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Abstract

We address the problem of learning a symmetric positive idefimatrix. The central issue is to de-
sign parameter updates that preserve positive definite@esaupdates are motivated with thien
Neumanrdivergence. Rather than treating the most general caseaus dn two key applications
that exemplify our methods: on-line learning with a simpd@iare loss, and finding a symmetric
positive definite matrix subject to linear constraints. Tipeates generalize the exponentiated gra-
dient (EG) update and AdaBoost, respectively: the paransetow a symmetric positive definite
matrix of trace one instead of a probability vector (whichhis context is a diagonal positive def-
inite matrix with trace one). The generalized updates usixnagarithms and exponentials to
preserve positive definiteness. Most importantly, we show the derivation and the analyses of
the original EG update and AdaBoost generalize to the nagettial case. We apply the resulting
matrix exponentiated gradie@EG) update andefiniteBoosto the problem of learning a kernel
matrix from distance measurements.

1. Introduction

Most learning algorithms have been developed to learectorof parameters from data. However,
an increasing number of papers are now dealing with more structuretd@@rs. More specifically,
when learning a similarity or a distance function among objects, the parametelefimed as aym-
metric positive definite matrithat serves as a kernel (e.g., Xing etal., 2003; Shai-Shwartz et al.,
2004; Tsang and Kwok, 2003; Tsuda and Noble, 2004). Learningisaly formulated as a pa-
rameter updating procedure to optimizdoas function The gradient descent update is one of
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the most commonly used algorithms, but it is not appropriate when the paranfater a posi-

tive definite matrix, because the updated parameter matrix does not médgestag positive def-

inite. |Xing et al. (2003) solved this problem by always correcting the tgatienatrix to be pos-
itive definite. However no bound has been proven for this updatezandet approach. Also,
Shai-Shwartz et al. (2004) proposed an on-line algorithm for learnkeyel matrix when only
some of the class labels of the examples are provided. This algorithm is also ta the update-
and-correction approach, but since the update step performs renirodification, the correction
step can be efficiently implemented. They have shown a generalization bwpickd by similar

previously known bounds for the perceptron.

In this paper, we introduce theatrix exponentiated gradient updatghich works as follows:
First, the matrix logarithm of the current parameter matrix is computed. Thep ésdtken in the
direction of the steepest descent of the loss function. Finally, the panamatex is updated to the
exponential of the modified log-matrix. Our update preserves symmetrya@sitive definiteness
because the matrix exponential maps any symmetric matrix to a symmetric positivieedufitrix.

Bregman divergences play a central role in the motivation and the anafysislime learning
algorithms(Kivinen and Warmuth, 1997). A learning problem is essentially defineal lbgs func-
tion and a divergence that measures the discrepancy between pasanvies precisely, the up-
dates are motivated by minimizing the sum of the loss function and the Bregnegelice, where
the loss function is multiplied by a positive learning rate. Different divecgsriead to radically
different updates (Kivinen and Warmuth, 1997, 2001). For exampéegthdient descent update
is derived from the squared Euclidean distance, and the exponentiaigiérg update from the
Kullback-Leibler divergence (relative entropy). In this work we usewbn Neumanmlivergence
(also called quantum relative entropy) for measuring the discrepamegée two positive definite
matrices|(Nielsen and Chuang, 2000). We derive amatrix exponentiated gradient updétem
this divergence (which is a Bregman divergence for symmetric positifimitgematrices). Finally
we proverelative loss boundasing thevon Neumanulivergence as a measure of progress.

We apply our technigues to solve the following related key problem thatdwesved a lot of
attention recently (Xing et al., 2003; Shai-Shwartz et al., 2004; Tsang<amk, 2003; Tsuda
and Noble, 2004). Find a symmetric positive definite matrix that satisfies a muohbmear
inequality constraints. The nelefiniteBoostalgorithm greedily chooses a violated linear con-
straint and performs an approximated Bregman projection. In the diagase) we recover Ada-
Boost (Schapire and Singer, 1999). We also show how the convargeoof of AdaBoost general-
izes to the non-diagonal case.

2. Preliminaries

In this section, we first present mathematical definitions and basic lemmas.

2.1 Matrix Basics

We denote matrices by capital bold letters and restrict ourselves to squiieesaith real entries
in this paper. For any such matri4 € R9%9, expA andlog A denote the matrix exponential and
logarithm, respectively. The matrix exponential is defined as the followimgpseries,

1 1
exp(A) =T+ A+ §A2+ §A3+~-. (2.1)
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MATRIX EXPONENTIATED GRADIENT UPDATES

In the case of symmetric matrices, the matrix exponential operation can be wsmming the
eigenvalue decompositiod = VAV ', whereV is an orthonormal matrix with the eigenvectors
of A as columns and\ the diagonal matrix of eigenvalues. ThespA = V (expA)V' T, where
(expA)ii = exp(Aii). The matrix logarithntog A is defined as the inverse functionefp A, which
does not always exist for arbitrarg. However, wherA is symmetric and strictly positive definite,
log A is computed abg A := V (logA)V' ", where(logA); i = logA j. Throughout the paper lay
and exm@ denote the natural logarithm and exponential of scadar “

A square matrix is positive definite if all its eigenvalues are strictly positivesitiRe semi-
definiteness only requires the non-negativity of the eigenvalues. Fom@aticesA and B, A <
B iff B— A is positive semi-definite. Similarhd < B iff B — A is (strictly) positive definite.

The trace of a matrix is the sum of its diagonal elements, {&)te= 5; A j and thus tftAB) =
YijAjBji=tr(BA). In matrix algebra, {tA B) plays a similar role as the dot product for vectors.
Furthermore, {tA) = 3;A;, whereA; are the eigenvalues of and the determinant ded) = []; A.

If F(W) :R9*9 — Ris a real-valued function on matrices, thég,F(W) denotes thgradient
with respect to matri¥v:

oF  oF
oWy Mg
OwF(W) = : .
oF  oF
OWg1 OWgd

For example, it is easy to see tHantr(AB) = B". More examples of computing gradients are
given in Appendix A.

For a square matriX, sym(X) = (X + X ")/2 denotes the symmetric part &f. If W is
symmetric andX an arbitrary matrix, then

T _ T
tr(WX)=tr <W¥> +tr (W%) =tr(Wsym(X)). (2.2)
Our analysis requires the use of the Golden-Thompson inequality (Gdl€i6g):
tr(exp(A+ B)) < tr(exp(A)exp(B)), (2.3)

which holds for arbitrangymmetrianatricesA and B.

We also need the following two basic inequalities for symmetric matrices. Thefiesgener-
alizes the following simple inequality, which is a realization of Jensen’s inequalitthe convex
function exgx): For any 0<a < 1 andpi,p2 € R,

exp(ap1 + (1—a)pz) < aexp(pa) + (1—a) exp(p2).

In the below generalization, the distributiga, 1 — a) is replaced by(A,I — A), whereA is any
symmetric matrix for whiclo < A < T.

Lemma 2.1 For any symmetric matrid € R9%9 such thatd < A < I, and anyps,p. € R,

exp(Apy+ (I — A)pz) = Aexp(p) + (I — A)exp(pz).
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Proof AssumeA is eigen-decomposed ak= VAV ', whereA is the diagonal matrix of eigen-
values andV is an orthogonal matrix with the eigenvectors Afas columns. By assumption,

0 < A < 1. Letb6y be thek-th eigenvalue of the left hand side of the inequality that we are to prove.
Clearly8y = exp(Akp1+ (1—Ak)p2) and by Jensen’s inequali < Axexp(p1) + (1 —Ak) exp(p2).

Let © be the diagonal matrix with entri@. Then® < Aexp(p1) + (I —A) exp(p2), and by multi-
plying both sides by from left and byV " from right, we obtain the desired inequality. |

Lemma 2.2 For any positive semi-definite symmetric matdxe R9*9 and any two symmetric
matricesB,C € R¥4, B < C impliestr(AB) < tr(AC).

Proof Let D = C — B, thenD > 0 by assumption. Suffices to show thatArD) > 0. Let us
eigen-decomposd asVAV . SinceVV' =V'V =1,D=VPV' whereP=V'DV > 0.
Then t{AD) =tr(VAV VPV T) = tr(AP) = S ; \iPj. SinceP is positive semi-definite, the
diagonal elementB; are nonnegative. Also by assumption the eigenvalue$ A are nonnegative.
Thus we conclude that(tA D) > 0. [ |

2.2 Von Neumann Divergence or Quantum Relative Entropy

If F is a real-valued strictly convex differentiable function on the paramgdenain (a subset of
matrices inRY*9) and f (W) := Ow F(W), then the Bregman divergence between two parameters
W andW is defined as

De(W, W) := F(W) — F(W) —tr(W — W) f(W)").

Since F is strictly conve)ﬂF(W, W) is also strictly convex in its first argument. Furthermore, the
gradient in the first argument has the following simple form:

Og Ar(W, W) = f(W) — f(W),

sinceatr(AB) = BT (cf. Section 2.1).

For the divergences used in this paper, we restrict ourselves to therdohsgmmetric positive
definite matrices. Our main choice of F i§W) = tr(W logW — W), which is calledvon Neu-
mann entropyr quantum entropyThe strict convexity of this function is well known (Nielsen and
Chuang, 2000). Furthermore we show in Appendix A thgtF(W) = f(W) =logW.

The Bregman divergence corresponding to this choice of F isdheNeumann divergenae
guantum relative entropge.g., Nielsen and Chuang, 2000):

AF(W/,W) = tr(WIogW— W logW — W+W).

In this paper, we are primarily interested in the case when the parametetsrarelized in the
sense that W) = tr(W) = 1. Symmetric positive definite matrices of trace one are related to
density matrices commonly used in Statistical Physics. For normalized paramhetelisergence
simplifies to

AF(W,W) = tr(ﬁv/'logﬁv/ - ﬁv/logW).
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If W = SiA\vjv;' is our notation for the eigenvalue decomposition, then the von Neumann

entrop@ becomes BW) = ¥; AjlogA;. We can rewrite the normalized diverge@e&s
DR(W, W) =3 Niloghi — 5 Ailogh; (5 vj)?. (2.4)
1 )

This divergence quantifies the difference in the eigenvalues as wek &génvectors. When both
eigen systems are the same (i2¢.="v;), then the divergence becomes the usual relative entropy

between the eigenvaluAs(ﬁvf, W) =5, A log A—:

2.3 Rotation Invariance

One can visualize a symmetric positive definite ma#ik = S;Ajviv;;, = VAV ' as an ellipse,
where the eigenvectorg are the axes of the ellipse and the square-roots of the eigenvalues (i.e.
V/Ai) are the lengths of the corresponding axes. Thus the von Neumangetice quantifies the
“discrepancy” between two ellipses and is invariant under a simultanetatson of both eigen
systems. That is, for any orthonormal matix the von Neumann divergence has the property that

A(W W) =DM(UWUT, UWU). (2.5)
This follows from(2.4) and
A(VAVT VAV ) = A((UVAUV) ,UVAUV)).

However, the divergence is decidedly not invariant under the unitigtion of both parameters,
i.e. typicallyAg(W , W) # Ag(UW ,UW ) for an orthonormal matri¥/. This is because such ro-
tations can change the sign of the eigenvalues. Also rotating symmetric matpaslyyproduces
non-symmetric matrices.

There is a second important divergence between symmetric positive defigiteces that is
invariant under the simultaneous rotation of both eigen systems (2.5). Itlisgaran divergence
based on the strictly convex functioiW') = —logde{W) (e.g., Boyd and Vandenberghe (2004))
over the cone of positive definite matrices. Note thd#F) = — 5;logA;, where the\; denote the
eigenvalues oWV. Also sincef(W) = OwF (W) = (W4T = W1, the Bregman divergence
becomes:

De(W, W) = |ogj§$%+tr(w-lﬁ7)—d

-3 Iog% +tr(W W) —d,
| |

whered is the dimension of the parameter matrices. We call this.thgDetdivergence. Notice

that in this case, ) is essentially minus the log of the volume of the ellipdg and the LogDet

divergence is the relative entropy between two multidimensional Gaussitéméxed mean and

covariance matriced” andW, respectively (see Singer and Warmuth, 1999). At the end of Section

we will also briefly discuss the updates derived from the LogDetgiaree. Note that for this

divergenceAe(W, W) = A((UW , UW) for any orthonormal matrixU and parameter matrices

in the domain of-.

1. W) can be extended to symmetric positive semi-definite matrices by usingriert@mn 0log 0= 0.
2. The domain of the first argument can be extended to symmetric gosémi-definite matrices.
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3. On-line Learning

In this section we present a natural extension ofekgonentiated gradieEG) update (Kivinen
and Warmuth, 1997) to an update for symmetric positive definite matrices.

3.1 Motivation of the Updates

On-line learning proceeds in trials. In the most basic form, the on-line algoptoduces a param-
eterW; at trialt and then incurs a lods (W4). In this paper, the parameters are square matrices in
Rdxd_

In a refined form, the algorithm aims to predict a label and several actmns  each trial:
The algorithm first receives anstanceX; in some instance domaix. It then produces a prediction
y; for the instanceX; based on the algorithm’s current parameter mat¥ixand receives a labsyj.
(The predictiony and the labey; lie some labeling domaify.) Finally the algorithm incurs a real
valued losd. (¥, y:) and updates its parameter matrixig ; 1.

For example in Section 3.3 we consider a case where the labeling dorminhe real line.
The on-line algorithm we analyze for this case predicts with fr(W; X}) and is based on the loss
Le(Wh) =L(%e, W) = (S — %o)2

In this section we only discuss updates at a high level and only considbasieform of the
on-line algorithm. We assume thiat(W) is convex in the parametd¥ (for all t) and that the
gradientOyy L (W) is a well defined matrix ilR%<9. In the update, we aim to solve the following
problem (see Kivinen and Warmuth, 1997, 2001):

Wi =argmin  Ag(W,Wh) +nL(W), (3.1)
w

where the convex function F defines the Bregman divergence éhd non-negative learning rate.
The update balances two conflicting goals: staying close to the old paraWe(as quantified by
the divergence) and achieving small loss on the current labeled instEimeéearning rate becomes
a trade-off parameter.

We can eliminate the argmin by setting the gradient (with respadf jof its objective to zero:

Wi = 1 (F(W) —nOwbki(Wiya)). (3.2)

If we assume thaf and f~1 preserve symmetry, then constrainiig in (3.1) to be symmetric
changes the update to (cf. Appendix B for details):

Wi = fH(f (Wh) —nsym(OwLe(Wisa))). (3.3)
The abovamplicit update is usually not solvable in closed form. A common way to avoid this

problem (Kivinen and Warmuth, 1997) is to approximatg,L:(Wi.1) by OwLi(W4), leading to
the followingexplicitupdate for the constraint case:

Wi = £ H(F(W) —nsym(Owl(Wh))).

In the case of the von Neumann divergence, the functid’) = logW and £ (Q) = expQ
clearly preserve symmetry. When using this divergence we arrive &tltbeing (explicit) update:

1000



MATRIX EXPONENTIATED GRADIENT UPDATES

sym.pos.def. pos. semi. def:
AN ——
Wii=exp|log Wy —nsym( OwlL(Wh) ) | . (3.4)

symmetric

symmetric positive definite

We call this update thennormalized matrix exponentiated gradient updaiote thatf(W) =
logW maps symmetric positive definite matrices to arbitrary symmetric matrices, andddirga
a scaled symmetrized gradient, the functipn'(Q) = expQ maps the symmetric exponent back
to a symmetric positive definite matrix.

When the parameters are constrained to trace one, then we arriveMtitive Exponentiated
Gradient (MEG) updatewhich generalizes the exponentiated gradient (EG) update of Kivimgn a
Warmuth (1997) to non-diagonal matrices:

1
Wi = Zexp(loth—nsym(Dth(Wt))), (3.5)

where Z = tr (exp(log W; — nsym(OwL:(W4)))) is the normalizing constant (See Appendix B for
details.)

Finally, observe that for the LogDet divergengéW) = OwF = —W ! and f1(Q) =
—Q~1. Thus bothf and f~! negate and invert all eigenvalues. Both functions also preserve
symmetry. Howeverf —! does not map an arbitrary symmetric matrix back to a symmetric positive
definite matrix. Note that for this divergence update (3.3) becomes

-1

sym.pos.def. pos.semi.def.
= 1 e e
Wia=—|-( Wi )" —nsymOwki(Wis1))

symmetric negative definite

symmetric positive definite

This update also preserves symmetric positive definiteness of the paramattbr under the as-
sumption that the gradiefty L (W;41) is positive semi-definite: I} is symmetric positive def-
inite, thenf (W}) is symmetric negative definite. Using this assumption, we have that the argument
of f~1is symmetric negative definite and theref®$&_1 is again symmetric positive definite.

In this paper we prove a certain type of relative loss bound for the MEatepvhich generalize
the analogously known bounds for the EG algorithm to the non-diagosal d@ our knowledge,
no relative loss bounds have been proven for the above update thatiieddfrom the LogDet
divergence. For this update, such bounds are not even knownddatidigonal case. Also, if the
gradients of the loss are only known to be symmetric themust be small in order to guarantee that
W1 stays in the positive definite cone.

3.2 Numerically Stable MEG Update

The MEG update (3.5) is numerically unstable when the eigenvaluB @ire around zero. How-
ever we can “unwrap” this update to the following:

1 t
Wi1= 5 exp (CtI +logW1—n Zsym(Dst(Ws))> :
t s=
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where the constar; normalizes the trace di¥;, to one. As long as the eigenvaluesi¥f, are

not too small, the computation tefg W7 is stable. Note that the update is independent of the choice
of ¢ € R. We incrementally maintain an eigenvalue decomposition of the matrix in the exponen
(O(n3) per iteration):

t
VIAY," = oI +logW1—n Zsym(DWLAWs))
S=

where the constamt is chosen so that the maximum eigenvalue of the above is zero.WKow =
Viexp(A ) VT /tr(exp(Ar)). The pseudo-code is given in Algorithm 1.

Algorithm 1 Pseudo-code of the matrix exponentiated gradient (MEG) algorithm fadratic Loss
ChooseW; andn
Initialize Gy = logWy
fort=121,2,...do
Obtain instance matriX;
Predicty; = tr(W: Xt)
Obtain labely; and determine the lods = (y; — %)?
UpdateG; = Gi—1 — 2n (¥ — yt) sym(X;)
Compute spectral decompositiofd; = Vt/\tV{T
UpdateW; 1 = Viexp(At — cI)V; T /tr(exp(As — & I)), wherec, = maxs(M\t)ss
end for

3.3 Relative Loss Bounds

For the sake of simplicity we now restrict ourselves to the case when thathfggredicts with
i = tr(W; X;) and the loss function is quadratici(Wt) = L(%, ) := (%t — %)%

We begin with the definitions needed for the relative loss bounds. Slet(X1,y1),...,
(Xt,yr) denote a sequence of examples, where the instance ma¥ice®?*9 and the labelg; €
R. The total loss of the on-line algorithm on the entire sequ&isd yec(S) = Si_; (tr(Wi Xt) —
¥t)2. We prove a bound on threlative loss yec(S) — Ly (S) that holds for any comparator param-
eterU. Such a comparator parameter is any symmetric positive semi-definite iatrith trace
one, and its total loss is definedlag(S) = S{_ (tr(U Xt) — yt)2. The relative loss bound is derived
in two steps: Lemma 3.1 upper bounds the relative loss for an individuahttgims of the progress
towards the comparator parametér(as measured by the divergence). In the second Lemma 3.2,
the bound for individual trials is summed to obtain a bound for a whole segudrhese two lem-
mas generalize similar lemmas previously proven for the exponentiated gragaate (Lemmas
5.8 and 5.9 of Kivinen and Warmuth, 1997).

Lemma 3.1 Let W; be any symmetric positive definite matrix. Xt be any square matrix for
which the eigenvalues sym(X;) have range at most r, i.e.

AT(sym( X)) —A"N(sym(Xy) < 1.

AssuméeW,; is produced fromW; by the MEG update with learning ratg, and letU be any
symmetric positive semi-definite matrix. Then for any®and a=n = 2b/(2+r?b):

a (y—tr(WiX1))>—b (g —tr(UX1))? < O (U, Wi) — O (U, Wisa). (3.6)

MEG-loss U-loss progress toward€/
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The above type of inequality is central to all relative loss bounds (KivarehWarmuth, 1997). If
the loss of the algorithm is small, then the inequality becomes vacuous. Houfdkeralgorithm
incurs a large loss, then its parame¥®r must make progress towards any parameter vdéttirat
has small loss on the current example (if such parameters exist).

The proof of this inequality is given in Appendix C. It has the same struetsite correspond-
ing previous lemma proven for the exponentiated gradient algorithm, butveoapply the various
matrix inequalities given at the end of Section 2.1 (in particular the Goldemaphon inequality
(2.3) and the approximation of the matrix exponential (Lehma 2.1)). Thesaaliges will also
be essential for the analysis D&finiteBoostn the next section.

Lemma 3.2 Let S be any sequence of examples with square real matrices as estand real
labels, and let r be an upper bound on the range of eigenvalues of thesiric part of each
instance matrix of S. Let the initial paramet®7 and comparison parametdd be arbitrary
symmetric positive definite matrices of trace one. Then for any ¢ such th&c/(r?(2+c)),

Lvea(S) < <1+ g) Lu(S) + (% + %) °Or (U, W), (3.7)

Proof For the maximum tightness df (3.63, should be chosen as=n = 2b/(2+r?b). Let
b= c/r?, and thusa= 2c/(r?(2+4c)). Then|(3.6) is rewritten as

2c
51 o M IH(WAX))” — el — (U X0)* < (86 (U, Wh) — A (U, Whsa)
Adding the bounds far=1,---, T, we get
2c
mLMEG(S) —cLy(S) < r3(A (U, Wh) — A (U, Wia)) < r2Ag (U, Wh),
which is equivalent ta (3.7). [ |

AssumingLy; (S) < Lmax andAg (U, W1) < dmax then the bound (317) is tightest wher=
I/ 20dmax/Lmax. With this choice otc, we have

(2
Lmec(S) — Lu(S) < rv/2Lmadmax+ EAF (U,Wy).

In particular, ifW; = 11, thenAr (U, W1) = logd — 5 A log 5+ < logd. Additionally, whenLmax=

0, then the total loss of the algorithm is bounded’-ﬁg&d.

Note that the MEG algorithm generalizes the EG algorithm of Kivinen and Wer(d997). In
the case of linear regression, a square of a product of dual noesiapin the bounds for the EG
algorithm: ||u||3X2. Herew is a parametevectorandX., is an upper bound on the infinity norm
of the instance vectors;. Note the correspondence with the above bound (which generalizes the
bounds for EG to the non-diagonal case): the one norm of the paraneeter is replaced by the
trace and the infinity norm by the maximum range of the eigenvalues.

4. Bregman Projection andDefiniteBoost

Using the von Neumann divergence, we will generalize the boosting algwritr matrix parame-
ters.
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4.1 Preliminaries

In this section, we address the following Bregman projection problem oihfinal positive semi-
definite symmetric matri¥¥ € R%9*9 of trace one satisfying a set of linear constrafhts:

W* =argmin  Ag(W,W)) 4.1)
%%
st. W=w'uWw)=1

tr(WC;) <0, forj=1,...,n,

where the symmetric positive definite mat#k; of trace one is the initial parameter matrix and
Cy,...,C, are arbitrary matrices. Note that we do not explicitly const#dinto be positive semi-
definite because when the von Neumann divergence is used, then ttiers®0* will always

be positive semi-definite. Prior knowledge ab®it is encoded in the constraints, and the ma-
trix closest toW7 is chosen among the matrices satisfying all constraints. Tsuda and Nob# (20
employed this approach for learning a kernel matrix among graph nattethia method can be po-
tentially applied to learn a kernel matrix in other settings (e.g., Xing et al., 2088 )@ and Kwok,
2003). In the previous work by (Tsuda and Noble, 2004), an algoritlasn developed that pro-
cesses a batch of constraints. The problem was converted to a doaktrnaint problem (as done
below) and an iterative gradient descent algorithm was given. Howeyeonvergence proofs were
provided previously. In this paper we give on-line algorithms with stromyemgence proofs.

The problem|(4.1) is a projection dfV; to the intersection of convex regions defined by
the constraints. It is well known that the Bregman projection into the interseoficonvex re-
gions can be solved by sequential projections to each region (Bregra@n; Censor and Lent,
1981). In the original papers only asymptotic convergence was shidare recently a connection
(Kivinen and Warmuth, 1999; Lafferty, 1999) was made to the AdaBalggtrithm which has an
improved convergence analysis (Freund and Schapire, 1997;i8chad Singer, 1999). We gen-
eralize the latter algorithm and its analysis to symmetric positive definite matricecafitide new
algorithm DefiniteBoost As in the original setting, onlapproximateprojections (Figure 1) are
required to show fast convergence.

Before presenting the algorithm, let us describe the dual problem of minimizengon Neu-
mann divergence subject to linear constraints (4.1). The dual variat#e¢ke Lagrange multipliers
a € R" (a > 0) associated with this optimization problem:

oa>0

o =argmax —log {tr (exp(long — i aj sym(C,-))) } . 4.2)
=1

See Appendix D for a detailed derivation of the dual problem that haridéesase when the con-
straint matrixC is allowed to be an arbitrary square matrix. Previous derivations reggyrachet-
ric Cj (Tsuda and Noble, 2004). When (4.1) is feasible, the optimal solution ésibed as

1 n
W* = ——exp(logW,— ) ajsym(Cj)),
Z(a) ( 1 JZ]_ ] ( J))

3. Note that ifn is large then the on-line update (8.1) becomes a Bregman projectiorcstija single equality
constraint ttW Xi) = w.

4. The methodology employed in this paper is not limited to on-line learningeXample in Littlestone et al. (1992),
cf. Corollary 15, the EG algorithm was used for solving a system of lingaations and fast convergence was shown.
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approximate
projection

‘ exact

\ W5 projection
|~

Figure 1: The intersection of two convex sets (here two straight lineshedound by projecting
back and forth between the two sets with exact Bregman projectidfisW>,...). In
this paper we use certain approximate projectidig,(W3,...). Now each projection
may over or undershoot the alternating target set. Nevertheless, gtobh@&rgence to the
optimal solution is still guaranteed via our proofs.

where Za*) =tr (exp(logWi —5"_;atsym(Cj)) | anda* is the optimal dual solution.
ZJ 1Y J

4.2 Exact Bregman Projections

Problem[(4.1) can be solved with the following algorithm: Start from some inidehmeteVy
(for instanceW; = %I). At thet-th step, choose an unsatisfied constrgint.e. t{ W;C},) > O
Then solve the following Bregman projection with respect to the chosertreants

Wipa=argmin - Ag(W, W) (4.3)
w
st. W=W  t(W)=1,
tr(WcCj,) <0.
By means of a Lagrange multiplier, the dual problem is described as (cf. Appendix D)
af = argmin tr(exp(logW; —asym(Cj,))) . (4.4)
a>0
Using the solution of the dual proble¥; is updated as
1
Wit = o exp(logW; — o sym(C,)) (4.5)
Z(at)

where the normalization factor is; @) = tr(exp(logW; —ai sym(Cj,))). If Wy is symmetric
positive definite, theV; 1 is as well. Note that we can use the same numerically stable reformu-
lation of the update as discussed in Section 3.2.

5. For instance, the most unsatisfied constraintji.e- argmax_ ... ,tr(W:;Cj), can be chosen.
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4.3 Approximate Bregman Projections

The solution of((4.4) cannot be obtained in closed form. However, oneisa the following ap-

proximate choice ofy;:
. 1 1+rt/)\{"ax>
O; = —lo . 4.6

AP g(1+rt/x{m" ’ (46

when the eigenvalues efm(Cj,) lie in the interval A" A3 andr; = tr(W;C},). Since the most
unsatisfied constraint is choseny> 0 and thusi; > 0. We call this approximate Bregman projection
algorithmDefiniteBoostIt may be seen as a natural extension of AdaBoost (cf. Section 5hByew
probability distributions are replaced by symmetric positive definite matricesaoé tone. The
pseudo-code of DefiniteBoost is given in Algorithm 2.

Algorithm 2 Pseudo-code of the DefiniteBoost algorithif?'" and A"®* are lower and upper
bounds on the eigenvaluessfm(C).
ChooseW;
Initialize Gy = logWy
fort=121,2,...do
Choose an unsatisfied constrajnti.e. t(W:C,) > 0) or stop when all constraints satisfied
Compute constraint violation = tr(W;C',)

Compute approximate step side=

UpdateGi = Gi_1 —a;sym(Cj,)

Compute spectral decompositioi; = Vi/A\{ W

UpdateW; ;1 = Viexp(Ar — 1) V; ' /tr(exp(A; — ¢ 1)), wherec; = maxs(/At)ss
end for

) (1+rt/)\{“ax)
AT A OO\ T A

Although the projection is done only approximaﬂ@l}qe convergence of the dual objective (4.2)
can be shown using the following upper bound of the negative dualtblgeg.e.

tr (exp(long - JZl(xj sym(Cj))> :

Theorem 4.1 The negative exponentiated dual objective is bounded from above by

T T
tr <exp (Iong—t;at sym(Cjt)>> < tElp(rt), 4.7)

I SN & S V)
AP \nin S 1 /D

where
a ), re = tr(W;iCj,),

and

Amax _\min

M )
It AR min It Aax_ymin
p(rt) = <1_ )\tmax> <1— A{nin) :

6. The approximate Bregman projection (withas in [(4.6)) can also be motivated as an on-line algorithm based on an
entropic loss and learning rate one (following Section 3 and Kivinen andith (1999)).
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The proof of this inequality for our setting is given in Appendix E. The lib(¢th7) is monotonically
decreasing, becauggr;) < 1. Also, since we always chose a violated constraint (if there is one),
we haver; > 0 and thereforg(r;) < 1 (or we stop). Thus the dual objective (4.2) continues to
increase until all constraints are satisfied.

4.4 Convergence Speed

Next we determine the maximal number of iterations needed to find a ni&tnixhich satisfies all
constraints up to the predetermined accuracye. ttWCj) < g, for 1 < j <n. The algorithm
selects in each iteration an constrajnthat is violated by at leagt (i.e. ry = tr(W;Cj,) > €), or
stops if no such constraint exists. Assuming the algorithm stop§ &t1)-th step, we derive an
upper bound off as a function ot.

For simplicity, let us assum&y = 31, A" = —\, andA™* = A (for all j). Denote by
hprimal(W) andhgyal(er) the primal and dual objective functions in (4.1) and (4.2), respectively.

hprimal(W) = AF(Wawl) (4-8)

hqual(a) = —logtr (exp (Iong - i aj sym(C,-))) (4.9)
=1

The primal objective is upper-bounded by thgsinceAr (W, W7) = $;AjlogA; + logd < logd.
Since the algorithm stops at th{& + 1)-th iteration (withry > € fort = 1,...,T), we get from
Theorem 4.1:

T 2 2N\T/2
exp(—hgual(&)) =tr (exp <IogW1— Zlatsym(cjt)>> =< (A )\28 ) ’

t=

whered is the cumulative coefficient vector for the constraints, ig.= S, 0:8(ji = j), for
1<j<n. ,
Thus the objective in (4.2) is lower bounded %)'yi—z since

_ A2 g2\ /2
hdual(a) > —|OQ<T>
2
> % (4.10)

where the last inequality follows by convexity eflog (Azﬁz) with respect tce. At the optimal

solutionW* anda*, the values of the objective functions coincide, bgya(a*) = hprimal(W™).
Finally, we obtain

Te? ~ * *
N2 < hgyal(a) < hgual(a™) = hprimal(W ) <logd,

, .
2\7logd | summary, we have proven the following:

and the upper bouridl < =

Corollary 4.2 Suppose we are solving probleh1) with DefiniteBoost, wher€; (j = 1,...,n)
are arbitrary matrices Wittmin(C;j) > —A andAmax(Cj) <A and Wy = 17. Assume an optimal
solutionW* to (4.1) exists and the algorithm selects in each iteratioreariolated constraint, i.e.
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re = tr(WiCj,) > €, or stops if no such constraint exists. Then after at mostgf\i'z&d iterations,
DefiniteBoost stops and the resultibly satisfies all linear constraints up to accuragyi.e.

tr(WcCj)<e forallj=1,...,n

This result implies that we can solve (4.1) with accurady O(d3logd/€?) operations (exclud-
ing the cost of identifying violated constraints). Similar bounds on the numbigerations for

solving a system of linear equations with the EG algorithm were first provéhititestone et al.,
1992, Corollary 15). Observe that if (4.1) is not feasible, then one roagiruie findinge-violated

constraints and the primal objective can become unbounded, bie may become unbounded.

4.5 Relation to Boosting

When all matrices are diagonal, then DefiniteBoost specializes to the Adadigorithm (Schapire
and Singer, 1999). Lefxi,yi}? ; be the training samples, whexg € R™ andy; € {—1,1}. Let
hi(x),...,ha(X) € [-1,1] be the weak hypotheses. For thth hypothesis; (x), let us defineCj =
diag(y1hj(x1),. .-, Yahj(xa)). Sincelyhj(x)| < 1, we may choosa"® = 1 and\["" = —1 for anyt.
SettingWy = %I , the dual objective (4.7) is rewritten as

d n
—log (% Zexp(—yi Zajhj(xi)>> ,
i= i=

which is equivalent to the exponential loss function used in AdaBoost.e$ihand W, are di-
agonal, the matri¥¥; stays diagonal after the update wf; = (W} )i i, the updating formula (4.5)
becomes the AdaBoost update:,1; = W ; exp(—atyih (X)) /Z:(ay). The approximate solution of
a; (4.6) is described as = 1 log it wherer, is the weighted training error of theth hypothesis,

17"'[,
ere =39 weiyihe(x).

4.6 Solving Semi-definite Programs

Suppose we aim to solve the following semi-definite programming problem:
W*=argmin 6 (4.11)
w0
st. t(W)=1LW=-0W=W"'
tr(WC;) <6, forj=1,...,n.

If one would know the optima®* beforehand, then following problem would lead to an optimal
solution of (4.11):

W* =argmin A (W, EI) (4.12)
w d
st. t(W)=1LW=w'

tr(W(C;j—6"1)) <0, forj=1,....n.

Running DefiniteBoost on the above problem with matriéés: (Cj —0*I) can approximate
the solution of((4.12) rather efficiently and, hence, it is only left to deterrtiieeoptimal value
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6*. If it is chosen too small, then no feasible solution'to (4.12) exists and Defiro&Buaill not
terminate after 2%logd/€? iterations with accuracy whereA™"(C;) > —A andA™X(C;) < A.

If it is chosen too large, then a feasible solution exists and DefiniteBoosirtates in a bounded
number of iterations. Hence one has a way of identifying wherg* and alsd® > 6*. This allows
the design of a binary search procedure to approxirfiaie a few steps. Based on this idea we
previously proposed a margin maximizing version of AdaBaoosti$eh and Warmuth, 2002). For
this algorithm we could show that after(logdlog(1/¢)/€?) iterations the algorithm achieved an
optimal solution within accuracy. We claim that the outlined binary search procedure can also
be applied in combination with DefiniteBoost for solving the semi-definite prolfefd) in time
O(d3logdlog(1/¢)/€?) (excluding the cost of identifying violated constraints). Additionally we
assert that a slightly more advanced adaptatidhdifring the optimization (as was done batRch,
2001; Ratsch and Warmuth, 2005, for the diagonal case) will yield the reduced tmelexity of
O(d3logd/€?). Rigorous proofs of these conjectures go beyond the scope of thés. pap

5. Experiments on Learning Kernels

In this section, our technique is applied to learning a kernel matrix from af si$tance measure-
ments. This application is not on-lirger se but it shows nevertheless that the theoretical bounds
can be reasonably tight on natural data.

When K is ad x d kernel matrix amongl objects, then thd;; characterizes the similarity
between objects and j. In the feature spacds;; corresponds to the inner product between ob-
jecti and j, and thus the Euclidean distance can be computed from the entries of tred ke
trix (Scholkopf and Smola, 2002). In some cases, the kernel matrix is not giy@ictidy, but only
a set of distance measurements is available. The data are representedsefthguantitative dis-
tance values (e.g., the distance betweamd j is 0.75), or (i) qualitative evaluations (e.g., the
distance betweeinandj is small) (Xing et al., 2003; Tsuda and Nable, 2004). Our task is to obtain
a positive definite kernel matrix which fits well to the given distance data.

5.1 On-line Kernel Learning

In the first experiment, we consider the on-line learning scenario in wiilghtome distance example
is shown to the learner at each time step. The distance example atitidescribed a$a;, by, V: },
which indicates that the squared Euclidean distance between ohjentdb; is y;. Let us define
a time-developing sequence of kernel matrice{ ¥ },_,, and the corresponding points in the
feature space a{s::ti}?zl (i.e. (Wh)ap = xhxtp). Then, the total loss incurred by this sequence is

T T
> (ot —aw | =y)" = 5 (r(WiXe) )%,
t= t=
where X; is a symmetric matrix whoség;,a;) and (b, b;) elements are 0.5a;,by) and (b, &)
elements are -0.5, and all the other elements are zero. We consider dledmtxperiment in which
the distance examples are created from a kntamget kernel matrix We used a 5% 52 kernel
matrix amonggyr B proteins of bacteriad = 52). This data contains three bacteria species (see
Tsuda et al., 2003, for details). Each distance example is created mmbnchoosing one element
of the target kernel. The initial parameter was s&tas— %I. When the comparison matiix is set

7. This statement is slightly simplified. Please cheé&ksRh and Warmuth (2002) for details.
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Figure 2: Numerical results of on-line learning. (Left) total loss agairsniimber of iterations.
The dashed line shows the loss bound. (Right) classification error oétirest neighbor
classifier using the learned kernel. The dashed line shows the erroe tartfet kernel.

to the target matrix, then because all the distance examples are derivethisamatrix,Ly (S) =0
andLmax = 0. Therefore we choose learning rate- 2, which minimizes the relative loss bound of
Lemmad 3.2. The total loss of the kernel matrix sequence obtained by the matomential update
is shown in Figure 2 (left). In the plot, we have also shown the relative lossad The bound
seems to give a reasonably tight performance guarantee—it is abouttheicectual total loss.
To evaluate the learned kernel matrix, the prediction accuracy of basgizEies by the nearest
neighbor classifier is calculated (Figure 2, right), where the 52 protetnsaadomly divided into
50% training and 50% testing data. The value shown in the plot is the testa@a@ged over 10
different divisions. It took a large number of iterations 2 x 10°) for the error rate to converge
to the level of the target kernel. In practice one can often increase tharigaate for faster
convergence, but here we chose the small rate suggested by owisualgheck the tightness of
the bound.

5.2 Kernel Learning by Bregman Projection

Next, let us consider a batch learning scenario where we have a setlithtjve distance evaluations
(i.e. inequality constraints). Givempairs of similar objects{aj,bj}?:l, the inequality constraints
are constructed asea, —xp, || <Y, j =1,...,n, whereyis a predetermined constant Xf; is defined

as in the previous section a@; = X —yI, the inequalities are then rewritten agW Cj) <

0,j =1,...,n. The largest and smallest eigenvalues of &fjyare 1—y and —y, respectively.
As in the previous section, distance examples are randomly generateth&aarget kernel matrix
betweergyr B proteins. Setting= 0.2/d, we collected all object pairs whose distance in the feature
space is less thapto yield 980 inequalitiesn(= 980). Figure 3 (left) shows the convergence of
the dual objective function as proven in Theorem 4.1. The conveegeas much faster than the
previous experiment, because in the batch setting, one can choose thenseisified constraint
and optimize the step size as well. Figure 3 (right) shows the classificationodrtioe nearest
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Figure 3: Numerical results of Bregman projection. (Left) convergefi¢ke dual objective func-
tion. (Right) classification error of the nearest neighbor classifier demgarned kernel.

neighbor classifier. As opposed to the previous experiment, the etsorsrhigher than that of
the target kernel matrix, because a substantial amount of information isyldbe conversion to
inequality constraints.

6. Summary and Discussion

We motivated and analyzed a new update for symmetric positive matrices usimgrttNeumann
divergence. We showed that the standard bounds for on-line leaanihdpoosting generalize to
the case when the parameters are symmetric positive definite matrices of neagestead of a
probability vector. As in quantum physics, the eigenvalues act as plitlesb In addition to
the applications suggested by the experiments, our algorithm can be steigttfly applied to
learning a covariance matrix. It would also be interesting to use a robsdt;[33”) for the purpose
of ignoring outliers/(Huber, 1981) and investigate possible applicatiorsumiearning algorithms
to quantum statistical inference problems (Barndorff-Nielsen et al.,)2003

Our method is designed for learning a positive definite parameter matrix of ize. It is
not straightforward to extend it to the case where the size of the paramet@x graws on-line
as more examples are seen. Our methods immediately generalize to the Hermitiapsnagric
square matrices if9*9 for which A = AT = A*. The spectral decomposition of these matrices
becomesdA = UAU*, whereU is a unitary matrix (i.,eUU* = I) andA is a diagonal matrix of
real eigenvalues. In the case when all entries of the matrix are real, then Hermigguivalent
to symmetric. All algorithms of this paper (and their analyzes) immediately geretalihe case
when symmetric is replaced by Hermitian and symmetric positive definite by pobitwaitian
(i.e. Hermitian with positive eigenvalues). In particular, the Golden-Thompssguality, Jensen’s
inequality for the matrix exponential (Lemma 2.1) and Lemma 2.2 all hold for Hermitizinices.
Note that density matrices (as used in Statistical Physics) are positive Herméigices of trace
one.

1011



TSuDA, RATSCH AND WARMUTH

Acknowledgments

We dedicate this paper to Nick Littlestone who first proved relative lossdmtor an algorithm
in the EG family—his well knownNinnowalgorithm for learning disjunctions (Littlestone, 1988,
1989).

K.T. and G.R. gratefully acknowledge partial support from the PASCA&twdrk of Excellence
(EU #506778). M.W. was supported by NSF grant CCR 9821087 anbis€bvery grant LSIT02-
10110. This work was partially done while G.R. was still at FraunhofeiSHI Berlin and Max
Planck Institute for Biological Cybernetics iriilbingen. Part of this work was done while all three
authors were visiting the National ICT Australia in Canberra.

Appendix A. Derivatives of Matrix Functions

The matrix functions considered in this paper are mostly trace functions égp(¥)) and
tr(WlogW'), which we will expand into power series. Thus we begin with computing the gra
dient of HW) = tr(WK). The partial derivative with respect {a j) element is described as
or(wk) i tr((W +AE;j)¥) —tr(WX)
GVV” a A—0 A ’
whereE;; is the sparse matrix whosg j) element is one and all the others are zero. For example,
whenk = 3,

(W +AEij)} = W3 AE;WW +A\WE;W + \WW Ej;) + O(\?).

The trace is simply described as
tr(W +AE;j)%) = tr(W?3)+3\r(E;W?)+0(\?)
= tr(W3)+3\[W?;; +0()\?).
Therefore Oy tr(W3) = 3(W?2)T. For generak, we get
Owtr(Wk) = k(W< 1T, (A.1)

The matrix exponential is defined as
1 1
Wi Wi
2! T3 3!

Applying (A.1) to all terms, we géflyytr(exp(W)) = exp(W) . Next, let us calculate the gradient
of tr(WlogW — W). Using the expansion

exp(W)=14+W + —

-1y,

we get

WlogW — W = %EI 1)1i (W-1I)-1.

Applying the shifted version of (A.1), i.élytr((W — ) ) =k((W —D*1)T to all terms, the
gradient is obtained dSytr(WlogW — W) = (logW)'. WhenW is symmetric, then one can
drop the transposition. Thus in in this cdsg tr(expW) = expW.
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Appendix B. Derivation of the MEG Update

In this appendix we derive parameter updates when the parameter musbmedinear constraints.
One method is to incorporate such constraints into the strictly convex functiefiing the Breg-
man divergence. The modified function F is then only defined when thdraoris are met. The
updates always have the simple form (3.2). However this method oftentteddfcult forms of F
andf = [F. Here we choose the alternate method of keeping the linear constraintssteth@/e
begin by discussing how to enforce symmetry. Consider the following optimizat@blem, where
X, is an arbitrary matrix irR9*9, W; an arbitrary symmetric matrix iR9*¢ andy; € R:

Wipa=argmin - As(W, W;) +nLy(W)
w
StW=W"'.

We assume thdlly, L (W) is always a well defined matrix iR9*9.

We introduce one Lagrange multipli&y; ; for the each of the constraintd/; j = W ;. This
contributes the ternk; ;(W; ; — Wj;) to the Lagrangian. In matrix form these constraints can be
summarized astF (W' — W)) =tr((I'" —T')W). This gives us the Lagrangian

L(W,T) = A(W, Wh) +nL(W) +tr(TT —T)W).
for ' € R9%9, Setting the gradient with respectW to zero yields:
Wi = £ (F(W) —nOwl (Weea) - (0-T7)).

Since the objective is convey, it suffices to exhibit a choic& slch that the symmetry constraint
is satisfied. Under the assumption thfaaind =1 preserve symmetny’ = —nOwLi(Wii1)/2
achieves this and the update becomes (3.3):

Wit = £ (F(W) —nsym(OwLd(Wesa) 1))

For the normalized case we still need to enforce the trace one constrafit.qn This adds a
termd(tr(W') — 1) to the Lagrangian and the update now has the form

Wi 1 = exp(log Wi —nOwLi (Wi1) — (T —T7) T ).
Choosingl' = —nOwL:(Wty1)/2 and

8= —log(tr(exp(log W; — n sym(Cwy Lt (Wis1)))))

enforces the symmetry and trace constraints and after approximating thergrae arrive at the
explicit MEG updatel (3.5).

Appendix C. Proof of Lemma/3.1
Let & = —2n(tr(X W;) — v ), then the right hand side of (3.6) can be reformulated as

A (U, W) — A (U, Wiy1) = &tr(U X;) — logtr(exp(log Wi + & sym(Xt))).
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Therefore, (3.6) is equivalent tb< 0, where
f = logtr(exp(log W + & sym(Xt))) — &tr(U Xt ) + a(yt — tr(Wi X1))? — b(yt — tr(U X))
Let us bound the first term. Due to Golden-Thompson inequality (2.3), we ha
tr(exp(log Wt + & sym(Xy))) < tr (Wi exp(& sym(Xy))). (C.1)
The right hand side can be rewritten as
exp(& sym(X;)) = exp(rod) exp(d (sym(Xi) —rol)).

Letrp be alower bound of the eigenvaluessyfn(X:). By assumption, the range of the eigenvalues
of sym(Xj) is at mostr, i.e.
rol <sym(X;) < (ro+r)I.

Thus0 < A < I, for A = (sym(X;) —roI)/r. Applying Lemma 2.1 with this choice ol and
p1=r&;, p2 =0, we obtain

sym(Xi) —rol

exp(& (sym(X;) —rol)) < I — .

(1—exp(rédy)).

SinceW; is symmetric positive definite and both sides of the above inequality are symmegric,
can apply Lemma 2|2 by pre-multiplying the inequality W} and taking a trace of both sides:

(1_ tl’(‘/VtXt) —TIp
r

tr (Wi exp(& sym(X;))) < exp(rod) (1—exp(r6t))).

Note that we used the assumption thal&) = 1. The above gives an upper bound on the right
hand side of inequality (C.1) We now plug this upper bound into the first térhaad obtainf < g,
where

g= rod +log(1— WX To(1 _exnr&))) — tr(U X¢)&
+a(y, — (Wi Xq))? - by — tr(U Xq))%. (C.2)
Let us define = tr(U X;) and maximize the upper bound (C.2) with respeatSoIving% =0,

we havez =y; — &/(2b) = yi + n(tr(X:W;) —yt) /b. Substituting this inta (C.2), we have the upper
boundg < hwhere

h= 20r0(y —tr(X;WA) +log (1— TP (1 —exp(2nr (y — (X WA))))

r
—20 (%t — tr(XeWA)) + (a+ o (y— tr( X Wh))2.

We now upper bound the second term using the inequalitfllegp(1 — expq)) < pg-+g?/8, for
0<qg<1landgeR (Helmbold etal., 1997):

(y —tr(XiWh))?
2b

h< ((24r?b)n? — 4bn + 2ab).

It remains to shovg = (2 +r?b)n? — 4bn 4 2ab < 0. We easily see that is minimized forn =
2b/(2+ r?b) and that for this value af we haveq < 0 if and only ifa < 2b/(2+r?b).
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Appendix D. Derivation of the DefiniteBoost Dual Problem

For the sake of brevity we assume that the primal problem has one inequadgiraint (note that
(4.1) has multiple constraints):

W* =argmin  tr(W (logW —logWy)+W; - W
w

st.  (WC)<0
tr(W)=1
wW=w".

Following Appendix B we arrive at the Lagrangian

L(W,a,B,T) = tr(W(logW —logW1)+ Wi —W +atr(WC) +
+B(tr((W) —1) +tr(T" —T)W), (D.1)

which is minimized w.r.tW and maximized w.r.tx > 0, B € R andI’ € R9*4. Setting the gradient
w.r.t. W to zero we obtain

wW* = exp(logW;—aC —BI—(C-T")
exp(—B)exp(logW; —aC — (T —T'7).

We now enforce the symmetry constraint, givinglus- —a(C — C'")/2, and plug this choice into
the above
W* = exp(—B) exp(logWi —asym(C)).

Similarly, B = logtr(exp(logW7 —a sym(C))) enforces the trace constraint. Now
W* =exp(logWy —asym(C)/Z(a),

whereZ(a) = —logtr(exp(logWi —asym(C))). PluggingW* into in the Lagrangian, we obtain
the dual optimization problem for one constraint:

o* =argmax —logZ(a).
a>0

One can easily verify that the solution of the problem wittonstraints is of the form:

n
o’ =argmax —logtr(exp(logW1 — Z a;jsym(Cj))).
=1

a>0

Appendix E. Proof of Theorem'4.1

Recall the definition of the normalization facto(d) = tr (exp(logW; —asym(C',))) of Definite-
Boost. By the Golden-Thompson inequality,

Z(0) < (Wi exp(—asym(C},)). (E.1)
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Similarly to the proof of Lemma 3.1, we now upper bound the right hand sideisfrtaqual-
ity by applying lemmas 2.1 and 2.2. We choodeas (AT + sym(C},))/ (A" +A""). Then
sym(C},) can be expressed a§*A —A\""(I — A) and0 < A < I. Thus by Lemma 2.1,

exp(—asym(Cj,)) < exp(—oA") A 4 exp(aA™") (I — A).

SinceW; is positive definite and both sides of the above inequality are symmetric, wapgayn
Lemma 2.2 by multiplying this inequality bW; and taking a trace of both sides:

tr(Wrexp(—asym(C},))) < exp(—oA")tr(W; A) + exp(aA\™)tr (W; (I — A)).
By expandingA and using the shorthang= tr(W;C|,), we obtain

)\{nin—i- I't
Apax+Apm

AP py

+ eX[XG)\mm) )\{nax_’_ )\{mn N

Zi(a) < exp(—aA™®)
We now choose the that minimizes the right hand side of the above inequality (which iithe
given in equation (4.6)). With this choice, the inequality becomes

Aax

~ v | swaxcsmn It | smacomn
Zt(o‘t)ﬁ(l—)\th)At ™ (1‘1‘@)“ A (E.2)

)\tmin

Applying the update rule (4.5)) times, we have

exp(logW1 — 51, G sym(C},))
Mt Ze(a)

Taking the trace of both sides and rearranging terms, we get

Wri=

T

-
tr [ exp(logWy—§ aisym(Cj,)) | = [1Z: (o).
( Zomen =1
By using the bound (E.2) for each(@;), the inequality of the theorem readily follows.
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