Journal of Machine Learning Research 6 (2005) 363-392 Submitted 12/04; Published 4/05

Core Vector Machines:
Fast SVM Training on Very Large Data Sets

Ivor W. Tsang IVOR@CS.UST.HK
James T. Kwok JAMESK@CS.UST.HK
Pak-Ming Cheung PAKMING @CS.UST.HK

Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay

Hong Kong

Editor: Nello Cristianini

Abstract

Standard SVM training ha®(m?) time andO(n?) space complexities, whera is the training
set size. It is thus computationally infeasible on very ¢éadgta sets. By observing that practical
SVM implementations onhapproximatethe optimal solution by an iterative strategy, we scale
up kernel methods by exploiting such “approximatenesshia paper. We first show that many
kernel methods can be equivalently formulated as minimuniosing ball (MEB) problems in
computational geometry. Then, by adopting an efficient axgprate MEB algorithm, we obtain
provably approximately optimal solutions with the idea ofe& sets. Our proposed Core Vector
Machine (CVM) algorithm can be used with nonlinear kerneld has a time complexity that is
linear in mand a space complexity thatiisdependenbdf m. Experiments on large toy and real-
world data sets demonstrate that the CVM is as accurate stinexS5VM implementations, but is
much faster and can handle much larger data sets than gxsstade-up methods. For example,
CVM with the Gaussian kernel produces superior results erkinDCUP-99 intrusion detection
data, which has about five million training patterns, in ohl¢ seconds on a 3.2GHz Pentium-4
PC.

Keywords: kernel methods, approximation algorithm, minimum encligsall, core set, scalabil-

ity

1. Introduction

In recent years, there has been a lot of interest on using kernelsi@usanachine learning prob-
lems, with the support vector machines (SVM) being the most prominent exaMpley of these
kernel methods are formulated as quadratic programming (QP) problenmateDiae number of
training patterns byn. The training time complexity of QP ®(m?) and its space complexity is at
least quadratic. Hence, a major stumbling block is in scaling up these QP’géodata sets, such
as those commonly encountered in data mining applications.

To reduce the time and space complexities, a popular technique is to obtaiar&veproxi-
mations on the kernel matrix, by using the Nystr method (Williams and Seeger, 2001), greedy
approximation (Smola and Sglkopf, 2000), sampling (Achlioptas et al., 2002) or matrix decom-
positions (Fine and Scheinberg, 2001). However, on very large ditgathe resulting rank of the
kernel matrix may still be too high to be handled efficiently.

(©2005 Ivor W. Tsang, James T. Kwok and Pak-Ming Cheung.

TSANG, KWOK AND CHEUNG

Another approach to scale up kernel methods is by chunking (Vapn@8)X¥ more sophisti-
cated decomposition methods (Chang and Lin, 2004; Osuna et al., 198ftp]1 899; Vishwanathan
et al., 2003). However, chunking needs to optimize the entire set of eanktagrange multipliers
that have been identified, and the resultant kernel matrix may still be tootlafgento memory.
Osuna et al. (1997b) suggested optimizing only a fixed-size sulbegtiqg se} of the training data
each time, while the variables corresponding to the other patterns ara.f@a@g to the extreme,
the sequential minimal optimization (SMO) algorithm (Platt, 1999) breaks the ati@PR into a
series of smallest possible QPs, each involving only two variables.

A more radical approach is to avoid the QP altogether. Mangasarian arwlleEsgues proposed
several variations of the Lagrangian SVM (LSVM) (Fung and Mangasa2003; Mangasarian and
Musicant, 2001a,b) that obtain the solution with a fast iterative scheme. \ldowfer nonlinear
kernels (which is the focus in this paper), it still requires the inversiomof & mmatrix. Recently,
Kao et al. (2004) and Yang et al. (2005) also proposed scale-up deetihat are specially designed
for the linear and Gaussian kernels, respectively.

Similar in spirit to decomposition algorithms are methods that scale down the traimiadpe-
fore inputting to the SVM. For example, Pavlov et al. (2000b) used boottimpmbine a large
number of SVMs, each is trained on only a small data subsample. Alternatellpbert et al.
(2002) used a neural-network-based gater to mix these small SVMs.ndel@langasarian (2001)
proposed the reduced SVM (RSVM), which uses a random rectanguiteset of the kernel ma-
trix. Instead of random sampling, one can also use active learningt{§era Cohn, 2000; Tong
and Koller, 2000), squashing (Pavlov et al., 2000a), editing (Bakit.e2@05) or even clustering
(Boley and Cao, 2004; Yu et al., 2003) to intelligently sample a small humbeaiofrig data for
SVM training. Other scale-up methods include the Kernel Adatron (Frieds €998) and the Sim-
pleSVM (Vishwanathan et al., 2003). For a more complete survey, intdresaelers may consult
(Tresp, 2001) or Chapter 10 of (Sidkopf and Smola, 2002).

In practice, state-of-the-art SVM implementations typically have a training timgptaxity that
scales betwee®(m) andO(m?3) (Platt, 1999). This can be further driven downQ@¢m) with the
use of a parallel mixture (Collobert et al., 2002). However, these dyeemnpirical observations
and not theoretical guarantees. For reliable scaling behavior to vepey data sets, our goal is to
develop an algorithm that can be proved (using tools in analysis of algojitbrbe asymptotically
efficient in both time and space.

A key observation is that practical SVM implementations, as in many numerigtihes, only
approximatethe optimal solution by an iterative strategy. Typically, the stopping criteries es
ther the precision of the Lagrange multipliers or the duality gap (Smola analkegt, 2004). For
example, in SMO, SVNE™ (Joachims, 1999) and SimpleSVM, training stops when the Karush-
Kuhn-Tucker (KKT) conditions are fulfilled within a tolerance parameteExperience with these
softwares indicate that near-optimal solutions are often good enougadtiqgal applications. How-
ever, such “approximateness” has never been exploited in the desgyMimplementations.

On the other hand, in the field of theoretical computer science, approxirmatjorithms with
provable performance guarantees have been extensively usedlingaxknputationally difficult
problems (Garey and Johnson, 1979; Vazirani, 2001). A_be the cost of the solution returned
by an approximate algorithm, ar@l be the cost of the optimal solution. An approximate algo-
rithm hasapproximation ratiop(n) for an input sizen if max(g, %) < p(n). Intuitively, this ratio
measures how bad the approximate solution is compared with the optimal solutiamgeXsmall)
approximation ratio means the solution is much worse than (more or less the gaime ggtimal

364

COREVECTORMACHINES

solution. Observe that(n) is always> 1. If the ratio does not depend apwe may just writep and
call the algorithm amp-approximation algorithm Well-known NP-complete problems that can be
efficiently addressed using approximation algorithms include the vertext-pogblem and the set-
covering problem. This large body of experience suggests that onelstayevelop approximation
algorithms for SVMs, with the hope that training of kernel methods will becomeertractable,
and thus more scalable, in practice.

In this paper, we will utilize an approximation algorithm for tiénimum enclosing ba{(MEB)
problem in computational geometry. The MEB problem computes the ball of mininagins
enclosing a given set of points (or, more generally, balls). Traditidgarighms for finding exact
MEBs (e.g., (Megiddo, 1983; Welzl, 1991)) do not scale well with the dinoeradity d of the points.
Consequently, recent attention has shifted to the development of apptimxirakyorithms (Edoiu
and Clarkson, 2002; Kumar et al., 2003; Nielsen and Nock, 2004).aiticplar, a breakthrough
was obtained by Bdoiu and Clarkson (2002), who showed that(&r- €)-approximation of the
MEB can be efficiently obtained usirapre sets Generally speaking, in an optimization problem,
a core set is a subset of input points such that we can get a goodapation to the original input
by solving the optimization problem directly on the core set. A surprising ptppé (Badoiu and
Clarkson, 2002) is that the size of its core set can be shownitwlependenof bothd and the size
of the point set.

In the sequel, we will show that there is a close relationship between SVNhigaind the MEB
problem. Inspired from the core set-based approximate MEB algorithmeilwen develop an
approximation algorithm for SVM training that has an approximation rati¢lof £)2. Its time
complexity islinear in mwhile its space complexity imdependendf m. In actual implementation,
the time complexity can be further improved with the use of probabilistic speedtipds(Smola
and Sclvlkopf, 2000).

The rest of this paper is organized as follows. Section 2 gives a shiadirction on the MEB
problem and its approximation algorithm. The connection between kernel dsetma the MEB
problem is given in Section 3. Section 4 then describes our proposedV€otor Machine (CVM)
algorithm. The core setin CVM plays a similar role as the working set in decsitgpoalgorithms,
which will be reviewed briefly in Section 5. Finally, experimental results aesgnted in Section 6,
and the last section gives some concluding remarks. Preliminary resulte @Ml have been
recently reported in (Tsang et al., 2005).

2. The (Approximate) Minimum Enclosing Ball Problem

Given a set of points = {xy,...,Xm}, where eaclx; € RY, the minimum enclosing ball of (de-
noted MEB.S)) is the smallest ball that contains all the pointssin The MEB problem can be
dated back as early as in 1857, when Sylvester (1857) first investigsesimallest radius disk
enclosingm points on the plane. It has found applications in diverse areas sucimgmiter graph-
ics (e.g., for collision detection, visibility culling), machine learning (e.g., similar@grsh) and
facility locations problems (Preparata, 1985). The MEB problem also geltmthe larger family
of shape fitting problems, which attempt to find the shape (such as a slalleryliglindrical shell
or spherical shell) that best fits a given point set (Chan, 2000).

Traditional algorithms for finding exact MEBs (such as (Megiddo, 1988lzl, 1991)) are not
efficient for problems witld > 30. Hence, as mentioned in Section 1, it is of practical interest to
study faster approximation algorithms that return a solution within a multiplicatoterfaf 1+ € to

365

TSANG, KWOK AND CHEUNG

the optimal value, whereis a small positive number. L& c, R) be the ball with center and radius

R. Given are > 0, a ballB(c, (1 +€)R) is an(1 + €)-approximationof MEB(S) if R< ryeg(s) and

S C B(c, (14 ¢)R). In many shape fitting problems, it is found that solving the problem on aesubs
called thecore set Q of points froms$ can often give an accurate and efficient approximation. More
formally, a subset) C S is a core set of if an expansion by a factqil + €) of its MEB contains
S,i.e.,5 CB(c,(1+¢)r), whereB(c,r) = MEB(Q) (Figure 1).

Figure 1: The inner circle is the MEB of the set of squares andlits €) expansion (the outer
circle) covers all the points. The set of squares is thus a core set.

A breakthrough on achieving such an{Zk)-approximation was recently obtained badiu
and Clarkson (2002). They used a simple iterative scheme: Athihieration, the current estimate
B(ct, rt) is expanded incrementally by including the furthest point outsid¢thee)-ball B(c;, (1+
€)rt). This is repeated until all the points ghare covered b(c:, (1+¢€)rt). Despite its simplicity, a
surprising property is that the number of iterations, and hence the size bi#h core set, depends
only on€ butnotond or m. The independence af is important on applying this algorithm to
kernel methods (Section 3) as the kernel-induced feature space @#inlie-dimensional. As for
the remarkable independencermonit allows both the time and space complexities of our algorithm
to grow slowly (Section 4.3).

3. MEB Problems and Kernel Methods

The MEB can be easily seen to be equivalent to the hard-margin supgardr\data description
(SVDD) (Tax and Duin, 1999), which will be briefly reviewed in Section.3he MEB problem
can also be used to find the radius component of the radius-margin bGhagdlle et al., 2002;
Vapnik, 1998). Thus, Kumar et al. (2003) has pointed out that the MiBIpm can be used in
support vector clustering and SVM parameter tuning. However, as wahioe/n in Section 3.2,
other kernel-related problems, such as the soft-margin one-class arulasgoSVMSs, can also be
viewed as MEB problems. Note that finding the soft-margin one-class SVBsengially the same
as fitting the MEB with outliers, which is also considered in (Har-Peled andjy\2104). However,
a limitation of their technique is that the number of outliers has to be moderately smatlento
be effective. Another heuristic approach for scaling up the soft-m&yiD using core sets has
also been proposed in (Chu et al., 2004).

366

COREVECTORMACHINES

3.1 Hard-Margin SVDD

Given a kernek with the associated feature méplet the MEB (or hard-margin ball) in the kernel-
induced feature space Béc,R). The primal problem in the hard-margin SVDD is

ngiCnFe2 D le—o(x)|P<R? i=1,....m (1)

The corresponding dual is

m m
maXxy, Zlaik(xi,xi)— z Giij(Xi,Xj)
i= i,j=1
st. >0, i=1,...,m
m
aj=1,

2

or, in matrix form,
max a’'diagK)-ao'Ka : a>0, a'l=1, ()

wherea = [qi,...,am|" are the Lagrange multiplier§,= [0,...,0], 1 =[1,...,1] andKyxm =

[k(xi, ;)] is the kernel matrix. As is well-known, this is a QP problem. The primal variatdade
recovered from the optimal as

c:iaicb(xi), R=/a/diagK) — o’Ka. (3)

3.2 Viewing Kernel Methods as MEB Problems
Consider the situation where

K(x,X) =K, 4)
a constant. All the patterns are then mapped to a sphere in the feature gjaedl be satisfied
when either

1. the isotropic kerné(x,y) = K(|[x—y||) (e.g., Gaussian kernel); or

2. the dot product kerndd(x,y) = K(x'y) (e.g., polynomial kernel) with normalized inputs; or

i _ K(xy)

3. any normalized kernéix,y) = TROH KT
is used. These three cases cover most kernel functions used inaeelapplications. Sabikopf
et al. (2001) showed that the hard (soft) margin SVDD then yields idergalation as the hard
(soft) margin one-class SVM, and the weighin the one-class SVM solution is equal to the center
cin the SVDD solution.

Combining (4) with the condition’1 = 1in (2), we havex’diag(K) = k. Dropping this constant
term from the dual objective in (2), we obtain a simpler optimization problem:

maax—a’KO(ca>0 d1=1 (5)

367

TSANG, KWOK AND CHEUNG

Conversely, whenever the kerresatisfies (4), any QP of the form (5) can be regarded as a MEB
problem in (1). Note that (2) and (5) yield the same set of optmn'glMoreover, the optimal (dual)
objectives in (2) and (5) (denotel] andd; respectively) are related by

di = dj +k. (6)

In the following, we will show that when (4) is satisfied, the duals in a numbleemel methods
can be rewritten in the form of (5). While the 1-norm error has been corynused for the SVM,
our main focus will be on the 2-norm error. In theory, this could be lebsigbin the presence
of outliers. However, experimentally, its generalization performance i aftenparable to that
of the L1-SVM (Lee and Mangasarian, 2001; Mangasarian and Musi2@01a,b). Besides, the
2-norm error is more advantageous here because a soft-margin M2e8N be transformed to a
hard-margin one. While the 2-norm error has been used in classific&amtign 3.2.2), we will
also extend its use for novelty detection (Section 3.2.1).

3.2.1 ONE-CLASSL2-SVM

Given a set of unlabeled patter{is }" ; wherez; only has the input pas;, the one-class L2-SVM
separates outliers from the normal data by solving the primal problem:

m
Minypg [IW|[2—2p+C§ &
wW,p,& i; i
st. wWokx)>p—§&, i=1...,m (7)

wherew/¢(x) = p is the desired hyperplane a@ds a user-defined parameter. Unlike the classifi-
cation LSVM, the bias is not penalized here. Moreover, note that camistéa > 0 are not needed
for the L2-SVM (Keerthi et al., 2000). The corresponding dual is

1
—a' [K+ =1 ca>0 dl1=1 8
maax 0(<+C>0(a>0, a , (8)

wherel is the m x midentity matrix. From the Karush-Kuhn-Tucker (KKT) conditions, we can
recover

w= icxiq)(xi) 9)

andg; = &, and therp = W'¢(x;) + & from any support vecto;.
Rewrite (8) in the form of (5) as:

max —a/Ka : a>0, a'l=1, (10)
where
K = [k(zi,2))] = [k(xi,xj) + %} . (11)
Sincek(x,X) =K,
k(z,z) = K+c—1: =K

COREVECTORMACHINES

is also a constant. This one-class L2-SVM thus corresponds to the MikfBepn (1), in whichp is
replaced by the nonlinear m@psatisfying(z)'$(z;) = k(z,z;). It can be easily verified that this
® maps the training poirg; = x; to a higher dimensional space, as

d(xi)]

§(z) = [%a

whereg is them-dimensional vector with all zeroes except thatitiheposition is equal to one.

3.2.2 Two-CLASS L2-SVM

In the two-class classification problem, we are given a training{get (x;,yi)}"; with y; €
{—1,1}. The primal of the two-class L2-SVM is

m
MiNw b0, \lw|!2+b2—2p+C_Za?
1=
st yi(Wo(x)+b) >p-¢&, i=1..m (12)

The corresponding dual is
!/ / / 1 /
mqax —a (K@yy +yy+EI>0(ca>0, al=1, (13)
where® denotes the Hadamard product ané [ys,...,ym|’. Again, we can recover

W:iiai)ﬁq)(xi), b:iiai)/i, Ei:%, (14)

from the optimala and therp = y;(W'¢(x;) +b) + & from any support vectar;. Alternatively,p
can also be obtained from the fact that QP’s have zero duality gap.tiggulke primal (12) and
dual (13), we have

m m
||w\|2+b2—2p+czlz?= -y
1= I,

6..
aid;j <Yink(Xi,Xj) +yiyj + %) .
=

Substituting in (14), we then have

m 6
p= > aiqj <yiy,-k(xi,xj)+yiyj + %) : (15)
i,]=1

Rewriting (13) in the form of (5), we have

max —o’Ka : a>0, a'1=1, (16)

whereK = [k(z,z;)] with

6..
k(Zi,Zj)ZYiyJ‘k(Xi,Xj)JrYinJr%, (17)

369

TSANG, KWOK AND CHEUNG

Again, thisk satisfies (4), as

k(z,z) =K+ 1+ = =K,

Ol

a constant. Thus, this two-class L2-SVM can also be viewed as a MEBepndli) in which¢ is
replaced byp, with
Yid (xi)]

6(z) = { yi
1
%Q

for any training pointz;. Note that as a classification (supervised learning) problem is now re-

formulated as a MEB (unsupervised) problem, the label information getsdeddn the feature

map®. Moreover, all the support vectors of this L2-SVM, including thoserdedj the margin and

those that are misclassified, now reside on the surface of the ball in theefespace induced by

k. A similar relationship connecting one-class classification and binary ctasfi for the case of

Gaussian kernels is also discussed byd#apf et al. (2001). In the special case of a hard-margin

SVM, k reduces t&(zi,z,-) =VYiYjK(xi,Xj) +yiy; and analogous results apply.

4. Core Vector Machine (CVM)

After formulating the kernel method as a MEB problem, we obtain a transfokagetel k, to-
gether with the associated feature spéﬁemappingdﬁ and constank = E(z, z). To solve this
kernel-induced MEB problem, we adopt the approximation algorithm destiib the proof of
Theorem 2.2 in (Rdoiu and Clarkson, 2002). A similar algorithm is also described in (Kumar
et al., 2003). As mentioned in Section 2, the idea is to incrementally expand Ithey recluding

the point furthest away from the current center. In the following, weotkethe core set, the ball's
center and radius at théh iteration by.$;, ¢; andR; respectively. Also, the center and radius of a
ball B are denoted bgg andrg. Given anc > 0, the CVM then works as follows:

1. Initialize So, o andRy.

2. Terminate if there is no training pointsuch thath(z) falls outside thé1+ €)-ball B(c;, (1+
eR).

3. Findz such thath(z) is furthest away front;. SetS. 1 = 5 U{z}.
4. Find the new MERS; 1) from (5) and sett 1 = Cuep(s.,) aNdR+1 = I'ves(s.4) USING (3).
5. Increment by 1 and go back to Step 2.

In the sequel, points that are added to the core set will be caflerlvectors Details of each of
the above steps will be described in Section 4.1. Despite its simplicity, CVM hagmoximation
guarantee (Section 4.2) and small time and space complexities (Section 4.3).

4.1 Detailed Procedure
4.1.1 INITIALIZATION

Badoiu and Clarkson (2002) simply used an arbitrary ppints to initialize S = {z}. However, a
good initialization may lead to fewer updates and so we follow the scheme in (Ketra&r 2003).

370

COREVECTORMACHINES

We start with an arbitrary poirg € § and findz, € § that is furthest away froma in the feature
spaceﬁ. Then, we find another poiat, € S that is furthest away from; in ﬁ. The initial core set
is then set to by = {za,zp}. Obviously, MEB$) (in F) has centery = 2(6(za) +6(z)) On
using (3), we thus have, = a, = % and all the othea;’s are zero. The initial radius is

Ro = 3lB(za)~8(z)

= %\/Ilfli(za)HZJr 1(zb)11> — 26 (za)' (zb)

= % 2% — 2k(za, zp).

In a classification problem, one may further requigeand z, to come from different classes.
On using (17)Ro then becomes \/2 (K+2+ 2) + 2k(Xa, Xp). Ask andC are constants, choosing

the pair (Xa,Xp) that maximizesRy is then equivalent to choosing the closest pair belonging to
opposing classes, which is also the heuristic used in initializing the DirectS\édi(&ert, 2000)
and SimpleSVM (Vishwanathan et al., 2003).

4.1.2 DSTANCE COMPUTATIONS

Steps 2 and 3 involve computifig; — §(z,)|| for z; € S. Onusingc = 3 ;5 aid(z) in (3), we have

I8P = Y aiakz,z)-2 S aik(z,z)+kz,2). (18)

Z,Zj €5 Zies

Hence, computations are based on kernel evaluations instead of thatei(i¢'s, which may
be infinite-dimensional. Note that, in contrast, existing MEB algorithms only cendidite-
dimensional spaces.

However, in the feature spaag,cannot be obtained as an explicit point but rather as a convex
combination of (at most);| $(z)’'s. Computing (18) for alim training points take®(|5|? +
m|St|) = O(m|S|) time at thetth iteration. This becomes very expensive winers large. Here,
we use the probabilistic speedup method in (Smola andl&apf, 2000). The idea is to randomly
sample a sufficiently large subsgtfrom §, and then take the point i/ that is furthest away from
¢ as the approximate furthest point over As shown in (Smola and Sélkopf, 2000), by using a
small random sample of, say, size 59, the furthest point obtained $famwith probability 0.95
among the furthest 5% of points from the whglelnstead of takingd(m|.|) time, this randomized
method only take®(| 5|2 + |S|) = O(|& %) time, which is much faster ds;| << m. This trick can
also be used in the initialization step.

4.1.3 ADDING THE FURTHESTPOINT

Points outside MERS$;) have zera;’s (Section 4.1.1) and so violate the KKT conditions of the dual
problem. Asin (Osuna et al., 1997b), one can simply add any such violaiingtp ;. Our step 3,
however, takes a greedy approach by including the point furthest fraa the current center. In

371

TSANG, KWOK AND CHEUNG

the one-class classification case (Section 3.2.1),

2 ; r
ar max G—9(z = ar min aik(z,z
0, oM lle—8()] 9, oM, 2, K20

= ar min oik(Xj, x
gzﬁB(ct«Hs)Rt)zg& ki)

= ar min wWad(x 19
9, o) W O L) (19)

on using (9), (11) and (18). Similarly, in the binary classification caseti@e3.2.2), we have

2 .
ar max —0(z = ar min aiviye(k(xi,X¢) + 1
gz;;¢B(ct,(1+£)R{)”Ct bl (‘:Jz4¢es(ct,(1+a)Fet)ngt (kG %) 1)

= ar min wd(x,) +b), 20
QZ(‘¢B(CH(1+8)R{)W((%) +b) (20)
on using (14) and (17). Hence, in both cases, step 3 choose®thbviolating pattern correspond-
ing to the constraint ((7) and (12) respectively). y
Also, as the dual objective in (10) has gradieriK a, so for a patterrf currently outside the
ball

m

(Ka), = ';ai <k(xi,x[) + %) =Wo(x),

onusing (9), (11) and, = 0. Thus, the pattern chosen in (19) also makes the most progress towards
maximizing the dual objective. This is also true for the two-class L2-SVM, as

m

(Ka), = _;Gi <YiWk(Xi,X£) +Yiye + %) =Ye(Wo(x¢) +b),

on using (14), (17) and, = 0. This subset selection heuristic is also commonly used by decompo-
sition algorithms (Chang and Lin, 2004; Joachims, 1999; Platt, 1999).

4.1.4 HNDING THE MEB

At each iteration of Step 4, we find the MEB by using the QP formulation in Se&tdnAs the
size|S$;| of the core set is much smaller tharin practice (Section 6), the computational complexity
of each QP sub-problem is much lower than solving the whole QP. Besglersl|yaone core vector
is added at each iteration, efficient rank-one update proceduresvédaerghs and Poggio, 2001;
Vishwanathan et al., 2003) can also be used. The cost then beconuzatogueather than cubic.
As will be demonstrated in Section 6, the size of the core set is usually small iarmeslen for
very large data sets. Hence, SMO is chosen in our implementation as it is eftgefficient (in
terms of both time and space) on data sets of such sizes. Moreover, asmerngdpint is added each
time, the new QP is just a slight perturbation of the original. Hence, by usinlylE® solution
obtained from the previous iteration as starting powmarm star), SMO can often converge in a
small number of iterations.

4.2 Convergence to (Approximate) Optimality

First, considee = 0. The convergence proof indBloiu and Clarkson (2002) does not apply as it
requirese > 0. But as the number of core vectors increases in each iteration andittiegrset

372

COREVECTORMACHINES

size is finite, so CVM must terminate in a finite number (3pf iterations, Withe = 0, MEB(S;)
is an enclosing ball for all thep¢transformed) points on termination. Becausés a subset of the
whole training set and the MEB of a subset cannot be larger than the NtB whole set. Hence,
MEB(S;) must also be the exact MEB of the whofe-fransformed) training set. In other words,
whene = 0, CVM outputs theexactsolution of the kernel problem.

Whene > 0, we can still obtain an approximately optimal dual objective as follows. #ssu
that the algorithm terminates at tith iteration, then

Re <rmeg(s) < (1+8)R (21)

by definition. Recall that the optimal primal objectip& of the kernel problem in Section 3.2.1
(or 3.2.2) is equal to the optimal dual objectiggin (10) (or (16)), which in turn is related to the
optimal dual objectivel; = r,%AEB(S) in (2) by (6). Together with (21), we can then boupidas

RE<p +K < (1+€)°R (22)

Hence, ma{%z, %K) < (1+¢)? and thus CVM is ar{1+ €)?-approximation algorithm. This
also holds with high probabilifywhen probabilistic speedup is used.

As mentioned in Section 1, practical SVM implementations also output approximaligtbns
only. Typically, a parameter similar to oaris required at termination. For example, in SMO,
SVM'9" and SimpleSVM, training stops when the KKT conditions are fulfilled withinExpe-
rience with these softwares indicate that near-optimal solutions are oftehegmugh in practical
applications. It can be shown that when CVM terminates, all the training pat#so satisfy simi-
lar loose KKT conditions. Here, we focus on the binary classification.ddse, at any iteration,
each training point falls into one of the following three categories:

1. Core vectors: Obviously, they satisfy the loose KKT conditions as theynaolved in the

QP.

2. Non-core vectors inside/on the bBllc;, R): Theira;’s are zerd and so the KKT conditions
are satisfied.

3. Points lying outsid®(c;,R;): Consider one such poilit Its o, is zero (by initialization) and

5,
o812 = 5 aay (ki) -+ L
Zi,ZjESt
*Zzgﬁdi (Yiyék(xiaxé) +Yiye + %) +k(ze,z:)
= PR =2y (Wb (xe) +by), (23)
on using (14), (15), (17) and (18). This leads to
R =R —pr. (24)

1. Obviously, the probability increases with the number of points subsanapie is equal to one when all the points
are used. Obtaining a precise probability statement will be studied in fleseaurch.
2. Recall that all thej’s (except those of the two initial core vectors) are initialized to zero.

373

TSANG, KWOK AND CHEUNG

on using (3), (15) and (16). Az is inside/on the(1+ €)-ball at thetth iteration, ||c; —
$(z0)||? < (1+¢)R2. Hence, from (23) and (24),

(1+€)2(R—p1) > pr+R—2y,(Wid(x¢) +by)
= 2%(Wph(x)+br) >pc+K—(1+€)*(K—py)
> 20 — (26 +€%) (K- pr)

2
= W) b —pr = (o4)R 25)

Obviously,R? < R(z, z) =K. Hence, (25) reduces to

2
VoW (x¢) +br) — pr > — (e+ %) k=—e,

which is a loose KKT condition on pattefn(which hasa, = 0 and consequently, = 0 by

(14)).

4.3 Time and Space Complexities

Existing decomposition algorithms cannot guarantee the number of iteratiodnsoasequently
the overall time complexity (Chang and Lin, 2004). In this Section, we show thés can be
obtained for CVM. In the following, we assume that a plain QP implementation hiakesO(m?)
time andO(n?) space form patterns, is used for the QP sub-problem in step 4. The time and
space complexities obtained below can be further improved if more efficierso@yers were used.
Moreover, each kernel evaluation is assumed to take constant time.

Consider first the case where probabilistic speedup is not used in Sdctiéh As proved
in (Badoiu and Clarkson, 2002), CVM converges in at mo&t Perations. In other words, the
total number of iterations, and consequently the size of the final corersedf a= O(1/¢). In
practice, it has often been observed that the size of the core set is madlersthan this worst-
case theoretical upper bouh@umar et al., 2003). As only one core vector is added at each
iteration,|§| =t + 2. Initialization takesO(m) time while distance computations in steps 2 and 3
takeO((t +2)%24tm) = O(t? +tm) time. Finding the MEB in step 4 take&{((t +2)%) = O(t%) time,
and the other operations take constant time. Hencethhiteration takes a total @(tm--t3) time.
The overall time for = O(1/¢) iterations is

L m 1
T= ;OGmHg) =0O(t’m+1%) =0 <§ + g) ,

which islinear in mfor a fixede.

Next, we consider its space complexity. As tindraining patterns may be stored outside the
core memory, th®©(m) space required will be ignored in the following. Since only the core vectors
are involved in the QP, the space complexity for ttteiteration isO(|5|?). As T = O(1/¢), the
space complexity for the whole procedurégl/€?), which isindependendf m for a fixede.

On the other hand, when probabilistic speedup is used, initialization only @kesime while
distance computations in steps 2 and 3 t@ké -+ 2)?) = O(t?) time. Time for the other operations

3. This will also be corroborated by our experiments in Section 6.

374

COREVECTORMACHINES

remains the same. Hence, ttih iteration takeO(t%) time. As probabilistic speeedup may not
find the furthest point in each iterationmay be larger than /2 though it can still be bounded by
O(1/€?) (Badoiu et al., 2002). Hence, the whole procedure takes

T= t20(6) =0o(*) =0 <§8> :

For a fixede, it is thusindependendf m. The space complexity, which depends only on the number
of iterationst, become®(1/e%).

Whene decreases, the CVM solution becomes closer to the exact optimal soluticat, the
expense of higher time and space complexities. Such a tradeoff betviieaney and approxima-
tion quality is typical of all approximation schemes. Moreover, be cautionadtiie O-notation
is used for studying the asymptotic efficiency of algorithms. As we are inezt@s handling very
large data sets, an algorithm that is asymptotically more efficient (in time and)spdcbe the
best choice. However, on smaller problems, this may be outperformeddmtiaigs that are not as
efficient asymptotically. These will be demonstrated experimentally in Section 6.

5. Related Work

The core set in CVM plays a similar role as the working set in other decompoaitjorithms, and
so these algorithms will be reviewed briefly in this Section. Following the cdiorin (Chang
and Lin, 2004; Osuna et al., 1997b), the working set will be denBtedhile the remaining subset
of training patterns denoted.

Chunking (Vapnik, 1998) is the first decomposition method used in SVM trginih starts
with a random subsetlunR of data asB and train an initial SVM. Support vectors in the chunk
are retained while non-support vectors are replaced by patteMsiwmlating the KKT conditions.
Then, the SVM is re-trained and the whole procedure repeated. Clysikifers from the problem
that the entire set of support vectors that have been identified will stidl teelee trained together at
the end of the training process.

Osunaetal. (1997a) proposed another decomposition algorithm trettfexsize of the working
setB. At each iteration, variables corresponding to patternd re frozen, while those iB are
optimized in a QP sub-problem. After that, a new pointrviolating the KKT conditions will
replace some point iB. The SVM'9" software (Joachims, 1999) follows the same scheme, though
with a slightly different subset selection heuristic.

Going to the extreme, the sequential minimal optimization (SMO) algorithm (Platt) b888ks
the original, large QP into a series of smallest possible QPs, each involMygwmnvariables. The
first variable is chosen among points that violate the KKT conditions, whilegbersl variable is
chosen so as to have a large increase in the dual objective. This tiablegoint optimization pro-
cess is repeated until the loose KKT conditions are fulfilled for all trainirttepas. By involving
only two variables, SMO is advantageous in that each QP sub-probleimecsoived analytically
in an efficient way, without the use of a numerical QP solver. More@geno matrix operations are
involved, extra matrix storage is not required for keeping the kernel m&towever, as each itera-
tion only involves two variables in the optimization, SMO has slow convergdfae ét al., 2004).
Nevertheless, as each iteration is computationally simple, an overall spisedlitgn observed in
practice.

375

TSANG, KWOK AND CHEUNG

Recently, Vishwanathan et al. (2003) proposed a related scale-updwetied the SimpleSVM.
At each iteration, a point violating the KKT conditions is added to the workindpgeising rank-
one update on the kernel matrix. However, as pointed out in (Vishwamattal., 2003), storage is
still a problem when the SimpleSVM is applied to large dense kernel matrices.

As discussed in Section 4.1, CVM is similar to these decomposition algorithms in repegts,
including initialization, subset selection and termination. However, subssttes in CVM is
much simpler in comparison. Moreover, while decomposition algorithms allow trpiatterns
to join and leave the working set multiple times, patterns once recruited as eci@s/ by the
CVM will remain there for the whole training process. These allow the numbiéerations, and
consequently the time and space complexities, to be easily obtained for the G\ihbtdfor the
decomposition algorithms.

6. Experiments

In this Section, we implement the two-class L2-SVM in Section 3.2.2 and illustratectleng
behavior of CVM (in C++) on several toy and real-world data sets. Talslemmarizes the charac-
teristics of the data sets used. For comparison, we also run the followingi®ygMmentations:

1. L2-SVM: LIBSVM implementation (in C++);

2. L2-SVM: LSVM implementation (in MATLAB), with low-rank approximation (Fénand
Scheinberg, 2001) of the kernel matrix added;

3. L2-SVM: RSVM (Lee and Mangasarian, 2001) implementation (in MAT)ABhe RSVM
addresses the scale-up issue by solving a smaller optimization problem tite¢ga random
mx mrectangular subset of the kernel matrix. Heras set to 10% ofn;

4. L1-SVM: LIBSVM implementation (in C++);
5. L1-SVM: SimpleSVM (Vishwanathan et al., 2003) implementation (in MATLAB)

Parameters are used in their default settings unless otherwise spedifieel 08r focus is on non-
linear kernels, we use the Gaussian kekgely) = exp(—||x —y|[2/B) with B= % T _; [—X;|?
unless otherwise specified. Experiments are performed on Pentium—4 emaliming Windows
XP. Detailed machine configurations will be reported in each section.

Our CVM implementation is adapted from the LIBSVM, and uses SMO for soleach QP
sub-problem in step 4. As discussed in Section 4.1.4, warm start is useilidbziem each QP
sub-problem. Besides, as in LIBSVM, our CVM uses caching (with the szaoke size as in the
other LIBSVM implementations above) and stores all the training patterns in mamome For
simplicity, shrinking (Joachims, 1999) is not used in our current CVM impldatem. Besides,
we employ the probabilistic speedup meth@s discussed in Section 4.1.2. On termination, we
perform the (probabilistic) test in step 2 a few times so as to ensure that athtist points have
been covered by th@ + £)-ball. The value of is fixed at 10°° in all the experiments. As in other

4, 0ur CVM implementation can be downloaded fromhttp://www.cs.ust.hk/~jamesk/cvm.zip.
LIBSVM can be downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/; LSVM from
http://www.cs.wisc.edu/dmi/lsvm; and SimpleSVM fromhttp://asi.insa-rouen.fr/~gloosli/. Moreover, we followed
http://www.csie.ntu.edu.tw/~cjlin/libsvm/fag.html in adapting the LIBSVM package for L2-SVM.

5. Following (Smola and S¢itkopf, 2000), a random sample of size 59 is used.

376

COREVECTORMACHINES

date set max training set size # attributes
checkerboard 1,000,000 2
forest cover type 522,911 54
extended USPS digits 266,079 676
extended MIT face 889,986 361
KDDCUP-99 intrusion detection 4,898,431 127
UCI adult 32,561 123

Table 1: Data sets used in the experiments.

decomposition methods, the use of a very stringent stopping criterion isenessary in practice.
Preliminary studies show that= 10 is acceptable for most tasks. Using an even smaltives
not show improved generalization performance, but may increase thimgréime unnecessarily.

6.1 Checkerboard Data

We first experiment on the 4 4 checkerboard data (Figure 2) commonly used for evaluating
large-scale SVM implementations (Lee and Mangasarian, 2001; Mamgaaad Musicant, 2001b;
Schwaighofer and Tresp, 2001). We use training sets with a maximum of 1 npbiots and 2,000
independent points for testing. Of course, this problem does not meedisy points for training,
but it is convenient for illustrating the scaling properties. Preliminary stujgssts a value of

C =1000. A 3.2GHz Pentium—4 machine with 512MB RAM is used.

Figure 2: The 4 4 checkerboard data set.

Experimentally, L2-SVM with low rank approximation does not yield satisfacparformance
on this data set, and so its result is not reported here. RSVM, on the athdr has to keep a
rectangular kernel matrix of siza x m (mbeing the number of random samples used), and cannot
be run on our machine whan exceeds 10K. Similarly, the SimpleSVM has to store the kernel
matrix of the active set, and runs into storage problem whemceeds 30K.

377

TSANG, KWOK AND CHEUNG

Results are shown in Figure 3. As can be seen, CVM is as accurate dsehemplementations.
Besides, it is much fasttand produces far fewer support vectors (which implies faster testing) o
large data sets. In particular, one million patterns can be processed ini1gdeconds. On the
other hand, for relatively small training sets, with less than 10K patterBSVM is faster. This,
however, is to be expected as LIBSVM uses more sophisticated heurigticsoawill be more
efficient on small-to-medium sized data sets. Figure 3(b) also shows theeisize, which can be
seen to be small and its curve basically overlaps with that of the CVM. Thusstall the core
vectors are useful support vectors. Moreover, it also confirmghaaretical findings that both time
and space required are constant w.r.t. the training set size, when ihbsd¢arge enough.

6.2 Forest Cover Type Data

The forest cover type data éétas been used for large scale SVM training (e.g., (Bakir et al., 2005;
Collobert et al., 2002)). Following (Collobert et al., 2002), we aim a@saging class 2 from the
other classes. 1% 90% of the whole data set (with a maximum of 522,911 patterns) are used for
training while the remaining are used for testing. We use the Gaussian katingd = 10000 and
C =10000. Experiments are performed on a 3.2GHz Pentium—4 machine with 5SRZWB

Preliminary studies show that the number of support vectors is over tesahds. Conse-
quently, RSVM and SimpleSVM cannot be run on our machine. Similarly, forrknwk approxi-
mation, preliminary studies show that over thousands of basis vectorsquieed for a good ap-
proximation. Therefore, only the two LIBSVM implementations will be comparéti tihe CVM
here.

As can be seen from Figure 4, CVM is, again, as accurate as the otllets.that when the
training set is small, more training patterns bring in additional information usafalassification
and so the number of core vectors increases with training set size. EQwéter processing around
100K patterns, both the time and space requirements of CVM begin to exhibitséant scaling
with the training set size. With hindsight, one might simply sample 100K training pattand
hope to obtain comparable result$lowever, for satisfactory classification performance, different
problems require samples of different sizes and CVM has the importanttadesthat the required
sample size does not have to be pre-specified. Without such prior kagsyleandom sampling
gives poor testing results, as demonstrated in (Lee and Mangasai@dr, 20

6.3 Extended USPS Digits Data

In this experiment, our task is to classify digits zero from one in an exteneiesion of the USPS
data sef. The original training set has 1,005 zeros and 1,194 ones, while the téstss859 zeros
and 264 ones. To better study the scaling behavior, we extend this démga fést converting the
resolution from 16< 16 to 26x 26, and then generate new images by shifting the original ones in all
directions for up to five pixels. Thus, the resultant training set has a tofaDe5+ 1194) x 112 =

6. The CPU time only measures the time for training the SVM. Time for reatimtraining patterns into main memory
is not included. Moreover, as some implementations are in MATLAB, salidhe CPU time measurements can
be directly compared. However, it is still useful to note the constant grabhibited by the CVM and its speed
advantage over other C++ implementations, when the data set is large.

7. http://kdd.ics.uci.edu/databases/covertype/covertype.html

8. In fact, we tried both LIBSVM implementations on a random sample oK1®8ining patterns, but their testing
accuracies are inferior to that of CVM.

9. http://www.kernel-machines.org/data/usps.mat.gz

378

CPU time (in seconds)

COREVECTORMACHINES

—-L2-svM (CVM)
L2-SVM (LIBSVM)
L2-SVM (RSVM)

> L1-SVM (LIBSVM)

=©-L1-SVM (SimpleSVM)

=
o

number of SV's

10°

10

10°

—+-L2-svM (Cvm)
“|>core-set size
L2-SVM (LIBSVM)
L2-SVM (RSVM)
¢L1-SVM (LIBSVM)
—©-1L1-SVM (SimpleSVM)

B S

I
1K 3K 10K

(a) CPU time.

I
30K

I I
100K 300K M

size of training set

40

N w w
o o o

error rate (in %)
N
o

2
10
1

I I
3K 10K 30K

I I
100K 300K M

size of training set

(b) number of support vectors.

—+-L2-SvM (CVM)
L2-SVM (LIBSVM)
L2-SVM (RSVM)

¢ L1-SVM (LIBSVM)

-0~ L1-SVM (SimpleSVM)

3K 10K

30K
size of training set

100K 300K

(c) testing error.

M

Figure 3: Results on theheckerboard data set (Except for the CVM, the other implementations

have to terminate early because of not enough memory and/or the training tinte is to

long). Note that the CPU time, number of support vectors, and size of thengaet are

in log scale.

379

TSANG, KWOK AND CHEUNG

10% 10°¢
g L2-SVM (CVM) —+-L2-svM (CVM)
L2-SVM (LIBSVM) “|>core-set size
¢ L1-SVM (LIBSVM) L2-SVM (LIBSVM)
¢ L1-SVM (LIBSVM)

number of SV's

CPU time (in seconds)

10 L L L L L L L L 103 L L L L L I}
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6
size of training set x 10° size of training set X 10°

(a) CPU time. (b) number of support vectors.

L2-SVM (CVM)
L2-SVM (LIBSVM)

¢ L1-SVM (LIBSVM)

error rate (in %)

size of training set

(c) testing error.

Figure 4: Results on thierest cover type data set. Note that the CPU time and number of support
vectors are in log scale.

380

COREVECTORMACHINES

266,079 patterns while the extended test set @89+ 264) x 11°> = 753 83 patterns. In this
experimentC = 100 and a 3.2GHz Pentium—4 machine with 512MB RAM is used.

As can be seen from Figure 5, the behavior of CVM is again similar to thosesiprévious
sections. In particular, both the time and space requirements of CVM iecveasn the training
set is small. They then stabilize at around 30K patterns and CVM becomestfastethe other
decomposition algorithms.

6.4 Extended MIT Face Data

In this Section, we perform face detection using an extended versiore & kh face databasé
(Heisele et al., 2000; Sung, 1996). The original data set has 6,97ihg#images (with 2,429 faces
and 4,548 nonfaces) and 24,045 test images (472 faces and 23,5@8a®)nThe original 12 19
grayscale images are first enlarged to<241. To better study the scaling behavior of various SVM
implementations, we again enlarge the training set by generating artificial samglén (Heisele

et al., 2000; Osuna et al., 1997b), additional nonfaces are extraatimgrhages that do not contain
faces (e.g., images of landscapes, trees, buildings, etc.). As for tbé feees, we enlarge it by
applying various image transformations (including blurring, flipping andtirajato the original
faces. The following three training sets are thus created (Table 6.4):

1. Set A: This is obtained by adding 477,366 nonfaces to the original tgasen with the
nonface images extracted from 100 photos randomly collected from the web

2. Set B: Each training face is blurred by the arithmetic mean filter (with windoes<x 2,
3 x 3 and 4x 4, respectively) and added to set A. They are then flipped laterallynig#ula
total of 2429« 4 x 2= 19,432 faces.

3. Set C: Each face in set B is rotated betwe&®® and 20, in increments of 2 This results
in a total of 19432 21 =408 072 faces.

In this experimentC = 20 and a 2.5GHz Pentium—4 machine with 1GB RAM is used. Moreover,
a dense data format, which is more appropriate for this data set, is used ia iafiglementations.
Recall that the intent of this experiment is on studying the scaling behatimrdnan on obtaining
state-of-the-art face detection performance. Nevertheless, the abilityM in handling very large
data sets could make it a better base classifier in powerful face deteditemsysuch as the boosted
cascade (Viola and Jones, 2001).

training set #faces # nonfaces total

original 2,429 4,548 6,977
set A 2,429 481,914 484,343
setB 19,432 481,914 501,346
setC 408,072 481,914 889,986

Table 2: Number of faces and nonfaces in the face detection data sets.

Because of the imbalanced nature of this data set, the testing error is ipaggrdor perfor-
mance evaluation here. Instead, we will use the AUC (area under the RO€) cwhich has been

10. http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

381

TSANG, KWOK AND CHEUNG

4
10
L2-SVM (CVM)
—t-L2-svm(cvm) + core-set size
L2-SVM (LIBSVM) L2-SVM (LIBSVM)
L2-SVM (low rank) L2-SVM (low rank)
10° L2-SVM (RSVM)
_ L2-SVM (RSVM)
- L1-SVM (LIBSVM)
~9-L1-SVM (SimpleSVM) ¢ L1-SVM (LIBSVM)
& -0~ L1-SVM (SimpleSVM)
el o
§10°: 3
(7] Y
2 s)
e 2
£ £
= 10" 2
2
o
O
10°
L
-1 2 L L | |
10 I I I I 10
10° 10* 10° 10° 10’ 10° 10 10° 10° 10
size of training set size of training set
(a) CPU time. (b) number of support vectors.

—-1L2-svM (CVM)
L2-SVM (LIBSVM)
L2-SVM (low rank)
L2-SVM (RSVM)

16F 6 L1-SVM (LIBSVM)

~©-L1-SVM (SimpleSVM)

=
o D
T

error rate (in %)
P
N

[
T

0.6r

0.4 : : ‘

size of training set

(c) testing error.

Figure 5: Results on the extende8PS digits data set (Except for the CVM, the other implemen-
tations have to terminate early because of not enough memory and/or thegttaimens
too long). Note that the CPU time, number of support vectors, and size tiihang set
are in log scale.

382

COREVECTORMACHINES

commonly used for face detectors. The ROC (receiver operating atbestic) curve (Bradley,
1997) plots TP on th¥-axis and the false positive rate

__negatives incorrectly classified

FP .
total negatives

on theX-axis. Here, faces are treated as positives while non-faces asvesgdthe AUC is always
between 0 and 1. A perfect face detector will have unit AUC, while ramdaessing will have an
AUC of 0.5. Another performance measure that will be reported is the taddnss (Weston et al.,
2002)

TP+TN

5

which is also suitable for imbalanced data sets. Here,

lpal = 1—

TP— positives correctly classified TN = negatives correctly classified
N total positives N total negatives

) I

are the true positive and true negative rates respectively.

The ROC on using CVM is shown in Figure 6, which demonstrates the ussfulfi@ising extra
faces and nonfaces in training. This is also reflected in Figure 7, whashssthat the time and space
requirements of CVM are increasing with larger training sets. Even in thisasspmptotic case, the
CVM still significantly outperforms both LIBSVM implementations in terms of training tiamel
number of support vectors, while the values of AUC dgpg are again very competitive. Note also
that the LIBSVM implementations of both L1- and L2-SVMs do not perfornil {ie terms of /)
on the highly imbalanced set A. On the other hand, CVM shows a steady iempemt and is less
affected by the skewed distribution. In general, the performance of Stthild be improved by
assigning different penalty paramete@sj to the classes. A more detailed study on the use of
CVM in an imbalanced setting will be conducted in the future.

6.5 KDDCUP-99 Intrusion Detection Data

This intrusion detection data $&has been used for the Third International Knowledge Discovery
and Data Mining Tools Competition, which was held in conjunction with KDD-99e Training
set contains 4,898,431 connection records, which are processedlimut four gigabytes of com-
pressed binary TCP dump data from seven weeks of network traffioth&ntwo weeks of data
produced the test data with 311,029 patterns. The data set includes aaiely of intrusions
simulated in a military network environment. There are a total of 24 training attaasyand an
additional 14 types that appear in the test data only.

We follow the same setup in (Yu et al., 2003). The task is to separate normacions from
attacks. Each original pattern has 34 continuous features and 7 syndmtlices. We normalize
each continuous feature to the range zero and one, and transfdmraygabolic feature to multiple
binary features. Yu et al. (2003) used the clustering-based SVMSERB), which incorporates
the hierarchical micro-clustering algorithm BIRCH (Zhang et al., 1996¢thuce the number of
patterns in SVM training. However, CB-SVM is restricted to the use of lineginéds. In our
experiments with the CVM, we will continue the use of the Gaussian kernel @vth1000 and

11. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

383

TSANG, KWOK AND CHEUNG

——original training set
set A

-=--setB
set C

0.95
0.9

B o085
0.8
0.75
0.7F ¢

0.65

! 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
FP

0.6

Figure 6: ROC of the extendedIT face data set on using CVM.

C = 10%) as in the previous sections. Moreover, as the whole data set is storesl ¢orthin our
current implementation, we use a 3.2GHz Pentium—4 machine with 2GB RAM.

Table 6.5 compares the results of CVM with those reported in (Yu et al., 2@08¢h include
SVMs using random sampling, active learning (Schohn and Cohn, 20@D{CB-SVM. Surpris-
ingly, our CVM on the whole training set (which has around five million patfetalses only 1.4
seconds, and yields a lower testing error than all other methods. Themparfce of CVM on this
data set, as evaluated by some more measures and the ROC, are repaatdd ;i and Figure 8
respectively.

6.6 Relatively Small Data Sets: UCI Adult Data

Following (Platt, 1999), we use training s€tsvith up to 32,562 patterns. Experiments are per-
formed withC = 0.1 and on a 3.2GHz Pentium—4 machine with 512MB RAM. As can be seen in
Figure 9, CVM is still among the most accurate methods. However, as this etatarglatively
small, more training patterns do carry more classification information. Heaaiseussed in Sec-
tion 6.2, the number of iterations, the core set size and consequently thér@®all increase with

the number of training patterns. From another perspective, recall thatdist case core set size is
2/¢, independent ofn (Section 4.3). For the value ef= 10% used here, & =2x 10°. Besides,
although we have seen that the actual size of the core set is often mucthr shaadléhis worst case
value, however, whem < 2/¢, the number of core vectors can still be dependeninorMore-

12. ftp:/ftp.ics.uci.edu/pub/machine-learning-databases/adult

384

COREVECTORMACHINES

L2-SVM (CVM)
o L2-SVM (LIBSVM)

10°¢ 56 L1-SVM (LIBSVM)

CPU time (in seconds)

original setA setB setC
training set

(a) CPU time.

L2-SVM (CVM)
097 L2-SVM (LIBSVM)

5¢L1-SVM (LIBSVM)

0.961
0.95r
8 0.94r
20
0.93r
0.92r

0.91r

0.9 - . . .
original setA setB setC
training set

(c) AUC.

10%;

number of SV's

40r

w
a

balanced loss (in %)

N
o

15

—4-L2-SVvM (CVMm)

«| > core-set size
L2-SVM (LIBSVM),

=€ L1-SVM (LIBSVM)

w
(=

N
ol

original setA setB setC
training set

(b) number of support vectors.

L2-SVM (CVM)
L2-SVM (LIBSVM)

- L1-SVM (LIBSVM)

original setA setB setC

trainina set

(d) tpa.

Figure 7: Results on the extend&dl face data set. Note that the CPU time and number of support

vectors are in log scale.

385

TSANG, KWOK AND CHEUNG

method # training patterns #test SVMtraining other processing
input to SVM errors time (in sec) time (in sec)
0.001% 47 25,713 0.000991 500.02
random 0.01% 515 25,030 0.120689 502.59
sampling 0.1% 4,917 25,531 6.944 504.54
1% 49,204 25,700 604.54 509.19
5% 245,364 25,587 15827.3 524.31
active learning 747 21,634 94192.213
CB-SVM 4,090 20,938 7.639 4745.483
CVM 4,898,431 19,513 14

Table 3: Results on thEDDCUP-99 intrusion detection data set by CVM and methods reported
in (Yu et al., 2003). Here, “other processing time” refers to the (1) samplime for
SVM with random sampling; and (2) clustering time for CB-SVM. For SVM withivac
learning and CVM, the total training time required is reported. Note that Yu €2@03)
used a 800MHz Pentium-3 machine with 906MB RAM while we use a 3.2GHz Pertium—
machine with 2GB RAM. Hence, the time measurements are for referencerahtganot
be directly compared.

AUC /lpy #corevectors # support vectors
0.977 0.042 55 20

Table 4: More performance measures of CVM onKIR®CUP-99 intrusion detection data.

1

09

0.8

0.7

0.6

TP

05

0.4

0.3

0.2

0.1F

0 1 1 1 1 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

FP

Figure 8: ROC of the th&DDCUP-99 intrusion detection data using CVM.

386

COREVECTORMACHINES

over, as has been observed in the previous sections, the CVM is slameththmore sophisticated
LIBSVM on processing these smaller data sets.

10° 10°¢
—~1L2-svM (CVM) —-L2-svM (Cvm)
L2-SVM (LIBSVM) <[> core-set size
4 L2-SVM (low rank) L2-SVM (LIBSVM)
10 L2-SVM (RSVM) L2-SVM (low rank)
¢ L1-SVM (LIBSVM) L2-SVM (RSVM)
-~ L1-SVM (SimpleSVM) 6 L1-SVM (LIBSVM)
7 10° 10°f =9~ L1-SVM (SimpleSVM)
< %)
3 >
8 &
=4 2 o
<= 10 =
o 2
£ £
e 3
o) o
% 10" 10°F
10°
1071 L L L L l 2 L L L L
1000 3000 6000 10000 30000 000 3000 6000 10000 30000
size of training set size of training set
(a) CPU time. (b) number of support vectors.

20
—-L2-svM (CVMm)
L2-SVM (LIBSVM)
L2-SVM (low rank)
191 L2-SVM (RSVM)
¢ L1-SVM (LIBSVM)
—©-L1-SVM (SimpleSVM),
181

error rate (in %)
=
~
T

11%00 3000 6000 10000 30000
size of training set

(c) testing error.

Figure 9: Results on theCl adult data set (The other implementations have to terminate early
because of not enough memory and/or the training time is too long). Note th@pPttie
time, number of SV's and size of training set are in log scale.

387

TSANG, KWOK AND CHEUNG

7. Conclusion

In this paper, we exploit the “approximateness” in practical SVM implementtmacale-up SVM
training. We formulate kernel methods (including the soft-margin one-ctabt-class SVMs) as
equivalent MEB problems, and then obtain approximately optimal solutiomseeffiy with the use
of core sets. The proposed CVM procedure is simple, and does notesgphisticated heuristics
as in other decomposition methods. Moreover, despite its simplicity, CVM has asyatiptotic
time and space complexities. In particular, for a fixgdts asymptotic time complexity ibnear

in the training set sizen while its space complexity imdependenbf m. This can be further
improved when probabilistic speedup is used. Experimentally, it is as decasaexisting SVM
implementations, but is much faster and produces far fewer supports€ata thus faster testing)
on large data sets. On the other hand, on relatively small data sets mhkerg/e, SMO can be
faster. Besides, although we have fixed the value iafthe experiments, one could also vary the
value ofe to adjust the tradeoff between efficiency and approximation quality. lerg&nwith

a smallerg, the CVM solution becomes closer to the exact optimal solution, but at thensxpe
of higher time and space complexities. Our experience suggests that adikedofe = 106 is
acceptable for most tasks.

The introduction of CVM opens new doors for applying kernel methodata-thtensive appli-
cations involving very large data sets. The use of approximation algorithm$aigs immense
opportunities to scaling up other kernel methods. For example, we haveaibfaeliminary suc-
cess in extending support vector regression using the CVM techniquée lfuture, we will also
apply CVM-like approximation algorithms to other kernel-related learninglprob such as imbal-
anced learning, ranking and clustering. The iterative recruitment ef wectors is also similar to
incremental procedures (Cauwenberghs and Poggio, 2001; Fdrigamgasarian, 2002), and this
connection will be further explored. Besides, although the CVM can olntaich fewer support
vectors than standard SVM implementations on large data sets, the numbepoftsigetors may
still be too large for real-time testing. As the core vectors in CVM are addeérimentally and
never removed, it is thus possible that some of them might be redundant.ilMéengider post-
processing methods to further reduce the number of support vectoadlyfall the training patterns
are currently stored in the main memory. We anticipate that even larger dataardie handled,
possibly with reduced speed, when traditional scale-up techniquesasuamiit-of-core storage and
low-rank approximation are also incorporated.

Acknowledgements

This research has been partially supported by the Research Gramisil@bthe Hong Kong Special
Administrative Region. The author would also like to thank the anonymouswerxsefor their
constructive comments on an earlier version of this paper.

References

D. Achlioptas, F. McSherry, and B. Saélkopf. Sampling techniques for kernel methods. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editérdyances in Neural Information Processing
Systems 14Cambridge, MA, 2002. MIT Press.

388

COREVECTORMACHINES

G. H. Bakir, J. Weston, and L. Bottou. Breaking SVM complexity with crivaging. InAdvances
in Neural Information Processing Systems Cambridge, MA, 2005. MIT Press.

D. Boley and D. Cao. Training support vector machine using adaptiwetlng. InProceedings
of the SIAM International Conference on Data Minjmmages 126-137, Lake Buena Vista, FL,
USA, April 2004.

A. P. Bradley. The use of the area under the ROC curve in the evaludtioachine learning
algorithms.Pattern Recognition30(7):1145-1159, 1997.

M. Badoiu and K. L. Clarkson. Optimal core sets for ballsDIMACS Workshop on Computational
Geometry2002.

M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via corelsé®soceedings of 34th
Annual ACM Symposium on Theory of Computinages 250-257, Moraal, Quebec, Canada,
2002.

G. Cauwenberghs and T. Poggio. Incremental and decrementalrswpptor machine learning.
In T. Leen, T. Dietterich, and V. Tresp, editofsjvances in Neural Information Processing Sys-
tems 13Cambridge, MA, 2001. MIT Press.

T. M. Chan. Approximating the diameter, width, smallest enclosing cylinderpanosmum-width
annulus. InProceedings of the Sixteenth Annual Symposium on Computational @gopages
300-309, Clear Water Bay, Hong Kong, 2000.

C.-C. Chang and C.-J. LinLIBSVM: a Library for Support Vector Machine2004. Software
available ahttp://www.csie.ntu.edu.tw/cjlin/libsvm

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing mugigremeters for support
vector machinesMachine Learning46(1-3):131-159, 2002.

C. S. Chu, I. W. Tsang, and J. T. Kwok. Scaling up support vectta description by using core-
sets. InProceedings of the International Joint Conference on Neural Netsypdges 425-430,
Budapest, Hungary, July 2004.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs fonmMarge scale problems.
Neural Computation14(5):1105-1114, May 2002.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank keregresentationsJournal
of Machine Learning Research:243-264, December 2001.

T. Friess, N. Cristianini, and C. Campbell. The Kernel-Adatron algorithrasegind simple learning
procedure for support vector machinesPioceedings of the Fifteenth International Conference
on Machine Learningpages 188-196, Madison, Wisconsin, USA, July 1998.

G. Fung and O. L. Mangasarian. Incremental support vector maclaissftcation. In R. Grossman,
H. Mannila, and R. Motwani, editor®roceedings of the Second SIAM International Conference
on Data Mining pages 247-260, Arlington, Virginia, USA, 2002.

G. Fung and O. L. Mangasarian. Finite Newton method for Lagrangiapostipector machine
classification.Neurocomputing55:39-55, 2003.

389

TSANG, KWOK AND CHEUNG

M. R. Garey and D. S. JohnsorComputers and Intractability: A Guide to the Theory of NP-
CompletenessW. H. Freeman, 1979.

S. Har-Peled and Y. Wang. Shape fitting with outliBAM Journal on Computing3(2):269-285,
2004.

B. Heisele, T. Poggio, and M. Pontil. Face detection in still gray images. Aman687, Center
for Biological and Computational Learning, MIT, Cambridge, MA, 2000.

T. Joachims. Making large-scale support vector machine learning ahactla B. Sclilkopf,
C. Burges, and A. Smola, editoisdvances in Kernel Methods — Support Vector Learnpages
169-184. MIT Press, Cambridge, MA, 1999.

W.-C. Kao, K.-M. Chung, C.-L. Sun, and C.-J. Lin. Decomposition methaddifiear support
vector machinesNeural Computation16:1689-1704, 2004.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. MuAHhfast iterative nearest point
algorithm for support vector machine classifier desitfEE Transactions on Neural Networks
11(1):124-136, January 2000.

P. Kumar, J. S. B. Mitchell, and A. Yildirim. Approximate minimum enclosing balls irhidgnen-
sions using core-set&CM Journal of Experimental Algorithmic8, January 2003.

Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vectohimes. InProceeding of the
First SIAM International Conference on Data Mining001.

O. L. Mangasarian and D. R. Musicant. Active set support vector maafassification. In T. Leen,
T. Dietterich, and V. Tresp, editor&dvances in Neural Information Processing Systempages
577-583, Cambridge, MA, 2001a. MIT Press.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vectohimeg Journal of Machine
Learning Researchl:161-177, 2001b.

N. Megiddo. Linear-time algorithms for linear programmingRf and related problemsSIAM
Journal on Computingl2:759-776, 1983.

F. Nielsen and R. Nock. Approximating smallest enclosing balls?rbreedings of International
Conference on Computational Science and Its Applicatieoisime 3045, pages 147-157, 2004.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm fppstt vector machines. In
Proceedings of the IEEE Workshop on Neural Networks for Signatd3sing pages 276—285,
Amelia Island, FL, USA, 1997a.

E. Osuna, R. Freund, and F. Girosi. Training support vector machimesapplication to face
detection. InProceedings of Computer Vision and Pattern Recognijtjmages 130-136, San
Juan, Puerto Rico, June 1997b.

D. Pavlov, D. Chudova, and P. Smyth. Towards scalable supportrveeichines using squashing.
In Proceedings of the Sixth ACM SIGKDD International Conference on kaune Discovery
and Data Mining pages 295-299, Boston, Massachusetts, USA, 2000a.

390

COREVECTORMACHINES

D. Pavlov, J. Mao, and B. Dom. Scaling-up support vector machineg Uinsting algorithm.
In Proceedings of the International Conference on Pattern Recognitimnme 2, pages 2219-
2222, Barcelona, Spain, September 2000b.

J. C. Platt. Fast training of support vector machines using sequential mioptiaiization. In
B. Sclblkopf, C. Burges, and A. Smola, editorsdvances in Kernel Methods — Support Vector
Learning pages 185-208. MIT Press, Cambridge, MA, 1999.

F. P. PreparataComputational Geometry: An Introductio8pringer-Verlag, 1985.

D. Roobaert. DirectSVM: a simple support vector machine perceptraProceedings of IEEE In-
ternational Workshop on Neural Networks for Signal Procesgiages 356—365, Sydney, Aus-
tralia, December 2000.

G. Schohn and D. Cohn. Less is more: Active learning with support vesaehines. InPro-
ceedings of the Seventeenth International Conference on Machineihggrages 839-846, San
Francisco, CA, USA, 2000. Morgan Kaufmann.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estignéhe
support of a high-dimensional distributioNeural Computation13(7):1443-1471, July 2001.

B. Sclolkopf and A. J. SmolalLearning with KernelsMIT Press, Cambridge, MA, 2002.

A. Schwaighofer and V. Tresp. The Bayesian committee support vectdtinga In G. Dorffner,
H. Bischof, and K. Hornik, editorsProceedings of the International Conference on Atrtificial
Neural Networkspages 411-417. Springer Verlag, 2001.

A. Smola and B. Sablkopf. Sparse greedy matrix approximation for machine learningrdceed-
ings of the Seventeenth International Conference on Machine Leapagegs 911-918, Stanford,
CA, USA, June 2000.

A. Smola and B. Sdbikopf. A tutorial on support vector regressiostatistics and Computind.4
(3):199-222, August 2004.

K.-K. Sung. Learning and Example Selection for Object and Pattern Recognit®hD thesis,
Artificial Intelligence Laboratory and Center for Biological and Computatidmrning, MIT,
Cambridge, MA, 1996.

J. J. Sylvester. A question in the geometry of situatiQuarterly Journal on Mathemati¢4.:79,
1857.

D. M. J. Tax and R. P. W. Duin. Support vector domain descriptRaitern Recognition Letter&0
(14):1191-1199, 1999.

S. Tong and D. Koller. Support vector machine active learning with agpgitato text classifica-
tion. In Proceedings of the 17th International Conference on Machine Leaypiges 999-1006,
San Francisco, CA, USA, 2000. Morgan Kaufmann.

V. Tresp. Scaling kernel-based systems to large data Bats. Mining and Knowledge Discovery
5(3):197-211, 2001.

391

TSANG, KWOK AND CHEUNG

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Very large SVM traininmg<ore vector machines.
In Proceedings of the Tenth International Workshop on Artificial Intelligesied StatisticsBar-
bados, January 2005.

V. Vapnik. Statistical Learning Theoryiley, New York, 1998.
V. V. Vazirani. Approximation AlgorithmsSpringer, 2001.

P. Viola and M. Jones. Rapid object detection using a boosted cascaiepdd features. IfPro-
ceedings of the International Conference on Computer Vision and Pa&eagnitionvolume 1,
pages 1063-6919, 2001.

S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty. SimpleSVMPhoceedings of the Twentieth
International Conference on Machine Learnjmages 760-767, Washington, D.C., USA, August
2003.

E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editv Results and
New Trends in Computer Sciengages 359-370. Springer-Verlag, 1991.

J. Weston, B. Sabikopf, E. Eskin, C. Leslie, and S. W. Noble. Dealing with large diagonals in
kernel matricesPrinciples of Data Mining and Knowledge Discovery, Springer Lecturgeblm
Computer Science 242002.

C. K. I. Williams and M. Seeger. Using the Ny&in method to speed up kernel machines. In
T. Leen, T. Dietterich, and V. Tresp, edito’sdvances in Neural Information Processing Sys-
tems 13Cambridge, MA, 2001. MIT Press.

C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines usiagrttproved fast Gauss
transform. InAdvances in Neural Information Processing SystemsChmbridge, MA, 2005.
MIT Press.

H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM witlautigical clusters. In
Proceedings of the 9th ACM SIGKDD International Conference on Kriyeldiscovery and
Data Mining pages 306—315, Washington DC, USA, 2003.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient ddtestering method for very
large databases. In H. V. Jagadish and I. S. Mumick, edifersgeedings of the 1996 ACM
SIGMOD International Conference on Management of Dptges 103—114, Montreal, Quebec,
Canada, June 1996. ACM Press.

392

