Journal of Machine Learning Research 6 (2005) 851-881 Stdxnnitl/03; Revised 9/04; Published 5/05

Prioritization Methods for Accelerating MDP Solvers

David Wingate WINGATED@CS.BYU.EDU
Kevin D. Seppi KSEPPIQCS.BYU.EDU
Computer Science Department

Brigham Young University

Provo, UT 84602, USA

Editor: Sridhar Mahadevan

Abstract

The performance of value and policy iteration can be drarallyiimproved by eliminating redun-
dant or useless backups, and by backing up states in theaigat. We study several methods
designed to accelerate these iterative solvers, inclugifaitization, partitioning, and variable
reordering. We generate a family of algorithms by combirsegeral of the methods discussed,
and present extensive empirical evidence demonstratatgottrformance can improve by several
orders of magnitude for many problems, while preservingieay and convergence guarantees.

Keywords: Markov Decision Processes, value iteration, policy iiergtprioritized sweeping,
dynamic programming

1. Introduction

This paper systematically explores the idea of minimizing the computational eéeded to com-
pute the optimal policy (with its value function) of a discrete, stationary MaiBegision Process
using an iterative solver such as value or policy iteration. The theme okploration can be stated
generally as “backing up states in the right order,” and to accomplish tleapresent and discuss
several methods of differing complexity which structure value dependandyprioritize compu-
tation to follow those dependencies. We have named the resulting family oftaigsiGeneral
Prioritized Solversor GPS.

Many problems in reinforcement learning are well modeled as MDPs. Optioliaigs for such
MDPs are often computed by iteratively improving an existing policy, whichamaccomplished
by computing (or approximating) the value function of the existing policy. Camgueach value
function is generally a non-trivial task, meaning that the ability to compute thdoklgy enables
larger and more complicated problems to be solved. As Andre et al. (1988)qua, there is also
a classic tradeoff in reinforcement learning between spending time acting enthronment and
spending time planning what to do in the environment. GPS is designed to halpteethat tradeoff
— and help other algorithms navigate that tradeoff — by allocating computagétioglintelligently.

GPS can also improve the performance of algorithms which rely on accalagfunction esti-
mates to maketherdecisions, by reducing their computational overhead. For example, dvamb
Moore (2002) use the value function to guide discretization decision¥aachs and Singh (2002)
use it to decide between exploration and exploitation. Value iteration is alslcagsgart of larger
algorithms: RTDP (Barto et al., 1995) performs some value iteration off-letevdien executing
controls, and Modified Policy Iteration (Puterman and Shin, 1978) perfesomee value iteration

(©2005 David Wingate and Kevin D. Seppi.

WINGATE AND SEPPI

between policy improvement steps. In addition, GPS can enhance algoritatrgdpagate dif-
ferent forms of information (not justalue information). For example, Munos and Moore (2002)
propagate both “influence” and “variance” throughout a problemguaiform of value iteration. In
this more abstract sense, the principle of propagating knowledge tloouglispace as quickly and
efficiently as possible is applicable to almost all systems.

Two principal observations motivated this work. First, many backupopedd by value it-
eration can be useless. Value iteration is almost a pessimal algorithm, in tleetsah# never
leverages any advantage a sparse transition matrix (and/or sparsd faneion) may offer: it
always iterates over and updates every state, even if such a badgksipato/or cannot) change the
value function. An intuitive improvement is this: if, on the previous sweefy, amandful of states
changed value, why back up the valueewskrystate on the next sweep? The only useful backups
will be to those states which depend upon states that changed on the prawieep. Similar obser-
vations about the efficient ordering of work can be made about polictiber. it is best to wait to
compute the policy of a stateuntil a good policy for the dependentsoiias been determined.

Second, almost all backups are naively ordered. For example jmgdbe states in an acyclic
problem such that the rows in the transition matrix are triangular (correlémpmo a topological
sort) yields aO(n) solution; but solving the same system in an arbitrary order yields an expecte
O(r?) solution time. Additionally, as information backpropagates through a valwgitumestimate,
the optimal ordering may change. Dynamically generating a good backepraydn an efficient
way is one of the central issues we examine.

The idea of efficient computation applied to value iteration and policy iteratiootisew, but it
has not received a dedicated treatment. This paper makes a fourfaithation: first, it studies pri-
oritization metrics systematically, comparing and contrasting them to each otbstolfher papers
have only presented a metric in isolation, as a heuristic performance enhanosgtized Sweeping
(Moore and Atkeson, 1993), for instance, uses Bellman error as atymoaetric, but we demon-
strate that another equally simple metric can perform better. Second, tleisgpts out how the
complexity introduced with the priority metrics can be managed through the usartitioning,
which is an issue other researchers have not addressed. Partititsurenables prioritized policy
iteration, which has not been studied previously. Third, this paper intesda new priority metric,
H2, and an effective variable reordering algorithm designed to improvenpesince. Both are stud-
ied empirically, and some general guidelines for their use are establislbedthFand somewhat
in contrast to most asynchronous value iteration proofs of convegg@nch as Bertsekas, 1982,
1983; Gullapalli and Barto, 1994), we point out that not every statdsaebe backed up during
each sweep in order to guarantee convergence. In fact, some statasveapeed to be backed up
at all, which is valuable for optimizing performance.

The paper is organized as follows. Section 2 describes GPS, andsdisquioritization, par-
titioning, variable reordering, and convergence and stopping critegietidd 3 presents our exper-
imental setup and Section 4 presents the experimental results. Sectionpgwiets out related
work, and Section 6 presents conclusions and ideas for future ceseadditionally, an on-line
appendix is available, which is described at the end of the paper.

852

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

2. The GPS Family of Algorithms

There are three principal enhancements we use to accelerate valueliagdteration: prioritiza-
tion, partitioning and variable reordering. Sections 2.1, 2.3 and 2.5 disashksn detail, along with
issues that each raises. A general discussion of convergenceinstoand complexity is deferred
until Section 2.6. We shall study many combinations of these enhancementsnisider all vari-
ants to be members of a single family. We begin with a prototype MDP solver, wagklements
common to all members:

Algorithm 1 Abstract GPS

Initialization

1. /[Partition the problem

2: /I Order variables within each partition
3: /| Compute initial partition priorities

Main L oop
1: repeat
2. /I Select a partitiorp
3: /I Compute the optimal policy and value function of statep,in
1 keeping all other partitions constant
4: /I Recompute priorities of partitions dependingmn
5. until convergence

To simplify the following discussions, all of the MDPs we consider are distal infinite
horizon, stationary and positive bounded (all rewards are positadimite).

2.1 Prioritization

The first method we use to improve efficiency is the prioritization of backimstead of naively
sweeping over the entire problem, we wish to work our way backwardsgdhrthe problem: we
correct the value function estimate (and policy) for a s&by backing it up, and then correct
the value function estimate (and policy) for all states which depend apdhis has the effect of
focusing computation in regions of the problem which are expected to be mibxjpnaductive,
and simultaneously avoids useless backups.

To accomplish this, we begin with a standard value function definition:

V(s) = r;gx{ R(s,a) + ysz Pr(ss, a)V(s’)} : 1)
s

Here,seSis a stateacA is an actionye[0,1) is the discount factoiR(s, a) is the reward function,
andPr(s|s,a) is the probability of transitioning to stagif actiona is taken in stats. Algorithm
2 shows the traditional value iteration algorithm, without prioritization.

We useBellman errorto characterize how useful any given backup is, and then consiffest d
ent metrics based on the Bellman error as the priority in a priority queue:

acA

Bi(s) = max{ R(s,a) +ygz Pr(s]s, a)\/t(s’)} —\i(s).
s

853

WINGATE AND SEPPI

Algorithm 2 Standard Value Iteration

1: Vo0
2: repeat
3. foralseSdo

4 Vi(S) — maxgea{R(s,@) + Y3 ¢esPr(s|s,a)i-1(s)}
5. end for

6: t—t+1

7. until convergence

Note that this should not be considered a one-step temporal diffeBatisian error represents the
amount ofpotentialchange to the value function, assuming that a certain state was backesl up, a
opposed to thactual difference between two value function estimates separated by one timestep.
Peng and Williams (1993) called this value thrediction differenceWe will let

Mt = [[Bt /[«

be the largest potential update in the system, wijel, represents max-norm. This quantity is
commonly called th&ellman error magnitudéwilliams and Baird, 1993).

We build different prioritization metrics upon the Bellman error function. Th& fnetric we
will analyze,H1, is equal to the Bellman error itself:

H1;(s) = Bi(s).

The second metric is:

| Bu(s)+M(s) ifBi(s)>¢
H2(s) = { 0 "7 otherwise.

When it is not important which prioritization metric is used, we will l€s) to refer to a generic
one. The next section discusses the semantics of each metric.

Once a statsis backed up, the priority of any state dependingsonust be recomputed. The
state dependents of a stadtethe set of all states who have some probability of transitionirg to
and therefore whose value depend on the value die define it as

SDSs) = {s : JaPr(s|s,a) # 0} .

Algorithm 3 shows a prioritized version of value iteration.

As noted, we only consider positive bounded MDPs. Creating a positivaded MDP can
be accomplished by adding a consté@niio the reward function; since we will initialize the value
function estimate to 0, this ensures thiak V* (whereV* is the value of the optimal policy*). This
does not change the resulting policy, and, as Zhang et al. (1999)qdintthe value function of
the original [MDP] equals that of the transformed [MDP] miri@§ 1 —y), whereC is the constant
added.” This stipulation is required by th2 metric, and simplifies some of the bounds provided
in Section 2.6.

854

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Algorithm 3 Prioritized Value Iteration

1: repeat

2: s« argmaxcsH (&)

3 V(S) — maxea{R(s,a) +YS¢esPr(s|s,aV(s)}
4. for all § € SDSs) do

5 /I recomputeH (s)

6: end for
7: until convergence

2.2 Selecting Metrics

TheH1 prioritization metric is the most obvious metric, and has been studied beforeygitmot
in contrast to other metrics, and in somewhat different contexts than. dusig it, GPS can be
thought of as a greedy reduction in the error of the value function estimhts.has the tendency
to propagate information quickly throughout the state space, but it alse tetelave large regions
only partially converged, and therefore does not necessarily patgegrrectinformation quickly.

TheH2 metric has a very different effect on computation order. The intuition is ifttisere is a
value that is more thanaway from its optimal value, the value will eventually need to be corrected.
Since large values (generated from large rewards, or small loopsgneater influence on the value
function than small value$j2 converges large values before propagating their influence throtighou
the state space. This tends to ensure that regions are fully converigeel &eything depending on
the region is processed. Experimental results illustrating these effecth@xm in Figure 1.

The results in Section 4 demonstrate that neith&r H2, nor standard value iteration induce
an optimal backup ordering for all MDPs. However, each performs isiée the others for some
problems. The question of which metric should be used on a new problemalhagarises, but it is
difficult to find topological features which accurately predict the penfmmce of each metric. Often,
the best metric seems to be a hybrid of all three.

Normal value iteration yields a very good backup order when a probleinss to being fully
connected (and thus, whenever states are highly interdependent)obVimeis corollary is that
value iteration is also very good for any subgraph that is close to fullyexed. Value iteration
performs poorly when the problem exhibits highly sequential (and thysmyrastric) dependencies,
which can be due to a large number of strongly connected componentargeagraph diameter
relative to the number of nodes.

TheH1 metric performs best in graphs which have highly sequential dependentieh occur
in acyclic graphs and in graphs with long loops. Hikmetric excels at avoiding useless backups,
but tends not to iron out feedback loops completely, meaning that states wittinloops must
often be processed multiple times.

The advantage of thd2 metric is more difficult to quantifyH2 tries to ensure that states have
converged before moving on to those states’ dependents. Concephisliy,an appealing idea, but
practically it is very difficult to make it work well without the addition of partitioftéscussed in the
next section)H2 needs some cycles to generate a different orderktiatut does poorly with too
many cycles. Figure 2 illustrates a problem for whithis highly suboptimal, and Figure 3 shows
performance visuallyH2 selects one state and “spirals” its value upwards, then selects another state
and spirals, then a third, and back to the first, in a loop. However, valuidemworks on all four

855

Figure 1:

Figure 2:

WINGATE AND SEPPI

Images of partially converged value functions for the SAPlenoljdescribed in Section
3). The left function was generated withl, and the right function was generated with
H2. For both images, the axis represents position, tlyeaxis represents velocity, and
the z axis represents the value of the state. Notice the “stair step” in the left image ne
the primary reward (the peak in the middle of the space). This will eventuadigl teebe
corrected, and the change will propagate throughout the entire profgsatting in extra
computation. In addition, notice the many imperfections; each of them will eatiytu
need to be corrected. The right function is much cleaner, bedd@gends to drive
regions of the problem to convergence before moving on. Green (ligly) @and red
(medium gray) are different controls; a dark blue color (dark gragficaies that a state
has never been processed. Both images are frames from a video winetiable in the
on-line appendix.

An example problem for which ti2 priority metric yields a highly suboptimal backup
order, but for which normal round-robin updating yields an almost optiraekup order.
TheH1 metric, used with partitions, also generates a suboptimal backup orderDS¢ate
an absorbing reward state. Only one action is available at each statsitidrato other
states all have equal probability.

856

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

2.5 T T ! !
Q ,,,,,,,,
©
£ N i e 7]
I
()
c : : i i
g 15 [~ _ »__77,,_,,,,r """"""""""""""""""""" """"""""""""""""""""" """""""""""""""""""" -
(8] oA : | : !
c i i B H
2
g ,
= e S 1
>
©
Q
IS ; ; . .
E 05 F | .. Value iteration -
a : : Partitioned VI with H1 metric

Partitioned VI with H2 metric ------
0 i i i i
0 20 40 60 80 100

Number of backups

Figure 3: Performance of two GPS variants on the problem in Figure 2g wsia state per par-
tition and a value iteration subsolver (see Figure 6 for an explanation ofiffleeedt
algorithms). Shown i§ sV (s) versus the number of backups. Reaching a higher sum
in fewer backups is better.

states in a round-robin fashion, which is nearly optimal (it is not fully optineglduse it repeatedly
backs up state D, even though it does not need to do so).

H2 performs best in &ybrid setting, which we illustrate using Figure 4. Each cloud represents
a cluster of highly interdependent states (perhaps even stronglyatedremponents); clusters are
weakly connected to each other. The values of states within each clustéd Sle converged before
moving on to process the next cluster, but within each cluster, standirel iteration should be
employed. By themselves, each metric performs poorly: value iterationrperfaoseless backups
by working on clusters two and three before information has propagatekl to them;H1 has
the tendency to prematurely move on to the second and third clusters befdiestitluster has
converged, an#i2 correctly prioritizes clusters, but functions poorly within each cluster.

A good algorithm should select a cluster and work on it until convergehea move on to the
next cluster. This is exactly the way that GPS functions, except that iteafgdoys partitions (as
discussed in the next section). Eithi¢l or H2 serves as a guide between partitions, but within each
partition, round-robin updating occurs.

2.3 Partitioning

Although prioritization reduces the total number of backups performedbhead of managing
the priority queue can be prohibitively high. Each s&fand eacls' € SDSs)) must be extracted,
reprioritized, and reinserted into the queue, resulting in sev@flaign) operations per backup
(wheren is the number of states). Figure 5 illustrates this overhead empirically: onrobem,
although one variant of GPS with one state per partition performs far feackups than normal
value iteration, it takes far longer to solve the problem.

857

WINGATE AND SEPPI

SS=83-45-

Figure 4: An example illustrating when hybrid metrics are close to optimal. Clapissent clus-
ters of highly interdependent states; arrows represent some of thénaite transition
matrix. Variants of GPS perform very well on problems of this sort if partgtioorre-
spond to clusters.

Two observations direct our solution: first, we can accept some bat¢kapslo not occur in
strict priority order. Second, any single state (typically) depends on mutitpler states; it would
be ideal to postpone the reprioritization of a state until multiple dependenciedban backed up.
A good principle is to group states together into sets, and to work on the steadof individual
states. This accomplishes both goals: it efficiently approximates the bacttepioduced by the
priority metric, and it tends to ensure that multiple dependencies are resafae moving on. The
specific partitioning used therefore navigates the trade-off betwedssadmckups (there might be
states in the partition that did not need to be processed) and priority quetreead (it is faster to
update them anyway, because it takes too long to determine which onesebass). Additionally,
with partitioning in place, a prioritized version of policy iteration may be creaedjescribed in
the next section.

Our partitioned, prioritized algorithm selects a high-priority partitmrsolves the states in the
partition, and then reprioritizes any partition which depends upon anythimy ifihus, running
GPS with a single partition containing all states is equivalent to normal valueg/jiteliation, while
running it with a single state per partition generates backups in strict priadir dthis is actually
not always the case, as explained in the next section).

We use the following definitions to describe a partitioned, prioritized algoritrehelchp € P
be a partition, which is a set of states. We definestade dependents of a partitiaa be the set of
all states whose value depends on some state in the pagition

SDR(p) = | J SDSs).
sep

Let P; be a function mapping states to their partitions. We defing#ngtion dependents of a state
to be the set of partitions which contain a state whose value depergls on

PDSs)= |J PRs(S).

SeSDSs)

We define thepartition dependents of a partitiot® be the set of all partitions that contain at least
one state that depends on the value of at least one stpte in

PDP(p) = | JPDS(s).
sep
We define the priority between two partitions as
HPP(p,p) = max H(s).

sepNSDRp)

858

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Note that in generakiPP;(p, p') # HPP.(p', p). We define the priority of a partition as

HP(p) = m;txHPPt(p, p).

Algorithm 4 shows a general partitioned, prioritized solver.

As shown in Figure 5, adding more states to the partitions dramatically improxfesmance.
Both variants of GPS perform fewer backups to the value function themaiowalue iteration, but
because the variant with 200 states per partition eliminates priority queusadkithe time needed
for it to reach a solution drops by two orders of magnitude. Counter-indljtit even performed
fewer backups than the variant which used only one state per partition. inthcsates that the
intra-partition backup order is better than the order imposed by the priorityanetr

Figure 3 demonstrates one situation in which using priority metrics with partitiorangbe
suboptimal, and that it is not always desirable to solve partitions exactly. idreample, the
best solver is normal value iteration, which can be thought of as an algovithich solves each
partition inexactly. That is, it performs exactly one backup within each parfiaod then moves
on to the next partition, in a round-robin fashion. Both of the other algorititesnpt to solve each
partition to withine of optimal; because they back up the states in the partition multiple times, the
value function of the states slowly spirals upwards. Once they are vétbirtheir optimal value,
the solvers select another partition. This example suggests that that padigotvers will be
suboptimal whenever partitions are highly intra-dependanthighly inter-dependent. Of course,
the example also illustrates the fact that the prioritization metrics (either at thdestakeor the
partition level) are only an approximation of the optimal backup ordering.

There are many possible ways to generate good partitions. If statesdw@wetgical information
associated with them, it can be used to generate partitions containing statasethatr to each
other. If not, more generdtway graph partitioning algorithms, such as multilevel coarsening or
recursive spectral bisection, may be used (see Alpert, 1996, foraailent dissertation on the
subject) k-way graph partitioners generate partitions that minimize the cumulative wdighass-
partition edges, which is desirable because it tends to ensure that higitieip¢edent states are in
the same partition. Automatic, variable resolution partitioners could be usgdasithose described
by Moore and Atkeson (1995) or Munos and Moore (2002). It may laéspossible that techniques
from state aggregation literature may help. Dean and Givan (1997)ilescr'stable cluster”
creation technique, for instance, with properties that are desirablepfntiion.

Combining partitioning with prioritization is useful for other reasons, whidh rast explored
in this work. Partitioning is a good domain decomposition, which enables an efficiaturally
parallelizable algorithm (Wingate and Seppi, 2004b). In additionHBemetric (combined with
partitioning) exhibits excellent disk-based-cache behavior, which isadds when attempting to
solve problems so large they cannot fit into available RAM (Wingate andiS2Qp4a).

Our experiments tested both geometrically generated partitions as well as pautiginerated
by the METIS package (see, for example, Karypis and Kumar, 19983tidh 4 presents results
exploring different edge cut criteria.

2.4 Solving a Partition

Once a partitiorp has been selected, we must compute the optimal policy and the corresponding
value function of the states ip, while treating the values of the rest of the states in the problem as
constants. Any MDP solver, such as value iteration, policy iteration, orrlin@ramming, could

859

WINGATE AND SEPPI

8e+07 ! ! J J ! ! !
7e+07 = Value iteration ———— [
GPS/1 state per partition
6e+07 | GPS/200 states per partition - - - - | o T B
é’_ : : : 3 3 3
< 5e+07
@
o
G 4et+07
g
c 3e+07
>
z
2e+07
le+07
0 *
0 20000 40000 60000 80000 100000 120000 140000 160000
Number of states
140 ! ! ! ! ! ! !
120 f-- ValU@ IEration ———— [4
GPS/1 state per partition i i i
I GPS/200 states per partition - - % - -
S 100 pel e -
S ‘ ‘ ‘
(8] H H H H : : :
Q : : : : : : :
& 80 o]
o i i i i i i i
=
11T S .
L
) i i i i i i i
R s v s e .
= : : : 3 3 : :
ok o 5 ; L — -
0 20000 40000 60000 80000 100000 120000 140000 160000

Number of states

Figure 5: Performance on the MCAR problem (see Section 3) as a furafttbe number of states
used to discretize the problem. Lower times are better. Using one state pigompar
one variant of GPS performs half as many backups as normal value iterfadioit takes
far longer to complete. Priority queue overhead accounts for most of igdsegancy.
Using partitions greatly improves performance: in the bottom graph, anG®8rvariant
(which has 200 states per partition) requires only 1.2 seconds to solveditlemp, and
is barely visible above the horizontal axis.

860

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Algorithm 4 Prioritized, Partitioned Value and Policy Iteration

Initialization
: for all se Sdo
Vo(S) —0
Ho(s) < maxeaR(s,a)
end for
: for all pe Pdo
HPo(p) « MaXcpacaR(s,a)
for all p e Pdo
HPPy(p,p') <0
end for
: end for

. p«—argmax.pHPg(§)
1

[EEY

© 0NN

el
N P O

Main loop
1: repeat
/I compute the optimal policy and value function of statepin
solve(p)

for all p’ € PDP(p) do

2
3
4:
5. /I update partition priority for all dependent partitions
6
7 HPP(p/,p) < O

8

9

hmax<_ 0
: for all S € P NSDRAp) do
10: Il recomputeH; (s)
11; Nmax < max(hmaX7 Ht(sl))
12: end for

13: HPPt(p,, p) «— hmax
14: HPt(p/) «— maxg HPPt(p,,E)

15: end for
16: p <« argmaxcpHP (&)
17 t—t+1

18: until convergence

861

WINGATE AND SEPPI

be used. It is even possible to use a partitioned, prioritized solver (indeed an idea could be
extended to more than two levels), although hierarchical partitioning is mpbbred in this work.
We require that the value of the states in the partition be computed accuratglis(tto withine
of exact) because the value function may be needed in the context oka dggrithm, but more
importantly because both priority metrics depend upon accurate value fuestionates. In other
words, if we use policy iteration as a solver, and use an iterative polityai@n method, we cannot
stop when just theolicy has converged; rather, we must wait until the value function has cgpeder
as well.

It is clear how to use value iteration to solpebut it is less clear how to use policy iteration.
Policy improvement is easy, but how do we evaluate the value of the stgp@sRecall that policy
evaluation is the process of computing the value function for a single pralidiis eliminates the
max operator in Eq. 1, simplifying it td(s) = R(s,11(s)) + Y sesPr(s|s,a)V(s). This is a linear
system of|§ equations inS| unknowns; in matrix-vector notation, it is equivalently expressed as
V = i+ YPrv, whereP is the transition probability matrix of policw andry is the reward under
policy Tt Note that this has the same form as the more general problemx+ b, which is
equivalent to(l — A)x=b.

The key observation is the fact that if the value and policy of states outsidpdittition are
held constant, their values may be temporarily “folded” into the right-handvs&der, and a new
sub-problem created. As an example, consider the general préblenh, whereA is a 2x2 matrix.
Suppose that we wish to solve only for variable 0 while holding variable &teoh We may expand
this system (indexing with array notation) as

A[0,0]x(0] + A0, 1]x[1] = b[0]
A[L,0X(0] + A1, 1Jx[1] = b[1]

and, since(1] is constant, rewrite it as

AJ0,0]x[0]
A[1,0]x[0]

(0] — A0, 1]X[1] = b'[0]

b
bl1] — AL, 1x[1] = b1,

wherely is the new vector that results from the folding operation. This yields a setoéquations
with one unknown. Either may be used to solve for variable 0.

More generally, assume that we are givermann matrix A and a partitionp which contains a
set of variable indices that we wish to solve for. The equation for variable

ALK = blil— S Al X
[i, J1x[]] [i] %}DH%H
b]i].

Jep

This yieldsn equations irf p| unknowns, which is an over-constrained system. We wish to select a
subset of the equations with which to work; we adopt the convention thatilvgse the equations

862

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

corresponding to the variable indices in the partition. Specifically, we mayeafiiagonadelector
matrix as

.. [1 iep
Kol 1 _{ 0 otherwise.

Then, to select a subset of equations frlémandb, we will let A’ = KpAK,, X' = Kpx, andb’ = Kb.
Note thatA' is still ann x n matrix, but with many empty rows and columns. If rom A’ is empty,
columni will also be empty, and the corresponding entries in both ko#mdb’ will also be zero.
The entire system may be compacted by eliminating such zero entries and megojatde indices
from the original system to new variable indices in a compacted system, whictherabe passed
to an arbitrary subsolver. Selection and compaction can be accomplishdthamously through
the use of prolongation and restriction operators (Saad, 1996), bitawes adopted the current
approach for simplicity of explanation. We note that GPS with this fold/extrachadecan be
considered a prioritized Multiplicative Schwarz Procedure (Schw&20;1Saad, 1996).

Once the problemX'x’ = b’ is constructed, any number of direct or indirect linear system solvers
can be used. Exact policy evaluation usually involves inverting a matrix hasitypically aO(n?)
operation. Since we only need to sole’ = b’ to within €, and because of our interest in per-
formance, we we can opt instead for approximate policy evaluation. Fdgiynthis does not
compromise the accuracy of the final solution: Bertsekas and Tsitsikli€E3®ablish the funda-
mental soundness of approximate policy evaluation, and provides bountie optimality of the
final policy based on the evaluation error.

In this work, we use Richardson iteration (which is equivalent to valuditenreand GMRES as
policy evaluators. GMRES is considered by the numerical analysis commuiigthe standard it-
erative method for large, sparse, asymmetric matrices. Saad (199éh{zras excellent discussion
of iterative methods and Barrett et al. (1994) present template-basedremntigtions of common
iterative methods.

2.5 Variable Reordering

As noted previously, it is possible to use standard value iteration to solvetiiopa We would
like to optimize this step in the algorithm, but we have already seen that we casmat priority
gueue — the overhead is excessive, which is why we used partitions imghpldice. Instead of a
gooddynamicordering, we therefore opt for a gosthticordering. Specifically, we wish to reorder
the states in the partition such that for each sweep, they are backed upppraxximately optimal
order. This ordering of states is computed once, during initialization. Noteéniable reordering
is only effective when Gauss-Seidel iterations are used; it doesfreot dacobi-style iterations, and
may not affect other methods of solving linear systems. In particular,blarraordering is only
applicable to prioritized policy iteration if partitions are evaluated using a G8agkel iterative
method.

We wish to back up a stasonly when all of the statesdepends on have been backed up. This
suggests the use of a topological sort on the states, and indeed, thisayiedsimal ordering of
states if the graph is acyclic. Since a topological sort is not defined élicgyraphs, a more general
possibility is to reorder the states in the matrix to make the matrix “near triangulpetifgally,
we wish to permute the iteration matrix to minimize the maximum row sum in the upper triangle.

863

WINGATE AND SEPPI

Algorithm 5 Variable reordering
. /I Initialization: dc is an array representing the in-degree of each state

[EEY

2: dc+0

3: for all se pdo

4: forallacAdo

5: for all s € pdoif ((Pr(s|s,a) # 0) thenincrement(dc[s])

6: end for

7: end for

8:

9: // Main loop: finalorder is an array representing the final state ordering

10: for i =0..|p| —1do

11: letsbe the index of the smallest non-negative valugdn

12 dcl[g < -1

13: finalorder||p|—1—i] < s

14: forallac Ado

15: for all s € pdoif ((Pr(s|s,a) # 0) thendecrement(dc[s])
16: end for

17: end for

o

The reason for this follows. We begin with the generic problemAx+ b, whereA is a matrix
andx, b are column vectors. This suggests an iterative method of the form

which corresponds to a Jacobi-style iterative method. NowAlet(L+ D +U), whereL is the
lower-triangular part of, D is the diagonal part, and is the upper-triangular part. Using Gauss-
Seidel iterations, Eq. 2 can be expressesas= Lx1+ (U +D)x + b (recall that Gauss-Seidel
iterations use state values as soon as they are available). This canrbagedrto yield

%:1=(1-L)"HU+D)x+(1+L) h. (3)

This is the most basic regular splitting of the matisee Puterman (1994) for a more comprehen-
sive treatment of regular splittings and of the specifics of Gauss-Seid@aeobi iterations.

It is well known that both asynchronous and synchronous relaxatibtie formx;1 = f(x)
converge wherf satisfies the definitions of a contraction mapping (Bertsekas and Tsitsik$8).19
Proofs of contraction have been constructed for several importagsciacluding linear relaxations.
Iterations in the form of Eq. 2 are guaranteed to converge if the speatlialsp(A) < 1.

The convergence of Eq. 3 is therefore governeg by — L)~(U + D)), which is a difficult
expression to simplify. However, it is also well known tipgAB) < ||Al|||B|| for any matrix norm;
since the infinity-norm of a matrix corresponds to the largest row-sum imtiteix, convergence
will be governed by||(I —L)™||» and||(U 4+ D)|l«. (Tangentially, we note that, becauge- L) is
lower-triangular, its inverse is also lower-triangular, and the eigenvéhaesfore correspond to the
diagonal entries. It is easy to show that the diagonals will still be onesiafinting, meaning that
p((1 —L)~1) is simply 1). We therefore seek some permutatioafhich will minimize either
|(1 = L)7Y||e (which is difficult to do because of the inverse), |dtJ + D)||». Note that if such

864

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

a minimizing permutation is obtained, and the graph defined by the matrix is ady¢lie D) is
empty, and the system converges in one pass.

As Knuth (1993) states, this problem is NP-complete, because it includegesyg special case
the “Feedback Arc Set” problem, which “was shown to be NP-complete ip'&atassic paper
(Miller and Thatcher, 1972)". However, heuristics have been pregioknuth (1993) experiments
with a downhill method to find a permutation that is locally optimal (in the sense thahmawny
individual row increases the row-sum), but his method is computationallgrestge. Modified
topological sorts (in which any edge that completes a cycle is deleted) lavéeen proposed
which are efficient, and which form the basis of the strategy we follow.

The foregoing analysis has been in terms of a generic mAtritowever, the transition matrix
of a discrete MDP depends on the operative policy at any given time. Wataix should be used
to compute a new variable ordering? We use an aggregate matrix which ane@yp all of the
transitions possible under any policy, all of which are weighted equalig rEpresents an implicit
assumption that we are optimizing for an expected case where all policiegady likely, but if
additional information about the likelihood of different policies is availablepitld be leveraged
during this phase.

The final variable reordering algorithm is a modified topological sort, askdag/n in Algorithm
5. The algorithm operates on a partitiprand generates the arrbiynal or der , which lists the order
in which states should be backed up.

2.6 Convergence, Stopping Criteria and Complexity

Convergence of GPS with a value-iteration subsolver is established byribanhit is an asyn-
chronous variant of traditional value iteration. Convergence is gtedrfor such algorithms pro-
vided that every state is backed up infinitely often (Bertsekas, 1983; Ia@lapalli and Barto,
1994). Practically, this can be guaranteed as long as no state is starvadkops. In our algo-
rithm, states will be backed up until they have converged, at which poietveset of states will be
selected. If a state has sorBgs) > &, it will eventually be backed up; if no such state exists, the
problem is solved. Convergence of approximate policy iteration and heymaus policy iteration
has been established by Bertsekas and Tsitsiklis (1996); once agastipthiation is that each state
must be visited infinitely often, and once again, it is clear that our algorithes dot starve any
state that haB(s) > €.

Here, we also note that if a stateever ha®; (s) > ¢, it never needs to be backed up. Of course,
there is no performance gain in detecting that a single state never needbdokeel up, because
it takes just as long to compufg(s) as it does to back the state up — but partitions change that.
Because the states in a partitiprare “blocked off” from the rest of the problem, detection of the
fact that they may not need to be backed up can be highly efficient: Byriy the cross-partition
dependencies must be examined. If they never move ahomething in p needs to be backed
up (assuming the partition is internally solved). Thus, the “infinite updatestilatipn of most
asynchronous convergence proofs represent sufficient camglitiait not necessary conditions.

Stopping criteria are easily established. The largest difference bebwesue function estimate
and the optimal value function can be characterized in terms of the Bellmameaigmitude. This
has already been accomplished by Williams and Baird (1993); similar resultsecaasily derived
by using equation 6.3.7 of Puterman’s book (Puterman, 1994):

M=V <Me1/(1-Y). (4)

865

WINGATE AND SEPPI

| Name | Description
PI-Rich Policy iteration with Richardson policy evaluator
PI-GMRES Policy iteration with GMRES policy evaluator

PPI-Rich-H1 Partitioned PI, prioritized wi1, using Richardson evaluator
PPI-Rich-H2 Same, but wittH2 priority metric

PPI-GMRES-H1| Partitioned PI, prioritized w1, using GMRES evaluator
PPI-GMRES-H2| Same, but witlH2 priority metric

Vi Standard value iteration

VI-VRE Value iteration with partitions, NO priority, and variable reordering
PVI-H1 Partitioned value iteration, prioritized witdl

PVI-H1-VRE Same, plus variable reordering

PVI-H2 Partitioned value iteration, prioritized with2

PVI-H2-VRE Same, plus variable reordering

Figure 6: Algorithms tested.

The maximum difference provides a natural stopping criterion. The algotm stop wheivl; <
€(1—vy), and will be guaranteed to have aoptimal policy. A more common bound (for example,
Puterman, 1994) is that iMi+1 — V|| < &(1—Y)/2y, then||Vi11 —V*|| < €/2. The slight difference
in the two equations can be accounted for by noting that we previously sédulzat all rewards
be positive (which allows us to provide a tighter bound by avoiding absolitesk and because
of a minor difference in time subscripting.

The space complexity of GPS is quite good. The largest overhead camnesie need to store
a partial inverse model, but this is always a subset of the whole problerditiédwwhl memory is
needed for the priority queu®(|P|)), for the state-to-partition mappin®(|S)), and the partition-
to-state maps@(|P| + |9))).

3. Experimental Setup

We tested twelve different combinations of the basic enhancements we isaussgd, which are
shown in Figure 6. Most are self-explanatory, except the VI-VRErélyo. VI-VRE was designed
to isolate the impact of variable reordering, so to accomplish this, the problemarttioned, and
variables were reordered within each partition. Then, for each swheeplgorithm iterated over all
partitions, and backed up each state within each partition in the prescrited or

All value iteration and Richardson iteration solvers used Gauss-Seidalpss When GMRES
was needed, we used the AZTEC package (Tuminaro et al., 1999), wghachimplementation of
several iterative methods developed by Sandia National Laboratories.

Two types of partitioning were tested. Most experiments used graplu-pasttions generated
by the METIS package (Karypis and Kumar, 1998), but some used decahénformation. This
was done by laying down a regular grid of partitions over the state spaceug grids were tested;
the best was a simple grid with square cells.

The algorithms were tested against several problems of differing compl8xitgess was mea-
sured by the amount of time taken, by the number of backups performedbyamow accurate the
resulting value function was. We tested two types of problems. The firg deterministic mini-

866

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Figure 7: On the left, the Kuhn triangulation of a (3d) cube.dAlimensional hypercube is tes-
sellated (implicitly) intod! simplices. On the right, control of each, a) pair is tracked
until the resulting state’ enters a new hypercube. Barycentric coordinates relative to
the enclosing simplex are computed, and are used to represent probabilisditions to
vertices.

mum time optimal control problems, which are continuous time, and involve continaction and
state dimensions (these were discretized as described below). Thest pmblems were selected
because the number of states used in the discretization could be varied athidlmaintaining a
constant expected degree, thus allowing us to generate families of hitgitsd®DPs. The second
set of problems were versions of the SysAdmin problem described bstGuet al. (2003). These
are inherently discrete, stochastic problems with very dense transition rsatrice

We will briefly describe the process used to discretize the control problaumsve note here
that this process is tangential to the research focus of this paper. atereany other methods
which could have been used to discretize the problems; naturally, this pearticethod introduces
a bias with respect to the original problem, but since the solution engine simpégts a discrete
MDP, the details of where it came from are somewhat irrelevant.

To discretize the space, we use the general numerical stochastic coctirotitees described by
Kushner and Dupuis (2001); our specific implementation closely followeatiunos and Moore
(2002) (except that neariable discretization is used). Instead, the space is discretized once in the
initialization phase. We refer the reader to their work for a complete deseripfithe technique
with comprehensive citations on component elements.

Figure 7 illustrates the discretization process. The state space is dividedyjpgocubes by
regularly dividing each dimension, and a Kuhn triangulation is implemented (impJiaityde of
each hypercube. The use of Kuhn triangles is particularly approprétaulse once discretized,
each state depends upon exacthy 1 other states. In addition, the combination of hypercubes and
Kuhn triangles has excellent space and time performance charactevigtick,greatly accelerated
the experimental cycle. The hypercubes completely tessellate the spdcieakuhn triangles
completely tessellate each hypercube. The vertices defining the hypenddiare used as the states
in the MDP. The transition matrix is computed by iterating over each vext&or each available
actiona, the system dynamics are integrated using Runge-Kutta and tracked ungistitng state
s enters a new hypercube. The barycentric coordinataswith respect to the enclosing simplex
are then computed. The statean then be said to transition non-deterministically to a vertex in
the enclosing simplex with probability equal to the related barycentric codedfsmce barycentric
coordinates always sum to one). As Munos and Moore (2002) stattimg'‘this interpolation is thus

867

WINGATE AND SEPPI

mathematically equivalent to probabilistically jumping to a vertex: we approximdeteaministic
continuous process bystochastidiscrete one” (emphasis in original).

Approximation of the value function is performed by computing exact valteseh of the
vertices, and interpolating the value across the interior of each hyperdoterpolation is linear
within each simplex. Since these problems are continuous time, a slightly differemtof the
value function equation was used:

W(sa) = [VRS, Q-+ 3 Prisisir). aman 1(<.2)

wheret is the amount of time it took fog' to enter the new hypercube (or exit the state space), with
the convention that = « if S never exited the original hypercube.

All results were obtained on a dual Opteron 246 with 8G of RAM. For parttibsolvers, there
were always about 200 states in each partition, unless otherwise indiBatedlts are deterministic,
so wallclock tests were only run enough times to ensure accuracy.

3.1 Problem Details

Mountain car (MCAR) is a two-dimensional minimum-time optimal control problem. Allscaa
must rock back and forth until it gains enough momentum to carry itself up ttothef the hill
(see Figure 8). In order to receive any reward, the car must exitalbe space on the right-hand
side (positive position), with a velocity close to zero. In order to make reswte comparable to
the other problems studied, the reward function was modified from the trealigoadient reward
to be a single-point reward: the agent received a reward only uptingethe state space with a
velocity (within a threshold) of zero. This did not substantially change th@elof the resulting
value function. The state space is defined by position |1, 1]) and velocity k'€ [—4,4]).

The single-arm pendulum (SAP) is also a two dimensional minimum time optimal tpnot
lem. The agent has two actions available (bang-bang control is sufffoietitis problem) repre-
senting positive and negative torques applied to rotating pendulum, whictgérg must learn to
swing up and balance. Similar to MCAR, the agent cannot move the pendrdomtlie bottom to
the top directly, but must learn to rock it back and forth. Rewards am® earywhere but in the
balanced region. The state space is defined by the angle of thé]né&r(d the angular velocity of
the link 01 € [—15,15]). The two actions are-10 Newton.

The double-arm pendulum (DAP) is a four dimensional minimum time optimal dgorimblem
(see Figure 8). It is similar to SAP, except that there are two links. It ise¢bersl link which the
agent must balance vertically, but it is a free-swinging link. This vari&AP is different from
the easier Acrobot problem, where force is applied at the junction bettheervo links (Sutton,
1996), and from a horizontal double-arm pendulum (where the main ditsltas in the horizontal
plane, and the secondary link rotates vertically with respect to the main linkjs version of
DAP is the complete swing-up-and-balance problem; other variants ontythieehalancing aspect.
Rewards are zero everywhere but in the balanced region. The state spdefined by the two
link angles 01,8,) and their angular velocitie®{ € [—10,10] radians/sf, € [—15,15 radians/s).
Values outside these ranges are almost impossible to achieve, and aeeesgary for the optimal
policy. The two actions arg-10 Newton.

SysAdmin is an inherently discrete, highly non-deterministic problem with a ferge num-
ber of actions. A systems administrator must maintain a networkainnected computers. At

868

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Goal

Lo

Resistance

Thrust

'

Gravity

Figure 8: The left figure shows the MCAR problem (figure adapted fvamos and Moore, 2002).
The car must rock itself back and forth to generate enough momentum to exstate
space. The state space is described by the position and velocity of th&tearight
figure shows the DAP problem. The agent must swing the secondary linthantertical
position and keep it there. The state space is described by four vari@plés, 6; and
6,. The same dynamics are used for the SAP problem.

each timestep, the administrator is paid proportionally to the number of machinesdtan-line;
the goal of the problem is to maximize the amount of money made. The state spabmey
vector, with each bit representing whether or not a machine is workinghMas fail with a fixed
probability, with a failed machine increasing the probability of failure of anymreeconnected to
it. The administrator has+ 1 actions available: actioincorresponds to rebooting machineand
actionn+ 1 means that nothing is rebooted. A rebooted machine is guaranteed tokiegnmr the
next timestep. We used a network of 10 machines, connected in a ring topotbgynetwork sizes
were tested, with substantially similar results. See the paper by Guestrin22@8) for specifics
on generating the transition probabilities.

4. Resaults

Our experiments generated many positive results. First, the enhancenedmsewdiscussed accel-
erated the solution to many problems by as much as two orders of magnitudemalnilaining a
high degree of accuracy. Th2 metric usually outperformed thél metric, and variable reorder-
ing almost always helped. On the MCAR problem, many of the algorithms avoidey useless
backups, to the point of never processing several states. In add&R8, exhibited fairly good
space complexity. However, there were some negative results. Firsttladl enhancements (with
the exception of variable reordering) exhibited very poor behavior esisAdmin problem. Sec-
ond, we observed that it was difficult to tune the parameters of the algoritmally, we observed
that none of our enhancements were optimal.

869

WINGATE AND SEPPI

4.1 Positive Results

Figures 9, 10 and 11 show that the enhancements constituting GPS clesigrate normal value
and policy iteration for the SAP problem; substantially similar results were olotémehe MCAR
problem. The gains were even better for the DAP problem, as shown ireBig@rand 13, although
the enhancements that worked the best on SAP and MCAR were diffagenthe enhancements
that worked the best on DAP. To solve a 160,000 state version of SABx&mple, VI required
about 23 seconds, but PVI-H2-VRE required about 1.24 secdfatsa 6.25 million state version
of DAP, VI required 110.64 seconds, but PVI-H1 required only 8@®ads. Similar performance
gains were observed by enhancing policy iteration: PI-Rich and PI-EMsblved the 6.25 million
state DAP in about 250 seconds each; the partitioned, prioritized var@mgsd in times between
12.53 and 22.77 seconds. It is also interesting to note that GPS solved AR Mnd SAP
in about the same amount of time for any given discretization, even thoughrépeesent very
different problems (in the sense that value information flows through treyndifferently).

TheH2 metric usually exhibited better behavior than titmetric; the only exception was the
DAP problem (this is discussed in the next section). The results also daaterthat, while solving
the control problems, the relative advantages of the enhancementsomsistent as the problem
size changed. This could be due to the fact that although the discretizat@mslehanging, other
fundamental properties of the MDP are not: the expected degree ofeatgxvs constant, the
number of actions is very small, and there is only one reward in the system.

Variable reordering was almost always very effective on these dgroblems. In most exper-
iments, reordering reduced time and backups by at least a factor afl 2van in the cases when it
did not help, we never saw a situation where it hurt in any statistically signtfizay. VRE thus
appears to be a good enhancement, considering the low overheadsaraf aplementation.

An additional advantage of prioritization is that some of the prioritized algorithever pro-
cessed certain states in the MCAR problem. Figure 16 demonstrates thigghgplarge regions
of the state space (indicated by a dark blue color) were never pragéssause the agent can never
reach the goal state from them. This is a significant result from a prastaadpoint: no additional
code or information about the problem was necessary, but a full 19%edftate space was never
processed. This behavior manifested itself in the algorithm by a priorityrofthat never changed.

For all policy iteration variants, the Richardson iteration subsolver oftgreoiormed the GM-
RES subsolver. This is surprising, since Krylov methods are generalkidemed superior to their
more naive counterparts. It is possible that the use of preconditioninghtay GMRES in a more
positive light, but such experiments are left to future research. Wadammthis a positive result
because it indicates that using “naive” algorithms such as Modified Paécgtion (Puterman and
Shin, 1978) (which interleaves rounds of policy improvement with rouridsloie iteration) may
not be such a bad idea after all; the use of more sophisticated general suhexs may not be
very fruitful because of the extremely specific type of matrix that is used.ipr@blems.

To validate the resulting policies from GPS, a 75,000,000 state version ofvizasPrun (an
empirically determined minimum resolution needed for an effective controlyjolitis was done
in the continuous domain by overlaying the discretization structure on the alrigpace. Policies
are exact at the vertices, so distance-weighted vertex voting was ugethé¢cate policies inside
each simplex. A very good result is that GPS solved iE@90.0001) in only about four hours. The
resulting control policy performed perfectly, and represented thetifing we solved DAP using
any algorithm. We should note that this problem was run on an SGI Origin 380G Gl was about

870

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

one third as fast as the Opteron used in all of the other experiments, astlaseal machine which
is always heavily used.

4.2 Negative Results

The most significant negative result is the poor performance of GPSeo8ybAdmin problem.

Figure 14 shows some representative results: the best performeswadard Pl and VI, and the
worst are any GPS variant (except, of course, the variants whiah ardlg variable reordering;

these showed slightly improved performance). As it turns out, SysAdmin example of the

theoretically worst-case performance for GPS when compared to stimgédinods, and therefore
represents the other extreme of the performance spectrum.

The problem lies in state interdependence. The transition matrix of this prablextremely
dense: under any policy, there is a non-zero probability of transitiomorg finy state to 50% of
all of the other states. This is problematic for two reasons: first, the rép#ion calculations are
very expensive, and second, the problem is not amenable to a divileeaquer strategy. Instead,
this problem is like the one shown in Figure 2, where the best solution is a-minin backup
ordering. Thus, all of the overhead associated with maintaining prioritiegresoverhead, in the
sense that solution times would have been just as good without the effort.

The negative results are therefore not all that surprising, butweseore quantification. A
theoretical worst-case scenario for GPS can be estimated by consideftily connected MDP
(Pr(s|s,a) # 0 Vs,a,s). The two critical factors in the reprioritization overhead are 1) the fact
that backing up a state is costly, which is true for any algorithm but whiclitiaddlly implies
that recomputind; is costly, and 2) the fact that every state is dependent upon everysittey
implying that|SDRp)| will be large for all p, and thatH; will need to be recomputed for a large
number of states. The very worst case occurs when just one state iddddiu each partition.
Assume that just one backup per stiteneeded to solve a partition. Then, to reprioritize dependent
partitions, we must recompute the priority for every dependent S24t& (), by recomputind; (s),
which cost€O(|S||A|). This incursO(|S?|A|) overhead per backup. Using fewer partitions helps, but
even then performance is worse than that of normal VI, because theQ@8i@A)|) reprioritization
overhead is incurred whenever a partition is solved. The extra owkliBasot justified when a
round-robin method works just as well.

Additional experiments were conducted to discover which features @fdyi lead to the poor
performance. These involved reducing the number of available actiomsing low-probability
transitions, testing various partition sizes, etc. GPS still performed poortlyese modified prob-
lems. The current hypothesis is that all versions of SysAdmin considéheekhibit the same basic
interdependence, which means that it is difficult to partition the problemIgleanich implies that
solving one partition before moving on to the next is not the best strategy. |§dds to the fol-
lowing general conclusion: highly interdependent states must be savedicently; spending too
much time solving in isolation any one part of a problem which is highly interddgr&ron another
part is wasted effort. This suggests that a better strategy for futusewuerof GPS may be to solve
each partition inexactly, instead of to withenbut such an algorithm is left to future research.

The MCAR and SAP problems demonstrate that reordering often helpRittetrdson is better
as a policy evaluator than GMRES, and that the usingHBepriority metric often yields better
performance than using th&l metric. However, DAP represents an exception to all three: Figure 12
shows that both variable reordering and H&metric worsened performance, and Figure 13 shows

871

WINGATE AND SEPPI

25 ! T !
V| —+—
PVI-H1 3 i
20 PI-RiCh - -3 -~ | P o T .
B PPI-Rich-H1 & s
S PI-GMRES ‘ i
2 PPI-GMRES-H1 -- © -- g :
o 15 |- I T e -
0 ‘ ‘
= ;
5
o e 4
) i
E o
[s
R e e~ O T ;‘3:)(”— """""""""""""""""""""" -l
....... =
i
120000 160000

Number of states

Figure 9: Impact of using thid1 metric on the SAP problem. Theaxis is time to solve in seconds
(lower is better), and theaxis is the number of states used to discretize the problem. The
reader should compare VI to PVI-H1, PI-Rich to PPI-Rich-H1, etc. €hesults show
that using partitioning and prioritization witH1 always improves performance on this
problem (although it does not improve by much between PI-GMRES andsRHIRES-

H1). The improvement is especially large for VI. Partitions were generetied) METIS.

GMRES outperforming Richardson, as welltd$ outperformingH2. In both sets of experiments,
the largest performance gain seems to be due to the general idea of @tianitiand partitioning;
the specific variant of GPS used does not affect performance mpiapately as much. Figure 12
also shows that, for a small number of states, VI slightly outperformed an@Rant. Since each
state always depends dnt 1 other states, the graph diameter of these problems may be smaller.

Neither our priority metrics, our variable reordering algorithm, nor outifi@aming methods
are optimal. For example, Figure 15 clearly shows that graph-based panitis not as effective
as partitions based on geometrical information. Although the minimum-cut partigmizblem
is NP-complete, it is unlikely that the suboptimality in our partitioning is what catlsegoor
performance; a more likely explanation is that we are partitioning based owrtirey criteria.
Figure 5 shows that PVI-H2-VRE/200 performs fewer backups thahHR2/VRE/1. With PVI-
H2-VRE/1, backups are executed in strict priority order, but with PZRHRE/200, backups are
executed in an order that is partly due to the priority metric, and partly dueri@bl@ reordering.
This fact implies thaH2 generates a suboptimal ordering.

In order to obtain the best results, partition sizes had to be selected marhailgver, it is
also possible to present this as a positive result: the fact that the systefast@nough to allow
us to tune this parameter is significant). Figures 14 and 15 demonstrate tiitedrpag is largely
problem-dependent: on the SysAdmin problem, adding any partitions alwatyserformance. For
MCAR, adding patrtitions initially improved performance, but adding too mangsamed it again.
We do not know how to predict a good number of partitions, except tarebdeat using somewhere
between 100 and 400 states per partition tended to yield very good restiis control problems.

872

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

25 . , ,
VI —— : ‘
PVI-H2 3 :

20 PI-Rich - - s - [e P .
PPI-Rich-H2 & : ;
PI-GMRES : :

15 L | PPFGMRESH2 --0--| e e 1

Time to solve (seconds)

5 _—é;—x——_——_—‘,—,,r,,‘,,,‘,,’,,,—,,‘,,,—,i ,,,,,,,,,,,,,,,, n
: i mem e
SR T T i
i
120000 160000

Number of states

Figure 10: Impact of using the2 metric on the SAP problem. The results show that using par-
titioning and prioritization withH2 always improves performance. In contrast to the
previous figure, it substantially improves PI-GMRES. Partitions were rgéee using

METIS.
25 ! T !
VI —— ‘ ‘
VI-VRE : :
20 PVI-HL - -3k - - | .
PVI-H2 @ : :
PVI-H1-VRE
15 || PVIFH2VRE -

10 |

Time to solve (seconds)

G renliairy P O I - - - R - _—— == -
0 40000 80000 120000 160000

Number of states

Figure 11: Impact of using VRE on SAP. VRE always improves perfomaam this problem, but
the impact is especially dramatic on normal VI (improving performance by daror
of magnitude). The lowest line shows the very best times obtained for soBAR)
using any algorithm — at a size of 160,000, it takes about 0.85 secoadgioRs were
generated using METIS.

873

WINGATE AND SEPPI

VI VRE

PVIHL --%--
PVIH1 VRE ---&

PVI H2
PVIH2 VRE -- © --

[l
1le+07 1.5e+07 2e+07 2.5e+07
Number of states

Time to solve (seconds)

Figure 12: Results of the value iteration algorithms on the DAP problem. Thigesntrast some-
what with the results for MCAR and SAP1 outperformedH2, and VRE negatively
affected performance. However, any GPS variant greatly outpeedrstandard VI,
with or without VRE. Partitions were generated using geometrical information.

Pl Rich —+—
Pl GMRES
PPIRichH1 --*--
PPIGMRES H1 &
PPI Rich H2
PPIGMRES H2 -- o --

i i i .
5e+06 le+07 1.5e+07 2e+07 2.5e+07
Number of states

Time to solve (seconds)

Figure 13: Results of the policy iteration algorithms on the DAP problem. Onamathe re-
sults contrast with MCAR and SAM1 outperformedd2, and GMRES outperformed
Richardson iteration. However, like the value iteration algorithms, GPS varggeatly
outperformed their naive counterpart. Partitions were generated usomgegrical in-
formation.

874

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

100 : ——— : —————ry
VI ——
I R S B PI Rich]
' * PI GMRES -- % --
PVIHL @
PVI H2 VRE
60

Time to solve (seconds)
D
o

N
o

Number of partitions

Figure 14: Performance on the SysAdmin-10 problem, as a function ofuimder of partitions
used. Only a representative sample of all algorithms is shown. The resulisst
sharply with previous results: VI and Pl dramatically outperform GPS wntwjaand
adding partitions never helps any algorithm. VRE barely affects perfarend®artitions
were generated using METIS.

100: T T L | T T L T T oo

w

2

e} 10

8 E

H :

2

(3]

=

(]

2]

=

© R

-E F Geometrical ——— .
Uniform W=
Average -- % --

Max &
1 10 100 1000 10000

Number of partitions

Figure 15: Results contrasting partitioning methods (note the double log.s&ileyvn are solu-
tion times using METIS generated patrtitions (with three different edge-weighria),
compared to a geometrically generated partitioning. The edge-weight cuairerid)
maximum probability under any policy, 2) average over all policies, andngpum
cost. The geometric partitions perform best. Results come from the MCAlRepno
using a 300x300 state discretization and the PVI-H2-VRE solver.

875

WINGATE AND SEPPI

Figure 16: The MCAR control policy. Green (light gray) is positive thhyued (medium gray) is
negative thrust, and dark blue (dark gray) indicates that the partitiomnesesr pro-
cessed. On the left: using one state per partition, the resolution of the uthgkites is
very high, and corresponds exactly to the discontinuities in the value fundba the
right: same, but using 100 states per partition. A partition can be skippedfatilypf
the states inside can be skipped.

5. Related Work

This work is about the efficient backpropagation of correct valuetfan estimates. Other re-
searchers who have investigated similar issues of efficiency haveqawdesults that are tangible
and compelling, but their algorithms are not directly comparable to ours bechay have been
developed in the context of on-line, model-free learning. Our algorithmepimrast, explicitly
assume the availability of a complete model.

The difference in these domains is significant and shifts the emphasis obtke Model-free
algorithms do not have the luxury of executing backups to states they lwawasited; model-
based algorithms, in contrast, can execute backups to any state, in amy dds fact frees us
to examine different types of questions. For example, most model-freethlge must content
themselves with backpropagating information along experience tracethdratis no reason to
suppose that an experience trace (played in any order) represatiraal sequence of backups.
It is a surrogate for what is truly desired: the ability to digest the consexpseof corrected value
function estimates as quickly and thoroughly as possible, throughout thie problem. Thus,
instead of examining questions related to maximizing the utility of experience trémesvork
examines questions related to finding globally optimal backup sequences.

There are three primary classes of methods that researchers havie aeeelerate the back-
propagation of correct value information. Algorithmically, these methods farpoor basis for
comparison, but conceptually, they illustrate several important points.

First is the class ofrace propagatiormethods, such as TR (Sutton, 1988),) (Peng and
Williams, 1994), SARSAX) (Rummery and Niranjan, 1994), FastXp(Reynolds, 2002) and Ex-
perience Stack Replay (Reynolds, 2002). These methods store d mqmaist experiences. As
value function estimates are corrected, the changes are propagatedcituscalong the experience
trace. Relative to value iteration, these methods derive enhancedmanice partly from backing

876

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

up states in a principled order (that is, backwards) and by only backirg subset of all states.
These ideas of principled ordering and partial sweeps are central wwdhiks

Second, there arferced generalizatioomethods, such as Eligibility Traces (Singh and Sutton,
1996), PQ-learning (Zhu and Levinson, 2002) and PropagationPFeuk, 2002). These methods
attempt to compute the value for a state based on information that was not dassdigiated with
an experience trace. States selected for backup may have been paregfous experience trace,
or may have a geometrical or geodesic relationship to states along the aatea(ttris happens
implicitly with function approximators, but is forced to happen explicitly in thesale@imethods).

Third, there areprioritized computatiormethods, such as Prioritized Sweeping (Moore and
Atkeson, 1993) and Queue-DYNA (Peng and Williams, 1993). These methraler the backups in
a principled way by constructing priority queues based on Bellman erta.idea of prioritizing
backups is also central to our paper, but these methods raise many asidsiomerit further study.
It is from these questions that our work springs.

Other researchers have considered extensions to the three basis pliasgously enumerated,
but the extensions do not match our domain of interest. For example, Ahdre(£998) propose
a continuous extension to Prioritized Sweeping, and Zhang and Zha@g)(@dcuss a method for
accelerating the convergence of value iteration in POMDPs. Itis also m@Nik that the dual of any
MDP can be solved by linear programming. However, Littman et al. (1995} pairthat “existing
algorithms for solving LPs with provable polynomial-time performance are intipeddor most
MDPs. Practical algorithms for solving LPs based on the simplex method e to the same
sort of worst-case behavior as policy iteration and value iteration.” @next al. (2003) present
efficient algorithms for solving factored MDPs, but the efficiency thegcdbe relies on closed-
form expressions for state spaces that are never explicitly enumefatedon (1999) provides a
thorough survey of other MDP solution techniques, such as state agigreginterpolated value
iteration, approximate policy iteration, policies without values, etc.

6. Conclusions and Future Research

Based on our observations, there are several important conclushink wlarify directions for
future research. In the quest for an optimal sequence of backepgaits to be had from prioritized
computation are real and compelling, but there is a lack of understandittgvesat constitutes
optimality and how it can be achieved. A better understanding of why GPBsvimneeded: more
principled approaches to selecting priority metrics, reordering methodspamtitioning schemes
are essential. Ideally, such principled methods would all be combined in ediarithitecture.

Partitioning with a priority metric seems to be the most important improvement. Evegithou
we observed that our partitioning criteria was suboptimal, and that oudeBng algorithm was
suboptimal, and that botH1 andH2 are suboptimal, the fact that they were not perfect seemed to
make less of a difference than the fact that we used them at all. This wmas stearly by DAP: the
addition of VRE and the specific priority metric used did not affect thingpgriionately as much
as the initial use of partitions.

The variability in these results make it clear that more theory is needed to guidevbp-
ment and selection of such enhancements. The most useful would Herprigatures and opti-
mality definitions that would indicate which metric, reordering method and partitisstheme are
maximally effective, and which would guide the development of new enhamism&hese may
include distributional properties of the reward functions, distributionaperties of transition ma-

877

WINGATE AND SEPPI

trices, strongly/weakly connected component analyses, etc. Wherr doliancements work well?
The rule of thumb seems to be “on problems with large diameter;” there is alsaeeitieat they
work well on problems with sparse rewards and a sparse transition magigoki¢lude that perhaps
the control problems selected show GPS in its very best light — howeveasitonly GPS which
made it possible for us to solve a 75,000,000, explicitly enumerated discrege\iid. Without
guestion, the algorithms are effective on certain types of problems.

More generally, the results indicate that dramatically improved performanpesgble for al-
gorithms that exploit problem-specific structure in an intelligent way. This ntesvaesearch into
new types of representations (and companion algorithms) that are dé&igmethe beginning with
efficiency in mind. There are also many improvements that could be made wsnegtcideas. For
example, variable reordering can be considered a surrogate for arpantiition priority metric.
In the same way that partitioning a problem alleviates suboptimal backupisiopémg a partition
might improve efficiency. The choice of a single-level partitioning schengeasiitrary; perhaps a
better solution is to generate a continuum of partitions with priority metrics atleaeh

Overall, the results of this work have improved our ability to experiment with Riblems
and have opened the doors of several fascinating avenues ofafesé@athe very least, this work
has enabled certain very large MDPs to be solved in tractable amounts of tthepace, which
would not have been possible otherwise; hopefully, this advance will akke®archers to design
and tackle ever larger and more relevant problems. But the results aisatenthat there are strong
possibilities for even more efficient solution methods in the future, some otwhay be radically
different than anything considered to date, and which may enable eveninteltigent systems to
be created.

On-Line Appendix

The reader is encouraged to refer to

http://aml.cs.byu.edu/papers/prioritizatiomethods/

for additional multi-media materials. Several videos are available which gaphdemonstrate
the different backup orders imposed by the different priority metrice GRS source code is also
available for download.

Acknowledgments

The authors wish to thank Todd Peterson, Michael Goodrich, Dan \femtul Martha Wingate
for their patient revisions and cogent suggestions. They would also likeattk the anonymous
reviewers for their attention to detail and excellent feedback.

David Wingate is supported under a National Science Foundation Gradaasarch Fellow-
ship.

References

Charles J. AlpertMulti-way graph and hypergraph partitioning®hD thesis, University of Califor-
nia Los Angeles, Los Angeles, CA, 1996.

878

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

David Andre, Nir Friedman, and Ronald Parr. Generalized prioritizecepimg. Advances in
Neural Information Processing Systeri§:1001-1007, 1998.

Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, Junet®aleck Dongarra, Victor
Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vdiemplates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, 2nd EditiSBhWAM, Philadelphia, PA,
1994.

Andrew G. Barto, S. J. Bradtke, and Satinder P. Singh. Learning tasiog real-time dynamic
programming Artificial Intelligence 72(1):81-138, 1995.

Dimitri P. Bertsekas. Distributed dynamic programmitlgEE Transactions on Automatic Contyol
27:610-616, 1982.

Dimitri P. Bertsekas. Distributed asynchronous computation of fixed pdidthematics Program-
ming, 27:107-120, 1983.

Dimitri P. Bertsekas and John Tsitsikldeuro-Dynamic Programmingithena Scientific, Belmont,
MA, 1996.

Dimitri P. Bertsekas and John N. TsitsiklidParallel and Distributed Computation: Numerical
Methods Prentice-Hall, Englewood Cliffs, NJ, 1989.

Thomas Dean and Robert Givan. Model minimization in Markov Decisiondases. IfProceed-
ings of The Fourteenth National Conference on Artificial Intelligemagyes 106-111, 1997.

Geoffrey J. GordonApproximate Solutions to Markov Decision ProcessesD thesis, Carnegie
Mellon University, Pittsburgh, PA, 1999.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataralfficient solution algo-
rithms for factored MDPsJournal of Artificial Intelligence Researcth9:399-468, 2003.

Vijaykumar Gullapalli and Andrew G. Barto. Convergence of indireciisle asynchronous value
iteration algorithmsAdvances in Neural Information Processing Systeé81695—702, 1994.

George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme faggular graphsJour-
nal of Parallel and Distributed Computing8:96—-129, 1998.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcememite in polynomial time.
Machine Learning49:209-232, 2002.

Donald E. Knuth.The Stanford GraphBase: A Platform for Combinatorial Computé&hgM Press,
New York, NY, 1993.

Harold J. Kushner and Paul DupuiNumerical methods for stochastic control problems in contin-
uous time, Second Editiospringer-Verlag, New York, NY, 2001.

Michael L. Littman, Thomas L. Dean, and Leslie P. Kaelbling. On the complexfityotring
Markov Decision Problems. IRroceedings of the Eleventh Annual Conference on Uncertainty
in Artificial Intelligence pages 394-402, 1995.

879

WINGATE AND SEPPI

Raymond E. Miller and James W. Thatch@omplexity of computer computatiorBlenum Press,
New York, NY, 1972.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweepingnfBeement learning with
less data and less tim#lachine Learning13:103-130, 1993.

Andrew W. Moore and Christopher G. Atkeson. The parti-game algoritmedriable resolution
reinforcement learning in multidimensional state spadachine Learning21:199-233, 1995.

Remi Munos and Andrew W. Moore. Variable resolution discretization in optiortrol. Machine
Learning 49:291-323, 2002.

Jing Peng and John Williams. Efficient learning and planning within the dyaradwork. In
Proceedings of the Second International Conference on Simulationagitikd Behaviarpages
437-454, 1993.

Jing Peng and Ronald J. Williams. Incremental multi-step Q-learningPréceedings of the
Eleventh International Conference on Machine Learnipages 226—-232, 1994.

Philippe Preux. Propagation of Q-values in tabular TD(lambdaPrtteedings of the Thirteenth
European Conference on Machine Learnipgges 369—380, 2002.

Martin L. PutermanMarkov Decision Processes—Discrete Stochastic Dynamic Programdohg
Wiley and Sons, Inc., New York, NY, 1994.

Martin L. Puterman and Moon C. Shin. Modified policy iteration algorithms facalisited Markov
Decision ProblemsManagement Scienc4:1127-1137, 1978.

Stuart . ReynoldsReinforcement Learning with Exploratio®hD thesis, University of Birming-
ham, Birmingham, United Kingdom, 2002.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using coionést systems. Tech-
nical Report CUED/F-INFENG/TR 166, Cambridge University, Cambrjddeited Kingdom,
1994.

Yousef Saadlterative Methods for Sparse Linear Systef@8VS Publishing, Boston, 1996.

Hermann A. Schwarz.Gesammelte Mathematische Abhandlungerume 2. Springer-Verlag,
1890.

Satinder P. Singh and Richard S. Sutton. Reinforcement learning witlcheglaligibility traces.
Machine Learning22:123-158, 1996.

Richard S. Sutton. Learning to predict by the methods of temporal diffeeeMachine Learning
3:9-44, 1988.

Richard S. Sutton. Generalization in reinforcement learning: Sucdessdmples using sparse
coarse codingAdvances in Neural Information Processing Syste81i038—-1044, 1996.

Ray S. Tuminaro, Mike Heroux, S. A. Hutchinson, and John N. Sh&fiitial Aztec User’s Guide:
Version 2.1 Sandia National Laboratory, Albuquerque, NM, 1999.

880

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Ronald J. Williams and Leemon C. Baird. Tight performance bounds omlgmaicies based on
imperfect value functions. Technical Report NU-CCS-93-14, Nadkern University, Boston,
MA, 1993.

David Wingate and Kevin D. Seppi. Cache efficiency of priority metrics f@kolvers. IMPAAAI
Workshop on Learning and Planning in Markov Procespeges 103-106, 2004a.

David Wingate and Kevin D. Seppi. P3VI: A partitioned, prioritized, parateue iterator. In
Proceedings of the Twenty-First International Conference on Madhéraening pages 863870,
2004b.

Nevin L. Zhang, Stephen S. Lee, and Weihong Zhang. A method fodsgeap value iteration in
partially observable Markov Decision ProcessesPioceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligencepages 696—703, 1999.

Nevin L. Zhang and Weihong Zhang. Speeding up the convergencalud iteration in partially
observable Markov Decision Processe®urnal of Artificial Intelligence Researchi4:29-51,
2001.

Weiyu Zhu and Stephen Levinson. PQ-learning: an efficient robotilegimethod for intelligent
behavior acquisition. IfProceedings of the Seventh International Conference on Intelligent Au-
tonomous Systemz002.

881

