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Abstract

We study the problem of learning two regimes (we have a normal and a prefault regime in mind)
based on a train set of non-Markovian observation sequences. Key to the model is that we assume
that once the system switches from the normal to the prefault regime it cannot restore and will
eventually result in a fault. We refer to the particular setting as semi-supervised since we assume the
only information given to the learner is whether a particular sequence ended with a stop (implying
that the sequence was generated by the normal regime) or with a fault (implying that there was a
switch from the normal to the fault regime). In the latter case the particular time point at which a
switch occurred is not known.

The underlying model used is a switching linear dynamical system (SLDS). The constraints in
the regime transition probabilities result in an exact inference procedure that scales quadratically
with the length of a sequence. Maximum aposteriori (MAP) parameter estimates can be found using
an expectation maximization (EM) algorithm with this inference algorithm in the E-step. For long
sequences this will not be practically feasible and an approximate inference and an approximate EM
procedure is called for. We describe a flexible class of approximations corresponding to different
choices of clusters in a Kikuchi free energy with weak consistency constraints.

Keywords: change point problems, switching linear dynamical systems, strong junction trees,
approximate inference, expectation propagation, Kikuchi free energies

1. Introduction

In this article we investigate the problem of detecting a change in a dynamical system. An obvious
practical application of such a model is the prediction of oncoming faults in an industrial process.

For simplicity the problem and algorithms are outlined for a model with four regimes, normal,
prefault, stop, and fault, in Section 2 the extension to more regimes is discussed. The stop and fault
regimes are special in the sense that they are absorbing. If the system reaches one of these states
the process stops. A key assumption in the problem is that once the system reaches a prefault state,
it can never recover.
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The setup could be considered as a change point problem, although the name change point
problem usually refers to a problem where the observations are independent if the underlying model
parameters are known. In such settings the challenge is to determine if and where the parameters
change their value. See Krishnaiah and Miao (1988) for a description of change point problems and
references.

In this article we will be interested in slightly more complex problems where the observations
are dependent, even if the parameters are known. The observations in the time-series are not as-
sumed to be Markov. Instead, they are noisy observations of a latent first order Markov process.

The model discussed in this paper can be identified as a switching linear dynamical system
(SLDS), with restricted dynamics in the regime indicators. The SLDS is a discrete time model and
consists of T, d dimensional observations y;.t and T, g dimensional latent states x;.7. The regime
in every time-step is determined by (typically unobserved) discrete switches sy.t. For 1 <t <T, s
is either normal or prefault. The last discrete indicator st 1 is either a stop or a fault.

Within every regime the state transition and the observation model are linear Gaussian, and may
differ per regime:

P(Xt[Xt-1,5,0) = A (X;AsXt-1,Qs) ,
P(yt[%5,8) = A (Yi:CsXt+Hg:Rs) -

In the above A (.;.,.) denotes the Gaussian density function
A (x;m,V) = (2m)~ @2 v |~ 2exp —%(x— m)'V(x—m)

The determinant of matrix V is denoted as |V|. The set of parameters in the model is denoted by 6.
As mentioned the current regime is encoded by discrete random variables s;.t and are assumed to
follow a first order transition model

p(st/st-1,0) = Mg ;5 -

The special characteristics of the regimes and their transitions are reflected by zeros in Mg ,_.s,
i.e. denoting the possible states (normal, fault, etc. ) by their initial letter, we require MNy_s =0,
Mp—n=0,Mp_s=0,Ms_j=0,forall j#sand M¢_; =0, forall j #f.

The first regime is always normal, i.e. s; = n, and the first latent state is drawn from a Gaussian
prior

p(X1|s1 =Nn,0) = AL (X1;m1, V1) .

With these choices the entire model is conditional Gaussian; conditioned on the discrete variables
s1.7, the remaining variables are jointly Gaussian distributed. The conditional independencies im-
plied by the model are depicted as a dynamical Bayesian network (Pearl, 1988) in Figure 1.

One of the properties of the conditional Gaussian distribution which leads often to computa-
tional problems is that it is not closed under marginalization. For instance, the state posterior over
Xt given all observations is

Z / P(SLT, X1 T|Y1T,0) dX1t—1t41T = Z P(Xt|s1T,Y1T,0)p(S1:T|Y1T,0) |
ST ST

which is not a conditional Gaussian, but a mixture of Gaussians with MT components, with M
the number of possible regimes in the system. However, as we will discuss in the next section
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Figure 1: The dynamic Bayesian network for a switching linear dynamical system with four ob-
servations. Square nodes denote discrete, and ovals denote continuous random variables.
Shading emphasizes that a particular variable is observed.

the assumption that a system cannot restore from a prefault state to a normal state results in a
considerable simplification, since many of these components have zero weight.

In Section 3 we review how this sparsity can be exploited in an inference algorithm. As the
basis for an EM algorithm it can then straightforwardly be used to compute MAP estimates for
the model parameters. The exact inference algorithm has running time o (T ?). Hence for relatively
short sequences the constrained transition model makes exact inference feasible. However for larger
sequences the exact inference algorithm will be inappropriate. In Section 5 we introduce a flexible
class of approximations which can be interpreted as a generalization of expectation propagation
(Minka, 2001). It has running time 0 (Tk), with0 <k < (TT*Z] , an integer parameter that can be set
according to the available computational resources. With k = 0 the approximation is equivalent to an
iterated version (Heskes and Zoeter, 2002; Zoeter and Heskes, 2005) of generalized pseudo Bayes
2 (Bar-Shalom and Li, 1993) with K = [ng] exact inference is recovered. Section 6 discusses
experiments with inference and MAP parameter estimation on synthetic data and a change point
problem in EMG analysis.

2. Benefits of the Constrained Regime Transition Probabilities

An interesting aspect of the model introduced in Section 1 is that, by the restriction in the regime
transitions, the number of possible regimes histories is considerably less than the 27 possible histo-
ries which would be implied by a system with unconstrained transitions (see e.g. Cemgil et al., 2004;
Fearnhead, 2003). If the absorbing state st. 1 is not observed, there are T possible regime histories
in the current model. One normal sequence s;.1 =n, and T — 1 fault sequences: S1.t =N, St11.1 =P,
with 1 <1 <T — 1. In the remainder of this paper we let T denote the time-slice up to and includ-
ing which the regime has been normal, i.e. with T =T the entire sequence was normal. Under our
assumptions, a fault has to be preceded by at least one prefault state, so if st.1 is observed to be a
fault the entirely normal sequence gets zero weight. So with st,1 observed to be a fault the number
of the possible histories is T — 1. If st is observed to be a stop, then only the normal sequence
has nonzero probability.
If the parameters in the model, 8, are known, the exact posterior over a continuous state

p(xt |Y1:T ) ST+1 = f7 e)

is a mixture of Gaussians with T — 1 components, one for every regime history, and can be obtained
by running the traditional Kalman filter and smoother T — 1 times. In fact the posteriors can be
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computed in a slightly faster way by computing shared partial results only once. This algorithm
is introduced in Section 3, and will form a suitable basis for the approximate algorithm from Sec-
tion 5. Although we do not expect exact inference to be practical for large T, we can compare
approximations with exact results for larger examples than in the regular SLDS case.

The restriction that there are only two non-absorbing regimes is only made for clarity of the
exposition. In general the model has M non-absorbing regimes that form stages. No stage can be
skipped, and once the system has advanced to the new stage it cannot recover to a previous one.
The number of regime histories with non-zero probability in such a system is less than or equal to
TM=1 This can be seen by a simple inductive argument: if M = 1 there is only one possible history.
IfM > 1thereare T — (M —1)+1 < T possible starting points for the M-th regime (including the
starting point T 41, i.e. when regime M does not occur). The M — 1 steps are deducted since the
system needs at least M — 1 steps to reach the M-th regime. Once the start of the M-th regime is
fixed, we have a smaller problem with M — 1 regimes of length at most T. So the number of distinct
regime histories is bounded by T x TM~2, In principle this is still polynomial in T and for small
M and limited T exact posteriors could be computed, but obviously the need for approximations is
stronger with complexer models.

3. Inference

In this section we will introduce the exact recursive inference algorithm as a special case of the
sum-product algorithm (Kschischang et al., 2001). At this point we assume 8 known, leaving the
MAP estimation problem to Section 4.

We are interested in one-slice and two-slice posteriors, p(st,Xt|y1.1,6) and p(st—1t,Xt—1t|y1.T,0)
respectively.

By defining us = {st, X; } we obtain a model that has the same conditional independence structure
as the linear dynamical system and the HMM. From time to time we will use a sum notation to
denote both the summation over the domain of the discrete variables, and the integration over the
domain of the continuous variables in u;. The computational complexity in the current case is due
to the parametric form of the (conditional) distributions over u; as discussed in Section 1.

Assuming 6 and y1.1 fixed and given, the joint probability distribution over all the variables in
the model can be written as a product of factors

T41
P(S1T+1,X1:T,Y17]0) = l_l Pe(Up-1t) ,
=

with

Wi(u) = p(s1|8)p(xals1,0)p(y1lx1,51,0),
Pr(U—1t) = Pp(St|St—1,0) p(Xt|Xt—1,5,0) p(Yi|*t,s,0) fort=2,....T, (1)
Wria(StT41) = P(STH1[ST,0),

and ug = 0 and ut,1 = st.1. The factor graph (Kschischang et al., 2001) implied by this choice of
factors is shown in Figure 2. Note that we have simplified the figure by not showing the observations
y1.1. These are always observed and are incorporated in the factors.

The sum-product algorithm implied by the factor graph from Figure 2 is presented in Algo-
rithm 1. It is analogous to the forward-backward algorithm in the HMM. The computational com-
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Figure 2: The factor graph corresponding to the change point model and message passing scheme
for a model with four observations.

plexity of this algorithm is due to the conditional Gaussian factors and the implied increase in the
complexity of the messages.

Algorithm 1 The sum-product algorithm for the SLDS

Forward pass Start the recursion with

plusys.0) =as(un) = Pz =5 o)

Fort=1,...T
S Oe-1 (U)W (Ue-1t)

Zyj 1
with p(yt|y1t-1,0) = Zye—1 = Yy 5, Q-1 (Ue—1) P (Ue-1¢)-

p(Ut|y1t,0) = ar(u)

9

Backward pass If st is not observed, start the recursion with

Br(ur)=1.

If st41 is observed the definition of B (ut) is changed accordingly: if st11 =n, then By (st =
p) = 0. Similarly if st;1 = p then Br(st =n) =0.

Fort=T-1,T-2,...1

P(YirrT|U,6) _ Be(u) = Sty W1 (Ut tg1) Brra (Uesa)
p(yt+1T ‘yltu e) HI:t+1 ZVlV*l

After a forward-backward pass, single-slice and two-slice posteriors are given by

p(utlyrT,0) = or(ue)Br(ur)

1
P(Ut—1t|y1T,0) = Zt‘Flthl(utfl)mt(utfl,t)&(Ut)-

In the forward pass the message a:(u;) = p(Xt,St|y1:, 0) is not conditional Gaussian, but a mix-
ture of Gaussians conditioned on the regime indicator s;. It hast components in total: conditioned
on st = n the posterior contributes a single Gaussian component p(X¢|st = n,y1:,0) conditioned
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on s; = p the posterior p(x¢|st = p,Yy1:,0) is a mixture of Gaussians with t — 1 components: each
component corresponds to a possible starting point of the prefault regime.

In the smoothing pass an analogous growth of the number of components in the backward
messages Bt (ut) occurs, but now growing backwards in time. The single-slice posterior, which is
obtained from the product of the forward and backward messages, has T components for all t.

Note that the linear complexity in T is special for the change point model with the restricted
regime transitions. In general the number of components in the posterior would grow exponentially.

4. MAP Parameter Estimation

In Section 3 we have assumed that the model parameters 8 were known. If they are not known, the
expectation-maximization (EM) algorithm (Dempster et al., 1977) with Algorithm 1 in the expecta-
tion step, can be used to find maximum likelihood (ML) or maximum a posteriori (MAP) parameter
settings. Appendix B lists the M-step updates for the change point model. Appendix C discusses
sensible priors on the transition probabilities in I1.

The learning setting is semi supervised. We assume we are given a set of V training sequences

VRN i (v ich s
{yl:T"}V:l and that for some, possibly all, we observe sy, ;. All sequences v for which s;%, =s

can be used to estimate the parameters of the normal regime. If s(T")+1 = f or not observed, the

change point from the normal to the prefault regime is inferred in the E-step. The updates from
Appendix B then boil down to weighted variants of the linear dynamical system M-step updates,
where the weights correspond to the posterior probabilities of being in a particular regime.

The EM algorithm is guaranteed to converge to a local maximum of the likelihood/parame-ter
posterior. Different initial parameter estimates 8°) may lead the algorithm to converge to different
local maxima. This is a known property of the EM algorithm for fitting a mixture of Gaussians. In
the current model it can be hoped that the dependence on initialization is less than in the general
mixtures of Gaussian case. If there are sequences that are known to be entirely normal (when
st11 = S) these sequences are only used to determine the characteristics of the normal regime.
Also, due to the change point restriction, some ambiguity is resolved since it is known that the
normal precedes the prefault regime.

5. Approximate Inference: Kikuchi Free Energies with Weak Consistency
Constraints

The exact inference algorithm presented in Section 3 has the same form as the HMM and Kalman
filter algorithms. The messages that are sent, a(u;) and Bt(ut), are not in the conditional Gaussian
family, but are conditional mixtures. As was discussed in Section 3, the number of components in
the mixtures grows linear with t and T —t respectively.

A straightforward approximation is to approximate these messages by a conditional Gaussian
in every step. This implies that every message stores only two components, regardless of t. In the
forward pass the best approximating conditional Gaussian can be defined in Kullback-Leibler (KL)
sense. The approximating conditional Gaussian is then found by moment matching or a collapse
(see Appendix A). The oldest use of this approach we are aware of is in Harrison and Stevens
(1976).
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A symmetric approximation for the backward pass working directly on the B¢(u;) = w
messages cannot be formulated, since in contrast to the a messages, the 3 messages in general will

not be proper distributions and hence a KL divergence is not defined.

This has led to other approaches that introduced additional approximations beyond the pro-
jection onto the conditional Gaussian family, (e.g. Shumway and Stoffer, 1991; Kim, 1994). The
expectation propagation (EP) framework of Minka (2001) is very suited for this particular model
and essentially formulates a backward pass symmetric to the approach outlined above (Zoeter and
Heskes, 2005). There are at least two ways of looking at EP. In the first, EP is seen as an iteration
scheme where at every step an exact model potential is added to the approximation followed by
a projection onto a chosen approximating family. In the second, EP is derived from a particular
variational problem. The EP algorithm is introduced in Section 5.2 using the second point of view,
which facilitates the description of our generalization in Section 5.3. For a presentation of EP as an
iteration of projections the reader is referred to Minka (2001).

The approximate filter and the EP algorithm share that they are greedy: the approximations
are made locally. In the EP algorithm the local approximations are made as consistent as possible
by iteration. There is no guarantee that the resulting means and covariances in the conditional
Gaussian families equal the means and covariances of the exact posteriors. The strong junction tree
framework of Lauritzen (1992) operates on trees with larger cliques and approximates messages
on a global level. Thereby it does guarantee exactness of means and covariances. For the SLDS a
strong junction tree has at least one cluster that effectively contains all discrete variables.

Section 5.3 introduces a generalization of the EP algorithm from Section 5.2. In the general-
ization, an extra integer parameter K is introduced that allows a trade-off between computation time
and accuracy. The EP algorithm from Zoeter and Heskes (2005) and the strong junction tree from
Lauritzen (1992) are then on both extremes.

5.1 Exact Inference asan Energy Minimization Procedure

To facilitate the introduction of the expectation and the generalized expectation propagation al-
gorithms, exact inference is introduced in this Section as a minimization procedure. Expectation
propagation will follow from an approximation of the objective.

We start by following the variational approach (e.g. Jaakkola, 2001) and turn the computation

of —logZ = —log p(y1.7|0) into an optimization problem:
—logz = mﬁin [—10gZ + KL (f(urt)|[p(UsT|yrT,6))] (2)
. ~ purr)
= min|—logZ+ Y f(u-T)log (3)
p [ u; Z7 M We(Ue-10)

;
= min [— Z > Bu-a0)logPr(Ue-10) + 5 Hurr)log 5(“1:T)] : 4)
t=1Ut_1t

P urt
In (2)—(4) the minimization is over all valid distributions f(us.1) on the domain uj.t. The KL term
in (2) is guaranteed to be positive and equals zero if and only if p(ui-1) = p(ur-t|y1T,0) (Gibbs

inequality). This guarantees the equality in (2).
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In terms of u; the exact posterior factors as

M2 P(Ui-1¢ly1T,6)

p(Urtly1T,0) = — (5)

Mz P(Ut|ysT,6)

SO we can restrict the minimization in (4) to be over all valid distributions of the form (5):
T
—logz = {g}j% [_t; u;,t Pt (Ut—1,t) log Y (Ue—1t)
T T-1

+ % > Br(ut—11)10g Pt (Ue—11) — Zz zqt(ut)mgqt(ut)] : (6)

t=2Ut—1t t=2 Ut

The minimization is now with respect to one-slice beliefs §i(u;) and two-slice beliefs f(ut—1¢)
under the constraints that these beliefs are properly normalized and consistent:

Pr(ut) = Ge(up) = Prra(Ue) - (7

To emphasize that the above constraints are exact, and to distinguish them from the weak consistency
constraints that will be introduced below, we will refer to (7) as strong consistency constraints.

Minimizing the objective in (6) under normalization and strong consistency constraints (7) gives
exact one- and two-slice posteriors. Since they are exact, the one-slice beliefs §i(ut) will have T
components in our change point model and MT components in a general SLDS.

5.2 Expectation Propagation

As we have seen in the previous section, exact inference inference can be interpreted as a minimiza-
tion procedure under constraints. At the minimum, the variational parameters G (ut) are equal to the
exact single node marginals. Since these marginals have many components (T in our changepoint
model, MT in a general SLDS) even storing the results is computationally demanding.

To obtain an approximation the variational parameters §i(u;) are restricted to be conditional
Gaussian. Recall that us = {st, Xt }, so that the conditional Gaussian restriction implies that for every
possible value for s;, x; follows a Gaussian distribution, instead of a mixture of Gaussians with a
mixture component for every possible regime history for syt_1¢,1.7. This restriction is analogous
to the approximation in the generalized pseudo Bayes 2 (GPB 2) filter (Bar-Shalom and Li, 1993)
where in every time update step mixtures of Gaussians are collapsed onto single Gaussians. In fact,
as we will see shortly, GPB2 can be seen as a first forward pass in the algorithm that follows from
our current approach.

The conditional Gaussian form of W;(u;_1¢) and the conditional Gaussian choice for G (ut)
imply that at the minimum in (6) P (ui—1:) is conditionally Gaussian as well (see Appendix D).

If we restrict the form of i (ut ), but leave the consistency constraints exact as in (7), a minimum
of the free energy has a very restricted form. The strong consistency constraints would imply that
the two exact marginals 3, , Br(U—1¢) = Pr(u) and Y, Br(U—1¢) = Pr—1(Ur—1) are conditional
Gaussians instead of conditional mixtures. This holds only if the continuous variables x;_1 are
independent of the discrete states sy_1 ¢ in P (Ut—1t).

To obtain non-trivial approximations, the single-slice beliefs §;(u;) are restricted to be condi-
tional Gaussian as outlined above, and in addition the consistency constraints are weakened. Instead
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of having equal marginals we only require overlapping beliefs to be consistent on their overlapping
expectations

(fue)g = (F(u))g = (F(u))g., » (8)

where f (u) is the vector of sufficient statistics of the conditional Gaussian family over u; as defined
in Appendix A.

With these restrictions G (ut) is in general not the marginal of f¢(ut—1), so one-slice and two-
slice beliefs satisfying (8) do not lead to a proper distribution of the form (5). As a result, although
we started the derivation with the variational (mean-field) bound (2), the objective we aim to mini-
mize is not guaranteed to be a bound on —logZ.

The EP algorithm can be seen as fixed point iteration in the dual space of the constrained
minimization problem (Zoeter and Heskes, 2005, Appendix D). This is in direct analogy to the
interpretation of loopy belief propagation as fixed point iteration in the dual space of the Bethe free
energy (Yedidia et al., 2005).

Algorithm 2 presents the generalization that will be derived next, but with k = 0 it gives the basic
update equations of this section. In a first forward pass, with all backward messages initialized as
Bt(ur) =1 (i.e. effectively with no backward messages), the updates are equivalent to the greedy
projection filter GPB2.

As a final note we remark that this approximation, and even the update scheme, can also be
derived from the iterative projection point of view of EP. To obtain Algorithm 2 with k = 0, the ap-
proximating family should be chosen to be a product of independent conditional Gaussians (Zoeter
and Heskes, 2005).

5.3 Generalized Expectation Propagation

Since we have associated the EP approach to an approximation of the Bethe free energy (6), we
can extend the approximation analogously to Kikuchi’s extension of the Bethe free energy (Yedidia
et al., 2005).

In the EP free energy (6) the minimization is w.r.t. beliefs over outer clusters, pt(ut_1¢), and
their overlaps, Gi(ut—1t). In the so-called negative entropy,

22 > PFr(ut-—1)log Pr(U—1;) qut(ut)mgqt(ut)a

U1t

from (6), the outer clusters enter with a plus, the overlaps with a minus sign. These 1 and -1 factors
can be interpreted as counting numbers that ensure that every variable effectively is counted once in
the (approximate) entropy in (6). If the free energy is exact (i.e. no parametric choice for the beliefs,
and strong consistency constraints), the local beliefs are exact marginals, and as in (5), the counting
numbers can be interpreted as powers that dictate how to construct a global distribution from the
marginals.

In Kikuchi’s extension the outer clusters are taken larger. The minimization is then w.r.t. beliefs
over outer clusters, their direct overlaps, the overlaps of the overlaps, etc. With each belief again
proper counting numbers are associated.

One way to construct a valid Kikuchi based approximation is as follows (Yedidia et al., 2005).
Choose outer clusters Uqer(j) and associate with them the counting number coer (i) = 1. The outer
clusters should be such that all domains u;_1 ¢ of the model potentials W¢(u;_1 ) are fully contained
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ST+1

Figure 3: Cluster definitions for k = 0 (dashed) and k = 1 (dotted).

in at least one outer cluster. Then recursively define the overlaps of the outer clusters Ugye i), the
overlaps of the overlaps, etc. The counting number associated with cluster y is given by the Mobius
recursion
cy=1— % cy. 9)
u\/)uy

A crucial observation for the SLDS is that it makes sense to take outer clusters larger than the
cliques of a (weak) junction tree. If we do not restrict the parametric form of §;(u;) and keep exact
constraints, the cluster choice in (5) gives exact results. However, the restriction that i (us) must be
conditional Gaussian, and the weak consistency constraints imply an approximation: only part of
the information from the past can be passed on to the future and vice versa. With weak constraints it
is beneficial to take larger outer clusters and larger overlaps, since the weak consistency constraints
are then over a larger set of sufficient statistics and hence “stronger”.

We define symmetric extensions of the outer clusters as depicted in Figure 3. The size of the
clusters is indicated by 0 < k < [T32]:

Uoter(i) = {Siita(k+1)—1:Xitkitkt1), Fori>1IAi<T —21+42 (10)
Uover(i) = Uouter(i) M Uouter(i+1) - (11)

In the outer clusters only the discrete space is extended because the continuous part can be integrated
out analytically and the result stays in the conditional Gaussian family. The first and the last outer
cluster have a slightly larger set. In addition to the set (10) the first cluster also contains Xy:j1x_1
and the last also Xj.«.2.1. This implies a choice where the number of outer clusters is as small as
possible at the cost of a larger continuous part in the first and the last cluster. A slightly different
choice would have more clusters, but only two continuous variables in every outer cluster.

To demonstrate the construction of clusters and the computation of their associated counting
numbers we will look at the case of kK = 1. Below the clusters are shown schematically, with outer
clusters on the top row, and recursively the overlaps of overlaps, etc.

S1234 $345 S3456 $456,7
X123 X34 Xa5 Xs5,6,7
$34 $345 45,6
X3 X4 X5
S34 S45
S

The outer clusters all have counting number 1. The direct overlaps each have two larger clusters
in which they are contained. Their associated counting numbers follow from (9) as 1 —2 = —1.
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The overlaps of overlaps have five clusters in which they are contained, their counting numbers are
1—(3—2) =0. The clusters on the lowest level have nine parents, which results in a counting
number 1 — (4—3+0) = 0. It is easily verified that with kK = 0 we obtain the cluster and counting
number choice of Section 5.2.

A second crucial observation for the SLDS is that the choice of outer clusters (10) implies that
we only have to consider outer clusters and direct overlaps, i.e. the phenomenon that all clusters
beyond the direct overlaps get an associated counting number of 0 in the example above extends to
all k. This is a direct result of the fact that the clusters from (10) form the cliques and separators in
a (weak) junction tree. l.e. another way to motivate a generalization with the cluster choice (10) is
to replace (5) with

P(Uouter iy [Y1:, 6)
p(urTlyrT,0) = LK 1 outer( (12)
|_|J =1 p(uover |y1T, )
and use this choice in (4) to obtain an extension of (6). In (12), N =T — 2k — 1 denotes the number
of outer clusters in the approximation.
The aim then becomes to minimize

Feep = _Zl z Bi ( Uouter( ))IquJ(i)(uouter(i))

uouter I

Zl Z Bi ( Uouter (i )|09p|<uouter())

Uouter (i)

- 21 uover( )) IOg ql(uover( )) ) (13)
Uover i)

w.rt. the potentials [ (Uouter(i)), and Gi(Uover(i))- FOr i =2,3,...N — 1, the potentials Y (Ugyer(i) )
are identical to the potentials Wi x+1(Uijx,i+x+1) from (1). At the boundaries they are a product of
potentials that are “left over”:

K+2

wld Wi(uj_1)
ﬂ J\H)=1,)
. T
YN = i),
j=T—K

with W = M1 gj(uj_yj) ifN =1.

The approximation in the generalized EP free energy, #cep, arises from the restriction that
Gi (Uover(i)) s conditional Gaussian and from the fact that overlapping potentials are only required to
be weakly consistent

<f(uover(i))>f,i = <f(uover(i))>qi = <f(uover(i))>ﬁi+1 .

The benefit of the (weak) junction tree choice of outer clusters and overlaps is that we can
employ the same algorithm for the k = 0 as for the k > 0 case. Algorithm 2 can be seen as a single-
loop minimization heuristic. As mentioned above, and as shown in Appendix D, the algorithm can
be interpreted as fixed point iteration in the space of Lagrange multipliers that are added to (13) to
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enforce the weak consistency constraints. Just as for EP itself, convergence of Algorithm 2 is not
guaranteed.
In Algorithm 2 the messages are initialized as conditional Gaussian potentials, such that

q(uover(i)) =d; (uover(i))Bi (uover(i))

are normalized. A straightforward initialization would be to initialize all messages with 1. If at
the start all products of matching messages are normalized, we can interpret the product of local
normalizations [T\, Z; as an approximation of the normalization constant Z.

Algorithm 2 Generalized EP for an SLDS

Compute a forward pass by performing the following steps fori=1,2,...,N—1, withi’ =i, and a
backward pass by performing the same steps fori =N,N —1,...,2, with i’ =i— 1. Iterate forward-
backward passes until convergence. At the boundaries keep ap = By = 1.

1. Construct an outer-cluster belief,

aifl(uover(ifl))w(i) (uouter(i))Bi (uover(i))
Z ’

Pi (Uouter (i) =

with Z; = ZUOma(i) C‘i—l(lllover(i—l))w(i)(Uouter(i))Bi(Uover(i))-

2. Marginalize to obtain a one-slice marginal

fi(Uover(in)) = D> Fi(Uouteri)) -

Uouter i) \Uover (i)
3. Find i (Uover(ir)) that approximates fii (Uover (i) best in Kullback-Leibler (KL) sense:
Gir (Uover (1)) = Collapse (fi (Uover(i))) -
4. Infer the new message by division.

qi(uover(i))

qt—l(uover(ifl))
ai(uover(i)) N Bi(uover(i)) i1 (Uover(i-1))

, Bi1(Ugver(io1) = )
Bi 1( over (i l)) aifl(uover(ifl))

Figure 4 gives a graphical representation of Algorithm 2 for k = 0. Figure 5 gives a similar
schema for k = 1. The two figures show what information is lost when the one-slice beliefs are
collapsed.

The choice of 0 < k < [%1 now allows a trade off between computational complexity and
degrees of freedom in the approximation. With k = 0, we obtain the EP/Bethe free energy equiv-
alent to Zoeter and Heskes (2005). With Kk = (%1 there is only one cluster and we obtain a
strong junction tree, and the found posteriors are exact.  Just as with the Kikuchi extension of
belief propagation, there is no guaranteed monotonic improvement for intermediate K’s (Kappen
and Wiegerinck, 2002). However, in the change point model, where there are no loops and larger
clusters only imply more statistics being propagated between time-slices, we expect improvements
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Figure 4: A schematic representation of steps 1, 2 and 3 from Algorithm 2 with k = 0, for a se-
guence with more than 3 observations. The potential LP(Z)(Uz_,g) contains three Gaussian
components: p(y3,X3|X2,52 =N,S3 =n), p(y3,X3|X2,52 =N,S3 = Pp), and p(ys, X3|X2,S2 =
p,s3 =p). The (p,n) assignment gets zero weight by the non-recovery assumption and is
therefore not shown. Combinations with absorbing states are excluded since the sequence
does not stop at 3. Every component is encoded by a row, with white squares denoting
normal, and black squares prefault regimes. The messages a1(X2,S2) and 2(xs,S3) are
conditional Gaussian by construction and hence each have two components: one corre-
sponding to normal and one to prefault. Exact marginalization gives p2(xs,s3), which
still consists of three components. To emphasize that s, is not part of the domain, it is
enclosed by a dashed rectangle. Conditioned on s3 = p, fi2(X3|Ss = p) is a mixture. This
mixture is collapsed to obtain a conditional Gaussian approximation ¢z (us).
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Figure 5: The steps in Algorithm 2 with k = 1 are analogous to the steps with K = 0 as depicted in
Figure 4. With k = 1 the two components that are approximated are expected to be very
similar: they have been updated with the same transition and observation models in the
last three time-slices.
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to be extremely likely. In fact, we have not seen the performance degrade with larger K in any of
our experiments.

6. Experiments

In Section 6.1 we explore the properties of the learning algorithm and approximate inference in a
controled setting with artificial data. Section 6.2 presents experiments with EMG data.

6.1 Synthetic Data

As discussed in Section 4 the constraints in the regime transitions aid in learning. When a stop
is observed in the trainset, the entire sequence is guaranteed to be normal. Also, the fact that the
normal regime precedes the prefault regime resolves the invariance under relabeling that would
be present in a general switching linear dynamical systems setting. Experiments with artificially
generated data shows that even with a relatively small trainset the two regimes can be learned fairly
reliably.

We ran experiments where 15 train and 5 test sequences were generated from randomly drawn
change point models. The classes of the train sequences (stop or fault) were observed, the classes
of the test sequences were unknown. Figure 6 is not an a-typical result. In many experiments we
find that both the classification (determining whether the sequence ended in a stop or in a fault) and
the determination of the change point were often (near) perfect.

The MAP

Tmap = argmax p(Sy.x = N, Se41.7 = P|Y1.T,OML)
T

is taken as the predicted change point. In 10 replications the mean squared error between the actual
and the inferred change point was 6.6 (standard deviation 11.75, median 0).

These results are encouraging, but may also be largely due to the fact that arbitrarily drawn
models may not pose a serious challenge. Qualitatively the replicated experiments show that for
most replications the errors are close to 0 (as in Figure 6). This explains the low median. In a
few replications the model has learned normal and prefault classes that are different from the true
generating model and hence result in large errors. In these replications we still see the “arbitrariness”
of the fitted clusters that is common to the mixtures of Gaussians learning. We do not investigate
a proper characterization of “difficult” and “easy” models here, but discuss some of the possible
pitfalls with the approach in Section 6.2.

To explore the properties of the approximations developed in Section 5, we ran 10 experiments
where a single sequence of length 10 was generated from a randomly drawn model. For every
sequence, approximate single node posteriors §(x;|y1:t,0) were computed using Algorithm 2 with
kK =0,1,2,3,4. Figure 7 shows the maximum absolute error in the single node posterior means as a
function of k. The lines show the average over the 10 experiments, the maximum encountered, and
the minimum. For sequences with length 10, K = 4 is guaranteed to give exact results. So in theory,
the lines in Figure 7 should meet at kK = 4. The discrepancies in Figure 7 are explained by different
round off errors in our implementations of Algorithm 2 and the strong junction tree.

As expected the approximations are very good and improve with the size of k. It must be
emphasized however, that the improvement with larger K can be expected based on intuition, but is
not guaranteed.
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Figure 6: Shown are the inferred and true change points on 5 test sequences. The EM algorithm
from Section 4 was presented with 15 artificially generated train sequences, all of which
resulted in an observed fault.
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Figure 7: Maximum absolute deviation between exact and approximate single-slice posterior state
mean as a function of k. Shown are the mean, maximum and minimum over ten replica-
tions. In all replications T=10, so K = 4 gives exact results. The small differences between
the mean, maximum and minimum deviations that are observed in the plot for Kk = 4 are
caused by different round off errors in the generalized EP and the original strong junction
tree implementations.

2013



ZOETER AND HESKES

6.2 Detecting Changesin EMG Signals

The algorithm from Section 4 was used to detect changes in EMG patterns in the stumbling experi-
ments from Schillings et al. (1996).

In Schillings et al. (1996) bipolar electromyography (EMG) activity in human subjects were
recorded. The subjects were walking on a treadmill at 4 km/h. By releasing an object suspended
from an electromagnet the subjects could be tripped at a specified phase in the walking pattern.
Partially obscured glasses and earplugs ensured that the tripping was unexpected.

In the experiments video recordings and a pressure-sensitive strip attached to the obstacle sig-
naled the tripping onset. We extracted an interesting change point problem from this experiment by
only looking at the EMG signals measured at the biceps femoris at the contra lateral side, i.e. by
only looking at a signal which is indicative of the activity of the large muscle in the upper leg at the
non-obstructed side.

In our experiments we used data for a single subject. The dataset consisted of 15 control trials
where no object was released and 8 stumbling experiments. All sequences were of equal length, and
started roughly at the same phase in the walking pattern. The control trials were treated as normal
sequences and the 8 others as fault sequences. In the first experiments the class of the sequences
were assumed to be known and the aim for the algorithm was to determine the change points.

The original series were raised to a power of -.2 to obtain signals that seemed in agreement with
the additive noise assumptions. The initial parameter settings for the normal regime was in Fourier
form (West and Harrison, 1997). The chosen harmonic components were obtained from a discrete
Fourier transform. Based on the residuals of the 15 normal sequences a model with 4 harmonics
was selected.

There were three different phases of training. In the first, only the normal sequences were
considered and the transition matrix A, was kept fixed. In the second phase, again only the normal
regime was considered, but A, was also fitted. In all phases of learning k was set to 50, i.e. inference
results were indistinguishable from exact. The result of the first two phases is characterized by the
left plot in Figure 8. In the third phase all parameters were fitted. The prefault model was initialized
as an outlier model, i.e. the parameters for the prefault regime were copies of the normal regime, but
the noise covariances were larger. The characteristics of the entire model are depicted in the right
plot of Figure 8.

After convergence, the mean absolute distance between the MAP change point and the triggers
in the 8 fault sequences is 4.25, with standard deviation 1.49. Figure 9 shows the posteriors p(S1t =
n,st+1.T = P|Y1:T,0) and the trigger signals for the 8 fault sequences. There are two typical errors:
the inferred change point for a few sequences is several steps too early, for a few it comes too late.
Figure 10 gives the characteristics for the second and the third fault sequences. The MAP of the
second sequence falls a few time steps after the trigger. From the left plot in Figure 10, we might
judge that the actual response in the biceps femoris actually starts close to the inferred point. These
characteristics are also visible in the other sequences with ‘late’ inferred change points. On the other
hand, the sequences with too early inferred change points (e.g. the right plot in Figure 10), do show
a weakness of the current setup. The degrees of freedom that are available in the prefault submodel
are used to also explain outliers at the end of the normal regime. This is likely to be a problem in
the model specification; there is nothing to prevent a discontinuity in the expected muscle activity
at a change (as can be seen in the right plot in Figure 8 and in the plots in Figure 10). Adapting
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Figure 8: Characteristics of the learned model. The left plot shows the transformed EMG signals for
all normal sequences in thin solid lines. The thick solid line shows the model prediction
with the regime indicators clamped to normal. The right plot shows all EMG signals from
stumbling trials. The light thick line shows model predictions with all regime indicators
clamped to normal just as in the left plot. The dark thick line shows the model predictions
with the regime indicators clamped to normal from 1 to 70 and to prefault from 71 to 104.
This change point was hand picked and roughly coincides with the average trigger time.
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Figure 9: Stumble detection based on a single EMG signal. Vertical bars show the true stumbling
trigger. The solid curves show the posterior probability that t was the last normal time
point.

the model such that the expected muscle activity is continuous even during a change point might
resolve some of the observed overfitting.

To test the classification performance we ran 23 leave-one-out experiments. In every experiment
22 sequences were presented in the training phase. The sequence that was left out was presented
after training with st.1 not observed. A simple classification scheme was used; every sequence for
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Figure 10: Thin lines show the EMG recordings of a single sequence. The vertical bars show the
moment at which the stumble was triggered. The thick lines give an indication of the
learned models. They were constructed by clamping the discrete states of the model to
the MAP change point value and computing the predicted mean EMG signal (light lines
represent the normal, dark lines the prefault regime). The left plot shows the second
(from the top) sequence from Figure 9 and gives an acceptable detection of the prefault
regime. The right plot shows the third sequence and represents a typical overfit: the
model uses its degrees of freedom to fit outliers preceding the change point in some of
the sequences. This explains the too early warnings in Figure 9.

which p(s;.t = nly1.7,0) > .5 was classified as normal. With this scheme all abnormal sequences,
and 13 out of 15 normal sequences were correctly classified.

7. Discussion

Motivated by fault and change detection problems in dynamical systems we have introduced a
switching linear dynamical system with constrained regime transition probabilities. The system
is assumed to start in a normal regime and to either result in an absorbing stop state or change to a
prefault regime. Once the system reaches a prefault regime, it cannot recover and eventually has to
result in a fault.

These model assumptions have several advantages. As discussed in Sections 2 and 3, the as-
sumption that the system cannot recover can be exploited to yield an algorithm that computes exact
state and regime posteriors in time polynomial in the number of observations.

Another advantage is with learning. An observed stop implies that the system did not change,
and an observed fault implies that it did. So if a set of training sequences exists for which the
exact change points are unknown, but for which the resulting absorbing states are observed, these
model assumptions provide an interesting semi-supervised learning setting. The experiments from
Section 6 indicate that these extra assumptions help to solve some of the problems with local minima
that occur in general mixtures of Gaussians and SLDS learning. Although overfitting may still occur,
careful initialization may be necessary, and violations of the linear Gaussian assumptions may pose
problems.
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Since the number of observations, T, may grow very large we have introduced an approximate
inference algorithm in Section 5.

The algorithm, generalized expectation propagation (GEP), can be derived as a fixed point itera-
tion that aims to minimize a variant of a Kikuchi free energy. One way of interpreting the algorithm
is that it sends messages along a weak junction tree as if it was a strong junction tree. This is anal-
ogous to the interpretation of loopy belief propagation as an algorithm that sends messages on a
loopy graph as if it was operating on a tree.

The change point model has two pleasant properties that makes the application of GEP particu-
larly elegant. The first is the fact that the conditional independencies in the underlying model form
a chain. Therefore we can straightforwardly choose outer clusters in the Kikuchi approximation
such that they form a (weak) junction tree. We have shown that the resulting GEP updates then
simplify since only outer clusters and direct overlaps need to be considered, i.e. from an implemen-
tation point of view the algorithm is not more complicated than the ordinary EP algorithm. Also,
since there are no loops disregarded, increasing the cluster size leads to relatively “well behaved”
approximations; they satisfy the perfect correlation and non-singularity conditions from Welling
et al. (2005). Increasing the size of the clusters in our approximation implies that more statistics
are passed from past to future and vice versa. This makes an improvement in the approximation
very likely (although an improvement is only guaranteed for k O T at which point it becomes ex-
act). This is in contrast to the generalization of belief propagation on e.g. complete graphs, which
is notorious for the fact that with unfortunate choices of clusters the quality degrades with larger
clusters (Kappen and Wiegerinck, 2002). In our experiments with the change point model, we have
never observed a degradation of the quality with an increase of K. This suggests that k should be set
as large as computing power permits.

The first pleasant property of the change point model leads to the observation that in approxi-
mations with weak consistency constraints it makes sense to take clusters larger than is necessary to
form a (weak) junction tree. This property is shared with all models that have (weak) junction trees
with reasonable cluster sizes, in particular chains and trees.

The second property is due to the no-recovery assumption property in the change point model.
This implies that exact inference is polynomial in T, and also that approximate inference is poly-
nomial in K, which makes a wide range of k’s feasible. In a general SLDS exact inference scales
exponential in T and approximate inference exponential in K.

Although we did not discuss this in Section 5, the GEP algorithm is not restricted to trees or
chains. In models with cycles and complicated parametric families, an algorithm can send messages
as if it is sending messages on a strong junction tree, whereas the underlying cluster choices do not
form a tree, neither a weak nor a strong one. See Heskes and Zoeter (2003) for a discussion.

Algorithm 2 is conjectured to be a proper generalization of the EP framework. Although tree
EP (Minka and Qi, 2004) results in approximations that are related to (variants of) Kikuchi free
energies it is unlikely that a tree or another clever choice of the approximating family would result
in Algorithm 2. Since the overlapping §(Uqver(i)) are not strongly consistent they cannot easily be
interpreted as marginals of a proper approximating family on which the EP algorithm would project.
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Appendix A. Operations on Conditional Gaussian Potentials

To allow for simple notation in the main text this appendix introduces the conditional Gaussian
(CG) distribution. A discrete variable s and a continuous variable x are jointly CG distributed if the
marginal of s is multinomial distributed and, conditioned on s, X is Gaussian distributed. Let x be
d-dimensional and let S be the set of values s can take. In moment form the joint distribution reads

1
p(s.X) = (21 ~2|zg| 2 exp | S (x— ) "ES (X )|

with moment parameters {Tt, lig, Zs + gl }, where T is positive for all s and satisfies T = 1
and s is a positive definite matrix. The definition of Zs+ ugud instead of Zg is motivated by (16)
below. For compact notation sets with elements dependent on s will implicitly ranges overs € S. In
canonical form the CG distribution is given by

1
p(s,X) = exp gs"‘XThs— EXTKSX ) (14)

with canonical parameters {gs, hs, Ks}.
The so-called link function g(.) maps canonical parameters to moment parameters:

9({9s,hs,Ks}) = {70, s, Zs+ Hahlg }
Ts = exp(gs— 9)
Hs = Kglhs
s = Kot

with g= % log | §[| — %hSTKShS, the part of gs that depends on hg and Ks. The link function is unique
and invertible:

gil({T[S) p'sv ZS+ “sp';r}) = {957 hS7 KS}

1 1
gs = logTs— 5 log |2T2s| — EUJZS—WS
hs = 25_1US
Ks = 25t

A conditional Gaussian potential is a generalization of the above distribution in the sense that it
has the same form as in (14) but need not integrate to 1. Kg is restricted to be symmetric, but need
not be positive definite. If Kg is positive definite the moment parameters are determined by g(.).
In this section we will use @(s,X; {gs, hs, Ks}) to denote a CG potential over s and x with canonical
parameters {gs, hs, Ks}.
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Multiplication and division of CG potentials are the straightforward extensions of the analogous
operations for multinomial and Gaussian potentials. In canonical form:

(p(S>X; {987 hSa KS})(p(Sv X; {g/S> h/S7 Ké}) = (D(S,X; {gS+ glsa hS+ hlsa KS+ K;})
0(s,%;{gs,hs, Ks}) /@(s,%; {gs, s, Ke}) = @(s,%;{gs— 95, hs — h, Ks — Kg}) .

With the above definition of multiplication we can define a unit potential

1(s,x) = @(s,x;{0,0,0}),

which satisfies 1(s,x)p(s,x) = p(s,x) for all CG potentials p(s,x). We will sometimes use the
shorthand 1 for the unit potential when its domain is clear from the text.

In a similar spirit we can define multiplication and division of potentials with different domains.
If the domain of one of the potentials (the denominator in case of division) forms a subset of the do-
main of the other we can extend the smaller to match the larger and perform a regular multiplication
or division as defined above. The continuous domain of the small potential is extended by adding
zeros in hg and Kg at the corresponding positions. The discrete domain is extended by replicating
parameters, e.g. extending s to [st] " we use parameters g¢ = gs, hg = hs, and K¢ = K.

Marginalization is less straightforward for CG potentials. Integrating out continuous dimensions
is analogous to marginalization in Gaussian potentials and is only defined if the corresponding
moment parameters are defined. Marginalization is then defined as converting to moment form,
‘selecting’ the appropriate rows and columns from g and Zs, and converting back to canonical form.
More problematic is the marginalization over discrete dimensions of the CG potential. Summing
out s results in a distribution p(x) which is a mixture of Gaussians with mixing weights p(s), i.e. the
CG family is not closed under summation. In the text we will sometimes use, somewhat sloppily,
the S notation for both summing out discrete and integrating out continuous dimensions.

We define weak marginalization (Lauritzen, 1992), as exact marginalization followed by a
collapse: a projection of the exact marginal onto the CG family. The projection minimizes the
Kullback-Leibler divergence KL(p||q) between p, the exact (strong) marginal and g, the weak
marginal:

q(s,x) = argminKL (pl|q)
geCG

: p(s,x)
= argmin s,X)lo .
qgeCG ;p( )log q(s,x)

This projection has the property that, conditioned on s the weak marginal has the same mean and
covariance as the exact marginal. The weak marginal can be computed by moment matching (Whit-
taker, 1989). If p(x|s) is a mixture of Gaussians for every s with mixture weights 155, means lg,
and covariances g (e.g. the exact marginal 3, p(s,r,x) of CG distribution p(s,r,X)), the moment
matching procedure is defined as

Collapse (p(s,X))
Hs

P(S)A (X; s, Zs)
}ETF$U3

3 This (Za + (e — Ho) (e 1))

2s
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Note that this projection, contrary to exact marginalization, is not linear, and hence in general:

Collapse (p(s,x)q(x)) # Collapse (p(s,X))q(X) .

In even more compact notation, with dsm the Kronecker delta function, we can write a CG
potential as

p(s,x) = exp[v'f(s,x)], with (15)
f(s,X) = [SsmOsmX' Ssmvec(xx') imeS]T
v = [gshd — %vec(Ks)ﬂs es|’

the sufficient statistics, and the canonical parameters respectively. In this notation the moment
parameters follow from the canonical parameters as

9(v) = (F(8,X))expp (s3] = Z/dxf(s,x) exp[v’ f(s,x)] . (16)

Appendix B. The M-step Updates
We define 0 as the set of all parameters

6= {Mi_j,my,Vi,Aj,Cj,p;,r%|(i,j) €G}
and G as the set of allowed regime transitions

G ={(n,n), (n,p), (n,s), (p,p), (p.F)},

with the shorthands n, p, s, f, for normal, prefault, stop, and fault regimes respectively.

For now we assume a flat prior on 6, i.e. we compute ML instead of MAP estimates.

In the M-step we maximize the expected complete data log-likelihood £ with respect to 6. The
expected complete data log-likelihood is defined as:

L(y17,5711]8) = E (st xerlyersria,80a) 109 P(YLT, X1:7,81:7+1(6)] -

Using the conditional independencies implied by the model and the constraints in the regime prior
and transitions we can rewrite it as:

L(y17,5741/8) = p(s1= NIY1:7,8T+15 Bold) E pix[si=nyrr,5r+1,80a) 109 A (X1, M1, V1)
T41
+ > P(st = J,St—1 = i[yr.T,57+1,8010) lOg M
ME=
T -
+ z P(st = jly1:7,5T+1,801d)
je{n.pit=
Epx-1els=iysr.sr41.800) log ¢ (X¢; AjXi—1,Qj)
T
+ > D pst=jlywr,s1+1,601)
je{n,p}t=

Ep(xt‘st:j:yl:TaST+l~,eold) log Al (yt;Cth +Hj, T ).
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Note that from the model assumptions p(s1 = n|y1:t,S71+1,001d) = 1.

The M-step updates for the parameters follow by adding Lagrange multipliers for the normal-
ization constraints and setting partial derivatives to 0.

We use (-). to denote weighted expectations, and p; (i]) as a shorthand for the relevant posterior

e.0.
<f(Xt71,Xt)>pt(ij) = p(St-1=1,5 = j|yz:T,5T+1,0601d)
X /dxthtf(thlaXt)p(thl,dstfl =1, = J,Y1.7,57+1,60ld) -

In this notation <1>p[(ij) simply gives a weighting factor. In the statistics above, and hence in the
update equations below, we recognize forms similar to a regular LDS but now with a weighting term
that would not be present in the non-switching case.

The updates for M;_.; are weighted versions of the standard HMM updates. The prior is deter-
ministic (all sequences start in the normal regime) and fixed.

The updates read:

-1
- (Foid ) e,

(52 (00 A S0 00 1))

Qnew _

J S Wpc)

mi™ = X))

\vnew T _ mnew /newy T

1 <X1X1>pl(n) mp (M)
T+1

ney o t;<l>pt(ij) V(i,))eG -

We compute the new output matrix Cj and the new mean y; jointly by adding y; as an extra column
to C; and adding an entry to the continuous state that is always 1. We define

P, = [<xtxtT> <xt>}

)" (1)

_ | x)

my o= [
é'?ew = [C?ew IJ.TEW],

with the weighted expectations (-) over pt(}j), to arrive at

N T . T -1
chew  — Yim; Pt7'
e () (3

.
VA Snew T T
AT -—tr[C- _ym,D

2new  _ <Zt 1Ye Yt Lngj) ( j ) (Zt 1Yt t,J)

| 031 W)

)
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where d is the dimensionality of the observations y:.

When st,1 =f, or if it is not observed, posterior distributions such as p(Xi—1t|St—1 =i, =
J,Y11,5T41 = f,0014) are mixture of Gaussians (the st1 = s case results in a straightforward LDS
variant). For the updates described above first and second moments of these mixtures are required.
They can be computed analytically and simply boil down to the weighted sum of the means and
second moments of the individual components. For example, <XtXtT—1>pt(.n)’ is based on a mixture
with T —t — 1 components (if st is observed to be a fault), each corresponding to a possible end
of the normal regime.

T-1

<tht—r_1>p[(~n) - TZ\ <tht—r_1>pt:r(~n:n)

T-1
Z P(Stt =N|y17,57+1 = f,B01d)
1=

.
X /dthl,tXtXt_l P(Xt—1¢|S1:t =N, 5141 =T,6010) -

If the trainset consists of V sequences instead of one, in the above update steps all sums th:a are
replaced by 2¥:1 ztb;a. Only the update for m; and V1 change. The posterior over X3 is a mixture of
Gaussians with one mixture component for every sequence. The required sufficient statistics follow
again by a collapse.

Appendix C. Prior Distributions

In practice, if the underlying models for normal and prefault regimes are relatively “far apart”, we
expect that the model parameters can be inferred reliably. For example if the prefault regime has
an entirely different offset in the observation model, the prefault subsequences lie in an entirely
different region of sensor space, which makes it easy to distinguish between the two. However
in many practical applications we expect the difference not to be so profound. In this Section we
introduce sensible priors on the parameters such that a priori knowledge can be incorporated.

Our main concern is with priors on the regime transition probabilities. There are three free
parameters in the transition probabilities model: My_n, Mp—p and Mp_p (Mh—s =1 — (Mp—n+
Mn_p), and Mp_s = 1 —Mp_,p by construction).

The conjugate prior for My_.p is

P(Mp—p|Vp,Ap) O (”pﬁp)VpAp (1-Mp_p)™.

The parameters v, and A, have a natural interpretation as the number of sequences and the average
number of p — p transitions in a hypothesized set of “pseudo observed” sequences.

A similar reasoning holds for the parameters M,_n, My_s, and My_,. Suppose we observe
Vs + Vip sequences with on average I, n — n transitions, and Vys of these ended in a stop and Vi,
switched to prefault. The probability of observing this set S of sequences is

_ Vi
P(S|IMn—n, Mn_s, Mp—p) = (ﬂn*)n)(vns+Vnp)|n (nnHS)Vns (nnﬂp) P
The conjugate prior is

P(Mn—n; Mns, Mnp|Vis, Vp, An) O (M) VsV (71 )V (M) ™
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MAP estimates can be computed by changing the M-step slightly. Instead of maximizing the
likelihood, the EM algorithm now aims to maximize

P(Blyr:T,ST+1) O P(Y1:T,5T+1]0) P(B|Vnp, Vs, An, Vp, Ap) -

The E-step stays the same, but the M-step updates are now found by maximizing

—

MAP(y1:1,51+41,0) = L (Y1:T,5T+l|e)p(e|Vnp>VnS>)\nanaAp) .

The required changes in the M-step updates are minor and intuitive. Only the update step for
transition probabilities changes and becomes

T41
neEy o Z (Dpip Vil Yijee
=

where
Van = (Vnp + Vns)An
Vop = VpAp
Vps = Vp.

Appendix D. The Fixed Point Interpretation of Algorithm 2

In this section we show that fixed points of Algorithm 2 are stationary points of the generalized EP
free energy (13), and that the algorithm can be interpreted as fixed point iteration in dual space. The
proof and intuition are analogous to the result that fixed points of loopy belief propagation can be
mapped to extrema of the Bethe free energy (Yedidia et al., 2005).

Theorem 1 The collection of beliefs pt(z—1:) and Gi(z) form fixed points of Algorithm 2 if and
only if they are zero gradient points of #gegp under the appropriate constraints.

Proof The properties of the fixed points of message passing follow from the description of Algo-
rithm 2. We get the CG form (15) of messages a; and [3; and their relationship with one and two
slice marginals

Bi (Uouter()) O Oti1(Uover(i—1)) " (Uouter i) )Bi (Uover (i)
qi(uover(i)) U cxi(uover(i))Bi(uover(i))

by construction, and weak consistency

<f(uover(i))>ﬁi = <f(uover(i))>qi = <f(uover(i))> (17)

ﬁi+1 ’

as a property of a fixed point.

2023



ZOETER AND HESKES

To identify the nature of stationary points of Fgep we first construct the Lagrangian by adding
Lagrange multipliers o (Uoyer(i)) and Bj(Uover(iy) for the forward and backward consistency con-
straints and Youter(iy @Nd Yover(i) for the normalization constraints.

Leer(P,6,0,B,Y)
N 5
~ Pi (Uouter(i))
= pi(u i) log ———
i;uoém Wata) qJ(I)(uome'r(i))

N—1
B Z 2 Gi(Uover(i)) 109 Gi (Uover(i))

Uover (i)

N
_‘Zai—l Uover (i— [z fuover pl(uouter()) z f(uover( ))q| (uover(il))]
i=

Uouter (i Uover (i—1)

N-1
- Z B| Uover (i) [ Z f uover p. Uouter (i) z f Uover())ql(uover())]
1=

Uouter (i) Uover (i)

_Ziyouter [ > BiUouteri) ] Zlyover [ > Gi(Uover (i) ] :
Uouter (i) Uover (i)

Note that ofj (Uover(iy) and B (Uover(iy) (in boldface to distinguish them from messages and to empha-
size that they are vectors) are vectors of canonical parameters as defined in Appendix A.

The stationarity conditions follow by setting the partial derivatives to 0. Taking derivatives w.r.t.
pi (uouter(i)) and c1|(Uover( )) gives

0LGep . ,
— = lo (u . +1—|O W(') u _
OB (Uouter(i)) 9 Pi (Uouter (i) g (Uouter (i)
_Gifl(uover(ifl))Tf(Uover(ifl))—Bi(uover()) f(uover()) Youter (i)
0LGEP

YT _IOQQi(Uover(i))_1+Gi(uover()) f (Uover (i) + Bi (Uoveri ) f (Uover(i)) — Yover (i)
aql(uover(l)>

Setting above derivatives to 0 and filling in the solutions for Yoyer(i) @nd Yover(i) (Which implies
the normalization of the potentials) results in

ﬁi(uouter(i)) 0 eaifl(uover(i—l))—rf(“over(i—l))kp(i)(uouter(i))eBi(uover(i))Tf(Uover(i))

qi(uover(i)) N eui(uovem)) f(UOVefI )+Bi (Uover |)) f(Uc:ver(i)) .

The conditions
@av).

So if we identify a; as the vector of the canonical parameters of the message a; and {3; as the
vector of the canonical parameters of the message [3;, we see that the conditions for stationarity of
Faep and fixed points of Algorithm 2 are the same. [ |

0Lgep  __ 0LGEP  __ i _ - i
36 (Ve ) — 0 and B Com)) — 0 retrieve the forward-equals-backward constraints

As can be seen from the above proof, iteration of the forward-backward passes can be interpreted
as fixed point iteration in terms of Lagrange multipliers.
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