros, namely we have x̄1 = 0, x̄2 = 0, · · · , x̄9 = 0. Then the canonical factor f ∗{X1,X2} over the
variables X1,X2 instantiated to x1,x2 is given by

log f ∗{X1,X2}(x1,x2) = logP(X1 = x1,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = 0,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0). (3)

So to compute the canonical factor, we start with the joint instantiation of the factor variables
{X1,X2} with all other variables {X3, · · · ,X9} set to their default instantiations. Then we subtract
out the instantiations for which one of the factor variables is changed to its default instantiation.
Crudely speaking, we subtract out the interactions that are already captured by a canonical factor
over a smaller set of variables. Then we adjust for double counting by adding back in the instanti-
ation where both factor variables have been set to their default instantiation.
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Similarly, the canonical factor f ∗{X1,X2,X3} over the variables X1,X2,X3 instantiated to x1,x2,x3 is
given by

log f ∗{X1,X2,X3}(x1,x2,x3) = logP(X1 = x1,X2 = x2,X3 = x3,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = x2,X3 = x3,X4 = 0, · · · ,X9 = 0)

− logP(X1 = x1,X2 = 0,X3 = x3,X4 = 0, · · · ,X9 = 0)

− logP(X1 = x1,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = 0,X2 = 0,X3 = x3,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = 0,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0).

The canonical factor over just the variable X1 instantiated to x1 is given by

log f ∗{X1}(x1) = logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0).

Theorem 3 applied to our example gives the following expression for the probability distribution:

P(X1 = x1, · · · ,X9 = x9) = P(X1 = 0, · · · ,X9 = 0)

× f ∗{X1,X2,X3}(x1,x2,x3)

× f ∗{X1,X2}(x1,x2) f ∗{X2,X3}(x2,x3) · · · f ∗{X8,X9}(x8,x9)

× f ∗{X1}(x1) f ∗{X2}(x2) · · · f ∗{X9}(x9)

=
1
Z
× f ∗{X1,X2,X3}(x1,x2,x3)

× f ∗{X1,X2}(x1,x2) f ∗{X2,X3}(x2,x3) · · · f ∗{X8,X9}(x8,x9)

× f ∗{X1}(x1) f ∗{X2}(x2) · · · f ∗{X9}(x9). (4)

3. Parameter Estimation

In this section we first introduce the parameter estimation ideas informally by expanding on Ex-
ample 1. Then we formally introduce the key idea of Markov blanket canonical factors, which
give a parameterization of a factor graph distribution only in terms of local probabilities. This new
parameterization directly results in the proposed parameter estimation algorithm. We analyze the
algorithm’s computational and sample complexity. In addition, we show an O(1) dependence on
the number of variables in the network for the sample complexity when using the KL-divergence
normalized by the number of variables in the network as performance criterion.

3.1 Parameter Estimation by Example

Consider the problem of estimating the parameters of the distribution in Figure 1 from training
examples. From Eqn. (4) we have that it is sufficient to estimate all the canonical factors. Each
canonical factor is expressed in terms of probabilities. So one could estimate the canonical factors
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(and thus the distribution) in closed-form by estimating these probabilities from data. Unfortunately
the probabilities appearing in the canonical factors are over full joint instantiations of all variables.
As a consequence, these probabilities can not be estimated accurately from a small amount of data.

However, we will now consider the factor f ∗{X1,X2} more carefully and show it can be estimated
from probabilities over small subsets of the variables only. The factor f ∗{X1,X2} contains an equal
number of terms with positive and negative sign. For the sum of two such terms, we now derive
a novel expression which contains local probabilities only (instead of probabilities of full joint
instantiations of all variables).

logP(X1 = x1,X2 = x2,X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

= logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

+ logP(X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

= logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

= logP(X1 = x1,X2 = x2|MB({X1,X2}) =~0)

− logP(X1 = x1,X2 = 0|MB({X1,X2}) =~0)

= logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0). (5)

Here we used in order: the definition of conditional probability; same terms with opposite sign
cancel; conditioning on the Markov blanket is equivalent to conditioning on all other variables;
MB({X1,X2}) = {X3,X4,X5} in our example.

The last expression in Eqn. (5) contains local probabilities only, which can be estimated accu-
rately from a small number of training examples. Using a similar reasoning as above for the other
two terms of the factor f ∗{X1,X2}, we get the following expression for f ∗{X1,X2}, which contains local
probabilities only:

log f ∗{X1,X2}(x1,x2) = logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0)

− logP(X1 = 0,X2 = x2|X3 = 0,X4 = 0,X5 = 0)

+ logP(X1 = 0,X2 = 0|X3 = 0,X4 = 0,X5 = 0)

= log f ∗{X1,X2}|{X3,X4,X5}(x1,x2). (6)

The last line defines f ∗{X1,X2}|{X3,X4,X5}(x1,x2) (which we refer to as the Markov blanket canonical fac-
tor for {X1,X2}). Although f ∗{X1,X2}(x1,x2) = f ∗{X1,X2}|{X3,X4,X5}(x1,x2) when exact probabilities are
used, we use different notation to explicitly distinguish how they are computed from probabilities.
The Markov blanket canonical factor f ∗{X1,X2}|{X3,X4,X5}(x1,x2) is computed from local probabilities
as given in Eqn. (6). The (original) canonical factor f ∗{X1,X2}(x1,x2) is computed from probabilities
over full joint instantiations as given in Eqn. (3).
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Similarly, the other canonical factors have equivalent Markov blanket canonical factors which
involve local probabilities only. This gives us an efficient closed-form parameter estimation algo-
rithm for our example. In the next few sections we formalize this idea for general factor graphs and
analyze the computational and sample complexity.

3.2 Markov Blanket Canonical Factors

Considering the definition of the canonical parameters, we note that all of the terms in Eqn. (2) can
be estimated from empirical data using simple counts, without requiring inference over the network.
Thus, it appears that we can use the canonical parameterization as the basis for our parameter
estimation algorithm. However, as written, this estimation process is statistically infeasible, as
the terms in Eqn. (2) are probabilities over full instantiations of all variables, which can never be
estimated from a reasonable number of training examples.

We now generalize our observation from the example in the previous section: namely, that we
can express the canonical factors using only probabilities over much smaller instantiations—those
corresponding to a factor and its Markov blanket. Let D = 〈Xi1 , . . . ,Xi|D|〉 be any subset of variables,
and d = 〈xi1 , . . . ,xi|D|〉 be any assignment to D. For any U⊆D, we define σU:D[d] to be the restriction
of the full instantiation σU[d] of all variables in X to the corresponding instantiation of the subset D.
In other words, σU:D[d] keeps the assignments to the variables in U as specified in d, and changes
the assignment to the variables in D−U to the default values in x̄. Let D ⊆ X and Y ⊆ X −D. Then
the factor f ∗D|Y over the variables in D is defined as follows:

f ∗D|Y(d) = exp
(
∑U⊆D(−1)|D−U| logP(σU:D[d]|Y = ȳ)

)
, (7)

where the sum is over all subsets of D, including D itself and the empty set /0.
For example, we have that f ∗{X1,X2}|{X3,X4,X5} of the factor graph in Figure 1 is given by Eqn. (6)

in the previous section.
The following proposition shows an equivalence between the factors computed using Eqn. (2)

and Eqn. (7).

Proposition 4 Let P be a positive Gibbs distribution with factor scopes {C j}J
j=1, and {C∗

j}J∗
j=1 as

above (i.e., {C∗
j}J∗

j=1 = ∪J
j=12C j − /0). Then for any D ⊆ X , we have:

f ∗D = f ∗D|X−D = f ∗D|MB(D), (8)

and (as a direct consequence)

P(x) = P(x̄)∏J∗
j=1 f ∗C∗

j |X−C∗
j
(c∗j) (9)

= P(x̄)∏J∗
j=1 f ∗C∗

j |MB(C∗
j)
(c∗j), (10)

where c∗j is the instantiation of C∗
j consistent with x.

Proposition 4 shows that we can compute the canonical parameterization factors using probabilities
over factor scopes and their Markov blankets only. From a sample complexity point of view, this
is a significant improvement over the standard definition which uses joint instantiations over all
variables. Using Eqn. (7) we can expand the Markov blanket canonical factors in Proposition 4 and
we see that any factor graph distribution can be parameterized as a product of local probabilities
only.
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X ,Y, . . . random variables
x,y, . . . instantiations of the random variables
X,Y, . . . sets of random variables
x,y, . . . instantiations of sets of random variables
val(X) set of values the variable X can take
D[x] instantiation of D consistent with x (abbreviated as d when no ambiguity is

possible)
X ⊥ Y X is independent of Y
X ⊥ Y | Z X is conditionally independent of Y given Z
f factor
P positive Gibbs distribution over a set of random variables X = 〈X1, . . . ,Xn〉
{ f j}J

j=1 factors of P
{C j}J

j=1 scopes of factors of P
P̂ empirical (sample) distribution
P̃ distribution returned by learning algorithm
f ∗· canonical factor as defined in Eqn. (2)
f ∗·|· canonical factor as defined in Eqn. (7)

f̂ ∗·|· canonical factor as defined in Eqn. (7), but using the empirical distribution P̂

MB(D) Markov blanket of D
k max j|C j|
γ minx,i P(Xi = xi|X−i = x−i)
v maxi|val(Xi)|
b max j|MB(C j)|
m number of training examples

D(·‖·) KL-divergence, D(P‖Q) = ∑x∈valX P(x) log P(x)
Q(x)

C the set of candidate factor scopes for the structure learning algorithm, Factor-
Graph-Structure-Learn (C = {C∗

j : C∗
j ⊆ X ,C∗

j 6= /0, |C∗
j | ≤ k})

Table 1: Notational conventions.

3.3 Parameter Estimation Algorithm

Based on the parameterization above, we propose the following Factor-Graph-Parameter-Learn al-
gorithm. The algorithm takes as inputs: the scopes of the factors {C j}J

j=1, training examples

{x(i)}m
i=1, a baseline instantiation x̄. Then for {C∗

j}J∗
j=1 as above (i.e., {C∗

j}J∗
j=1 = ∪J

j=12C j − /0),
Factor-Graph-Parameter-Learn does the following:

• Compute the estimates of the canonical factors { f̂ ∗C∗
j |MB(C∗

j )
}J∗

j=1 as in Eqn. (7), but using the

empirical estimates based on the training examples.

• Return the probability distribution P̃(x) ∝ ∏J∗
j=1 f̂ ∗C∗

j |MB(C∗
j)
(c∗j).
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Theorem 5 (Parameter learning: computational complexity) The running time of the Factor-
Graph-Parameter-Learn algorithm is in O(m2kJ(k +b)+22kJvk).6

The proof is given in the appendix.
Note the representation of the factor graph distribution is Ω(Jvk), thus exponential dependence

on k is unavoidable for any algorithm. More importantly, there is no dependence on the running time
of evaluating the partition function. On the other hand, all currently known maximum likelihood
estimation algorithms require evaluating the partition function, which is known to be NP-hard, both
exactly and approximately (Jerrum and Sinclair, 1993; Barahona, 1982).

3.4 Sample Complexity

We now analyze the sample complexity of the Factor-Graph-Parameter-Learn algorithm, showing
that it returns a distribution that is a good approximation of the true distribution when given only a
“small” number of training examples. We will use the sum of KL-divergences D(P‖P̃)+ D(P̃‖P)
to measure how well the distribution P̃ approximates the distribution P.7

Theorem 6 (Parameter learning: sample complexity) Let any ε,δ > 0 be given. Let Factor-Graph-
Parameter-Learn be given (a) m training examples {x(i)}m

i=1 drawn i.i.d. from a distribution P and
(b) the factor graph structure according to which the distribution P factors. Let P̃ be the probability
distribution returned by Factor-Graph-Parameter-Learn. Then, we have that, for

D(P‖P̃)+D(P̃‖P) ≤ Jε

to hold with probability at least 1−δ, it suffices that the number of training examples m satisfies:

m ≥ (1+ ε
22k+2 )

2 24k+3

γ2k+2bε2 log 2k+2Jvk+b

δ . (11)

A complete proof is given in the appendix.
Theorem 6 shows that—assuming the true distribution P factors according to the given structure—

Factor-Graph-Parameter-Learn returns a distribution that is Jε-close in KL-divergence. The sample
complexity scales exponentially in the maximum number of variables per factor k, and polynomially
in 1

ε ,
1
γ .

The error in the KL-divergence grows linearly with the number of factors J. This is a con-
sequence of the fact that the number of terms in the distributions is equal to the number of fac-
tors J, and each term can accrue an error. We can obtain a more refined analysis if we elimi-
nate this dependence by considering the KL-divergence normalized by the number of variables,
Dn(P‖P̃) = 1

n D(P‖P̃). We return to this topic in Section 3.5.
We now sketch the proof idea. The Markov blanket canonical factors are a product of local

conditional probabilities. These local conditional probabilities can be estimated accurately from a
“small” number of training examples. Thus the Markov blanket canonical factors can be estimated
accurately from a small number of training examples. Thus the factor graph distribution—which is
just a product of the Markov canonical factors—can be estimated accurately from a small number
of training examples.

6. The upper bound is based on a very naive implementation’s running time. It assumes that operations on numbers
(such as reading, writing, adding, etc.) take constant time.

7. D(P‖Q) = ∑x∈valX P(x) log P(x)
Q(x)

.
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Theorem 6 considers the case when P factors according to the given structure. The following
theorem shows that our error degrades gracefully even if the training examples are generated by a
distribution Q that does not factor according to the given structure.

Theorem 7 (Parameter learning: graceful degradation) Let any ε,δ > 0 be given. Let {x(i)}m
i=1

be i.i.d. samples from a distribution Q. Let MB and M̂B be the Markov blankets according to the
distribution Q and the given structure respectively. Let { f ∗D∗

j |MB(D∗
j)
}J̄

j=1 be the non-trivial Markov

blanket canonical factors of Q (those factors with not all entries equal to one). Let {C∗
j}J∗

j=1 be the
scopes of the canonical factors in the factor graph given to the algorithm. Let P̃ be the probability
distribution returned by Factor-Graph-Parameter-Learn. Then we have that for

D(Q‖P̃)+D(P̃‖Q) ≤ Jε+2∑
j:D∗

j /∈{C∗
k}J∗

k=1

maxd∗
j

∣∣ log f ∗D∗
j
(d∗

j)
∣∣+2∑

j : MB(C∗
j )6=M̂B(C∗

j)

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∣∣∣

to hold with probability at least 1− δ, it suffices that the number of training examples m satisfies
Eqn. (11) of Theorem 6.

Note the sample complexity depends on parameters k = max j|C∗
j | and b = max j|MB(C∗

j)| of the
given target structure (rather than the true structure). The graceful degradation result is important,
as it shows that each canonical factor that is incorrectly captured by our target structure adds at most
a constant (namely, l2l+1 log 1

γ for an incorrectly captured factor over l variables) to our bound on

the KL-divergence.8 This constant can be large, so we discuss the actual error contribution in more
detail. A canonical factor could be incorrectly captured when the corresponding factor scope is not
included in the given structure. Canonical factors are designed so that a factor over a set of variables
captures only the residual interactions between the variables in its scope, once all interactions be-
tween its subsets have been accounted for in other factors. Thus, canonical factors over large scopes
are often close to the trivial all-ones factor in practice. Therefore, if our structure approximation
is such that it only ignores some of the larger-scope factors, the error in the approximation may be
quite limited. A canonical factor could also be incorrectly captured when the given structure does
not have the correct Markov blanket for that factor. The resulting error depends on how good an
approximation of the Markov blanket we do have. See Section 4 for more details on the error caused
by incorrect Markov blankets.

3.5 Reducing the Dependence on Network Size

Our previous analysis showed a linear dependence of the sample complexity on the number of
factors J in the network (for parameter learning). In a sense, this dependence is inevitable. To un-
derstand why, consider a distribution P defined by a set of n independent Bernoulli random variables
X1, . . . ,Xn, each with parameter 0.5. Assume that Q is an approximation to P, where the Xi are still
independent, but have parameter 0.4999. Intuitively, a Bernoulli(0.4999) distribution is a very good

8. Each factor over l variables is a fraction of a product of 2l−1 conditional probabilities over another product of 2l−1

conditional probabilities. Recall that γ = minx,i P(Xi = xi|X−i = x−i) > 0, so we have that each conditional probability
over l variables lies in the interval [γl ,1]. Thus we have for a factor over l variables that maxd∗

j

∣∣ log f ∗D∗
j
(d∗

j)
∣∣ ≤

log 1
γl2l−1 = l2l−1 log 1

γ . Similarly, we have that maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j )

(c∗j )

f ∗
C∗

j |M̂B(C∗
j )

(c∗j )

∣∣∣≤ l2l log 1
γ .
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estimate of a Bernoulli(0.5); thus, for most applications, Q can safely be considered to be a very
good estimate of P. However, the KL-divergence D(P(X1:n)‖Q(X1:n)) = ∑n

i=1 D(P(Xi)‖Q(Xi)) =
Ω(n). Thus, if n is large, the KL divergence between P and Q would be large, even though Q is a
good estimate for P. To remove such unintuitive scaling effects when studying the dependence on
the number of variables, we can consider instead the normalized KL divergence criterion:

Dn(P(X1:n)‖Q(X1:n)) = 1
n D(P(X1:n)‖Q(X1:n)).

As we now show, with a slight modification to the algorithm, we can achieve a bound of ε for
our normalized KL-divergence while eliminating the logarithmic dependence on J in our sample
complexity bound. Specifically, we can modify our algorithm so that it clips probability estimates
∈ [0,γk+b) to γk+b. The clipping procedure is motivated by the proof of Theorem 8 and effectively
ensures that the KL-divergence is bounded.9 Note that—since true probabilities which we are trying
to estimate are never in the interval [0,γk+b)—this change can only improve the estimates.10

For this slightly modified version of the algorithm, the following theorem shows the dependence
on the size of the network is O(1), which is tighter than the logarithmic dependence shown in
Theorem 6.11

Theorem 8 (Parameter learning: size of the network) Let any ε,δ > 0 be given and fixed. Let
{x(i)}m

i=1 be i.i.d. samples from P. Let the domain size of each variable be fixed. Let the degree of
both the factor and variable nodes be bounded by a fixed constant. Let γ = minx,i P(Xi = xi|X−i =
x−i) be fixed. Let P̃ be the probability distribution returned by Factor-Graph-Parameter-Learn. Then
we have that, for

Dn(P‖P̃)+Dn(P̃‖P) ≤ ε

to hold with probability at least 1−δ, it suffices that we have a certain number of training examples
that does not depend on the number of variables in the network.

The following theorem shows a similar result for Bayesian networks, namely that for a fixed
bound on the number of parents per node, the sample complexity dependence on the size of the
network is O(1).12

9. In particular, we first show that the error contribution from any fixed factor is small with high probability. Then—
rather than using a Union bound to ensure the error contributions from all factors are small, which would result
in a logarithmic dependence of the sample complexity on the number of factors (or variables)—we use Markov’s
inequality to show that the error contribution of almost all factors is small with high probability. This leaves us to
bound the error contribution of the (few) remaining factors, for which the error contribution is not small. By clipping
the probability estimates, we can ensure their error contribution is bounded. A very similar reasoning applies to the
case of Theorem 9. (See the proofs of Theorems 8 and 9, given in the appendix, for more details.)

10. This solution assumes that γ is known. If not, we can use a clipping threshold as a function of the number of training
examples. Such an adaptive clipping procedure was used by Dasgupta (1997) to derive sample complexity bounds
for learning fixed structure Bayesian networks.

11. We note that Theorem 8 assumes the maximum number of factors a variable can participate in is fixed (i.e., it cannot
grow with the number of variables in the network). As a consequence, the dependence on the number of factors J
and the dependence on the number of variables n are equivalent (up to a constant factor).

12. Complete proofs for Theorems 8 and 9 (and all other results in this paper) are given in the appendix of this paper.
In the appendix we actually give a much stronger version of Theorem 9, including dependencies of m on ε,δ,k and
a graceful degradation result. We note that for non-binary random variables the clipping procedure is a bit more
subtle than for binary random variables. In particular, to ensure that the resulting clipped probabilities sum to one,
we might have to subtract a small quantity from the highest probability estimate after the clipping. For example, for
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Theorem 9 Let any ε > 0 and δ > 0 be given. Let any Bayesian network (BN) structure over n
variables with at most k parents per variable be given. Let P be a probability distribution that
factors over the BN. Let P̃ denote the probability distribution obtained by fitting the conditional
probability tables (CPT) entries via maximum likelihood and then clipping each CPT entry to the
interval [ ε

8|val(Xj)|3 ,1−
ε

8|val(Xj)|3 ]. Then we have that for

Dn(P‖P̃) ≤ ε

to hold with probability at least 1−δ, it suffices that we have a certain number of training examples
that does not depend on the number of variables in the network.

Theorems 8 and 9 provide theoretical support for the common practice of learning large graph-
ical models from a relatively small number of training examples. More specifically, the number of
training examples can be much smaller than the number of parameters when learning large graphical
models. In contrast, for many problems in machine learning, the sample complexity grows roughly
linearly or at most as some low-order polynomial in the number of parameters (Vapnik, 1998).
The difference in sample complexity relates to the discussion of generative versus discriminative
training. Indeed our result generalizes and even strengthens the results of Ng and Jordan (2002).
They showed a logarithmic dependence on the number of variables for the very specific case of a
graphical model with the naive Bayes structure.

4. Structure Learning

The algorithm described in the previous section uses the known network to establish a Markov
blanket for each factor. This Markov blanket is then used to estimate the canonical parameters from
empirical data. In this section, we show how we can build on this algorithm to perform structure
learning, by first identifying (from the data) an approximate Markov blanket for each candidate
factor, and then using this approximate Markov blanket to compute the parameters of that factor
from a “small” number of training examples.

4.1 Identifying Markov Blankets

In the parameter learning results, the Markov blanket MB(C∗
j) is used to efficiently estimate the

conditional probability P(C∗
j |X −C∗

j), which is equal to P(C∗
j |MB(C∗

j)). This suggests to measure
the quality of a candidate Markov blanket Y by how well P(C∗

j |Y) approximates P(C∗
j |X −C∗

j). In
this section we show how conditional entropy can be used to find a candidate Markov blanket that
gives a good approximation for this conditional probability.13

ε sufficiently small, we have that naively clipping the probability estimates (0,0,1/4,3/4) to the interval (ε,1− ε)
results in (ε,ε,1/4,3/4), which does not sum to one (but rather to 1 + 2ε). Subtracting the additional probability
mass 2ε from the highest entry fixes this problem. For this example we get (ε,ε,1/4,3/4− 2ε). In general, for
v-valued random variables, the probability estimates can be made to sum to one (after clipping) by subtracting at
most (v− 1)ε from the highest probability estimate. In the appendix we expand more on the topic of clipping for
non-binary random variables.

13. For some readers, some intuition might be gained from the fact that the conditional entropy of C∗
j given the candidate

Markov blanket Y corresponds to the log-loss of predicting C∗
j given the candidate Markov blanket Y.
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Definition 10 (Conditional Entropy) Let P be a probability distribution over over X,Y. Then the
conditional entropy H(X|Y) of X given Y is defined as

−∑
x∈val(X),y∈val(Y)

P(X = x,Y = y) logP(X = x|Y = y).

Proposition 11 (Cover & Thomas, 1991) Let P be a probability distribution over X,Y,Z. Then
we have H(X|Y,Z) ≤ H(X|Y).

Proposition 11 shows that conditional entropy can be used to find the Markov blanket for a given
set of variables. Namely, let D,Y ⊆ X , D∩Y = /0, then we have

H(D|MB(D)) = H(D|X −D) ≤ H(D|Y), (12)

where the equality follows from the Markov blanket property stated in Eqn. (1) and the inequality
follows from Proposition 11. Thus, we can select the set of variables Y that minimizes H(D|Y) as
our candidate Markov blanket for the set of variables D.

Our first difficulty is that, when learning from data, we do not have the true distribution, and
hence the exact conditional entropies are unknown. The following lemma shows that the conditional
entropy can be efficiently estimated from samples.

Lemma 12 Let P be a probability distribution over X,Y such that for all instantiations x,y we have
P(X = x,Y = y) ≥ λ. Let Ĥ be the conditional entropy computed based upon m i.i.d. samples from
P. Then for ∣∣H(X|Y)− Ĥ(X|Y)

∣∣≤ ε

to hold with probability 1−δ, it suffices that:

m ≥ 8|val(X)|2|val(Y)|2
λ2ε2 log 4|val(X)||val(Y)|

δ .

However, as the empirical estimates of the conditional entropy are noisy, the true Markov blan-
ket is not guaranteed to achieve the minimum of H(D|Y). In fact, in some probability distributions,
many sets of variables could be arbitrarily close to reaching equality in Eqn. (12). Thus, in many
cases, our procedure will not recover the actual Markov blanket, when given only a finite num-
ber of training examples. Fortunately, as we show in the next lemma, any set of variables U∪W
that is close to achieving equality in Eqn. (12) gives an accurate approximation P(C j|U,W) of the
probabilities P(C j|X −C j) used in the canonical parameterization.

Lemma 13 Let any ε > 0 be given. Let P be a distribution over disjoint sets of random variables
U,V,W,X,Y. Let λ1 = minu∈val(U),v∈val(V),w∈val(W) P(u,v,w), and let
λ2 = minx∈val(X),u∈val(U),v∈val(V),w∈val(W) P(x|u,v,w). Assume the following holds:

X ⊥ Y,W | U,V, (13)

H(X|U,W) ≤ H(X|U,V,W,Y)+ ε. (14)

Then we have that ∀ x,y,u,v,w

∣∣ logP(x|u,v,w,y)− logP(x|u,w)
∣∣≤

√
2ε

λ2
√

λ1
. (15)
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In other words, if a set of variables U∪W looks like a Markov blanket for X, as evaluated by the
conditional entropy H(X|U,W), then the conditional distribution P(X|U,W) must be close to the
conditional distribution P(X|X −X). Thus, it suffices to find such an approximate Markov blanket
U∪W as a substitute for knowing the true Markov blanket U∪V. This makes conditional entropy
suitable for structure learning.

4.2 Structure Learning Algorithm

We propose the following Factor-Graph-Structure-Learn algorithm. The algorithm receives as input:
training examples {x(i)}m

i=1; k: the maximum number of variables per factor; b: the maximum
number of variables per Markov blanket for any set of variables up to size k; x̄: a base instantiation.14

Let C be the set of candidate factor scopes, let Y be the set of candidate Markov blankets. I.e.,
we have

C = {C∗
j : C∗

j ⊆ X ,C∗
j 6= /0, |C∗

j | ≤ k}, (16)

Y = {Y : Y ⊆ X , |Y| ≤ b}. (17)

The algorithm does the following:

• ∀ C∗
j ∈ C , find M̂B(C∗

j) = argminY∈Y ,Y∩C∗
j= /0 Ĥ(C∗

j |Y), which is the best candidate Markov
blanket.

• ∀ C∗
j ∈ C , compute the estimates { f̂ ∗

C∗
j |M̂B(C∗

j)
} j of the canonical factors as defined in Eqn. (7)

using the empirical distribution.

• Threshold to one the factor entries f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j) satisfying | log f̂ ∗

C∗
j |M̂B(C∗

j )
(c∗j)| ≤ ε

2k+2 , and

discard the factors that have all entries equal to one.

• Return the probability distribution P̃(x) ∝ ∏ j f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j).

The thresholding step finds the factors that actually contribute to the distribution. The specific
threshold is chosen to suit the proof of Theorem 15. If no thresholding were applied, the error
in Eqn. (18) would be |C |

2k ε instead of Jε, which is much larger in case the true distribution has a
relatively small number of factors J.

Theorem 14 (Structure learning: computational complexity) The running time15 of Factor-
Graph-Structure-Learn is in O

(
mknkbnb(k +b)+ knkbnbvk+b + knk2kvk

)
.

Thus the running time is exponential in the maximum factor scope size k and the maximum Markov
blanket size b, polynomial in the number of variables n and the maximum domain size v, and linear
in the number of training examples m.

The first two terms in Theorem 14 result from going through the data and computing the em-
pirical conditional entropies. Since the algorithm considers all combinations of candidate factors
and Markov blankets, we have an exponential dependence on the maximum scope size k and the

14. Note in the parameter learning setting we had b equal to the size the largest Markov blanket for an actual factor in
the distribution. In contrast, now b corresponds to the size of the largest Markov blanket for any candidate factor up
to size k.

15. The upper bound is based on a very naive implementation’s running time.
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maximum Markov blanket size b. The last term comes from computing the Markov blanket canon-
ical factors. Importantly, unlike for currently-known (exact) ML approaches, the running time does
not depend on the tractability of inference in the (unknown) factor graph from which the data was
sampled, nor on the tractability of inference in the recovered factor graph.

Theorem 15 (Structure learning: sample complexity) Let any ε,δ > 0 be given. Let Factor-Graph-
Structure-Learn be given (a) m training examples {x(i)}m

i=1 drawn i.i.d. from a distribution P, (b)
an upper bound k on the number of variables per factor in the factor graph for P, and (c) an upper
bound b on the number of variables per Markov blanket for any set of variables up to size k in the
factor graph for P. Let P̃ be the distribution returned by Factor-Graph-Structure-Learn. Then for

D(P‖P̃)+D(P̃‖P) ≤ Jε (18)

to hold with probability 1−δ, it suffices that the number of training examples m satisfies:

m ≥ (1+ εγk+b

22k+3 )
2 v2k+2b28k+19

γ6k+6b min{ε2,ε4} log 8kbnk+bvk+b

δ . (19)

Proof (sketch). From Lemmas 12 and 13 we have that the conditioning set chosen by Factor-Graph-
Structure-Learn results in a good approximation of the true canonical factor. At this point the
structure is fixed, and we can use the sample complexity theorem for parameter learning to finish
the proof.

Theorem 15 shows that the sample complexity depends exponentially on the maximum factor size
k and the maximum Markov blanket size b; and polynomially on 1

γ and 1
ε . If we modify the analysis

to consider the normalized KL-divergence, as in Section 3.5, we obtain a logarithmic dependence
on the number of variables in the network.

To understand the implications of this theorem, consider the class of Gibbs distributions where
every variable can participate in at most d factors and every factor can have at most k variables
in its scope. Then we have that the Markov blanket size b ≤ dk2. Bayesian network probability
distributions can also be represented using factor graphs.16 If the number of parents per variable
is bounded by numP and the number of children per variable is bounded by numC, then we have
k ≤ numP + 1, and that b ≤ (numC + 1)(numP + 1)2. Thus our factor graph structure learning
algorithm allows us to efficiently learn distributions that can be represented by Bayesian networks
with a bounded number of children and parents per variable. Note that our algorithm recovers
a distribution which is close to the true generating distribution, but the distribution it returns is
encoded as a factor graph, which may not be representable as a compact Bayesian network.

Theorem 15 considers the case where the generating distribution P factors according to a struc-
ture with factor scope sizes bounded by k and size of Markov blankets (of any subset of variables of
size less than k) bounded by b. As we did in the case of parameter estimation, we can show that we
have graceful degradation of performance for distributions that do not satisfy these assumptions.

16. Given a Bayesian network (BN), the following factor graph represents the same distribution: The factor graph has
one variable node per variable in the BN. The factor graph has one factor for each variable in the BN. Each factor’s
scope is equal to the union of the corresponding variable itself and its parents. Each factor’s entries are equal to the
corresponding conditional probability table entries of the BN.
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Theorem 16 (Structure learning: graceful degradation) Let any ε,δ > 0 be given. Let {x(i)}m
i=1

be training examples drawn i.i.d. from a distribution Q. Let MB and M̂B be the Markov blan-
kets according to the distributions Q and found by Factor-Graph-Structure-Learn respectively. Let
{ f ∗D∗

j |MB(D∗
j )
} j be the non-trivial Markov blanket canonical factors of Q (those factors with not all

entries equal to one). Let J be the number of non-trivial Markov blanket canonical factors in Q with
scope size smaller than k. Let P̃ be the probability distribution returned by Factor-Graph-Parameter-
Learn. Then we have that for

D(Q‖P̃)+D(P̃‖Q) ≤ (J + |S|)ε+ 2 ∑
j:|D∗

j |>k

maxd∗
j

∣∣ log f ∗D∗
j
(d j)

∣∣

+ 2 ∑
C∗

j∈C : |MB(C∗
j)|>b

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∣∣∣

to hold with probability at least 1− δ, it suffices that the number of training examples m satisfies
Eqn. (19) of Theorem 15. Here S = { j : C∗

j /∈ {Dl}l, |MB(C∗
j)| > b} is the set that indexes over

the subsets of variables of size smaller than k over which there is no factor in the true distribution
and for which the Markov blanket in the true distribution is larger than b; C is the set of candidate
factor scopes C = {C∗

j : C∗
j ⊆ X ,C∗

j 6= /0, |C∗
j | ≤ k}.

Theorem 16 shows that (similar to the parameter learning setting) each canonical factor that
is not captured by our learned structure contributes at most a constant to our bound on the KL-
divergence (namely l2l+1 log 1

γ for a factor over l variables, see footnote 8 for details) to our bound
on the KL-divergence. This bound on the error contribution can be large, so we discuss the actual
error contribution in more detail. The reason a canonical factor is not captured could be two-fold.
First, the scope of the factor could be too large. The paragraph after Theorem 7 discusses when
the resulting error is expected to be small. Second, the Markov blanket of the factor could be too
large. As shown in Lemma 13, a good approximate Markov blanket is sufficient to get a good
approximation. So we can expect these error contributions to be small if the true distribution is
mostly determined by interactions between small sets of variables.

Recall that the structure learning algorithm correctly clips all estimates of trivial canonical fac-
tors to the trivial all-ones factor, when the structural assumptions are satisfied. I.e., trivial factors
are correctly estimated as trivial if their Markov blanket is of size smaller than b. The additional
term |S|ε corresponds to estimation error on the factors that are trivial in the true distribution but
that have a Markov blanket of size larger than b, and are thus not correctly estimated and clipped to
trivial all-ones factors.

5. Related Work

Tables 2 and 3 summarize the prior work on Markov network and Bayesian network learning that
comes with formal guarantees. In the following two sections we discuss the prior work on Markov
network (factor graph) learning and Bayesian network learning in more detail. We also discuss
algorithms that do not have formal guarantees.
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Target distribution True distribution Structure/Parameter Samples Time Graceful degradation Reference
ML tree any structure poly poly yes [1]
ML bounded tree-width any structure poly NP-hard yes [2]
Bounded tree-width same structure poly poly no [3]
Factor graph same parameter infinite convex no [4], [5]
Factor graph same parameter poly poly yes [6]
Factor graph same structure poly poly yes [6]

Table 2: Overview of prior work on learning Markov networks that has formal guarantees. More
details are given in Section 5.1. The references in the table are: [1]: Chow and Liu (1968);
[2] Srebro (2001); [3]: Narasimhan and Bilmes (2004); [4]: Besag (1974b); [5]: Gidas
(1988); [6]: this paper. “Convex” refers to the time of solving a convex optimization
problem.

5.1 Markov Networks

We split the discussion into two parts: parameter learning and structure learning.

5.1.1 PARAMETER LEARNING

The most natural algorithm for parameter estimation in undirected graphical models is maximum
likelihood (ML) estimation (possibly with some regularization). Unfortunately, evaluating the like-
lihood of such a model requires evaluating the partition function. All currently known ML algo-
rithms for undirected graphical models require evaluating the partition function. Therefore, they
are computationally tractable only for networks in which inference is computationally tractable.
In contrast, our closed form solution can be efficiently computed from the data, even for Markov
networks where inference is intractable. Note that our estimator does not return the ML solution,
so that our result does not contradict the “hardness” of ML estimation. However, it does provide
a low KL-divergence estimate of the probability distribution, with high probability, from a “small”
number of training examples, assuming the true distribution approximately factors according to the
given structure.

Criteria different from ML have been proposed for learning Markov networks. The most promi-
nent one is pseudo-likelihood (Besag, 1974b), and its extension, generalized pseudo-likelihood
(Huang and Ogata, 2002). The pseudo-likelihood criterion gives rise to a tractable convex opti-
mization problem. Pseudo-likelihood estimation is consistent, that is, in the infinite sample limit it
returns the true distribution, when the assumed structure is correct. (See, for example, Gidas, 1988,
.) However, in the finite sample case the pseudo-likelihood estimate is often significantly worse
than the maximum likelihood estimate. More information on the statistical efficiency of the pseudo-
likelihood estimate can be found in, for example, Besag (1974a); Geyer and Thompson (1992);
Guyon and Künsch (1992). In contrast to our results, no finite sample bounds have been provided
for pseudo-likelihood estimation. Moreover, the theoretical analyses (e.g., Geman and Graffigne,
1986; Comets, 1992; Guyon and Künsch, 1992) only apply when the generating model is in the true
target class.

5.1.2 STRUCTURE LEARNING

Structure learning for Markov networks is notoriously difficult, as it is generally based on using ML
estimation of the parameters (with smoothing), often combined with a penalty term for structure
complexity. As evaluating the likelihood is only possible for the class of Markov networks in which
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Target distribution True distribution Structure/Parameter Samples Time Graceful degradation Reference
ML polytree any structure poly NP-hard yes [1], [2]
ML BN any structure poly NP-hard yes [1], [3]
BN same structure infinite poly yes [4], [5]
Factor graph BN (same) structure poly poly yes [6]

Table 3: Overview of prior work on learning Bayesian networks that has formal guarantees. More
details are given in Section 5.2. The references in th table are: [1]: Höffgen (1993); [2]:
Dasgupta (1999); [3]: Chickering et al. (2003); [4]: Spirtes et al. (2000); [5]: Cheng et al.
(2002); [6]: this paper.

inference is tractable, there have been two main research tracks for ML structure learning. The first,
starting with the work of Della Pietra et al. (1997), uses local-search heuristics to add factors into
the network (see also McCallum, 2003). The second searches for a structure within a restricted
class of models in which inference is tractable, more specifically, bounded tree-width Markov net-
works. Indeed, ML learning of the class of tree Markov networks—networks of tree-width 1—can
be performed very efficiently (Chow and Liu, 1968). Unfortunately, Srebro (2001) proves that for
any tree-width k greater than 1, even finding the ML tree-width-k network is NP-hard. Karger and
Srebro (2001) provide an approximation algorithm but the approximation factor is a very large mul-
tiplicative factor of the log-likelihood. In particular, for tree-width k, they find a Markov network (of
tree-width k) with log-likelihood at least 1/(8kk!(k +1)!) times the optimal log-likelihood. Several
heuristic algorithms to learn models with small tree-width have been proposed (Malvestuto, 1991;
Bach and Jordan, 2002; Deshpande et al., 2001), but (not surprisingly, given the NP-hardness of the
problem) they do not come with any performance guarantees.

Recently, Narasimhan and Bilmes (2004) provided a polynomial time algorithm with a polyno-
mial sample complexity guarantee for the class of Markov networks of bounded tree-width. Their
algorithm computes approximate conditional independence information followed by dynamic pro-
gramming to recover the bounded tree-width structure. The parameters for the recovered bounded
tree-width model are estimated by standard ML methods. Our algorithm applies to a different fam-
ily of distributions: factor graphs of bounded connectivity (including graphs in which inference is
intractable). Factor graphs with small connectivity can have large tree-width (e.g., grids) and fac-
tor graphs with small tree-width can have large connectivity (e.g., star graphs). Thus, the range of
applicability is incomparable. Narasimhan and Bilmes (2004) did not provide any graceful degra-
dation guarantees when the generating distribution is not a member of the target class. However,
future research might extend their algorithm to this setting.

Pseudo-likelihood has been extended to a criterion for model selection: the resulting criterion
is statistically consistent (Ji and Seymour, 1996). In particular they show that the probability of
selecting an incorrect model goes to zero as the number of training examples goes to infinity. They
also provide a bound on how fast this probability goes to zero. Importantly, Ji and Seymour (1996)
only provide a model selection criterion. They do not provide an algorithm to efficiently find the
best pseudo-likelihood model (according to their evaluation criterion) over the super-exponentially
large set of candidate models from which we want to select in the structure learning problem.

5.2 Bayesian Networks

Again, we split the discussion into two parts: parameter learning and structure learning.
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5.2.1 PARAMETER LEARNING

ML parameter learning in Bayesian networks (possibly with smoothing) only requires computing
the empirical conditional probabilities of each variable given its parent instantiations. Thus there is
no computational challenge.

Dasgupta (1997), following earlier work by Friedman and Yakhini (1996), analyzes the sample
complexity of learning Bayesian networks, showing that it is polynomial in the maximal number
of different instantiations per family. His sample complexity result has logarithmic dependence on
the number of variables in the network, when using the KL-divergence normalized by the number
of variables in the network. In this paper, we strengthen his result, showing an O(1) dependence
of the number of training examples on the number of variables in the network. So for bounded
fan-in Bayesian networks, the sample complexity is independent of the number of variables in the
network.

5.2.2 STRUCTURE LEARNING

Results analyzing the complexity of structure learning of Bayesian networks fall largely into two
classes. The first class of results assumes that the generating distribution is DAG-perfect with
respect to some DAG G with at most k parents for each node. (That is, P and G satisfy precisely
the same independence assertions.) In this case, algorithms based on various independence tests
(Spirtes et al., 2000; Cheng et al., 2002) can identify the correct network structure in the infinite
sample limit (i.e., when given an infinite number of training examples), using a polynomial number
of independence tests. The infinite sample limit setting is critical in their analysis since it allows for
exact independence tests. Neither Spirtes et al. (2000) nor Cheng et al. (2002) provide guarantees
for the case of a finite number of training examples, but future research might extend their results to
this setting. Chickering and Meek (2002) relax the assumption that the distribution be DAG-perfect;
they show that, under a certain assumption, a simple greedy algorithm will, in the infinite sample
limit, identify a network structure which is a minimal I-map of the distribution. They provide
no polynomial time guarantees, but future work might provide such guarantees for models with
bounded connectedness (such as the ones our algorithm considers).

The second class of results relates to the problem of finding a network structure whose score is
high, for a given set of training examples and some appropriate scoring function. Although finding
the highest-scoring tree-structured network can be done in polynomial time (Chow and Liu, 1968),
Chickering (1996) shows that the problem of finding the highest scoring Bayesian network where
each variable has at most k parents is NP-hard, for any k ≥ 2. (See Chickering et al., 2003, for
details.) Even finding the maximum likelihood structure among the class of polytrees (Dasgupta,
1999) or paths (Meek, 2001) is NP-hard. These results do not address the question of the number
of training examples for which the highest scoring network is guaranteed to be close to the true
generating distribution.

Höffgen (1993) analyzes the problem of PAC-learning the structure of Bayesian networks with
bounded fan-in, showing that the sample complexity depends only logarithmically on the number of
variables in the network (when considering KL-divergence normalized by the number of variables
in the network). Höffgen does not provide an efficient learning algorithm (and to date, no efficient
learning algorithm is known), stating only that if the optimal network for a given data set can be
found (e.g., by exhaustive enumeration), it will be close to optimal with high probability.
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In contrast, we provide a polynomial-time learning algorithm with similar performance guaran-
tees for Bayesian networks with bounded fan-in and bounded fan-out. However, we note that our
algorithm does not construct a Bayesian network representation, but rather a factor graph; this factor
graph may not be compactly representable as a Bayesian network, but it is guaranteed to encode a
distribution which is close to the generating distribution, with high probability.

6. Discussion

We have presented the first polynomial-time and polynomial sample-complexity algorithms for both
parameter estimation and structure learning in factor graphs of bounded degree. When the generat-
ing distribution is within this class of networks, our algorithms are guaranteed to return a distribution
close to it, using a polynomial number of training examples. When the generating distribution is
not in this class, our algorithm degrades gracefully. Thus our algorithms and analysis are the first to
establish the efficient learnability of an important class of distributions.

While of significant theoretical interest, our algorithms, as described, are probably impractical.
From a statistical perspective, our algorithm is based on the canonical parameterization, which is
evaluated relative to a canonical assignment x̄. Many of the empirical estimates that we compute
in the algorithm use only a subset of the training examples that are (in some ways) consistent with
x̄. As a consequence, we make very inefficient use of data, in that many training examples may
never be used. In regimes where data is not abundant, this limitation may be quite significant in
practice. From a computational perspective, our algorithm uses exhaustive enumeration over all
possible factors up to some size k, and over all possible Markov blankets up to size b. When we fix
k and b to be constant, the complexity is polynomial. But in practice, the set of all subsets of size k
or b is often much too large to search exhaustively.

Nevertheless, aside from proving the efficient learnability of an important class of probability
distributions, the algorithms we propose might provide insight into the development of new learning
algorithms that do work well in practice. In particular, we might be able to address the statistical
limitation by putting together canonical factor estimates from multiple canonical assignments x̄. We
might be able to address the computational limitation using a more clever (perhaps heuristic) algo-
rithm for searching over subsets. Given the limitations of existing parameter and structure learning
algorithms for undirected models, we believe that the techniques suggested by our theoretical anal-
ysis are well worth exploring.
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Appendix A. Proofs for Section 2.2

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 2.2.

A.1 Proof of Theorem 3

Proof [Theorem 3] The proof consists of two parts:

1. If we let {C∗
j}J∗

j=1 = 2X − /0, then P(x) = P(x̄)∏J∗
j=1 f ∗C∗

j
(c∗j).

2. If P is a positive Gibbs distribution with factor scopes {C j}J
j=1, then the canonical factors f ∗D

are trivial all-ones factors, whenever D /∈ ∪J
j=12C j .

The first part states that the canonical parameterization gives the correct distribution assuming we
use a canonical factor for each subset of variables. It is easily verified by counting how often the
probabilities P(σU[d]) contribute for each U ⊆ D ⊆ X , and is a standard part of most Hammersley-
Clifford theorem proofs. The second part states that we can ignore canonical factors over subsets of
variables that do not appear together in one of the factor scopes {C j}J

j=1. We now prove the second
part. We have

log f ∗D(d) = ∑
U⊆D

(−1)|D−U| logP(σU[d])

= ∑
U⊆D

(−1)|D−U|
(

J

∑
j=1

log fC j(C j[σU[d]])+ log
1
Z

)

=
J

∑
j=1

∑
U⊆D

(−1)|D−U| log fC j(C j[σU[d]]). (20)

To obtain the last equality, we used the fact that there is an equal number of terms (log 1
Z ) and

(− log 1
Z ). Now consider the contribution of one factor fC j in the above expression. By assumption

we have that D /∈∪J
j=12C j and thus D−C j 6= /0. Now let Y be any element of D−C j. Then we have

that

∑
U⊆D

(−1)|D−U| log fC j(C j[σU[d]]) = ∑
U⊆D−Y

(−1)|D−U| log fC j(C j[σU[d]])

+(−1)|D−U−Y | log fC j(C j[σU∪Y [d]]).

Now since Y /∈ C j, we have C j[σU[d]] = C j[σU∪Y [d]]. And thus we get

∑
U⊆D

(−1)|D−U| log fC j(C j[σU[d]]) = 0. (21)

And thus combining Eqn. (21) with Eqn. (20) establishes the second part of the proof.
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Appendix B. Proofs for Section 3.2

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 3.2.
Proof [Proposition 4] In Eqn. (2) the number of terms with a positive sign and a negative sign are
both equal to 2|D|−1. So we can divide the argument of the log in each term by the same constant
P(X −D = (X −D)[x̄]) without changing the factor. The resulting expression is exactly the expres-
sion defining f ∗D|X−D in Eqn. (7), thus proving the first equality in Eqn. (8). The second equality in
Eqn. (8) follows directly from Eqn. (1) and the definition of the factors as functions of probabilities
in Eqn. (7). Eqn. (9) and (10) follow directly from Eqn. (8) and Theorem 3.

Appendix C. Proofs for Section 3.3

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 3.3.
Proof [Theorem 5] The algorithm consists of two parts:

• Collecting the empirical probabilities for each of the factors, jointly with the default instantia-
tion of their Markov blanket. This can be done in three steps. [Below, recall that the maximum
factor scope size is k, so there are at most 2kJ different canonical factors. Each variable can
take on at most v different values.]

– For all instantiations of all factors initialize the occurrence count to zero. This can be
done in O(2kJvk).

– When going through the m data points, we need to add to the counts of the observed
instantiation whenever the Markov blanket is in the default instantiation. Reading a
specific instantiation of a specific factor and its Markov blanket takes O(k + b) to read
every variable. Thus collecting the data counts from which the empirical probabilities
will be computed takes O(m2kJ(k +b)).

– Renormalizing all of the entries to get the empirical conditional probabilities takes time
O(2kJvk).

• Computing the factor entries from the empirical probabilities. To compute one factor entry
f ∗C∗

j
(c∗j), we have to add (and subtract) 2|C

∗
j | empirical log-probabilities. (Note this is the case

independent of the cardinality of the variables in the factor, as seen from Eqn. (7).) This gives
us O(2|C

∗
j |) operations per factor entry, and thus O(J22kvk) total for computing the canonical

factor entries from the empirical probabilities.

Adding up the upper bounds on the running times of each step proves the theorem.

Appendix D. Proofs for Section 3.4

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 3.4.
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D.1 Proof of Theorem 6

The proof of the theorem is based on a series of lemmas.
The following lemma shows that the log of the empirical average is an accurate estimate of the

log of the population average, if the population average is bounded away from zero.

Lemma 17 Let any ε > 0,δ > 0,λ ∈ (0,1) be given. Let {Xi}m
i=1 be i.i.d. Bernoulli(φ) random

variables, where λ ≤ φ ≤ 1−λ. Let φ̂ = 1
m ∑m

i=1 Xi. Then for

| logφ− log φ̂| ≤ ε

to hold w.p. 1−δ, it suffices that

m ≥ (1+ ε)2

2λ2ε2 log
2
δ
.

Proof From the Hoeffding inequality we have that for

|φ− φ̂| ≤ ε′

to hold w.p. 1−δ it suffices that

m ≥ 1
2ε′2

log
2
δ
. (22)

Since the function f (x) = logx is Lipschitz with Lipschitz-constant smaller than 1
λ−ε′ over the inter-

val [λ− ε′,1], we have that for

| logφ− log φ̂| ≤ ε′

λ− ε′

to hold w.p. 1− δ, it suffices that m satisfies Eqn. (22). Now for ε′
λ−ε′ ≤ ε to hold, it suffices that

ε′ ≤ ελ
1+ε . Using this choice of ε′ in Eqn. (22) gives the condition for m as stated in the lemma.

The following lemma shows that for distributions that are bounded away from zero, conditional
probabilities can be accurately estimated from a small number of samples.

Lemma 18 Let any ε,δ > 0 be given. Let {x(i),y(i)}m
i=1 be i.i.d. samples from a distribution P over

X,Y. Let P̂ be the empirical distribution. Let λ = minx,y P(X = x,Y = y). Then for

| logP(X = x|Y = y)− log P̂(X = x|Y = y)| ≤ ε

to hold for all x,y with probability 1−δ, it suffices that

m ≥ (1+ ε
2 )2

2λ2( ε
2 )2 log 4|val(X)||val(Y)|

δ .

Proof We have (using the definition of conditional probability and the triangle inequality)
∣∣ logP(X = x|Y = y)− log P̂(X = x|Y = y)

∣∣
=

∣∣( logP(X = x,Y = y)− logP(Y = y)
)

−
(

log P̂(X = x,Y = y)− log P̂(Y = y)
)∣∣

≤
∣∣(logP(X = x,Y = y)− log P̂(X = x,Y = y)

∣∣
+
∣∣(logP(Y = y)− log P̂(Y = y)

∣∣.
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Now using Lemma 17 (note that λ = minx,y P(X = x,Y = y)≤miny P(Y = y)) and the Union bound
to bound both terms by ε/2, we get that for

∣∣ logP(X = x|Y = y)− log P̂(X = x|Y = y)
∣∣≤ ε (23)

to hold with probability 1−2δ′, it is sufficient that

m ≥ (1+ ε/2)2

2λ2(ε/2)2 log
2
δ′

. (24)

Using the Union bound, we get that for Eqn. (23) to hold with probability 1− 2|val(X)||val(Y)|δ′

for all x ∈ val(X),y ∈ val(Y) it suffices that m satisfies Eqn. (24). Choosing δ = 2|val(X)||val(Y)|δ′

gives the statement of the lemma.

Our algorithm uses probability estimates to compute canonical factors. The following lemma
shows that accurate probabilities are sufficient to obtain accurate canonical factors.

Lemma 19 Let any ε > 0 be given. Let any D,Y,W ⊆ X ,D∩Y = /0,D∩W = /0 be given. Then for
all d ∈ val(D) for

| log f ∗D|Y(d)− log f̂ ∗D|W(d)| ≤ ε

to hold, it suffices that for all instantiations d ∈ val(D) we have that

| logP(d|ȳ)− log P̂(d|w̄)| ≤ ε
2|D| . (25)

Proof
∣∣ log f ∗D|Y(d)− log f̂ ∗D|W(d)

∣∣ =
∣∣ ∑

Z⊆D
(−1)|D−Z| logP(σZ:D[d]|Y = ȳ)

− ∑
Z⊆D

(−1)|D−Z| log P̂(σZ:D[d]|W = w̄)
∣∣

≤ ∑
Z⊆D

∣∣ logP(σZ:D[d]|Y = ȳ)

− log P̂(σZ:D[d]|W = w̄)
∣∣

≤ ∑
Z⊆D

ε
2|D|

= ε,

where, in order, we used the definitions of f ∗ and f̂ ∗; triangle inequality; Eqn. (25); number of
subsets of D equals 2|D|.

The next step is to show that, if we obtain good estimates of the factors, the distributions they
induce should be close as well. The following lemma shows that distributions with approximately
the same factors are close to each other, by proving a bound on D(P‖P̂)+D(P̂‖P), and thus (since
D(·‖·) ≥ 0) a bound on D(P‖P̂).
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Lemma 20 Let P(x) = 1
Z ∏J

j=1 f j(c j) and P̂(x) = 1
Ẑ ∏J

j=1 f̂ j(c j). Let ε = max j∈{1,··· ,J},c j
| log f j(c j)−

log f̂ j(c j)|. Then we have that
D(P‖P̂)+D(P̂‖P) ≤ 2Jε.

Proof

D(P‖P̂)+D(P̂‖P) = EX∼P
(
logP(X)− log P̂(X)

)
+EX∼P̂

(
log P̂(X)− logP(X)

)

= EX∼P

J

∑
j=1

(
log f j(C∗

j)− log f̂ j(C∗
j)
)
− log

Z

Ẑ

+EX∼P̂

J

∑
j=1

(
log f̂ j(C∗

j)− log f j(C∗
j)
)
− log

Ẑ
Z

≤ 2Jε,

where we used in order: the definition of KL-divergence; the definition of P, P̂; log Z
Ẑ

+ log Ẑ
Z = 0,

and the fact that each term in the expectation is bounded in absolute value by ε.

Note that (by using the sum of the KL-divergences) we have that the terms that involve the
partition functions Z and Ẑ cancel. This enables us to prove an error bound without bounding the
difference | logZ − log Ẑ| as a function of the errors in the factors.

We now show how the previous lemmas can be used to prove the parameter learning sample
complexity result stated in Theorem 6.
Proof [Theorem 6] First note that since the scopes of the canonical factors used by the algorithm
are subsets of the given scopes {C j}J

j=1, we have that

max j|C∗
j ∪MB(C∗

j)| ≤ b+ k.

Let P̂ be the empirical distribution as given by the samples {x(i)}m
i=1. Let M∗

j = MB(C∗
j). Then

from Lemma 18 we have that for any j ∈ {1, . . . ,J∗} for
∣∣ logP(C∗

j = c∗j |M∗
j = m∗

j)− log P̂(C∗
j = c∗j |M∗

j = m∗
j)
∣∣≤ ε′ (26)

to hold for all instantiations c∗j ,m
∗
j with probability 1−δ′, it suffices that

m ≥ (1+ ε′
2 )2

2γ2k+2b( ε′
2 )2

log
4vk+b

δ′
. (27)

Using Lemma 19 we obtain that for all instantiations c∗j we have that Eqn. (26) implies

| log f ∗C∗
j |MB(C∗

j )
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j)
(c∗j)| ≤ 2kε′. (28)

Using the union bound, we get that for Eqn. (28) to hold for all j ∈ J∗ with probability 1− J∗δ′, it
suffices that m satisfies Eqn. (27). When Eqn. (28) holds for all j ∈ J∗, Lemma 20 and Proposition 4
give us that

D(P‖P̃)+D(P̃‖P) ≤ 2J∗2kε′. (29)

We have that J∗ ≤ 2kJ. Choosing ε′ = ε
22k+1 and δ′ = δ

2kJ and substituting these choices into Eqn. (27)
and Eqn. (29) gives the theorem.
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D.2 Proof of Theorem 7

Proof [Theorem 7] From Proposition 4 we have that

Q(x) =
1
Z

J̄

∏
j=1

f ∗D∗
j |MB(D∗

j)
(d∗

j).

We can rewrite this product as follows:

Q(x) =
1
Z ∏

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) = M̂B(D∗

j)

f ∗D∗
j |MB(D∗

j)
(d∗

j)

∏
j:

D∗
j ∈ {C∗

k}J∗
k=1

MB(D∗
j) 6= M̂B(D∗

j)

f ∗D∗
j |MB(D∗

j)
(d∗

j)

∏
j:D∗

j /∈{C∗
k}J∗

k=1

f ∗D∗
j |MB(D∗

j)
(d∗

j). (30)

We also have

P̃(x) =
1

Z̃

J∗

∏
j=1

f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j). (31)

We can rewrite this product as follows:

P̃(x) =
1

Z̃ ∏
j:

D∗
j ∈ {C∗

k}J∗
k=1

MB(D∗
j) = M̂B(D∗

j)

f̂ ∗D∗
j |MB(D∗

j )
(d∗

j)

∏
j:

D∗
j ∈ {C∗

k}J∗
k=1

MB(D∗
j) 6= M̂B(D∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j)
(d∗

j)

∏
j:

C∗
j /∈ {D∗

k}J̄
k=1

MB(C∗
j) = M̂B(C∗

j)

f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∏
j:

C∗
j /∈ {D∗

k}J̄
k=1

MB(C∗
j) 6= M̂B(C∗

j)

f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j). (32)

We have (adding and subtracting same term):

log
f ∗D∗

j |MB(D∗
j)
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j)
(d∗

j)
= log

f ∗D∗
j |MB(D∗

j)
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j)
(d∗

j)
+ log

f ∗
D∗

j |M̂B(D∗
j)
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j)
(d∗

j)
. (33)
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We also have for j : C∗
j /∈ {D∗

k}k that log f ∗C∗
j |MB(C∗

j )
(C∗

j) = 0. Thus we have (adding zero and adding

and subtracting same term):

log f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j) = log

f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

+ log
f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

f ∗C∗
j |MB(C∗

j)
(c∗j)

. (34)

Using Eqn. (30), Eqn. (32), Eqn. (33) and Eqn. (34) we get that D(Q‖P̃)+D(P̃‖Q) =

EX∼Q

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) = M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |MB(D∗

j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) = M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |MB(D∗

j )
(d∗

j)

)
(35)

+EX∼Q

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
(36)

+EX∼Q

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
(37)

+EX∼Q

(
∑

j:D j /∈{C∗
k}J∗

k=1

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)
−EX∼P̃

(
∑

j:D j /∈{C∗
k}J∗

k=1

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)

(38)

−EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) = M̂B(C∗

j)

log f̂ ∗C∗
j |MB(C∗

j )
(c∗j)

)
+EX∼P̃

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) = M̂B(C∗

j)

log f̂ ∗C∗
j |MB(C∗

j )
(c∗j)

)
(39)

+EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
−EX∼P̃

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
(40)

+EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗C∗

j |MB(C∗
j )
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
−EX∼P̃

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗C∗

j |MB(C∗
j )
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
(41)

+ log
Z̃
Z

+ log
Z

Z̃
. (42)

Recall T = { j : C∗
j /∈ {D∗

k}J̄
k=1,MB(C∗

j) 6= M̂B(C∗
j)}. Using the same reasoning as in the proof

of Theorem 6, we have that for the sum of the terms in lines (35), (36), (39) and (40) to be bounded
by Jε with probability at least 1− δ, it suffices that m satisfies the condition on m in Eqn. (11) of
Theorem 6 .

The sum of the terms in lines (37) and (41) can be bounded by

2 ∑
j : MB(C∗

j)6=M̂B(C∗
j)

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∣∣∣.

1771



ABBEEL, KOLLER AND NG

The sum of the terms in lines (38) can be bounded by

2 ∑
j:D∗

j /∈{C∗
k}J∗

k=1

maxd∗
j

∣∣ log f ∗D∗
j
(d j)

∣∣.

The two terms in line (42) sum to zero.
This establishes the theorem.

Appendix E. Proofs for Section 3.5

We will treat the proofs for the factor graph case and the Bayesian network case in two separate
sections.

E.1 Proof of Theorem 8

Proof [Theorem 8] Using the same reasoning as in the proof of Theorem 6, we get that for any fixed
j ∈ {1, · · · ,J∗} for

| log f ∗C∗
j |MB(C∗

j)
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j )
(c∗j)| ≤

ε′

2k+1 (43)

to hold for all instantiations c∗j with probability 1−δ′ it suffices that

m ≥
(1+ ε′

22k+2 )
2

2γ2k+2b( ε′
22k+2 )2

log
4vk+b

δ′
. (44)

Also, using the same reasoning as in the proof of Lemma 20, we get that

Dn(P‖P̃)+Dn(P̃‖P) ≤ 2
n

J∗

∑
j=1

maxc∗j | log f ∗C∗
j |MB(C∗

j)
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j )
(c∗j)|.

We have for all factors and instantiations that (recall that 2k probabilities contribute to each factor,
and each probability is over k variables, thus each (log) conditional probability has maximal skew

log (1−γ)k

γk ≤ k log 1
γ )

| log f ∗C∗
j |MB(C∗

j )
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j)
(c∗j)| ≤ k2k log

1
γ
.

Note that clipping of the probability estimates ensures this holds with probability one. Thus we get
that

E
(
Dn(P‖P̃)+Dn(P̃‖P)

)
≤ 2

n
J∗

ε′

2k+1 +δ′
2
n

J∗k2k log
1
γ

≤ J
n

ε′ +
J
n

k22k+1δ′ log
1
γ
,

where for the last inequality we used J∗ ≤ 2kJ. The Markov inequality (P(X ≤ α) ≥ 1− EX
α ) gives

us that
Dn(P‖P̃)+Dn(P̃‖P) ≤ ε (45)
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holds with probability

1−
J
n ε′ + J

n k22k+1δ′ log 1
γ

ε
.

Now choosing ε′,δ′ such that δ
2 = J

n
ε′
ε = J

n

k22k+1δ′ log 1
γ

ε and substituting this back into the sufficient
condition on m, gives us that for Eqn. (45) to hold with probability 1−δ, it suffices that

m ≥
(1+ n

J
εδ

22k+3 )
2

2γ2k+2b( n
J

εδ
22k+3 )2

log
k22k+4vk+b log 1

γ
n
J εδ

.

Since the number of factors per variables is bounded by a constant, we have that J
n is bounded

by that constant. And thus we have that m is O(1) when considering only the dependence on n, the
number of variables.

E.2 Proof of Theorem 9

For clarity of the overall proof structure of Theorem 9, we defer the proofs of the helper lemmas
to the next section. Note the theorem stated in this section is stronger than Theorem 9: it includes
dependencies of m on ε,δ, the maximum domain size of the variables v, and the maximum number
of parents k. It also shows the graceful degradation for the case of learning a distribution that does
not factor according to the given structure.

For any γ < 1
v , and any multinomial distribution with means θ1:v, the multinomial distribution

with means clipped to [γ,1− γ] refers to the distribution obtained by clipping every θi to [γ,1− γ],
after which the θi are adjusted to sum to one, while kept in the interval [γ,1− γ]. It is easily verified
this is always possible without changing any θi by more than vγ. (Although the adjustment such that
the entries sum to one need not be unique, it does not matter for our results which choice is made.)
We write D(θ(1)

1:v‖θ(2)
1:v) as a shortcut for D(P1‖P2), where P1,P2 are multinomial distributions with

means θ(1)
1 , . . . ,θ(1)

v and θ(2)
1 , . . . ,θ(2)

v respectively. The following lemmas establish the basic results
used to prove our main sample complexity bounds for Bayesian networks parameter learning.

Lemma 21 Let any δ > 0,ε > 0 be fixed, and let there be m i.i.d. samples drawn from a v-valued
multinomial distribution with means θ∗

1:v, and let θ̃1:v be the empirical distribution, clipped to the

interval [ ε
4v3 ,1− ε

4v3 ]. Then if m ≥ 8v4

ε2 log 2v
δ , we have that D(θ∗

1:v‖θ̃1:v) ≤ ε w.p. 1−δ.

Lemma 22 Let two v-valued multinomial distributions with means θ(1)
1:v ∈ [0,1]v,θ(2)

1:v ∈ [γ,1−γ]v be

given. Then we have that D(θ(1)
1:v‖θ(2)

1:v) ≤ log 1
γ .

Lemma 23 Let mH be the sum of m i.i.d. Bernoulli(p) random variables. If m ≥ 8
p log 1

δ , then we
have that mH ≥ mp

2 with probability 1−δ.

Lemma 24 Let {Xi}k+1
i=1 be a set of k + 1 random variables with |val(Xi)| ≤ v for all i = 1 : k + 1.

Let u ∈ val(X1:k). Let any ε > 0,δ > 0 be given. Let P̃(Xk+1|X1:k = u) be the empirical estimate
of Xk+1|X1:k = u (based on m independent samples of {Xi}k+1

i=1 drawn from P(X1:k+1)) clipped to the
interval [ ε

4|val(Xk+1)|3 ,1−
ε

4|val(Xk+1)|3 ]. Then to ensure that D(P(Xk+1|X1:k = u)‖P̃(Xk+1|X1:k = u)) ≤
ε

vk/2
√

P(X1:k=u)
w.p. 1−δ, it suffices that m ≥ 16 v4+k

ε2 log2 4v3

ε log 4v
δ .
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Lemma 25 Let {Xi}k+1
i=1 be a set of k + 1 random variables with val(Xi) ≤ v for all i = 1 : k + 1.

Let any ε > 0,δ > 0 be given. For all u ∈ val(X1:k) let P̃(Xk+1|X1:k = u) be the empirical esti-
mate of Xk+1|X1:k = u (based on m independent samples of {Xi}k+1

i=1 drawn from P(X1:k+1)) clipped
to the interval [ ε

4|val(Xk+1)|3 ,1−
ε

4|val(Xk+1)|3 ]. Then for ∑u∈val(X1:k) P(X1:k = u)D(P(Xk+1|X1:k = u)

‖P̃(Xk+1|X1:k = u)) ≤ ε to hold with probability 1−δ, it suffices that m ≥ 16 v4+k

ε2 log2 4v3

ε log 4vk+1

δ .

Because KL divergence can be unbounded, typically some process, such as clipping, is needed
to ensure that our algorithms do not suffer infinite loss. Lemmas 21 and 22 show that we can bound
the KL divergence by clipping the (estimated) probabilities away from {0,1}. (Abe et al. (1991)
and Abe et al. (1992) give a more detailed treatment of uniform convergence for KL divergence
loss.) Lemma 24 shows how to bound our error on individual conditional probability table (CPT)
entries. Note that in Lemma 24, the loss is allowed to be larger for less likely instantiations of the
conditioning variables. Also note that Lemma 24 shows that the number of samples m required
does not depend on the probability of the instantiations of the conditioning variables, no matter
how likely/unlikely. Lemma 23 is used in our proof of Lemma 24 to relate the required number of
samples with a specific instantiation u of the conditioning variables to the actual number of training
examples required. Lemma 25 relates the loss on individual CPT entries to the conditional KL
divergence, and follows directly from Lemma 24 and Cauchy-Schwarz.

Using the lemmas above, we are now ready to prove a bound on the sample complexity of learn-
ing a fixed structure BN. We note that Dasgupta (1997) showed a bound on the sample complexity
of BN learning that was polynomial in the number of variables n. His proof method relied on using a
Union bound to show that all of the n nodes in the BN will have accurate CPT entries, which meant
the bound necessarily had to have a dependence on n (even if the normalized KL criterion had been
used). For the normalized KL criterion, his method gives a logarithmic dependence on n. Below,
we will derive a strictly stronger bound, which has no dependence on the number of variables in
the BN. Our bound is based on showing that (i) Given any fixed node, with high probability, its
CPT entries will be accurate (Lemma 25), and (ii) Using the Markov inequality to show that, as a
consequence, almost all of the nodes in the network will have CPT entries that are accurate. This
turns out to be sufficient to ensure the estimated BN parameters will provide a good approximation
to the joint distribution, and eliminates the bound’s dependence on n.

In the theorem below, P is some “true” underlying distribution from which the samples are
drawn; PBN is the best possible approximation to P using a given BN structure (in the sense of
minimizing Dn(P‖·)), and P̃BN is the learned estimate of P. We give a bound on the number of
training examples required for P̃BN’s performance to approach that of PBN .

Theorem 26 Let any ε > 0 and δ > 0 be fixed. Let P be any probability distribution over n multi-
nomial random variables X1:n, where each of the random variables Xi can take on at most v values.
Let any BN structure be given, and let k be the maximum number of parents per variable. (P may
not factor according to the BN structure.) Let PBN be the best possible estimate of P using a model
that factorizes according to the BN structure. (I.e., PBN’s conditional probability distributions sat-
isfy PBN(Xi|PaXi) = P(Xi|PaXi).) Let P̃BN denote the probability distribution obtained by fitting (via
maximum likelihood) a BN model with the given structure to the m i.i.d. training examples drawn
from P, and then clipping for each X j each CPT entry to the interval [ ε

8|val(Xj)|3 ,1−
ε

8|val(Xj)|3 ]. Then,

to ensure that with probability 1−δ, P̃BN is nearly as good an estimate as PBN of the true distribution
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P, that is, we have
Dn(P‖P̃BN) ≤ Dn(P‖PBN)+ ε,

it suffices that the training set size be

m ≥ 64
v4+k log2 8v3

ε
ε2 log(

8vk+1

εδ
log

8v3

ε
).

Remark. Note that if P does factor according to the given BN structure, then the term Dn(P‖PBN)
above equals zero.
Proof The following equality is easily verified:

D(P‖P̃BN) = D(P‖PBN)

+
n

∑
j=1

∑
u∈val(PaXj)

P(PaX j = u)D(P(X j|PaX j = u)‖P̃(X j|PaX j = u)). (46)

From Lemma 25 we have that for estimates clipped to [ ε′
4|val(Xj)|3 ,1−

ε′
4|val(Xj)|3 ], that for

∑
u∈val(PaXj)

P(PaX j = u)D(P(X j|PaX j = u)‖P̃(X j|PaX j = u)) ≤ ε′

to hold with probability 1− τ, it suffices that

m ≥ 16
v4+k log2 4v3

ε′
ε′2 log 4vk+1

τ . (47)

Now let Z = ∑i ηi be the sum over indicator variables ηi = 1{∑u P(PaXi = u)D(P(X j|PaX j =
u)‖P̃(X j|PaX j = u)) > ε′}, and let τ be as above. Then applying the Markov inequality to the
non-negative random variable Z gives

P(∑n
i=1 ηi ≤ nτ

δ ) ≥ 1−δ. (48)

So, we have that

Dn(P‖P̃BN) ≤ Dn(P‖PBN)+ 1
n ∑n

i=1(1−ηi)ε′ + 1
n ∑n

i=1 ηi log 4v3

ε′

≤ Dn(P‖PBN)+ ε′ + τ
δ log 4v3

ε′ w.p. 1−δ. (49)

For the first inequality we used Eqn. (46), the definition of ηi and Lemma 22. The second inequality
follows from Eqn. (48). To bound the right hand side of Eqn. (49), we bound each of the terms by
ε
2 . For the first term this implies ε′ = ε

2 , for the second term, this allows us to solve for the free
parameter τ = εδ

2log 4v3

ε′
= εδ

2log 8v3
ε

. Substituting these expressions for ε′ and τ into Eqn. (47, 49), gives

the statement of the theorem.

Note that Eqn. (46) holds for all distributions P̃BN that factor according to the BN. Since KL
divergence is always non-negative, Eqn. (46) implies that D(P‖PBN) ≤ D(P‖P̃BN). So the clipped
maximum likelihood learning achieves the minimal KL divergence loss for infinite sample size.
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Also note that in general, D(P‖P̃BN) is not equal to D(P‖PBN) + D(PBN‖P̃BN). In particular, the
second term in Eqn. (46) is not equal to D(PBN‖P̃BN), since PBN(PaX j = u) is (in general) not equal
to P(PaX j = u). (In contrast, for log-linear models/undirected graphical models a decomposition of
the KL-divergence does hold.17)

E.3 Proofs of Lemmas 21, 22, 23, 24, 25

We will first state and prove two lemmas that are used to subsequently prove lemmas 21, 22, 23, 24, 25.

Lemma 27 For any θ(1)
1:v ,θ

(2)
1:v ∈ [0,1]v,∑v

i=1 θ(1)
i = 1,∑v

i=1 θ(2)
i = 1, we have

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

(θ(1)
i −θ(2)

i )2

θ(2)
i

.

Proof We use the concavity of the log function, to upper bound it with a tangent line at θ(2)
i , which

gives the following inequality:

logθ(1)
i ≤ logθ(2)

i +
1

θ(2)
i

(θ(1)
i −θ(2)

i ). (50)

Substituting Eqn. (50) into the definition of D(θ(1)
1:v‖θ(2)

1:v) gives us:

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

θ(1)
i

θ(2)
i

(θ(1)
i −θ(2)

i ).

Adding 0 = ∑v
i=1

−θ(2)
i

θ(2)
i

(θ(1)
i −θ(2)

i ) to the right hand side gives:

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

1

θ(2)
i

(θ(1)
i −θ(2)

i )2,

which proves the theorem.

Lemma 28 For any v-valued multinomial distributions with means θ(1)
1:v ∈ [0,1]v and θ(2)

1:v ∈ [γ,1−
γ]v, with γ < 1

v , we have

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

(θ(1)
i −θ(2)

i )2

γ
.

Proof Immediately from Lemma 27, since 1
θ(2)

i

≤ 1
γ .

17. Let P be any distribution, let {Pθ} be a family of log-linear models parameterized by θ, let θ∗ = argminθ D(P‖Pθ).
Then we do have that D(P‖Pθ) = D(P‖Pθ∗)+ D(Pθ∗‖Pθ). The proof relies on the fact that θ∗ is such that EP[ηi] =
EPθ∗ [ηi],∀i, with ηi the natural parameters of the log-linear model (see, for example, Kullback (1959)). Due to the
local normalization constraints, this is not true in BN’s.
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Proof [Lemma 21] Let θ̂1:v be the unclipped sample means. The triangle inequality gives for any
i ∈ {1, · · · ,v}:

|θ∗
i − θ̃i| ≤ |θ∗

i − θ̂i|+ |θ̂i − θ̃i|. (51)

From the Hoeffding inequality and the Union bound we have that for all i ∈ {1, · · · ,v} for

|θ∗
i − θ̂i| ≤ ε′ (52)

to hold w.p. 1−δ, it suffices that

m ≥ 1
2(ε′)2 log

2v
δ

. (53)

Since θ̃1:v are obtained by clipping θ̂1:v into [γ,1− γ] (for now γ is a free parameter, which will soon
be matched to the clipping choice of ε

4v3 of the lemma), we have that (see introduction of previous
section)

|θ̂i − θ̃i| ≤ vγ. (54)

Using Lemma 28 and then Eqn. (51), (52), and (54) we have that

D(θ1:v‖θ̃1:v) ≤
v

∑
i=1

(θ∗
i − θ̃i)

2

γ
≤ v

(ε′ + vγ)2

γ
(55)

holds w.p. 1− δ if m satisfies Eqn. (53). The choice of γ = ε′
v minimizes the right hand side of

Eqn. (55), and gives us that
D(θ1:v‖θ̃1:v) ≤ 4v2ε′. (56)

Now choosing ε′ = ε
4v2 (corresponding to γ = ε

4v3 ) gives us that for

D(θ1:v‖θ̃1:v) ≤ ε

to hold w.p. 1−δ it suffices that

m ≥ 8v4

ε2 log
2v
δ

,

which proves the lemma.

Proof [Lemma 22] We have

D(θ(1)
1:v‖θ(2)

1:v) =
v

∑
i=1

θ(1)
i log

θ(1)
i

θ(2)
i

≤ maxi log
θ(1)

i

θ(2)
i

≤ maxi log
1

θ(2)
i

≤ maxy∈[γ,1−γ] log
1
y

= log
1
γ
,
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which proves the lemma.

Proof [Lemma 23] Let p̂ = mH
m , then

Pr(mH ≤ pm
2

) = Pr(p̂ ≤ p
2
) = Pr(

p− p̂√
p

≥
√

p

2
).

Applying the (multiplicative) Chernoff bound gives

Pr(mH ≤ pm
2

) ≤ exp(
−pm

8
) = δ,

where the last equality defines δ. Solving the last equation for m shows that m = 8
p log 1

δ samples
are sufficient to guarantee Pr(mH > pm

2 ) ≥ 1−δ, which is the statement of the lemma.

Proof [Lemma 24] Below let θi = P(Xk+1 = i|X1:k = u), let θ̃i = P̃(Xk+1 = i|X1:k = u), and let
v̄ = |val(Xk+1)|. We split the proof into 2 cases

1. ε
vk/2

√
P(X1:k=u)

≥ log 4v3

ε This case is trivial, since by Lemma 22 we have that D(θ1:v̄‖θ̃1:v̄)≤

log 4v̄3

ε ≤ log 4v3

ε and the statement of the lemma is trivially implied, for all θ̃1:v̄ ∈ [ 4v̄3

ε ,1−
4v̄3

ε ]v̄, so m = 0 samples is sufficient.

2. ε
vk/2

√
P(X1:k=u)

< log 4v3

ε Let mu be the number of samples for which X1:k = u. Then (using

Lemma 21 and v̄ ≤ v) a number of samples

mu ≥ 8v4 vkP(X1:k = u)

ε2 log
2v
δ′

(57)

is sufficient to guarantee that D(θ1:v̄‖θ̃1:v̄) ≤ ε
vk/2

√
P(X1:k=u)

with probability 1−δ′. To obtain,

with probability 1−δ′′, at least mu samples from P(X1:k+1) for which X1:k = u, it suffices that
the total number of samples m from P(X1:k+1) satisfies

m ≥ max{ 8
P(X1:k = u)

log
1
δ′′

,
2mu

P(X1:k = u)
},

where we used Lemma 23. Using P(X1:k = u) ≥ ε2

vk log2 4v3
ε

(we are in case 2) and (57), and

setting δ′ = δ/2, δ′′ = δ/2, gives the statement of the lemma.

Proof [Lemma 25] Using Lemma 24 and the union bound over all instantiations u of X1:k (there are
at most vk instantiations) we get that for

∀u ∈ val(X1:k) D(P(Xk+1|X1:k = u)‖P̃(Xk+1|X1:k = u)) ≤ ε
vk/2
√

P(X1:k = u)
(58)
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to hold with probability 1−δ, it suffices that

m ≥ 16v4+k log2 4v3

ε
ε2 log

4vk+1

δ
. (59)

So we have that the following inequalities hold w.p. 1−δ if m satisfies Eqn. (59):

∑
u∈val(X1:k)

P(X1:k = u)D(P(Xk+1|X1:k = u)‖P̃(Xk+1|X1:k = u))

≤ ∑
u

P(X1:k = u)
ε

v
k
2
√

P(X1:k = u)

≤ ∑
u

ε
√

P(X1:k = u)

vk/2

≤ ε,

where we used in order: Eqn. (58), simplification, Cauchy-Schwarz. The last inequality together
with the condition in Eqn. (59) prove the lemma.

Appendix F. Proofs for Section 4

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 4.

F.1 Proof of Lemma 12

We first prove the following lemma.

Lemma 29 Let any ε > 0,δ > 0 be given. Let any λ ∈ (0,1) be given. Let {Xi}m
i=1 be i.i.d.

Bernoulli(φ) random variables, where λ ≤ φ ≤ 1−λ. Let φ̂ = 1
m ∑m

i=1 Xi. Then for

|φ logφ− φ̂ log φ̂| ≤ ε

to hold w.p. 1−δ, it suffices that

m ≥ max{ 2
λ2 log

2
δ
,

2
λ2ε2 log

2
δ
}.

Proof From the Hoeffding inequality we have that for

|φ− φ̂| ≤ ε′

to hold w.p. 1−δ it suffices that

m ≥ 1
2ε′2

log
2
δ
. (60)

Now since the function f (x) = x logx is Lipschitz with Lipschitz-constant smaller than max{1, | log(λ−
ε′)|} over the interval [λ− ε′,1], we have that for

|φ logφ− φ̂ log φ̂| ≤ ε′max{1, | log(λ− ε′)|}
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to hold w.p. 1−δ, it suffices that m satisfies Eqn. (60). If we choose ε′ such that ε′ ≤ λ/2 we get

|φ logφ− φ̂ log φ̂| ≤ ε′max{1, | log(λ/2)|}.

To ensure the right hand side is smaller than ε, it suffices that the following three conditions are
satisfied:

ε′ ≤ λ
2
,

ε′ ≤ ε,

ε′ ≤ ελ/2 ≤ ε/| log
λ
2
|.

The last inequality holds since λ ∈ (0,1). Since λ ∈ (0,1) we can simplify this to the following two
conditions:

ε′ ≤ λ
2
,

ε′ ≤ ελ/2.

Substituting this into Eqn. (60) gives us the condition for m as in the statement of the lemma.

Proof [Lemma 12] We abbreviate P(X = x,Y = y) as P(x,y) and similarly for P̂,x,y,x|y. We
abbreviate ∑x∈val(X) by ∑x and similarly for y.

∣∣∣H(X|Y)− Ĥ(X|Y)
∣∣∣ =

∣∣∣∑
x,y

P(x,y) logP(x|y)−∑
x,y

P̂(x,y) log P̂(x|y)
∣∣∣

=
∣∣∣∑

x,y
P(x,y) logP(x,y)−∑

y
P(y) logP(y)

−∑
x,y

P̂(x,y) log P̂(x,y)+∑
y

P̂(y) log P̂(y)
∣∣∣

≤ ∑
x,y

∣∣∣P(x,y) logP(x,y)− P̂(x,y) log P̂(x,y)
∣∣∣

+∑
y

∣∣∣P(y) logP(y)− P̂(y) log P̂(y)
∣∣∣

Now using Lemma 29 (and the Union bound) we get that for
∣∣∣H(X|Y)− Ĥ(X|Y)

∣∣∣≤ |val(X)||val(Y)|ε′ + |val(Y)|ε′

to hold w.p. 1−|val(X)||val(Y)|δ′−|val(X)|δ′, it suffices that

m ≥ max{ 2
λ2ε′2

log
2
δ′

,
2
λ2 log

2
δ′
}.

Choosing ε = ε′/(2|val(X)||val(Y)|) and δ = δ′/(2|val(X)||val(Y)|) gives that for

|H(X|Y)− Ĥ(X|Y)| ≤ ε
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to hold with probability 1−δ, it suffices to have

m ≥ max{8|val(X)|2|val(Y)|2
λ2ε2 log

4|val(X)||val(Y)|
δ

,
2
λ2 log

4|val(X)||val(Y)|
δ

}. (61)

Now since for any two distributions P and P̂ we have |H(X|Y) − Ĥ(X|Y)| ≤ log |val(X)|
≤ 2|val(X)||val(Y)|, we have that for any ε ≥ 2|val(X)||val(Y)| the statement of the lemma holds
trivially independent of the number of samples m. Thus we can simplify the conditions on m in
Eqn. (61) to one condition:

m ≥ 8|val(X)|2|val(Y)|2
λ2ε2 log

4|val(X)||val(Y)|
δ

,

which proves the lemma.

F.2 Proof of Lemma 13

We abbreviate P(X = x) as P(x) and similarly for other variables.
Proof [Lemma 13] Using Eqn. (14) and the definition of conditional entropy we get that

∑
x,u,v,w,y

P(x,u,v,w,y) logP(x|u,v,w,y)− ∑
x,u,w

P(x,u,w) logP(x|u,w) ≤ ε.

We can rewrite this as

∑
x,u,v,w,y

P(x,u,v,w,y) log
P(x|u,v,w,y)

P(x|u,w)
≤ ε.

Now using Eqn. (13) (U∪V is the Markov blanket of X) gives us

∑
x,u,v,w,y

P(x,u,v,w,y) log
P(x|u,v)

P(x|u,w)
≤ ε.

We can simplify this to

∑
x,u,v,w

P(x,u,v,w) log
P(x|u,v)

P(x|u,w)
≤ ε.

Using the definition of conditional probability and Eqn. (13) (U∪V is the Markov blanket of X) we
get

∑
u,v,w

P(u,v,w)∑
x

P(x|u,v) log
P(x|u,v)

P(x|u,w)
≤ ε.

Now since λ1 ≤ P(u,v,w) and each term ∑x P(x|u,v) log P(x|u,v)
P(x|u,w) is positive (it’s a KL-divergence)

we get that for all u,v,w

∑
x

P(x|u,v) log
P(x|u,v)

P(x|u,w)
≤ ε

λ1
.
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The left hand side of this equation is the KL-divergence between a distribution Qu,v,w(X) = P(X|U =
u,V = v) and a distribution Q̂u,v,w(X) = P(X|U = u,W = w). Now using the KL-divergence prop-
erty that 1

2(∑x |P1(x)−P2(x)|)2 ≤ D(P1‖P2) (see, for example, Cover and Thomas, 1991, p. 300),
we get that for all u,v,w

1
2
(∑

x
|P(x|u,v)−P(x|u,w)|)2 ≤ ε

λ1
.

As a consequence, we have for all x,u,v,w that

|P(x|u,v)−P(x|u,w)| ≤
√

2
ε

λ1
.

Now since λ2 ≤ P(x|u,v) and λ2 ≤ P(x|u,w) we have that

| logP(x|u,v)− logP(x|u,w)| ≤
√

2ε
λ2
√

λ1
.

Now using Eqn. (13) (U∪V is the Markov blanket of X) to substitute P(x|u,v) by P(x|u,v,w,y),
we obtain Eqn. (15).

F.3 Proof of Theorem 14

Proof [Theorem 14] There are O(knkbnb) 〈candidate factor, candidate Markov blanket〉 pairs, each
with O(vk+b) different instantiations. Collecting the required empirical probabilities from the data
takes O(knkbnbvk+b +mknkbnb(k +b)). (Similar reasoning as in the proof of Theorem 5.) Comput-
ing the empirical entropies from the empirical probabilities takes O(knkbnbvk+b). There are O(knk)
actual factors computed. From (the proof of) Theorem 5, we have that this takes O(knk(m(k +b)+
2kvk)). Putting it all together gives us an upper bound on the running time of

O
(
knkbnbvk+b +mknkbnb(k +b)+ knkbnbvk+b

+ knk(m(k +b)+2kvk)
)
.

After simplification we get a running time of

O
(
knkbnbvk+b +mknkbnb(k +b)+ knk2kvk).

F.4 Proof of Theorem 15

Proof [Theorem 15] Let C , Y be defined as in Eqn. (16) and Eqn. (17) of the structure learning
algorithm description. For all C∗

j ∈ C we have by assumption |val(C∗
j )| ≤ vk. For all Y ∈ Y we

have |val(Y)| ≤ vb. Also note that P(C∗
j = c∗j ,Y = y) ≥ 1

γk+b . Using Lemma 12 we get that for any
C∗

j ∈ C ,Y ∈ Y for ∣∣H(C∗
j |Y)− Ĥ(C∗

j |Y)
∣∣≤ ε′ (62)
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to hold with probability 1−δ′ it suffices that

m ≥ 8
v2kv2b

γ2b+2kε′2
log4

vkvb

δ′
. (63)

Taking the union bound we get that for Eqn. (62) to hold for all C∗
j ∈ C and for all Y ∈ Y with

probability 1−|C ||Y |δ′ it suffices that m satisfies Eqn. (63).
For M̂B(C∗

j) = argminY∈Y ,Y∩C∗
j= /0 Ĥ(C∗

j |Y) we have Ĥ(C∗
j |M̂B(C∗

j))≤ Ĥ(C∗
j |MB(C∗

j)). Com-
bining this with Eqn. (62) gives us

H(C∗
j |M̂B(C∗

j)) ≤ H(C∗
j |MB(C∗

j))+2ε′. (64)

From Lemma 13 we have that Eqn. (64) implies that

| logP(C∗
j |M̂B(C∗

j))− logP(C∗
j |X −C∗

j)| ≤
√

4ε′

γk
√

γ2b

=
2
√

ε′

γk+b . (65)

Now from Lemma 18 we have that for

| logP(C∗
j |M̂B(C∗

j))− log P̂(C∗
j |M̂B(C∗

j))| ≤
2
√

ε′

γk+b (66)

to hold for all instantiations c∗j ∈ val(C∗
j ) with probability 1−δ′′, it suffices that

m ≥
(1+

√
ε′

γk+b )
2

2γ2k+2b(
√

ε′
γk+b )2

log
4vk+b

δ′′
. (67)

Using the Union bound, we get that for Eqn. (66) to hold for all C∗
j ∈ C with probability 1−|C |δ′′,

it suffices that m satisfies Eqn. (67). Or after simplification (and slightly loosening using γ < 1), we
get the condition

m ≥ (1+2
√

ε′)2

2γ2k+2bε′
log

4vk+b

δ′′
. (68)

Combining Eqn. (66) and Eqn. (65) gives us

| logP(C∗
j |X −C∗

j)− log P̂(C∗
j |M̂B(C∗

j))| ≤
4
√

ε′

γk+b .

From Lemma 19 we have that this implies

| log f ∗C∗
j |X−C∗

j
(c∗j)− log f̂ ∗

C∗
j |M̂B(C∗

j)
(c∗j)| ≤ 2k+2

√
ε′

γk+b .

Now choosing ε′ = ( ε
2k+2 )

2 γ2k+2b

22k+4 gives us that

| log f ∗C∗
j |X−C∗

j
(c∗j)− log f̂ ∗

C∗
j |M̂B(C∗

j )
(c∗j)| ≤

ε
2k+2 .
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The clipping to one of factor entries f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j) satisfying | log f̂ ∗

C∗
j |M̂B(C∗

j)
(c∗j)| ≤ ε

2k+2 introduces

at most an additional error of ε
2k+2 . Thus after the clipping we have,

| log f ∗C∗
j |X−C∗

j
(c∗j)− log f̂ ∗

C∗
j |M̂B(C∗

j )
(c∗j)| ≤

ε
2k+1 , (69)

for all canonical factors of P. We also have that all candidate factors that are not present in the
canonical form of the true distribution P will now have been removed and do not contribute to
P̃. (By our assumption on b the algorithm considered large enough Markov blanket candidates to
include the true Markov blanket. Such a large enough b for these factors (which can be larger than
the maximum Markov blanket size for factors present in the distribution) is important. Trivial (all-
ones) canonical factors computed using their Markov blanket require a true Markov blanket to be
all-ones.)

So far we have shown that Eqn. (69) holds with probability 1−|C ||Y |δ′−|C |δ′′ if m satisfies
both Eqn. (63) and Eqn. (68). Or, after substituting in the choice of ε′, if the following hold

m ≥ 28k+19v2k+2b

γ6k+6bε4 log
4vk+b

δ′
,

m ≥ 24k+7 (1+2 εγk+b

22k+4 )
2

γ4k+4bε2 log
4vk+b

δ′′
.

So choosing δ′ = δ′′ = δ/(2|C ||Y |), we have that for Eqn. (69) to hold with probability 1− δ, it
suffices that

m ≥ (1+
εγk+b

22k+3 )2 v2k+2b28k+19

γ6k+6b min{ε2,ε4} log
8|C ||Y |vk+b

δ
.

Now using the fact that |C | ≤ knk and |Y | ≤ bnb we obtain the following result: with probability
1−δ, Eqn. (69) holds for all non-trivial canonical factors in the target distribution if m satisfies the
condition on m in the theorem, namely Eqn. (19). Moreover (recall the clipping procedure removed
all candidate factors with scope less than k and Markov blanket size less than b that are not present
in the canonical form of the true distribution P) we have that zero error is incurred on all other
factors. Thus (after using Lemma 20) we have that

D(P‖P̂)+D(P̂‖P) ≤ 2J∗
ε

2k+1 ≤ Jε.

The second inequality follows since J∗ ≤ 2kJ.

F.5 Proof of Theorem 16

Proof [Theorem 16] From Proposition 4 we have that

Q(x) =
1
Z ∏

j
f ∗D∗

j |MB(D∗
j)
(d∗

j).

1784



LEARNING FACTOR GRAPHS IN POLYNOMIAL TIME AND SAMPLE COMPLEXITY

We can rewrite this product as follows:

Q(x) = 1
Z ∏

j:|D∗
j |≤k,|MB(D∗

j )|≤b

f ∗D∗
j |MB(D∗

j )
(d∗

j) ∏
j:|D∗

j |≤k,|MB(D∗
j )|>b

f ∗D∗
j |MB(D∗

j )
(d∗

j)

∏
j:|D∗

j |>k

f ∗D∗
j |MB(D∗

j)
(d∗

j) (70)

The learned distribution P̃ = 1
Z̃ ∏J∗

j=1 f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j), can be rewritten as

P̃(x) =
1

Z̃ ∏
j:|D∗

j |≤k,|MB(D∗
j)|≤b

f̂ ∗D∗
j |M̂B(D∗

j)
(d∗

j) ∏
j:|D∗

j |≤k,|MB(D∗
j)|>b

f̂ ∗D∗
j |M̂B(D∗

j)
(d∗

j)

∏
j:C∗

j /∈{D∗
k}k,|MB(C∗

j )|≤b

f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j) ∏

j:C∗
j /∈{D∗

k}k,|MB(C∗
j )|>b

f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j). (71)

Using Eqn. (70), Eqn. (71), the fact that for all C∗
j /∈ {D∗

k}k we have that the canonical fac-
tor is trivial, namely log f ∗C∗

j |MB(C∗
j )
(c∗j) = 0 (and adding and subtracting the same terms) we get:

D(Q‖P̃)+D(P̃‖Q) =

EX∼Q

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| ≤ b

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| ≤ b

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
(72)

+EX∼Q

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| > b

log
f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| > b

log
f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
(73)

+EX∼Q

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| > b

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| > b

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
(74)

+EX∼Q

(
∑

j:|D∗
j |>k

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)
−EX∼P̃

(
∑

j:|D∗
j |>k

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)

(75)

−EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}k

|MB(C∗
j)| ≤ b

log f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j)

)
+EX∼P

(
∑

j:
C∗

j /∈ {D∗
k}k

|MB(C∗
j)| ≤ b

log f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j)

)
(76)

+EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}k

|MB(C∗
j)| > b

log
f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j)

)
−EX∼P

(
∑

j:
C∗

j /∈ {D∗
k}k

|MB(C∗
j)| > b

log
f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j)

)
(77)

+EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}k

|MB(C∗
j)| > b

log
f ∗C∗

j |MB(C∗
j )
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
−EX∼P

(
∑

j:
C∗

j /∈ {D∗
k}k

|MB(C∗
j)| > b

log
f ∗C∗

j |MB(C∗
j )
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
(78)

+ log
Z

Z̃
+ log

Z̃
Z

. (79)
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Using the same reasoning as in the proof of Theorem 15 we obtain that for the sum of the terms
in lines (72), (73), (76) and (77) to be bounded by (J + |S|)ε with probability at least 1−δ, it suffices
that m satisfies Eqn. (19). The additional term in the bound, namely |S|ε, is necessary to bound the
error contribution of the terms in line (77).

The sum of the terms in lines (74) and (78) can be bounded by

2 ∑
C∗

j∈C : |MB(C∗
j)|>b

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(C∗

j)

∣∣∣

The sum of the terms in line (75) can be bounded by (recall MB(·) is the true Markov blanket
for the true distribution Q, thus f ∗D∗

j
(d j) = f ∗D∗

j |MB(D∗
j )
(d j))

2 ∑
j:|D∗

j |>k

maxd∗
j

∣∣ log f ∗D∗
j
(d j)

∣∣.

The two terms in line (79) sum to zero.
This establishes the theorem.
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