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Abstract
The problem of selecting a subset of relevant features in a potentially overwhelming quantity of

data is classic and found in many branches of science. Examples in computer vision, text processing
and more recently bio-informatics are abundant. In text classification tasks, for example, it is not
uncommon to have 104 to 107 features of the size of the vocabulary containing word frequency
counts, with the expectation that only a small fraction of them are relevant. Typical examples
include the automatic sorting of URLs into a web directory and the detection of spam email.

In this work we present a definition of “relevancy” based on spectral properties of the Laplacian
of the features’ measurement matrix. The feature selectionprocess is then based on a continuous
ranking of the features defined by a least-squares optimization process. A remarkable property
of the feature relevance function is that sparse solutions for the ranking values naturally emerge
as a result of a “biased non-negativity” of a key matrix in theprocess. As a result, a simple least-
squares optimization process converges onto a sparse solution, i.e., a selection of a subset of features
which form a local maximum over the relevance function. The feature selection algorithm can be
embedded in both unsupervised and supervised inference problems and empirical evidence show
that the feature selections typically achieve high accuracy even when only a small fraction of the
features are relevant.

1. Introduction

As visual recognition, text classification, speech recognition and more recently bio-informatics aim
to address larger and more complex tasks the problem of focusing on the most relevant information
in a potentially overwhelming quantity of data has become increasingly important. Examples from
computer vision, text processing and Genomics are abundant. For instance, in visual recognition
the pixel values themselves often form a highly redundant set of features; methods using an “over-
complete” basis of features for recognition are gaining popularity (Olshausen and Field, 1996), and
recently methods relying on abundance of simple efficiently computable features of which only
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a fraction of are relevant were proposed for face detection (Viola andJones, 2001) — and these
are only few examples from the visual recognition literature. In text classification tasks it is not
uncommon to have 104 to 107 features of the size of the vocabulary containing word frequency
counts, with the expectation that only a small fraction of them are relevant (Lewis, 1992). Typical
examples include the automatic sorting of URLs into a web directory and the detection of spam
email. In Genomics, a typical example is gene selection from micro-array data where the features
are gene expression coefficients corresponding to the abundance ofcellular mRNA taken from sam-
ple tissues. Typical applications include separating tumor from normal cells or discovery of new
subclasses of Cancer cells based on the gene expression profile. Typically the number of samples
(expression patterns) is less than 100 and the number of features (genes) in the raw data ranges from
5000 to 50000. Among the overwhelming number of genes only a small fractionis relevant for the
classification of tissues whereas the expression level of many other genes may be irrelevant to the
distinction between tissue classes — therefore, identifying highly relevant genes from the data is a
basic problem in the analysis of expression data.

From a practical perspective, large amounts of irrelevant features affects learning algorithms at
three levels. First, most learning problems do not scale well with the growth ofirrelevant features —
in many cases the number of training examples grows exponentially with the number of irrelevant
features (Langley and Iba, 1993). Second, is a substantial degradation of classification accuracy for
a given training set size (Almuallim and Dietterich, 1991; Kira and Rendell, 1992). The accuracy
drop affects also advanced learning algorithms that generally scale well with the dimension of the
feature space such as the Support Vector Machines (SVM) as recentlyobserved in (Weston et al.,
2001). The third aspect has to do with the run time of the learning algorithm on test instances. In
most learning problems the classification process is based on inner-products between the features
of the test instance and stored features from the training set, thus when thenumber of features is
overwhelmingly large the run-time of the learning algorithm becomes prohibitively large for real
time applications, for example. Another practical consideration is the problemof determining how
many relevant features to select. This is a difficult problem which is hardly ever addressed in the
literature and consequently it is left to the user to choose manually the number of features. Finally,
there is an issue of whether one is looking for theminimal set of (relevant) features, or simply a
possibly redundant but relevant set of features.

The potential benefits of feature selection include, first and foremost, better accuracy of the in-
ference engine and improved scalability (defying the curse of dimensionality). Secondary benefits
include better data visualization and understanding, reduce measurement and storage requirements,
and reduce training and inference time. Blum and Langley (1997) in a survey article distinguish
between three types of methods:Embedded, FilterandWrapperapproaches. The filter methods
apply a preprocess which is independent of the inference engine (a.k.athe predictor or the classifi-
cation/inference engine) and select features by ranking them with correlation coefficients or make
use of mutual information measures. The Embedded and Wrapper approaches construct and select
feature subsets that are useful to build a good predictor. The issue being the notion ofrelevancy, i.e.,
what constitutes a good set of features. The modern approaches, therefore, focus on building feature
selection algorithms in the context of aspecificinference engine. For example, (Weston et al., 2001;
Bradley and Mangasarian, 1998) use the Support Vector Machine (SVM) as a subroutine (wrapper)
in the feature selection process with the purpose of optimizing the SVM accuracy on the resulting
subset of features. These wrapper and embedded methods in generalare typically computationally
expensive and often criticized as being “brute force”. Further details on relevancy versus usefulness
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of features and references to historical and modern literature on feature selection can be found in
the survey papers (Blum and Langley, 1997; Kohavi and John, 1997; Guyon and Elissef, 2003).

In this paper the inference algorithm is not employed directly in the feature selection process
but instead general properties are being gathered which indirectly indicate whether a feature sub-
set would be appropriate or not. Specifically, we use clustering as the predictor and use spectral
properties of the candidate feature subset to guide the search. This leads to a “direct” approach
where the search is conducted on the basis of optimizing desired spectral properties rather than on
the basis of explicit clustering and prediction cycles. The search is conducted by the solution of a
least-squares optimization function using a weighting scheme for the ranking of features.A remark-
able property of the energy function is that the feature weights come out positive as a result of a
“biased non-negativity” of a key matrix in the process and sharply decayat the border between rel-
evant and non-relevant features. These properties make the algorithm ideal for “feature weighting”
applications and for feature selection as the boundary between relevantand non-relevant features is
typically clearly expressed by the decaying property of the feature weights. The algorithm, called
Q−α, is iterative, very efficient and achieves remarkable performance on avariety of experiments
we have conducted.

There are many benefits of our approach: First, we avoid the expensive computations associated
with Embedded and Wrapper approaches, yet still make use of a predictorto guide the feature
selection. Second, the framework can handle both unsupervised and supervised inference within the
same framework and handle any number of classes. In other words, since the underlying inference
is based on clustering class labels are not necessary, but on the other hand, when class labels are
provided they can be used by the algorithm to provide better feature selections. Third, the algorithm
is couched within a least-squares framework — and least-squares problems are the best understood
and easiest to handle. Finally, the performance (accuracy) of the algorithm is very good on a large
number of experiments we have conducted.

2. Algebraic Definition of Relevancy

A key issue in designing a feature selection algorithm in the context of an inference is defining the
notion of relevancy. Definitions of relevancy proposed in the past (Blumand Langley, 1997; Kohavi
and John, 1997) lead naturally to a explicit enumeration of feature subsetswhich we would like to
avoid. Instead, we take an algebraic approach and measure the relevance of a subset of features
against its influence on the cluster arrangement of the data points with the goal of introducing an
energy function which receives its optimal value on the desired feature selection. We will consider
two measures of relevancy based on spectral properties where the first is based on the Standard
spectrum and the second on the Laplacian spectrum.

2.1 The Standard Spectrum

Consider an×q data setM consisting ofq samples (columns) over n-dimensional feature spaceRn

representingn featuresx1, ...,xn overq samples. Let the row vectors ofM be denoted bym>
1 , ...,m>

n
pre-processed such that each row is centered around zero and is ofunit L2 norm ‖mi‖ = 1. Let
S = {xi1, ...,xi l} be a subset of (relevant) features from the set ofn features and letαi ∈ {0,1} be
the indicator value associated with featurexi , i.e.,αi = 1 if xi ∈ S and zero otherwise (see Fig. 1).
Let As be the correspondingaffinity matrix whose(i, j) entries are the inner-product between the
i’th and j’th data points restricted to the selected coordinate features, i.e.,As = ∑n

i=1 αimim>
i where
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Figure 1: An illustration of variable-selection using our matrix notation. The large array on the left rep-
resents the matrixM, which containsq columns that represent theq data- points (M1, ...,Mq).
Each row of this matrix is a feature-vectorm>

1 , ...,m>
n . In an idealized variable selection process,

rows of the matrixM are selected to construct the matrixM̂ (middle), whose columns form well
coherent clusters.

mim>
i is the rank-1 matrix defined by the outer-product betweenmi and itself. Finally, letQs be a

q×k matrix whose columns are the firstk eigenvectors ofAs associated with the leading (highest)
eigenvaluesλ1 ≥ ... ≥ λk.

We define “relevancy” as directly related to the clustering quality of the data points restricted
to the selected coordinates. In other words, we would like to measure the quality of the subsetS
in terms of cluster coherence of the firstk clusters, i.e., we make a direct linkage between cluster
coherence of the projected data points and relevance of the selected coordinates.

We measure cluster coherence by analyzing the (standard) spectral properties of the affinity ma-
trix As. Considering the affinity matrix as representing weights in an undirected graph, it is known
that maximizing the quadratic formx>Asx wherex is constrained to lie on the standard simplex
(∑xi = 1 andxi ≥ 0) provides the identification of the maximalclique of the (unweighted) graph
(Motzkin and Straus, 1965; Gibbons et al., 1997), or the maximal “dominant”subset of vertices
of the weighted graph (Pavan and Pelillo, 2003). Likewise there is evidence (motivated by finding
cuts in the graph) that solving the quadratic form above wherex is restricted to the unit sphere pro-
vides cluster membership information (cf. Ng et al., 2001; Weiss, 1999; Perona and Freeman, 1998;
Shi and Malik, 2000; Brand and Huang, 2003; Chung, 1998). In this context, the eigenvalue (the
value of the quadratic form) represents the cluster coherence. In the case ofk clusters, the highestk
eigenvalues ofAs represent the corresponding cluster coherences and the componentsof an eigen-
vector represent the coordinate (feature) participation in the corresponding cluster. The eigenvalues
decrease as the interconnections of the points within clusters get sparser(see (Sarkar and Boyer,
1998)). Therefore, we define the relevance of the subsetS as:

rel(S) = trace(Q>
s A>

s AsQs)

= ∑
r,s

αir αis(m
>
ir mis)m

>
ir QsQ

>
s mis
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=
k

∑
j=1

λ2
j ,

whereλ j are the leading eigenvalues ofAs. Note that the proposed measure of relevancy handles
interactions among features up to a second order. To conclude, achieving a high score on the com-
bined energy of the firstk eigenvalues ofAs indicate (although indirectly) that theq input points
projected onto thel -dimensional feature space are “well clustered” and that in turn suggests thatS
is a relevant subset of features.

Maximizing the relevancy above for all possible feature subsets in infeasible. Therefore, we
relax the problem, i.e., instead of enumerating the feature subsetsS and ranking them according to
the value ofrel(S) we consider the prior weightsα1, ...,αn as unknownreal numbersand define the
following optimization function:

Definition 1 (Relevant Features Optimization) Let M be an n×q input matrix with rowsm>
1 , ...,m>

n .
Let Aα = ∑n

i=1 αimim>
i for some unknown scalarsα1, ...,αn. The weight vectorα = (α1, ...,αn)

>

and the orthonormal q×k matrix Q are determined at the maximal point of the following optimiza-
tion problem:

max
Q,αi

trace(Q>A>
α AαQ) (1)

sub ject to
n

∑
i=1

α2
i = 1, Q>Q = I

Note that the optimization function does not include the inequality constraintαi ≥ 0 and neither
a term for “encouraging” a sparse solution of the weight vectorα — both of which are necessary
for a “feature selection”. As will be shown later in Section 4, the sparsity and positivity conditions
are implicitly embedded in the nature of the optimization function and therefore “emerge” naturally
with the optimal solution.

Note also that it is possible to maximize the gap∑k
i=1 λ2

i −∑q
j=k+1 λ2

j by definingQ = [Q1|Q2]
whereQ1 contains the firstk eigenvectors andQ2 the remainingq− k eigenvectors (sorted by de-
creasing eigenvalues) and the criterion function (1) would be replaced by:

max
Q=[Q1|Q2],αi

trace(Q>
1 A>

α AαQ1)− trace(Q>
2 A>

α AαQ2).

We will describe in Section 3 an efficient algorithm for finding a local maximum of the op-
timization (1) and later address the issue of sparsity and positivity of the resulting weight vector
α. The algorithms are trivially modified to handle the gap maximization criterion and those will
not be further elaborated here. We will describe next the problem formulation using an additive
normalization (the Laplacian) of the affinity matrix.

2.2 The Laplacian Spectrum

Given the standard affinity matrixA, consider the Laplacian matrix:L = A−D+dmaxI whereD is
a diagonal matrixD = diag(∑ j ai j ) anddmax is a scalar larger or equal to the maximal element of
D.1 The matrixL normalizesA in an additive manner and there is much evidence to support such

1. Note that in applications of algebraic graph theory the Laplacian is defined asD−A. The reason for the somewhat
different definition is that we wish to maintain the order of eigenvectors as inthose ofA (where the eigenvectors
associated with the largest eigenvalues come first).
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a normalization both in the context of graph partitioning (Mohar, 1991; Hall, 1970) and spectral
clustering (Weiss, 1999; Ng et al., 2001).

It is possible to reformulate the feature selection problem (1) using the Laplacian as follows.
Let Ai = mim>

i andDi = diag(mim>
i 1). We defineLα = ∑i αiLi whereLi = Ai −Di + dmaxI . We

have, therefore:
Lα = Aα −Dα +(∑

i

αi)dmaxI ,

whereDα = diag(A>
α 1). Note that sinceα is a unit norm vector that contains positive elements,

then∑i αi > 1. The feature selection problem is identical to (1) whereLα replacesAα.

3. An Efficient Algorithm

We wish to find an optimal solution for the non-linear problem (1). We will focus on the Standard
spectrum matrixAα and later discuss the modifications required forLα. If the weight vectorα
is known, then the solution for the matrixQ is readily available by employing a Singular Value
Decomposition (SVD) of the symmetric (and positive definite) matrixAα. Conversely, ifQ is known
thenα is readily determined as shown next. We already saw that

trace(Q>A>
α AαQ) = ∑

i, j

αiα j(m>
i m j)m>

i QQ>m j

= α>Gα

whereGi j = (m>
i m j)m>

i QQ>m j is symmetric and positive definite. The optimalα is therefore the
solution of the optimization problem:

max
α

α>Gα sub ject toα>α = 1,

which results inα being the leading eigenvector ofG, i.e., the one associated with its largest eigen-
value. A possible scheme, guaranteed to converge to a local maxima, is to start with some initial
guess forα and iteratively interleave the computation ofQ givenα and the computation ofα given
Q until convergence. We refer to this scheme as theBasicQ−α Method.

In practice, the number of iterations is rather small — typically between 5 to 10. The runtime
complexity as a function of the number of featuresn is therefore governed by the complexity of
finding the leading eigenvector ofG — typically in the order ofn2 assuming a “reasonable” spectral
gap (for example, ifG were a random matrix then the spectral gap is large — asymptotically in the
order of

√
n — as we know from the semi-circle law (Wigner, 1958)). A quadratic complexity is

the best that one can expect when performing feature selection in an unsupervised manner since all
pairs of feature vectors need to be compared to each other.

A more advanced scheme with superior convergence rate and more importantly accuracy of
results (based on empirical evidence) is to embed the computation ofα within the “orthogonal
iteration” (Golub and Loan, 1996) cycle for computing the largestk eigenvectors, described below:

Definition 2 (Standard Power-EmbeddedQ−α Method) Let M be an n× q input matrix with
rowsm>

1 , ...,m>
n , and some orthonormal q×k matrix Q(0), i.e., Q(0)>Q(0) = I. Perform the following

steps through a cycle of iterations with index r= 1,2, ...

1. Let G(r) be a matrix whose(i, j) components are(m>
i m j)m>

i Q(r−1)Q(r−1)>m j .
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2. Letα(r) be the largest eigenvector of G(r).

3. Let A(r) = ∑n
i=1 α(r)

i mim>
i .

4. Let Z(r) = A(r)Q(r−1).

5. Z(r) QR−→ Q(r)R(r).

6. Increment index r and go to step 1.

The method is considerably more efficient than the basic scheme above and achieves very good
performance (accuracy). Note that steps 4,5 of the algorithm consist ofthe “orthogonal iteration”
module, i.e., if we were to repeat steps 4,5only we would converge onto the eigenvectors ofA(r).
However, note that the algorithm does not repeat steps 4,5 in isolation and instead recomputes the
weight vectorα (steps 1,2,3) before applying another cycle of steps 4,5. We show below that the
recomputation ofα does not alter the convergence property of the orthogonal iteration scheme, thus
the overall scheme converges to a local maxima:

Proposition 3 (Convergence of Power-EmbeddedQ−α) The Power Embedded Q− α method
convergence to a local maxima of the criterion function (1).

Proof: We will prove the claim for the casek = 1, i.e., the scheme optimizes over the weight vector
α and the largest eigenvectorq of Aα.

Because the computation ofα is analytic (the largest eigenvector ofG) and because the opti-
mization energy is bounded from above, it is sufficient to show that the computation ofq monoton-
ically increases the criterion function. It is therefore sufficient to show that:

q(r)A2q(r) ≥ q(r−1)A2q(r−1), (2)

for all symmetric matricesA. Since steps 4,5 of the algorithm are equivalent to the step:

q(r) =
Aq(r−1)

‖Aq(r−1)‖ ,

we can substitute the right hand side into (2) and obtain the condition:

q>A2q ≤ q>A4q
q>A2q

, (3)

which needs to be shown to hold for all symmetric matricesA and unit vectorsq. Let q = ∑i γivi

be represented with respect to the orthonormal set of eigenvectorsvi of the matrixA. Then,Aq =

∑i γiλivi whereλi are the corresponding eigenvalues. Sinceq>A2q ≥ 0, it is sufficient to show that:
‖Aq‖4 ≤ ‖A2q‖2, or equivalently:

(∑
i

γ2
i λ2

i )
2 ≤ ∑

i

γ2
i λ4

i . (4)

Let µi = λ2
i and let f (x) = x2. We then have:

f (∑
i

γ2
i µi) ≤ ∑

i

γ2
i f (λ2

i ),

which follows from convexity off (x) and the fact that∑i γ2
i = 1.

A faster converging algorithm is possible by employing the “Ritz” acceleration(Golub and
Loan, 1996) to the basic power method as follows:
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Definition 4 (Q−α with Ritz Acceleration) Let M be an n×q input matrix with rowsm>
1 , ...,m>

n ,

and some orthonormal n×k matrix Q(0), i.e., Q(0)>Q(0) = I. Perform the following steps through a
cycle of iterations with index r= 1,2, ...

1. Let G(r),α(r) and A(r) be defined as in the Standard Power-Embedded Q−α algorithm.

2. Z(r) = A(r)Q(r−1).

3. Z(r) QR−→ Q̄(r)R(r).

4. LetḠ(r) be a matrix whose(i, j) components arem>
i Q̄(r)>Q̄(r)m j .

5. Recomputeα(r) as the largest eigenvector of̄G(r), and recompute A(r) accordingly.

6. Let S(r) = Q̄(r)>A(r)Q̄(r).

7. Perform SVD on S(r): [U (r)>S(r)U (r)] = svd(S(r)).

8. Q(r) = Q̄(r)U (r).

9. Increment index r and go to step 1.

The Q−α algorithm for the Laplacian spectrumLα follows the Standard spectrum with the
necessary modifications described below.

Definition 5 (Laplacian Power-EmbeddedQ−α Method) In addition to the definition of the Stan-

dard method, let di = maxdiag(mim>
i ) and L(0)

i = mim>
i −diag(mim>

i 1)+ di I. Perform the fol-
lowing steps with index r= 1,2, ...

1. Let F(r) be a matrix whose(i, j) components are trace(Q(r−1)>L(r−1)>
i L(r−1)

j Q(r−1)).

2. Letα(r) be the largest eigenvector of F(r).

3. Let d(r) = (maxdiag(∑n
i=1 α(r)

i mim>
i ))/(∑n

i=1 αi)

4. For each i let L(r)i = mim>
i −diag(mim>

i 1)+d(r)I

5. Let L(r) = ∑n
i=1 α(r)

i L(r)
i .

6. Let Z(r) = L(r)Q(r−1).

7. Z(r) QR−→ Q(r)R(r).

8. Increment index r and go to step 1.

3.1 The Supervised Case

TheQ−α algorithms and the general approach can be extended to handle data with class labels. One
of the strengths of our approach is that the feature selection method can handle both unsupervised
and supervised data sets. In a nutshell, the supervised case is handled as follows. Givenc classes,
we are givenc data matricesMl , l = 1, ...,c, each of sizen×ql .

Definition 6 (Supervised Relevant Features Optimization)Let Ml be an n× ql input matrices
with rowsml>

1 , ...,ml>
n . Let Agh

α = ∑n
i=1 αim

g
i mh>

i for some unknown scalarsα1, ...,αn. The weight
vectorα = (α1, ...,αn)

> and the orthonormal qh×kgh matrices Qgh are determined at the maximal
point of the following optimization problem:
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max
Qgh,αi

∑
l

trace(Qll>All>
α All

αQll )

−γ ∑
g6=h

trace(Qgh>Agh>
α Agh

α Qgh) (5)

sub ject to
n

∑
i=1

α2
i = 1, Qgh>Qgh = I

Where the weightγ and the parameters kgh are determined manually (see below).

The criterion function seeks a weight vectorα such that the resulting affinity matrix of all
the data points (sorted) would be semi-block-diagonal, i.e., high inter-class eigenvalue energy and
low intra-class energy. Therefore, we would like to minimize of the intra-classeigenvalue energy
trace(Qgh>Agh>

α Agh
α Qgh) (off-block-diagonal blocks) and maximize the inter-class eigenvalue en-

ergy trace(Qll>All>
α All

αQll ). The parameterskgh control the complexity of each affinity matrix. A
typical choice of the parameters would bekgh = 2 wheng = h, kgh = 1 otherwise, andγ = 0.5.

The solution to the optimization function follows step-by-step theQ−α algorithms. At each
cycle Qgh is computed using the current estimatesAgh

α andα is optimized by maximizing the ex-
pression: ∑

l

α>Gll α− γ ∑
g6=h

α>Gghα = α>Gα ,

whereGgh
i j = (mg>

i mg
j )m

h>
i Qgh>Qghmh

j andG = ∑l G
ll −γ∑g6=hGgh. We analyze next the prop-

erties of the unsupervisedQ−α algorithm with regard to sparsity and positivity of the weight vector
α and then proceed to experimental analysis.

4. Sparsity and Positivity ofα

The optimization criteria (1) is formulated as a least-squares problem and as such there does not
seem to be any apparent guarantee that the weightsα1, ...,αn would come outnon-negative(same
sign condition), and in particularsparsewhen there exists a sparse solution (i.e., there is a relevant
subset of features which induces a coherent clustering).

The positivity of the weights is a critical requirement for theQ−α to form a “feature weighting”
scheme. In other words, if one could guarantee that the weights would comeout non-negative then
Q−α would provide feature weights which could be used for selection or for simply weighting
the features as they are being fed into the inference engine of choice. Ifin addition the feature
weights exhibit a “sparse” profile, i.e., the gap between the high and low values of the weights is
high, then the weights could be used for selecting the relevant features aswell. We will refer to the
gap between the high and low weights as “sparsity gap” and discuss later in the paper the value of
the gap in simplified domains. With the risk of abusing standard terminology, we willrefer to the
property of having the weight vector concentrate its (high) values around a number of coordinates
as a sparsity feature. Typically, for our algorithm, none of the values of the weight vector strictly
vanish.

For most feature weighting schemes, the conditions of positivity and sparsityshould be specif-
ically presented into the optimization criterion one way or the other. The possiblemeans for doing
so include introduction of inequality constraints, use ofL0 or L1 norms, adding specific terms to
the optimization function to “encourage” sparse solutions or use a multiplicativescheme of itera-
tions which preserve the sign of the variables throughout the iterations (for a very partial list see
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Olshausen and Field, 1996; Kivinen and Warmuth, 1997; Lee and Seung, 1999; Vapnik, 1998). It is
therefore somewhat surprising, if not remarkable, that the least-squares formulation of the feature
selection problem could consistently converge onto same-sign and sparsesolutions.

Before we proceed with the technical issues, it is worthwhile to make qualitative arguments
(which were the basis of developing this approach to begin with) as to the underlying reason for
sparsity. Consider rewriting the optimization criterion (1) by an equivalent criterion:

min
α,Q

{

‖Aα −QQ>Aα‖2
F −‖Aα‖2

F

}

(6)

where‖ · ‖2
F is the square Frobenius norm of a matrix defined as the sum of squares ofall entries

of the matrix. The first term of (6) measures the distance between the columnsof Aα and the
projection of those columns onto ak-dimensional subspace (note thatQQ> is a projection matrix).
This term receives a low value if indeedAα has a small (k) number of dominant eigenvectors, i.e.,
the spectral properties of the feature subset represented byAα are indicative to a good clustering
score. SinceAα = ∑i αimim>

i is represented by the sum of rank-1 matrices one can combine only a
smallnumber of them if the first term is desired to be small. The second term (which may be viewed
also as a regularization term) encourages addition of more rank-1 matrices tothe sum provided they
areredundant, i.e., are already spanned by the previously selected rank-1 matrices. This makes the
point that the feature selection scheme looks for relevant features but not necessarily the minimal set
of relevant features. To summarize, from a qualitative point of view the selection of values for the
weightsαi is directly related to the rank of the affinity matrixAα which should be small if indeed
Aα arises from a clustered configuration of data points. A uniform spread of valuesαi would result
in a high rank forAα, thus the criteria function encourages a non-uniform (i.e., sparse) spread of
weight values.

The argument presented above to facilitate clarity of the approach and should not be taken as a
proof for sparsity. The positivity and sparsity issues are approachedin the sequel from a different
angle which provides a more analytic handle to the underlying search process than the qualitative
argument above.

4.1 Positivity of α

The key for the emergence of a sparse and positiveα has to do with the way the entries of the
matrix G are defined. Recall thatGi j = (m>

i m j)m>
i QQ>m j and thatα comes out as the leading

eigenvector ofG (at each iteration). IfG were to be non-negative (and irreducible), then from the
Perron-Frobenius theorem the leading eigenvector is guaranteed to be non-negative (or same-sign).
However, this is not the case andG in general has negative entries as well as positive ones. However,
from a probabilistic point of view the probability that the leading eigenvector of G will come out
positive rapidly approaches 1 with the growth of the number of features — this under a couple of
simplifying assumptions.

The simplifying assumptions we will make in order to derive a probabilistic argument, is first
that the entries of the upper triangular part ofG are independent. The second simplifying approx-
imation is that the columns ofQ are sampled uniformly over the unit hypersphere. Although the
independence and uniformity assumptions are indeed an idealization of the true nature ofG andQ,
they nevertheless allow us to derive a powerful probabilistic argument which shows in a rigorous
manner that the weightsαi are non-negative with probability 1 — a statement which agrees with
practice over extensive experimentations which we have performed.
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The probabilistic approach follows from the observation that each entry of G consists of a sum
of products of three inner-products:

Gi j =
k

∑
l=1

(m>
i ql )(m

>
j ql )(m

>
i m j).

In general, a product of the formf = (a>b)(a>c)(b>c), where‖a‖ = ‖b‖ = ‖c‖ = 1 satisfies
−1/8 ≤ f ≤ 1 where f = 1 whena = b = c . Since f ≥ −1/8 (will be proven below) there is
an asymmetry on the expected value off , i.e., the expected values of the entries ofG are biased
towards a positive value — and we should expect a bias towards a positiveleading eigenvector ofG.
We will derive below the expectation on the entries ofG (assuming independence and uniformity)
and prove the main theorem showing that a random matrix whose entries are sampled i.i.d. form
some distribution with positive mean and bounded variance has a positive leading eigenvector with
probability 1 when the number of featuresn is sufficiently large. The details are below.

Proposition 7 The minimal value of f= (a>b)(a>c)(b>c) wherea,b,c∈ Rq are defined over the
unit hypersphere is−1/8.

Proof: See appendix.

Proposition 8 The expected value of f= (a>b)(a>c)(b>c) wherea,b,c∈ ℜq andc is uniformly
sampled over the unit hypersphere is(1/q)(a>b)2

Proof: See appendix.
To get a rough estimate on the values in the matrixG we can further assume thata andb are

also evenly distributed on the q-dim sphere. In this case the expectation of(a>b)2 is 1/q. To see
this observe that the expectationE(a>b)2 =

R R

(a>b)2dσ(a)dσ(b) =
R

a>(
R

bb>dσ(b))adσ(a) =
R

a>((1/q)I)adσ(a) whereI is the identity matrix inℜq.
Each entryGi j is a sum ofk such terms,Gi j = ∑k

l=1(m
>
i ql )(m

>
j ql )(m

>
i m j). If the features

are irrelevant, we can expect the correlation with the vectorq1 to be similar to correlation with a
“typical” random vector. In this case the above proposition applies. However, whenk > 1 there are
interrelations between the elements in the sum resulting from the orthogonality ofthe columns of
Q. The following proposition shows that the expectation is still larger than zero.

Proposition 9 The expected value of f= ∑k
i=1(a

>b)(a>ci)(b>ci) wherea,b ∈ ℜq and ci are or-
thonormal vectors uniformly sampled over the unit hypersphere inℜq is (k/q)(a>b)2.

Proof: See appendix.
The body of results on spectral properties of random matrices (see forexample Mehta, 1991)

deals with the distribution of eigenvalues. For example, the corner-stone theorem known as Wigner’s
semicircletheorem (Wigner, 1958) is about the asymptotic distribution of eigenvalues with the
following result: “Given a symmetricn×n matrix whose entries are bounded independent random
variables with meanµand varianceσ2, then for anyc> 2σ, with probability 1−o(1) all eigenvalues
except for at mosto(n) belong toΘ(c

√
n), i.e., lie in the intervalI = (−c

√
n,c

√
n).”

The notationf (n) = o(g(n)) stands for limn→∞ f (n)/g(n) = 0, i.e., f (n) becomes insignificant
relative tog(n) with the growth ofn. This is a short-hand notation (which we will use in the sequel)
to the formal statement: “∀ε > 0,∃n0 s.t.∀n > n0 the statement holds with probability 1− ε.”
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Figure 2: (a) Probability, as computed using simulations, of positive leading eigenvector of a symmetric
matrix G with i.i.d elements drawn from the Gaussian distribution with µ = 1/6 andσ =

√
2/6.

The probability is very close to 1 starting fromn = 20. (b) Positivity and sparsity demonstrated
on the synthetic feature selection problem described in Section 6 (6 relevant features out of 202)
and of a random data matrix. The alpha weight vector (sorted for display) comes out positive and
sparse.

It is also known that whenµ = 0 all the eigenvalues belong to the intervalI (with probability
1−o(1)), while for the caseµ> 0 only the leading eigenvalueλ1 is outside ofI and

λ1 =
1
n ∑

i, j

Gi j +
σ2

µ
+O(

1√
n
),

i.e., λ1 asymptotically has a normal distribution with meanµn+ σ2/µ (Furedi and Komlos, 1981).
Our task is to derive the asymptotic behavior of the leading eigenvector whenµ > 0 under the
assumption that the entries ofG are i.i.d. random variables. We will first prove the theorem below,
which deals with Gaussian random variables, and then extend it to boundedrandom variables:

Theorem 10 (Probabilistic Perron-Frobenius) Let G= gi j be a real symmetric n×n matrix whose
entries for i≥ j are independent identically and normally distributed random variables withmean
µ > 0 and varianceσ2. Then, for anyε > 0 there exist no such that for all n> n0 the leading
eigenvectorv of G is positive with probability of at least1− ε.

Proof: see appendix.
Fig. 2(a) displays a simulation result plotting the probability of positive leading eigenvector of

G (with µ = 1/6 andσ =
√

2/6) as a function ofn. One can see that forn > 20 the probability
becomes very close to 1 (above 0.99). Simulations withµ= 0.1 andσ = 1 show that the probability
is above 0.99 starting fromn = 500.

Theorem 10 used independent Gaussian random variables as a model tothe matrixG. This
might seem a bit artificial, since the variables of the matrixG are dependent and bounded. While
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the independence assumption between all the elements in the upper triangular part of G is hard to
remove, the use of Gaussian variables is not essential; as stated above thesemi circle law holds for
matrices with elements that are not necessarily Gaussian.

The only place where we actually used the “Gaussianity” property was in theassumed structure
of the variableg. Sinceg contains normal i.i.d distributions, we deducted that‖g‖ = Θ(

√
n) and

that the probability of‖g‖ ≥ n3/4 decays exponentially. Instead of Gaussianity, we can use the
property that the elements of the matrixG are bounded, and instead of Gaussian tail bounds we can
use Hoeffding’s tail inequality (Hoeffding, 1963). We will use the one sided inequality2

Lemma 11 (Hoeffding’s one-sided tail inequality) Let X1,X2, ..,Xn be bounded independent ran-
dom variables such that Xi ∈ [ai ,bi ] . Then for Sn = X1 + X2 + ... + Xn the following inequality
holds

Pr(Sn−ESn ≥ t) ≤ exp

(

− 2t2

∑n
i=1(bi −ai)2

)

Using Hoeffding’s lemma, the following lemma could be used to bound the norm ofg.

Lemma 12 Letg be a random n−vector of i.i.d bounded variables, i.e., for each i= 1..n, |gi | ≤ M.
The following holds for some constant C:

P(‖g‖2 ≥ Dn1/2+ε) ≤ exp

(

−C2D2n2ε

M2

)

Proof: see appendix.
By letting D = 1 andε = 1, one gets that the probabilityP(‖g‖ ≥ n3/4) = P(‖g‖2 ≥ n3/2) =

P(1
n‖g‖2 ≥ n1/2) is smaller thane−

c2n2

M2 . This is similar to the Gaussian case, and is sufficient to
prove Theorem 10 in the case in which bounded variables are used instead of Gaussian variables.

To summarize the positivity issue, the weight vectorα comes out positive due to the fact that
it is the leading eigenvector of a matrix whose entries have a positive mean (Propositions 7 and 8).
Theorem 10 made the connection between matrices which have the property of a positive mean and
the positivity of its leading eigenvector in a probabilistic setting.

4.2 Sparsity

We move our attention to the issue of the sparsity of the weight vectorα. It has been observed in the
past that the key for sparsity lies in the positive combination of terms (cf. Leeand Seung, 1999) —
therefore there is a strong, albeit anecdotal, relationship between the positivity of α and the sparsity
feature. Below, we will establish a relationship between the spectral properties of the relevant and
the irrelevant feature sets, and the sparsity of the feature vector.

Let M be the (normalized) data matrix consisting ofn rows. Assume that the rows of the matrix
have been sorted such that the firstn1 rows are relevant features, and the nextn2 = n−n1 features are
irrelevant. Let the matrix containing the firstn1 rows be noted asM1, and let the matrix containing
the rest of the rows beM2, i.e,M = [M1

M2
].

We study the elements of the vectorα that correspond to the irrelevant features to show that
these elements have a small magnitude. If thesen2 weights are low, we can expect the effect of the

2. This is the inequality one gets while proving Hoeffding’s inequality. It differs from the canonical inequality in that
the one sided case has a factor of 2 improvement.
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associated features to be small. We will next tie the average of these values tothe spectral properties
of M1 andM2.

Recall the weight vectorα is the first eigenvector of the matrixGi j = (m>
i m j)m>

i QQ>m j ,
wheremi are the rows of the matrixM, andQ is a matrix containingk orthonormal columnsqi ,
i = 1..k. Let λ be the largest eigenvalue ofG.

Lemma 13 (sum of irrelevant features’ weight) Using the above definitions, letγi , i = 1..n2 be
the eigenvalues of M2M>

2 .

n

∑
i=n1+1

αi ≤

√

∑n2
i=1 γ2

i

λ
.

Proof:
Note that if∑n

i=n1+1 αi ≤ 0 the lemma holds trivially. Let
[

0
1

]

be the vector withn1 zeros andn2

ones.
n

∑
i=n1+1

αi =

[

0
1

]>
α =

√

[

0
1

]>
αα>

[

0
1

]

≤

√

[

0
1

]>
G
[

0
1

]

λ
,

where the last inequality follows from the spectral decomposition of the positive definite matrixG,
to whichα is an eigenvector with an eigenvalue ofλ.

Let Ĝ be the matrix containing the point-wise squares of the elements ofMM>, i.e., Ĝi j =
(m>

i m j)
2.

Let Q̂ be a matrix containingn− k orthonormal columns that span the space orthogonal toQ.
(Ĝ−G) has a structure similar toG, but with Q̂ instead ofQ, and is also positive definite. To see
this notice thatQQ> + Q̂Q̂> = In and that thei j element of(Ĝ−G) is therefore given by

Ĝi j −Gi j = (m>
i m j)

2− (m>
i m j)m>

i QQ>m j = (m>
i m j)m>

i Q̂Q̂>m j .

We have
[

0
1

]>
G

[

0
1

]

=

[

0
1

]>
Ĝ

[

0
1

]

−
[

0
1

]>
(G− Ĝ)

[

0
1

]

≤

≤
[

0
1

]>
Ĝ

[

0
1

]

= ||M2M>
2 ||2F =

n2

∑
i=1

γ2
i .

The lemma follows.
The denominator in the bound (

√
λ) is exactly the quantity that our algorithms maximize. The

higher this value, the tighter the bound. In the ideal case, almost all of the energy in the features is
contained in the space spanned by the columns ofQ. Let

[

1
0

]

be the vector ofn1 ones, followed by
n2 zeros. We have:

λ = α>Gα ≥
[

1
0

]>
G
[

1
0

]

n1
∼
[

1
0

]>
Ĝ
[

1
0

]

n1
=

||M1M>
1 ||2F

n1
.

The bound will be tightest if all relevant features have high correlations.In this case, we can
expect

√
λ to be linear inn1. Therefore the addition of more relevant features reduces the weights

of the irrelevant features.
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Without any assumption about the entries of the data matrixM, we cannot say much on the
numerator of the bound in Lemma 13. However, by using random matrices, wecan qualitatively
evaluate this bound.

The numerator of the bound contains the term∑n2
i=1 γ2

i , which is just the squared Frobenius
norm ofM2M>

2 . Let W2 = M2M>
2 , ||W2||2F = trace(W2W>

2 ) = trace(W2
2 ). The expectation of this

expression (whereM2 is drawn from a random distribution), normalized by the number of rows in
M2, is called thesecond moment of W2. More generally, ifA is a random matrix of sizen×n, thek
moment of it is defined asmk = 1

ntrace(Ak). For largen this definition coincides with the moments
of the distribution of the eigenvalues of the matrixA.

Consider now matricesW of the formW = 1
qMM>, whereM is ann×q random matrix with

zero mean (weakly) independent elements with a variance of 1. These matrices are called Wishart
matrices. Note that the elements in the matrixM need not be Gaussian. The rows of the matrixM
are not explicitly normalized. However, the scale of1

q can be thought of as a scale of1√
q for each

element ofM, and due to the central limit theorem we can expect for large enough values of q to
have the mean of each row approximately zero and the norm of each row approximately 1. Hence,
Wishart matrices well approximate our data matrices, if we are willing to assume that the elements
of our data matrices are independent. For the bulk of irrelevant features, this may be a reasonable
assumption.

For largen, the moments of the Wishart matrices are well approximated by the Narayana poly-

nomialsmk = ∑k−1
j=0

(n/ j) j

j+1

(k
j

)(k−1
j

)

. In particular, the second moment is given by 1+ n/q. Since

the moment is the appropriate trace scaled by1
n, we can expect

√

∑n2
i=1 γ2

i to behave similarly to
√

n2(1+n2/q).
Therefore, the rate in which the bound on the sum of squares of weights of irrelevant features

grow is mostly linear. The implication is that theQ−α algorithm is robust to many irrelevant
features: to a first approximation, the bound on the average squared weight of an irrelevant feature
remains mostly the same, as the number of irrelevant features increases.

In Sec. 6 we will present a number of experiments, both with synthetic and real data. Fig. 2(b)
shows the weight vectorα for a random data matrixM, and for a synthetic experiment (6 relevant
features out of 202). One can clearly observe the positivity and sparsity of the recovered weight
vector — even for a random matrix.

4.3 Sparsity and Generalization

The sparsity of the returned vector of weights does more than just directly ensure that the irrelevant
features are left out; it also helps the generalization ability of the returned kernel by lowering the
trace of the kernel matrix.

Recall that in our optimization scheme, the vector of weightsα has a norm of 1, and is expected
to have all positive elements. For norm-1 vectors, the sum∑i αi is highest when the elements of the
vector are evenly distributed. Due to the sparsity of the returned vector ofweights, we can expect
the above sum to be much lower than what we get with a uniform weighting of thedata.

Consider the matrixAα, the linear kernel matrix based on the weights returned by theQ−
α algorithm. Aα, which equals∑αimim>

i , is a weighted sum of rank-one matrices. Since our
features are normalized to have norm-1, each such rank-one matrixmim>

i has a trace of 1. Therefore,
the trace of the kernel matrixAα is exactly the sum of the elements of the vectorα.
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From the discussion above, the trace of the kernel matrix returned by theQ−α algorithm is
expected to be low. This is exactly the criteria for a good kernel matrix expressed by “the trace
bounds.” The trace bounds are Rademacher complexity type of error bounds for classifiers that are
linear combinations of kernel functions (Bousquet and Herrmann, 2003). These bounds relate the
trace of the kernel matrix used for training with the generalization error of the classifiers that were
trained. The lower the trace, the lower the bound on the difference between the testing error and the
training error.

Although there is no immediate analog to the concept of generalization error in the unsupervised
case, we can expect a similar criteria to hold for this case as well. A good kernel matrix for unsu-
pervised learning should support the separation given by the set of true underlying labels (although
unknown). It should not, however, support any random labeling. This is exactly what is measured
by the Rademacher process: how well does the class of functions used for learning separate random
partitions of the training set.

In supervised learning, feature selection can be a major cause of over fitting. Consider the
common case where the number of features is much larger than the number of examples. In this
case, it might be possible to construct a classifier with a very low training error, which employs only
few selected features. This reliance on a small portion on the data when making the classification
leads to poor generalization performance. This problem was pointed out, for example, by Long
and Vega (2003), who suggested, in their simplest and most effective solution (“AdaBoost-NR”),
to encourage redundancy in the pool of participating features. TheQ−α algorithm, as a result of
optimizing the cost function subject to the constraint that the norm of theα vector is one, has a
similar property. It prefers to divide high weights between a group of correlated features, rather
than to pick one promising feature out of this group and assign it a higher weight.

5. Representing Higher-order Cumulants using Kernel Methods

The information on which theQ−α method relies on to select features is contained in the matrixG.
Recall that the criterion function underlying theQ−α algorithm is a sum over all pairwise feature
vector relations:

trace(Q>A>
α AαQ) = α>Gα,

whereG is defined such thatGi j = (m>
i m j)m>

i QQ>m j . It is apparent that feature vectors interact
in pairs and the interaction isbilinear. Consequently, cumulants of the original data matrixM which
are of higher order than two are not being considered by the feature selection scheme. For example,
if M were to be decorrelated (i.e.,MM> is diagonal) the matrixG would be diagonal and the feature
selection scheme would select only a single feature rather than a feature subset.

In this section we employ the so called “kernel trick” to allow for cumulants of higher orders
among the feature vectors to be included in the feature selection process. Kernel methods in general
have been attracting much attention in the machine learning literature — initially with the introduc-
tion of the support vector machines (Vapnik, 1998) and later took a life of their own (see Scholkopf
and Smola, 2002). The common principle of kernel methods is to construct nonlinear variants of
linear algorithms by substituting inner-products by nonlinear kernel functions. Under certain con-
ditions this process can be interpreted as mapping of the original measurementvectors (so called
“input space”) onto some higher dimensional space (possibly infinitely high) commonly referred to
as the “feature space” (which for this work is an unsuccessful choiceof terminology since the word
“feature” has a different meaning). Mathematically, the kernel approach is defined as follows: let
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x1, ...,xl be vectors in the input space, sayRq, and consider a mappingφ(x) : Rq → F whereF is an
inner-product space. The kernel-trick is to calculate the inner-product in F using a kernel function
k : Rq×Rq→R, k(xi ,x j) = φ(xi)

>φ(x j), while avoiding explicit mappings (evaluation of)φ(). Com-
mon choices of kernel selection include the d’th order polynomial kernelsk(xi ,x j) = (x>i x j + c)d

and the Gaussian RBF kernelsk(xi ,x j) = exp(− 1
2σ2‖xi −x j‖2). If an algorithm can be restated such

that the input vectors appear in terms of inner-products only, one can substitute the inner-products
by such a kernel function. The resulting kernel algorithm can be interpreted as running the original
algorithm on the spaceF of mapped objectsφ(x). Kernel methods have been applied to the support
vector machine (SVM), principal component analysis (PCA), ridge regression, canonical correla-
tion analysis (CCA), QR factorization and the list goes on. We will focus below on deriving a kernel
method for theQ−α algorithm.

5.1 Kernel Q−α

We will consider mapping the rowsm>
i of the data matrixM such that the rows of the mapped data

matrix becomeφ(m1)
>, ...,φ(mn)

>. Since the entries ofG consist of inner-products between pairs
of mapped feature vectors, the interaction will be no longer bilinear and will contain higher-order
cumulants whose nature depends on the choice of the kernel function.

Replacing the rows ofM with their mapped version introduces some challenges before we could
apply the kernel trick. The affinity matrixAα = ∑i αiφ(mi)φ(mi)

> cannot be explicitly evaluated
becauseAα is defined byouter-productsrather than inner-products of the mapped feature vectors
φ(mi). The matrixQ holding the eigenvectors ofAα cannot be explicitly evaluated as well and
likewise the matrixZ = AαQ (in step 4). As a result, kernelizing theQ−α algorithm requires one to
representα without explicitly representingAα andQ both of which were instrumental in the original
algorithm. Moreover, the introduction of the kernel should be done in sucha manner to preserve the
key property of the originalQ−α algorithm of producing a sparse solution.

LetV = MM> be then×n matrix whose entries are evaluated using the kernelvi j = k(mi ,m j).
Let Q = M>E for somen× k (recall k being the number of clusters in the data) matrixE. Let
Dα = diag(α1, ...,αn) and thusAα = M>DαM andZ = AαQ = M>DαVE. The matrixZ cannot be
explicitly evaluated butZ>Z = E>VDαVDαVE can be evaluated. The matrixG can be expressed
with regard toE instead ofQ:

Gi j = (φ(mi)
>φ(m j))φ(mi)

>QQ>φ(m j)

= k(mi ,m j)φ(mi)
>(M>E)(M>E)>φ(m j)

= k(mi ,m j)v>i EE>v j

wherev1, ...,vn are the columns ofV. Step 5 of theQ−α algorithm consists of a QR factorization
of Z. AlthoughZ is uncomputable it is possible to computeR andR−1 directly from the entries of
Z>Z without computingQ using the Kernel Gram-Schmidt described by Wolf and Shashua (2003).
SinceQ = ZR−1 = M>DαVER−1 the update step is simply to replaceE with ER−1 and start the
cycle again. In other words, rather than updatingQ we updateE and fromE we obtainG and from
there the newly updatedα. The kernelQ−α is summarized below:

Definition 14 (Kernel Q−α) Let M be an uncomputable matrix with rowsφ(m1)
>, ...,φ(mn)

>

whereφ() : Rn −→ F is a mapping from input space to a feature space and which is endowed
with a kernel functionφ(mi)

>φ(m j) = k(mi ,m j). Therefore the matrix V= MM> is a computable
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n× n matrix. Let E(0) be an n× k matrix selected such that M>E(0) has orthonormal columns.
Perform the following steps through a cycle of iterations with index r= 1,2, ...

1. Let G(r) be a n×n matrix whose(i, j) components are k(mi ,m j)v>i E(r−1)E(r−1)>v j .

2. Letα(r) be the largest eigenvector of G(r), and let D(r) = diag(α(r)
1 , ...,α(r)

n ).

3. Let Z(r) be an uncomputable matrix

Z(r) = (M>D(r)M)(M>E(r−1)) = M>D(r)VE(r−1).

Note that Z(r)
>

Z(r) is a computable k×k matrix.

4. Z(r) QR−→ QR. It is possible to compute directly R,R−1 from the entries of Z(r)
>

Z(r) without explicitly
computing the matrix Q (see (Wolf and Shashua, 2003)).

5. Let E(r) = E(r−1)R−1.

6. Increment index r and go to step 1.

The result of the algorithm is the weight vectorα and the design matrixG which contains all
the data about the features.

6. Experiments

We have validated the effectiveness of the proposed algorithms on a variety of data sets. Our main
focus in the experiments below is in the unsupervised domain, which has received much less atten-
tion in the feature selection literature than the supervised one.

SYNTHETIC DATA

We compared theQ−α algorithm with three classical filter methods (Pearson correlation coeffi-
cients, Fisher criterion score and the Kolmogorov-Smirnoff test), standard SVM and the wrapper
method using SVM of Weston et al. (2001). The data set we used follow precisely the one de-
scribed by Weston et al., which was designed for supervised 2-class inference. Two experiments
were designed, one with 6 relevant features out of 202 referred to as“linear” problem, and the other
experiment with 2 relevant features out of 52 designed in a more complex manner and referred to
as “non-linear” problem. In the linear data the class labely ∈ {−1,1} was drawn at equal prob-
ability. The first six features were drawn asxi = yN(i,1), i = 1..3, andx j = N(0,1), j = 4..6 at
probability 0.7, otherwise they were drawn asxi = N(0,1), i = 1..3, andx j = yN(i−3,1), j = 4..6.
The remaining 196 dimensions were drawn fromN(0,20). The reader is referred to (Weston et al.,
2001) for details of the non-linear experiment. We ranQ−alphaon the two problems once with
known classes (supervised version) and with unknown class labels (unsupervised version). In the
supervised case the selected features were used to train an SVM and in theunsupervised case the
class labels were not used for theQ−α feature selection but were used for the SVM training. The
unsupervised test appears artificial but is important for appreciating thestrength of the approach
as the results of the unsupervised are only slightly inferior to the supervised test. For each size of
training set we report the average test error on 500 samples over 30 runs. In Fig. 3(a) weoverlay
the Q−α results (prediction error of the SVM on a testing set) on the figure obtained by Weston
et al.. The performance of the supervisedQ−α closely agrees with the performance of the wrapper
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SVM feature selection algorithms. The performance of the unsupervised version does not fall much
behind.

Since our method can handle more than two classes we investigated the scaling-up capabilities
of the algorithm as we increase the number of classes in an unsupervised setting. Fornc = 2,3, ...
classes we samplednc cluster centers in 5D space (5 coordinates per center) in the 5D cube where
each cluster center coordinate is uniformly sampled in the interval[−1,1]. For each cluster we
also uniformly samples a diagonal covariance matrix with elements taken from theinterval [0, .02].
Around each of thenc class centers we sampledd60

nc
e points according to a normal distribution

whose mean is the class center and with a the random covariance matrix. We added 120 additional
coordinates drawn similarly aroundnc centers sampled uniformly inside the 120D hypercube with
edges of length 2, according to the same rules. Each such added coordinate was permuted by a
random permutation to break the correlation between the dimensions. Thus each of the 60 points
lives in a 125-dimensional space out of which only the first five dimensionsare relevant. We ran the
Q−α algorithm on the data matrix and obtained the weight vectorα and computed the sparsity gap
- i.e the ratio between the average weight of the first five features and the average weight of the rest
120 features. Ideally the ratio should be high if the algorithm consistently succeeds in selecting the
first three coordinates as the relevant ones.

Fig. 3(b) illustrates the results of this experiment in a graph whosex-axis runs over the number
of classesk and they-axis displays the sparsity gap (the ratio discussed above). Each experiment
was repeated 20 times and the results in the plot are the average of the 20 runs and the 25 and 75
percentiles. In general the error bars for small number of classes arelarge indicating that some
experiments are much more difficult than others. This is probably a results ofthe cluster centers
being close to one another in some of the experiments.

There are three plots on the graph. The solid blue describes the result obtained when choosing
k = nc. For small number of classes this gives the best results. The dashed green plot describes
the results obtained while choosingk = nc +2. This choice seems to result with a smaller variance
between experiments. The explanation might be that variance is a results of the fact that in some
experiments the cluster centers are close, making the separation difficult. Taking a large value
of k captures more complex details about the cluster structure. For example: when two clusters
have close centers the resulting distribution might look like one strong cluster inthe middle, and
some cluster tails around it. The red plot is the one obtained when under estimating the number of
clusters and takingk = max(1,nc−2). This has the largest variance, but the best (in average) when
the number of clusters is large. The reason might be that focusing on the clusters which are well
separated is better than trying to capture information from all clusters. This ishowever, a “risky”
strategy leading to a large variance.

One can see that the algorithm performed well untilk = 6. After that the sparsity ratio is still
larger than one most of the time, but separation is not easy. It is possible to get better performance in
average by underestimatingk by more than 2 at the price of a higher variance. Good performance up
to 6 clusters and a sparsity gap around 5−10 are not “magical numbers”. For other feature selection
problems (e.g., a different number of points per cluster, other sampling probabilities, etc.) we can
get good performance for more classes or for less depending on the complexity of the problem.

1873



WOLF AND SHASHUA

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Span−Bound & Forward Selection
RW−Bound & Gradient
Standard SVMs
Correlation Coefficients
Kolmogorov−Smirnov Test
Supervised Q − α method
Unserpervised Q − α method

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

(a) (b)

Figure 3: (a) Comparison of feature selection methods following (Weston et al., 2001). Performance curves
of Q−α were overlaid on the figure adapted from (Weston et al., 2001). Thex-axis is the number
of training points and they-axis is the test error as a fraction of test points. The thicksolid lines
correspond to theQ−α supervised and unsupervised methods (see text for details). (b) Perfor-
mance of a test with five relevant features and 120 irrelevantones withnc clusters represented by
thex-axis of the graph. They-axis represents the sparsity gap (see text for details).The three graphs
are solid blue fork = nc, dashed green fork = nc +2 and dotted red fork = max(1,nc−2). One
can see that the unsupervisedQ−α sustained good performance up to 6 classes in this settings.
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REAL IMAGE UNSUPERVISEDFEATURE SELECTION

The strength of theQ−α method is that it applies for unsupervised settings as well as supervised.
An interesting unsupervised feature selection problem in the context of visual processing is the one
of automatic selection of relevant features which discriminate among perceptual classes. Assume
one is given a collection of images where some of them contain pictures of a certain object class
(say, green frogs, theRana clamitansspecie) and other images contain pictures of a different class
of objects (say, American toads) — see Fig. 4. We would like to automatically, in an unsupervised
manner, select the relevant features such that a new picture could be classified to the correct class
membership.

The features were computed by matching patches of equal size of 20×20 pixels in the following
manner. Assuming that the object of interest lies in the vicinity of the image center, we defined 9
“template” patches arranged in a 3×3 block centered at the image. for example, in one experiment,
we had 27 images (18 from one class and 9 from the other), which in turn defines 27∗9= 243 feature
coordinates. Each image was sampled by 49 “candidate” patches (covering the entire image) where
each of the 243 template patches was matched against the 49 patches in its respective image and
the score of the best match was recorded in 243×27 data matrix. The matching between a pair of
patches was based onL1-distance between the respective color histograms in HSV space. We ran
theQ−α algorithm withk = 2. The resultingα weight vector forms a feature selection from which
we create a submatrix of data points and construct its affinity matrix and the associated matrix of
eigenvectorsQ. The rows of theQ matrix were clustered using k-means into two clusters.

This experiment was done in an unsupervised settings. As a measure of performance we used the
percent of samples with labels matching the correct labeling (the maximum over the two flips of the
class labels). Performance varied between 80% to 90% correct assignments over many experiments
over several object classes (including elephants, sea elephants, andso forth). Images where taken
from CalPhotos: Animals (http://elib.cs.berkeley.edu/photos/fauna/ ). For each class we took all
images in which the animal appears, e.g., we removed all tadpoles images from the green frog
class. This performance was compared to spectral clustering using all thefeatures (243 in the above
examples) which provided a range of 55% to 65% correct classification.

Fig. 5(a) and Fig. 5(b) show the 20 most relevant templates selected for thetwo classes, and
Fig. 5(c) shows the alpha values. Note that theα weights are positive as predicted from Theorem 10
and that only few of the features have very high weights.

KERNEL Q−α EXPERIMENTS

One of the possible scenarios for which a polynomial (for example) kernel is useful is when hidden
variables affect the original feature measurements and thus create non-linear interactions among the
feature vectors. We consider the situation in which the original measurementmatrixM is multiplied,
element wise, with a hidden variable matrix whose entries are±1. The value of the hidden state was
changed randomly every 8 measurements and independently for each feature. This scheme simu-
lates measurements taken in “sessions” where a session lasts for 8 sample data points. As a result,
the expectation of the inner product between any two feature vectors is zero yet any two feature
vectors contain higher-order interactions which could come to bear using apolynomial kernel.
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Figure 4: Image samples of several animal classes — American toad (toprow) and Green frogs (Rana
clamitans), elephants, and sea elephants. The objects appear in various positions, illumination,
context and size.
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Figure 5: Unsupervised feature selection for automatic object discrimination from images. (a),(b) the first
20 features from pictures containing the American frog and the Green frog ranked by theα weight
vector. (c) the (sorted)α values. (d),(e),(f) similar to the elephant and sea elephant.
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Figure 6: (a) 2D slice out of the relevant features in the original datamatrix used in the synthetic experiment,
showing three clusters. (b) A graph showing the success ratefor the 2nd order polynomial kernel
(solid blue), and for a preprocessing of the data (dashed red). The results are shown over the
parameterλ specifying the variance of the original data set (see text).The success rate of the
regularQ−α algorithm was constantly zero and is not shown.

The kernel we used in this experiment was a sum of second-order polynomial kernels each over
a portion of 8 entries of the feature vector:

k(mi ,m j) = ∑
k

(mk>
i mk

j)
2,

wheremk
i represents the k’th section of 8 successive entries of the feature vector mi . The original

data was composed out 120 sample points with 60 coordinates out of which 12were relevant and 48
were irrelevant. The relevant features were generated from three clusters, each containing 40 points.
The points of a cluster were Normally distributed with a mean vector drawn uniformly from the unit
hypercube inR 12 and with a diagonal covariance matrix with entries uniformly distributed in the
range [λ,2λ], whereλ is a parameter of the experiment. A 2D slice out of the relevant 12 dimensions
is shown in figure 6(a). The irrelevant features were generated in a similar manner, where for each
irrelevant feature the sample points were permuted independently in order tobreak the interactions
between the irrelevant features. This way it is impossible to distinguish between a single relevant
feature and a single irrelevant feature.

We considered an experiment to be successful if among the 12 features with the highestα values,
at least 10 were from the relevant features subset. The graph in figure 6(b) shows the success rate
for the kernelQ−α algorithm averaged over 80 runs. It also shows, for comparison, the success
rate for experiments conducted by taking the square of every element in themeasurements matrix
followed by running the originalQ−α algorithm. The success rate for the originalQ−α algorithm
on the unprocessed measurements was constantly zero and is not shown inthe graph.

GENOMICS

Synthetic dataWe have tested our algorithm against the synthetic model of gene expression data
(“microarrays”) given in (Ben-Dor et al., 2001). This synthetic model has 6 parametersm,a,b,e,d,s,
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explained below.a samples are drawn from classA, andb samples are drawn from classB. Each
sample hasm dimensions -emsamples are drawn randomly using the distributionN(0,s). The rest
of the (1− e)m features are drawn using eitherN(µA,µAs) or N(µB,µBs), depending on the class
of the sample. The means of the distributionsµA andµB are uniformly chosen from the interval
[−1.5d,1.5d].

In (Ben-Dor et al., 2001) the parameters of the model were estimated to bestfit the gene expres-
sions of the leukemia data set:m= 600,a = 25,b = 47,e= 0.72,d = 555,s= 0.75 3. Similarly to
(Ben-Dor et al., 2001), we varied one of the parametersm,d,e,s while fixing the other parameters
to the values specified above. This enabled us to compare the performanceof theQ−α algorithm
to the performance of their Max-Surprise algorithm (MSA).

Our algorithm was completely robust to the number of featuresm. It always chose the correct
features using as few as 5 features. MSA needed at least 250 features, since it used the redundancy in
the features in order to locate the informative features. Both algorithms are invariant to the distance
between the means of the distributions determined byd, and perform well ford ∈ [1,1000]. The
percentage of irrelevant features,e, can reach 95% for MSA and 99.5% for our algorithm. Such
performance suggests that the data set is not very difficult.

The parameters effects the spread of each class. While MSA was able to handle values ofs
reaching 2, our algorithm was robust tos, and was at least 30 times more likely to choose a relevant
feature than an irrelevant one, even fors> 1000.

Real genomics data setsWe evaluated the performance of theQ−α algorithm for the problem
of gene selection on four data sets containing treatment outcome or status studies (see Wolf et al.,
2005, for the full report). The first was a study of treatment outcome of patients with diffuse large
cell lymphoma (DLCL), referred to as “lymphoma” (Shipp et al., 2002). Thedimensionality of
this data set was 7,129 and there were 32 samples with good successful outcome and 26 with
unsuccessful outcome. The second was a study of treatment outcome of patients with childhood
medulloblastomas (Pomeroy et al., 2002), referred to as “brain”. The dimensionality of this data
set was 7,129 and there were 39 samples with good successful outcome and 21 with unsuccessful
outcome. The third was a study of the metastasis status of patients with breast tumors (van ’t Veer
et al., 2002), referred to as “breast met”. The dimensionality of this data set was 24,624 and there
were 44 samples where the patients were disease free for 5 years after onset and 34 samples where
the tumors metastasized within five years. The fourth is an unpublished study of breast tumors
(Ramaswamy) for which corresponding lymph nodes either were cancerous or not, referred to as
“lymph status”. The dimensionality of this data set is 12,600 with 47 samples positive for lymph
status and 43 negative for lymph status.

For the four data sets with label information classification accuracy was used as a measure of
the goodness of the (unsupervised)Q−α algorithm. We compared the leave-one-out error on these
data sets with that achieved by both supervised and unsupervised methods of gene selection. The
supervised methods used were signal-to-noise (SNR) (Golub et al., 1999), radius-margin bounds
(RMB) (Chapelle et al., 2002; Weston et al., 2001), and recursive feature elimination (RFE) (Guyon
et al., 2002). The unsupervised methods used were PCA and gene shaving (GS) (Hall, 2000). In
the unsupervised mode the class labels were ignored — and thus in generalone should expect the
supervised approaches to produce superior results than the unsupervised ones. A linear support

3. The leukemia data set has over 7000 gene expressions but containsmuch redundancy. Ben-Dor et al. (2001) estimated
the effective number of features to be 600 and we follow their choice parameters to allow comparison. Note below
that the problem becomes easier as the number of features increase aslong as the ratio of relevant features is fixed
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vector machine classifier was used for all the gene selection methods Parameters for SNR, RFE,
and RMB were chosen to minimize the leave-one-out error. For theQ−α algorithm we tookk = 6
for all experiments, to allow for more complex structures than just two clusters. For the breast
me data set and for the lymph status data set we took only the first 7,000 features to reduce the
computation complexity.

A summary of the results appear in table 1. TheQ−α algorithm considerably out-performs all
other unsupervised methods. Furthermore, and somewhat intriguing, is that theQ−α algorithm is
competitive with the other supervised algorithm (despite the fact that the labelswere not taken into
account in the course of running the algorithm) and performssignificantly betteron the lymph status
of breast tumors as compared to all other gene selection approaches — including the supervised
methods.

Method brain lymph breast lymp-.
status1 met.1 homa

RAW 32 44 34 27
PCA5 22 47 33 40
PCA10 26 47 26 27
PCA20 25 47 25 29
PCA30 31 47 31 33
PCA40 31 47 31 33
PCA50 30 47 30 33

GS5 20 45 32 33
GS10 24 43 31 30
GS20 28 47 32 31
GS30 30 44 33 33
Q−α 15 19 22 15
SNR 16 42 29 18
RFE 14 38 26 14
RMB 13 39 24 14

Table 1: The table entries show the Leave-one-out classification errorsfor the supervised and un-
supervised algorithms on the various data sets. In both PCAN and GSN the numberN the
number of components used.1 Only the first 7,000 genes were used.

7. Conclusions

In this work we presented an algebraic approach to variable weighting, which is based on maximiz-
ing a score based on the spectral properties of the kernel matrix. The approach has the advantage of
being suitable to unsupervised feature selection, but can also be applied inthe supervised settings.

It is interesting to compare the algebraic approach presented in this work to probabilistic ap-
proaches which take a ”holistic” view of the data such as the information bottleneck (Tishby et al.,
1999) and the infomax (Linsker, 1988; Vasconcelos, 2003). The gapthat exists between the alge-
braic and the probabilistic tools of machine learning make a direct comparison toinformation-based
feature selection criteria a subject for future work. However, it is evident that algebraic meth-
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ods have the advantages of not requiring the estimation of probability distributions, of being more
suitable for application on continuous data and, in general, for being easier to optimize for. We
conducted a limited experimental comparison to an information-bottleneck method called sufficient
dimensionality-reduction (Shashua and Wolf, 2004), and more work is required.

The emergence of sparsity and positiveness in our simple least square optimization function, is
a surprising result, that might indicated the possibility of similar results in other algebraic methods
of machine learning. For example, it might be interesting to examine if the vector of examples’
weights returned by the regularized least squares classification method (Rifkin et al., 2003) would
be considered sparse by our definition of sparseness. Regularized least squares method are similar
to Support Vector Machines in many ways, only SVMs are known to produce sparse solutions.

As a last remark, we would like to point out that the methods presented in this work are ex-
tremely flexible and can be extended. For example, to the case of semi-supervised learning (Shashua
and Wolf, 2004).
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Appendix A. Positivity of α

The proofs for the claims and theorems made in Section 7 are presented below.
Proposition 7 The minimal value of f= (a>b)(a>c)(b>c) wherea,b,c∈ Rq are defined over the
unit hypersphere is−1/8.

Proof: The QR decomposition of 3 points on the unit hypersphere takes the form:

[a,b,c] = [e1,e2,e3]





1 cos(β) cos(γ1)
0 sin(β) sin(γ1)cos(γ2)
0 0 sin(γ1)sin(γ2)



 (7)

wheree1,e2,e3 ∈ Rn are three orthogonal vectors.
The problem, therefore, becomes the problem of minimizing

f = cos(β)cos(γ1)(cos(β)cos(γ1)+sin(β)sin(γ1)cos(γ2)) (8)

with respect toβ,γ1,γ2. Sinceγ2 appears only in thecos(γ2) expression, it can take only the val-
ues of 1 or -1 at the minimum energy point. By symmetry we can assume it to be -1,and the
problem reduces to the problem of minimizing 1/2cos(β + γ1)(cos(β + γ1) + cos(β− γ1)). The
minimum occurs whencos(β− γ1) is either 1 or -1. Both problems 1/2cos(u)(cos(u)− 1) and
1/2cos(u)(cos(u)+1) have a minimum of−1/8.
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Proposition 8 The expected value of f= (a>b)(a>c)(b>c) wherea,b,c ∈ ℜq andc is uniformly
sampled over the unit hypersphere is(1/q)(a>b)2

Proof: This expectation is given by the following integral

Z

(a>b)(a>c)(c>b)dσ(c) = (a>b)a>(
Z

cc>dσ(c))b.

c is taken from a uniform probability and in particular from a symmetric probability, i.e., where
the probability ofc and of remains the same under sign flipping of any subset of its entries (e.g.,
p(
√

(2)[.5, .5,0,0] = p(
√

(2)[−.5, .5,0,0])). Therefore,
R

cc>dσ(c) is a multiplication of the iden-
tity matrix. From linearity of the trace and from the equalitytrace(cc>) = c>c the trace of this
matrix is

R

c>cdσ(c) = 1. The matrix
R

cc>dσ(c), therefore, is 1/q times the identity matrix inℜq.
The expectation

R

(a>b)(a>c)(c>b)dσ(c) then equals(1/q)(a>b)2.
Proposition 9 The expected value of f= ∑k

i=1(a
>b)(a>ci)(b>ci) wherea,b ∈ ℜq and ci are or-

thonormal vectors uniformly sampled over the unit hypersphere inℜq is (k/q)(a>b)2.

Proof: This expectation is given by the following integral

(a>b)a>(
k

∑
i=1

Z

cic>i dσ(ci |c1..ci−1))b ,

where the main difference from the proof of Prop. 8 is that now the probability distribution of ci is
dependent on all the previousc1,c2, ...,ci−1. Nevertheless, ifci are uniformly sampled subject to
the orthogonality constraint, the sum of integralsJ = ∑k

i=1
R

cic>i dσ(ci |c1..ci−1) is a product over
the identity matrix inℜq. To see this, consider products of the formv>Jv. From symmetry this
product must be the same for everyv ∈ ℜq. i.e, sincev>Jv depends only on dot products (the
distributiondσ(ci |c1..ci−1) is a uniform distribution subject to constraints on dot products), it is
invariant to a unitary transformation; in particular since any vector can be rotated to any other
vector we get that it is not dependent onv. We havetrace(J) = k satisfying the proposition, as
trace(∑k

i=1
R

cic>i dσ(ci |c1..ci−1)) = ∑k
i=1

R

c>i cidσ(ci |c1..ci−1) = k.
Theorem 10 (Probabilistic Perron-Frobenius)Let G= gi j be a real symmetric n×n matrix whose
entries for i≥ j are independent identically and normally distributed random variables withmean
µ> 0 and varianceσ2. Then, for anyε > 0 there exist no such that for all n> n0 the leading eigen-
vectorv of G is positive with probability of at least1− ε.

Preliminaries: Let G= µJ+σSwhereJ = 11> andSi j are i.i.d. sampled according toN(0,1). Let
e= 1√

n1. and letv,v2, ...,vn andλ ≥ λ2 ≥ ... ≥ λn be the spectrum ofG. From the semicircle law

(Wigner, 1958) and from (Furedi and Komlos, 1981) it is known thatλi = Θ(
√

n) for i = 2,3...,n.
The following auxiliary claims would be useful for proving the main theorem.

Lemma 15 (Bounds on Leading Eigenvalue)Under the conditions of Theorem 10 above, with
probability1−o(1) the leading eigenvalueλ of G falls into the following interval:

µn−Θ(1) ≤ λ ≤ µn+Θ(
√

n).
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Proof: From the definition of the leading eigenvalue we have:

λ = max
‖x‖=1

x>Gx = µ(∑
i

xi)
2 +σ max

‖x‖=1
x>Sx

≤ µn+Θ(
√

n)

where from the semicircle law max‖x‖=1x>Sx = Θ(
√

n) and from Cauchy-Schwartz inequality
(∑i xi)

2 ≤ n(∑i x
2
i ) = n. The lower bound follows from:

λ ≥ e>Ge= µn+σe>Se

= µn+∑
i, j

Si j /n≥ µn−Θ(1)

Lemma 16 Under the conditions of Theorem 10 above, with probability1−o(1) we have the fol-
lowing bound:

∑
i

vi ≥
√

n−c (9)

for some constant c where vi are the entries of the leading eigenvectorv of G.

Proof: Let e= av+∑n
i=2aivi . Since the eigenvectors andeare of unit norm we havea2+∑n

i=2a2
i =

1 and without lost of generality we can assumea > 0. We have thereforee>Ge= a2λ + ∑i λia2
i .

Sinceλi = Θ(
√

n) for i = 2, ...,n anda2 +∑i a
2
i = 1 we have:

e>Ge≤ a2λ+Θ(
√

n).

Using the bound derived above ofe>Ge≥ µn−o(1) and Lemma 15, we have:

µn−o(1) ≤ λa2
1 +Θ(

√
n)

µn−Θ(
√

n)

µn+Θ(
√

n)
≤ a2 ≤ a

from which we can conclude (with further manipulation):

1− 2Θ(
√

n)

µn
= 1− 1

µΘ(
√

n)
≤ a.

Consider now thata is the angle betweeneandv:

1√
n ∑

i

vi = e>v = a≥ 1− 1
µΘ(

√
n)

,

from which we obtain:

∑
i

vi ≥
√

n−c,

for some constantc.
As a result so far, we have that

λvi = (Gv)i = µ∑
i

vi +σ(Sv)i

≥ µ
√

n−C+σg>v
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whereC = µc is a constantg is some n-dimensional normally distributed i.i.d random vector. We
would be done if we could show that the probability of the eventg>v > (1/σ)µ

√
n occurs with

probability o(1), i.e., decays with the growth ofn. The problem is that sinceg stands for a row
of Sand becausev depends onSwe cannot make the assumption thatg andv are independent —
thus a straightforward tail bound would not be appropriate. The remainder of the proof below was
contributed by Ofer Zeitouni where care is taken to decouple the dependency betweeng andv.

Proof of Theorem 10: Let D(c) be the set of vectors inRn satisfying Lemma 16:

D(c) =

{

v ∈ Rn : ‖v‖ = 1, ∑
i

vi ≥
√

n−c

}

,

and letg∈ Rn be a vector of i.i.d. standard Normal distributionN(0,1). We would like to analyze
the probability of the event

F(g) =
{

∃v ∈ D(c) s.t. g>v ≥ µ
σ
√

n
}

g∈ Rn, in the case wheregi ∼ N(0,1) .

In particular we would like to show that the probabilityPgi∼N(0,1)(F(g)) belongs too(1), i.e., decays
with the growth ofn.

Let v = e+ f wheree = 1√
n1 was defined above andf is the residual. From the constraint

‖v‖2 = 1 we obtain a constraint onf:

2√
n ∑

i

fi +∑
i

f 2
i = 0 (10)

Given thatv ∈ D(c) we obtain:

∑
i

vi =
√

nv>e=
√

n+∑
i

fi ≥
√

n−c,

from which obtain another constraint onf:

−∑
i

fi ≤ c (11)

Combining both constraints (10) and (11) we arrive at:

‖f‖2 ≤ 2c√
n

(12)

The expressiong>v can be broken down to a sum of two termsg>e andg>f. The first of these two
terms iso(1) by the law of large numbers, and so:

g>v = g>e+g>f ≤ o(1)+‖g‖‖f‖

≤ o(1)+‖g‖
(√

2c

n1/4

)

‖g‖ distributes according to theχ distribution withn degrees of freedom, which concentrates around√
n . Therefore, with probability 1−o(1), ‖g‖= Θ(

√
n). The probability thatg>v ≥ Θ(

√
n) is pro-

portional to the probability that‖g‖ ≥ n3/4, which by the Gaussian tail bound decays exponentially
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with the growth ofn. Since the probability that each entry ofv is negative decays exponentially,
i.e., p(vi < 0) < e−Cn, for some constant C, then by the union-bound the union of such events
p(v1 < 0∪ ....∪ vn < 0) is bounded from above byne−Cn which decays exponentially with the
growth of n.
Lemma 12 Let g be a random n−vector of i.i.d bounded variables, i.e., for each i= 1..n, |gi | ≤ M.
The following holds for some constant C:

P(‖g‖2 ≥ Dn1/2+ε) ≤ exp

(

−C2D2n2ε

M2

)

Proof: We will apply Hoeffding’s inequality to the random variable1
n‖g‖2, which has a meanµ

that does not depend onn.
Assumeγ ≥ Dn−1/2+ε, whereε > 1/2. For somen > n̂, and for somec, γ−µ≥ cγ. We get:

P(
‖g‖2

n
≥ γ) = P(

‖g‖2

n
−µ≥ γ−µ) ≤ P(

‖g‖2

n
−µ≥ cγ) .

Now, we can apply Hoeffding’s one sided inequality and get:

P(
1
n
‖g‖2−µ≥ cγ) ≤ exp

(

−c2nγ2

M2

)

≤ exp

(

−c2D2n2ε

M2

)

.
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