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Abstract

The problem of selecting a subset of relevant features intengially overwhelming quantity of
data is classic and found in many branches of science. Exariyptomputer vision, text processing
and more recently bio-informatics are abundant. In texdsifecation tasks, for example, it is not
uncommon to have f0to 10’ features of the size of the vocabulary containing word fesupy
counts, with the expectation that only a small fraction afnthare relevant. Typical examples
include the automatic sorting of URLSs into a web directory #me detection of spam email.

In this work we present a definition of “relevancy” based oacifal properties of the Laplacian
of the features’ measurement matrix. The feature selegtiooess is then based on a continuous
ranking of the features defined by a least-squares optilniz@rocess. A remarkable property
of the feature relevance function is that sparse solutionshfe ranking values naturally emerge
as a result of a “biased non-negativity” of a key matrix in flnecess. As a result, a simple least-
squares optimization process converges onto a sparsesolid., a selection of a subset of features
which form a local maximum over the relevance function. Téatdire selection algorithm can be
embedded in both unsupervised and supervised inferenbdepre and empirical evidence show
that the feature selections typically achieve high acguesen when only a small fraction of the
features are relevant.

1. Introduction

As visual recognition, text classification, speech recognition and moeatly bio-informatics aim
to address larger and more complex tasks the problem of focusing on theatewant information
in a potentially overwhelming quantity of data has become increasingly importaames from
computer vision, text processing and Genomics are abundant. For iastandgsual recognition
the pixel values themselves often form a highly redundant set of featumethods using an “over-
complete” basis of features for recognition are gaining popularity (Okdraand Field, 1996), and
recently methods relying on abundance of simple efficiently computable ésatdirwhich only
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a fraction of are relevant were proposed for face detection (ViolaJangs, 2001) — and these
are only few examples from the visual recognition literature. In text claasifin tasks it is not
uncommon to have T0to 10’ features of the size of the vocabulary containing word frequency
counts, with the expectation that only a small fraction of them are relevamti¢l. 1992). Typical
examples include the automatic sorting of URLSs into a web directory and thetidate¢ spam
email. In Genomics, a typical example is gene selection from micro-array deggewhe features
are gene expression coefficients corresponding to the abundaceltutdr mRNA taken from sam-
ple tissues. Typical applications include separating tumor from normal getliscovery of new
subclasses of Cancer cells based on the gene expression profilealliyihhe number of samples
(expression patterns) is less than 100 and the number of features)getie raw data ranges from
5000 to 50000. Among the overwhelming number of genes only a small frastretevant for the
classification of tissues whereas the expression level of many othes gexebe irrelevant to the
distinction between tissue classes — therefore, identifying highly relevaetsgeom the data is a
basic problem in the analysis of expression data.

From a practical perspective, large amounts of irrelevant featuies@fearning algorithms at
three levels. First, most learning problems do not scale well with the grovitfetgfvant features —
in many cases the number of training examples grows exponentially with the nofibelevant
features (Langley and Iba, 1993). Second, is a substantial déigradéclassification accuracy for
a given training set size (Almuallim and Dietterich, 1991; Kira and Rende#21.9The accuracy
drop affects also advanced learning algorithms that generally scale wlelthe dimension of the
feature space such as the Support Vector Machines (SVM) as reobstyved in (Weston et al.,
2001). The third aspect has to do with the run time of the learning algorithmsbimtgances. In
most learning problems the classification process is based on innerpsduhiween the features
of the test instance and stored features from the training set, thus whanortier of features is
overwhelmingly large the run-time of the learning algorithm becomes prohilyitisege for real
time applications, for example. Another practical consideration is the probfel®termining how
many relevant features to select. This is a difficult problem which is haxdly &ldressed in the
literature and consequently it is left to the user to choose manually the nuffieatures. Finally,
there is an issue of whether one is looking for thaimal set of (relevant) features, or simply a
possibly redundant but relevant set of features.

The potential benefits of feature selection include, first and foremaser leecuracy of the in-
ference engine and improved scalability (defying the curse of dimensionaligcondary benefits
include better data visualization and understanding, reduce measurerdesibage requirements,
and reduce training and inference time. Blum and Langley (1997) in &gamnticle distinguish
between three types of methodsmbedded, FilteandWrapperapproaches. The filter methods
apply a preprocess which is independent of the inference engine ttaelkpaedictor or the classifi-
cation/inference engine) and select features by ranking them withiatiorecoefficients or make
use of mutual information measures. The Embedded and Wrapper apgsaamstruct and select
feature subsets that are useful to build a good predictor. The issugetheinotion ofelevancyi.e.,
what constitutes a good set of features. The modern approachesotbefocus on building feature
selection algorithms in the context opecifidnference engine. For example, (Weston et al., 2001,
Bradley and Mangasarian, 1998) use the Support Vector Machingl8¥ a subroutine (wrapper)
in the feature selection process with the purpose of optimizing the SVM axcaraethe resulting
subset of features. These wrapper and embedded methods in gerdsgdically computationally
expensive and often criticized as being “brute force”. Further detailelevancy versus usefulness
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of features and references to historical and modern literature on desgilection can be found in
the survey papers (Blum and Langley, 1997; Kohavi and John,; 18@yon and Elissef, 2003).

In this paper the inference algorithm is not employed directly in the featleetsm process
but instead general properties are being gathered which indirectly indidsether a feature sub-
set would be appropriate or not. Specifically, we use clustering as tdécmmeand use spectral
properties of the candidate feature subset to guide the search. Thastéead'direct” approach
where the search is conducted on the basis of optimizing desired speopattes rather than on
the basis of explicit clustering and prediction cycles. The search is ctealby the solution of a
least-squares optimization function using a weighting scheme for the raniiegtores. A remark-
able property of the energy function is that the feature weights come oitivpass a result of a
“biased non-negativity” of a key matrix in the process and sharply dextdie border between rel-
evant and non-relevant featuteBhese properties make the algorithm ideal for “feature weighting”
applications and for feature selection as the boundary between retexdhinbn-relevant features is
typically clearly expressed by the decaying property of the feature weeidthe algorithm, called
Q—aq, is iterative, very efficient and achieves remarkable performancevariety of experiments
we have conducted.

There are many benefits of our approach: First, we avoid the exgerginputations associated
with Embedded and Wrapper approaches, yet still make use of a pretticjpiide the feature
selection. Second, the framework can handle both unsupervisedpemised inference within the
same framework and handle any number of classes. In other words tseanderlying inference
is based on clustering class labels are not necessary, but on the atlderwhen class labels are
provided they can be used by the algorithm to provide better feature sakectibird, the algorithm
is couched within a least-squares framework — and least-squaresmpeoate the best understood
and easiest to handle. Finally, the performance (accuracy) of thethlgds very good on a large
number of experiments we have conducted.

2. Algebraic Definition of Relevancy

A key issue in designing a feature selection algorithm in the context of areirde is defining the
notion of relevancy. Definitions of relevancy proposed in the past (BlndiLangley, 1997; Kohavi
and John, 1997) lead naturally to a explicit enumeration of feature sulikitls we would like to
avoid. Instead, we take an algebraic approach and measure the cel®faa subset of features
against its influence on the cluster arrangement of the data points with thefgofoducing an
energy function which receives its optimal value on the desired featlaetion. We will consider
two measures of relevancy based on spectral properties where this fissed on the Standard
spectrum and the second on the Laplacian spectrum.

2.1 The Standard Spectrum

Consider an x g data seM consisting ofg samples (columns) over n-dimensional feature sjpice
representing features«, ..., X, overg samples. Let the row vectors bf be denoted byn ,...,m;]
pre-processed such that each row is centered around zero andng bp norm ||m;|| = 1. Let

S = {Xi,....X;, } be a subset of (relevant) features from the set ffatures and lett; € {0,1} be
the indicator value associated with featuyei.e.,a; = 1 if x; € § and zero otherwise (see Fig. 1).
Let As be the correspondingffinity matrix whose(i, j) entries are the inner-product between the

i'th and j'th data points restricted to the selected coordinate featuresdd-e.y ; aimim;” where
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Figure 1: An illustration of variable-selection using our matrix aton. The large array on the left rep-
resents the matrid, which containsg columns that represent tlgedata- points ¥y, ..., Mq).
Each row of this matrix is a feature-vectoy, ,...,m; . In an idealized variable selection process,
rows of the matrixVl are selected to construct the matkix(middle), whose columns form well
coherent clusters.

mim;" is the rank-1 matrix defined by the outer-product betwegnd itself. Finally, leQQs be a
g x k matrix whose columns are the filseigenvectors of\s associated with the leading (highest)
eigenvalued > ... > Ax.

We define “relevancy” as directly related to the clustering quality of the daitatprestricted
to the selected coordinates. In other words, we would like to measure tlity giidhe subsetS
in terms of cluster coherence of the fikstlusters, i.e., we make a direct linkage between cluster
coherence of the projected data points and relevance of the selectdihates.

We measure cluster coherence by analyzing the (standard) specpaites of the affinity ma-
trix As. Considering the affinity matrix as representing weights in an undirectghgitas known
that maximizing the quadratic form' Asx wherex is constrained to lie on the standard simplex
(> x =1 andx; > 0) provides the identification of the maximelique of the (unweighted) graph
(Motzkin and Straus, 1965; Gibbons et al., 1997), or the maximal “domirauiiet of vertices
of the weighted graph (Pavan and Pelillo, 2003). Likewise there is ewed@nactivated by finding
cuts in the graph) that solving the quadratic form above wkesaestricted to the unit sphere pro-
vides cluster membership information (cf. Ng et al., 2001; Weiss, 1998nBemnd Freeman, 1998;
Shi and Malik, 2000; Brand and Huang, 2003; Chung, 1998). In thigext, the eigenvalue (the
value of the quadratic form) represents the cluster coherence. Ingbefiaclusters, the highet
eigenvalues oA represent the corresponding cluster coherences and the compohantsigen-
vector represent the coordinate (feature) participation in the comdspgpcluster. The eigenvalues
decrease as the interconnections of the points within clusters get s(sasgSarkar and Boyer,
1998)). Therefore, we define the relevance of the supset

rel(S) = trace(QJ Al AQs)

T T T
- zuirais(mir mis)mirQSQs mis
r,s
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k
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whereA; are the leading eigenvalues Af. Note that the proposed measure of relevancy handles
interactions among features up to a second order. To conclude, ach#ekigh score on the com-
bined energy of the firdt eigenvalues of indicate (although indirectly) that theinput points
projected onto thé-dimensional feature space are “well clustered” and that in turn stgythed.S

is a relevant subset of features.

Maximizing the relevancy above for all possible feature subsets in infeasitherefore, we
relax the problem, i.e., instead of enumerating the feature subsatd ranking them according to
the value ofel(5) we consider the prior weightsy, ..., oy as unknowneal numbersand define the
following optimization function:

Definition 1 (Relevant Features Optimization) Let M be an nx g input matrix with rowsn, ,....m/ .

Let Ay = z{‘zlo(imimiT for some unknown scalars, ..., an. The weight vectoo = (a1, ...,O(n)T
and the orthonormal & k matrix Q are determined at the maximal point of the following optimiza-
tion problem:

rggxtrace(QTA;AaQ) 1)

n

subject to Za?:l, Q'Q=I

Note that the optimization function does not include the inequality constraint0 and neither
a term for “encouraging” a sparse solution of the weight veater both of which are necessary
for a “feature selection”. As will be shown later in Section 4, the sparsitlypasitivity conditions
are implicitly embedded in the nature of the optimization function and thereforerfgrheaturally
with the optimal solution.

Note also that it is possible to maximize the gaip,A? — 5, ;A7 by definingQ = [Q1|Q2]
whereQ; contains the firsk eigenvectors an@. the remainingy — k eigenvectors (sorted by de-
creasing eigenvalues) and the criterion function (1) would be replaced b

max trace(Q[ Ag AuQ1) — trace(Q] Af AuQ2).
Q=[Q1/Q2], i
We will describe in Section 3 an efficient algorithm for finding a local maximdrthe op-
timization (1) and later address the issue of sparsity and positivity of théingsweight vector
a. The algorithms are trivially modified to handle the gap maximization criterion arsktiall
not be further elaborated here. We will describe next the problem fation using an additive
normalization (the Laplacian) of the affinity matrix.

2.2 The Laplacian Spectrum

Given the standard affinity matri&, consider the Laplacian matrik: = A— D + dmad WhereD is
a diagonal matriD = diag(y jaij) anddmaxis a scalar larger or equal to the maximal element of
D.! The matrixL normalizesA in an additive manner and there is much evidence to support such

1. Note that in applications of algebraic graph theory the Laplacian is dedisie — A. The reason for the somewhat
different definition is that we wish to maintain the order of eigenvectors dsase ofA (where the eigenvectors
associated with the largest eigenvalues come first).

1859



WOLF AND SHASHUA

a normalization both in the context of graph partitioning (Mohar, 1991; HaIr0) and spectral
clustering (Weiss, 1999; Ng et al., 2001).

It is possible to reformulate the feature selection problem (1) using the diaplas follows.
Let A = mim;' andD; = diag(mim;’' 1). We defineLy = ¥; ajL;j whereL; = Aj — Dj + dmad . We
have, therefore:

Lg =Aq —Dqg + (Zai)dmaxla
|

whereDy = diag(A; 1). Note that sincex is a unit norm vector that contains positive elements,
theny;a; > 1. The feature selection problem is identical to (1) wHeyeeplaces\,.

3. An Efficient Algorithm

We wish to find an optimal solution for the non-linear problem (1). We will ®ou the Standard
spectrum matrixA, and later discuss the modifications required lfgr If the weight vectora

is known, then the solution for the matr@@ is readily available by employing a Singular Value
Decomposition (SVD) of the symmetric (and positive definite) maigixConversely, ifQ is known
thena is readily determined as shown next. We already saw that

traceQ"AjAQ) = 5 aiaj(mm;)m QQ m;
N
= a'Ga

whereGj; = (m mj)m;" QQ"m; is symmetric and positive definite. The optineais therefore the
solution of the optimization problem:

maaxaTch subject toa"a =1,

which results imt being the leading eigenvector Gf i.e., the one associated with its largest eigen-
value. A possible scheme, guaranteed to converge to a local maxima, istteigtasome initial
guess foix and iteratively interleave the computation@fivena and the computation af given

Q until convergence. We refer to this scheme asBasicQ — a Method.

In practice, the number of iterations is rather small — typically between 5 to h@.ridntime
complexity as a function of the number of features therefore governed by the complexity of
finding the leading eigenvector 6f— typically in the order of? assuming a “reasonable” spectral
gap (for example, ifs were a random matrix then the spectral gap is large — asymptotically in the
order of/n — as we know from the semi-circle law (Wigner, 1958)). A quadratic conifyles
the best that one can expect when performing feature selection in apamsed manner since all
pairs of feature vectors need to be compared to each other.

A more advanced scheme with superior convergence rate and more intiyosizeuracy of
results (based on empirical evidence) is to embed the computatianwithin the “orthogonal
iteration” (Golub and Loan, 1996) cycle for computing the lardgesigenvectors, described below:

Definition 2 (Standard Power-EmbeddedQ — a Method) Let M be an nx g input matrix with

rowsm, ,...,m;, and some orthonormalxk matrix 3%, i.e., @' Q© = I. Perform the following
steps through a cycle of iterations with indexrl, 2, ...

1. Let G be a matrix whoséi, j) components arém; m;)m QU -Q(~1 m;.
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Leta(") be the largest eigenvector of G
Let AV =" a”mim/.

Let Z") = ANQI -1

2 R QR

o 0 K~ D

Increment index r and go to step 1.

The method is considerably more efficient than the basic scheme abovelziadea very good
performance (accuracy). Note that steps 4,5 of the algorithm condise gbrthogonal iteration”
module, i.e., if we were to repeat steps 4ry we would converge onto the eigenvectorsAd?.
However, note that the algorithm does not repeat steps 4,5 in isolation deddnmecomputes the
weight vectora (steps 1,2,3) before applying another cycle of steps 4,5. We show bedowhth
recomputation oft does not alter the convergence property of the orthogonal iteratiemsghhus
the overall scheme converges to a local maxima:

Proposition 3 (Convergence of Power-Embedde® — a) The Power Embedded Qa method
convergence to a local maxima of the criterion function (1).

Proof: We will prove the claim for the cade= 1, i.e., the scheme optimizes over the weight vector
a and the largest eigenvectgiof A,.

Because the computation afis analytic (the largest eigenvector @) and because the opti-
mization energy is bounded from above, it is sufficient to show that the etatipn ofg monoton-
ically increases the criterion function. It is therefore sufficient to shai: th

A% 2 g VAZY, ey
for all symmetric matrices. Since steps 4,5 of the algorithm are equivalent to the step:
q0 = AqTH
[Aq—)||"
we can substitute the right hand side into (2) and obtain the condition:
TA4q
TA2q < 4
Q'A< 3)

which needs to be shown to hold for all symmetric matridesnd unit vectors). Letq = 5;Vivi
be represented with respect to the orthonormal set of eigenvegtofshe matrixA. Then,Aq =
YiYiAivi whereA; are the corresponding eigenvalues. Sigéa?q > 0, it is sufficient to show that:
|Ag||* < ||A%q||?, or equivalently:

(5 VA2 <5 VN (4)
Let = A? and letf (x) = x2. We then have:
f(ZVizlli) < Zyizf()\i2>a

which follows from convexity off (x) and the fact thay; y? = 1. ]
A faster converging algorithm is possible by employing the “Ritz” accelerat®@olub and
Loan, 1996) to the basic power method as follows:
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Definition 4 (Q — o with Ritz Acceleration) Let M be an nx g input matrix with rowsn; ,....m/,

and some orthonormal r k matrix 3%, i.e., 39" Q© = |. Perform the following steps through a
cycle of iterations with index+ 1,2, ...

1. LetG",a(" and A" be defined as in the Standard Power-Embeddedaalgorithm.
2. Z0) = ANQr-1),

3.z R RO,

4. LetG") be a matrix whoséi, ) components aren, Q)" Q")m;.

5. Recompute (") as the largest eigenvector 6"), and recompute & accordingly.
6. Let ) = QN ANQMD),

7. Perform SVD on®@: [UM'SNU®] = svdS").

8. QN = Q_(T)U(f)_

9. Incrementindex r and go to step 1.

The Q — a algorithm for the Laplacian spectruiy, follows the Standard spectrum with the
necessary modifications described below.

Definition 5 (Laplacian Power-EmbeddedQ — a Method) In addition to the definition of the Stan-
dard method, let d= maxdiag(mm,") and Li(o) = mim;" —diag(mim;’' 1) +d;l. Perform the fol-
lowing steps with index+ 1,2, ...

1. Let F") be a matrix whoséi, j) components are tra¢® 1" Lfr_l)TLﬁr_l)Q(r*D).
2. Leta" be the largest eigenvector of .

3. Letd") = (maxdiag(3"; ;"' mim[)) /(3 )

4. Foreachilet li(.r) =mim;" —diag(mm; 1) +d®|

5. Letl =5 L"),
6. LetZ) =LOQU-D,
7. 70 2R QRO

8. Increment index r and go to step 1.

3.1 The Supervised Case

TheQ—a algorithms and the general approach can be extended to handle data sgtlabkls. One
of the strengths of our approach is that the feature selection method wcdie l@th unsupervised
and supervised data sets. In a nutshell, the supervised case is hanftiddves. Givenc classes,

we are giverc data matrice!',| = 1,...,c, each of sizeyx d.

Definition 6 (Supervised Relevant Features Optimization)Let M' be an nx ¢ input matrices
with rowsm!",....m\T. Let A" = 57, aim%m"T for some unknown scalats,, ..., op. The weight
vectora = (a1,...,0,) " and the orthonormal ®yx k9" matrices @" are determined at the maximal
point of the following optimization problem:
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athrace(Q”TA'(!,TAﬂQ”)

m
Q9N a;

—y ;trace(QghTA%hTA?thgh) (5)
g

subject to Zlaiz =1, QINTQI=|

=
Where the weighy and the parameters’R are determined manually (see below).

The criterion function seeks a weight vecmrsuch that the resulting affinity matrix of all
the data points (sorted) would be semi-block-diagonal, i.e., high inter-digessvalue energy and
low intra-class energy. Therefore, we would like to minimize of the intra-cégsnvalue energy
trace(QINT AZ"T AZ"QIN) (off-block-diagonal blocks) and maximize the inter-class eigenvalue en-
ergytrace(Q" TAITALQ"). The parameterkd" control the complexity of each affinity matrix. A
typical choice of the parameters would k8 = 2 wheng = h, k%" = 1 otherwise, ang = 0.5.

The solution to the optimization function follows step-by-step @he a algorithms. At each
cycle Q9" is computed using the current estimaﬁég anda is optimized by maximizing the ex-

pression: ZGTGHO(_V;GTGghG —a'Ga |
g

.whereG?jh = (mfﬁrp-?)mihTQ@JhTQ_ghm*j1 andgG =y, G ~YZg¢h Goh, We analyze next the prop-
erties of the unsupervis&— a algorithm with regard to sparsity and positivity of the weight vector

o and then proceed to experimental analysis.

4. Sparsity and Positivity ofa

The optimization criteria (1) is formulated as a least-squares problem anttlaghere does not
seem to be any apparent guarantee that the weights, a, would come ounon-negativgsame
sign condition), and in particulaparsewhen there exists a sparse solution (i.e., there is a relevant
subset of features which induces a coherent clustering).

The positivity of the weights is a critical requirement for fRe- a to form a “feature weighting”
scheme. In other words, if one could guarantee that the weights would @amen-negative then
Q — a would provide feature weights which could be used for selection or forlgimpighting
the features as they are being fed into the inference engine of choide.adldition the feature
weights exhibit a “sparse” profile, i.e., the gap between the high and lovevalfithe weights is
high, then the weights could be used for selecting the relevant featunesdla®Ve will refer to the
gap between the high and low weights as “sparsity gap” and discuss later paper the value of
the gap in simplified domains. With the risk of abusing standard terminology, weefgit to the
property of having the weight vector concentrate its (high) values draumumber of coordinates
as a sparsity feature. Typically, for our algorithm, none of the valueseofvikight vector strictly
vanish.

For most feature weighting schemes, the conditions of positivity and spahsityd be specif-
ically presented into the optimization criterion one way or the other. The possidas for doing
so include introduction of inequality constraints, usd.gfor L1 norms, adding specific terms to
the optimization function to “encourage” sparse solutions or use a multiplicativeme of itera-
tions which preserve the sign of the variables throughout the iterationa (fery partial list see
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Olshausen and Field, 1996; Kivinen and Warmuth, 1997; Lee and S&88§; Vapnik, 1998). Itis
therefore somewhat surprising, if not remarkable, that the leastesji@mulation of the feature
selection problem could consistently converge onto same-sign and sparsens.

Before we proceed with the technical issues, it is worthwhile to make quaditatyuments
(which were the basis of developing this approach to begin with) as to therlyimd) reason for
sparsity. Consider rewriting the optimization criterion (1) by an equivaletgron:

min { 1A — QQ"Au 2 — [/Aul? | ©®)

where|| - |2 is the square Frobenius norm of a matrix defined as the sum of squaatt®nfries
of the matrix. The first term of (6) measures the distance between the colinfsand the
projection of those columns ontckadimensional subspace (note ti@®" is a projection matrix).
This term receives a low value if indedg has a small) number of dominant eigenvectors, i.e.,
the spectral properties of the feature subset representég lye indicative to a good clustering
score. Sincédg = ¥;aimim;" is represented by the sum of rank-1 matrices one can combine only a
smallnumber of them if the first term is desired to be small. The second term (whighendewed
also as a regularization term) encourages addition of more rank-1 matribessiom provided they
areredundanti.e., are already spanned by the previously selected rank-1 matridesnakes the
point that the feature selection scheme looks for relevant featurestigcessarily the minimal set
of relevant features. To summarize, from a qualitative point of view tlexgen of values for the
weightsa; is directly related to the rank of the affinity matg which should be small if indeed
Ay arises from a clustered configuration of data points. A uniform spréealwesa; would result

in a high rank forA,, thus the criteria function encourages a non-uniform (i.e., sparsejdmf
weight values.

The argument presented above to facilitate clarity of the approach aottistai be taken as a
proof for sparsity. The positivity and sparsity issues are approachibeé sequel from a different
angle which provides a more analytic handle to the underlying searchgsrttan the qualitative
argument above.

4.1 Positivity ofa

The key for the emergence of a sparse and positiveas to do with the way the entries of the
matrix G are defined. Recall th&;; = (m m;)m QQ"m; and thata comes out as the leading
eigenvector ofG (at each iteration). |5 were to be non-negative (and irreducible), then from the
Perron-Frobenius theorem the leading eigenvector is guaranteed emimegative (or same-sign).
However, this is not the case a@dn general has negative entries as well as positive ones. However,
from a probabilistic point of view the probability that the leading eigenvectds avill come out
positive rapidly approaches 1 with the growth of the number of featuresis-uttder a couple of
simplifying assumptions.

The simplifying assumptions we will make in order to derive a probabilistic argtyneefirst
that the entries of the upper triangular partére independent. The second simplifying approx-
imation is that the columns @ are sampled uniformly over the unit hypersphere. Although the
independence and uniformity assumptions are indeed an idealization oféheatire oG andQ,
they nevertheless allow us to derive a powerful probabilistic argumeiatvaiows in a rigorous
manner that the weights; are hon-negative with probability 1 — a statement which agrees with
practice over extensive experimentations which we have performed.
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The probabilistic approach follows from the observation that each ehtB/amnsists of a sum
of products of three inner-products:

k

Gij = IZl(miT%)(ij%)(miij)-

In general, a product of the form= (a’b)(a'c)(b'c), where|jal| = ||b|| = ||c| = 1 satisfies
-1/8< f <1 wheref =1whena=b=c. Sincef > —1/8 (will be proven below) there is
an asymmetry on the expected valuefofi.e., the expected values of the entriesGére biased
towards a positive value — and we should expect a bias towards a pdsitdiag eigenvector db.
We will derive below the expectation on the entries®fassuming independence and uniformity)
and prove the main theorem showing that a random matrix whose entrieanapéed i.i.d. form
some distribution with positive mean and bounded variance has a positivedeagenvector with
probability 1 when the number of featuness sufficiently large. The details are below.

Proposition 7 The minimal value of £ (a'b)(a'c)(b"c) wherea, b, c € RY are defined over the
unit hypersphere is-1/8.

Proof: See appendix.

Proposition 8 The expected value of=£ (a'b)(a'c)(b'c) wherea,b,c € 0% andc is uniformly
sampled over the unit hypersphergisq)(a’b)?

Proof: See appendix.

To get a rough estimate on the values in the ma&iwe can further assume thatandb are
also evenly distributed on the g-dim sphere. In this case the expectatian mf is 1/q. To see
this observe that the expectatiBiia’b)? = [ [(a'b)?do(a)do(b) = [a' ([ bb'da(b))adao(a) =
fa'((1/9)l)ada(a) wherel is the identity matrix in19.

Each entryG;; is a sum ofk such termsGj; = 5, (m;"q;)(m/ g;)(m{" m;). If the features
are irrelevant, we can expect the correlation with the vegjaio be similar to correlation with a
“typical” random vector. In this case the above proposition applies. Mewerherk > 1 there are
interrelations between the elements in the sum resulting from the orthogonatitg oblumns of
Q. The following proposition shows that the expectation is still larger than zero

Proposition 9 The expected value of ¥ ;(a"b)(a'c)(b'c) wherea,b € 09 andc are or-
thonormal vectors uniformly sampled over the unit hypersphei@iis (k/q)(a’b)2,

Proof: See appendix.

The body of results on spectral properties of random matrices (sexdonple Mehta, 1991)
deals with the distribution of eigenvalues. For example, the corner-stomethé&nown as Wigner's
semicircletheorem (Wigner, 1958) is about the asymptotic distribution of eigenvalitbstine
following result: “Given a symmetria x n matrix whose entries are bounded independent random
variables with meap and variance?, then for anyc > 20, with probability 1— o(1) all eigenvalues
except for at mosb(n) belong to®(cy/n), i.e., lie in the intervall = (—c,/n,c\/n).”

The notationf (n) = o(g(n)) stands for lim_... f(n)/g(n) =0, i.e., f(n) becomes insignificant
relative tog(n) with the growth ofn. This is a short-hand notation (which we will use in the sequel)
to the formal statement€ > 0, dng S.t. Vn > ng the statement holds with probability-1e.”
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T
= Alpha distribution for the linear synthetic data set
- = Alpha distribution for a completely random data

(a) (b)

Figure 2: (a) Probability, as computed using simulations, of positeading eigenvector of a symmetric
matrix G with i.i.d elements drawn from the Gaussian distributiothvi = 1/6 ando = /2/6.
The probability is very close to 1 starting from= 20. (b) Positivity and sparsity demonstrated
on the synthetic feature selection problem described iti®®e6 (6 relevant features out of 202)
and of a random data matrix. The alpha weight vector (sodediplay) comes out positive and
sparse.

It is also known that whep = 0 all the eigenvalues belong to the intervafwith probability
1—0(1)), while for the casgi> 0 only the leading eigenvalug is outside ofl and

1 02 1
AM==-3YGj+—+0(—),
1 n% 1] T (\/ﬁ)

i.e., A1 asymptotically has a normal distribution with meam+ o2 /u (Furedi and Komlos, 1981).
Our task is to derive the asymptotic behavior of the leading eigenvector whef under the
assumption that the entries Gfare i.i.d. random variables. We will first prove the theorem below,
which deals with Gaussian random variables, and then extend it to bouavuain variables:

Theorem 10 (Probabilistic Perron-Frobenius) Let G= g;; be a real symmetric r n matrix whose
entries for i> j are independent identically and normally distributed random variables migian

1> 0 and varianceo®. Then, for anye > 0 there exist g such that for all n> ng the leading

eigenvectow of G is positive with probability of at leadt— €.

Proof: see appendix.

Fig. 2(a) displays a simulation result plotting the probability of positive leadiggnsector of
G (with p= 1/6 ando = +/2/6) as a function oh. One can see that far> 20 the probability
becomes very close to 1 (abov®9). Simulations withu= 0.1 ando = 1 show that the probability
is above M9 starting fronn = 500.

Theorem 10 used independent Gaussian random variables as a mtuehtatrixG. This
might seem a bit artificial, since the variables of the maBiare dependent and bounded. While
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the independence assumption between all the elements in the upper triargtitrGis hard to
remove, the use of Gaussian variables is not essential; as stated absemiluércle law holds for
matrices with elements that are not necessarily Gaussian.

The only place where we actually used the “Gaussianity” property was @sthaned structure
of the variableg. Sinceg contains normal i.i.d distributions, we deducted thgit = ©(,/n) and
that the probability ofj|g|| > n%4 decays exponentially. Instead of Gaussianity, we can use the
property that the elements of the mat@are bounded, and instead of Gaussian tail bounds we can
use Hoeffding’s tail inequality (Hoeffding, 1963). We will use the onedithequality?

Lemma 11 (Hoeffding's one-sided tail inequality) Let X, Xz, .., X, be bounded independent ran-
dom variables such that;X [a,bi] . Then for § = X; + Xz + ... + X, the following inequality
holds

2tZ
Pr(S$i—ES>t) < eXp<—W>

Using Hoeffding’s lemma, the following lemma could be used to bound the nogn of

Lemma 12 Letg be a random r-vector of i.i.d bounded variables, i.e., for eack iL..n, |g;| < M.
The following holds for some constant C:

2N\ 2 -2
P(lg]2 > Dn¥/2+) < exp(—CD—”)

|V|2

Proof: see appendix.
By letting D = 1 ande = 1, one gets that the probabiliB(||g|| > n¥*) = P(||g||? > n®?) =

c2n2
P(%(|l9[2 > n%/2) is smaller thare” »2 . This is similar to the Gaussian case, and is sufficient to

prove Theorem 10 in the case in which bounded variables are usediin$t@aussian variables.

To summarize the positivity issue, the weight veatocomes out positive due to the fact that
it is the leading eigenvector of a matrix whose entries have a positive megpodfions 7 and 8).
Theorem 10 made the connection between matrices which have the prdpeepgsitive mean and
the positivity of its leading eigenvector in a probabilistic setting.

4.2 Sparsity

We move our attention to the issue of the sparsity of the weight vactidthas been observed in the
past that the key for sparsity lies in the positive combination of terms (cfahdeSeung, 1999) —
therefore there is a strong, albeit anecdotal, relationship between thigifyosf a and the sparsity
feature. Below, we will establish a relationship between the spectral piegpef the relevant and
the irrelevant feature sets, and the sparsity of the feature vector.

Let M be the (normalized) data matrix consistinghabws. Assume that the rows of the matrix
have been sorted such that the firstows are relevant features, and the mext n—n, features are
irrelevant. Let the matrix containing the finst rows be noted abl1, and let the matrix containing
the rest of the rows biy, i.e,M = [{].

We study the elements of the vectwrthat correspond to the irrelevant features to show that
these elements have a small magnitude. If thresgeights are low, we can expect the effect of the

2. This is the inequality one gets while proving Hoeffding’s inequality. Itetdffrom the canonical inequality in that
the one sided case has a factor of 2 improvement.
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associated features to be small. We will next tie the average of these vathesfiectral properties
of M1 andM,.

Recall the weight vectoa is the first eigenvector of the matri@; = (m mj)m;’ QQ mj,
wherem; are the rows of the matrid, andQ is a matrix containing orthonormal columnsj;,
i = 1..k. LetA be the largest eigenvalue Gf

Lemma 13 (sum of irrelevant features’ weight) Using the above definitions, Igt,i = 1..n, be
the eigenvalues of pM] .

a; <

> as B0

i=n1+1

Proof:

Note that ify L, , 1 a; <0 the lemma holds trivially. Le | be the vector wit; zeros andh,
ones.

n 0 0
ai=|-| a= aaT
i=n;+1

where the last inequality follows from the spectral decomposition of the pesi&finite matrixG,
to whicha is an eigenvector with an eigenvalue)of

Let G be the matrix containing the point-wise squares of the elementdhof | i.e., éij =
(m;"mj)2.

Let Q be a matrix containing — k orthonormal columns that span the space orthogon@l to
(é— G) has a structure similar tG, but withQ instead ofQ, and is also positive definite. To see
this notice thaQQ" +QQ" = I, and that théj element of G — G) is therefore given by

Gij — Gij = (m{'m;)?— (m m))m QQ"m; = (m mj)m Q" m; .

el el [ e -
<[3] o[3] = mamiz =3

The denominator in the bound/}) is exactly the quantity that our algorithms maximize. The
higher this value, the tighter the bound. In the ideal case, almost all of #rgyeim the features is
contained in the space spanned by the columr. dfet [ ] be the vector oh; ones, followed by
n, zeros. We have:

We have

T T
N —oTcq > 0 Clal ol Glal _ IMMiji2
B Ny N1 N1

The bound will be tightest if all relevant features have high correlatibmshis case, we can
expectﬁ to be linear inn;. Therefore the addition of more relevant features reduces the weights
of the irrelevant features.
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Without any assumption about the entries of the data mMrixve cannot say much on the
numerator of the bound in Lemma 13. However, by using random matricesamnvgualitatively
evaluate this bound.

The numerator of the bound contains the teyifi, y?, which is just the squared Frobenius
norm of MaM, . LetWe = MaMJ, |[We|[2 = trace(WoW,' ) = trace(WZ). The expectation of this
expression (wher#, is drawn from a random distribution), normalized by the number of rows in
M, is called thesecond moment ofsMMore generally, ifA is a random matrix of size x n, thek
moment of it is defined asy = r—ftrace(A"). For largen this definition coincides with the moments
of the distribution of the eigenvalues of the mat#ix

Consider now matriced/ of the formW = MM T, whereM is ann x g random matrix with
zero mean (weakly) independent elements with a variance of 1. Theseanatreccalled Wishart
matrices. Note that the elements in the malfidneed not be Gaussian. The rows of the maltfix
are not explicitly normalized. However, the scale%octan be thought of as a scale% for each
element ofM, and due to the central limit theorem we can expect for large enoughsvafggto
have the mean of each row approximately zero and the norm of each praxapately 1. Hence,
Wishart matrices well approximate our data matrices, if we are willing to assurthéhelements
of our data matrices are independent. For the bulk of irrelevant feathissnay be a reasonable
assumption.

For largen, the moments of the Wishart matrices are well approximated by the NarayBna po

nomialsmy, = z'l‘;é(’;i—‘f('j) ("}1). In particular, the second moment is given by h/q. Since

the moment is the appropriate trace scaled%byve can expect/s 2, y? to behave similarly to

V2(1+n2/q).

Therefore, the rate in which the bound on the sum of squares of weifjlitelevant features
grow is mostly linear. The implication is that tlg — a algorithm is robust to many irrelevant
features: to a first approximation, the bound on the average squaiglit\wéan irrelevant feature
remains mostly the same, as the number of irrelevant features increases.

In Sec. 6 we will present a number of experiments, both with synthetic ahdlata. Fig. 2(b)
shows the weight vectar for a random data matrid, and for a synthetic experiment (6 relevant
features out of 202). One can clearly observe the positivity andigpafghe recovered weight
vector — even for a random matrix.

4.3 Sparsity and Generalization

The sparsity of the returned vector of weights does more than just direslyethat the irrelevant
features are left out; it also helps the generalization ability of the returegtekby lowering the
trace of the kernel matrix.

Recall that in our optimization scheme, the vector of weighltes a norm of 1, and is expected
to have all positive elements. For norm-1 vectors, the Sum is highest when the elements of the
vector are evenly distributed. Due to the sparsity of the returned vecteeights, we can expect
the above sum to be much lower than what we get with a uniform weighting aofatze

Consider the matriXd,, the linear kernel matrix based on the weights returned byQhe
a algorithm. Ay, which equalsy oimm/, is a weighted sum of rank-one matrices. Since our
features are normalized to have norm-1, each such rank-one nmathxhas atrace of 1. Therefore,
the trace of the kernel matri¥, is exactly the sum of the elements of the veaor
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From the discussion above, the trace of the kernel matrix returned b the algorithm is
expected to be low. This is exactly the criteria for a good kernel matrix egpteby “the trace
bounds.” The trace bounds are Rademacher complexity type of emadbdor classifiers that are
linear combinations of kernel functions (Bousquet and Herrmann,)2008se bounds relate the
trace of the kernel matrix used for training with the generalization erroreotihssifiers that were
trained. The lower the trace, the lower the bound on the difference betivedesting error and the
training error.

Although there is no immediate analog to the concept of generalization errerumttupervised
case, we can expect a similar criteria to hold for this case as well. A gooélkmatrix for unsu-
pervised learning should support the separation given by the seeaiitiaerlying labels (although
unknown). It should not, however, support any random labelings iBhexactly what is measured
by the Rademacher process: how well does the class of functionsardedrhing separate random
partitions of the training set.

In supervised learning, feature selection can be a major cause of tivey. fiConsider the
common case where the number of features is much larger than the numbanygiles. In this
case, it might be possible to construct a classifier with a very low trainiog, @hich employs only
few selected features. This reliance on a small portion on the data whenghh&iglassification
leads to poor generalization performance. This problem was pointedovwgxdmple, by Long
and Vega (2003), who suggested, in their simplest and most effecliviioso(“AdaBoost-NR"),
to encourage redundancy in the pool of participating features.Qr-h@ algorithm, as a result of
optimizing the cost function subject to the constraint that the norm ofithiector is one, has a
similar property. It prefers to divide high weights between a group ofetated features, rather
than to pick one promising feature out of this group and assign it a highghtve

5. Representing Higher-order Cumulants using Kernel Method

The information on which th® — a method relies on to select features is contained in the matrix
Recall that the criterion function underlying te— a algorithm is a sum over all pairwise feature
vector relations:

trace(Q' AL AqQ) = a ' Ga,

whereG is defined such tha®i; = (m;'m;)m"QQ"mj. It is apparent that feature vectors interact
in pairs and the interaction Elinear. Consequently, cumulants of the original data matiwhich
are of higher order than two are not being considered by the featieatioa scheme. For example,
if M were to be decorrelated (i.84M " is diagonal) the matrig% would be diagonal and the feature
selection scheme would select only a single feature rather than a feabset.su

In this section we employ the so called “kernel trick” to allow for cumulants ohérgorders
among the feature vectors to be included in the feature selection proarsgl Kethods in general
have been attracting much attention in the machine learning literature — initially withttbeuw-
tion of the support vector machines (Vapnik, 1998) and later took a lifeaif thivn (see Scholkopf
and Smola, 2002). The common principle of kernel methods is to constratihear variants of
linear algorithms by substituting inner-products by nonlinear kernel funtitnder certain con-
ditions this process can be interpreted as mapping of the original measunesotons (so called
“input space”) onto some higher dimensional space (possibly infinitely) keigimmonly referred to
as the “feature space” (which for this work is an unsuccessful claditsrminology since the word
“feature” has a different meaning). Mathematically, the kernel appréeadefined as follows: let
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X1,...,X| be vectors in the input space, 9&Y, and consider a mappingx) : R — ¥ where# is an
inner-product space. The kernel-trick is to calculate the inner-ptadyg using a kernel function
k:RIx RI— R k(xi,Xj) = @(x) " @(x;), while avoiding explicit mappings (evaluation af)). Com-
mon choices of kernel selection include the d'th order polynomial kek{glsx;) = (x; x; +c)¢
and the Gaussian RBF kern&ls, x;) = exp(—z%2 [xi —x;||?). If an algorithm can be restated such
that the input vectors appear in terms of inner-products only, one d¢astitstie the inner-products
by such a kernel function. The resulting kernel algorithm can be irgtrdras running the original
algorithm on the spac€ of mapped objectg(x). Kernel methods have been applied to the support
vector machine (SVM), principal component analysis (PCA), ridgeession, canonical correla-
tion analysis (CCA), QR factorization and the list goes on. We will focusvbeloderiving a kernel
method for theQ — a algorithm.

5.1 KernelQ—a

We will consider mapping the rows;’ of the data matrisM such that the rows of the mapped data
matrix becomep(m;) ", ...,@(my) ". Since the entries d& consist of inner-products between pairs
of mapped feature vectors, the interaction will be no longer bilinear and ariiain higher-order
cumulants whose nature depends on the choice of the kernel function.

Replacing the rows dfl with their mapped version introduces some challenges before we could
apply the kernel trick. The affinity matridg = ; ai@(m;)@(m;) " cannot be explicitly evaluated
becausé) is defined byouter-productgather than inner-products of the mapped feature vectors
@(m;). The matrixQ holding the eigenvectors &&, cannot be explicitly evaluated as well and
likewise the matriXZ = AqQ (in step 4). As aresult, kernelizing tliz— a algorithm requires one to
representt without explicitly representingy andQ both of which were instrumental in the original
algorithm. Moreover, the introduction of the kernel should be done in auchnner to preserve the
key property of the originaD — a algorithm of producing a sparse solution.

LetV =MM' be then x n matrix whose entries are evaluated using the kerpet k(mj, m;).

Let Q = MTE for somen x k (recall k being the number of clusters in the data) maffix Let
Dq = diag(ay, ..., 0n) and thusAq = M DM andZ = A;Q = M "DV E. The matrixZ cannot be
explicitly evaluated buZ " Z = ETVDqV DoV E can be evaluated. The mati@&can be expressed
with regard toE instead ofQ:

Gij = (o(mi) om ))(p(m) 'QQ ¢(mj)
= k(mi,mj)@mi)" (M'E)(M'E) @(m;)
= k(mj,m;)v; EE"v;

wherevy, ..., vy are the columns of. Step 5 of theQ — a algorithm consists of a QR factorization

of Z. AlthoughZ is uncomputable it is possible to compRandR~* directly from the entries of

Z " Z without computingQ using the Kernel Gram-Schmidt described by Wolf and Shashua (2003).
SinceQ = ZR ! = MTD4VER™! the update step is simply to replaBewith ER™* and start the
cycle again. In other words, rather than updatihgre updateE and fromE we obtainG and from
there the newly updateal. The kernelQ — a is summarized below:

Definition 14 (Kernel Q—a) Let M be an uncomputable matrix with rowgmi)',...,@(m,)"

where@() : R" — ¥ is a mapping from input space to a feature space and which is endowed
with a kernel functiorp(m;) " @(m;) = k(mj, m;). Therefore the matrix = MM " is a computable
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nx n matrix. Let E9 be an nx k matrix selected such that ME(®' has orthonormal columns.
Perform the following steps through a cycle of iterations with index1, 2, ...

1. Let G be a nx n matrix whosei, j) components are(kn;, m;)v; EC-VEC Dy,
2. Leta(™ be the largest eigenvector of G and let B = diag(a!”, ..., a} ).

3. Let Z") be an uncomputable matrix
ZO =M DOM)MTEY) =M DOVE-D,
Note that 2" Z(") is a computable k k matrix.

4. 70 2R QR. Itis possible to compute directlyR ! from the entries of 2’ Z(") without explicitly
computing the matrix Q (see (Wolf and Shashua, 2003)).

5 LetE") =E(-VR1L,

6. Incrementindex r and go to step 1.

The result of the algorithm is the weight vectorand the design matrig which contains all
the data about the features.

6. Experiments

We have validated the effectiveness of the proposed algorithms on gn@frigata sets. Our main
focus in the experiments below is in the unsupervised domain, which hagegoeuch less atten-
tion in the feature selection literature than the supervised one.

SYNTHETIC DATA

We compared th€ — a algorithm with three classical filter methods (Pearson correlation coeffi-
cients, Fisher criterion score and the Kolmogorov-Smirnoff test), stdrf@eM and the wrapper
method using SVM of Weston et al. (2001). The data set we used follogisplg the one de-
scribed by Weston et al., which was designed for supervised 2-clasgiite. Two experiments
were designed, one with 6 relevant features out of 202 referred‘'lim@ar” problem, and the other
experiment with 2 relevant features out of 52 designed in a more complememand referred to
as “non-linear” problem. In the linear data the class lapbel{—1,1} was drawn at equal prob-
ability. The first six features were drawn &s= yN(i, 1), i = 1..3, andx; = N(0,1), j = 4..6 at
probability 7, otherwise they were drawn &s=N(0,1),i =1..3, andx; =yN(i—3,1), j = 4..6.
The remaining 196 dimensions were drawn frbit0, 20). The reader is referred to (Weston et al.,
2001) for details of the non-linear experiment. We €@n alphaon the two problems once with
known classes (supervised version) and with unknown class labedafdervised version). In the
supervised case the selected features were used to train an SVM andiivstipervised case the
class labels were not used for tQe- a feature selection but were used for the SVM training. The
unsupervised test appears artificial but is important for appreciatingttéiegth of the approach
as the results of the unsupervised are only slightly inferior to the supdrigse For each size of
training set we report the average test error on 500 samples oven80IruFig. 3(a) weoverlay
the Q — a results (prediction error of the SVM on a testing set) on the figure obtaip&tldston

et al.. The performance of the supervi€gd a closely agrees with the performance of the wrapper
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SVM feature selection algorithms. The performance of the unsupervissiba does not fall much
behind.

Since our method can handle more than two classes we investigated the spadiagabilities
of the algorithm as we increase the number of classes in an unsupemited.sForn. = 2,3, ...
classes we sampled cluster centers in 5D space (5 coordinates per center) in the 5D culve whe
each cluster center coordinate is uniformly sampled in the intérvall]. For each cluster we
also uniformly samples a diagonal covariance matrix with elements taken froimtéineal [0, .02].
Around each of then; class centers we samplé(ﬁ‘gl points according to a normal distribution
whose mean is the class center and with a the random covariance matrixdeéée 120 additional
coordinates drawn similarly aroumg centers sampled uniformly inside the 120D hypercube with
edges of length 2, according to the same rules. Each such added etends permuted by a
random permutation to break the correlation between the dimensions. Tétusfedhe 60 points
lives in a 125-dimensional space out of which only the first five dimensiomselevant. We ran the
Q—a algorithm on the data matrix and obtained the weight vexrtand computed the sparsity gap
- i.e the ratio between the average weight of the first five features anddhamge weight of the rest
120 features. Ideally the ratio should be high if the algorithm consistentbesdls in selecting the
first three coordinates as the relevant ones.

Fig. 3(b) illustrates the results of this experiment in a graph whessds runs over the number
of classek and they-axis displays the sparsity gap (the ratio discussed above). Eachregper
was repeated 20 times and the results in the plot are the average of thes2ihcuthe 25 and 75
percentiles. In general the error bars for small number of classdargeeindicating that some
experiments are much more difficult than others. This is probably a resulte afluster centers
being close to one another in some of the experiments.

There are three plots on the graph. The solid blue describes the resiftambwhen choosing
k = nc.. For small number of classes this gives the best results. The dashadpiot describes
the results obtained while choosikg= nc + 2. This choice seems to result with a smaller variance
between experiments. The explanation might be that variance is a resultsfatthhat in some
experiments the cluster centers are close, making the separation difficking & large value
of k captures more complex details about the cluster structure. For example: twhelusters
have close centers the resulting distribution might look like one strong clustee imiddle, and
some cluster tails around it. The red plot is the one obtained when under eggititinumber of
clusters and taking = max(1,n. — 2). This has the largest variance, but the best (in average) when
the number of clusters is large. The reason might be that focusing on tersluvhich are well
separated is better than trying to capture information from all clusters. Thisasver, a “risky”
strategy leading to a large variance.

One can see that the algorithm performed well uat# 6. After that the sparsity ratio is still
larger than one most of the time, but separation is not easy. It is possildelietter performance in
average by underestimatikdpy more than 2 at the price of a higher variance. Good performance up
to 6 clusters and a sparsity gap around® are not “magical numbers”. For other feature selection
problems (e.g., a different number of points per cluster, other samplitapitdies, etc.) we can
get good performance for more classes or for less depending onrti@ecaty of the problem.
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Figure 3: (a) Comparison of feature selection methods following (fe&t al., 2001). Performance curves
of Q— a were overlaid on the figure adapted from (Weston et al., 200§ x-axis is the number
of training points and thg-axis is the test error as a fraction of test points. The tkilid lines
correspond to th€ — a supervised and unsupervised methods (see text for detgilspPerfor-
mance of a test with five relevant features and 120 irrelevaas withn; clusters represented by
thex-axis of the graph. Thg-axis represents the sparsity gap (see text for detailsXfiree graphs
are solid blue fok = n;, dashed green fd¢= n. + 2 and dotted red fok = max(1,n. — 2). One
can see that the unsuperviged- a sustained good performance up to 6 classes in this settings.
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REAL IMAGE UNSUPERVISEDFEATURE SELECTION

The strength of th€ — a method is that it applies for unsupervised settings as well as supervised.
An interesting unsupervised feature selection problem in the contextudl\psocessing is the one

of automatic selection of relevant features which discriminate among peatefigses. Assume
one is given a collection of images where some of them contain pictures ofaancebject class
(say, green frogs, thBRana clamitanspecie) and other images contain pictures of a different class
of objects (say, American toads) — see Fig. 4. We would like to automatically, imaupervised
manner, select the relevant features such that a new picture couldss#iethto the correct class
membership.

The features were computed by matching patches of equal size<d@@ixels in the following
manner. Assuming that the object of interest lies in the vicinity of the image cevdettefined 9
“template” patches arranged in &3 block centered at the image. for example, in one experiment,
we had 27 images (18 from one class and 9 from the other), which in tlined %9 = 243 feature
coordinates. Each image was sampled by 49 “candidate” patches (gptleriantire image) where
each of the 243 template patches was matched against the 49 patches ireitivesmage and
the score of the best match was recorded in:223 data matrix. The matching between a pair of
patches was based dn-distance between the respective color histograms in HSV space. We ran
theQ — a algorithm withk = 2. The resultingt weight vector forms a feature selection from which
we create a submatrix of data points and construct its affinity matrix and theiatezl matrix of
eigenvector®). The rows of the&) matrix were clustered using k-means into two clusters.

This experiment was done in an unsupervised settings. As a measuréoofzace we used the
percent of samples with labels matching the correct labeling (the maximum evevdlips of the
class labels). Performance varied between 80% to 90% correct assitgouer many experiments
over several object classes (including elephants, sea elephants) &th). Images where taken
from CalPhotos: Animals (http:/elib.cs.berkeley.edu/photos/fauna/ ). Fbr dass we took all
images in which the animal appears, e.g., we removed all tadpoles images &aynetin frog
class. This performance was compared to spectral clustering using fdbtiiees (243 in the above
examples) which provided a range of 55% to 65% correct classification.

Fig. 5(a) and Fig. 5(b) show the 20 most relevant templates selected fawdhdasses, and
Fig. 5(c) shows the alpha values. Note thatdhgeights are positive as predicted from Theorem 10
and that only few of the features have very high weights.

KERNEL Q— 0 EXPERIMENTS

One of the possible scenarios for which a polynomial (for example) kirnseful is when hidden
variables affect the original feature measurements and thus creatmeaninteractions among the
feature vectors. We consider the situation in which the original measurenagrik M is multiplied,
element wise, with a hidden variable matrix whose entriesdreThe value of the hidden state was
changed randomly every 8 measurements and independently for eaate febhis scheme simu-
lates measurements taken in “sessions” where a session lasts for 8 sataleidis. As a result,
the expectation of the inner product between any two feature vectorsas/eeany two feature
vectors contain higher-order interactions which could come to bear ugiotymomial kernel.
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Figure 4: Image samples of several animal classes — American toadr¢tep and Green frogsRana
clamitang, elephants, and sea elephants. The objects appear insg@sitions, illumination,
context and size.

(c)

(d) (e) (f)

Figure 5: Unsupervised feature selection for automatic object aisoation from images. (a),(b) the first
20 features from pictures containing the American frog dedGreen frog ranked by tleweight
vector. (c) the (sortedy values. (d),(e),(f) similar to the elephant and sea elephan
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Figure 6: (a) 2D slice out of the relevant features in the original dagdrix used in the synthetic experiment,
showing three clusters. (b) A graph showing the succesdgamthe 2nd order polynomial kernel
(solid blue), and for a preprocessing of the data (dasheyd rEde results are shown over the
parameteiA specifying the variance of the original data set (see text)e success rate of the
regularQ — a algorithm was constantly zero and is not shown.

The kernel we used in this experiment was a sum of second-order poilghicernels each over
a portion of 8 entries of the feature vector:

k(m;,m Z (M m)2,

wheremk represents the k’th section of 8 successive entries of the feature wectdhe original
data was composed out 120 sample points with 60 coordinates out of whieéré2elevant and 48
were irrelevant. The relevant features were generated from thretexdueach containing 40 points.
The points of a cluster were Normally distributed with a mean vector drawnramlifdrom the unit
hypercube ingk 12 and with a diagonal covariance matrix with entries uniformly distributed in the
range ],2\], whereA is a parameter of the experiment. A 2D slice out of the relevant 12 dimensions
is shown in figure 6(a). The irrelevant features were generated in a simalaner, where for each
irrelevant feature the sample points were permuted independently in oroleratio the interactions
between the irrelevant features. This way it is impossible to distinguish betaegle relevant
feature and a single irrelevant feature.

We considered an experiment to be successful if among the 12 feaithiésenhighestr values,
at least 10 were from the relevant features subset. The graph ie gy shows the success rate
for the kernelQ — a algorithm averaged over 80 runs. It also shows, for comparison uteess
rate for experiments conducted by taking the square of every element inetagurements matrix
followed by running the origina® — a algorithm. The success rate for the origi@al a algorithm
on the unprocessed measurements was constantly zero and is not shiogvgrizph.

GENOMICS

Synthetic dataWe have tested our algorithm against the synthetic model of gene expressao
(“microarrays”) given in (Ben-Dor et al., 2001). This synthetic moded & parameters, a, b, e, d, s,
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explained belowa samples are drawn from class andb samples are drawn from claBs Each
sample hasn dimensions emsamples are drawn randomly using the distributii@, s). The rest
of the (1 — e)m features are drawn using eitha, Uas) or N(ug, pss), depending on the class
of the sample. The means of the distributiopsand uB are uniformly chosen from the interval
[—1.5d,1.5d].

In (Ben-Dor et al., 2001) the parameters of the model were estimated tfit bestgene expres-
sions of the leukemia data sett= 600,a = 25,b = 47,e = 0.72,d = 555 s= 0.753. Similarly to
(Ben-Dor et al., 2001), we varied one of the parameteid, e, s while fixing the other parameters
to the values specified above. This enabled us to compare the perforofahe®) — a algorithm
to the performance of their Max-Surprise algorithm (MSA).

Our algorithm was completely robust to the number of featore# always chose the correct
features using as few as 5 features. MSA needed at least 250 feainoe it used the redundancy in
the features in order to locate the informative features. Both algorithmswangsint to the distance
between the means of the distributions determined bgnd perform well fod € [1,10079. The
percentage of irrelevant features,can reach 95% for MSA and % for our algorithm. Such
performance suggests that the data set is not very difficult.

The parametes effects the spread of each class. While MSA was able to handle valiges of
reaching 2, our algorithm was robustgand was at least 30 times more likely to choose a relevant
feature than an irrelevant one, even $ar 1000.

Real genomics data set¥/e evaluated the performance of Qe- a algorithm for the problem
of gene selection on four data sets containing treatment outcome or staties ¢tee Wolf et al.,
2005, for the full report). The first was a study of treatment outcomeatiépts with diffuse large
cell lymphoma (DLCL), referred to as “lymphoma” (Shipp et al., 2002). @hmaensionality of
this data set was,2129 and there were 32 samples with good successful outcome and 26 with
unsuccessful outcome. The second was a study of treatment outcoraenitp with childhood
medulloblastomas (Pomeroy et al., 2002), referred to as “brain”. The diomality of this data
set was 7129 and there were 39 samples with good successful outcome and 21 wittcassful
outcome. The third was a study of the metastasis status of patients with breast {uamo't Veer
et al., 2002), referred to as “breast met”. The dimensionality of this dataase24624 and there
were 44 samples where the patients were disease free for 5 yearswsfteand 34 samples where
the tumors metastasized within five years. The fourth is an unpublished stumgast tumors
(Ramaswamy) for which corresponding lymph nodes either were carseronot, referred to as
“lymph status”. The dimensionality of this data set is @20 with 47 samples positive for lymph
status and 43 negative for lymph status.

For the four data sets with label information classification accuracy wasassa measure of
the goodness of the (unsupervis€h- a algorithm. We compared the leave-one-out error on these
data sets with that achieved by both supervised and unsupervised metlyaoie selection. The
supervised methods used were signal-to-noise (SNR) (Golub et al.), I88fus-margin bounds
(RMB) (Chapelle et al., 2002; Weston et al., 2001), and recursitarealimination (RFE) (Guyon
et al., 2002). The unsupervised methods used were PCA and gernegst@®) (Hall, 2000). In
the unsupervised mode the class labels were ignored — and thus in gemetiould expect the
supervised approaches to produce superior results than the wisagesnes. A linear support

3. The leukemia data set has over 7000 gene expressions but comtaimsedundancy. Ben-Dor et al. (2001) estimated
the effective number of features to be 600 and we follow their choicanpeters to allow comparison. Note below
that the problem becomes easier as the number of features incrdasg as the ratio of relevant features is fixed
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vector machine classifier was used for all the gene selection methods Rasafoe SNR, RFE,
and RMB were chosen to minimize the leave-one-out error. FoDthex algorithm we tookk = 6
for all experiments, to allow for more complex structures than just two clustéos the breast
me data set and for the lymph status data set we took only the f06D7features to reduce the
computation complexity.

A summary of the results appear in table 1. The a algorithm considerably out-performs all
other unsupervised methods. Furthermore, and somewhat intriguingt thel@@— a algorithm is
competitive with the other supervised algorithm (despite the fact that the labedsnot taken into
account in the course of running the algorithm) and perfaigsificantly betteon the lymph status
of breast tumors as compared to all other gene selection approachedudirigahe supervised
methods.

Method | brain | lymph | breast| lymp-.
status* | met! | homa
RAW 32 44 34 27
PCA5 22 47 33 40
PCA10 | 26 47 26 27
PCA20| 25 47 25 29
PCA30| 31 47 31 33
PCA40| 31 47 31 33
PCA50 | 30 47 30 33
GS5 20 45 32 33
GS10 | 24 43 31 30
GS20 | 28 47 32 31
GS30 | 30 44 33 33
Q—a 15 19 22 15
SNR 16 42 29 18
RFE 14 38 26 14
RMB 13 39 24 14

Table 1: The table entries show the Leave-one-out classification doraditse supervised and un-
supervised algorithms on the various data sets. In bothNP@#d G the numbeN the
number of components usedOnly the first 7000 genes were used.

7. Conclusions

In this work we presented an algebraic approach to variable weightirighvghbased on maximiz-
ing a score based on the spectral properties of the kernel matrix. pheeai has the advantage of
being suitable to unsupervised feature selection, but can also be appliedsinpervised settings.
It is interesting to compare the algebraic approach presented in this workhiahjlistic ap-
proaches which take a "holistic” view of the data such as the information bettkeTishby et al.,
1999) and the infomax (Linsker, 1988; Vasconcelos, 2003). Thelgtpexists between the alge-
braic and the probabilistic tools of machine learning make a direct comparigtiotmation-based
feature selection criteria a subject for future work. However, it is ewtidieat algebraic meth-
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ods have the advantages of not requiring the estimation of probability disrikyof being more
suitable for application on continuous data and, in general, for beingrdasigtimize for. We
conducted a limited experimental comparison to an information-bottleneck methed sufficient
dimensionality-reduction (Shashua and Wolf, 2004), and more work isresq

The emergence of sparsity and positiveness in our simple least squianezaon function, is
a surprising result, that might indicated the possibility of similar results in othebedic methods
of machine learning. For example, it might be interesting to examine if the vet®amples’
weights returned by the regularized least squares classification mettikid @R al., 2003) would
be considered sparse by our definition of sparseness. Regularstddpiares method are similar
to Support Vector Machines in many ways, only SVMs are known to p@dparse solutions.

As a last remark, we would like to point out that the methods presented in thisame ex-
tremely flexible and can be extended. For example, to the case of semidseddearning (Shashua
and Wolf, 2004).
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Appendix A. Positivity of a

The proofs for the claims and theorems made in Section 7 are presented below
Proposition 7 The minimal value of £ (a'b)(a"c)(b'c) wherea,b,c € RY are defined over the
unit hypersphere is-1/8.

Proof: The QR decomposition of 3 points on the unit hypersphere takes the form:

1 cogp) cogy1)
[av bv C] = [ela €, 63} 0 SI“B) Sin(yl) CO%VZ) (7)
0 0  sin(yysin(yz2)

whereey, e;,e3 € R" are three orthogonal vectors.
The problem, therefore, becomes the problem of minimizing

f = cog(B) cogy1) (cog(B) cogy1) +sin(B) sin(ys) cosy2)) (8)

with respect tdB,y1,Y2. Sincey, appears only in theogy,) expression, it can take only the val-
ues of 1 or -1 at the minimum energy point. By symmetry we can assume it to landlthe
problem reduces to the problem of minimizing2icosp + vy1)(coB + Y1) +cosgPB —vyi)). The
minimum occurs whercog3 —y1) is either 1 or -1. Both problems/2coqu)(coqu) — 1) and
1/2coqu)(cogu) + 1) have a minimum of-1/8]]
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Proposition 8 The expected value of=f (a'b)(a"c)(b'c) wherea,b,c € 09 andc is uniformly
sampled over the unit hypersphergisq)(a’b)?

Proof: This expectation is given by the following integral

/ (@'b)(a"¢)(c"b)da(c) = (a'bla’ ( / ccdo(c))b.

c is taken from a uniform probability and in particular from a symmetric probabpiliéy, where

the probability ofc and of remains the same under sign flipping of any subset of its entries (e.g.,
p(1/(2)[.5,.5,0,0] = p(1/(2)[-.5,.5,0,0])). Therefore,f cc"da(c) is a multiplication of the iden-

tlty matrix. From linearity of the trace and from the equalitpce(cc’) = c'c the trace of this

matrix is [ c'cdo(c) = 1. The matrix[ cc' do(c), therefore, is 1q times the identity matrix 9.

The expectatiorf (a"b)(a’c)(c"b)da(c) then equal§l/qg)(a’b)?.[]

Proposition 9 The expected value of £ SX ;(a'b)(a’c)(b"c)) wherea,b € 0% and ¢; are or-

thonormal vectors uniformly sampled over the unit hyperspheiéfiis (k/q)(a’b)?.

Proof: This expectation is given by the following integral

(aTb)aT(‘i/cicdeo(ci|c1..ci1))b ,

where the main difference from the proof of Prop. 8 is that now the pitityadistribution of ¢; is
dependent on all the previouas, C,,...,¢_1. Nevertheless, i are uniformly sampled subject to
the orthogonality constraint, the sum of integrdls- T, [ cic' do(ci|cs..¢i_1) is a product over
the identity matrix inC9. To see this, consider products of the fownJv. From symmetry this
product must be the same for evaryg 09. i.e, sincev' Jv depends only on dot products (the
distributiondo(ci|cy..Ci—1) is a uniform distribution subject to constraints on dot products), it is
invariant to a unitary transformation; in particular since any vector carotsted to any other
vector we get that it is not dependent @en We havetrace(J) = k satisfying the proposition, as
trace(SK; facdo(cler..¢i1)) = YK [ ¢ cido(cilcr..cio1) = k. []

Theorem 10 (Probabilistic Perron-Frobenius)Let G= g;; be a real symmetric r n matrix whose
entries for i> j are independent identically and normally distributed random variables migian
1> 0 and varianceo?. Then, for any > 0 there exist g such that for all n> ng the leading eigen-
vectorv of G is positive with probability of at leadt— €.

Preliminaries: LetG = pJ+oSwhereJ = 11" andS; are i.i.d. sampled according d(0,1). Let
e= %1. and letv,vo, ...,vhp andA > A, > ... > A, be the spectrum d&. From the semicircle law

(Wigner, 1958) and from (Furedi and Komlos, 1981) it is known at ©(,/n) fori =2,3...,n
The following auxiliary claims would be useful for proving the main theorem.

Lemma 15 (Bounds on Leading Eigenvalue)lunder the conditions of Theorem 10 above, with
probability 1 — o(1) the leading eigenvaluk of G falls into the following interval:

HN—0O(1) < A < pn+06(v/n).
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Proof: From the definition of the leading eigenvalue we have:

A = maxx Gx= x)%+ 0 maxx ' X
IX]l=1 M(Z ) [X[=1
< un+0(vn)

where from the semicircle law mMﬂxTS( = ©(y/n) and from Cauchy-Schwartz inequality
(3i%)2 < n(3ix?) = n. The lower bound follows from:

A > e'Ge=pun+oe'Se
un+% Sj/n=>un—0(1)
B

Lemma 16 Under the conditions of Theorem 10 above, with probabilityo(1) we have the fol-
lowing bound:

Zvi >h—c 9)
|
for some constant c wherg are the entries of the leading eigenvectoof G.

Proof: Lete=av+ 3 ,avi. Since the eigenvectors aadre of unit norm we have? + 3 ,a2 =
1 and without lost of generality we can assuae 0. We have therefore’ Ge = a?A + zi)\iaf.
Since\j = O(y/n) fori = 2,...,nanda? + 5;a2 = 1 we have:

e’ Ge < a®\ +O(V/n).
Using the bound derived above ®fGe > pun—o(1) and Lemma 15, we have:

pn—o(1) < A&+ ©(\/)

un—o(/n _
VY ‘<a<a
Hn+O(y/n) = T
from which we can conclude (with further manipulation):
20(/n) 1
1-———==1- <a
iy He(v/n) —

Consider now tha is the angle betweemandyv:

1 1
%Zvi =e'v=a> 1—m,

from which we obtain:

dVi= vn—c,

for some constart. [ |
As a result so far, we have that

AV, = (Gv)i:quH—o(S/)i

v

m/n—C+og'v
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whereC = ucis a constang is some n-dimensional normally distributed i.i.d random vector. We
would be done if we could show that the probability of the evght > (1/0)u/n occurs with
probability o(1), i.e., decays with the growth of. The problem is that sincg stands for a row

of Sand because depends ors we cannot make the assumption thandv are independent —
thus a straightforward tail bound would not be appropriate. The remaaidiee proof below was
contributed by Ofer Zeitouni where care is taken to decouple the depenbetweery andv.

Proof of Theorem 10: Let D(c) be the set of vectors iR" satisfying Lemma 16:

D(c):{veR” v =1, Zviz\/ﬁ—c},

and letg € R" be a vector of i.i.d. standard Normal distributibif0, 1). We would like to analyze
the probability of the event

F(g)={3veD(c) st. g'v>E/n} geR", inthe case whereg ~ N(0,1) .
In particular we would like to show that the probabilRy .y o,1)(F (9)) belongs ta(1), i.e., decays

with the growth ofn.
Let v=e+f wheree= %1 was defined above arfdis the residual. From the constraint

V|2 = 1 we obtain a constraint din
—Zfi+zfi2:o (10)
| |
Given thatv € D(c) we obtain:
Y= vivle=/n+ > fi=vn-c,
| |

from which obtain another constraint &n

— z fi<c (11)
I
Combining both constraints (10) and (11) we arrive at:
2c
2
< ——
If]1* < 7 (12)

The expressiog'v can be broken down to a sum of two tergise andg ' f. The first of these two
terms iso(1) by the law of large numbers, and so:

g'v = g'et+g'f<o(d)+|gllfl

< o(1)+ ol (%)

|lg|| distributes according to thedistribution withn degrees of freedom, which concentrates around
v/n. Therefore, with probability - o(1), ||g|| = ©(y/n). The probability thay"v > ©(,/n) is pro-
portional to the probability thatg|| > n%*4, which by the Gaussian tail bound decays exponentially
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with the growth ofn. Since the probability that each entry wfs negative decays exponentially,
i.e., pvi <0) < e Cn for some constant C, then by the union-bound the union of such events
p(vi < OU....UV, < 0) is bounded from above bye C" which decays exponentially with the
growth of n.[]

Lemma 12 Letg be a random r-vector of i.i.d bounded variables, i.e., for eack il..n, |g;| < M.
The following holds for some constant C:

C2D2n2£
P(lg]? > DnY?+) < exp(——)

M?2

Proof: We will apply Hoeffding’s inequality to the random variaq}ﬂgnz, which has a meap
that does not depend on

Assumey > Dn~1/2+¢ ‘wheree > 1/2. For somen > i, and for some, y— > cy. We get:

2 2 2
P(—”gnH zv)zp(—‘%” —UZV—H)SP(%—“ZCV)'

Now, we can apply Hoeffding’s one sided inequality and get:

1 C2 CZDZ 2€
P(ﬁ’9||2—HZCV)§exp<— Jf)Sexp<_ o' ) |

[
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