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Abstract
Standard SVM training hasO(m3) time andO(m2) space complexities, wherem is the training

set size. It is thus computationally infeasible on very large data sets. By observing that practical
SVM implementations onlyapproximatethe optimal solution by an iterative strategy, we scale
up kernel methods by exploiting such “approximateness” in this paper. We first show that many
kernel methods can be equivalently formulated as minimum enclosing ball (MEB) problems in
computational geometry. Then, by adopting an efficient approximate MEB algorithm, we obtain
provably approximately optimal solutions with the idea of core sets. Our proposed Core Vector
Machine (CVM) algorithm can be used with nonlinear kernels and has a time complexity that is
linear in m and a space complexity that isindependentof m. Experiments on large toy and real-
world data sets demonstrate that the CVM is as accurate as existing SVM implementations, but is
much faster and can handle much larger data sets than existing scale-up methods. For example,
CVM with the Gaussian kernel produces superior results on the KDDCUP-99 intrusion detection
data, which has about five million training patterns, in only1.4 seconds on a 3.2GHz Pentium–4
PC.

Keywords: kernel methods, approximation algorithm, minimum enclosing ball, core set, scalabil-
ity

1. Introduction

In recent years, there has been a lot of interest on using kernels in various machine learning prob-
lems, with the support vector machines (SVM) being the most prominent example. Many of these
kernel methods are formulated as quadratic programming (QP) problems. Denote the number of
training patterns bym. The training time complexity of QP isO(m3) and its space complexity is at
least quadratic. Hence, a major stumbling block is in scaling up these QP’s to large data sets, such
as those commonly encountered in data mining applications.

To reduce the time and space complexities, a popular technique is to obtain low-rank approxi-
mations on the kernel matrix, by using the Nyström method (Williams and Seeger, 2001), greedy
approximation (Smola and Schölkopf, 2000), sampling (Achlioptas et al., 2002) or matrix decom-
positions (Fine and Scheinberg, 2001). However, on very large data sets, the resulting rank of the
kernel matrix may still be too high to be handled efficiently.

c©2005 Ivor W. Tsang, James T. Kwok and Pak-Ming Cheung.



TSANG, KWOK AND CHEUNG

Another approach to scale up kernel methods is by chunking (Vapnik, 1998) or more sophisti-
cated decomposition methods (Chang and Lin, 2004; Osuna et al., 1997b; Platt, 1999; Vishwanathan
et al., 2003). However, chunking needs to optimize the entire set of non-zero Lagrange multipliers
that have been identified, and the resultant kernel matrix may still be too largeto fit into memory.
Osuna et al. (1997b) suggested optimizing only a fixed-size subset (working set) of the training data
each time, while the variables corresponding to the other patterns are frozen. Going to the extreme,
the sequential minimal optimization (SMO) algorithm (Platt, 1999) breaks the original QP into a
series of smallest possible QPs, each involving only two variables.

A more radical approach is to avoid the QP altogether. Mangasarian and hiscolleagues proposed
several variations of the Lagrangian SVM (LSVM) (Fung and Mangasarian, 2003; Mangasarian and
Musicant, 2001a,b) that obtain the solution with a fast iterative scheme. However, for nonlinear
kernels (which is the focus in this paper), it still requires the inversion of an m×mmatrix. Recently,
Kao et al. (2004) and Yang et al. (2005) also proposed scale-up methods that are specially designed
for the linear and Gaussian kernels, respectively.

Similar in spirit to decomposition algorithms are methods that scale down the training data be-
fore inputting to the SVM. For example, Pavlov et al. (2000b) used boostingto combine a large
number of SVMs, each is trained on only a small data subsample. Alternatively, Collobert et al.
(2002) used a neural-network-based gater to mix these small SVMs. Lee and Mangasarian (2001)
proposed the reduced SVM (RSVM), which uses a random rectangularsubset of the kernel ma-
trix. Instead of random sampling, one can also use active learning (Schohn and Cohn, 2000; Tong
and Koller, 2000), squashing (Pavlov et al., 2000a), editing (Bakir et al., 2005) or even clustering
(Boley and Cao, 2004; Yu et al., 2003) to intelligently sample a small number of training data for
SVM training. Other scale-up methods include the Kernel Adatron (Friess et al., 1998) and the Sim-
pleSVM (Vishwanathan et al., 2003). For a more complete survey, interested readers may consult
(Tresp, 2001) or Chapter 10 of (Schölkopf and Smola, 2002).

In practice, state-of-the-art SVM implementations typically have a training time complexity that
scales betweenO(m) andO(m2.3) (Platt, 1999). This can be further driven down toO(m) with the
use of a parallel mixture (Collobert et al., 2002). However, these are only empirical observations
and not theoretical guarantees. For reliable scaling behavior to very large data sets, our goal is to
develop an algorithm that can be proved (using tools in analysis of algorithms) to be asymptotically
efficient in both time and space.

A key observation is that practical SVM implementations, as in many numerical routines, only
approximatethe optimal solution by an iterative strategy. Typically, the stopping criterion uses ei-
ther the precision of the Lagrange multipliers or the duality gap (Smola and Schölkopf, 2004). For
example, in SMO, SVMlight (Joachims, 1999) and SimpleSVM, training stops when the Karush-
Kuhn-Tucker (KKT) conditions are fulfilled within a tolerance parameterε. Experience with these
softwares indicate that near-optimal solutions are often good enough in practical applications. How-
ever, such “approximateness” has never been exploited in the design ofSVM implementations.

On the other hand, in the field of theoretical computer science, approximationalgorithms with
provable performance guarantees have been extensively used in tackling computationally difficult
problems (Garey and Johnson, 1979; Vazirani, 2001). LetC be the cost of the solution returned
by an approximate algorithm, andC∗ be the cost of the optimal solution. An approximate algo-
rithm hasapproximation ratioρ(n) for an input sizen if max

(

C
C∗ ,

C∗
C

)

≤ ρ(n). Intuitively, this ratio
measures how bad the approximate solution is compared with the optimal solution. Alarge (small)
approximation ratio means the solution is much worse than (more or less the same as) the optimal
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solution. Observe thatρ(n) is always≥ 1. If the ratio does not depend onn, we may just writeρ and
call the algorithm anρ-approximation algorithm. Well-known NP-complete problems that can be
efficiently addressed using approximation algorithms include the vertex-cover problem and the set-
covering problem. This large body of experience suggests that one may also develop approximation
algorithms for SVMs, with the hope that training of kernel methods will become more tractable,
and thus more scalable, in practice.

In this paper, we will utilize an approximation algorithm for theminimum enclosing ball(MEB)
problem in computational geometry. The MEB problem computes the ball of minimumradius
enclosing a given set of points (or, more generally, balls). Traditional algorithms for finding exact
MEBs (e.g., (Megiddo, 1983; Welzl, 1991)) do not scale well with the dimensionalityd of the points.
Consequently, recent attention has shifted to the development of approximation algorithms (B̆adoiu
and Clarkson, 2002; Kumar et al., 2003; Nielsen and Nock, 2004). In particular, a breakthrough
was obtained by B̆adoiu and Clarkson (2002), who showed that an(1+ ε)-approximation of the
MEB can be efficiently obtained usingcore sets. Generally speaking, in an optimization problem,
a core set is a subset of input points such that we can get a good approximation to the original input
by solving the optimization problem directly on the core set. A surprising property of (Bădoiu and
Clarkson, 2002) is that the size of its core set can be shown to beindependentof bothd and the size
of the point set.

In the sequel, we will show that there is a close relationship between SVM training and the MEB
problem. Inspired from the core set-based approximate MEB algorithms, wewill then develop an
approximation algorithm for SVM training that has an approximation ratio of(1+ ε)2. Its time
complexity islinear in mwhile its space complexity isindependentof m. In actual implementation,
the time complexity can be further improved with the use of probabilistic speedup methods (Smola
and Scḧolkopf, 2000).

The rest of this paper is organized as follows. Section 2 gives a short introduction on the MEB
problem and its approximation algorithm. The connection between kernel methods and the MEB
problem is given in Section 3. Section 4 then describes our proposed Core Vector Machine (CVM)
algorithm. The core set in CVM plays a similar role as the working set in decomposition algorithms,
which will be reviewed briefly in Section 5. Finally, experimental results are presented in Section 6,
and the last section gives some concluding remarks. Preliminary results on the CVM have been
recently reported in (Tsang et al., 2005).

2. The (Approximate) Minimum Enclosing Ball Problem

Given a set of pointsS = {x1, . . . ,xm}, where eachxi ∈ R
d, the minimum enclosing ball ofS (de-

noted MEB(S)) is the smallest ball that contains all the points inS . The MEB problem can be
dated back as early as in 1857, when Sylvester (1857) first investigatedthe smallest radius disk
enclosingm points on the plane. It has found applications in diverse areas such as computer graph-
ics (e.g., for collision detection, visibility culling), machine learning (e.g., similarity search) and
facility locations problems (Preparata, 1985). The MEB problem also belongs to the larger family
of shape fitting problems, which attempt to find the shape (such as a slab, cylinder, cylindrical shell
or spherical shell) that best fits a given point set (Chan, 2000).

Traditional algorithms for finding exact MEBs (such as (Megiddo, 1983;Welzl, 1991)) are not
efficient for problems withd > 30. Hence, as mentioned in Section 1, it is of practical interest to
study faster approximation algorithms that return a solution within a multiplicative factor of 1+ε to
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the optimal value, whereε is a small positive number. LetB(c,R) be the ball with centerc and radius
R. Given anε > 0, a ballB(c,(1+ ε)R) is an(1+ ε)-approximationof MEB(S) if R≤ rMEB(S) and
S ⊂ B(c,(1+ε)R). In many shape fitting problems, it is found that solving the problem on a subset,
called thecore set, Q of points fromS can often give an accurate and efficient approximation. More
formally, a subsetQ ⊆ S is a core set ofS if an expansion by a factor(1+ ε) of its MEB contains
S , i.e.,S ⊂ B(c,(1+ ε)r), whereB(c, r) = MEB(Q ) (Figure 1).

ε

R

R

Figure 1: The inner circle is the MEB of the set of squares and its(1+ ε) expansion (the outer
circle) covers all the points. The set of squares is thus a core set.

A breakthrough on achieving such an (1+ ε)-approximation was recently obtained by Bădoiu
and Clarkson (2002). They used a simple iterative scheme: At thetth iteration, the current estimate
B(ct , rt) is expanded incrementally by including the furthest point outside the(1+ε)-ball B(ct ,(1+
ε)rt). This is repeated until all the points inS are covered byB(ct ,(1+ε)rt). Despite its simplicity, a
surprising property is that the number of iterations, and hence the size of the final core set, depends
only on ε but not on d or m. The independence ofd is important on applying this algorithm to
kernel methods (Section 3) as the kernel-induced feature space can beinfinite-dimensional. As for
the remarkable independence onm, it allows both the time and space complexities of our algorithm
to grow slowly (Section 4.3).

3. MEB Problems and Kernel Methods

The MEB can be easily seen to be equivalent to the hard-margin support vector data description
(SVDD) (Tax and Duin, 1999), which will be briefly reviewed in Section 3.1. The MEB problem
can also be used to find the radius component of the radius-margin bound (Chapelle et al., 2002;
Vapnik, 1998). Thus, Kumar et al. (2003) has pointed out that the MEB problem can be used in
support vector clustering and SVM parameter tuning. However, as will beshown in Section 3.2,
other kernel-related problems, such as the soft-margin one-class and two-class SVMs, can also be
viewed as MEB problems. Note that finding the soft-margin one-class SVM is essentially the same
as fitting the MEB with outliers, which is also considered in (Har-Peled and Wang, 2004). However,
a limitation of their technique is that the number of outliers has to be moderately small in order to
be effective. Another heuristic approach for scaling up the soft-marginSVDD using core sets has
also been proposed in (Chu et al., 2004).
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3.1 Hard-Margin SVDD

Given a kernelk with the associated feature mapϕ, let the MEB (or hard-margin ball) in the kernel-
induced feature space beB(c,R). The primal problem in the hard-margin SVDD is

min
R,c

R2 : ‖c−ϕ(xi)‖2 ≤ R2, i = 1, . . . ,m. (1)

The corresponding dual is

maxαi

m

∑
i=1

αik(xi ,xi)−
m

∑
i, j=1

αiα jk(xi ,x j)

s.t. αi ≥ 0, i = 1, . . . ,m
m

∑
i=1

αi = 1,

or, in matrix form,
max

α
α′diag(K)−α′Kα : α ≥ 0, α′1 = 1, (2)

whereα = [αi , . . . ,αm]′ are the Lagrange multipliers,0 = [0, . . . ,0]′, 1 = [1, . . . ,1]′ andKm×m =
[k(xi ,x j)] is the kernel matrix. As is well-known, this is a QP problem. The primal variablescan be
recovered from the optimalα as

c =
m

∑
i=1

αiϕ(xi), R=
√

α′diag(K)−α′Kα. (3)

3.2 Viewing Kernel Methods as MEB Problems

Consider the situation where
k(x,x) = κ, (4)

a constant. All the patterns are then mapped to a sphere in the feature space. (4) will be satisfied
when either

1. the isotropic kernelk(x,y) = K(‖x−y‖) (e.g., Gaussian kernel); or

2. the dot product kernelk(x,y) = K(x′y) (e.g., polynomial kernel) with normalized inputs; or

3. any normalized kernelk(x,y) = K(x,y)√
K(x,x)

√
K(y,y)

is used. These three cases cover most kernel functions used in real-world applications. Scḧolkopf
et al. (2001) showed that the hard (soft) margin SVDD then yields identicalsolution as the hard
(soft) margin one-class SVM, and the weightw in the one-class SVM solution is equal to the center
c in the SVDD solution.

Combining (4) with the conditionα′1= 1 in (2), we haveα′diag(K) = κ. Dropping this constant
term from the dual objective in (2), we obtain a simpler optimization problem:

max
α

−α′Kα : α ≥ 0, α′1 = 1. (5)
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Conversely, whenever the kernelk satisfies (4), any QP of the form (5) can be regarded as a MEB
problem in (1). Note that (2) and (5) yield the same set of optimalα’s. Moreover, the optimal (dual)
objectives in (2) and (5) (denotedd∗

1 andd∗
2 respectively) are related by

d∗
1 = d∗

2 +κ. (6)

In the following, we will show that when (4) is satisfied, the duals in a number of kernel methods
can be rewritten in the form of (5). While the 1-norm error has been commonly used for the SVM,
our main focus will be on the 2-norm error. In theory, this could be less robust in the presence
of outliers. However, experimentally, its generalization performance is often comparable to that
of the L1-SVM (Lee and Mangasarian, 2001; Mangasarian and Musicant, 2001a,b). Besides, the
2-norm error is more advantageous here because a soft-margin L2-SVM can be transformed to a
hard-margin one. While the 2-norm error has been used in classification (Section 3.2.2), we will
also extend its use for novelty detection (Section 3.2.1).

3.2.1 ONE-CLASS L2-SVM

Given a set of unlabeled patterns{zi}m
i=1 wherezi only has the input partxi , the one-class L2-SVM

separates outliers from the normal data by solving the primal problem:

minw,ρ,ξi
‖w‖2−2ρ+C

m

∑
i=1

ξ2
i

s.t. w′ϕ(xi) ≥ ρ−ξi , i = 1, . . . ,m, (7)

wherew′ϕ(x) = ρ is the desired hyperplane andC is a user-defined parameter. Unlike the classifi-
cation LSVM, the bias is not penalized here. Moreover, note that constraints ξi ≥ 0 are not needed
for the L2-SVM (Keerthi et al., 2000). The corresponding dual is

max
α

−α′
(

K +
1
C

I
)

α : α ≥ 0, α′1 = 1, (8)

whereI is them×m identity matrix. From the Karush-Kuhn-Tucker (KKT) conditions, we can
recover

w =
m

∑
i=1

αiϕ(xi) (9)

andξi = αi
C , and thenρ = w′ϕ(xi)+ αi

C from any support vectorxi .
Rewrite (8) in the form of (5) as:

max
α

−α′K̃α : α ≥ 0, α′1 = 1, (10)

where

K̃ = [k̃(zi ,z j)] =

[

k(xi ,x j)+
δi j

C

]

. (11)

Sincek(x,x) = κ,

k̃(z,z) = κ+
1
C

≡ κ̃
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is also a constant. This one-class L2-SVM thus corresponds to the MEB problem (1), in whichϕ is
replaced by the nonlinear mapϕ̃ satisfyingϕ̃(zi)

′ϕ̃(z j) = k̃(zi ,z j). It can be easily verified that this
ϕ̃ maps the training pointzi = xi to a higher dimensional space, as

ϕ̃(zi) =

[

ϕ(xi)
1√
C

ei

]

,

whereei is them-dimensional vector with all zeroes except that theith position is equal to one.

3.2.2 TWO-CLASS L2-SVM

In the two-class classification problem, we are given a training set{zi = (xi ,yi)}m
i=1 with yi ∈

{−1,1}. The primal of the two-class L2-SVM is

minw,b,ρ,ξi
‖w‖2 +b2−2ρ+C

m

∑
i=1

ξ2
i

s.t. yi(w′ϕ(xi)+b) ≥ ρ−ξi , i = 1, . . . ,m. (12)

The corresponding dual is

max
α

−α′
(

K �yy′ +yy′ +
1
C

I
)

α : α ≥ 0, α′1 = 1, (13)

where� denotes the Hadamard product andy = [y1, . . . ,ym]′. Again, we can recover

w =
m

∑
i=1

αiyiϕ(xi), b =
m

∑
i=1

αiyi , ξi =
αi

C
, (14)

from the optimalα and thenρ = yi(w′ϕ(xi)+b)+ αi
C from any support vectorzi . Alternatively,ρ

can also be obtained from the fact that QP’s have zero duality gap. Equating the primal (12) and
dual (13), we have

‖w‖2 +b2−2ρ+C
m

∑
i=1

ξ2
i = −

m

∑
i, j=1

αiα j

(

yiy jk(xi ,x j)+yiy j +
δi j

C

)

.

Substituting in (14), we then have

ρ =
m

∑
i, j=1

αiα j

(

yiy jk(xi ,x j)+yiy j +
δi j

C

)

. (15)

Rewriting (13) in the form of (5), we have

max
α

−α′K̃α : α ≥ 0, α′1 = 1, (16)

whereK̃ = [k̃(zi ,z j)] with

k̃(zi ,z j) = yiy jk(xi ,x j)+yiy j +
δi j

C
, (17)

369



TSANG, KWOK AND CHEUNG

Again, thisk̃ satisfies (4), as

k̃(z,z) = κ+1+
1
C

≡ κ̃,

a constant. Thus, this two-class L2-SVM can also be viewed as a MEB problem (1) in whichϕ is
replaced bỹϕ, with

ϕ̃(zi) =





yiϕ(xi)
yi
1√
C

ei





for any training pointzi . Note that as a classification (supervised learning) problem is now re-
formulated as a MEB (unsupervised) problem, the label information gets encoded in the feature
mapϕ̃. Moreover, all the support vectors of this L2-SVM, including those defining the margin and
those that are misclassified, now reside on the surface of the ball in the feature space induced by
k̃. A similar relationship connecting one-class classification and binary classification for the case of
Gaussian kernels is also discussed by Schölkopf et al. (2001). In the special case of a hard-margin
SVM, k̃ reduces tõk(zi ,z j) = yiy jk(xi ,x j)+yiy j and analogous results apply.

4. Core Vector Machine (CVM)

After formulating the kernel method as a MEB problem, we obtain a transformedkernel k̃, to-
gether with the associated feature spaceF̃ , mappingϕ̃ and constant̃κ = k̃(z,z). To solve this
kernel-induced MEB problem, we adopt the approximation algorithm described in the proof of
Theorem 2.2 in (B̆adoiu and Clarkson, 2002). A similar algorithm is also described in (Kumar
et al., 2003). As mentioned in Section 2, the idea is to incrementally expand the ball by including
the point furthest away from the current center. In the following, we denote the core set, the ball’s
center and radius at thetth iteration bySt ,ct andRt respectively. Also, the center and radius of a
ball B are denoted bycB andrB. Given anε > 0, the CVM then works as follows:

1. InitializeS0, c0 andR0.

2. Terminate if there is no training pointz such that̃ϕ(z) falls outside the(1+ ε)-ball B(ct ,(1+
ε)Rt).

3. Findz such that̃ϕ(z) is furthest away fromct . SetSt+1 = St ∪{z}.

4. Find the new MEB(St+1) from (5) and setct+1 = cMEB(St+1) andRt+1 = rMEB(St+1) using (3).

5. Incrementt by 1 and go back to Step 2.

In the sequel, points that are added to the core set will be calledcore vectors. Details of each of
the above steps will be described in Section 4.1. Despite its simplicity, CVM has anapproximation
guarantee (Section 4.2) and small time and space complexities (Section 4.3).

4.1 Detailed Procedure

4.1.1 INITIALIZATION

Bădoiu and Clarkson (2002) simply used an arbitrary pointz∈ S to initializeS0 = {z}. However, a
good initialization may lead to fewer updates and so we follow the scheme in (Kumaret al., 2003).
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We start with an arbitrary pointz ∈ S and findza ∈ S that is furthest away fromz in the feature
spaceF̃ . Then, we find another pointzb ∈ S that is furthest away fromza in F̃ . The initial core set
is then set to beS0 = {za,zb}. Obviously, MEB(S0) (in F̃ ) has centerc0 = 1

2(ϕ̃(za)+ ϕ̃(zb)) On
using (3), we thus haveαa = αb = 1

2 and all the otherαi ’s are zero. The initial radius is

R0 =
1
2
‖ϕ̃(za)− ϕ̃(zb)‖

=
1
2

√

‖ϕ̃(za)‖2 +‖ϕ̃(zb)‖2−2ϕ̃(za)′ϕ̃(zb)

=
1
2

√

2κ̃−2k̃(za,zb).

In a classification problem, one may further requireza andzb to come from different classes.

On using (17),R0 then becomes12

√

2
(

κ+2+ 1
C

)

+2k(xa,xb). As κ andC are constants, choosing

the pair(xa,xb) that maximizesR0 is then equivalent to choosing the closest pair belonging to
opposing classes, which is also the heuristic used in initializing the DirectSVM (Roobaert, 2000)
and SimpleSVM (Vishwanathan et al., 2003).

4.1.2 DISTANCE COMPUTATIONS

Steps 2 and 3 involve computing‖ct − ϕ̃(z`)‖ for z` ∈ S . On usingc= ∑zi∈St
αiϕ̃(zi) in (3), we have

‖ct − ϕ̃(z`)‖2 = ∑
zi ,z j∈St

αiα j k̃(zi ,z j)−2 ∑
zi∈St

αi k̃(zi ,z`)+ k̃(z`,z`). (18)

Hence, computations are based on kernel evaluations instead of the explicit ϕ̃(zi)’s, which may
be infinite-dimensional. Note that, in contrast, existing MEB algorithms only consider finite-
dimensional spaces.

However, in the feature space,ct cannot be obtained as an explicit point but rather as a convex
combination of (at most)|St | ϕ̃(zi)’s. Computing (18) for allm training points takesO(|St |2 +
m|St |) = O(m|St |) time at thetth iteration. This becomes very expensive whenm is large. Here,
we use the probabilistic speedup method in (Smola and Schölkopf, 2000). The idea is to randomly
sample a sufficiently large subsetS ′ from S , and then take the point inS ′ that is furthest away from
ct as the approximate furthest point overS . As shown in (Smola and Schölkopf, 2000), by using a
small random sample of, say, size 59, the furthest point obtained fromS ′ is with probability 0.95
among the furthest 5% of points from the wholeS . Instead of takingO(m|St |) time, this randomized
method only takesO(|St |2 + |St |) = O(|St |2) time, which is much faster as|St | � m. This trick can
also be used in the initialization step.

4.1.3 ADDING THE FURTHESTPOINT

Points outside MEB(St) have zeroαi ’s (Section 4.1.1) and so violate the KKT conditions of the dual
problem. As in (Osuna et al., 1997b), one can simply add any such violating point toSt . Our step 3,
however, takes a greedy approach by including the point furthest away from the current center. In
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the one-class classification case (Section 3.2.1),

arg max
z` /∈B(ct ,(1+ε)Rt)

‖ct − ϕ̃(z`)‖2 = arg min
z` /∈B(ct ,(1+ε)Rt)

∑
zi∈St

αi k̃(zi ,z`)

= arg min
z` /∈B(ct ,(1+ε)Rt)

∑
zi∈St

αik(xi ,x`)

= arg min
z` /∈B(ct ,(1+ε)Rt)

w′ϕ(x`), (19)

on using (9), (11) and (18). Similarly, in the binary classification case (Section 3.2.2), we have

arg max
z` /∈B(ct ,(1+ε)Rt)

‖ct − ϕ̃(z`)‖2 = arg min
z` /∈B(ct ,(1+ε)Rt)

∑
zi∈St

αiyiy`(k(xi ,x`)+1)

= arg min
z` /∈B(ct ,(1+ε)Rt)

y`(w′ϕ(x`)+b), (20)

on using (14) and (17). Hence, in both cases, step 3 chooses theworstviolating pattern correspond-
ing to the constraint ((7) and (12) respectively).

Also, as the dual objective in (10) has gradient−2K̃α, so for a patterǹ currently outside the
ball

(K̃α)` =
m

∑
i=1

αi

(

k(xi ,x`)+
δi`

C

)

= w′ϕ(x`),

on using (9), (11) andα` = 0. Thus, the pattern chosen in (19) also makes the most progress towards
maximizing the dual objective. This is also true for the two-class L2-SVM, as

(K̃α)` =
m

∑
i=1

αi

(

yiy`k(xi ,x`)+yiy` +
δi`

C

)

= y`(w′ϕ(x`)+b),

on using (14), (17) andα` = 0. This subset selection heuristic is also commonly used by decompo-
sition algorithms (Chang and Lin, 2004; Joachims, 1999; Platt, 1999).

4.1.4 FINDING THE MEB

At each iteration of Step 4, we find the MEB by using the QP formulation in Section3.2. As the
size|St | of the core set is much smaller thanm in practice (Section 6), the computational complexity
of each QP sub-problem is much lower than solving the whole QP. Besides, as only one core vector
is added at each iteration, efficient rank-one update procedures (Cauwenberghs and Poggio, 2001;
Vishwanathan et al., 2003) can also be used. The cost then becomes quadratic rather than cubic.
As will be demonstrated in Section 6, the size of the core set is usually small to medium even for
very large data sets. Hence, SMO is chosen in our implementation as it is often very efficient (in
terms of both time and space) on data sets of such sizes. Moreover, as onlyone point is added each
time, the new QP is just a slight perturbation of the original. Hence, by using theMEB solution
obtained from the previous iteration as starting point (warm start), SMO can often converge in a
small number of iterations.

4.2 Convergence to (Approximate) Optimality

First, considerε = 0. The convergence proof in Bădoiu and Clarkson (2002) does not apply as it
requiresε > 0. But as the number of core vectors increases in each iteration and the training set
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size is finite, so CVM must terminate in a finite number (say,τ) of iterations, Withε = 0, MEB(Sτ)
is an enclosing ball for all the (ϕ̃-transformed) points on termination. BecauseSτ is a subset of the
whole training set and the MEB of a subset cannot be larger than the MEB of the whole set. Hence,
MEB(Sτ) must also be the exact MEB of the whole (ϕ̃-transformed) training set. In other words,
whenε = 0, CVM outputs theexactsolution of the kernel problem.

Whenε > 0, we can still obtain an approximately optimal dual objective as follows. Assume
that the algorithm terminates at theτth iteration, then

Rτ ≤ rMEB(S) ≤ (1+ ε)Rτ (21)

by definition. Recall that the optimal primal objectivep∗ of the kernel problem in Section 3.2.1
(or 3.2.2) is equal to the optimal dual objectived∗

2 in (10) (or (16)), which in turn is related to the
optimal dual objectived∗

1 = r2
MEB(S) in (2) by (6). Together with (21), we can then boundp∗ as

R2
τ ≤ p∗ + κ̃ ≤ (1+ ε)2R2

τ . (22)

Hence, max
(

R2
τ

p∗+κ̃ , p∗+κ̃
R2

τ

)

≤ (1+ ε)2 and thus CVM is an(1+ ε)2-approximation algorithm. This

also holds with high probability1 when probabilistic speedup is used.
As mentioned in Section 1, practical SVM implementations also output approximatedsolutions

only. Typically, a parameter similar to ourε is required at termination. For example, in SMO,
SVMlight and SimpleSVM, training stops when the KKT conditions are fulfilled withinε. Expe-
rience with these softwares indicate that near-optimal solutions are often good enough in practical
applications. It can be shown that when CVM terminates, all the training patterns also satisfy simi-
lar loose KKT conditions. Here, we focus on the binary classification case. Now, at any iterationt,
each training point falls into one of the following three categories:

1. Core vectors: Obviously, they satisfy the loose KKT conditions as they are involved in the
QP.

2. Non-core vectors inside/on the ballB(ct ,Rt): Their αi ’s are zero2 and so the KKT conditions
are satisfied.

3. Points lying outsideB(ct ,Rt): Consider one such point`. Its α` is zero (by initialization) and

‖ct − ϕ̃(z`)‖2 = ∑
zi ,z j∈St

αiα j

(

yiy jk(xi ,x j)+yiy j +
δi j

C

)

−2 ∑
zi∈St

αi

(

yiy`k(xi ,x`)+yiy` +
δi`

C

)

+ k̃(z`,z`)

= ρt + κ̃−2y`(w′
tϕ(x`)+bt), (23)

on using (14), (15), (17) and (18). This leads to

R2
t = κ̃−ρt . (24)

1. Obviously, the probability increases with the number of points subsampled and is equal to one when all the points
are used. Obtaining a precise probability statement will be studied in future research.

2. Recall that all theαi ’s (except those of the two initial core vectors) are initialized to zero.
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on using (3), (15) and (16). Asz` is inside/on the(1+ ε)-ball at theτth iteration,‖cτ −
ϕ̃(z`)‖2 ≤ (1+ ε)2R2

τ . Hence, from (23) and (24),

(1+ ε)2(κ̃−ρτ) ≥ ρτ + κ̃−2y`(w′
τϕ(x`)+bτ)

⇒ 2y`(w′
τϕ(x`)+bτ) ≥ ρτ + κ̃− (1+ ε)2(κ̃−ρτ)

≥ 2ρτ − (2ε+ ε2)(κ̃−ρτ)

⇒ y`(w′
τϕ(x`)+bτ)−ρτ ≥−

(

ε+
ε2

2

)

R2
τ . (25)

Obviously,R2
τ ≤ k̃(z,z) = κ̃. Hence, (25) reduces to

y`(w′
τϕ(x`)+bτ)−ρτ ≥−

(

ε+
ε2

2

)

κ̃ ≡−ε2,

which is a loose KKT condition on patterǹ(which hasα` = 0 and consequentlyξ` = 0 by
(14)).

4.3 Time and Space Complexities

Existing decomposition algorithms cannot guarantee the number of iterations and consequently
the overall time complexity (Chang and Lin, 2004). In this Section, we show how this can be
obtained for CVM. In the following, we assume that a plain QP implementation, which takesO(m3)
time andO(m2) space form patterns, is used for the QP sub-problem in step 4. The time and
space complexities obtained below can be further improved if more efficient QP solvers were used.
Moreover, each kernel evaluation is assumed to take constant time.

Consider first the case where probabilistic speedup is not used in Section4.1.2. As proved
in (Bădoiu and Clarkson, 2002), CVM converges in at most 2/ε iterations. In other words, the
total number of iterations, and consequently the size of the final core set, are of τ = O(1/ε). In
practice, it has often been observed that the size of the core set is much smaller than this worst-
case theoretical upper bound3 (Kumar et al., 2003). As only one core vector is added at each
iteration,|St | = t + 2. Initialization takesO(m) time while distance computations in steps 2 and 3
takeO((t +2)2+ tm) = O(t2+ tm) time. Finding the MEB in step 4 takesO((t +2)3) = O(t3) time,
and the other operations take constant time. Hence, thetth iteration takes a total ofO(tm+ t3) time.
The overall time forτ = O(1/ε) iterations is

T =
τ

∑
t=1

O(tm+ t3) = O(τ2m+ τ4) = O

(

m
ε2 +

1
ε4

)

,

which is linear in m for a fixedε.
Next, we consider its space complexity. As them training patterns may be stored outside the

core memory, theO(m) space required will be ignored in the following. Since only the core vectors
are involved in the QP, the space complexity for thetth iteration isO(|St |2). As τ = O(1/ε), the
space complexity for the whole procedure isO(1/ε2), which isindependentof m for a fixedε.

On the other hand, when probabilistic speedup is used, initialization only takesO(1) time while
distance computations in steps 2 and 3 takeO((t +2)2) = O(t2) time. Time for the other operations

3. This will also be corroborated by our experiments in Section 6.
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remains the same. Hence, thetth iteration takesO(t3) time. As probabilistic speeedup may not
find the furthest point in each iteration,τ may be larger than 2/ε though it can still be bounded by
O(1/ε2) (Bădoiu et al., 2002). Hence, the whole procedure takes

T =
τ

∑
t=1

O(t3) = O(τ4) = O

(

1
ε8

)

.

For a fixedε, it is thusindependentof m. The space complexity, which depends only on the number
of iterationsτ, becomesO(1/ε4).

Whenε decreases, the CVM solution becomes closer to the exact optimal solution, but at the
expense of higher time and space complexities. Such a tradeoff between efficiency and approxima-
tion quality is typical of all approximation schemes. Moreover, be cautioned that theO-notation
is used for studying the asymptotic efficiency of algorithms. As we are interested in handling very
large data sets, an algorithm that is asymptotically more efficient (in time and space) will be the
best choice. However, on smaller problems, this may be outperformed by algorithms that are not as
efficient asymptotically. These will be demonstrated experimentally in Section 6.

5. Related Work

The core set in CVM plays a similar role as the working set in other decomposition algorithms, and
so these algorithms will be reviewed briefly in this Section. Following the convention in (Chang
and Lin, 2004; Osuna et al., 1997b), the working set will be denotedB while the remaining subset
of training patterns denotedN.

Chunking (Vapnik, 1998) is the first decomposition method used in SVM training. It starts
with a random subset (chunk) of data asB and train an initial SVM. Support vectors in the chunk
are retained while non-support vectors are replaced by patterns inN violating the KKT conditions.
Then, the SVM is re-trained and the whole procedure repeated. Chunking suffers from the problem
that the entire set of support vectors that have been identified will still need to be trained together at
the end of the training process.

Osuna et al. (1997a) proposed another decomposition algorithm that fixes the size of the working
setB. At each iteration, variables corresponding to patterns inN are frozen, while those inB are
optimized in a QP sub-problem. After that, a new point inN violating the KKT conditions will
replace some point inB. The SVMlight software (Joachims, 1999) follows the same scheme, though
with a slightly different subset selection heuristic.

Going to the extreme, the sequential minimal optimization (SMO) algorithm (Platt, 1999) breaks
the original, large QP into a series of smallest possible QPs, each involving only two variables. The
first variable is chosen among points that violate the KKT conditions, while the second variable is
chosen so as to have a large increase in the dual objective. This two-variable joint optimization pro-
cess is repeated until the loose KKT conditions are fulfilled for all training patterns. By involving
only two variables, SMO is advantageous in that each QP sub-problem canbe solved analytically
in an efficient way, without the use of a numerical QP solver. Moreover,as no matrix operations are
involved, extra matrix storage is not required for keeping the kernel matrix. However, as each itera-
tion only involves two variables in the optimization, SMO has slow convergence (Kao et al., 2004).
Nevertheless, as each iteration is computationally simple, an overall speedupis often observed in
practice.

375



TSANG, KWOK AND CHEUNG

Recently, Vishwanathan et al. (2003) proposed a related scale-up method called the SimpleSVM.
At each iteration, a point violating the KKT conditions is added to the working set by using rank-
one update on the kernel matrix. However, as pointed out in (Vishwanathan et al., 2003), storage is
still a problem when the SimpleSVM is applied to large dense kernel matrices.

As discussed in Section 4.1, CVM is similar to these decomposition algorithms in many aspects,
including initialization, subset selection and termination. However, subset selection in CVM is
much simpler in comparison. Moreover, while decomposition algorithms allow training patterns
to join and leave the working set multiple times, patterns once recruited as core vectors by the
CVM will remain there for the whole training process. These allow the number of iterations, and
consequently the time and space complexities, to be easily obtained for the CVM but not for the
decomposition algorithms.

6. Experiments

In this Section, we implement the two-class L2-SVM in Section 3.2.2 and illustrate thescaling
behavior of CVM (in C++) on several toy and real-world data sets. Table1 summarizes the charac-
teristics of the data sets used. For comparison, we also run the following SVMimplementations:4

1. L2-SVM: LIBSVM implementation (in C++);

2. L2-SVM: LSVM implementation (in MATLAB), with low-rank approximation (Fine and
Scheinberg, 2001) of the kernel matrix added;

3. L2-SVM: RSVM (Lee and Mangasarian, 2001) implementation (in MATLAB). The RSVM
addresses the scale-up issue by solving a smaller optimization problem that involves a random
m̄×m rectangular subset of the kernel matrix. Here, ¯m is set to 10% ofm;

4. L1-SVM: LIBSVM implementation (in C++);

5. L1-SVM: SimpleSVM (Vishwanathan et al., 2003) implementation (in MATLAB).

Parameters are used in their default settings unless otherwise specified. Since our focus is on non-
linear kernels, we use the Gaussian kernelk(x,y) = exp(−‖x−y‖2/β) with β = 1

m2 ∑m
i, j=1‖xi −x j‖2

unless otherwise specified. Experiments are performed on Pentium–4 machines running Windows
XP. Detailed machine configurations will be reported in each section.

Our CVM implementation is adapted from the LIBSVM, and uses SMO for solvingeach QP
sub-problem in step 4. As discussed in Section 4.1.4, warm start is used to initialize each QP
sub-problem. Besides, as in LIBSVM, our CVM uses caching (with the samecache size as in the
other LIBSVM implementations above) and stores all the training patterns in main memory. For
simplicity, shrinking (Joachims, 1999) is not used in our current CVM implementation. Besides,
we employ the probabilistic speedup method5 as discussed in Section 4.1.2. On termination, we
perform the (probabilistic) test in step 2 a few times so as to ensure that almostall the points have
been covered by the(1+ ε)-ball. The value ofε is fixed at 10−6 in all the experiments. As in other

4. Our CVM implementation can be downloaded fromhttp://www.cs.ust.hk/∼jamesk/cvm.zip.
LIBSVM can be downloaded from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/; LSVM from
http://www.cs.wisc.edu/dmi/lsvm; and SimpleSVM fromhttp://asi.insa-rouen.fr/∼gloosli/. Moreover, we followed
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/faq.html in adapting the LIBSVM package for L2-SVM.

5. Following (Smola and Schölkopf, 2000), a random sample of size 59 is used.
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date set max training set size # attributes
checkerboard 1,000,000 2

forest cover type 522,911 54
extended USPS digits 266,079 676

extended MIT face 889,986 361
KDDCUP-99 intrusion detection 4,898,431 127

UCI adult 32,561 123

Table 1: Data sets used in the experiments.

decomposition methods, the use of a very stringent stopping criterion is not necessary in practice.
Preliminary studies show thatε = 10−6 is acceptable for most tasks. Using an even smallerε does
not show improved generalization performance, but may increase the training time unnecessarily.

6.1 Checkerboard Data

We first experiment on the 4× 4 checkerboard data (Figure 2) commonly used for evaluating
large-scale SVM implementations (Lee and Mangasarian, 2001; Mangasarian and Musicant, 2001b;
Schwaighofer and Tresp, 2001). We use training sets with a maximum of 1 millionpoints and 2,000
independent points for testing. Of course, this problem does not need so many points for training,
but it is convenient for illustrating the scaling properties. Preliminary study suggests a value of
C = 1000. A 3.2GHz Pentium–4 machine with 512MB RAM is used.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: The 4×4 checkerboard data set.

Experimentally, L2-SVM with low rank approximation does not yield satisfactory performance
on this data set, and so its result is not reported here. RSVM, on the other hand, has to keep a
rectangular kernel matrix of size ¯m×m (m̄ being the number of random samples used), and cannot
be run on our machine whenm exceeds 10K. Similarly, the SimpleSVM has to store the kernel
matrix of the active set, and runs into storage problem whenmexceeds 30K.
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Results are shown in Figure 3. As can be seen, CVM is as accurate as the other implementations.
Besides, it is much faster6 and produces far fewer support vectors (which implies faster testing) on
large data sets. In particular, one million patterns can be processed in under 13 seconds. On the
other hand, for relatively small training sets, with less than 10K patterns, LIBSVM is faster. This,
however, is to be expected as LIBSVM uses more sophisticated heuristics and so will be more
efficient on small-to-medium sized data sets. Figure 3(b) also shows the core set size, which can be
seen to be small and its curve basically overlaps with that of the CVM. Thus, almost all the core
vectors are useful support vectors. Moreover, it also confirms ourtheoretical findings that both time
and space required are constant w.r.t. the training set size, when it becomes large enough.

6.2 Forest Cover Type Data

The forest cover type data set7 has been used for large scale SVM training (e.g., (Bakir et al., 2005;
Collobert et al., 2002)). Following (Collobert et al., 2002), we aim at separating class 2 from the
other classes. 1%−90% of the whole data set (with a maximum of 522,911 patterns) are used for
training while the remaining are used for testing. We use the Gaussian kernelwith β = 10000 and
C = 10000. Experiments are performed on a 3.2GHz Pentium–4 machine with 512MBRAM.

Preliminary studies show that the number of support vectors is over ten thousands. Conse-
quently, RSVM and SimpleSVM cannot be run on our machine. Similarly, for lowrank approxi-
mation, preliminary studies show that over thousands of basis vectors are required for a good ap-
proximation. Therefore, only the two LIBSVM implementations will be compared with the CVM
here.

As can be seen from Figure 4, CVM is, again, as accurate as the others.Note that when the
training set is small, more training patterns bring in additional information usefulfor classification
and so the number of core vectors increases with training set size. However, after processing around
100K patterns, both the time and space requirements of CVM begin to exhibit a constant scaling
with the training set size. With hindsight, one might simply sample 100K training patterns and
hope to obtain comparable results.8 However, for satisfactory classification performance, different
problems require samples of different sizes and CVM has the important advantage that the required
sample size does not have to be pre-specified. Without such prior knowledge, random sampling
gives poor testing results, as demonstrated in (Lee and Mangasarian, 2001).

6.3 Extended USPS Digits Data

In this experiment, our task is to classify digits zero from one in an extended version of the USPS
data set.9 The original training set has 1,005 zeros and 1,194 ones, while the test set has 359 zeros
and 264 ones. To better study the scaling behavior, we extend this data setby first converting the
resolution from 16×16 to 26×26, and then generate new images by shifting the original ones in all
directions for up to five pixels. Thus, the resultant training set has a total of (1005+1194)×112 =

6. The CPU time only measures the time for training the SVM. Time for readingthe training patterns into main memory
is not included. Moreover, as some implementations are in MATLAB, so not all the CPU time measurements can
be directly compared. However, it is still useful to note the constant scaling exhibited by the CVM and its speed
advantage over other C++ implementations, when the data set is large.

7. http://kdd.ics.uci.edu/databases/covertype/covertype.html
8. In fact, we tried both LIBSVM implementations on a random sample of 100K training patterns, but their testing

accuracies are inferior to that of CVM.
9. http://www.kernel-machines.org/data/usps.mat.gz
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Figure 3: Results on thecheckerboard data set (Except for the CVM, the other implementations
have to terminate early because of not enough memory and/or the training time is too
long). Note that the CPU time, number of support vectors, and size of the training set are
in log scale.
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Figure 4: Results on theforest cover type data set. Note that the CPU time and number of support
vectors are in log scale.
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266,079 patterns while the extended test set has(359+ 264)× 112 = 753,83 patterns. In this
experiment,C = 100 and a 3.2GHz Pentium–4 machine with 512MB RAM is used.

As can be seen from Figure 5, the behavior of CVM is again similar to those in the previous
sections. In particular, both the time and space requirements of CVM increase when the training
set is small. They then stabilize at around 30K patterns and CVM becomes faster than the other
decomposition algorithms.

6.4 Extended MIT Face Data

In this Section, we perform face detection using an extended version of the MIT face database10

(Heisele et al., 2000; Sung, 1996). The original data set has 6,977 training images (with 2,429 faces
and 4,548 nonfaces) and 24,045 test images (472 faces and 23,573 nonfaces). The original 19×19
grayscale images are first enlarged to 21×21. To better study the scaling behavior of various SVM
implementations, we again enlarge the training set by generating artificial samples. As in (Heisele
et al., 2000; Osuna et al., 1997b), additional nonfaces are extracting from images that do not contain
faces (e.g., images of landscapes, trees, buildings, etc.). As for the setof faces, we enlarge it by
applying various image transformations (including blurring, flipping and rotating) to the original
faces. The following three training sets are thus created (Table 6.4):

1. Set A: This is obtained by adding 477,366 nonfaces to the original training set, with the
nonface images extracted from 100 photos randomly collected from the web.

2. Set B: Each training face is blurred by the arithmetic mean filter (with window sizes 2×2,
3×3 and 4×4, respectively) and added to set A. They are then flipped laterally, leading to a
total of 2429×4×2 = 19,432 faces.

3. Set C: Each face in set B is rotated between−20o and 20o, in increments of 2o. This results
in a total of 19432×21= 408,072 faces.

In this experiment,C = 20 and a 2.5GHz Pentium–4 machine with 1GB RAM is used. Moreover,
a dense data format, which is more appropriate for this data set, is used in all the implementations.
Recall that the intent of this experiment is on studying the scaling behavior rather than on obtaining
state-of-the-art face detection performance. Nevertheless, the ability of CVM in handling very large
data sets could make it a better base classifier in powerful face detection systems such as the boosted
cascade (Viola and Jones, 2001).

training set # faces # nonfaces total
original 2,429 4,548 6,977
set A 2,429 481,914 484,343
set B 19,432 481,914 501,346
set C 408,072 481,914 889,986

Table 2: Number of faces and nonfaces in the face detection data sets.

Because of the imbalanced nature of this data set, the testing error is inappropriate for perfor-
mance evaluation here. Instead, we will use the AUC (area under the ROC curve), which has been

10. http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
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Figure 5: Results on the extendedUSPS digits data set (Except for the CVM, the other implemen-
tations have to terminate early because of not enough memory and/or the training time is
too long). Note that the CPU time, number of support vectors, and size of thetraining set
are in log scale.
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commonly used for face detectors. The ROC (receiver operating characteristic) curve (Bradley,
1997) plots TP on theY-axis and the false positive rate

FP=
negatives incorrectly classified

total negatives

on theX-axis. Here, faces are treated as positives while non-faces as negatives. The AUC is always
between 0 and 1. A perfect face detector will have unit AUC, while random guessing will have an
AUC of 0.5. Another performance measure that will be reported is the balanced loss (Weston et al.,
2002)

`bal = 1− TP+TN
2

,

which is also suitable for imbalanced data sets. Here,

TP=
positives correctly classified

total positives
, TN =

negatives correctly classified
total negatives

,

are the true positive and true negative rates respectively.
The ROC on using CVM is shown in Figure 6, which demonstrates the usefulness of using extra

faces and nonfaces in training. This is also reflected in Figure 7, which shows that the time and space
requirements of CVM are increasing with larger training sets. Even in this non-asymptotic case, the
CVM still significantly outperforms both LIBSVM implementations in terms of training timeand
number of support vectors, while the values of AUC and`bal are again very competitive. Note also
that the LIBSVM implementations of both L1- and L2-SVMs do not perform well (in terms of`bal)
on the highly imbalanced set A. On the other hand, CVM shows a steady improvement and is less
affected by the skewed distribution. In general, the performance of SVMs could be improved by
assigning different penalty parameters (C’s) to the classes. A more detailed study on the use of
CVM in an imbalanced setting will be conducted in the future.

6.5 KDDCUP-99 Intrusion Detection Data

This intrusion detection data set11 has been used for the Third International Knowledge Discovery
and Data Mining Tools Competition, which was held in conjunction with KDD-99. The training
set contains 4,898,431 connection records, which are processed from about four gigabytes of com-
pressed binary TCP dump data from seven weeks of network traffic. Another two weeks of data
produced the test data with 311,029 patterns. The data set includes a wide variety of intrusions
simulated in a military network environment. There are a total of 24 training attack types, and an
additional 14 types that appear in the test data only.

We follow the same setup in (Yu et al., 2003). The task is to separate normal connections from
attacks. Each original pattern has 34 continuous features and 7 symbolic features. We normalize
each continuous feature to the range zero and one, and transform each symbolic feature to multiple
binary features. Yu et al. (2003) used the clustering-based SVM (CB-SVM), which incorporates
the hierarchical micro-clustering algorithm BIRCH (Zhang et al., 1996) to reduce the number of
patterns in SVM training. However, CB-SVM is restricted to the use of linear kernels. In our
experiments with the CVM, we will continue the use of the Gaussian kernel (withβ = 1000 and

11. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Figure 6: ROC of the extendedMIT face data set on using CVM.

C = 106) as in the previous sections. Moreover, as the whole data set is stored in the core in our
current implementation, we use a 3.2GHz Pentium–4 machine with 2GB RAM.

Table 6.5 compares the results of CVM with those reported in (Yu et al., 2003), which include
SVMs using random sampling, active learning (Schohn and Cohn, 2000)and CB-SVM. Surpris-
ingly, our CVM on the whole training set (which has around five million patterns) takes only 1.4
seconds, and yields a lower testing error than all other methods. The performance of CVM on this
data set, as evaluated by some more measures and the ROC, are reported in Table 6.5 and Figure 8
respectively.

6.6 Relatively Small Data Sets: UCI Adult Data

Following (Platt, 1999), we use training sets12 with up to 32,562 patterns. Experiments are per-
formed withC = 0.1 and on a 3.2GHz Pentium–4 machine with 512MB RAM. As can be seen in
Figure 9, CVM is still among the most accurate methods. However, as this data set is relatively
small, more training patterns do carry more classification information. Hence, as discussed in Sec-
tion 6.2, the number of iterations, the core set size and consequently the CPUtime all increase with
the number of training patterns. From another perspective, recall that the worst case core set size is
2/ε, independent ofm (Section 4.3). For the value ofε = 10−6 used here, 2/ε = 2×106. Besides,
although we have seen that the actual size of the core set is often much smaller than this worst case
value, however, whenm� 2/ε, the number of core vectors can still be dependent onm. More-

12. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult
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Figure 7: Results on the extendedMIT face data set. Note that the CPU time and number of support
vectors are in log scale.

385



TSANG, KWOK AND CHEUNG

method # training patterns # test SVM training other processing
input to SVM errors time (in sec) time (in sec)

0.001% 47 25,713 0.000991 500.02
random 0.01% 515 25,030 0.120689 502.59

sampling 0.1% 4,917 25,531 6.944 504.54
1% 49,204 25,700 604.54 509.19
5% 245,364 25,587 15827.3 524.31

active learning 747 21,634 94192.213
CB-SVM 4,090 20,938 7.639 4745.483

CVM 4,898,431 19,513 1.4

Table 3: Results on theKDDCUP-99 intrusion detection data set by CVM and methods reported
in (Yu et al., 2003). Here, “other processing time” refers to the (1) sampling time for
SVM with random sampling; and (2) clustering time for CB-SVM. For SVM with active
learning and CVM, the total training time required is reported. Note that Yu et al. (2003)
used a 800MHz Pentium-3 machine with 906MB RAM while we use a 3.2GHz Pentium–4
machine with 2GB RAM. Hence, the time measurements are for reference only and cannot
be directly compared.

AUC `bal # core vectors # support vectors
0.977 0.042 55 20

Table 4: More performance measures of CVM on theKDDCUP-99 intrusion detection data.
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Figure 8: ROC of the theKDDCUP-99 intrusion detection data using CVM.
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over, as has been observed in the previous sections, the CVM is slower than the more sophisticated
LIBSVM on processing these smaller data sets.
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Figure 9: Results on theUCI adult data set (The other implementations have to terminate early
because of not enough memory and/or the training time is too long). Note that theCPU
time, number of SV’s and size of training set are in log scale.
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7. Conclusion

In this paper, we exploit the “approximateness” in practical SVM implementations to scale-up SVM
training. We formulate kernel methods (including the soft-margin one-class and two-class SVMs) as
equivalent MEB problems, and then obtain approximately optimal solutions efficiently with the use
of core sets. The proposed CVM procedure is simple, and does not require sophisticated heuristics
as in other decomposition methods. Moreover, despite its simplicity, CVM has smallasymptotic
time and space complexities. In particular, for a fixedε, its asymptotic time complexity islinear
in the training set sizem while its space complexity isindependentof m. This can be further
improved when probabilistic speedup is used. Experimentally, it is as accurate as existing SVM
implementations, but is much faster and produces far fewer support vectors (and thus faster testing)
on large data sets. On the other hand, on relatively small data sets wherem� 2/ε, SMO can be
faster. Besides, although we have fixed the value ofε in the experiments, one could also vary the
value of ε to adjust the tradeoff between efficiency and approximation quality. In general, with
a smallerε, the CVM solution becomes closer to the exact optimal solution, but at the expense
of higher time and space complexities. Our experience suggests that a fixedvalue ofε = 10−6 is
acceptable for most tasks.

The introduction of CVM opens new doors for applying kernel methods to data-intensive appli-
cations involving very large data sets. The use of approximation algorithms also brings immense
opportunities to scaling up other kernel methods. For example, we have obtained preliminary suc-
cess in extending support vector regression using the CVM technique. In the future, we will also
apply CVM-like approximation algorithms to other kernel-related learning problems such as imbal-
anced learning, ranking and clustering. The iterative recruitment of core vectors is also similar to
incremental procedures (Cauwenberghs and Poggio, 2001; Fung and Mangasarian, 2002), and this
connection will be further explored. Besides, although the CVM can obtainmuch fewer support
vectors than standard SVM implementations on large data sets, the number of support vectors may
still be too large for real-time testing. As the core vectors in CVM are added incrementally and
never removed, it is thus possible that some of them might be redundant. We will consider post-
processing methods to further reduce the number of support vectors. Finally, all the training patterns
are currently stored in the main memory. We anticipate that even larger data setscan be handled,
possibly with reduced speed, when traditional scale-up techniques suchas out-of-core storage and
low-rank approximation are also incorporated.
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