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Abstract

A generalized discriminant analysis based on a new opttinizariterion is presented. The
criterion extends the optimization criteria of the claakicinear Discriminant Analysis (LDA)
when the scatter matrices are singular. An efficient algorifor the new optimization problem is
presented.

The solutions to the proposed criterion form a family of algons for generalized LDA, which
can be characterized in a closed form. We study two specifaridhms, namely Uncorrelated LDA
(ULDA) and Orthogonal LDA (OLDA). ULDA was previously proged for feature extraction and
dimension reduction, whereas OLDA is a novel algorithm pemal in this paper. The features in
the reduced space of ULDA are uncorrelated, while the disoant vectors of OLDA are orthog-
onal to each other. We have conducted a comparative studyanedy of real-world data sets to
evaluate ULDA and OLDA in terms of classification accuracy.

Keywords: dimension reduction, linear discriminant analysis, unelated LDA, orthogonal
LDA, singular value decomposition

1. Introduction

Many machine learning and data mining problems involve data in very high-diomahspaces. We
consider dimension reduction of high-dimensional, undersampled datee Wigedata dimension is
much larger than the sample size. The high-dimensional, undersampledmsdbdguently occur
in many applications including information retrieval (Berry et al., 1995; vester et al., 1990),
face recognition (Belhumeur et al., 1997; Swets and Weng, 1996; TufkPantland, 1991) and
microarray data analysis (Dudoit et al., 2002).

Linear Discriminant Analysis (LDA) is a classical statistical approach &atdre extraction
and dimension reduction (Duda et al., 2000; Fukunaga, 1990; Hasfie 20@1). LDA computes
the optimal transformation (projection), which minimizes the within-class distai¢bd data set)
and maximizes the between-class distance simultaneously, thus achieving makisotumination.
The optimal transformation can be readily computed by applying an eigemgesition on the
scatter matrices of the given training data set. However classical LDAresgtihe total scatter
matrix to be nonsingular. In many applications such as information retrieea ré&cognition, and
microarray data analysis, all scatter matrices in question can be singulartsendata points are
from a very high-dimensional space and in general the sample size doesceed this dimension.
This is known as thsingularity or undersamplegroblems (Krzanowski et al., 1995).
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In recent years, many approaches have been brought to beaclohigh-dimensional, under-
sampled problems, including PCA+LDA (Belhumeur et al., 1997; Swets amh\WE96; Zhao
et al., 1999), Regularized LDA (Friedman, 1989), Penalized LDA (Hadtial., 1995), Pseudo-
inverse LDA (Fukunaga, 1990; Raudys and Duin, 1998; Skurichimh2uin, 1996, 1999), and
LDA/GSVD (Howland et al., 2003; Ye et al., 2004b). More details will besgivn Section 2.

1.1 Contribution

In this paper, we present a new optimization criterion for discriminant aisalich is applica-
ble to undersampled problems. A detailed mathematical derivation for the ggomptimization
problem is presented in Section 3.

The solutions to the proposed criterion characterize a family of algorithngefaralized LDA.
Among the family of algorithms, we study two specific ones in detail, namely Ueleded LDA
(ULDA) and Orthogonal LDA (OLDA). ULDA was developed in the past feature extraction and
dimension reduction, whereas OLDA is a novel LDA based algorithm pexpisthis paper.

ULDA was recently proposed for extracting feature vectors with uretated attributes (Jin
et al., 2001a,b). A more recent work (Ye et al., 2004a) showed thaticdhd. DA is equivalent to
ULDA, in the sense that both classical LDA and ULDA produce the sameaftvemation matrix
when the total scatter matrix is nonsingular. Based on this equivalenc#fjcene algorithm was
presented in (Ye et al., 2004a) for computing the optimal discriminant vestdy&DA. Interest-
ingly, the solution in (Ye et al., 2004a) is a special case of the solutions tadipesed criterion in
this paper (See Section 4).

OLDA is a novel dimension reduction algorithm proposed in this paper. €gepkoperty of
OLDA is that the discriminant vectors of OLDA are orthogonal to each otteer the transforma-
tion matrix of OLDA is orthogonal. There has been some early developmelnbérbased algo-
rithms with orthogonal transformations. The algorithm is known as Foley-Sanudé. (FSLDA).
FSLDA was first proposed by Foley and Sammon for two-class problewisy(land Sammon,
1975). It was then extended to the multi-class problems by Duchene anddce@@ichene and
Leclerq, 1988). The OLDA algorithm proposed in this paper providestennative, but simple and
efficient way for computing orthogonal transformations in the framew®otkDA.

We have conducted a comparative study on a variety of real-world detaiseluding text
documents, face images, and gene expression data to evaluate ULDA BAJ &d compare with
Regularized LDA (RLDA). Results have shown that OLDA is competitive wittD4 and RLDA
in terms of classification accuracy.

The main contributions of this paper include:

e A generalization of the classical discriminant analysis to small sample size siatpaunew
criterion, where the nonsingularity of the scatter matrices is not required;

e Mathematical derivation of the solutions to the new optimization criterion, basedeosi-
multaneous diagonalization of the scatter matrices;

e Characterization of a family of algorithms for generalized LDA based on ttheqgsed crite-
rion and derivation of two specific algorithms, namely ULDA and OLDA.
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GENERALIZED DISCRIMINANT ANALYSIS

1.2 Organization

The rest of the paper is organized as follows: We review classical LiAsaveral extensions in
Section 2. A generalization of classical LDA using the new criterion is ptesein Section 3.

Two specific solutions to the proposed criterion, namely ULDA and OLDA,discussed in Sec-
tion 4. Experimental results are presented in Section 5. Finally, concludingssions and future

directions are presented in Section 6.

1.3 Notation

For convenience, we present in Table 1 the important notations used iesthaf the paper.

Notation | Description Notation | Description

n sample size m number of variables (dimensions)
k number of classes A data matrix

A data matrix of the-th class || n size of thei-th class

cl) centroid of thd-th class c global centroid of the training set
S between-class scatter matiixS,y within-class scatter matrix

S total scatter matrix G transformation matrix

q rank of the matrixg, t rank of the matrixg

Table 1: Important notations used in the paper

2. Classical Discriminant Analysis

Given a data matrid € R™", classical linear discriminant analysis computes a linear transfor-
mationG € R™ that maps each columas of A in the m-dimensional space to a vectgrin the
¢-dimensional space:

G:acR"—y =G g R (¢ <m).

Assume the original data is already clustered and ordering is imposed centipdes based on
cluster membership. The goal of classical LDA is to find a transforma@iauch that the cluster
structure of the original high-dimensional space is preserved in theedddimensional space. Let
the data matriA be partitioned intd classes a8 = [Ay, - - -, A¢], whereA; € R™" andz!‘:1 ni=n.

In discriminant analysis (Fukunaga, 1990), three scatter matrices, vattéd-class between-
classandtotal scatter matrices are defined as follows:

Sv = %ii;(x—c”)(x—c('))ﬂ
_ 1S (i T = 15 e (i) _ )T
S = ﬁizix;;(c —c)(c" —c) 02 ni(c" —c)(c —c)",
S = XY@ 0@ @
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where thecentroid ¢ of thei-th class is defined as) = n—liA,-e(‘) with
e =(1,1,---,)T e R,
and theglobal centroid ds defined ag = 2 Aewith
=(11--- . )T e R",

It is easy to verify thag = S + Sy.
Define the matrices

Hy — %[Al—c(l)(e(l))T,'--,Ak—c(k)(e(k))T],
Hy = V(e ) o A~
H = %(A—ceT). (2)

ThenS,, &, and§ can be expressed as
Sv=HuwHy, S=HpHy, S=HH.

Thetracesof the two scatter matrices, andS, can be computed as follows:

trac€S,) = Zl;x cnT i)):%._i;Hx—c(i)Hz

k .
WEMd)QVW—QZ%;dewW. 3)

tracdS))

Hence, trac€S,) measures the within-class cohesion, while tt&emeasures the between-class
separation.

In the lower-dimensional space resulting from the linear transform&ijdhe scatter matrices
become

S =G'S\G, §$=G'S$G, §=G'SG (4)

An optimal transformatiorG would maximize traces;) and minimize traces;) simultane-
ously, which is equivalent to maximizing trg&) and minimizing tracéS) simultaneously, since
=9+ % A common optimization in classical discriminant analysis (Fukunaga, 1990) is

G=arg rrg;ax{trace{(i-)*léa)} : (5)

The optimization problem in Eq. (5) is equivalent to finding all the eigenvedtuat satisfy
SX = ASx, for A # 0 (Fukunaga, 1990). The solution can be obtained by applying an eigen-
decomposition on the matrig 'S, if S is nonsingular. There are at mdst- 1 eigenvectors
corresponding to nonzero eigenvalues, since the rank of the n&trsxbounded from above by
k— 1. Therefore, the reduced dimension by classical LDA is at tkest. A stable way to solve
this eigen-decomposition problem is to apply Singular Value Decomposition Y$8Biub and
Loan, 1996) on the scatter matrices. Details can be found in (Swets arg] 1396).
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GENERALIZED DISCRIMINANT ANALYSIS

Assuming normal distribution for each class with the common covariance madassification
based on maximum likelihood estimation results in a nearest class centroid hele thie distance
is measured in terms of the within-class Mahalanobis distance (Hastie et dl), 288uming equal
prior for all classes for simplicity, a test poinis classified as classif

(h—c)Tg, (h—cV) (6)
is minimized overj = 1,---,k. It was shown in (Hastie et al., 1995) that
argmin{(h—c!)Ts,*(h—c)} = argmin{||G" (h—c'V)||?}, ()
j i

whereG is the optimal transformation solving the optimization problem in Eq. (5). Thus; cla
sical LDA is equivalent to maximum likelihood classification assuming normalilligion for
each class with the common covariance matrix. When the dimemsisnmuch larger than the
number of classek, classification using the reduced representation, i.e., classification based
argmin{G" (h—c))} may give considerable savings (Hastie et al., 1995).

Although relying on heavy assumptions which are not true in many applicatib#shas been
proven to be effective. This is mainly due to the fact that a simple, linear modebiie robust
against noise, and most likely will not overfit. Generalization of LDA by fitttBgussian mixtures
to each class has been studied in (Hastie and Tibshirani, 1996).

Note that classical discriminant analysis requires the total scatter nsatiaxbe nonsingular,
which may not hold for undersampled data. Several extensions, incltdoigtage PCA+LDA,
Regularized LDA, Penalized LDA, Pseudo-inverse LDA, and LDA/GSW&re proposed in the
past to deal with the singularity problems as follows.

A common way to deal with the singularity problems is to apply an intermediate dimension
reduction stage such as PCA to reduce the dimension of the original date lokfssical LDA is
applied. The algorithm is known as PCA+LDA (Belhumeur et al., 1997; Sewats\Weng, 1996;
Zhao et al., 1999). In this two-stage PCA+LDA algorithm, the discriminantestagreceded by
a dimension reduction stage using PCA. The dimension of the subspadenmed by PCA is
chosen such as the “reduced” total scatter matrix in the subspace is guasirso that classical
LDA can be applied. A limitation of this approach is that the optimal value of theaedidimension
for PCA is difficult to determine. Moreover, the PCA stage may lose somelusébrmation for
discrimination.

A simple way to deal with the singularity & is to apply the idea of regularization, by adding
some constant values to the diagonal element§ 0ésS + ply, for somep > 0, wherely, is
an identity matrix. It is easy to verify th& + ply, is positive definite, hence nonsingular. This
approach is called Regularized LDA, or RLDA in short (Friedman, 198®gularization is a key
in the theory of splines (Wahba, 1998) and is used widely in machine learsiloty as Support
Vector Machines (SVM) (Vapnik, 1998). It is evident that wher- o, we lose the information
on §, while very small values gfit may not be sufficiently effective. Cross-validation is commonly
applied for estimating the optimgl More recent studies on RLDA can be found in (Dai and Yuen,
2003; Krzanowski et al., 1995).

The Penalized LDA (PLDA) is more general than Regularized LDA. PLBAglizes the within-
class scatter matrix &, + Q, for some penalty matriQ. Q is symmetric and positive semidefinite.
The penalties are designed to produce smoothness in the discriminantrisn®ietails on PLDA
and the choices of penalties for different applications refer to (Hastk, €1995).
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Pseudo-inverse is commonly applied to deal with the singularity problems, wehégjuivalent
to approximating the solution using a least-squares solution method. The pseunfo-inverse in
discriminant analysis has been studied in the past.PEeeido Fisher Linear DiscriminafPFLDA)
(Fukunaga, 1990; Raudys and Duin, 1998; Skurichina and Duirg, 1989) is based on the pseudo-
inverse of the scatter matrices. The generalization error of PFLDA wdgestin (Skurichina and
Duin, 1996), when the size and dimension of the training data vary. Psevelses of the scatter
matrices were also studied in (Krzanowski et al., 1995). Experiments matowski et al., 1995)
showed that the pseudo-inverse based methods are competitive with RIAPGA+LDA.

The LDA/GSVD algorithm (Howland et al., 2003; Ye et al., 2004b) is a mocemeapproach.
The main technique applied is the Generalized Singular Value DecompositidfD)GSolub and
Loan, 1996). The criteriofp used in (Ye et al., 2004b) is:

Fo(G) = trace(($) ") » (8)

where (§)" denotes the pseudo-inverse of the between-class scatter matrix. Thigicteff
pseudo-inverse, as well as its computation via SVD, can be found in AppAn

LDA/GSVD aims to find the optimal transformati@that minimized(G), subject to the con-
straint that rankG" Hyp) = g, whereq is the rank ofS,. The above constraint is enforced to preserve
the dimension of the spaces spanned by the centroids in the original asfbtraed spaces. The
optimal solution can be obtained by applying the GSVD. One limitation of this method isigh
computational cost of GSVD, especially for large and high-dimensioralgs.

An overview of LDA on undersampled problems can be found in (Krzahkoet al., 1995).

The current paper focuses on linear discriminant analysis, which apipléar decision bound-
ary. Discriminant analysis can also be studied in the non-linear fashiergllenl kernel discrim-
inant analysis, by using the kernel trick (8&opf and Smola, 2002). It is desirable if the data
has weak linear separability. The interested readers can find more detdiésreel discriminant
analysis in (Baudat and Anouar, 2000; Hand, 1982; Lu et al., 20881k8pf and Smola, 2002).

3. Generalization of Discriminant Analysis

Classical discriminant analysis solves an eigen-decomposition problemSyvtsenonsingular. For
undersampled problems§; is singular, since the sample sigenay be smaller than its dimension
m. In this section, we define a new criteribp, where the nonsingularity & is not required.

The new criteriorf is a natural extension of the classical one in Eq. (5), where the inveese o
matrix is replaced by the pseudo-inverse (Golub and Loan, 1996). Whilatarse of a matrix may
not exist, the pseudo-inverse of any matrix is well defined. Moreovegvthe matrix is invertible,
its pseudo-inverse coincides with its inverse.

The new criteriorF; is defined as

F1(G) =trace(($)"S) - (9)

The optimal transformation matri® is computed so that; (G) is maximized. Note that in the
following, the matrixG in F1(G) may be omitted if it is clear from the content.

In the rest of this section, we show how to solve the above maximization proliesnbased
on the simultaneous diagonalization of the three scatter matrices. Details emebgiow.
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GENERALIZED DISCRIMINANT ANALYSIS

3.1 Simultaneous Diagonalization of Scatter Matrices

In this section, we take a closer look at the relationship among three scatteres8ir S, ands,
and show how to diagonalize them simultaneously.
Let H, = U3V be the SVD ofH;, whereH; is defined in Eq. (2)U andV are orthogonal,

= ( %‘ 8 ) 7, € R™is diagonal, and = rank(S). Then

2
S=HH =UuxvTvzTUT =UussTUT =U <Zot 8>UT. (10)

Let U = (U1,U,) be a partition o, such thatJ; € R™! andU; € R™ (™Y Since§ =
S + Sy, we have

32 0
<6 o> = UN(S+SwU

uy Uy
= uT SO(Ul,U2)+ ur SN(UlaUZ)
2 2

U/ SU1 U SU UfSWi U S\,
= T T + T T - (11)
UJSUr UJSU, UJSWi UJ S\

It follows thatU] SU, +UJ SyUz = 0. ThereforeU) SU, = 0 andU] S,Uz = 0, since both are
positive semidefinite. We thus haUQ'SDUZ =0 andUlTSNUZ = 0, since both matrices on the right
hand size of Eg. (11) are positive semidefinite. That is,

T T
UTS.DU:<U1‘;‘°U1 g), UTSNU:<U1(S)"’U1 8). (12)

From Eq. (11) and Eq. (12), we hai@ = U] SU; + U SU;. It follows that
e VLIS AU e yer VANSWU D Ju) (13)

_ DenoteB = Z(lulTHb and letB = PXQT be the SVD ofB, whereP andQ are orthogonal and
> is diagonal. Then _
3 U UL S T = PEPPT = P3P,

where .
T =32 =diagAy, -+, M\t),

AM>>NAg>0=Agp1 = =M,

andg=rank$,).
It follows from Eq. (13) that

li = Zp+ Pz U S P

Hence
Pl U/ S P =1 —5p =3,

is also diagonal.
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Combining all these together, we have

2p O 2w O lk O
szoxz( o 0>sz, szNxz( o 0>EDW, szxz<5 O)EDt, (14)

where .
x—u(ztoP ?) (15)

In summary, the matriX in Eq. (15) simultaneously diagonaliz&s Sy, andS.

3.2 Maximization of the F; Criterion

In this section, we derive the generalized discriminant analysis by maximizirig ttriterion de-
fined in Eg. (9). The main technique applied is the simultaneous diagonalizdoatter matrices
from last section. We show in this section that the solutions to the proposedocrike can be
characterized a6 = X3M, whereX, is the matrix consisting of the firstcolumns ofX, defined in
Eqg. (15),q=rank%,), andM € IR9*9 s an arbitrary nonsingular matrix.

We first present two lemmas. The proof of Lemma 3.1 is straightforward ftamdard linear
algebra and a generalization of Lemma 3.2 can be found in (Edelman et &), 199

Lemma 3.1 For any matrix Ac R™", the following equality holdstATA)* = AT(AF)T.

Lemma 3.2 Let Aec R™™ be symmetric and positive semidefinite and |&iethe eigenvector of A
corresponding to the i-th largest eigenvallie Then, for any Me R™(s < m) with orthonormal
columns, the following inequality holds,

trace(MTAM) < Aq+--- +As,
where the equality holds if M [xq, - - -, X5|Q, for any orthogonal matrix @& IRS*.
The main result of this section is summarized in the following theorem.

Theorem 3.1 Let X be the matrix defined in Eq. (15) ang be the matrix consisting of the first g
columns of X, where & rank(S,). Then G= XyM, for any nonsingular M, maximizes Befined
in Eq. (9).

Proof By the simultaneous diagonalization of the three scatter matrices in Eq. (14pwee

§ = G'SG=G"(XHT(XT$X)X1G=G"DyG,

§ = G'SG=G"X"HT(X"sX)Xxc=G"D;G, (16)
whereG = X1G.
LetG = < gl ) be a partition of5 so thatG; € R/ andG, € R(MU*¢_ |t follows that
2

S =G DpG=G]5,G;, §=G'D;G=GIG;.
Hence

F1 = trace((G] G1) " (G] ZpGy1)) = trace((G1G{ )" =p(G1GY))
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GENERALIZED DISCRIMINANT ANALYSIS

where the second equality follows from Lemma 3.1.

Recall that>, = diagA1,---,At), whereAy > --- > Ag > 0=Ngy1=--- =A. Let Gy =
R( 205 8 > S be the SVD ofG;, whereRandSare orthogonakl s is diagonal, and = rank(Gy).
+ Z5T 0\ + ls 0\ 1
ThenG] =S 8 0 R', andG;GI =R 0 0 R'". It follows that

= 0 Is O
Fo— trace((Gle)TZb(GlGD) —trace(R( 8 0 ) RTZbR< 8 0 > RT>

Is 0 )
= trace<< 0 O)RTZbR< 0 0 >> = trace(Ry ZpRs) < Ap+ -+ +Aq.

whereRy is the matrix consisting of the firgt columns ofR, and the last inequality follows from
Lemma 3.2. By Lemma 3.2 again, the above inequality becomes equaley,:if< VS/ ) for any
orthogonaW € R%*9, & = g, and/ = g. Under this choice oRs,

T

We observe that the maximization if is independent ofs,, and simply set it to zero. Therefore,
the maximum of; is attained when

G_(C)_ Wz,S _
G, 0
Note that the orthogonal matric¥$ andS, and the diagonal matriXy are arbitrary. Hence,

M =WZ,S' is an arbitrary nonsingular matrix. It follows th@t= XG = XgM, for any nonsingular
M, maximizedF;. This completes the proof of the theorem. [ |

Remark 1 Note that it is in general not true that fH) = F;(HM), for any nonsingular M. How-
ever, Theorem 3.1 implies that forH Xy, we have I{H) = F1(HM), for any nonsingular M.

4. Uncorrelated LDA Versus Orthogonal LDA

From last sectionG = X4M, for any nonsingulaM maximizes thé- criterion. A natural question
is: How to choose the bebt? In this section, we consider two specific choiceMofvhich lead to
two distinct algorithms: Uncorrelated LDA and Orthogonal LDA.

4.1 Uncorrelated LDA

The simplest choice oM is the identity matrix, i.e.M = Iq. That is,G = Xq. It follows that
XqTS{Xq = lg, i.e., the columns of the transformati@areS-orthogonal. Recall that two vectoxs
andy areS-orthogonal, ifx" Sy = 0. The solution corresponds to the Uncorrelated LDA, originally
proposed by Jin et al. (Jin et al., 2001a,b). The pseudo-code foAU% Biven inAlgorithm 1.
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Algorithm 1: Uncorrelated LDA

Input:  data matrixA

Output: transformation matrixc

1. Form three matricedy, Hy, andH; as in Eq. (2);
2. Compute reduced SVD éf asH; = U5 V]';
3.B «— 3 WU Hy;

4. Compute SVD oB asB = PxQ'; q «+ rank(B);
5. X « U 5 P;

6.G «— Xq;

ULDA was originally proposed to compute the optimal discriminant vectors th& arthogonal.
Specifically, supposevectorsg, @, --,@ are obtained, then the + 1)-th vectorg 1 of ULDA
is the one that maximizes the Fisher criterion function

¢ S
Q)= 17)
@ (SO
subject to the constraints:
(d‘r—&-ls(ﬂzov i:]-v"'ar'

The algorithm in (Jin et al., 2001a) finds successively as follows: Thgth discriminant
vector@; of ULDA is the eigenvector corresponding to the maximum eigenvalue of lleviag
generalized eigenvalue problem:

where
U1 — |m7
U = Im—SD](D;jSS,*SD]) 'D;SS (i > 1),
Dj = [ .91 (j>1),

andln, is the identity matrix.
A key property of ULDA is that the features in the reduced space arertgiated to each other,
as stated in the following proposition.

Proposition 4.1 Let the transformation matrix for ULDA be & [g1, - -, dq], for some &> 0. The
original feature vector A is transformed intoZ G' A, where the i-th feature component of Z is
Z = g{ A. Assume thatgnd g are S-orthogonal to each other, i.e./&gj =0, fori # j. Then
the correlation between;jand Z is O, for i # j. That s, Z and Z are uncorrelated to each other.

Proof The covariance betweefj andZ; can be computed as
Cov(Z,Z)) =E(Z —EZ)(Z; -EZ) =g/ {E(A-EA(A-EA)T}g; =g/ Sg;.  (18)

Hence, their correlation coefficient is

g Sgj

\/97S011/9] Sg; '
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Sinceg! Sgj = 0, fori # j, we have Ca(Z, Z;) = 0, fori # j. This completes the proof of the
proposition. [ |

In (Ye et al., 2004a), an efficient algorithm for ULDA was proposedselaon the following
optimization problem:

G = argmax{trad(§ + ) ')} (20)

Note thatS + ul, is always nonsingular fan > 0, sinceS is positive semidefinite. One key
resultin (Ye et al., 2004a) shows that the optimal transforma@isolving the optimization problem
in Eqg. (20) is independent qf

Interestingly, it can be shown th@& = X solves the optimization problem in Eq. (20) as stated
in the following proposition. Detailed proof follows the one in (Ye et al., 2Q0@4wl is thus omitted.

Proposition 4.2 Let G= Xg, where X is the matrix consisting of the first g columns of X, and X is
defined in Eq. (15). Then G solves the optimization problem in Eg. (20).

4.1.1 RELATIONSHIP BETWEENULDA AND THE EIGEN-DECOMPOSITION OFS' S,

In this section, we study the relationship between ULDA and the eigen-dexsitiop of §'S,.
More specifically, we show that the discriminant vectors of ULDA are eigetors ofS"S, cor-
responding to nonzero eigenvalues. Recall that classical LDA comthéesptimal discriminant
vectors by solving an eigenvalue problem §nS,, assumings is nonsingular (See Section 2).
This equivalence result shows that ULDA is a natural extension oficlldDA by replacing in-
verse with pseudo-inverse, when dealing with sing&lar

From Eq. (14), we hav&TSX = D, where

_ P o (k0
X_U< 0 0),anth_<o 0>.

Note thatP is orthogonal. It follows that

T 2
axroct o (5 9)(4 8)(7F SJuru (¥ o)

Hence,
It is easy to verify that

It follows that
§ =XDXT, (21)
and
§S = (XDXT) (X 'DpX 1) = XDyDpX ™.

Therefore, the columns o, form the eigenvectors &"S, corresponding to nonzero eigenvalues,
sinceD;Dy, is diagonal withg nonzero diagonal entries.
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Algorithm 2: Orthogonal LDA

Input:  data matrixA

Output: transformation matrixz

1. Compute the matriXq as in ULDA (Steps 1-5 oflgorithm 1);
2. Compute QR decomposition ¥ asXq = OR;

3.6—0Q;

4.2 Orthogonal LDA

LDA with orthogonal discriminant vectors is a natural alternative to ULD&L X, = ORbe the QR
decomposition 0Ky, then we can simply choo$é = R 1 so that the columns @ = XgM = Qare
orthogonal to each other. The pseudo-code for OLDA is givelgorithm 2.

Note that in the literature of LDA, Foley-Sammon LDA (FSLDA) is also knownife orthogo-
nal discriminant vectors. FSLDA was first proposed by Foley and Sanfardwo-class problems
(Foley and Sammon, 1975). It was then extended to the multi-class problemsdhene and
Leclercg (Duchene and Leclerqg, 1988). Specifically, suppogtorsgy, ¢, - - -, @ are obtained,
then the(r 4 1)-th vector@ 1 of FSLDA is the one that maximizes the Fisher criterion function
f () defined in Eq. (17), subject to the constraimgs;;@ =0,i =1,---,r

The algorithm in (Duchene and Leclerq, 1988) fimglsuccessively as follows: Theth dis-
criminant vectorp; of FSLDA is the eigenvector corresponding to the maximum eigenvalue of the
following matrix:

(In-S'D]S D)) Si's:

where
Dj=[¢, -, 9-1] (j > 1), andSj = D;S,'D].

The above FSLDA algorithm may be expensive for large and high-dimegisitata sets. More
details on the computation of FSLDA can be found in (Duchene and Led883).

It is worthwhile to point out that both ULDA and FSLDA use the same Fishigergon func-
tion, and the main difference is that the optimal discriminant vectors gendrated DA are S-
orthogonal to each other, while the optimal discriminant vectors of FSL[RAoghogonal to each
other.

The common point of the proposed OLDA algorithm and the FSLDA algorithsariteed above
is that the transformation matrix has orthogonal columns. However, thesalfpdathms were
derived from distinct perspectives.

4.3 Discussions

As discussed in Section 2, classical LDA is equivalent to maximum likelihocskifieation as-
suming normal distribution for each class with the common covariance matrixsiféiaton in
classical LDA based on the maximum likelihood estimation is based on the Mabaatistance
as follows: a test poirt is classified as clasisif

j = argminth—cV)Tg,}(h—cW), (22)
]
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which is equivalent to _ _
j =argminth—c)Tg(h—cl)). (23)
J

We show in the following that the classification in ULDA uses the following distanc

(h—c)TgH(h—clh)). (24)
The main result is summarized in the following theorem.

Theorem 4.1 Let G be the optimal transformation matrix for ULDA, and let h be any testtpoin
Then

argrrj]in{(h—c(j))TS“(h—c(j))}_argmln{HGT(h cy)| }

Proof LetX; be thei-th column ofX. From Eq. (21), we have

t t
§ =XDXT = _prqT =GG'+ 5 XX,

i=q+1

whereG consists of the firsfj columns ofX, andg = rank'$,).
Recall from Section 3.1 thaX diagonalizesS, and XTSX =0, fori =q+1,---,t. Hence
HpX; = 0, or (c)TX = cX, forall j = 1,--- k. It follows that

(h—chTg (h—cV) = (h—cI)TGG (h—cl))+ i (h—cNTXXT (h—cl))y

i=g+1

TP S (h- TN (h—o). (25

i=0+1

The second term on the right hand side of Eq. (25) is independentssfj¢claence
arg min{(h —cHTsH(h— c(”)} = arg m|n{||GT(h cy)| }
i

This completes the proof of the theorem.
|

Theorem 4.1 shows that the classification rule in ULDA is a variant of thaueed in classical
LDA. ULDA can be considered as an extension of classical LDA ford@igscatter matrices. The
result does not extend to OLDA. However, with whitened total scatter madkrat,is if § is an
identity matrix, OLDA is equivalent to ULDA.

Geometrically, both ULDA and OLDA project the data onto the subspacenggidny the cen-
troids. ULDA removes the correlation among the features in the transforpaae swhich is theo-
retically sound but may be sensitive to the noise in the data. On the other®&bDd, applies or-
thogonal transformatlo@ by factoring out thé&k matrix through the QR decompositionXf = OR.

The removal ofR in OLDA may contribute to the noise removal. Our experiments in next section
show that OLDA often leads to better performance than ULDA in classification
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Data Set| Size ) | Dimension (n) | # of classesk)

tr4l 210 7454 7
re0 320 2887 4
PIX 300 10000 30
AR 1638 8888 126
GCM 198 16063 14
ALL 248 12558 6

Table 2: Statistics for our test data sets

5. Experiments

We divide the experiments into three parts. Section 5.1 describes our tagalsa. Section 5.2
evaluates ULDA and OLDA in terms of classification accuracy. We study ffeeteof the matrix
M in Section 5.3. Recall tha@ = X;M, for any nonsingulaM maximizes thé-; criterion.

Both ULDA and OLDA were implemented in MATLAB and the source codes magdoessed
athttp://www.cs.umn.edwfieping/UOLDA

5.1 Data Sets

We have three types of data for the evaluation: text documents, incltdibgandre0; face im-
ages, includindPIX andAR; and gene expression data, includ@¢M andALL . The important
statistics of these data sets are summarized as follows (see also Table 2):

e tr4l is a text document data set, derived from the TREC-5, TREC-6, and TRé&llections
(TREC, 1999). Itincludes 210 documents belonging to 7 differentetaskhe dimension of
this data set is 7454.

e re0 is another text document data set, derived fli@euters-21578ext categorization test
collection Distribution 1.0 (Lewis, 1999). It includes 320 documents belangird different
classes. The dimension of this data set is 2887.

e PIX!is aface image data set, which contains 300 face images of 30 persorsz&béPIX
images is 51X 512. We subsample the images down to a size of<L000= 10000.

e AR?(Martinez and Benavente, 1998), is a large face image data set. Themefarach face
may contain pretty large areas of occlusion, due to the presence of ssegland scarves.
We use a subset of AR. This subset contains 1638 face images of Ividuads. Its image
size is 768x 576. We first crop the image from row 100 to 500, and column 200 to 5%D, an
then subsample the cropped images down to a size ok BR= 8888.

e GCM is a gene expression data set consisting of 198 human tumor samples ggaartigen
different cancer types. The data set was first studied in (Ramaswadrgt ah, 2001; Yeang
and et al., 2001). The breakdown of the sample classes is as followsed&samples, 14

1. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/
2. http://rvll.ecn.purdue.edualeix/aleixface DB.html

496



GENERALIZED DISCRIMINANT ANALYSIS

prostatesamples, 12ung samples, 12olorectalsamples, 2ymphomasamples, 1bladder
samples, 10nelanomasamples, 1Qiterussamples, 30eukemiasamples, 1tenal samples,
11 pancreassamples, 1®varysamples, 1Iesotheliomaamples, and 2CGNSsamples.

e ALL 3is another gene expression data set consisting of six diagnostic giegisgnd et al.,
2002). The breakdown of the samples is: 15 sampleBfoR 27 samples foE2A 64
samples foHyperdip 20 samples foMLL, 43 samples foff, and 79 samples forEL

5.2 Comparison on Classification Accuracy

In this experiment, we evaluate ULDA and OLDA in terms of classification ayuf-or theGCM
andALL gene expression data sets, the test sets were provided. In the abkengmal test sets,
such as the two document data sets and the two face image data sets, wa perfaomparative
study by repeated random splitting into training and test sets exactly as inifl@tdl., 2002). The
data were randomly partitioned into a training set consisting of two-thirds afhiode set and a test
set consisting of one-third of the whole set. To reduce the variability, thttirspwas repeated 50
times and the resulting accuracies were averaged. Note that duringueaatimension reduction
is applied to the training set only. For RLDA, the results depend on the cbbibe parameten.
We choose the begtthrough cross-validation. The range fois between 0.001 and 10.

The results of the three algorithms on the six data sets are presented in Table 3nain
observation from Table 3 is that OLDA is competitive with ULDA and RLDA in aX data sets.
We also observe that in most cases, RLDA outperforms ULDA and is coneetitih OLDA.

It is interesting to note that OLDA achieves higher accuracies than ULDAh® two face
image data sets and two gene expression data sets, while it achievesiascal@se to those of
ULDA for the two text document data sets. For tBEM gene expression data set, OLDA achieved
classification accuracy 3% higher than that of OLDA. This may be relateckteftbct of the noise
removal inherent in OLDA as discussed in Section 4.3.

5.3 Effect of the Matrix M

In this experiment, we study the effect of the matixon classification using theCM andALL

data sets. Recall that the solution to the proposed criteriGn#sX;M, for any nonsingulaiM. Two
specific choices oM were studied, which correspond to ULDA and OLDA. In this experiment,
we randomly generated 100 matrices kdrand computed the accuracies using the corresponding
transformation matrices. Figure 1 shows the histogram of the resultingeaéesionGCM, where

the x-axis represents the range of resulting accuracies (divided into smalldatge and the-axis
represents the number (count) for each interval. The main observat@ns a

e None of the accuracies is higher than those of ULDA (73.91%) and OLiB/00%). ULDA
and OLDA are probably two of the best ones among the family of solutions tprtposed
criterion.

e In Figure 1, most of the accuracies are around 55%, which is much loaethiose of ULDA
and OLDA. Thus, the choice &l does make a big difference. Among the family of solutions
to the proposed criterion, most of them perform quite poorly in comparis@LidA and
OLDA.

3. http://www.stjuderesearch.org/data/ALL1/

497



YE

Data Set Accuracy
ULDA OLDA RLDA

tr4l 96.69+ 1.90 96.34+ 2.10 96.23+ 2.17
re0 86.26+ 2.46 86.13+ 2.58 87.34+ 2.37
PIX 96.16+ 2.48 98.00+ 1.66 96.31+ 2.20
AR 90.94+ 0.96 92.774+1.04 91.11+1.02
GCM 73.91 76.09 78.26
ALL 98.82 100.0 98.82

Table 3: Comparison of classification accuracy and standard deviattbneef algorithms: ULDA
(Uncorrelated LDA), OLDA (Orthogonal LDA), and RLDA (Regulard&DA), on the
six data sets. The mean and standard deviation of accuracies from fifarea reported
for tr41, re0, PIX, andAR. Note that for the two gene expression data s&€M and
ALL , we use the original test sets. Thus the standard deviation for these taveeada are

not reported.

25

Count

Figure 1: Effect of the matrid using theGCM data set. The corresponding accuracies of ULDA
and OLDA are 73.91% and 76.09%, respectively.

The result oPALL is shown in Figure 2. We can observe the same trend &CNI, that is,

0.55 0.6

0.65

Accuracy

0.7

most of the accuracies are much lower than those of ULDA and OLDA.

6. Conclusions and Future Directions

In this paper, a new optimization criterion for discriminant analysis is predeftee new criterion
extends the optimization criteria of the classical LDA when the scatter matrieesiragular. It
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Count

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Accuracy

Figure 2: Effect of the matri# using theALL data set. The corresponding accuracies of ULDA
and OLDA are 98.82% and 100.0%, respectively.

is applicable regardless of the relative sizes of the data dimension and ssirgplevercoming a
limitation of the classical LDA. A detailed mathematical derivation for the propagsimization
problem is presented. It is based on the simultaneous diagonalization ofd¢bestiatter matrices.

The solutions to the proposed criterion form a family of algorithms for géimehL DA, which
can be characterized in a closed form. Among the family of solutions, we sttadgpecific ones,
namely ULDA and OLDA, where ULDA was previously proposed for feataxtraction and di-
mension reduction and OLDA is a novel algorithm. ULDA has the propertyttieateatures in the
reduced space are uncorrelated, while OLDA has the property thastireiinant vectors obtained
are orthogonal to each other. Experiment on a variety of real-worldstdsashow that OLDA is
competitive with ULDA and RLDA in terms of classification accuracy.

In this paper, we focus on two specific algorithms, ULDA and OLDA, fongralized LDA.
A promising direction is to find algorithms with sparse transformation matricestsiBpaas re-
cently received much attention for extending Principal Component Analggspremont et al.,
2004; Jolliffe and Uddin, 2003). One of our future work is to incorpethe sparsity criterion in
discriminant analysis.
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Appendix A.
The pseudo-inverse of a matrix is defined as follows.

Definition 2 The pseudo-inverse of a matrix A, denoted asrafers to the unique matrix satisfying
the following four conditions:

(DATAAT = AT, (2 AATA=A, (3) (AAH)T =AAT, (4)(ATAT =ATA

The pseudo-inverse is commonly computed by the SVD as follows (Golub aad, 11996).

LetA=U ( 2 0

0 0 )VT be the SVD ofA, whereU andV are orthogonal andl is diagonal with

=
positive diagonal entries. TheA} =V ( ZO g > ur.
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