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Abstract

A generalized discriminant analysis based on a new optimization criterion is presented. The
criterion extends the optimization criteria of the classical Linear Discriminant Analysis (LDA)
when the scatter matrices are singular. An efficient algorithm for the new optimization problem is
presented.

The solutions to the proposed criterion form a family of algorithms for generalized LDA, which
can be characterized in a closed form. We study two specific algorithms, namely Uncorrelated LDA
(ULDA) and Orthogonal LDA (OLDA). ULDA was previously proposed for feature extraction and
dimension reduction, whereas OLDA is a novel algorithm proposed in this paper. The features in
the reduced space of ULDA are uncorrelated, while the discriminant vectors of OLDA are orthog-
onal to each other. We have conducted a comparative study on avariety of real-world data sets to
evaluate ULDA and OLDA in terms of classification accuracy.
Keywords: dimension reduction, linear discriminant analysis, uncorrelated LDA, orthogonal
LDA, singular value decomposition

1. Introduction

Many machine learning and data mining problems involve data in very high-dimensional spaces. We
consider dimension reduction of high-dimensional, undersampled data, where the data dimension is
much larger than the sample size. The high-dimensional, undersampled problems frequently occur
in many applications including information retrieval (Berry et al., 1995; Deerwester et al., 1990),
face recognition (Belhumeur et al., 1997; Swets and Weng, 1996; Turk and Pentland, 1991) and
microarray data analysis (Dudoit et al., 2002).

Linear Discriminant Analysis (LDA) is a classical statistical approach for feature extraction
and dimension reduction (Duda et al., 2000; Fukunaga, 1990; Hastie et al., 2001). LDA computes
the optimal transformation (projection), which minimizes the within-class distance (of the data set)
and maximizes the between-class distance simultaneously, thus achieving maximumdiscrimination.
The optimal transformation can be readily computed by applying an eigen-decomposition on the
scatter matrices of the given training data set. However classical LDA requires the total scatter
matrix to be nonsingular. In many applications such as information retrieval, face recognition, and
microarray data analysis, all scatter matrices in question can be singular since the data points are
from a very high-dimensional space and in general the sample size does not exceed this dimension.
This is known as thesingularityor undersampledproblems (Krzanowski et al., 1995).
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In recent years, many approaches have been brought to bear on such high-dimensional, under-
sampled problems, including PCA+LDA (Belhumeur et al., 1997; Swets and Weng, 1996; Zhao
et al., 1999), Regularized LDA (Friedman, 1989), Penalized LDA (Hastieet al., 1995), Pseudo-
inverse LDA (Fukunaga, 1990; Raudys and Duin, 1998; Skurichina and Duin, 1996, 1999), and
LDA/GSVD (Howland et al., 2003; Ye et al., 2004b). More details will be given in Section 2.

1.1 Contribution

In this paper, we present a new optimization criterion for discriminant analysis, which is applica-
ble to undersampled problems. A detailed mathematical derivation for the proposed optimization
problem is presented in Section 3.

The solutions to the proposed criterion characterize a family of algorithms forgeneralized LDA.
Among the family of algorithms, we study two specific ones in detail, namely Uncorrelated LDA
(ULDA) and Orthogonal LDA (OLDA). ULDA was developed in the past for feature extraction and
dimension reduction, whereas OLDA is a novel LDA based algorithm proposed in this paper.

ULDA was recently proposed for extracting feature vectors with uncorrelated attributes (Jin
et al., 2001a,b). A more recent work (Ye et al., 2004a) showed that classical LDA is equivalent to
ULDA, in the sense that both classical LDA and ULDA produce the same transformation matrix
when the total scatter matrix is nonsingular. Based on this equivalence, an efficient algorithm was
presented in (Ye et al., 2004a) for computing the optimal discriminant vectorsof ULDA. Interest-
ingly, the solution in (Ye et al., 2004a) is a special case of the solutions to the proposed criterion in
this paper (See Section 4).

OLDA is a novel dimension reduction algorithm proposed in this paper. The key property of
OLDA is that the discriminant vectors of OLDA are orthogonal to each other, i.e., the transforma-
tion matrix of OLDA is orthogonal. There has been some early development onLDA based algo-
rithms with orthogonal transformations. The algorithm is known as Foley-Sammon LDA (FSLDA).
FSLDA was first proposed by Foley and Sammon for two-class problems (Foley and Sammon,
1975). It was then extended to the multi-class problems by Duchene and Leclercq (Duchene and
Leclerq, 1988). The OLDA algorithm proposed in this paper provides analternative, but simple and
efficient way for computing orthogonal transformations in the framework of LDA.

We have conducted a comparative study on a variety of real-world data sets, including text
documents, face images, and gene expression data to evaluate ULDA and OLDA, and compare with
Regularized LDA (RLDA). Results have shown that OLDA is competitive with ULDA and RLDA
in terms of classification accuracy.

The main contributions of this paper include:

• A generalization of the classical discriminant analysis to small sample size data using a new
criterion, where the nonsingularity of the scatter matrices is not required;

• Mathematical derivation of the solutions to the new optimization criterion, based on the si-
multaneous diagonalization of the scatter matrices;

• Characterization of a family of algorithms for generalized LDA based on the proposed crite-
rion and derivation of two specific algorithms, namely ULDA and OLDA.
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1.2 Organization

The rest of the paper is organized as follows: We review classical LDA and several extensions in
Section 2. A generalization of classical LDA using the new criterion is presented in Section 3.
Two specific solutions to the proposed criterion, namely ULDA and OLDA, are discussed in Sec-
tion 4. Experimental results are presented in Section 5. Finally, concluding discussions and future
directions are presented in Section 6.

1.3 Notation

For convenience, we present in Table 1 the important notations used in the rest of the paper.

Notation Description Notation Description
n sample size m number of variables (dimensions)
k number of classes A data matrix
Ai data matrix of thei-th class ni size of thei-th class
c(i) centroid of thei-th class c global centroid of the training set
Sb between-class scatter matrixSw within-class scatter matrix
St total scatter matrix G transformation matrix
q rank of the matrixSb t rank of the matrixSt

Table 1: Important notations used in the paper

2. Classical Discriminant Analysis

Given a data matrixA ∈ IRm×n, classical linear discriminant analysis computes a linear transfor-
mationG∈ IRm×` that maps each columnai of A in them-dimensional space to a vectoryi in the
`-dimensional space:

G : ai ∈ IRm→ yi = GTai ∈ IR` (` < m).

Assume the original data is already clustered and ordering is imposed on the samples based on
cluster membership. The goal of classical LDA is to find a transformationG such that the cluster
structure of the original high-dimensional space is preserved in the reduced-dimensional space. Let
the data matrixA be partitioned intok classes asA= [A1, · · · ,Ak], whereAi ∈ IRm×ni , and∑k

i=1ni = n.
In discriminant analysis (Fukunaga, 1990), three scatter matrices, calledwithin-class, between-

classandtotal scatter matrices are defined as follows:

Sw =
1
n

k

∑
i=1

∑
x∈Ai

(x−c(i))(x−c(i))T ,

Sb =
1
n

k

∑
i=1

∑
x∈Ai

(c(i)−c)(c(i)−c)T =
1
n

k

∑
i=1

ni(c
(i)−c)(c(i)−c)T ,

St =
1
n

n

∑
j=1

(a j −c)(a j −c)T , (1)
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where thecentroid c(i) of the i-th class is defined asc(i) = 1
ni

Aie(i) with

e(i) = (1,1, · · · ,1)T ∈ IRni ,

and theglobal centroid cis defined asc = 1
nAewith

e= (1,1, · · · ,1)T ∈ IRn.

It is easy to verify thatSt = Sb +Sw.
Define the matrices

Hw =
1√
n
[A1−c(1)(e(1))T , · · · ,Ak−c(k)(e(k))T ],

Hb =
1√
n
[
√

n1(c
(1)−c), · · · ,√nk(c

(k)−c)],

Ht =
1√
n
(A−ceT). (2)

ThenSw, Sb, andSt can be expressed as

Sw = HwHT
w , Sb = HbHT

b , St = HtH
T
t .

Thetracesof the two scatter matricesSw andSb can be computed as follows:

trace(Sw) =
1
n

k

∑
i=1

∑
x∈Ai

(x−c(i))T(x−c(i)) =
1
n

k

∑
i=1

∑
x∈Ai

||x−c(i)||2

trace(Sb) =
1
n

k

∑
i=1

ni(c
(i)−c)T(c(i)−c) =

1
n

k

∑
i=1

ni ||c(i)−c||2. (3)

Hence, trace(Sw) measures the within-class cohesion, while trace(Sb) measures the between-class
separation.

In the lower-dimensional space resulting from the linear transformationG, the scatter matrices
become

SL
w = GTSwG, SL

b = GTSbG, SL
t = GTStG. (4)

An optimal transformationG would maximize trace(SL
b) and minimize trace(SL

w) simultane-
ously, which is equivalent to maximizing trace(SL

b) and minimizing trace(SL
t ) simultaneously, since

SL
t = SL

w +SL
b. A common optimization in classical discriminant analysis (Fukunaga, 1990) is

G = argmax
G

{

trace((SL
t )−1SL

b)
}

. (5)

The optimization problem in Eq. (5) is equivalent to finding all the eigenvectors that satisfy
Sbx = λStx, for λ 6= 0 (Fukunaga, 1990). The solution can be obtained by applying an eigen-
decomposition on the matrixS−1

t Sb, if St is nonsingular. There are at mostk− 1 eigenvectors
corresponding to nonzero eigenvalues, since the rank of the matrixSb is bounded from above by
k−1. Therefore, the reduced dimension by classical LDA is at mostk−1. A stable way to solve
this eigen-decomposition problem is to apply Singular Value Decomposition (SVD) (Golub and
Loan, 1996) on the scatter matrices. Details can be found in (Swets and Weng, 1996).
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GENERALIZED DISCRIMINANT ANALYSIS

Assuming normal distribution for each class with the common covariance matrix, classification
based on maximum likelihood estimation results in a nearest class centroid rule, where the distance
is measured in terms of the within-class Mahalanobis distance (Hastie et al., 2001). Assuming equal
prior for all classes for simplicity, a test pointh is classified as classj if

(h−c( j))TS−1
w (h−c( j)) (6)

is minimized overj = 1, · · · ,k. It was shown in (Hastie et al., 1995) that

argmin
j
{(h−c( j))TS−1

w (h−c( j))}= argmin
j
{||GT(h−c( j))||2}, (7)

whereG is the optimal transformation solving the optimization problem in Eq. (5). Thus, clas-
sical LDA is equivalent to maximum likelihood classification assuming normal distribution for
each class with the common covariance matrix. When the dimensionm is much larger than the
number of classesk, classification using the reduced representation, i.e., classification basedon
argminj{GT(h−c( j))} may give considerable savings (Hastie et al., 1995).

Although relying on heavy assumptions which are not true in many applications,LDA has been
proven to be effective. This is mainly due to the fact that a simple, linear model ismore robust
against noise, and most likely will not overfit. Generalization of LDA by fittingGaussian mixtures
to each class has been studied in (Hastie and Tibshirani, 1996).

Note that classical discriminant analysis requires the total scatter matrixSt to be nonsingular,
which may not hold for undersampled data. Several extensions, includingtwo-stage PCA+LDA,
Regularized LDA, Penalized LDA, Pseudo-inverse LDA, and LDA/GSVDwere proposed in the
past to deal with the singularity problems as follows.

A common way to deal with the singularity problems is to apply an intermediate dimension
reduction stage such as PCA to reduce the dimension of the original data before classical LDA is
applied. The algorithm is known as PCA+LDA (Belhumeur et al., 1997; Swetsand Weng, 1996;
Zhao et al., 1999). In this two-stage PCA+LDA algorithm, the discriminant stage is preceded by
a dimension reduction stage using PCA. The dimension of the subspace transformed by PCA is
chosen such as the “reduced” total scatter matrix in the subspace is nonsingular, so that classical
LDA can be applied. A limitation of this approach is that the optimal value of the reduced dimension
for PCA is difficult to determine. Moreover, the PCA stage may lose some useful information for
discrimination.

A simple way to deal with the singularity ofSt is to apply the idea of regularization, by adding
some constant values to the diagonal elements ofSt , as St + µIm, for someµ > 0, whereIm is
an identity matrix. It is easy to verify thatSt + µIm is positive definite, hence nonsingular. This
approach is called Regularized LDA, or RLDA in short (Friedman, 1989). Regularization is a key
in the theory of splines (Wahba, 1998) and is used widely in machine learning, such as Support
Vector Machines (SVM) (Vapnik, 1998). It is evident that whenµ→ ∞, we lose the information
on St , while very small values ofµ may not be sufficiently effective. Cross-validation is commonly
applied for estimating the optimalµ. More recent studies on RLDA can be found in (Dai and Yuen,
2003; Krzanowski et al., 1995).

The Penalized LDA (PLDA) is more general than Regularized LDA. PLDA penalizes the within-
class scatter matrix asSw+Ω, for some penalty matrixΩ. Ω is symmetric and positive semidefinite.
The penalties are designed to produce smoothness in the discriminant functions. Details on PLDA
and the choices of penalties for different applications refer to (Hastie etal., 1995).
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Pseudo-inverse is commonly applied to deal with the singularity problems, whichis equivalent
to approximating the solution using a least-squares solution method. The use ofpseudo-inverse in
discriminant analysis has been studied in the past. ThePseudo Fisher Linear Discriminant(PFLDA)
(Fukunaga, 1990; Raudys and Duin, 1998; Skurichina and Duin, 1996, 1999) is based on the pseudo-
inverse of the scatter matrices. The generalization error of PFLDA was studied in (Skurichina and
Duin, 1996), when the size and dimension of the training data vary. Pseudo-inverses of the scatter
matrices were also studied in (Krzanowski et al., 1995). Experiments in (Krzanowski et al., 1995)
showed that the pseudo-inverse based methods are competitive with RLDA and PCA+LDA.

The LDA/GSVD algorithm (Howland et al., 2003; Ye et al., 2004b) is a more recent approach.
The main technique applied is the Generalized Singular Value Decomposition (GSVD) (Golub and
Loan, 1996). The criterionF0 used in (Ye et al., 2004b) is:

F0(G) = trace
(

(SL
b)

+SL
w

)

, (8)

where (SL
b)

+ denotes the pseudo-inverse of the between-class scatter matrix. The definition of
pseudo-inverse, as well as its computation via SVD, can be found in Appendix A.

LDA/GSVD aims to find the optimal transformationG that minimizesF0(G), subject to the con-
straint that rank(GTHb) = q, whereq is the rank ofSb. The above constraint is enforced to preserve
the dimension of the spaces spanned by the centroids in the original and transformed spaces. The
optimal solution can be obtained by applying the GSVD. One limitation of this method is the high
computational cost of GSVD, especially for large and high-dimensional data sets.

An overview of LDA on undersampled problems can be found in (Krzanowski et al., 1995).
The current paper focuses on linear discriminant analysis, which applies linear decision bound-

ary. Discriminant analysis can also be studied in the non-linear fashion, so-called kernel discrim-
inant analysis, by using the kernel trick (Schökopf and Smola, 2002). It is desirable if the data
has weak linear separability. The interested readers can find more details on kernel discriminant
analysis in (Baudat and Anouar, 2000; Hand, 1982; Lu et al., 2003; Schökopf and Smola, 2002).

3. Generalization of Discriminant Analysis

Classical discriminant analysis solves an eigen-decomposition problem when St is nonsingular. For
undersampled problems,St is singular, since the sample sizen may be smaller than its dimension
m. In this section, we define a new criterionF1, where the nonsingularity ofSt is not required.

The new criterionF1 is a natural extension of the classical one in Eq. (5), where the inverse of a
matrix is replaced by the pseudo-inverse (Golub and Loan, 1996). While the inverse of a matrix may
not exist, the pseudo-inverse of any matrix is well defined. Moreover, when the matrix is invertible,
its pseudo-inverse coincides with its inverse.

The new criterionF1 is defined as

F1(G) = trace
(

(SL
t )+SL

b

)

. (9)

The optimal transformation matrixG is computed so thatF1(G) is maximized. Note that in the
following, the matrixG in F1(G) may be omitted if it is clear from the content.

In the rest of this section, we show how to solve the above maximization problem.It is based
on the simultaneous diagonalization of the three scatter matrices. Details are given below.

488
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3.1 Simultaneous Diagonalization of Scatter Matrices

In this section, we take a closer look at the relationship among three scatter matricesSb, Sw, andSt ,
and show how to diagonalize them simultaneously.

Let Ht = UΣVT be the SVD ofHt , whereHt is defined in Eq. (2),U andV are orthogonal,

Σ =

(

Σt 0
0 0

)

, Σt ∈ IRt×t is diagonal, andt = rank(St). Then

St = HtH
T
t = UΣVTVΣTUT = UΣΣTUT = U

(

Σ2
t 0

0 0

)

UT . (10)

Let U = (U1,U2) be a partition ofU , such thatU1 ∈ IRm×t andU2 ∈ IRm×(m−t). SinceSt =
Sb +Sw, we have

(

Σ2
t 0

0 0

)

= UT(Sb +Sw)U

=

(

UT
1

UT
2

)

Sb(U1,U2)+

(

UT
1

UT
2

)

Sw(U1,U2)

=

(

UT
1 SbU1 UT

1 SbU2

UT
2 SbU1 UT

2 SbU2

)

+

(

UT
1 SwU1 UT

1 SwU2

UT
2 SwU1 UT

2 SwU2

)

. (11)

It follows thatUT
2 SbU2+UT

2 SwU2 = 0. Therefore,UT
2 SbU2 = 0 andUT

2 SwU2 = 0, since both are
positive semidefinite. We thus haveUT

1 SbU2 = 0 andUT
1 SwU2 = 0, since both matrices on the right

hand size of Eq. (11) are positive semidefinite. That is,

UTSbU =

(

UT
1 SbU1 0

0 0

)

, UTSwU =

(

UT
1 SwU1 0

0 0

)

. (12)

From Eq. (11) and Eq. (12), we haveΣ2
t = UT

1 SbU1 +UT
1 SwU1. It follows that

It = Σ−1
t UT

1 SbU1Σ−1
t +Σ−1

t UT
1 SwU1Σ−1

t . (13)

DenoteB = Σ−1
t UT

1 Hb and letB = PΣ̃QT be the SVD ofB, whereP andQ are orthogonal and
Σ̃ is diagonal. Then

Σ−1
t UT

1 SbU1Σ−1
t = PΣ̃2PT = PΣbPT ,

where
Σb≡ Σ̃2 = diag(λ1, · · · ,λt),

λ1≥ ·· · ≥ λq > 0 = λq+1 = · · ·= λt ,

andq = rank(Sb).
It follows from Eq. (13) that

It = Σb +PTΣ−1
t UT

1 SwU1Σ−1
t P.

Hence
PTΣ−1

t UT
1 SwU1Σ−1

t P = It −Σb≡ Σw

is also diagonal.
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Combining all these together, we have

XTSbX =

(

Σb 0
0 0

)

≡ Db, XTSwX =

(

Σw 0
0 0

)

≡ Dw, XTStX =

(

It 0
0 0

)

≡ Dt , (14)

where

X = U

(

Σ−1
t P 0
0 I

)

. (15)

In summary, the matrixX in Eq. (15) simultaneously diagonalizesSb, Sw, andSt .

3.2 Maximization of the F1 Criterion

In this section, we derive the generalized discriminant analysis by maximizing the F1 criterion de-
fined in Eq. (9). The main technique applied is the simultaneous diagonalization of scatter matrices
from last section. We show in this section that the solutions to the proposed criterion F1 can be
characterized asG = XqM, whereXq is the matrix consisting of the firstq columns ofX, defined in
Eq. (15),q = rank(Sb), andM ∈ IRq×q is an arbitrary nonsingular matrix.

We first present two lemmas. The proof of Lemma 3.1 is straightforward fromstandard linear
algebra and a generalization of Lemma 3.2 can be found in (Edelman et al., 1998).

Lemma 3.1 For any matrix A∈ IRm×n, the following equality holds:(ATA)+ = A+(A+)T .

Lemma 3.2 Let A∈ IRm×m be symmetric and positive semidefinite and let xi be the eigenvector of A
corresponding to the i-th largest eigenvalueλi . Then, for any M∈ IRm×s(s≤m) with orthonormal
columns, the following inequality holds,

trace
(

MTAM
)

≤ λ1 + · · ·+λs,

where the equality holds if M= [x1, · · · ,xs]Q, for any orthogonal matrix Q∈ IRs×s.

The main result of this section is summarized in the following theorem.

Theorem 3.1 Let X be the matrix defined in Eq. (15) and Xq be the matrix consisting of the first q
columns of X, where q= rank(Sb). Then G= XqM, for any nonsingular M, maximizes F1 defined
in Eq. (9).

Proof By the simultaneous diagonalization of the three scatter matrices in Eq. (14), wehave

SL
b = GTSbG = GT(X−1)T(XTSbX)X−1G = G̃TDbG̃,

SL
t = GTStG = GT(X−1)T(XTStX)X−1G = G̃TDtG̃, (16)

whereG̃ = X−1G.

Let G̃ =

(

G1

G2

)

be a partition ofG̃ so thatG1 ∈ IRt×` andG2 ∈ IR(m−t)×`. It follows that

SL
b = G̃TDbG̃ = GT

1 ΣbG1, SL
t = G̃TDtG̃ = GT

1 G1.

Hence

F1 = trace
(

(GT
1 G1)

+(GT
1 ΣbG1)

)

= trace
(

(G1G+
1 )TΣb(G1G+

1 )
)

,
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where the second equality follows from Lemma 3.1.
Recall thatΣb = diag(λ1, · · · ,λt), whereλ1 ≥ ·· · ≥ λq > 0 = λq+1 = · · · = λt . Let G1 =

R

(

Σδ 0
0 0

)

ST be the SVD ofG1, whereRandSare orthogonal,Σδ is diagonal, andδ = rank(G1).

ThenG+
1 = S

(

Σ−1
δ 0
0 0

)

RT , andG1G+
1 = R

(

Iδ 0
0 0

)

RT . It follows that

F1 = trace
(

(G1G+
1 )TΣb(G1G+

1 )
)

= trace

(

R

(

Iδ 0
0 0

)

RTΣbR

(

Iδ 0
0 0

)

RT
)

= trace

((

Iδ 0
0 0

)

RTΣbR

(

Iδ 0
0 0

))

= trace
(

RT
δ ΣbRδ

)

≤ λ1 + · · ·+λq.

whereRδ is the matrix consisting of the firstδ columns ofR, and the last inequality follows from

Lemma 3.2. By Lemma 3.2 again, the above inequality becomes equality, ifRδ =

(

W
0

)

, for any

orthogonalW ∈ IRq×q, δ = q, and` = q. Under this choice ofRδ,

G1 = RqΣqST =

(

WΣqST

0

)

.

We observe that the maximization ofF1 is independent ofG2, and simply set it to zero. Therefore,
the maximum ofF1 is attained when

G̃ =

(

G1

G2

)

=

(

WΣqST

0

)

.

Note that the orthogonal matricesW andS, and the diagonal matrixΣq are arbitrary. Hence,
M = WΣqST is an arbitrary nonsingular matrix. It follows thatG= XG̃= XqM, for any nonsingular
M, maximizesF1. This completes the proof of the theorem.

Remark 1 Note that it is in general not true that F1(H) = F1(HM), for any nonsingular M. How-
ever, Theorem 3.1 implies that for H= Xq, we have F1(H) = F1(HM), for any nonsingular M.

4. Uncorrelated LDA Versus Orthogonal LDA

From last section,G = XqM, for any nonsingularM maximizes theF1 criterion. A natural question
is: How to choose the bestM? In this section, we consider two specific choices ofM, which lead to
two distinct algorithms: Uncorrelated LDA and Orthogonal LDA.

4.1 Uncorrelated LDA

The simplest choice ofM is the identity matrix, i.e.,M = Iq. That is,G = Xq. It follows that
XT

q StXq = Iq, i.e., the columns of the transformationG areSt-orthogonal. Recall that two vectorsx
andy areSt-orthogonal, ifxTSty= 0. The solution corresponds to the Uncorrelated LDA, originally
proposed by Jin et al. (Jin et al., 2001a,b). The pseudo-code for ULDA is given inAlgorithm 1 .
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Algorithm 1: Uncorrelated LDA
Input: data matrixA
Output: transformation matrixG
1. Form three matricesHb, Hw, andHt as in Eq. (2);
2. Compute reduced SVD ofHt asHt = U1ΣtVT

1 ;
3. B← Σ−1

t UT
1 Hb;

4. Compute SVD ofB asB = PΣQT ; q← rank(B);
5. X←U1Σ−1

t P;
6. G← Xq;

ULDA was originally proposed to compute the optimal discriminant vectors that areSt-orthogonal.
Specifically, supposer vectorsφ1,φ2, · · · ,φr are obtained, then the(r +1)-th vectorφr+1 of ULDA
is the one that maximizes the Fisher criterion function

f (φ) =
φTSbφ
φTSwφ

, (17)

subject to the constraints:
φT

r+1Stφi = 0, i = 1, · · · , r.
The algorithm in (Jin et al., 2001a) findsφi successively as follows: Thej-th discriminant

vectorφ j of ULDA is the eigenvector corresponding to the maximum eigenvalue of the following
generalized eigenvalue problem:

U jSbφ j = λ jSwφ j ,

where

U1 = Im,

U j = Im−StD
T
j (D jStS

−1
w StD

T
j )
−1D jStS

−1
w ( j > 1),

D j = [φ1, · · · ,φ j−1]
T( j > 1),

andIm is the identity matrix.
A key property of ULDA is that the features in the reduced space are uncorrelated to each other,

as stated in the following proposition.

Proposition 4.1 Let the transformation matrix for ULDA be G= [g1, · · · ,gd], for some d> 0. The
original feature vector A is transformed into Z= GTA, where the i-th feature component of Z is
Zi = gT

i A. Assume that gi and gj are St-orthogonal to each other, i.e., gT
i Stg j = 0, for i 6= j. Then

the correlation between Zi and Zj is 0, for i 6= j. That is, Zi and Zj are uncorrelated to each other.

Proof The covariance betweenZi andZ j can be computed as

Cov(Zi ,Z j) = E(Zi−EZi)(Z j −EZj) = gT
i {E(A−EA)(A−EA)T}g j = gT

i Stg j . (18)

Hence, their correlation coefficient is

Cor(Zi ,Z j) =
gT

i Stg j
√

gT
i Stgi

√

gT
j Stg j

. (19)
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SincegT
i Stg j = 0, for i 6= j, we have Cor(Zi ,Z j) = 0, for i 6= j. This completes the proof of the

proposition.

In (Ye et al., 2004a), an efficient algorithm for ULDA was proposed, based on the following
optimization problem:

G = argmax
G
{trac((SL

t +µÌ )−1SL
b)}. (20)

Note thatSL
t + µÌ is always nonsingular forµ > 0, sinceSL

t is positive semidefinite. One key
result in (Ye et al., 2004a) shows that the optimal transformationG solving the optimization problem
in Eq. (20) is independent ofµ.

Interestingly, it can be shown thatG = Xq solves the optimization problem in Eq. (20) as stated
in the following proposition. Detailed proof follows the one in (Ye et al., 2004a) and is thus omitted.

Proposition 4.2 Let G= Xq, where Xq is the matrix consisting of the first q columns of X, and X is
defined in Eq. (15). Then G solves the optimization problem in Eq. (20).

4.1.1 RELATIONSHIP BETWEEN ULDA AND THE EIGEN-DECOMPOSITION OFS+
t Sb

In this section, we study the relationship between ULDA and the eigen-decomposition of S+
t Sb.

More specifically, we show that the discriminant vectors of ULDA are eigenvectors ofS+
t Sb cor-

responding to nonzero eigenvalues. Recall that classical LDA computesthe optimal discriminant
vectors by solving an eigenvalue problem onS−1

t Sb, assumingSt is nonsingular (See Section 2).
This equivalence result shows that ULDA is a natural extension of classical LDA by replacing in-
verse with pseudo-inverse, when dealing with singularSt .

From Eq. (14), we haveXTStX = Dt , where

X = U

(

Σ−1
t P 0
0 0

)

, andDt =

(

It 0
0 0

)

.

Note thatP is orthogonal. It follows that

St = X−TDtX
−1 = U

(

ΣtP 0
0 0

)(

It 0
0 0

)(

PTΣt 0
0 0

)

UT = U

(

Σ2
t 0

0 0

)

UT ,

Hence,

S+
t = U

(

Σ−2
t 0
0 0

)

UT .

It is easy to verify that

XDtX
T = U

(

Σ−2
t 0
0 0

)

UT .

It follows that
S+

t = XDtX
T , (21)

and
S+

t Sb =
(

XDtX
T)(

X−1DbX−1) = XDtDbX−1.

Therefore, the columns ofXq form the eigenvectors ofS+
t Sb corresponding to nonzero eigenvalues,

sinceDtDb is diagonal withq nonzero diagonal entries.
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Algorithm 2: Orthogonal LDA
Input: data matrixA
Output: transformation matrixG
1. Compute the matrixXq as in ULDA (Steps 1–5 ofAlgorithm 1 );
2. Compute QR decomposition ofXq asXq = Q̃R̃;
3. G← Q̃;

4.2 Orthogonal LDA

LDA with orthogonal discriminant vectors is a natural alternative to ULDA. LetXq = Q̃R̃be the QR
decomposition ofXq, then we can simply chooseM = R̃−1 so that the columns ofG= XqM = Q̃ are
orthogonal to each other. The pseudo-code for OLDA is given inAlgorithm 2 .

Note that in the literature of LDA, Foley-Sammon LDA (FSLDA) is also known for its orthogo-
nal discriminant vectors. FSLDA was first proposed by Foley and Sammonfor two-class problems
(Foley and Sammon, 1975). It was then extended to the multi-class problems byDuchene and
Leclercq (Duchene and Leclerq, 1988). Specifically, supposer vectorsφ1,φ2, · · · ,φr are obtained,
then the(r + 1)-th vectorφr+1 of FSLDA is the one that maximizes the Fisher criterion function
f (φ) defined in Eq. (17), subject to the constraints:φT

r+1φi = 0, i = 1, · · · , r.
The algorithm in (Duchene and Leclerq, 1988) findsφi successively as follows: Thej-th dis-

criminant vectorφ j of FSLDA is the eigenvector corresponding to the maximum eigenvalue of the
following matrix:

(

Im−S−1
w DT

j S−1
j D j

)

S−1
w Sb,

where

D j = [φ1, · · · ,φ j−1]
T( j > 1), andSj = D jS

−1
w DT

j .

The above FSLDA algorithm may be expensive for large and high-dimensional data sets. More
details on the computation of FSLDA can be found in (Duchene and Leclerq,1988).

It is worthwhile to point out that both ULDA and FSLDA use the same Fisher criterion func-
tion, and the main difference is that the optimal discriminant vectors generatedby ULDA are St-
orthogonal to each other, while the optimal discriminant vectors of FSLDA are orthogonal to each
other.

The common point of the proposed OLDA algorithm and the FSLDA algorithm described above
is that the transformation matrix has orthogonal columns. However, these twoalgorithms were
derived from distinct perspectives.

4.3 Discussions

As discussed in Section 2, classical LDA is equivalent to maximum likelihood classification as-
suming normal distribution for each class with the common covariance matrix. Classification in
classical LDA based on the maximum likelihood estimation is based on the Mahalanobis distance
as follows: a test pointh is classified as classj if

j = argmin
j

(h−c( j))TS−1
w (h−c( j)), (22)
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which is equivalent to
j = argmin

j
(h−c( j))TS−1

t (h−c( j)). (23)

We show in the following that the classification in ULDA uses the following distance:

(h−c( j))TS+
t (h−c( j)). (24)

The main result is summarized in the following theorem.

Theorem 4.1 Let G be the optimal transformation matrix for ULDA, and let h be any test point.
Then

argmin
j

{

(h−c( j))TS+
t (h−c( j))

}

= argmin
j

{

||GT(h−c( j))||2
}

.

Proof Let Xi be thei-th column ofX. From Eq. (21), we have

S+
t = XDtX

T =
t

∑
i=1

XiX
T
i = GGT +

t

∑
i=q+1

XiX
T
i ,

whereG consists of the firstq columns ofX, andq = rank(Sb).
Recall from Section 3.1 thatX diagonalizesSb andXT

i SbXi = 0, for i = q+ 1, · · · , t. Hence
HbXi = 0, or(c( j))TXi = cXi , for all j = 1, · · · ,k. It follows that

(h−c( j))TS+
t (h−c( j)) = (h−c( j))TGGT(h−c( j))+

t

∑
i=q+1

(h−c( j))TXiX
T
i (h−c( j))

= ||GT(h−c( j))||2 +
t

∑
i=q+1

(h−c)TXiX
T
i (h−c). (25)

The second term on the right hand side of Eq. (25) is independent of class j, hence

argmin
j

{

(h−c( j))TS+
t (h−c( j))

}

= argmin
j

{

||GT(h−c( j))||2
}

.

This completes the proof of the theorem.

Theorem 4.1 shows that the classification rule in ULDA is a variant of the oneused in classical
LDA. ULDA can be considered as an extension of classical LDA for singular scatter matrices. The
result does not extend to OLDA. However, with whitened total scatter matrix,that is if St is an
identity matrix, OLDA is equivalent to ULDA.

Geometrically, both ULDA and OLDA project the data onto the subspace spanned by the cen-
troids. ULDA removes the correlation among the features in the transformed space, which is theo-
retically sound but may be sensitive to the noise in the data. On the other hand,OLDA applies or-
thogonal transformatioñQ, by factoring out thẽRmatrix through the QR decomposition ofXq = Q̃R̃.
The removal ofR̃ in OLDA may contribute to the noise removal. Our experiments in next section
show that OLDA often leads to better performance than ULDA in classification.
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Data Set Size (n) Dimension (m) # of classes (k)

tr41 210 7454 7
re0 320 2887 4
PIX 300 10000 30
AR 1638 8888 126
GCM 198 16063 14
ALL 248 12558 6

Table 2: Statistics for our test data sets

5. Experiments

We divide the experiments into three parts. Section 5.1 describes our test data sets. Section 5.2
evaluates ULDA and OLDA in terms of classification accuracy. We study the effect of the matrix
M in Section 5.3. Recall thatG = XqM, for any nonsingularM maximizes theF1 criterion.

Both ULDA and OLDA were implemented in MATLAB and the source codes may beaccessed
athttp://www.cs.umn.edu/∼jieping/UOLDA.

5.1 Data Sets

We have three types of data for the evaluation: text documents, includingtr41 andre0; face im-
ages, includingPIX andAR; and gene expression data, includingGCM andALL . The important
statistics of these data sets are summarized as follows (see also Table 2):

• tr41 is a text document data set, derived from the TREC-5, TREC-6, and TREC-7 collections
(TREC, 1999). It includes 210 documents belonging to 7 different classes. The dimension of
this data set is 7454.

• re0 is another text document data set, derived fromReuters-21578text categorization test
collection Distribution 1.0 (Lewis, 1999). It includes 320 documents belonging to 4 different
classes. The dimension of this data set is 2887.

• PIX1 is a face image data set, which contains 300 face images of 30 persons. Thesize of PIX
images is 512×512. We subsample the images down to a size of 100×100= 10000.

• AR2 (Martinez and Benavente, 1998), is a large face image data set. The instance of each face
may contain pretty large areas of occlusion, due to the presence of sun glasses and scarves.
We use a subset of AR. This subset contains 1638 face images of 126 individuals. Its image
size is 768×576. We first crop the image from row 100 to 500, and column 200 to 550, and
then subsample the cropped images down to a size of 101×88= 8888.

• GCM is a gene expression data set consisting of 198 human tumor samples spanning fourteen
different cancer types. The data set was first studied in (Ramaswamy and et al., 2001; Yeang
and et al., 2001). The breakdown of the sample classes is as follows: 12breastsamples, 14

1. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/
2. http://rvl1.ecn.purdue.edu/∼aleix/aleix faceDB.html
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prostatesamples, 12lungsamples, 12colorectalsamples, 22lymphomasamples, 11bladder
samples, 10melanomasamples, 10uterussamples, 30leukemiasamples, 11renal samples,
11pancreassamples, 12ovarysamples, 11mesotheliomasamples, and 20CNSsamples.

• ALL 3 is another gene expression data set consisting of six diagnostic groups (Yeoh and et al.,
2002). The breakdown of the samples is: 15 samples forBCR, 27 samples forE2A, 64
samples forHyperdip, 20 samples forMLL, 43 samples forT, and 79 samples forTEL.

5.2 Comparison on Classification Accuracy

In this experiment, we evaluate ULDA and OLDA in terms of classification accuracy. For theGCM
andALL gene expression data sets, the test sets were provided. In the absenceof original test sets,
such as the two document data sets and the two face image data sets, we perform our comparative
study by repeated random splitting into training and test sets exactly as in (Dudoit et al., 2002). The
data were randomly partitioned into a training set consisting of two-thirds of thewhole set and a test
set consisting of one-third of the whole set. To reduce the variability, the splitting was repeated 50
times and the resulting accuracies were averaged. Note that during each run, dimension reduction
is applied to the training set only. For RLDA, the results depend on the choiceof the parameterµ.
We choose the bestµ through cross-validation. The range forµ is between 0.001 and 10.

The results of the three algorithms on the six data sets are presented in Table 3. The main
observation from Table 3 is that OLDA is competitive with ULDA and RLDA in all six data sets.
We also observe that in most cases, RLDA outperforms ULDA and is competitive with OLDA.

It is interesting to note that OLDA achieves higher accuracies than ULDA for the two face
image data sets and two gene expression data sets, while it achieves accuracies close to those of
ULDA for the two text document data sets. For theGCM gene expression data set, OLDA achieved
classification accuracy 3% higher than that of OLDA. This may be related to the effect of the noise
removal inherent in OLDA as discussed in Section 4.3.

5.3 Effect of the Matrix M

In this experiment, we study the effect of the matrixM on classification using theGCM andALL
data sets. Recall that the solution to the proposed criterion isG= XqM, for any nonsingularM. Two
specific choices ofM were studied, which correspond to ULDA and OLDA. In this experiment,
we randomly generated 100 matrices forM and computed the accuracies using the corresponding
transformation matrices. Figure 1 shows the histogram of the resulting accuracies onGCM , where
thex-axis represents the range of resulting accuracies (divided into small intervals), and they-axis
represents the number (count) for each interval. The main observations are:

• None of the accuracies is higher than those of ULDA (73.91%) and OLDA (76.09%). ULDA
and OLDA are probably two of the best ones among the family of solutions to theproposed
criterion.

• In Figure 1, most of the accuracies are around 55%, which is much lower than those of ULDA
and OLDA. Thus, the choice ofM does make a big difference. Among the family of solutions
to the proposed criterion, most of them perform quite poorly in comparison toULDA and
OLDA.

3. http://www.stjuderesearch.org/data/ALL1/
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Data Set Accuracy
ULDA OLDA RLDA

tr41 96.69± 1.90 96.34± 2.10 96.23± 2.17
re0 86.26± 2.46 86.13± 2.58 87.34± 2.37
PIX 96.16± 2.48 98.00± 1.66 96.31± 2.20
AR 90.94± 0.96 92.77± 1.04 91.11± 1.02
GCM 73.91 76.09 78.26
ALL 98.82 100.0 98.82

Table 3: Comparison of classification accuracy and standard deviation ofthree algorithms: ULDA
(Uncorrelated LDA), OLDA (Orthogonal LDA), and RLDA (Regularized LDA), on the
six data sets. The mean and standard deviation of accuracies from fifty runs are reported
for tr41, re0, PIX , andAR. Note that for the two gene expression data sets:GCM and
ALL , we use the original test sets. Thus the standard deviation for these two data sets are
not reported.
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Figure 1: Effect of the matrixM using theGCM data set. The corresponding accuracies of ULDA
and OLDA are 73.91% and 76.09%, respectively.

The result onALL is shown in Figure 2. We can observe the same trend as inGCM , that is,
most of the accuracies are much lower than those of ULDA and OLDA.

6. Conclusions and Future Directions

In this paper, a new optimization criterion for discriminant analysis is presented. The new criterion
extends the optimization criteria of the classical LDA when the scatter matrices are singular. It
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Figure 2: Effect of the matrixM using theALL data set. The corresponding accuracies of ULDA
and OLDA are 98.82% and 100.0%, respectively.

is applicable regardless of the relative sizes of the data dimension and samplesize, overcoming a
limitation of the classical LDA. A detailed mathematical derivation for the proposed optimization
problem is presented. It is based on the simultaneous diagonalization of the three scatter matrices.

The solutions to the proposed criterion form a family of algorithms for generalized LDA, which
can be characterized in a closed form. Among the family of solutions, we studytwo specific ones,
namely ULDA and OLDA, where ULDA was previously proposed for feature extraction and di-
mension reduction and OLDA is a novel algorithm. ULDA has the property thatthe features in the
reduced space are uncorrelated, while OLDA has the property that the discriminant vectors obtained
are orthogonal to each other. Experiment on a variety of real-world datasets show that OLDA is
competitive with ULDA and RLDA in terms of classification accuracy.

In this paper, we focus on two specific algorithms, ULDA and OLDA, for generalized LDA.
A promising direction is to find algorithms with sparse transformation matrices. Sparsity has re-
cently received much attention for extending Principal Component Analysis(d’Aspremont et al.,
2004; Jolliffe and Uddin, 2003). One of our future work is to incorporate the sparsity criterion in
discriminant analysis.
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Appendix A.

The pseudo-inverse of a matrix is defined as follows.

Definition 2 The pseudo-inverse of a matrix A, denoted as A+, refers to the unique matrix satisfying
the following four conditions:

(1)A+AA+ = A+, (2)AA+A = A, (3) (AA+)T = AA+, (4)(A+A)T = A+A.

The pseudo-inverse is commonly computed by the SVD as follows (Golub and Loan, 1996).

Let A = U

(

Σ 0
0 0

)

VT be the SVD ofA, whereU andV are orthogonal andΣ is diagonal with

positive diagonal entries. Then,A+ = V

(

Σ−1 0
0 0

)

UT .
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