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Abstract

Traditional biosurveillance algorithms detect diseasbi@maks by looking for peaks in a univariate
time series of health-care data. Current health-care Blarnvee data, however, are no longer sim-
ply univariate data streams. Instead, a wealth of spaéiaipbral, demographic and symptomatic
information is available. We present an early disease eatbdetection algorithm called What’s
Strange About Recent Events (WSARE), which uses a multiegpproach to improve its time-
liness of detection. WSARE employs a rule-based technicatectimpares recent health-care data
against data from a baseline distribution and finds subgrotithe recent data whose proportions
have changed the most from the baseline data. In additi@ithheare data also pose difficulties
for surveillance algorithms because of inherent tempoealds such as seasonal effects and day of
week variations. WSARE approaches this problem using a Batyestwork to produce a baseline
distribution that accounts for these temporal trends. Tépershm itself incorporates a wide range
of ideas, including association rules, Bayesian netwdrippthesis testing and permutation tests
to produce a detection algorithm that is careful to evaltla¢esignificance of the alarms that it
raises.

Keywords: anomaly detection, syndromic surveillance, biosurvedis Bayesian networks, ap-
plications

1. Introduction

Detection systems inspect routinely collected data for anomalies and raitertampan discovery
of any significant deviations from the norm. For example, Fawcett anebBr¢1997) detect cellu-
lar phone fraud by monitoring changes to a cell phone user’s typical gddghavior. In intrusion
detection systems, anomalies in system events might indicate a possible bdreeciridy (Warren-
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der et al., 1999). In a similar manner, we would like to tackle the problem bf dsease outbreak
detection, in which the disease outbreak can be due to either naturas cassbioterrorist attack.

One of the challenges for early disease outbreak detection is findindyraeailable data that
contains a useful signal (Tsui et al., 2001). Data sources that eedafmitive diagnosis of the
disease, such as lab reports, can often be obtained several dayskafter the samples are sub-
mitted. By that point, the outbreak may have already escalated into a largeepgenic. Instead
of waiting for definite diagnostic data, we can monitor pre-diagnosis dath, &sthe symptoms
exhibited by patients at an Emergency Department (ED). In doing so, Wwehaseasing the false
positive rate, such as mistakenly attributing an increase in patients exhibisipigatery problems
to an anthrax attack rather than to influenza. Nevertheless, we havendigiagain in timeliness
of detection. This type of surveillance of pre-diagnosis data is commordyreef to asyndromic
surveillanceMostashari and Hartman, 2003; Sosin, 2003).

In our syndromic surveillance infrastructure, we have real-time accessl&tabase of emer-
gency department (ED) cases from several hospitals in a city. Eaohdréct this multivariate
database contains information about the individual who is admitted to the BB.infbrmation
includes fields such as age, gender, symptoms exhibited, home zip cattezipraode, and time
of arrival at the ED. In accordance with the HIPAA Privacy Rule (4RCParts 160 through 164,
2003), personal identifying information, such as patient names, adgreand identification num-
bers are removed from the data set used in this research. When a spidamic sweeps through
a region, there will obviously be extreme perturbations in the number of EB.vigvhile these
dramatic upswings are easily noticed during the late stages of an epidemicatlemge is to detect
the outbreak during its early stages and mitigate its effects. We would also liletdot dutbreaks
that are more subtle than a large scale epidemic as early as possible.

Although we have posed our problem in an anomaly detection framewodijdrel anomaly
detection algorithms are inappropriate for this domain. In the traditional appr@a probabilistic
model of the baseline data is built using techniques such as neural ndte{B19€94) or a mixture
of naive Bayes submodels (Hamerly and Elkan, 2001). Anomalies aréfidéras individual data
points with a rare attribute or rare combination of attributes. If we apply traditimmomaly detec-
tion to our ED data, we would find, for example, a patient that is over a ledgnglzars old living
in a sparsely populated region of the city. These isolated outliers in attribate spe not at all
indicative of a disease outbreak. Instead of finding such unusualddatases, we are interested in
finding anomalous patternavhich are specific groups whose profile is anomalous relative to their
typical profile. Thus, in our example of using ED records, if there is andt& upswing in the
number of children from a particular neighborhood appearing in the EDdAattnhea, then an early
detection system should raise an alarm.

Another common approach to early outbreak detection is to convert the mialte/& D database
into a univariate time series by aggregating daily counts of a certain attributenapination of
attributes. For instance, a simple detector would monitor the daily number of pempdaring in
the ED. Many different algorithms can then be used to monitor this univanmteiiance data,
including methods from Statistical Quality Control (Montgomery, 2001), timesenodels (Box
and Jenkins, 1976), and regression techniques (Serfling, 1968.té&chnique works well if we
know beforehand which disease to monitor, since we can improve the timetihessection by
monitoring specific attributes of the disease. For example, if we are vigilaihstgan anthrax
attack, we can concentrate our efforts on ED cases involving respifatoilems. In our situation,
we need to perform non-specific disease monitoring because we doowikhat disease to expect,
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particularly in the case of a bioterrorist attack. Instead of monitoring healttdata for pre-defined
patterns, we detect any significant anomalous patterns in the multivariatataD Eurthermore,
by taking a multivariate approach that inspects all available attributes in thepdatularly the
temporal, spatial, demographic, and symptomatic attributes, we will show thhadew@approach can
improve on the detection time of a univariate detection algorithm if the outbreaklinitianifests
itself as a localized cluster in attribute space.

Our approach to early disease outbreak detection uses a rule-basudlampattern detector
called What's Strange About Recent Events (WSARE) (Wong et al.,,ZT0mB). WSARE operates
on discrete, multidimensional data sets with a temporal component. This algodthpaces recent
data against a baseline distribution with the aim of finding rules that summariaécsigt patterns
of ano_malies. Each rule is made up of components of the P(;rm\/i‘, whereX; is theith attribute
andV/! is the jth value of that attribute. Multiple components are joined together by a logical
AND. For example, a two component rule would®ender= Male AND Home Location= NW.
These rules should not be interpreted as rules from a logic-basednsystehich the rules have
an antecedent and a consequent. Rather, these rules can be tHoagl8@L SELECT queries
because they identify a subset of the data having records with attributesateh the components
of the rule. WSARE finds these subsets whose proportions have chtrgyenost between recent
data and the baseline.

We will present versions 2.0 and 3.0 of the WSARE algorithm. We will also griadkcribe
WSARE 2.5 in order to illustrate the strengths of WSARE 3.0. These thredthigsronly differ in
how they create the baseline distribution; all other steps in the WSARE frarkegroain identical.
WSARE 2.0 and 2.5 use raw historical data from selected days as the basblla WSARE 3.0
models the baseline distribution using a Bayesian network.

2. What's Strange About Recent Events

Novenber 2003
Su Mo Tu W Th Fr Sa

2 3|/4|5 6 7 8
9 10 |11 12 13 14 15
16 17 |18 |19 20 21 22
23 24125 J26 27 28 29
30

Decenber 2003
Su M Tu W Th Fr Sa

1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 [30 |31

Figure 1: The baseline for WSARE 2.0 if the current day is December(BIB 2
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The basic question asked by all detection systems is whether anythingeshasgccurred in
recent events. This question requires defining what it means to be sewtmwhat it means to be
strange. Our algorithm considers all patient records falling on thermiLoiesy under evaluation to be
recent events. Note that this definition of recent is not restrictive —gunoach is fully general and
recent can be defined to include all events within some other time period susieathe last six
hours. In order to define an anomaly, we need to establish the concemhething being normal.
In WSARE version 2.0, baseline behavior is assumed to be captured byistaical data from
the same day of the week in order to avoid environmental effects suched@meversus weekday
differences in the number of ED cases. This baseline period must bercfosn a time period
similar to the current day. This can be achieved by being close enoughdartiest day to capture
any seasonal or recent trends. On the other hand, the baselinempegbdiso be sufficiently distant
from the current day. This distance is required in case an outbregehgn the current day but
it remains undetected. If the baseline period is too close to the currenth#abaseline period
will quickly incorporate the outbreak cases as time progresses. In toeptes of WSARE 2.0
below, we assume that baseline behavior is captured by records thattheesetbaselinedays
Typically, baselinedayscontains the days that are 35, 42, 49, and 56 days prior to the day under
consideration. We would like to emphasize that this baseline period is onlyassaad example; it
can be easily modified to another time period without major changes to our atgotiitSection 3
we will illustrate how version 3.0 of WSARE automatically generates the baseding a Bayesian
network.

We will refer to the events that fit a certain rule for the current da€a&n. Similarly, the
number of cases matching the same rule from the baseline period will be Calleghe As an
example, suppose the current day is Tuesday December 30, 200B®a3éline used for WSARE
2.0 will then be November 4, 11, 18 and 25 of 2003 as seen in Figure keTdaes are all from
Tuesdays in order to avoid day of week variations.

2.1 Overview of WSARE

Parameter Name Description Default value
maxrule_.components Maximum number of compot 2
nents to a rule
numrandomizations Number of iterations to the ran-1000
domization test
OEDR The significance level of the 0.05

False Discovery Rate
baselinedays (WSARE 2.0| Days to be used for the baseline 35, 42, 49, and 56 days prior

only) to current date
environmentahttributes Attributes that account for tem- Not applicable
(WSARE 2.5 and 3.0) poral trends
numbaselinesamples The number of sampled recordsl0000
(WSARE 3.0 only) from the baseline Bayesian net-

work

Table 1: The main parameters in WSARE
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WSARE 3.0

Learn Bayesian network
from all historical data

WSARE 2.5

WSARE 2.0

Create baseline using
all historical data that Y
match environmental Sample baseline from

attributes learned Bayesian network

Create baseline from
selected days from
historical data

Y

Find the best scoring rule
using baseline and recent
datasets

Y

Calculate p—value for best
scoring rule using randomization
test

Running WSARE for one day Running WSARE for a history of days

Report p—value and rule

Use FDR to find significant days

Figure 2: A schematic overview of the steps involved in the WSARE algorithms

We will begin this section with an overview of the general WSARE algorithm ¥odid by
a more detailed example. Figure 2 gives a pictorial overview of the three RES&gorithms
discussed in this paper. Note that the three algorithms differ only in how tieeyecthe baseline
while all of the other steps remain identical. Table 1 describes the main parametat by the
WSARE algorithms.

WSARE first finds the best scoring rule over events occurring on tireruday using a greedy
search. The limit to the number of components in arule is set to the parameetenle_components
which is typically set to be 2 for computational reasons although in Sectionedescribe a greedy
procedure fon component rules. The score of a rule is determined by comparing the evethis
current day against events in the past. More specifically, we are corgghthe ratio between
certain events on the current day and the total number of events on teatcday differ dramati-
cally between the recent period and the past. Following the score calcyuldgobest rule for that
day has its p-value estimated by a randomization test. The p-value for a ruk likdlhood of
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finding a rule with as good a score under the hypothesis that the date anthénetiributes are
independent. The randomization-based p-value takes into accountabiecétthe multiple testing
that occurs during the rule search. The number of iterations of the maindtion test is determined
by the parametenumrandomizations If we are running the algorithm on a day-by-day basis we
would end at this step. However, if we are looking at a history of days andant to control for
some level of false discoveries over this group of days, we would neeadtiitional step of using
the False Discovery Rate (FDR) method (Benjamini and Hochberg, 1998téomine which of
the p-values are significant. The days with significant p-values araeatias the anomalies.

2.2 One Component Rules

In order to illustrate this algorithm, suppose we have a large database 6fAQO@ED records over
a two-year span. This database contains roughly 1370 records &dpyose we treat all records
within the last 24 hours as “recent” events. In addition, we can build dibas#ata set out of all
cases from exactly 35, 42, 49, and 56 days prior to the current daythéwhh combine the recent
and baseline data to form a record subset cdliBd which will have approximately 5000 records.
The algorithm proceeds as follows. For each daythe surveillance period, retrieve the records
belonging toDB;. We first consider all possible one-component rules. For everylpesdtribute-
value combination, obtain the cour@gcen: and Cpaseline from the data sebB;. As an example,
suppose the attribute under consideratiofige Decilefor the ED case. There are 9 possible values
for Age Decile ranging from 0O to 8. We start with the rufegge Decile= 3 and count the number of
cases for the current dayhat haveAge Decile= 3 and those that havkge Decile# 3. The cases
from five to eight weeks ago are subsequently examined to obtain the ¢outite cases matching
the rule and those not matching the rule. The four values form a two-bgdwiingency table such
as the one shown in Table 2.

2.3 Scoring Each One Component Rule

The next step is to evaluate the “score” of the rule using a hypothesis tesiah the null hypothesis
is the independence of the row and column attributes of the two-by-two contingable. In effect,
the hypothesis test measures how different the distributioBfggn:is compared to that @paseline
This test will generate a p-value that determines the significance of the desfoand by the rule.
We will refer to this p-value as thecorein order to distinguish this p-value from the p-value that
is obtained later on from the randomization test. We use the Chi Squarenastidpendence of
variables whenever the counts in the contingency table do not violate thawafithe Chi Square
test. However, since we are searching for anomalies, the counts in ttiegeorty table frequently
involve small numbers. In this case, we use Fisher’s exact test (G660) 2o find the score for
each rule since the Chi Square test is an approximation to Fisher’s extagtien counts are large.
Running Fisher’'s exact test on Table 2 yields a score of 0.025939hvirdicates that the count
Crecentfor cases matching the rukbome Location= NW are very different from the cou@aseline

In biosurveillance, we are usually only interested in an increase in the mwhbertain records.
As a result, we commonly use a one-sided Fisher’s exact test.
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Crecent Cbaseline

Home Location= NW 6 496
Home Locationz NW 40 9504

Table 2: A Sample 2x2 Contingency Table

2.4 Two Component Rules

At this point, the best one component rule for a particular day has bemrl.foNe will refer to
the best one component rule for dagsBR!. The algorithm then attempts to find the best two
component rule for the day by adding on one extra componeBRfothrough a greedy search.
This extra component is determined by supplemenBRY with all possible attribute-value pairs,
except for the one already presenBR!, and selecting the resulting two component rule with the
best score. Scoring is performed in the exact same manner as befoept the countErecent
andCyaseline@re calculated by counting the records that match the two component rutebeBh
two-component rule for dayis subsequently found and we will refer to it BB?

SupposeéR! has as its first component the attribute-value Gai= V;. Furthermore, IeBR's
components b&€; =V; andC; = V,. Adding the componer®, =V, to BRl may not result in a
better scoring rule. During our search for the best scoring two conmpoule, we only consider two
component rules in which adding either component has a significant.eBetermining if either
component has a significant effect can be done through two hypotketss In the first hypothesis
test, we use Fisher's exact test to determine the score of a@dirg/, to the one component rule
C; = V1. Similarly, in the second hypothesis test, we use Fisher’s exact test totbeoaddition of
the component; = V1 to C; = V.. The 2-by-2 contingency tables used by the two hypothesis tests
are shown in Table 3.

Records from Today witle; =V, andCy =V, Records from Other witle; =V andC; =V,
Records from Today witl; # V; andCy, =V, Records from Other witl; # V; andC, =V,
Records from Today witle; =V, andCy =V, Records from Other witll; = V1 andCy = V>,
Records from Today witle; =V, andCp # Vs Records from Other witle; =V andC; # V,

Table 3: 2x2 Contingency Tables for a Two Component Rule

Once we have the scores for both tables, we need to determine if they @ifeeaig or not. A
score is considered significant if the result of a hypothesis test is smymifid thea = 0.05 level.
If the scores for the two tables are both significant, then the presena#lotbmponents has an
effect. As a result, the best rule overall for ddg BR?. On the other hand, if any one of the scores
is not significant, then the best rule overall for dag BR'.

2.5 nComponent Rules

Let BR“l be the besk— 1 component rule found for dayIn the general case of finding the bast
component rule, the procedure is analogous to that of the previousrBe(BﬁcenBI#(‘l, we produce
BF\‘f by greedily adding on the best component, which is found by evaluatingsdilgle attribute-
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value pairs as the next component, excluding those already presentfonents OBR<‘1. Starting
with BR, we repeat this procedure until we red®R".
In order to determine if the addition of a component is significant, we shoulceryitest all

13]
possible combinations of thecomponents. In general, we nee({l’i‘) such tests. Having this
i=1

many tests is clearly computationally intensiverdiscreases. As an approximation, we resort to
testing if adding thenth component is significant with respect to the 1 other components. The
two significance tests are as shown in Table 4, wligre V,, refers to the last component added and
C1=W4,...,Cq1 = V1 refers to the conjunction of the previons- 1 components. As before, if
both of the Fisher’s exact tests return a score lessdhai®.05, then we consider the addition of the
rule component significant. Due to this step, the probability of having a rulemaatty components

is low because for each component added, it needs to be significapt3a%h level for both of the
Fisher’s exact tests.

Records from Today wit; =V, ...,Cy-1 = Vh—1 andC, = | Records from Other witl; =V, ..., Ch1=Vh_1 andC, =

Vh Vh
Records from Today witke; = Vi,...,Cq-1 = Vh—1 andC, # | Records from Other witle; = V4, ...,Ch—1 = V1 andC, #
Vi Vh

Records from Today wit; =V, ...,Cy-1 = Vh—1 andC, = | Records from Other witl; = Vs, ...,Ch—1 = Vh—1 andC, =

Vh Vi
Records from Today with~(C; = Vi,...,Ch_1 = Vh_1) and | Records from Other with~(Cy = V4,...,Ch-1 = Vh—1) and
Ch=Wn Ch=Wn

Table 4: 2x2 Contingency Tables for an N Component Rule

2.6 Finding the p-value for a Rule

The algorithm above for determining scores is prone to overfitting due to mutiyplethesis test-
ing. Even if data were generated randomly, most single rules would hadgeifiant p-values but
the best rule would be significant if we had searched over 1000 possiete In order to illustrate
this point, suppose we follow the standard practice of rejecting the nullthgpis when the p-value

is < a, wherea = 0.05. In the case of a single hypothesis test, the probability of a false positive
under the null hypothesis would e which equals 0.05. On the other hand, if we perform 1000
hypothesis tests, one for each possible rule under consideration, ehprotiability of a false posi-
tive could be as bad as-1(1—0.05)1°%~ 1, which is much greater than 0.05 (Miller et al., 2001).
Thus, if our algorithm returns a significant p-value, we cannot adtaptace value without adding
an adjustment for the multiple hypothesis tests we performed. This problebeaadressed using

a Bonferroni correction (Bonferroni, 1936) but this approach leidne unnecessarily conservative.
Instead, we use a randomization test. Under the null hypothesis of thismézation test, the date
and the other ED case attributes are assumed to be independent. Catigetipgecase attributes in
the data seDB; remain the same for each record but the date field is shuffled betweedséamm

the current day and records from five to eight weeks ago. The full adéftbr the randomization
test is shown below.

LetUCR = Uncompensated p-value i.e. the score as defined above.
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Forj=1to 1000
Let DBi(j) = newly randomized data set
Let BR(j) = Bestrule orDBi(j)
LetUCPi(j) = Uncompensated p-value BR(j) on DBim

Let the compensated p-valueBR beCPV i.e.

# of Randomized Tests in whi¢hCP'” < UCR
# of Randomized Tests

CP\V =

CPV is an estimate of the chance that we would have seen an uncompensated pasvgood
asUCR if in fact there was no relationship between date and case attributes. Nboteetld® not
use the uncompensated p-valll€R after the randomization test. Instead, the compensated p-value
CPV is used to decide if an alarm should be raised.

The bottleneck in the entire WSARE procedure is the randomization test. If imptethe
naively, it can be extremely computationally intense. In order to illustrate its lexity suppose
there areM attributes and each attribute can takekopossible values. In addition, let there K¢
records for today antlls records for the baseline period. Note that typically, is 4 to 20 times
smaller tharNg. At iteration j of the randomization test, we need to search for the best scoring rule

overDBi(”. Assuming we limit the number of components in a rule to be two, searching for the
best rule using a greedy search requires scdfikb+ K(M — 1) rules. Scoring a rule requires us

to obtain the entries for the two by two contingency table by counting lye¥ Ng records. Thus,
each iteration of the randomization test has a complexitK®dl + K(M — 1)) « (Nt + Ng). With Q
iterations, the overall complexity of the randomization teS(QKM(Nt + Ng)).

One of the key optimizations to speeding up the randomization test is the teclohigjaeing”
(Maron and Moore, 1997). BR is highly significant, we run the full 1000 iterations but we stop
early if we can show with very high confidence ti@®\ is going to be greater than 0.1. As an
example, suppose we have gone throygterations and leCPV! be the value ofCP\ on the
current iterationj (CPV' is calculated as the number of times so far that the best scoring rule on the
randomized data set has a lower p-value than the best scoring rule evaigimal unrandomized
data set). Using a normality assumption on the distributioB®¥, we can estimate the standard
deviationocpy and form a 95% confidence interval on the true valu€@¥. This is achieved using

the intervaICP\/ij + ﬁfw‘. If the lower half of this interval, namengP\/,j — %fw, is greater
than, say 0.1, we are 95% sure that this score will be insignificant at thev@l1 On a typical data
set where an outbreak is unlikely, the majority of days will result in insigmifigavalues. As a

result, we expect the racing optimization to allow us to stop early on many days.

2.7 Using FDR to Determine Which p-values are Significant

This algorithm can be used on a day-to-day basis or it can operate tnstosy of several days

to report all significantly anomalous patterns. When using our algorithm dey&o-day basis,
the compensated p-val@P\ obtained for the current day through the randomization tests can
be interpreted at face value. However, when analyzing historical detajeed to characterize
the false discovery rate over the group of days in the history, whichiresgqoomparing th€PV
values for each day. Comparison of multi@®\/ values in the historical window results in a
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second overfitting opportunity analogous to that caused by performing teuftypothesis tests
to determine the best rule for a particular day. As an illustration, suppodeake500 days of
randomly generated data. Then, approximately 5 days would h@®/favalue less than 0.01 and
these days would naively be interpreted as being significant. Two agmsaan be used to correct
this problem. The Bonferroni method (Bonferroni, 1936) aims to redue@itbbability of making
one or more false positives to be no greater thafowever, this tight control over the number of
false positives causes many real discoveries to be missed. The otheataheis Benjamini and
Hochberg's False Discovery Rate method, (Benjamini and Hochbe®d) 1@hich we will refer to
as BH-FDR. BH-FDR guarantees that the false discovery rate, whick exbected fraction of the
number of false positives over the number of tests in which the null hypotisesiected, will be no
greater thamgpr. The FDR method is more desirable as it has a higher power than the Bomferr
correction while keeping a reasonable control over the false discoagry We incorporate the
BH-FDR method into our rule-learning algorithm by first providingaipr value and then using
BH-FDR to find the cutoff threshold for determining which p-values areifiggmt.

3. WSARE 3.0

Many detection algorithms (Goldenberg et al., 2002; Zhang et al., 200&:dteand Provost, 1997)
assume that the observed data consist of cases from backgrowity,agtich we will refer to as
the baseline, plus any cases from irregular behavior. Under this aeapgetection algorithms
operate by subtracting away the baseline from recent data and raisalgramif the deviations
from the baseline are significant. The challenge facing all such systemeséirtwate the baseline
distribution using data from historical data. In general, determining this disiilbis extremely
difficult due to the different trends present in surveillance data. ®@asariations in weather and
temperature can dramatically alter the distribution of surveillance data. Forpéxaflu season
typically occurs during mid-winter, resulting in an increase in ED cases imghespiratory prob-
lems. Disease outbreak detectors intended to detect epidemics such as\V8&dR8lile Virus and
anthrax are not interested in detecting the onset of flu season and wathdolvn off by it. Day
of week variations make up another periodic trend. Figure 3, which is faienGoldenberg et al.
(2002), clearly shows the periodic elements in cough syrup and liquichdestant sales.

Choosing the wrong baseline distribution can have dire consequencan farly detection
system. Consider once again a database of ED records. Suppose presently in the middle
of flu season and our goal is to detect anthrax, not an influenza alstbfathrax initially causes
symptoms similar to those of influenza. If we choose the baseline distributiondotbiele of the
current flu season, then a comparison with recent data will trigger mésg/dathrax alerts due to
the flu cases. Conversely, suppose we are not in the middle of flu saaddhat we obtain the
baseline distribution from the previous year’s influenza outbreak. ¥$ies would now consider
high counts of flu-like symptoms to be normal. If an anthrax attack occursputdibe detected
late, if at all.
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2000 T

Cough Syrub and Liquid Décongestant S‘ales

1500 B

1000 - B

Sales

500 - B

0 Il Il Il Il Il Il
07/01/99 10/01/99 01/01/00 04/01/00 07/01/00 10/01/00 01/01/01 04/01/01
Dates

Figure 3: Cough syrup and liquid decongestant sales from (Goldgebai., 2003)

There are clearly tradeoffs when defining this baseline distribution. Atextreme, we would
like to capture any current trends in the data. One solution would be to lysthermost recent data,
such as data from the previous day. This approach, however, pftac@such weight on outliers
that may only occur in a short but recent time period. On the other handpwiel like the baseline
to be accurate and robust against outliers. We could use data froreathyps years to establish the
baseline. This choice would smooth out trends in the data and likely raise dt@arevents that are
due to periodic trends.

In WSARE 2.0, we made the baseline distribution to be raw data obtained fleotes his-
torical days. For example, we chose data from 35, 42, 49, and 56piaysto the current day
under examination. These dates were chosen to incorporate enougtodhtt seasonal trends
could be captured and they were also chosen to avoid weekend vezsliday effects by making
all comparisons from the same day of week. This baseline was choseraliganwrder to tune
the performance of WSARE 2.0 on the data set. Ideally, the detection syisterd sletermine the
baseline automatically.

In this section, we describe how we use a Bayesian network to repitbsejaint probability
distribution of the baseline. From this joint distribution, we represent thelibasdistributions from
the conditional distributions formed by conditioning on what we temrironmental attributes
These attributes are precisely those attributes that account for trendsdatt) such as the season,
the current flu level and the day of week.

3.1 Creating the Baseline Distribution

Learning the baseline distribution involves taking all records prior to theZshkours and build-
ing a Bayesian network from this subset. During the structure learningliffeeentiate between
environmental attributes, which are attributes that cause trends in the nidtasponse attributes
which are the remaining attributes. The environmental attributes are spdwffide: user based
on the user’s knowledge of the problem domain. If there are any lateimbamental attributes
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that are not accounted for in this model, the detection algorithm may have sticdtees. How-
ever, as will be described later on in Section 4, WSARE 3.0 was able toamwersome hidden
environmental attributes in our simulator.

While learning the structure of the Bayesian network, environmental attsilaute prevented
from having parents because we are not interested in predicting theibulisins, but rather, we
want to use them to predict the distributions of the response attributes.nérageany structure
learning algorithm can be used in this step as long as it follows this restrictidact, the structure
search can even exploit this constraint by avoiding search paths #igih ggrents to the environ-
mental attributes.

We experimented with using hillclimbing to learn the Bayesian network structutdécamd it
to be both slow and prone to being trapped in local optima. As a result, wéogedean efficient
structure search algorithm called Optimal Reinsertion based on ADTreesré\and Lee, 1998).
Unlike hillclimbing, which performs a single modification to a directed acyclic g(&#G) on each
step, Optimal Reinsertion is a larger scale search operator that is muchidasst@ local optima.
Optimal Reinsertion first picks a target no@fidrom the DAG, disconnect$ from the graph, and
efficiently finds the optimal way to reinseFtback into the graph according to the scoring function.
The details of this algorithm can be found in (Moore and Wong, 2003).

We have often referred to environmental attributes as attributes that padsdic trends. En-
vironmental attributes, however, can also include any source of informtiiéd accounts for recent
changes in the data. For example, suppose we detect that a botulismakuibseoccurred and
we would still like to be on alert for any anthrax releases. We can add lBotuOutbreak” as
an environmental attribute to the network and supplement the current datmfgittination about
the botulism outbreak. Incorporating such knowledge into the Bayestamreallows WSARE to
treat events due to the botulism outbreak as part of the baseline.

Once the Bayesian network is learned, we have a joint probability distribgiothe data.
We would like to produce a conditional probability distribution, which is formgdcbndition-
ing on the values of the environmental attributes. Suppose that today isafet@1, 2003. If
the environmental attributes weBeasorandDay of Weekwe would setSeasor= Winter and
Day of Week=Weekday Let the response attributes in this exampleXpe.., X,. We can then
obtain the probability distributioR(Xy, ..., X, | Season= Winter Day of Week=Weekdayfrom
the Bayesian network. For simplicity, we represent the conditional distritbasa data set formed
by sampling a large number of records from the Bayesian network corglitimmthe environmental
attributes. The number of samples is specified by the parametebaselinesampleswhich has
to be large enough to ensure that samples with rare combinations of attribilites present. In
general, this number will depend on the learned Bayesian network'digieuend the parameters
of the network. We chose to sample 10000 records because we deteempéitally that this
number is a reasonable compromise between running time and accuracydataauWe will refer
to this sampled data set 88paseline The data set corresponding to the records from the past 24
hours of the current day will be nam&Becent

We used a sampled data set instead of using inference mainly for simplicitseriocfemight be
faster than sampling to obtain the conditional probabHitX, ..., X, | Environmental Attributes
especially when the learned Bayesian networks are simple. Howevergitirde is used, it is
somewhat unclear how to perform the randomization test. With sampling, orthbelmand, we
only need to generat®ByaseiineONCce and then we can use it for the randomization test to obtain
the p-values for all the rules. In addition, sampling is easily done in an effionner since
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environmental attributes have no parents. While a sampled data set prdvidesnplest way
of obtaining the conditional distribution, we have not completely ignored tissipitity of using
inference to speed up this process. We would like to investigate this direatitref in our future
work.

3.2 Dealing with New Hospitals Coming Online

WSARE 3.0 assumes that the baseline distribution remains relatively stable, evghwinonmental
attributes accounting for the only sources of variation. However, inldifeaituation where data
are pooled from various EDs around a city, new hospitals frequently oaiitee and become a new
source of data to be monitored. These new data sources cause aoshiftbhé baseline distribution
that is not accounted for in WSARE 3.0. For example, suppose a chidnespital begins sending
data to the surveillance system. In this case, WSARE 3.0 would initially detech@madous
pattern due to an increase in the number of cases involving children fropathef the city where
the children’s hospital is located. Over time, WSARE 3.0 would eventually porate the newly
added hospital’s data into its baseline.

In general, this problem of a shifted distribution is difficult to address. @fg@ach this issue
by ignoring the new data sources until we have enough data from thenoiparate them into the
baseline. Our solution relies on the data containing an attribute sitbsgstal IDthat can identify
the hospital that the case originated from. HIPAA regulations can sometirmesmiED data from
containing such identifying attributes. In this case, we recommend using \ESARwith a recent
enough baseline period in order to avoid instabilities due to new data soWktesnever the data
includes aHospital ID attribute, we first build a list of hospitals that provide data for the current
day. For each hospital in this list, we keep track of the first date a case fcamehat particular
hospital. If the current day is less than a year after the first case datepmsider that hospital
to have insufficient historical data for the baseline and we ignore alkdedoom that hospital.
For each hospital with sufficient historical records, we then build a S8lapenetwork using only
historical data originating from that particular hospital.

In order to produce the baseline data set, we sample a total of 10008s &eon all the hospital
Bayesian networks. Let hospithlhaven;, records on the current day and suppose therdHare
hospitals with sufficient historical data for the current date. Thehet S, n,. Each hospital
Bayesian network contributes 10009& number of samples to the baseline data set. As an example,
suppose we have 5 hospitals with 100 records each. Furthermorejeaisat we can ignore the
fourth hospital’s records since its first case is less than a year prior tuthent date. We are then
left with 4 hospitals with 100 records each. After we build the Bayesian m&tfeo each hospital,
we sample 2500 records from the Bayesian network belonging to eacé faftthhospitals.

4. Evaluation

Validation of early outbreak detection algorithms is generally a difficult tagktduhe type of data
required. Health-care data during a known disease outbreak, eittuealnar induced by a bioa-
gent release, are extremely limited. Even if such data were plentiful, evalu#tlwosurveillance
algorithms would require the outbreak periods in the data to be clearly lab&hésitask requires
an expert to inspect the data manually, making this process extremely slavge@ently, such
labelled data would still be scarce and making statistically significant conctusiith the results
of detection algorithms would be difficult. Furthermore, even if a group afezpiologists were to
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be assembled to label the data, there would still be disagreements as to whethr@ak begins
and ends.

As a result of these limitations, we validate the WSARE algorithms on data from dasimu
which we will refer to as the city Bayesian network (CityBN) simulator. The CNy&mulator
is based on a large Bayesian network that introduces temporal fluctuhiged on a variety of
factors. The structure and the parameters for this Bayesian networdtested by hand. This
simulator is not intended to be a realistic epidemiological model. Instead, the matisigned to
produce extremely noisy data sets that are a challenge for any detectoithatlg In addition to
simulated data, we also include WSARE output from ED data from an actualuiy to the fact
that epidemiologists have not analyzed this real world data set for knatimmeaks, we are only
able to provide annotated results from the runs of WSARE.

4.1 The CityBN Simulator

The city in the CityBN simulator consists of nine regions, each of which contathferent sized
population, ranging from 100 people in the smallest area to 600 people inrfestigection, as
shown in Table 5. We run the simulation for a two year period starting frornalsnl, 2002 to
December 31, 2003. The environment of the city is not static, with weatheleviéls and food
conditions in the city changing from day to day. Flu levels are typically low in fhréeng and
summer but start to climb during the fall. We make flu season strike in wintertingsin the
highest flu levels during the year. Weather, which only takes on the valuest or cold, is as
expected for the four seasons, with the additional feature that it haschapance of remaining the
same as it was yesterday. Each region has a food condition of good.oAtdzad food condition
facilitates the outbreak of food poisoning in the area.

NW (100) N (400) NE (500)
W (100) C (200) E (300)
SW (200) S (200) SE (600)

Table 5: The geographic regions in the CityBN simulator with their populationarierheses

Previous Region
Anthrax ConcentratiQ

Region Anthra
Concentratio

Previous Regid
Food Conditiog

Region Fooy
Conditio

Figure 4: City Status Bayesian Network

@ Previou
Weather,
Day of
Week

We implement this city simulation using a single large Bayesian network. For simpligty,
will describe this large Bayesian network in two parts, as shown in Figuaesl . The subnetwork
shown in Figure 4 is used to create the state of the city for a given dayn @Gieestate of the city,
the network in Figure 5 is used to generate records for individual patients

We use the convention that any nodes shaded black in the subnetwaet &rethe system and
do not have their values generated probabilistically. Due to space limitati@teathof showing
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eighteen separate nodes for the current and previous food condifieash region in Figure 4, we
summarize them using the generic noBegion Food ConditioandPrevious Region Food Condition
respectively. This same space saving technique is used for the camgrgrevious region an-
thrax concentrations. Most of the nodes in this subnetwork take on two ¢e thalues. For
each day, after the black nodes have their values set, the values fohiteenwdes are sampled
from the subnetwork. These records are stored in the City Status (&Ssela The simulated
anthrax release is selected for a random date during a specified time. p@madof the nine re-
gions is chosen randomly for the location of the simulated release. On thefdhterelease, the
Region Anthrax Concentratiomode is set to have the value digh. The anthrax concentration
remains high for the affected region for each subsequent day with%npddbability. This prob-
ability is chosen in order to ensure that enough individuals in the simulatiolesmg infected by
anthrax over an extended period of time after the attack.

DAY OF WEEK SEASO

Region

Anthrax
Concentratiog

Heart
Healt

Region
Grassiness

Region

as Hear

Problem Food

Condition

Figure 5: Patient Status Bayesian Network

Table 6: Examples of two records in the PS data set

Location NW N

Age Child Senior
Gender Female Male
Flu Level High None
Day of Week Weekday Weekday
Weather Cold Hot
Season Winter Summer
Action Absent ED visit
Reported Symptom | Nausea Rash
Drug None None
Date Jan-01-2002| Jun-21-2002

The second subnetwork used in our simulation produces individual rezatthcases. Figure 5
depicts the Patient Status (PS) network. On each day, for each persanhinegion, we sample
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the individual's values from this subnetwork. The black nodes first hlagir values assigned from
the CS data set record for the current day. For the very first dayyléo nodes are assigned a
set of initial values. The white nodes are then sampled from the PS netiath individual's
health profile for the day is thus generated. The nddes_evel Day of WeekSeasonWeather
Region GrassinessandRegion Food Conditiomre intended to represent environmental variables
that affect the upswings and downswings of a disease. Rdggon Grassinessodes indicate the
amount of pollen in the air and thus affect the allergies of a patient. We clioese environmental
variables because they are the most common factors influencing the healthopfilation. Two
of the environmental variables, naméggion GrassinesandRegion Food Conditiorare hidden
from the detection algorithm while the remaining environmental attributes aes\azs We choose
to hide these two attributes because the remaining four attributes that argeabaee typically
considered when trying to account for temporal trends in biosurveilldatse

As for the other nodes, theiseasenode indicates the status of each person in the simulation.
We assume that a person is either healthy or they can have, in orderceflpreee, allergies, the
cold, sunburn, the flu, food poisoning, heart problems or anthrathelfvalues of the parents of
the Diseasenode indicate that the individual has more than one diseasBjiskeasenode picks the
disease with the highest precedence. This simplification prevents indiwilaan having multiple
diseases. A sick individual then exhibits one of the following symptoms: ,n@spiratory prob-
lems, nausea, or a rash. Note that in our simulation, as in real life, diffdisgases can exhibit the
same symptoms, such as a person with the flu can exhibit respiratory prodecosild a person
with anthrax. The actual symptom associated with a person may not nelgelseahe same as
the symptom that is reported to health officials. Actions available to a sickpérsluded doing
nothing, buying medication, going to the ED, or being absent from worklooa. As with the CS
network, the arities for each node in the PS network are small, rangingtivorto four values. If
the patient performs any action other than doing nothing, the patient’s headiltase is added to
the PS data set. Only the attributes in Figure 5 labelled with uppercase lettees@mded, result-
ing in a great deal of information being hidden from the detection algorithriydimg some latent
environmental attributes. The number of cases the PS network geneadyes dypically in the
range of 30 to 50 records. Table 6 contains two examples of records Htldata set.

We run six detection algorithms on 100 different PS data sets. Each dasagssterated for
a two year period, beginning on January 1, 2002 and ending Decertib@033. The detection
algorithms train on data from the first year until the day being monitored whilsgbend year is
used for evaluation. The anthrax release is randomly chosen in the petiwden January 1, 2003
and December 31, 2003.

We try to simulate anthrax attacks that are not trivially detectable. Figure 6tptstal count
of health-care cases on each day during the evaluation period whileeFignlots the total count of
health-care cases involving respiratory symptoms for the same simulate@tataaive detection
algorithm would assume that the highest peak in this graph would be the dhteafthrax release.
However, the anthrax release occurs on day index 74,409, which ibyated the highest peak in
either graph. Occasionally the anthrax releases affects such a limited nofrfieople that it is
undetected by all the algorithms. Consequently, we only use data sets witthaomrght reported
anthrax cases on any day during the attack period.

The following paragraphs describe the six detection algorithms that werrdheodata sets.
Three of these methods, namely the control chart, moving average, a@¥Akegression algo-
rithms, operate on univariate data. We apply these three algorithms to tweediftenivariate data
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Figure 6: Daily counts of health-care data
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Figure 7: Daily counts of health-care data involving respiratory symptoms

sets — one data set is composed of total daily counts and the other of dailg cbgases involving
respiratory symptoms. The remaining three algorithms are variations on WSARE

The Control Chart Algorithm  The first algorithm used is a common anomaly detection algo-
rithm called a control chart. This detector determines the mean and varigtieetotal number of
records on each day in the PS data set during the training period. A tldéslealculated based on
the formula below, in whicl®~1 is the inverse to the cumulative distribution function of a standard
normal while the p-value is supplied by the user.

threshold= p+o*d1(1— |O—v;t|ue>

If the aggregate daily counts of health care data exceeds this threshoid the evaluation
period, the control chart raises an alarm. We use a training period oagdafh, 2002 to December
31, 2002.

Moving Average Algorithm The second algorithm that we use is a moving average algorithm
that predicts the count for the current day as the average of coontstfre previous 7 days. The
window of 7 days is intended to capture any recent trends that might iajppie data. An alarm
level is generated by fitting a Gaussian to data prior to the current day aaidiol a p-value for
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the current day’s count. The mean and standard deviation for the i@aissalculated using data
from 7 days before the current day.

ANOVA Regression A simple detector that accounts for environmental factors is ANOVA re-
gression, which is simply linear regression supplemented with covariatebdagnvironmental
variables. We include 6 covariates for the days of the week, 3 for tteossaand one for the
daily aggregate count from the previous day. ANOVA regression iglg fowerful detector when
temporal trends are present in the data, as was shown in (Buckeridge2&05).

WSARE 2.0 WSARE 2.0 is also evaluated, using a baseline distribution of records fegm 3
42, 49 and 56 days before the current day. The attributes used byRE S0 as environmental
attributes are ignored by WSARE 2.0. If these attributes are not ignor84RE 2.0 would report
many trivial anomalies. For instance, suppose that the current day igshddy of fall, making

the environmental attribut8eason= Fall. Furthermore, suppose that the baseline is taken from
the summer season. If the environmental attributes are not ignored, W3AR#iould notice that
100% of the records for the current day h&easor= Fall while 0% of the records in the baseline
data set match this rule.

WSARE 2.5 Instead of building a Bayesian network over the past data, WSARE 2.5 shuibdis

a baseline from all records prior to the current period with their enviraniahattributes equal to the
current day’s. In our simulator, we use the environmental attriiuiie s evel SeasonDay of Week
andWeather To clarify this algorithm, suppose for the current day we have the follpwalues

of these environmental attributesSiu Level= High, Season= Winter, Day of Week=Weekday
andWeather= Cold. ThenDBpaselineWould contain only records before the current period with
environmental attributes having exactly these values. It is possible thatchaecords exist in the
past with exactly this combination of environmental attributes. If there arerféwan five records in
the past that matched, WSARE 2.5 can not make an informed decision wimgraing the current
day to the baseline and simply reports nothing for the current day.

WSARE 3.0 WSARE 3.0 uses the same environmental attributes as WSARE 2.5 but builds a
Bayesian network for all data from January 1, 2002 to the day being meditdVe hypothesize
that WSARE 3.0 would detect the simulated anthrax outbreak sooner tharR&2% because
3.0 can handle the cases where there are no records corresponitiegtorent day’s combination
of environmental attributes. The Bayesian network is able to generaline deys that do not
match today precisely, producing an estimate of the desired conditional diistribFor efficiency
reasons, we allow WSARE 3.0 to learn the network structure from scraiod @very 30 days on
all data since January 1, 2002. On intermediate days, WSARE 3.0 simplyegdta parameters
of the previously learned network without altering its structure. In practieeexpect WSARE 3.0
to be used in this way since learning the network structure on every day enagrp expensive
computationally.

4.1.1 RESULTS

In order to evaluate the performance of the algorithms, we plot an Activitgitdong Operating
Characteristic (AMOC) curve (Fawcett and Provost, 1999), which is singlan ROC curve. On
the AMOC curves to follow, the x-axis indicates the number of false posipeesnonth while the
y-axis measures the detection time in days. For a given alarm thresholdpweperformance
of the algorithm at a particular false positive level and detection time on tipdgfes an example,
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suppose we are dealing with an alarm threshold of 0.05. We then take alathesayenerated by
an algorithm, say WSARE 3.0, that have a p-value less than or equal taSuppose there are two
such alarms, with one alarm appearing 5 days before the simulated arglease;, which would be
considered a false positive, and the other appearing 3 days afteldhsaemaking the detection
time 3 days. If we run the detection algorithms for 1 month, then we would plotra a1, 3).

We then vary the alarm threshold in the range of 0 to 0.2 and plot pointstatie@shold value.
For a very sensitive alarm threshold such as 0.2, we expect a highdrenwf false positives but
a lower detection time. Hence the points corresponding to a sensitive tliteshiold be on the
lower right hand side of the graph. Conversely, an insensitive alaeshibid like 0.01 would result
in a lower number of false positives and a higher detection time. The comneisppoints would
appear on the upper left corner of the graph.

AMOC Curve for non-WSARE Algorithms Operating on Total Daily Counts
14 T T T T T T

T
Control Chart
ANOVA Regression -------
Moving Average --------
WSARE 3.0 i
Optimal -------

Detection Time in Days

False Positives per Month

Figure 8: AMOC curves comparing WSARE 3.0 to univariate algorithms ¢iperan total daily
counts from the CityBN simulator

Figures 8 to 10 plot the AMOC curve, averaged over the 100 data setsamdtarm threshold
increment of 0.001. On these curves, the optimal detection time is one dégvas by the dotted
line at the bottom of the graph. We add a one day delay to all detection times to teimeddity
where current data is only available after a 24 hour delay. Any aleurdog before the start of the
simulated anthrax attack is treated as a false positive. Detection time is calciddtedfmst alert
raised after the release date. If no alerts are raised after the releasetdiation time is set to 14
days.

Figures 8 and 9 show that WSARE 3.0 clearly outperform the univariatgitlgns when the
univariate algorithms operate on the total daily counts and also when thariatévalgorithms
operate on the daily counts of cases involving respiratory symptoms. ImeFig) WSARE 2.5
and WSARE 3.0 outperform the other algorithms in terms of the detection time kedpfasitive
tradeoff. For a false positive rate of one per month, WSARE 2.5 and WESA\B are able to detect
the anthrax release within a period of one to two days. The Control Charinghaverage, ANOVA
regression and WSARE 2.0 algorithms are thrown off by the periodic tieredent in the PS data.
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AMOC Curve for non-WSARE Algorithms Operating on Counts of Respiratory Cases
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Figure 9: AMOC curves comparing WSARE 3.0 to univariate algorithms ojpgran cases in-
volving respiratory symptoms from the CityBN simulator
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Figure 10: AMOC curves for WSARE variants operating on CityBN data

We previously proposed that WSARE 3.0 would have a better detection timeMS&RE 2.5
due to the Bayesian network’s ability to produce a conditional distributiorafoombination of
environmental attributes that may not exist in the past data. After checlkangjrtiulation results
for which WSARE 3.0 outperformed WSARE 2.5, we conclude that in somescasir proposition
is true. In others, the p-values estimated by WSARE 2.5 are not as low asahearsion 3.0. The
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baseline distribution of WSARE 2.5 is likely not as accurate as the baselineSéfRE 3.0 due
to smoothing performed by the Bayesian network. The false positives foyWSARE 2.5 and
WSARE 3.0 are likely due to other non-anthrax illnesses that are not atszbtor in the Bayesian
network. Had we explicitly added a Region Food Condition environmental atirtb the Bayesian
network, this additional information would likely have reduced the false pesitbunt.

Figures 11 to 14 illustrate the various outbreak sizes in the simulated data byglb#&inumber
of anthrax cases per day during the outbreak period. Since the dutiizes and durations are
randomly generated for each of the 100 data sets, we do not have rosimowoplots for each
data set. Instead, we include representative plots of the outbreakpfiesrad in our simulated
data. Figure 11 represents a large scale outbreak which was easiltedaiache first day by most
algorithms. Large scale outbreaks were rare in our simulated data. Figusealrepresentative
plot of a medium scale outbreak that is most common in the data. The partictibaeakishown
in Figure 12 is also detected by WSARE 3.0 on the first day for an alarnmhibicesf 0.005. Small
scale outbreaks, as shown in Figure 13, are the most difficult to detecARES.0 detects the
outbreak in Figure 13 on the third day with a very insensitive alarm thresiiddO05. Figure 14
contains an outbreak that WSARE 3.0 is unable to detect using an alarrndlares$ 0.03.

We also conduct four other experiments to determine the effect of vacgrgin parameters
of WSARE 3.0. In the first experiment, we use a Bonferroni correctionotwect for multiple
hypothesis testing instead of a randomization test. The AMOC curve for thétgeas shown
in Figure 15 indicate that the Bonferroni correction results are almostitééro those of the
randomization test. This similarity was expected because on each day, teexpproximately
only 50 hypothesis tests being performed to find the best scoring rule arfyplothesis tests are
weakly dependent on each other. However, as the number of hyjmtests increases and as the
dependence between the hypothesis tests increases, the results afitmaization test should be
better than those of the Bonferroni correction.

In order to illustrate the advantages of the randomization test, we produerndiaq hypothesis
tests in WSARE by creating attributes that are dependent on each othegeWeate a data set
using a Markov chairx, ..., X, in which the states of each random variable in the chain become
the attributes in the data set. Each random varixbla the Markov chain can be in stafe B, C,
or D, except forXy which always starts @\. At each time step, the random variabl; retains
the state of%_1 in the Markov chain with a 90% chance. With a 10% changdakes on the next
state in the ordered sequen&eB, C andD. As an example, i)K_; = A, X can remain a#\ or
it can becomeB. If X;_; = D, X can retain the same state s or transition back to the state
A, which is the first state of the ordered sequence. We use this model éoaderi50 days worth
of data in which each day contains 1000 records and each recordn=oh@® attributes. We then
sample 14 days of data with the same characteristics except the MarkovshHéared slightly so
that each random variab} remains in the same stateX§s; with an 89% probability. Thirty data
sets, each containing a total of 164 days are produced. Two variafi®diSARE 2.0, one with a
randomization test and the other with a Bonferroni correction, are aptplibe@se thirty data sets in
order to detect the change.

Figure 16 plots the average AMOC curve of this experiment. As the graplrdtas, at a false
positive rate of less than 0.4 per month, the randomization test has a much leéttetion time.
Upon further analysis, we find that the reduced performance of théeBoni correction are due to
a much higher number of false positives. As an example, we find that WARE notices that a
rule such as{;7 = C AND Xgg = B produces a very good score. The Bonferroni correction deals
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Figure 11: An example of a large scale outbredkigure 12: An example of a medium scale out-
in the CityBN data break in the CityBN data
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Figure 13: An example of a small scale outbreakigure 14: An example of an outbreak that was
in the CityBN data not detected in the CityBN data by
WSARE 3.0 with an alarm threshold
of 0.03
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Bonferroni Correction Versus Randomization Test for Greedy Rule Search with the Maximum Number of Rule Components as 2
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Figure 15: The Bonferroni correction version of WSARE versus émelomization test version on
the CityBN data

Effect of Dependence among Hypothesis Tests on the Randomization Test and the Bonferroni Correction
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Figure 16: A comparison between the Bonferroni correction versioW8ARE and the random-
ization test version on data generated from a Markov chain

with the multiple hypothesis problem by simply multiplying the score with the numberpaithesis
tests. Although there are a high number of hypothesis tests in this experimétiplyimg by the
number of hypothesis tests still results in a low compensated p-value. Tthemmaation test, on
the other hand, notices that although the score is very good, the probabiiityling an equal or
better score for another rule, suchXag = A AND Xg4 = B is quite high because of the dependence
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between attributes. Thus, the resulting compensated p-value from themiemadion test is quite
high, signifying that the pattern defined by the rule is not so unusualadfter

The Effect of Varying the Maximum Number of Components in a Rule
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Figure 17: The effect of varying the maximum number of components foteaan the AMOC
curve for CityBN data

The second experiment involves varying the maximum components allowedlpdérom one
to three. As seen on the AMOC curve in Figure 17, the variations do not sigmificantly different
to the left of the one false positive per month mark. However, after this poirdgrsion of WSARE
with a three component limit outperforms the other two variations. By setting themaaxnumber
of components per rule to be three, WSARE is capable of being more sikjr@s its description
of anomalous patterns. On the other hand, WSARE also guards agaamBttiog) by requiring
each component added to be 95% significant for the two hypothesis tefstsmed in Section 2.5.
This criterion makes the addition of a large number of rule components unlikdlya expect the
optimal number of components to be about two or three.

The third experiment involves changing the rule search to be exhauativer than greedy.
Note that if we compare the score of the best rule found by the exhaumsttieod against that
found by the greedy method, the exhaustive method would unquestionadby fule with an equal
or greater score than the greedy method. In Figure 18, however, mpare the performance of
the two algorithms using AMOC curves. Each coordinate on the AMOC cureeresult of a
compensated p-value produced by the randomization test and not theatde Fhus, even though
an exhaustive rule search will always equal or outperform a graddysearch in terms of the best
rule score, it is not guaranteed to be superior to the greedy rule smasthAMOC curve due to the
fact that the randomization test adjusts the rule score for multiple hypothesigtdas Figure 18,
we plot the AMOC curves comparing the average performance for botbxtieustive and greedy
algorithms over 100 experiments; we do not show the confidence intervaidento avoid clutter.
The confidence intervals for both the greedy and the exhaustivescdo/@verlap substantially.
Therefore, there appears to be no significant difference betweemvthalgorithms for the data
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The Effect of Greedy Versus Exhaustive Rule Search
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Figure 18: AMOC curves for greedy versus exhaustive rule sdarcbityBN data

from this simulator. We measure the exhaustive search to be 30 times slowénalgreedy search.
Since the AMOC curves are nearly identical for our simulated data, werntred greedy search.

Effect of Noise on AMOC Curves
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Figure 19: The effect of increased noise levels in the data on WSARE 3.0

Finally, we experiment with adding noise to the data by increasing the numleb afases
due to allergies, food poisoning, sunburns and colds. We increaseite lavels by increasing
the probabilities ofRegion Food Conditios= bad, Has Allergy= true, Has Cold= true, and
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Has Sunburn=truein their respective conditional probability tables. Note that these nodedlare
not visible in the output data. Increasing these probabilities involves changmany entries of
the conditional probability tables and we do not have space to list all of theges. In general,
we increase the probabilities of the corresponding entries in the condipooiadbility tables by
approximately 0.004-0.005. We cannot say specifically how many noi®g @e generated since
this amount fluctuates over time.

We produce 100 data sets with increased noise levels which we will refer‘tdodsy” and we
also produce another 100 data sets with even more noise which we wiltoedsr‘Noisier”. The
“Regular” data sets are the 100 data sets used in all previous experitdéntsen apply WSARE
3.0 to these three groups. The average AMOC curve for each grob@Oodlata sets is plotted in
Figure 19. As in previous experiments, we use the environmental attribukds devel Season
Day of WeelandWeather As shown in Figure 19, both the detection time and the false positive
rate degrade with increased noise levels.

4.2 Annotated Output of WSARE 3.0 on Actual ED Data for 2001

We also test the performance of WSARE 3.0 on actual ED data from a majoityJ $his database
contains almost seven years worth of data, with personal identifyingniafiion excluded in order
to protect patient confidentiality. The attributes in this database include dagnugsion, coded
hospital ID, age decile, gender, syndrome information, discretized hdimelt discretized home
longitude, discretized work latitude, discretized work longitude and both Hooagion and work

location on a coarse latitude-longitude grid. In this data, new hospitals colime @md begin

submitting data during the time period that the data is collected. We use the soluimibdd in

Section 3.2 to address this problem. WSARE operates on data from theQ@saagd is allowed
to use over five full years worth of training data from the start of 1996 ¢octirrent day. The
environmental attributes used are month, day of week and the numberesf ftam the previous
day with respiratory problems. The last environmental attribute is intendesl do bpproximation
to the flu levels in the city. We use a one-sided Fisher’s exact test to seomlds such that
only rules corresponding to an upswing in recent data are considéreatidition, we apply the
Benjamini-Hochberg FDR procedure wittkpr = 0.1.

The following list contains the significant anomalous patterns found in th&@aata for the
year 2001.

1. 2001-02-20: SCORE = -2.15432e-07 PVALUE =0
15.9774% (85/532) of today’s cases have Viral Syndrome = True and Respiratory Syndrome = False
8.84% (884/10000) of baseline cases have Viral Syndrome = True and Respiratory Syndrome = False
2. 2001-06-02: SCORE = -3.19604e-08 PVALUE =0
1.27971% (7/547) of today’s cases have Age Decile = 10 and Home Latitude = Missing
0.02% (2/10000) of baseline cases have Age Decile = 10 and Home Latitude = Missing
3. 2001-06-30: SCORE = -2.39821e-07 PVALUE =0
1.44% (9/625) of today’s cases have Age Decile = 10
0.09% (9/10000) of baseline cases have Age Decile = 10
4. 2001-08-08: SCORE = -1.21558e-08 PVALUE =0
83.7979% (481/574) of today’s cases have Unknown Syndrome = False
73.6926% (7370/10001) of baseline cases have Unknown Syndrome = False
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5. 2001-10-10: SCORE =-1.42315e-06 PVALUE =0
0.994036% (5/503) of today’s cases have Age Decile = 10 and Home Latitude = Missing
0.009998% (1/10002) of baseline cases have Age Decile = 10 and Home Latitude = Missing
6. 2001-12-02: SCORE = -4.31806e-07 PVALUE =0
14.7059% (70/476) of today’s cases have Viral Syndrome = True and Encephalitic Syndrome = False
7.73077% (773/9999) of baseline cases have Viral Syndrome = True and Encephalitic Syndrome = False
7.2001-12-09: SCORE = -3.31973e-10 PVALUE =0
8.57788% (38/443) of today’s cases have Hospital ID = 1 and Viral Syndrome = True
2.49% (249/10000) of baseline cases have Hospital ID = 1 and Viral Syndrome = True

Rules 2, 3 and 5 are likely due to clerical errors in the data since the rukedimihcrease in
the number of people between the ages of 100 and 110. Furthermorenteezip code for these
patients appears to be missing in rules 2 and 5. Rule 4 is uninteresting sinciedtésdhat the
number of cases without an unknown symptom, which is typically around 7h@8%wexperienced
a slight increase. For rules 1, 6 and 7 we went back to the original EDtdatespect the text
descriptions of the chief complaints for the cases related to these threeTiuéesymptoms related
to Rules 1, 6 and 7 involve dizziness, fever and sore throat. Given thasR, 6 and 7 have dates
in winter, along with the symptoms mentioned, we speculate that this anomalous patikeety
caused by an influenza strain.

We also include results from WSARE 2.0 running on the same data set. UnlikR&S.0,
WSARE 2.0 does not have a similar solution to the approach taken in Sectiondealtaith new
hospitals coming online. However, by using a short enough baselinedpstioh as the standard
baseline of 35, 42, 49, and 56 days prior to the current date, we gauredairly recent trends and
deal with a changing distribution as new hospitals submit data. The resukb@sm below. Note
that we group together identical rules from consecutive days in ordavimspace.

1. 2001-01-31: SCORE = -8.0763e-07 PVALUE =0
21.2766% (110/517) of today’s cases have Unknown Syndrome = True
12.5884% (267/2121) of baseline cases have Unknown Syndrome = True
2. 2001-05-01: SCORE =-1.0124e-06 PVALUE = 0.001998
18.4739% (92/498) of today'’s cases have Gender = Male and Home Latitude > 40.5
10.2694% (202/1967) of baseline cases have Gender = Male and Home Latitude > 40.5
Rules 3-6 from 2001-10-28 to 2001-10-31 all have PVALUE = 0 and involve rules with Hospital ID = Missing
7. 2001-11-01: SCORE =-7.78767e-21 PVALUE =0
5.87084% (30/511) of today’s cases have Hospital ID = Missing and Hemorrhagic Syndrome = True
0% (0/1827) of baseline cases have Hospital ID = Missing and Hemorrhagic Syndrome = True
Rules 8-14 from 2001-11-02 to 2001-11-08 all have PVALUE = 0 and have the rule Hospital ID = Missing

Rules 15-37 from 2001-11-09 to 2001-12-02 all have PVALUE = 0 and have the rule Hospital ID = 14

Rules 38-59 from 2001-12-03 to 2001-12-24 all have PVALUE = 0 and have the rule Hospital ID = 50

1987



WONG, MOORE, COOPER ANDWAGNER

60. 2001-12-25: SCORE = -2.99132e-09 PVALUE =0
53.1835% (284/534) of today’s cases have Rash Syndrome = False and Unmapped Syndrome = False
39.2165% (911/2323) of baseline cases have Rash Syndrome = False and Unmapped Syndrome = False

Rules 61-63 from 2001-12-26 to 2001-12-30 all have PVALUE = 0 and have the rule Hospital ID = 50

64. 2001-12-31: SCORE = -7.30783e-07 PVALUE =0
52.071% (352/676) of today’s cases have Hemorrhagic Syndrome = True and Unmapped Syndrome = False
41.6113% (1064/2557) of baseline cases have Hemorrhagic Syndrome = True and Unmapped Syndrome = False

From the output above, WSARE 2.0 produces a large number of rulesbates hospital IDs
14 and 50 because those two hospitals start providing data in 2002. Tieséypically persist for
about a month, at which point the new hospitals begin to appear in the basdiW®ARE 2.0. We
speculate that the missing hospital IDs in rules 3-14 are due to hospitahiidgonline and a new
hospital code not being available. The other rules produced by WSAR& @ very different from
those generated by WSARE 3.0. This difference is likely due to the factil8&RE 3.0 considers
the effects of the environmental attributes. The most interesting rules gedcay WSARE 2.0
are rules 2 and 64. Rule 2 highlights the fact that more male patients with a horedspn the
northern half of the city appear in the EDs on 2001-05-01. Rule 64 indichtg an increase in
the number of hemorrhagic syndromes have occurred. Both of theseaarel@nlikely to have been
caused by environmental trends; they are simply anomalous patterns wngared against the
baseline of WSARE 2.0. From our available resources, we are unabééaiordne if rules 2 and 64
are truly indicative of an outbreak.

4.3 Results from the Israel Center for Disease Control

The Israel Center for Disease Control evaluated WSARE 3.0 retridgplgaising an unusual out-
break of influenza type B that occurred in an elementary school in ¢tésitagl (Kaufman et al.,
2004). WSARE 3.0 was applied to patient visits to community clinics between the oalday
24, 2004 to June 11, 2004. The attributes in this data set include the visitadedecode, ICD-9
code, age category, and day of week. The day of week was use& aslthenvironmental at-
tribute. WSARE 3.0 reported two rules with p-values at 0.002 and five othes with p-values
below 0.0001. Two of the five anomalous patterns with p-values below 0 @fl@dsponded to the
influenza outbreak in the data. The rules that characterized the two anenpaltterns consisted of
the same three attributes of ICD-9 code, area code and age categagtiimgdthat an anomalous
pattern was found involving children aged 6-14 having viral symptoms witBjreaific geographic
area. WSARE 3.0 detected the outbreak on the second day from its oheetuthors of (Kaufman
et al., 2004) found the results from WSARE 3.0 promising and conclude¢dhealgorithm was
indeed able to detect an actual outbreak in syndromic surveillance data.

4.4 Summary of Results

Overall, WSARE 2.0 and 3.0 have been demonstrated to be more effectivertivariate methods
at finding anomalous patterns in multivariate, categorical data. The adeatitat the WSARE
algorithms have over univariate methods is their ability to identify the combinatiaitwbutes

that characterize the most anomalous groups in the data rather than retymgser to specify
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beforehand which combination of characteristics to monitor. WSARE 3.0 hasheer advantage
in its ability to account for temporal trends when producing the baseline disbrbwhile WSARE
2.0 can be thrown off by these temporal trends when it uses raw histdétafor the baseline.

We would like to emphasize the fact that WSARE 3.0 is not necessarily thevéeson of
WSARE in all cases. WSARE 3.0 needs a large amount of data in order totheastructure and
parameters of its Bayesian network reliably, particularly if there are maripwads in the data.
If WSARE 3.0 is intended to model long term trends such as seasonal tiocsiaseveral years
worth of historical data are needed. Large amounts of historical datetasailable in many cases,
such as when a syndromic surveillance system needs to be set up fiadohso a few months for
a major event like the Olympic games. In these scenarios, WSARE 2.0 may hadvantage
over WSARE 3.0. This disadvantage of WSARE 3.0 highlights the fact thdetiraed Bayesian
network only stores the posterior mean in the conditional probability tableaabf ode. Future
work on WSARE 3.0 will involve accounting for the variance of the netwoakapmeters in the
p-value calculation, perhaps using the approaches proposed byliesin(2000), van Allen et al.
(2001), and Singh (2004).

Moreover, WSARE 3.0 assumes that the environmental attributes are theooinbe of variation
in the baseline distribution. If other hidden variables cause a significanarenad noise in the
baseline, then WSARE 3.0 will not be very effective. In this situation, a batiproach might be
to use WSARE 2.0 with a baseline of raw historical data from a very recentpéried. Finally,
we do not recommend using WSARE 2.5 because the algorithm is unable to meaketipns
for days in which the combination of environmental attributes do not exist torigal data. The
Bayesian network used by WSARE 3.0 is able to handle such situations an®RB&/3$A effectively
supersedes WSARE 2.5.

5. Finding Anomalous Patterns in Real-Valued Data

The WSARE algorithm can only be used on categorical data sets. If théesdattirely real-valued,
the attributes can certainly be discretized in a pre-processing step M¢®MRE operates on the
data. Discretization, however, treats all data points in the same discretizatiatehtically; the
distances between data points in the same bin are lost. If these distancesatantmthen a real-
valued version of WSARE is needed. Fortunately, the spatial scan staifigtiddrff, 1997) can be
considered as the real-valued analog of WSARE.

The spatial scan statistic works on a geographic &rgawhich there is an underlying popu-
lation n and within this population there is a counbf interest. The distribution of the counts
is assumed to follow either a Bernoulli model or a Poisson model. A windowridhbla size and
shape then passes through the geographicAar@de crucial characteristic of this window is that
the union of the areas covered by the window is the entire AreBxisting spatial scan statistic
applications typically use window shapes of circles (Kulldorff, 1999) altfioellipses (Kulldorff
et al., 2002) and rectangles (Neill and Moore, 2004) have also bexh s order to set up the
scan statistic, we need to defipas the probability of being a “count” within the scanning window.
Furthermore, let] be the probability of being a “count” outside of the scanning window. Under
the null hypothesisp = g while the alternative hypothesis 5> g. The spatial scan statistic then
consists of the maximum likelihood ratio betwesgg, the likelihood of the counts in the scanning
window areaV, andLy, the likelihood under the null hypothesis. Equation 1 illustrates the spatial
scan statistic in its general form, using the téhfrfor the zone covered by a scanning window and
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W for the entire collection of zones:

Sy = maXNsW@' (1)
0

Since an analytical form for the distribution of the spatial scan statistic isvadghle, a Monte
Carlo simulation is needed to obtain the significance of the hypothesis testally[®89 or 9999
replications of the data set are used for the simulation. In terms of computatamalexity, the
bottleneck for the algorithm is the Monte Carlo simulation.

The spatial scan statistic has been extended to three dimensions in theisgasean statistic
(Kulldorff, 1999, 2001). Instead of using a circular window overanahe scanning window is
now a cylinder, with its circular base for the spatial dimension and its heigitatime interval.
Cylinders of varying heights and base radii are moved through spatéma to find potential
disease clusters.

Naive implementations of the spatial scan statistic and the space-time scan stegistio a
computationally expensive for large data sets. Assuming that the circuldowsnare centered
on anNxN grid and the dimensionality i®, the complexity iSO(RN?®) whereR is the number
of Monte Carlo simulations. Neill et al. (2005) have developed a fast $gata using overlap-kd
trees that can reduce the complexitya(R(NlogN)P) in the best case. The algorithms discussed so
far find abnormally high density regions in data sets that are entirely resd.aEfficiently finding
anomalous patterns in a data set with a mixture of categorical and real-\atribdtes remains an
open problem.

6. Related Work

The task of detecting anomalous events in data is most commonly associated wiitbrimgisys-
tems. As a result, related work can be found in the domains of computeitgefraud detection,
Topic Detection and Tracking (TDT) and fMRI analysis. In computer ggguanomaly detection
has been most prominent in intrusion detection systems, which identify inteusjodistinguish-
ing between normal system behavior and behavior when security hastegpromised (Lane and
Brodley, 1999; Warrender et al., 1999; Eskin, 2000; Lee et al.,; 2@@8ion and Tan, 2002; Kruegel
and Vigna, 2003). In other related security work, Cabuk et al. (2d@4fribe methods to detect
IP covert timing channels, which surreptitiously use the arrival pattepackets to send informa-
tion. As in computer security, automated fraud detection systems differentiatedn normal and
unusual activity on a variety of data such as cellular phone calls (FaamétProvost, 1997) and
automobile insurance fraud (Phua et al., 2004). TDT is the task of idergitgimearliest report of a
previously unseen news story from a sequence of news stories. i@lgsapproaches are typically
used in TDT (Yang et al., 1998; Zhang et al., 2005). Finally, anomaloestaletection has also
been used in fMRI analysis to identify regions of increased brain actigtyesponding to given
cognitive tasks (Neill et al., 2005).

In general, WSARE can be applied to data from these different domailmgsas the data
and the anomalous events satisfy several criteria. WSARE is intended rat@pa& categorical,
case-level records in which the presence of a record can be cmetbide event. For instance, in
ED data, an event is defined as the appearance of a person at thedelt girovides a signal of
the community health and we are interested in the characteristics of that p8esmmdly, WSARE
only finds differences between the recent data and the baseline data. ctinsider the baseline
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data to be a “class”, then WSARE looks for deviations from a single classieSlomains, such
as TDT, require comparisons between several classes. For insta@airrent news story needs
to be compared against several categories of news stories. Thirdiyasadiscussed in Section
2.6, WSARE'’s running time depends on the number of attributes and the nuwhibe&lues each
attribute can take. If the number of attributes and the number of valuesdbragtibute are too
high, WSARE may not finish in a reasonable amount of time. Some domainsedheirunning
time of the detection algorithm to be a few seconds or less in order for the deté&etion system to
be effective. In these situations, using WSARE is not appropriate. Ootliee hand, for domains
such as biosurveillance, the running time of WSARE is acceptable since & émiproximately a
minute to a few minutes to complete on real ED data sets. Finally, WSARE treatsegacti in the
data independently of the other records. If a sequence of recorigghlg mdicative of, for instance,
a security breach in a network, WSARE will not be able to detect this pattern.

Other related work can also be found in the area of stream mining. In sing@inyg, the focus is
on the online processing of large amounts of data as it arrives. Martalgs have been developed
to detect anomalies in the current stream of data. Ma and Perkins (2883pd a novelty detection
algorithm based on online support vector regression. Anomalies cam@lsbaracterized by an
abnormal burst of data. The technique described by Zhu and Si280%) 6imultaneously monitors
windows of different sizes and reports those that have an abnormgedgagion of data. A density
estimation approach is used by Aggarwal (2003) to help visualize both Ispadiaemporal trends
in evolving data streams. Finally, Hulten et al. (2001) present an effieigotrithm for mining
decision trees from continuously changing data streams. While this worlnisuilly concerned
with maintaining an up-to-date concept, detecting concept drift is similar totdejezhanges in
a data stream. WSARE 3.0 cannot be directly applied to stream mining becauamdiunt of
historical data needed to create the baseline distribution is typically notsituleds a stream mining
context. However, WSARE 2.0 could possibly be maodified for a stream miniptication.

In the following paragraphs, we will briefly review methods that have hessd for the de-
tection of disease outbreaks. Readers interested in a detailed surveswaiviillance methods
can be found in (Wong, 2004) and (Moore et al., 2003). The majorityetéation algorithms in
biosurveillance operate on univariate time series data. Many of thesariatés/algorithms have
been taken from the field of Statistical Quality Control and directly applied teupieillance. The
three most common techniques from Statistical Quality Control include the Sineedntrol chart
(Montgomery, 2001), CUSUM (Page, 1954; Hutwagner et al., 2008) FAWVMA (Roberts, 1959;
Williamson and Hudson, 1999). Although these three algorithms are simple to implethey
have difficulty dealing with temporal trends. Univariate algorithms basedegression and time
series models, on the other hand, are able to model explicitly the seasdrddyanf week effects
in the data. The Serfling method (Serfling, 1963) uses sinusoidal comiganéts regression equa:
tion to model the seasonal fluctuations for influenza. A Poisson regnesgidel that included a
day of week term as a covariate was demonstrated to be a fairly capabdtodéte(Buckeridge
et al., 2005). As for time series models, the ARIMA and SARIMA models (Gimal Thacker,
1981; Watier et al., 1991; Reis and Mandl, 2003) are commonly used inre@iance to deal with
temporal trends. Recently, wavelets (Goldenberg et al., 2002; Zhahg 2003) have been used as
a preprocessing step to handle temporal fluctuations including unusuaMaloes due to holidays.

The most common algorithm used in biosurveillance of spatial data is the SpaialSHatistic
(Kulldorff, 1997), which has already been discussed. The Spatad Statistic has been generalized
to include a time dimension (Kulldorff, 2001) such that the algorithm searfdresylinders in
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spatio-temporal data. Recent work has improved the speed of the Spatrain®&thod using an
overlap-kd tree structure (Neill and Moore, 2004; Neill et al., 2005).

The algorithms mentioned thus far have only looked at either univariateatinsbgata. Only
a few multivariate biosurveillance algorithms that consider spatial, temponadpglaphic, and
symptomatic attributes for individual patient cases currently exist. BCDK@&inige et al., 2005)
is a multivariate changepoint detection algorithm that monitors in a frequentisienarhether a
Bayesian network learned from past data (during a “safe” traininpgeappears to have a dis-
tribution that differs from the distribution of more recent data. If so, themaomaly may have
occurred. The Bayesian Aerosol Release Detector (BARD) (Hogah,&£2004) is an algorithm
specifically designed to detect an outbreak of inhalational anthrax dumtsgpheric dispersion of
anthrax spores. BARD combines information from ED visits, recent mdtagioal data, and spa-
tial and population information about the region being monitored in order tordiete if an anthrax
attack has occurred. Finally, PANDA (Cooper et al., 2004) is a popukiigmed anomaly detection
algorithm that uses a massive causal Bayesian network to model eadduadliin the region under
surveillance. By modeling at the individual level, PANDA is able to coheremgyesent different
types of background knowledge in its model. For example, spatio-tempa@ingsions about a
disease outbreak can be incorporated as prior knowledge. In addit®characteristics of each
individual, such as their age, gender, home zip, symptom information angsidn date to the ED
can be used to derive a posterior probability of an outbreak.

There are two algorithms that are similar to the approach taken by WSAREaSoset mining
(Bay and Pazzani, 1999) finds rules that distinguish between two or mou@gusing a pruning
algorithm to reduce the exponential search space. This optimization @wagsules whose counts
are too small to yield a valid Chi Square test. Many of these rules are intgyéstWSARE.
Multiple hypothesis testing problems are addressed in contrast set miningytheoBonferroni
correction. In health care, Brossette et al. use association rulesdpitédanfection control and
public health surveillance (Brossette et al., 1998). Their work is similar to RESA.0 (Wong
et al., 2002), with the main difference being the additional steps of the nsimdtion test and FDR
in WSARE.

7. Conclusions

WSARE approaches the problem of early outbreak detection on multivatiateillance data using
two key components. The first component is association rule searcty ishised to find anomalous
patterns between a recent data set and a baseline data set. The contobihti®rule search is best
seen by considering the alternate approach of monitoring a univariatal.sigfran attribute or
combination of attributes is known to be an effective signal for the preseha certain disease,
then a univariate detector or a suite of univariate detectors that monitorsighial will be an
effective early warning detector for that specific disease. Howdvsuch a signal is not known
beforehand, then the association rule search will determine which attribrgest interest. We
intend WSARE to be a general purpose safety net to be used in combindttioa suite of specific
disease detectors. Thus, the key to this safety net is to perform noifispésease detection and
notice any unexpected patterns.

With this perspective in mind, the fundamental assumption to our associatioappieach is
that an outbreak in its early stages will manifest itself in categorical survedldata as an anoma-
lous cluster in attribute space. For instance, a localized gastrointestinagakitbriginating at a
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popular restaurant in zipcode X would likely cause an upswing in diarcheas involving peo-
ple with home zipcode X. These cases would appear as a cluster in theriatiegtiributes of
Home Zip Code= X and Symptom= Diarrhea. The rule search allows us to find the combina-
tion of attributes that characterize the set of cases from recent datar¢hatost anomalous when
compared to the baseline data. The nature of the rule search, howénguaes the problem of
multiple hypothesis testing to the algorithm. Even with purely random data, thesdxmstg rule
may seem like a truly significant anomalous pattern. We are careful to &vaheastatistical sig-
nificance of the best scoring rule using a randomization test in which thehyppdithesis is the
independence of date and case attributes.

The second major component of WSARE is the use of a Bayesian networkdel mdase-
line that changes due to temporal fluctuations such as seasonal trendeelend versus weekday
effects. In WSARE 3.0, attributes are divided into environmental andrespattributes. Envi-
ronmental attributes, such as season and day of week, are attributésamhiesponsible for the
temporal trends while response attributes are the non-environmentaltatribdhen the Bayesian
network structure is learned, the environmental attributes are not permitiestégarents because
we are not interested in predicting their distributions. Instead, we wanté¢omi@e how the envi-
ronmental attributes affect the distributions of the response attributes.RES#0 operates on an
assumption that the environmental attributes account for the majority of tietioarin the data.
Under this assumption, the ratios compared in the rule search should reasonaely stable over
historical time periods with similar environmental attribute values. As an examfhe, current day
is a winter Friday and we use season and day of week as environmeribaitaty then the fraction
of male senior citizens, for instance, showing up at an ED to the total nunilpatients should
remain roughly stable over all winter Fridays in the historical period ovechvitine Bayesian net-
work is learned. Once the Bayesian network structure is learned, ésemts the joint probability
distribution of the baseline. We can then condition on the environmental atsitufgoduce the
baseline given the environment for the current day.

Multivariate surveillance data with known outbreak periods is extremely dliffic obtain. As a
result, we resorted to evaluating WSARE on simulated data. Although the sinsutitorot reflect
real life, detecting an outbreak in our simulated data sets is a challengingmrédr any detection
algorithm. We evaluated WSARE on the CityBN simulator, which was implemented &rafen
surveillance data which contained temporal fluctuations due to day of wksltseand seasonal
variations of background illnesses such as flu, food poisoning andjiakerDespite the fact that
the environmental attributes used by WSARE 3.0 did not account for alkofahiation in the data,
WSARE 3.0 detected the anthrax outbreaks with nearly the optimal detection tarae\ary low
false positive rate. We show that WSARE 3.0 outperformed three commeariaté detection
algorithms in terms of false positives per month and detection time. WSARE 3.0raldoged a
better AMOC curve than WSARE 2.0 because the latter was thrown off by timgotel trends in
the data. Finally, the Bayesian network provided some smoothing to the badistititeution which
enhanced WSARE 3.0’s detection capability as compared to that of WSARE 2.5

WSARE has been demonstrated to outperform traditional univariate methaisulated data
in terms of false positives per month and detection time. Its performance lomaed data requires
further evaluation. Currently, WSARE is part of the collection of biosillarece algorithms in the
RODS system (Real-time Outbreak Detection System, 2004). WSARE 2.0 playee to monitor
ED cases in western Pennsylvania and Utah. It was also used duringda&alt Lake City winter
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Olympics. WSARE 3.0 is currently being used as a tool for analysis of pubdittindata by several
American state health departments and by the Israel Center for DiseaselCon
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