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Abstract
One way to describe anomalies is by saying that anomalies arenot concentrated. This leads to the
problem of finding level sets for the data generating density. We interpret this learning problem as
a binary classification problem and compare the corresponding classification risk with the standard
performance measure for the density level problem. In particular it turns out that the empirical
classification risk can serve as an empirical performance measure for the anomaly detection prob-
lem. This allows us to compare different anomaly detection algorithmsempirically, i.e. with the
help of a test set. Furthermore, by the above interpretationwe can give a strong justification for the
well-known heuristic of artificially sampling “labeled” samples, provided that the sampling plan is
well chosen. In particular this enables us to propose a support vector machine (SVM) for anomaly
detection for which we can easily establish universal consistency. Finally, we report some experi-
ments which compare our SVM to other commonly used methods including the standard one-class
SVM.
Keywords: unsupervised learning, anomaly detection, density levels, classification, SVMs

1. Introduction

Anomaly (or novelty) detection aims to detect anomalous observations from a system. In the ma-
chine learning version of this problem we cannot directly model the normal behaviour of the system
since it is either unknown or too complex. Instead, we have some sample observations from which
the normal behaviour is to be learned. This anomaly detection learning problem has many important
applications including the detection of e.g. anomalous jet engine vibrations (seeNairac et al., 1999;
Hayton et al., 2001; King et al., 2002), abnormalities in medical data (see Tarassenko et al., 1995;
Campbell and Bennett, 2001), unexpected conditions in engineering (seeDesforges et al., 1998) and
network intrusions (see Manikopoulos and Papavassiliou, 2002; Yeungand Chow, 2002; Fan et al.,
2001). For more information on these and other areas of applications as well as many methods for
solving the corresponding learning problems we refer to the recent survey of Markou and Singh
(2003a,b).

It is important to note that a typical feature of these applications is that only unlabeled samples
are available, and hence one has to make some a-priori assumptions on anomalies in order to be
able to distinguish between normal and anomalous future oberservations. One of the most common
ways to define anomalies is by saying thatanomalies are not concentrated(see e.g. Ripley, 1996;
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Scḧolkopf and Smola, 2002). To make this precise letQ be ourunknown data-generating distribu-
tion on the input spaceX which has a densityh with respect to aknown reference distribution µon
X. Obviously, the density level sets{h > ρ}, ρ > 0, describe the concentration ofQ. Therefore to
define anomalies in terms of the concentration one only has to fix a threshold level ρ > 0 so that a
samplex∈ X is considered to be anomalous wheneverh(x) ≤ ρ. Consequently, our aim is to find
the set{h≤ ρ} to detect anomalous observations, or equivalently, theρ-level set{h> ρ} to describe
normal observations.

We emphasize that given the data-generating distributionQ the choice ofµ determines the den-
sity h, and consequentlyanomalies are actually modeled by both µ andρ. Unfortunately, many pop-
ular algorithms are based on density estimation methods that implicitly assumeµ to be the uniform
distribution (e.g. Gaussian mixtures, Parzen windows andk-nearest neighbors density estimates)
and therefore for these algorithms defining anomalies is restricted to the choice of ρ. With the lack
of any further knowledge one might feel that the uniform distribution is a reasonable choice forµ,
however there are situations in which a differentµ is more appropriate. In particular, this is true
if we consider a modification of the anomaly detection problem whereµ is not known but can be
sampled from. We will see that unlike many others our proposed method can handle both problems.

Finding level sets of an unknown density is also a well known problem in statistics which has
some important applications different from anomaly detection. For example, itcan be used for the
problem of cluster analysis as described in by Hartigan (1975) and Cuevas et al. (2001), and for
testing of multimodality (see e.g. M̈uller and Sawitzki, 1991; Sawitzki, 1996). Some other appli-
cations including estimation of non-linear functionals of densities, density estimation, regression
analysis and spectral analysis are briefly described by Polonik (1995). Unfortunately, the algo-
rithms considered in these articles cannot be used for the anomaly detection problem since the
imposed assumptions onh are often tailored to the above applications and are in general unrealistic
for anomalies.

One of the main problems of anomaly detection—or more precisely density level detection—is
the lack of an empirical performance measure which allows us to compare the generalization perfor-
mance of different algorithms by test samples. By interpreting the density level detection problem as
binary classification with respect to an appropriate measure, we show thatthe corresponding empir-
ical classification risk can serve as such an empirical performance measure for anomaly detection.
Furthermore, we compare the excess classification risk with the standard performance measure for
the density level detection problem. In particular, we show that both quantitiesare asymptotically
equivalent and that simple inequalities between them are possible under mild conditions on the
densityh.

A well-known heuristic (see e.g. Fan et al., 2001; González and Dagupta, 2003; Yu et al., 2004;
Theiler and Cai., 2003) for anomaly detection is to generate a labeled data setby assigning one
label to the original unlabeled data and another label to a set of artificially generated data, and
then apply a binary classification algorithm. By interpreting the density level detection problem as
a binary classification problem we can show that this heuristic can be strongly justified provided
that the sampling plan for the artificial samples is chosen in a certain way and theused classification
algorithm is well-adopted to this plan. We will work out this justification in detail by showing how to
modify the standard support vector machine (SVM) for classification, andestablishing a consistency
result for this modification. Finally we report some experiments comparing the modified SVM with
some other commonly used algorithms including Gaussian maximum-likelihood methods,and the
standard one-class SVM proposed by Schölkopf et al. (2001).
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2. Detecting Density Levels is a Classification Problem

We begin with rigorously defining the density level detection (DLD) problem. To this end let(X,A)
be a measurable space andµ a knowndistribution on(X,A). Furthermore, letQ be anunknown
distribution on(X,A) which has anunknowndensityh with respect toµ, i.e. dQ= hdµ. Given a
ρ > 0 the set{h> ρ} is called theρ-level setof the densityh. Throughout this work we assume that
{h = ρ} is aµ-zero set and hence it is also aQ-zero set. For the density level detection problem and
related tasks this is a common assumption (see e.g. Polonik, 1995; Tsybakov,1997).

Now, the goal of the DLD problem is to find an estimate of theρ-level set ofh. To this end
we need some information which in our case is given to us by a training setT = (x1, . . . ,xn) ∈
Xn. We will assume in the following thatT is i.i.d. drawn fromQ. With the help ofT a DLD
algorithm constructs a functionfT : X → R for which the set{ fT > 0} is an estimate of theρ-level
set{h > ρ} of interest. Since in general{ fT > 0} does not excactly coincide with{h > ρ} we need
aperformance measurewhich describes how well{ fT > 0} approximates the set{h> ρ}. Probably
the best known performance measure (see e.g. Tsybakov, 1997; Ben-David and Lindenbaum, 1997,
and the references therein) for measurable functionsf : X → R is

Sµ,h,ρ( f ) := µ
(

{ f > 0} M {h > ρ}
)

,

whereM denotes the symmetric difference. Obviously, the smallerSµ,h,ρ( f ) is, the more{ f > 0}
coincides with theρ-level set ofh and a functionf minimizesSµ,h,ρ if and only if{ f > 0} is µ-almost
surely identical to{h> ρ}. Furthermore, for a sequence of functionsfn : X →R with Sµ,h,ρ( fn)→ 0
we easily see that signfn(x)→ 1{h>ρ}(x) for µ-almost allx∈X, and sinceQ is absolutely continuous
with respect toµ the same convergence holdsQ-almost surely. Finally, it is important to note, that
the performance measureSµ,h,ρ is insensitive toµ-zero sets. Since we cannot detectµ-zero sets using
a training setT drawn fromQn this feature is somehow natural for our model.

AlthoughSµ,h,ρ seems to be well-adapted to our model, it has a crucial disadvantage in that we
cannot computeSµ,h,ρ( f ) since{h > ρ} is unknown to us. Therefore, we have toestimateit. In
our model the only information we can use for such an estimation is atest set W= (x̂1, . . . , x̂m)
which is i.i.d. drawn fromQ. Unfortunately, there is no method known to estimateSµ,h,ρ( f ) from
W with guaranteedaccuracy in terms ofm, f , µ andρ, and we strongly believe that such a method
cannot exist. Because of this lack, we cannotempiricallycompare different algorithms in terms of
the performance measureSµ,h,ρ.

Let us now describe another performance measure which has merits similar toSµ,h,ρ but addi-
tionally has an empirical counterpart, i.e. a method to estimate its value with guaranteed accuracy
by only using a test set. This performance measure is based on interpretingthe DLD problem as
a binary classification problem in whichT is assumed to be positively labeled and infinitely many
negatively labeled samples are available by the knowledge ofµ. To make this precise we write
Y := {−1,1} and define

Definition 1 Let µ and Q be probability measures on X and s∈ (0,1). Then the probability measure
Q	sµ on X×Y is defined by

Q	sµ(A) := sEx∼Q1A(x,1)+(1−s)Ex∼µ1A(x,−1)

for all measurable subsets A⊂ X×Y. Here we used the shorthand1A(x,y) := 1A((x,y)).
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Roughly speaking, the distributionQ	s µ measures the “1-slice” ofA⊂ X ×Y by sQand the
“−1-slice” by (1− s)µ. Moreover, the measureP := Q	s µ can obviously be associated with a
binary classification problem in which positive samples are drawn fromsQ and negative samples
are drawn from(1− s)µ. Inspired by this interpretation let us recall that the binary classification
risk for a measurable functionf : X → R and a distributionP onX×Y is defined by

RP( f ) = P
(

{(x,y) : sign f (x) 6= y}
)

,

where we define signt := 1 if t > 0 and signt = −1 otherwise. Furthermore, theBayes riskRP of P
is the smallest possible classification risk with respect toP, i.e.

RP := inf
{

RP( f )
∣

∣ f : X → R measurable
}

.

We will show in the following that learning with respect toSµ,h,ρ is equivalent to learning with
respect toRP(.). To this end we begin by computing the marginal distributionPX and thesupervisor
η(x) := P(y = 1|x), x∈ X, of P := Q	sµ:

Proposition 2 Let µ and Q be probability measures on X such that Q has a density h with respect
to µ, and let s∈ (0,1). Then the marginal distribution of P:= Q	sµ on X is PX = sQ+(1− s)µ.
Furthermore, we PX-a.s. have

P(y = 1|x) =
sh(x)

sh(x)+1−s
.

Proof As recalled in the appendix,P(y= 1|x), x∈ X, is a regular conditional probability and hence
we only have to check the condition of Corollary 19. To this end we first observe by the definition
of P := Q	sµ that for all non-negative, measurable functionsf : X×Y → R we have

Z

X×Y
f dP = s

Z

X
f (x,1)Q(dx)+(1−s)

Z

X
f (x,−1)µ(dx) .

Therefore, forA∈ A we obtain
Z

A×Y

sh(x)
sh(x)+1−s

P(dx,dy)

= s
Z

A

sh(x)
sh(x)+1−s

h(x)µ(dx)+(1−s)
Z

A

sh(x)
sh(x)+1−s

µ(dx)

=
Z

A
sh(x)µ(dx)

= s
Z

A
1X×{1}(x,1)Q(dx)+(1−s)

Z

A
1X×{1}(x,−1)µ(dx)

=
Z

A×Y
1X×{1}dP.

Note that the formula for the marginal distributionPX in particular shows that theµ-zero sets
of X are exactly thePX-zero sets ofX. As an immediate consequence of the above proposition we
additionally obtain the following corollary which describes theρ-level set ofh with the help of the
supervisorη:
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Corollary 3 Let µ and Q be probability measures on X such that Q has a density h with respect to
µ. Forρ > 0 we write s:= 1

1+ρ and define P:= Q	sµ. Then forη(x) := P(y= 1|x), x∈ X, we have

µ
(

{η > 1/2} M {h > ρ}
)

= 0,

i.e.{η > 1/2} µ-almost surely coincides with{h > ρ}.

Proof By Proposition 2 we see thatη(x) > 1
2 is µ-almost surely equivalent to sh(x)

sh(x)+1−s > 1
2 which

is equivalent toh(x) > 1−s
s = ρ.

The above results in particular show that every distributionP := Q	s µ with dQ := hdµ and
s∈ (0,1) determines a triple(µ,h,ρ) with ρ := (1− s)/s and vice-versa. In the following we
therefore use the shorthandSP( f ) := Sµ,h,ρ( f ).

Let us now compareRP(.) with SP(.). To this end recall, that binary classification aims to
discriminate{η > 1/2} from {η < 1/2}. In view of the above corollary it is hence no surprise that
RP(.) can serve as a surrogate forSP(.) as the following theorem shows:

Theorem 4 Let µ and Q be probability measures on X such that Q has a density h with respect
to µ. Letρ > 0 be a real number which satisfies µ({h = ρ}) = 0. We write s:= 1

1+ρ and define
P := Q	s µ. Then for all sequences( fn) of measurable functions fn : X → R the following are
equivalent:

i) SP( fn) → 0.

ii) RP( fn) → RP.

In particular, for a measurable function f: X → R we haveSP( f ) = 0 if and only ifRP( f ) = RP.

Proof Forn∈ N we defineEn := { fn > 0} M {h > ρ}. Since by Corollary 3 we knowµ({h > ρ} M

{η > 1
2}) = 0 it is easy to see that the classification risk offn can be computed by

RP( fn) = RP +
Z

En

|2η−1|dPX . (1)

Now, {|2η−1| = 0} is aµ-zero set and hence aPX-zero set. The latter implies that the measures
|2η−1|dPX andPX are absolutely continuous with respect to each other, and hence we have

|2η−1|dPX(En) → 0 if and only if PX(En) → 0.

Furthermore, we have already observed after Proposition 2 thatPX andµ are absolutely continuous
with respect to each other, i.e. we also have

PX(En) → 0 if and only if µ(En) → 0.

Therefore, the assertion follows fromSP( fn) = µ(En).

Theorem 4 shows that instead of usingSP as a performance measure for the density level de-
tection problem one can alternatively use the classification riskRP(.). Therefore, we will estab-
lish some basic properties of this performance measure in the following. To thisend we write
I(y, t) := 1(−∞,0](yt), y∈Y andt ∈ R, for the standard classification loss function. With this nota-
tion we can computeRP( f ):
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Proposition 5 Let µ and Q be probability measures on X. Forρ > 0 we write s:= 1
1+ρ and define

P := Q	sµ. Then for all measurable f: X → R we have

RP( f ) =
1

1+ρ
EQI(1,sign f )+

ρ
1+ρ

EµI(−1,sign f ) .

Furthermore, for the Bayes risk we have

RP ≤ min
{ 1

1+ρ
,

ρ
1+ρ

}

and

RP =
1

1+ρ
EQ1{h≤ρ} +

ρ
1+ρ

Eµ1{h>ρ} .

Proof The first assertion directly follows from

RP( f ) = P
(

{(x,y) : sign f (x) 6= y}
)

= P
(

{(x,1) : sign f (x) = −1}
)

+P
(

{(x,−1) : sign f (x) = 1}
)

= sQ
(

{sign f = −1}
)

+(1−s)µ
(

{sign f = 1}
)

= sEQI(1,sign f )+(1−s)EµI(−1,sign f ) .

The second assertion directly follows fromRP ≤ RP(1X) ≤ s andRP ≤ RP(−1X) ≤ 1−s. Finally,
for the third assertion recall thatf = 1{h>ρ}−1{h≤ρ} is a function which realizes the Bayes risk.

As described at the beginning of this section our main goal is to find a performance measure for
the density level detection problem which has an empirical counterpart. In view of Proposition 5
the choice of an empirical counterpart forRP(.) is rather obvious:

Definition 6 Let µ be a probability measure on X andρ > 0. Then for T= (x1, . . . ,xn) ∈ Xn and a
measurable function f: X → R we define

RT( f ) :=
1

(1+ρ)n

n

∑
i=1

I(1,sign f (xi))+
ρ

1+ρ
EµI(−1,sign f ) .

If we identify T with the corresponding empirical measure it is easy to see thatRT( f ) is the
classification risk with respect to the measureT 	sµ for s := 1

1+ρ . Then for measurable functions
f : X → R, e.g. Hoeffding’s inequality shows thatRT( f ) approximates the true classification risk
RP( f ) in a fast and controllable way.

It is highly interesting that the classification riskRP(.) is strongly connected with another ap-
proach for the density level detection problem which is based on the so-called excess mass(see
e.g. Hartigan, 1987; M̈uller and Sawitzki, 1991; Polonik, 1995; Tsybakov, 1997, and the refer-
ences therein). To be more precise let us first recall that the excess mass of a measurable function
f : X → R is defined by

EP( f ) := Q({ f > 0})−ρµ({ f > 0}) ,

whereQ, ρ andµ have the usual meaning. The following proposition shows thatRP(.) andEP(.)
are essentially the same:
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Proposition 7 Let µ and Q be probability measures on X. Forρ > 0 we write s:= 1
1+ρ and define

P := Q	sµ. Then for all measurable f: X → R we have

EP( f ) = 1− (1+ρ)RP( f ) .

Proof We obtain the assertion by the following simple calculation:

EP( f ) = Q({ f > 0})−ρµ({ f ≥ 0})

= 1−Q({ f ≤ 0})−ρµ({ f > 0})

= 1−Q
(

{sign f = −1}
)

−ρµ
(

{sign f = 1}
)

= 1− (1+ρ)RP( f ) .

If Q is an empirical measure based on a training setT in the definition ofEP(.) then we obtain
am empirical performance measure which we denote byET(.). By the above proposition we have

ET( f ) = 1−
1
n

n

∑
i=1

I(1,sign f (xi))−ρEµI(−1,sign f ) = 1− (1+ρ)RT( f ) (2)

for all measurablef : X → R. Now, given a classF of measurable functions fromX to R the
(empirical) excess mass approach considered e.g. by Hartigan (1987);Müller and Sawitzki (1991);
Polonik (1995); Tsybakov (1997), chooses a functionfT ∈ F which maximizesET(.) within F .
By equation (2) we see that this approach is actually a type of empirical risk minimization (ERM).
Surprisingly, this connection has not been observed, yet. In particular, the excess mass has only been
considered as an algorithmic tool, but not as a performance measure. Instead, the papers dealing
with the excess mass approach measures the performance bySP(.). In their analysis an additional
assumption on the behaviour ofh around the levelρ is required. Since this condition can also be
used to establish a quantified version of Theorem 4 we will recall it now:

Definition 8 Let µ be a distribution on X and h: X → [0,∞) be a measurable function with
R

hdµ=
1, i.e. h is a density with respect to µ. Forρ > 0 and0≤ q≤ ∞ we say that h hasρ-exponentq if
there exists a constant C> 0 such that for all sufficiently small t> 0 we have

µ
(

{|h−ρ| ≤ t}
)

≤ Ctq . (3)

Condition (3) was first considered by Polonik (1995, Thm. 3.6). This paper also provides an
example of a class of densities onRd, d ≥ 2, which has exponentq = 1. Later, Tsybakov (1997,
p. 956) used (3) for the analysis of a density level detection method which isbased on a localized
version of the empirical excess mass approach.

Interestingly, condition (3) is closely related to a concept for binary classification called the
Tsybakov noise exponent (see e.g. Mammen and Tsybakov, 1999; Tsybakov, 2004; Steinwart and
Scovel, 2004) as the following proposition proved in the appendix shows:

Proposition 9 Let µ and Q be distributions on X such that Q has a density h with respect to µ.For
ρ > 0 we write s:= 1

1+ρ and define P:= Q	sµ. Then for0 < q≤ ∞ the following are equivalent:
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i) h hasρ-exponentq.

ii) P has Tsybakov noise exponent q, i.e. there exists a constant C> 0 such that for all sufficiently
small t> 0 we have

PX
(

|2η−1| ≤ t
)

≤ C · tq (4)

In recent years Tsybakov’s noise exponent has played a crucial role for establishing learning
rates faster thann−

1
2 for certain algorithms (see e.g. Mammen and Tsybakov, 1999; Tsybakov,2004;

Steinwart and Scovel, 2004). Remarkably, it was already observed byMammen and Tsybakov
(1999), that the classification problem can be analyzed by methods originally developed for the
DLD problem. However, to our best knowledge the exact relation betweenthe DLD problem and
binary classification has not been presented, yet. In particular, it has not been observed yet, that this
relation opens anon-heuristicway to use classification methods for the DLD problem as we will
discuss in the next section.

As already announced we can also establish inequalities betweenSP andRP(.) with the help of
theρ-exponent. This is done in the following theorem:

Theorem 10 Let ρ > 0 and µ and Q be probability measures on X such that Q has a density h with
respect to µ. For s:= 1

1+ρ we write P:= Q	sµ. Then the following statements hold:

i) If h is bounded then there exists a constant c> 0 such that for all measurable f: X → R we
have

RP( f )−RP ≤ cSP( f ) .

ii) If h has ρ-exponent q∈ (0,∞] then there exists a constant c> 0 such that for all measurable
f : X → R we have

SP( f ) ≤ c
(

RP( f )−RP
)

q
1+q .

Proof The first assertion directly follows from (1) and Proposition 2. The second assertion follows
from Proposition 9 and a result of Tsybakov (2004, Prop. 1).

Remark 11 We note that many of the results of this section can be generalized to the casewhere
Q is not absolutely continuous with respect to µ. Indeed, select an auxilliary measureν such that
both Q and µ are absolutely continuous with respect toν. For example one could chooseν =
Q+µ

2 . Consequently we have Q= h1ν and µ= h2ν for some real valued functions h1 and h2. Then

Proposition 2 holds with h(x) := h1(x)
h2(x)

, where one defines the righthand side to be0 when h1(x) =

h2(x) = 0. One can also show that h is PX-a.s. independent of the choice ofν. Corollary 3 holds
where the measure of the symmetric difference is evaluated with either Q or µ. However it appears
that only the “RP( fn) → RP ⇒ SP( fn) → 0” assertion of Theorem 4 holds instead of equivalence.
Finally, Propositions 5 and 7 hold, Proposition 9 holds with a suitable generalization of Definition
8 of ρ-exponent, and the second assertion of Theorem 10 holds.
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3. A Support Vector Machine for Density Level Detection

In the previous section we have shown that the DLD problem can be interpreted as a binary clas-
sification problem in which one conditional class probability is known. We nowshow that this
interpretation has far reaching algorithmic consequences. To this end let us assume that we give
each sample of our training setT = (x1, . . . ,xn) drawn fromQ the label 1. Additionally we gen-
erate a second training setT ′ = (x′1, . . . ,x

′
n′) from µ and label each sample of it with−1. Merging

these labeled sample sets gives a new training set which then can be used bya binary classifica-
tion algorithm. By our considerations in the previous section it seems reasonable to expect that
the used classification algorithm actually learns the DLD problem provided that the algorithm is
well-adjusted to the sample set sizes and the parameterρ.

In the following we work this high-level approach out by constructing an SVM for the DLD
problem. To this end letk : X×X → R be a positive definite kernel with reproducing kernel Hilbert
space (RKHS)H. Furthermore, letµ be a known probability measure onX andl : Y×R → [0,∞)
be thehinge loss function, i.e.l(y, t) := max{0,1− yt}, y ∈ Y, t ∈ R. Then for a training set
T = (x1, . . . ,xn) ∈ Xn, a regularization parameterλ > 0, andρ > 0 we initially define

fT,µ,λ := argmin
f∈H

λ‖ f‖2
H +

1
(1+ρ)n

n

∑
i=1

l(1, f (xi))+
ρ

1+ρ
Ex∼µl(−1, f (x)) , (5)

and

( f̃T,µ,λ, b̃T,µ,λ) := argmin
f∈H
b∈R

λ‖ f‖2
H +

1
(1+ρ)n

n

∑
i=1

l(1, f (xi)+b)+
ρ

1+ρ
Ex∼µl(−1, f (x)+b) . (6)

The decision function of theSVM without offsetis fT,µ,λ : X → R and analogously, theSVM with
offsethas the decision functioñfT,µ,λ + b̃T,µ,λ : X → R.

Although the measureµ is known, almost always the expectationEx∼µl(−1, f (x)) can only
be numerically computed which requires finitely many function evaluations off . If the integrand
of this expectation was smooth we could use some known deterministic methods to choose these
function evaluations efficiently. However, since the hinge loss is not differentiable there is no such
method known to us. According to our above plan we will therefore use points T ′ := (x′1, . . . ,x

′
n′)

which are randomly sampled fromµ to approximateEx∼µl(−1, f (x)) by 1
n′ ∑n′

i=1 l(−1, f (x′i)). We
denote the corresponding approximate solutions of (5) and (6) byfT,T ′,λ and( f̃T,T ′,λ, b̃T,T ′,λ), re-
spectively. Furthermore, in these cases the formulations (5) and (6) areidentical to the standard
L1-SVM formulations besides the weighting factors in front of the empirical error terms. There-
fore, the derivation of the corresponding dual problems is straightforward. For example, the dual
problem for (6) can be written as follows:

max
n
∑

i=1
αi +

n′

∑
i=1

α′
i −

1
2

n
∑

i, j=1
αiα jk(xi ,x j)−

1
2

n′

∑
i, j=1

α′
iα′

jk(x
′
i ,x

′
j)+

n,n′

∑
i, j=1

αiα′
jk(xi ,x′j)

s.t.
n
∑

i=1
αi −

n′

∑
i=1

α′
i = 0,

0 ≤ αi ≤
2

λ(1+ρ)n, i = 1, ...,n,

0 ≤ α′
i ≤

2ρ
λ(1+ρ)n′ , i = 1, ...,n′.

(7)
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The fact that the SVM for DLD essentially coincides with the standard L1-SVM also allows us to
modify many known results for these algorithms. For simplicity we will only state a consistency
result which describes the case where we usen′ = n random samples fromµ in order to approximate
the expectation with respect toµ. However, it is straight forward to extend the result to the more
general case ofn′ = rn samples for some positiver ∈ Q. In order to formulate the result we have to
recall the notion of universal kernels (see Steinwart, 2001). To this end let X be a compact metric
space, say a closed and bounded subset ofRd. We denote the space of all continuous functions on
X byC(X). As usual, this space is equipped with the supremum norm‖.‖∞. Then the RKHSH of a
continuous kernelk onX is embedded intoC(X), i.e.H ⊂C(X), where the inclusion is continuous.
We say that the kernelk is universal, if in additionH is dense inC(X), i.e. for everyf ∈C(X) and
everyε > 0 there exists ag∈ H with ‖ f −g‖∞ < ε. Some examples of universal kernels including
the Gaussian RBF kernels were presented by Steinwart (2001).

Now we can formulate the announced result:

Theorem 12 (Universal consistency)Let X be a compact metric space and k be a universal kernel
on X. Furthermore, letρ > 0, and µ and Q be probability measures on X such that Q has a density
h with respect to µ. For s:= 1

1+ρ we write P:= Q	s µ. Then for all sequences(λn) of positive

numbers withλn → 0 and nλ2
n → ∞ and for all ε > 0 we have

(Q⊗µ)n
(

(T,T ′) ∈ Xn×Xn : RP( fT,T ′,λn
) ≤ RP + ε

)

→ 0,

for n → ∞. The same result holds for the SVM with offset if one replaces the condition nλ2
n → ∞

by the slightly stronger assumption nλ2
n/ logn → ∞. Finally, for both SVMs it suffices to assume

nλ1+δ
n → ∞ for someδ > 0 if one uses a Gaussian RBF kernel.

Sketch of the Proof Let us introduce the shorthandν = Q⊗µ for the product measure ofQ andµ.
Moreover, for a measurable functionf : X → R we define the functionl � f : X×X → R by

l � f (x,x′) :=
1

1+ρ
l(1, f (x))+

ρ
1+ρ

l(−1, f (x′)) , x,x′ ∈ X.

Furthermore, we writel ◦ f (x,y) := l(y, f (x)), x∈ X, y∈Y. Then it is easy to check that we always
haveEνl � f = EPl ◦ f . Analogously, we seeET⊗T ′ l � f = ET	sT ′ l ◦ f , if T⊗T ′ denotes the product
measure of the empirical measures based onT andT ′. Now, using Hoeffding’s inequality forν it is
easy to establish a concentration inequality in the sense of Steinwart (2005, Lem. III.5). The rest of
the proof is analogous to the steps of Steinwart (2005).

Recall that by Theorem 4 consistency with respect toRP(.) is equivalent to consistency with
respect toSP(.). Therefore we immediately obtain the following corollary

Corollary 13 Under the assumptions of Theorem 12 both the DLD-SVM with offset and without
offset are universally consistent with respect toSP(.), i.e.SP( f̃T,µ,λ + b̃T,µ,λ)→ 0andSP( fT,T ′,λn

)→ 0
in probability.

Remark 14 We have just seen that our DLD-SVM whose design was based on the plandescribed
in the beginning of this section can learn arbitrary DLD problems. It shouldbe almost clear that
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a similar approach and analysis is possible for many other classification algorithms. This gives a
strong justification for the well-known heuristic of adding artificial samples to anomaly detection
problems with unlabeled data. However, it is important to note that this justification only holds for
the above sampling plan and suitably adjusted classification algorithms, and that other, heuristic
sample plans may actually lead to bad learning performance (cf. the second part of Section 5)

4. Experiments

We present experimental results for anomaly detection problems where the set X is a subset ofRd.
A total of four different learning algorithms are used to produce functions f which declare the set
{x : f (x) ≤ 0} anomalous. A distinct advantage of the formulation in Section 2 is that it allows us
to makequantitativecomparisons of different functions by comparing estimates of their riskRP( f )
which can be computed from sample data. In particular consider a data set pair (S,S′) whereS
contains samples drawn fromQ andS′ contains samples drawn fromµ (in what follows(S,S′) is
either training data, validation data, or test data). Based on Definition 6 we define the empirical risk
of f with respect to(S,S′) to be

R(S,S′)( f ) =
1

(1+ρ)|S| ∑x∈S

I(1,signf (x))+
ρ

(1+ρ)|S′| ∑
x∈S′

I(−1,signf (x)). (8)

A smaller risk indicates a better solution to the DLD problem. Since the riskRP (·) depends ex-
plicitly on ρ additional insight into the performance off can be obtained from the two error terms.
Specifically the quantity1

|S| ∑x∈SI(1,signf (x)) is an estimate ofQ({ f ≤ 0}) which we call the
alarm rate (i.e. the rate at which samples will be labeled anomalous byf ), and the quantity

1
|S′| ∑x∈S′ I(−1,signf (x)) is an estimate ofµ({ f > 0}) which we call thevolumeof the predicted
normal set. There is an obvious trade-off between these two quantities, i.e.for the optimal solu-
tions for fixedρ smaller alarm rates correspond to larger volumes and vice versa. Also, from the
expression for the risk in Proposition 5 it is clear that for any two functionswith the same alarm rate
we prefer the function with the smaller volume and vice versa. More generally, when comparing
different solution methods it is useful to consider the values of these quantities that are achieved
by varying the value ofρ in the design process. Suchperformance curvesare presented in the
comparisons below.

We consider three different anomaly detection problems, two are synthetic and one is an applica-
tion in cybersecurity. In each case we define a problem instance to be a triplet consisting of samples
from Q, samples fromµ, and a value for the density levelρ. We compare four learning algorithms
that accept a problem instance and automatically produce a functionf : the density level detec-
tion support vector machine (DLD–SVM), the one-class support vectormachine (1CLASS–SVM),
the Gaussian maximum-likelihood (GML) method, the mixture of Gaussians maximum-likelihood
(MGML) method.1 The first is the algorithm introduced in this paper, the second is an algorithm
based on the the one-class support vector machine introduced by Schölkopf et al. (2001) and the
others (including the Parzen windows method) are based on some of the mostcommon paramet-
ric and non-parametric statistical methods for density-based anomaly detection in Rd. Each of the
four learning algorithms is built on a core procedure that contains one or more free parameters. The
availability of a computable risk estimate makes it possible to determine values for these parameters

1. We also experimented with a Parzen windows method, but do not includethe results because they were substantially
worse than the other methods in every case.
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using a principled approach that is applied uniformly to all four core procedures. In particular this
is accomplished as follows in our experiments. The data in each problem instance is partitioned into
three pairs of sets; the training sets(T,T ′), the validation sets(V,V ′) and the test sets(W,W′). The
core procedures are run on the training sets and the values of the free parameters are chosen to min-
imize the empirical risk (8) on the validation sets. The test sets are used to estimateperformance.
We now describe the four learning algorithms in detail.

In the DLD–SVM algorithm we employ the SVMwith offsetdescribed in Section 3 with a
Gaussian RBF kernel

k(x,x′) = e−σ2‖x−x′‖2
.

With λ andσ2 fixed and the expected valueEx∼µl(−1, f (x)+ b) in (6) replaced with an empirical
estimate based onT ′ this formulation can be solved using, for example, theC-SVC option in the
LIBSVM software (see Chang and Lin, 2004) by settingC = 1 and setting the class weights tow1 =
1/

(

λ|T|(1+ρ)
)

andw−1 = ρ/
(

λ|T ′|(1+ρ)
)

. The regularization parametersλ andσ2 are chosen to
(approximately) minimize the empirical riskR(V,V ′)( f ) on the validation sets. This is accomplished
by employing a grid search overλ and a combined grid/iterative search overσ2. In particular, for
each value ofλ from a fixed grid we seek a minimizer overσ2 by evaluating the validation risk at a
coarse grid ofσ2 values and then performing a Golden search over the interval defined bythe two
σ2 values on either side of the coarse grid minimum.2 As the overall search proceeds the(λ,σ2)
pair with the smallest validation risk is retained.

The 1CLASS–SVM algorithm is based on the one-class support vector machine introduced
by Scḧolkopf et al. (2001). Recall that this method neither makes the assumption thatthere is a
reference distributionµ nor usesT ′ in the production of its decision functionf . Consequently
it may be harder to compare the empirical results of the 1CLASS–SVM with thoseof the other
methods in a fair way. Again we employ the Gaussian RBF kernel with width parameterσ2. The
one-class formulation of Schölkopf et al. (2001) contains a parameterν which controls the size of
the set{x∈ T : f (x) ≤ 0} (and therefore controls the measureQ({ f ≤ 0}) through generalization).
With ν andσ2 fixed a solution can be obtained using theone-class-SVM option in theLIBSVM
software. To use this 1-class algorithm to solve an instance of the DLD problem we determineν
automatically as a function ofρ. In particular bothν andσ2 are chosen to (approximately) minimize
the validation risk using the search procedure described above for the DLD–SVM where the grid
search forλ is replaced by a Golden search (over[0,1]) for ν.

The GML algorithm produces a functionf = g− t wheret is an offset andg is a Gaussian
probability density function whose mean and inverse covariance are determined from maximum
likelihood estimates formed from the training dataT (see e.g. Duda et al., 2000). In particular
the inverse covariance takes the form(Σ + λI)−1 whereΣ is the maximum likelihood covariance
estimate and the regularization termλI is a scaled identity matrix which guarantees that the inverse is
well-defined and numerically stable. Once the parameters ofg are determined the offsett is chosen
to minimize the training riskR(T,T ′). The regularization parameterλ is chosen to (approximately)
minimize the validation risk by searching a fixed grid ofλ values.

The MGML algorithm is essentially the same as the GML method except thatg is a mixture ofK
Gaussians whose maximum likelihood parameter estimates are determined using theExpectation-
Maximization (EM) algorithm of Dempster et al. (1977). The same regularization parameter is used

2. If the minimum occurs at more than one grid point or at an end point theGolden search interval is defined by the
nearest grid points that include all minimal values.
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Train Validate Test
Number ofQ samples 1000 500 100,000
Number ofµ samples 2000 2000 100,000

λ grid (DLD–SVM/GML/MGML) 1.0, 0.5, 0.1, 0.05, 0.01, ..., 0.0000005, 0.0000001
σ2 grid (DLD–SVM/1CLASS–SVM) 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.0

Table 1: Parameters for experiments 1 and 2.

for all inverse covariance estimates and bothλ andK are chosen to (approximately) minimize the
validation risk by searching a fixed grid of(λ,K) values.

Data for the first experiment are generated using an approach designed to mimic a type of real
problem wherex is a feature vector whose individual components are formed as linear combi-
nations of raw measurements and therefore the central limit theorem is used toinvoke a Gaussian
assumption forQ. Specifically, samples of the random variablex∼Q are generated by transforming
samples of a random variableu that is uniformly distributed over[0,1]27. The transform isx = Au
whereA is a 10–by–27 matrix whose rows contain betweenm= 2 andm= 5 non-zero entries with
value 1/m (i.e. each component ofx is the average ofm uniform random variables). ThusQ is
approximately Gaussian with mean(0.5,0.5) and support[0,1]10. Partial overlap in the nonzero
entries across the rows ofA guarantee that the components ofx are partially correlated. We choseµ
to be the uniform distribution over[0,1]10. Data for the second experiment are identical to the first
except that the vector(0,0,0,0,0,0,0,0,0,1) is added to the samples ofx with probability 0.5. This
gives a bi-modal distributionQ that approximates a mixture of Gaussians. Also, since the support
of the last component is extended to[0,2] the corresponding component ofµ is also extended to this
range. A summary of the data and algorithm parameters for experiments 1 and2 is shown in Table
1. Note that the test set sizes are large enough to provide very accurateestimates of the risk.

The four learning algorithms were applied for values ofρ ranging from.01 to 100 and the results
are shown in Figure 1. Figures 1(a) and 1(c) plot the empirical riskR(W,W′) versusρ while Figures
1(b) and 1(d) plot the corresponding performance curves. Since thedata is approximately Gaussian
it is not surprising that the best results are obtained by GML (first experiment) and MGML (both
experiments). However, for most values ofρ the next best performance is obtained by DLD–SVM
(both experiments). The performance of 1CLASS–SVM is clearly worse than the other three at
smaller values ofρ (i.e. larger values of the volume), and this difference is more substantial in the
second experiment. In addition, although we do not show it, this differenceis even more pronounced
(in both experiments) at smaller training and validation set sizes. These results are significant be-
cause values ofρ substantially larger than one appear to have little utility here since they yield alarm
rates that do not conform to our notion that anomalies are rare events. Inadditionρ � 1 appears
to have little utility in the general anomaly detection problem since it defines anomalies in regions
where the concentration ofQ is much larger than the concentration ofµ, which is contrary to our
premise that anomalies are not concentrated.

The third experiment considers an application in cybersecurity. The goal isto monitor the
network traffic of a computer and determine when it exhibits anomalous behavior. The data for
this experiment was collected from an active computer in a normal working environment over the
course of 16 months. The features in Table 2 were computed from the outgoing network traffic.

223



STEINWART, HUSH AND SCOVEL

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.01  0.1  1  10  100

DLD–SVM
1CLASS–SVM

GML
MGML

ρ

R
(W

,W
′ )

(a) Risk curves forQ≈ Gaussian.
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(b) Performance curves forQ≈ Gaussian.
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(c) Risk curves forQ≈ Gaussian mixture.
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(d) Performance curves forQ≈ Gaussian mixture.

Figure 1: Synthetic data experiments.

The averages were computed over one hour time windows giving a total of 11664 feature vectors.
The feature values were normalized to the range[0,1] and treated as samples fromQ. ThusQ
has support in[0,1]12. Although we would like to chooseµ to capture a notion of anomalous
behavior for this application, only the DLD–SVM method allows such a choice.Thus, since both
GML and MGML define densities with respect to a uniform measure and we wish to compare with
these methods, we choseµ to be the uniform distribution over[0,1]12. A summary of the data and
algorithm parameters for this experiment is shown in Table 3. Again, we wouldlike to point out that
this choice may actually penalize the 1CLASS-SVM since this method is not basedon the notion
of a reference measure. However, we currently do not know any other approach which treats the
1CLASS-SVM with its special strucure in a fairer way.

The four learning algorithms were applied for values ofρ ranging from.005 to 50 and the results
are summarized by the empirical risk curve in Figure 2(a) and the corresponding performance curve
in Figure 2(b). The empirical risk values for DLD–SVM and MGML are nearly identical except for
ρ = 0.05 where the MGML algorithm happened to chooseK = 1 to minimize the validation risk
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Feature Number Description
1 Number of sessions
2 Average number of source bytes per session
3 Average number of source packets per session
4 Average number of source bytes per packet
5 Average number of destination bytes per session
6 Average number of destination packets per session
7 Average number of destination bytes per packet
8 Average time per session
9 Number of unique destination IP addresses
10 Number of unique destination ports
11 Number of unique destination IP

addresses divided by total number of sessions
12 Number of unique destination

ports divided by total number of sessions

Table 2: Outgoing network traffic features.

Train Validate Test
Number ofQ samples 4000 2000 5664
Number ofµ samples 10,000 100,000 100,000

λ grid (DLD–SVM/GML/MGML) 0.1, 0.01, 0.001, . . . , 0.0000001
σ2 grid (DLD–SVM/1CLASS–SVM) 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.0

Table 3: Parameters for cybersecurity experiment.
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(i.e. the MGML and GML solutions are identical atρ = 0.05). Except for this case the empirical
risk values for DLD–SVM and MGML are much better than 1CLASS–SVM andGML at nearly
all values ofρ. The performance curves confirm the superiority of DLD–SVM and MGML, but
also reveal differences not easily seen in the empirical risk curves. For example, all four methods
produced some solutions with identical performance estimates for differentvalues ofρ which is
reflected by the fact that the performance curves show fewer points than the corresponding empirical
risk curves.
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Figure 2: Cybersecurity experiment.

5. Discussion

A review of the literature on anomaly detection suggests that there are many ways to characterize
anomalies (see e.g. Markou and Singh, 2003a,b). In this work we assumedthat anomalies are not
concentrated. This assumption can be specified by choosing a reference measureµwhich determines
a density and a level valueρ. The density then quantifies the degree of concentration and the density
level ρ establishes a threshold on the degree that determines anomalies. Thus,µ andρ play key
roles in thedefinitionof anomalies. In practice the user choosesµ andρ to capture some notion of
anomaly that he deems relevant to the application.

This paper advances the existing state of “density based” anomaly detectionin the following
ways.

• Most existing algorithms make an implicit choice ofµ (usually the Lebesgue measure) whereas
our approach allowsµ to be any measure that defines a density. Therefore we accommodate
a larger class of anomaly detection problems. This flexibility is in particular important when
dealing with e.g. categorical data. In addition, it is the key ingredient when dealing with
hidden classification problems, which we will discuss below.

• Prior to this work there have been no methods known to rigorously estimate the performance
based onunlabeleddata. Consequently, it has been difficult to compare different methods
for anomaly detection in practice. We have introduced an empirical performance measure,
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namely the empirical classification risk, that enables such a comparision. In particular, it can
be used to perform a model selection based on cross validation. Furthermore, the infinite
sample version of this empirical performance measure is asymptotically equivalent to the
standard performance measure for the DLD problem and under mild assumptions inequalities
between them have been obtained.

• By interpreting the DLD problem as a binary classification problem we can use well-known
classification algorithms for DLD if we generate artificial samples fromµ. We have demon-
strated this approach which is a rigorous variant of a well-known heuristicfor anomaly de-
tection in the formulation of the DLD-SVM.

These advances have created a situation in which much of the knowledge onclassification can now
be used for anomaly detection. Consequently, we expect substantial advances in anomaly detection
in the future.

Finally let us consider a different learning scenario in which anomaly detection methods are also
commonly employed. In this scenario we are interested in solving a binary classification problem
given only unlabeled data. More precisely, suppose that there is a distribution ν on X ×{−1,1}
and the samples are obtained from themarginal distributionνX on X. Since labels exist but are
hidden from the user we call this ahidden classification problem (HCP). Hidden classification
problems for example occur in network intrusion detection problems where it isimpractical to
obtain labels. Obviously, solving a HCP is intractable if no assumptions are madeon the labeling
process. One such assumption is that one class consists of anomalous, lowly concentrated samples
(e.g. intrusions) while the other class reflects normal behaviour. Making this assumption rigorous
requires the specification of a reference measureµ and a thresholdρ. Interestingly, whenνX is
absolutely continuous3 with respect toν( . |y = 1) solving the DLD problem with

Q := νX

µ := ν( . |y = 1)

ρ := 2ν(X×{1})

gives the Bayes classifier for the binary classification problem associated with ν. Therefore, in
principle the DLD formalism can be used to solve the binary classification problem. In the HCP
however, although information aboutQ = νX is given to us by the samples, we must rely entirely
on first principle knowledge toguess µandρ. Our inability to chooseµ andρ correctly determines
themodel errorthat establishes the limit on how well the classification problem associated withν
can be solved with unlabeled samples. This means for example that when an anomaly detection
method is used to produce a classifierf for a HCP its anomaly detection performanceRP( f ) with
P := Q	sµ ands := 1

1+ρ may be very different from its hidden classification performanceRν( f ).
In particularRP( f ) may be very good, i.e. very close toRP, while Rν( f ) may be very poor, i.e. far
aboveRν. Another consequence of the above considerations is that the common practice of mea-
suring the performance of anomaly detection algorithms on (hidden) binary classification problems
is problematic. Indeed, the obtained classification errors depend on the model error and thus they
provide an inadequate description how well the algorithms solve the anomaly detection problem.

3. This assumption is actually superfluous by Remark 11.
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Furthermore, since the model error is strongly influenced by the particularHCP it is almost impos-
sible to generalize from the reported results to more general statements on thehidden classification
performance of the considered algorithms.

In conclusion although there are clear similiarities between the use of the DLD formalism for
anomaly detection and its use for the HCP there is also an important difference. In the first case the
specification ofµ andρ determines thedefinitionof anomalies and therefore there is no model error,
whereas in the second case the model error is determined by the choice ofµ andρ.

Acknowledgments

We would like to thank J. Theiler who inspired this work when giving a talk on a recent paper
(Theiler and Cai., 2003).

Appendix A. Regular Conditional Probabilities

In this apendix we recall some basic facts on conditional probabilities and regular conditional prob-
abilities. We begin with

Definition 15 Let (X,A ,P) be a probability space andC ⊂ A a sub-σ-algebra. Furthermore, let
A ∈ A and g: (X,C ) → R be P|C -integrable. Then g is called a conditional probability of A with
respect toC if

Z

C
1AdP =

Z

C
gdP

for all C ∈ C . In this case we write P(A|C ) := g.

Furthermore we need the notion of regular conditional probabilities. To this end let (X,A)
and(Y,B) be measurable spaces andP be a probability measure on(X×Y,A ⊗B). Denoting the
projection ofX×Y ontoX by πX we writeπ−1

X (A) for the sub-σ-Algebra ofA ⊗B which is induced
by πX. Recall, that this sub-σ-Algebra is generated by the collection of the setsA×Y, A∈ A . For
later purpose, we also notice that this collection is obviously stable against finite intersections.
Finally, PX denotes the marginal distribution ofP onX, i.e.PX(A) = P(π−1

X (A)) for all A∈ A .
Now let us recall the definition of regular conditional probabilities:

Definition 16 A map P( . | .) : B ×X → [0,1] is called aregular conditional probabilityof P if the
following conditions are satisfied:

i) P( . |x) is a probability measure on(Y,B) for all x ∈ X.

ii) x 7→ P(B|x) is A-measurable for all B∈ B.

iii) For all A ∈ A , B∈ B we have

P(A×B) =
Z

A
P(B|x)PX(dx) .

Under certain conditions such regular conditional probabilities exist. To bemore precise, recall
that a topological space is calledPolishif its topology is metrizable by a complete, separable metric.
The following theorem in the book of Dudley (2002, Thm. 10.2.2) gives a sufficient condition for
the existence of a regular conditional probability:
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Theorem 17 If Y is a Polish space then a regular conditional probability P( . | .) : B ×X → [0,1]
of P exists.

Regular conditional probabilities play an important role in binary classificationproblems. In-
deed, given a probability measureP on X ×{−1,1} the aim in classification is to approximately
find the set{P(y = 1|x) > 1

2}, where “approximately” is measured by the classification risk.
Let us now recall the connection between conditional probabilities and regular conditional prob-

abilities (see Dudley, 2002, p. 342 and Thm. 10.2.1):

Theorem 18 If a conditional probability P( . | .) : B ×X → [0,1] of P exists then we P-a.s. have

P(B|x) = P
(

X×B|π−1
X (A)

)

(x,y) .

As an immediate consequence of this theorem we can formulate the following “test” for regular
conditional probabilities.

Corollary 19 Let B∈ B and f : X → [0,1] beA-measurable. Then f(x) = P(B|x) PX-a.s. if

Z

A×Y
f ◦πXdP=

Z

A×Y
1X×BdP

for all A ∈ A .

Proof The assertion follows from Theorem 18, the definition of conditional probabilities and the
fact that the collection of the setsA×Y, A∈ A is stable against finite intersections.

Appendix B. Proof of Proposition 9

Proof of Proposition 9 By Proposition 2 we have|2η−1| =
∣

∣

h−ρ
h+ρ

∣

∣ and hence we observe

{

|2η−1| ≤ t
}

=
{

|h−ρ| ≤ (h+ρ)t
}

=
{

− (h+ρ)t ≤ h−ρ ≤ (h+ρ)t
}

=
{1− t

1+ t
ρ ≤ h≤

1+ t
1− t

ρ
}

,

whenever 0< t < 1.
Now let us first assume thatP has Tsybakov exponentq > 0 with some constantC > 0. Then

using
{

|h−ρ| ≤ tρ
}

=
{

(1− t)ρ ≤ h≤ (1+ t)ρ
}

⊂
{1− t

1+ t
ρ ≤ h≤

1+ t
1− t

ρ
}

we find
PX

({

|h−ρ| ≤ tρ
})

≤ PX
({

|2η−1| ≤ t
})

≤ Ctq ,

which byPX = 1
ρ+1Q+ ρ

ρ+1µ shows thath hasρ-exponentq .
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Now let us conversely assume thath hasρ-exponentq with some constantC > 0. Then for
0 < t < 1 we have

Q
({

|h−ρ| ≤ t
})

=
Z

X
1{|h−ρ|≤t}hdµ

=
Z

{h≤1+ρ}
1{|h−ρ|≤t}hdµ

≤ (1+ρ)
Z

{h≤1+ρ}
1{|h−ρ|≤t}dµ

= (1+ρ)µ
({

|h−ρ| ≤ t
})

.

UsingPX = 1
ρ+1Q+ ρ

ρ+1µ we hence find

PX
({

|h−ρ| ≤ t
})

≤ 2µ
({

|h−ρ| ≤ t
})

≤ 2Ctq

for all sufficiently smallt ∈ (0,1). Let us now definetl := 2t
1+t andtr := 2t

1−t . This immediately gives
1− tl = 1−t

1+t and 1+ tr = 1+t
1−t . Furthermore, we obviously also havetl ≤ tr . Therefore we find

{1− t
1+ t

ρ ≤ h≤
1+ t
1− t

ρ
}

=
{

(1− tl )ρ ≤ h≤ (1+ tr)ρ
}

⊂
{

(1− tr)ρ ≤ h≤ (1+ tr)ρ
}

=
{

|h−ρ| ≤ trρ
}

.

Hence for all sufficiently smallt > 0 with t < 1
1+2ρ , i.e. trρ < 1, we obtain

PX
({

|2η−1| ≤ t
})

≤ PX
({

|h−ρ| ≤ trρ
})

≤ 2C(trρ)q ≤ 2C(1+2ρ)qtq .

From this we easily get the assertion.
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F. Gonźalez and D. Dagupta. Anomaly detection using real-valued negative selection. Genetic
Programming and Evolvable Machines, 4:383–403, 2003.

J. A. Hartigan.Clustering Algorithms. Wiley, New York, 1975.

J. A. Hartigan. Estimation of a convex density contour in 2 dimensions.J. Amer. Statist. Assoc., 82:
267–270, 1987.
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