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Abstract

One way to describe anomalies is by saying that anomaliesadreoncentrated. This leads to the
problem of finding level sets for the data generating den¥ity interpret this learning problem as
a binary classification problem and compare the correspgrdassification risk with the standard
performance measure for the density level problem. In @asr it turns out that the empirical
classification risk can serve as an empirical performancasome for the anomaly detection prob-
lem. This allows us to compare different anomaly detectigorithmsempirically, i.e. with the
help of a test set. Furthermore, by the above interpretat®mnan give a strong justification for the
well-known heuristic of artificially sampling “labeled” s®les, provided that the sampling plan is
well chosen. In particular this enables us to propose a stigpotor machine (SVM) for anomaly
detection for which we can easily establish universal iaacy. Finally, we report some experi-
ments which compare our SVM to other commonly used methadisding the standard one-class
SVM.
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1. Introduction

Anomaly (or novelty) detection aims to detect anomalous observations frgstens In the ma-
chine learning version of this problem we cannot directly model the noreta\aour of the system
since it is either unknown or too complex. Instead, we have some sampieatises from which
the normal behaviour is to be learned. This anomaly detection learning pralale many important
applications including the detection of e.g. anomalous jet engine vibrationblésee et al., 1999;
Hayton et al., 2001; King et al., 2002), abnormalities in medical data (ses3Jemko et al., 1995;
Campbell and Bennett, 2001), unexpected conditions in engineerin@éséerges et al., 1998) and
network intrusions (see Manikopoulos and Papavassiliou, 2002; Yeuh@how, 2002; Fan et al.,
2001). For more information on these and other areas of applicationdlessweany methods for
solving the corresponding learning problems we refer to the recengyswfvMarkou and Singh
(2003a,b).

It is important to note that a typical feature of these applications is that otdpeled samples
are available, and hence one has to make some a-priori assumptionsnoalieaan order to be
able to distinguish between normal and anomalous future oberservatioasf e most common
ways to define anomalies is by saying thabmalies are not concentratésee e.g. Ripley, 1996;
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Schblkopf and Smola, 2002). To make this preciseQdie ourunknown data-generating distribu-
tion on the input spac® which has a densit with respect to &nown reference distribution gn
X. Obviously, the density level sefé > p}, p > 0, describe the concentration Qf Therefore to
define anomalies in terms of the concentration one only has to fix a threshelg I[2v0 so that a
samplex € X is considered to be anomalous whenéawer) < p. Consequently, our aim is to find
the set{h < p} to detect anomalous observations, or equivalentlyptievel set’h > p} to describe
normal observations.

We emphasize that given the data-generating distrib@itime choice ofi determines the den-
sity h, and consequentinomalies are actually modeled by both p gndUnfortunately, many pop-
ular algorithms are based on density estimation methods that implicitly agstore the uniform
distribution (e.g. Gaussian mixtures, Parzen windows lendarest neighbors density estimates)
and therefore for these algorithms defining anomalies is restricted to theeafaicWith the lack
of any further knowledge one might feel that the uniform distribution isss@aable choice fqu,
however there are situations in which a differgris more appropriate. In particular, this is true
if we consider a modification of the anomaly detection problem wiasenot known but can be
sampled from. We will see that unlike many others our proposed method ndteleoth problems.

Finding level sets of an unknown density is also a well known problem in titatishich has
some important applications different from anomaly detection. For examgien ibe used for the
problem of cluster analysis as described in by Hartigan (1975) andaSwetval. (2001), and for
testing of multimodality (see e.g. fler and Sawitzki, 1991; Sawitzki, 1996). Some other appli-
cations including estimation of non-linear functionals of densities, density d&iimaegression
analysis and spectral analysis are briefly described by Polonik (1998jortunately, the algo-
rithms considered in these articles cannot be used for the anomaly detecitdanp since the
imposed assumptions drare often tailored to the above applications and are in general unrealistic
for anomalies.

One of the main problems of anomaly detection—or more precisely density letegdtibn—is
the lack of an empirical performance measure which allows us to comparenbeadjzation perfor-
mance of different algorithms by test samples. By interpreting the densitydietextion problem as
binary classification with respect to an appropriate measure, we shothéhairresponding empir-
ical classification risk can serve as such an empirical performance redas@nomaly detection.
Furthermore, we compare the excess classification risk with the standéwchpence measure for
the density level detection problem. In particular, we show that both quarditeasymptotically
equivalent and that simple inequalities between them are possible under mddi@es on the
densityh.

A well-known heuristic (see e.g. Fan et al., 2001; Gdlaz and Dagupta, 2003; Yu et al., 2004;
Theiler and Cai., 2003) for anomaly detection is to generate a labeled ddig assigning one
label to the original unlabeled data and another label to a set of artificiatlgrgted data, and
then apply a binary classification algorithm. By interpreting the density levettien problem as
a binary classification problem we can show that this heuristic can be Btrjustjfied provided
that the sampling plan for the artificial samples is chosen in a certain way andetielassification
algorithm is well-adopted to this plan. We will work out this justification in detail lbgvging how to
modify the standard support vector machine (SVM) for classificationeatablishing a consistency
result for this modification. Finally we report some experiments comparing tladiet SVM with
some other commonly used algorithms including Gaussian maximum-likelihood me#matithe
standard one-class SVM proposed by @kbpf et al. (2001).
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2. Detecting Density Levels is a Classification Problem

We begin with rigorously defining the density level detection (DLD) probleathis end let{ X, 4)

be a measurable space gund knowndistribution on(X,4). Furthermore, leQ be anunknown
distribution on(X,4) which has arunknowndensityh with respect tqy, i.e.dQ=hdu Given a

p > O the sef h > p} is called thep-level sebf the densityh. Throughout this work we assume that
{h=p} is ap-zero set and hence it is als@azero set. For the density level detection problem and
related tasks this is a common assumption (see e.g. Polonik, 1995; TsyhaRkay,

Now, the goal of the DLD problem is to find an estimate of thkevel set ofh. To this end
we need some information which in our case is given to us by a training setxi,...,xn) €
X", We will assume in the following thal is i.i.d. drawn fromQ. With the help ofT a DLD
algorithm constructs a functiofy : X — R for which the sef fr > 0} is an estimate of thp-level
set{h > p} of interest. Since in generdfy > 0} does not excactly coincide witfh > p} we need
aperformance measurghich describes how we{lfr > 0} approximates the s¢h > p}. Probably
the best known performance measure (see e.g. Tsybakov, 199D&&hand Lindenbaum, 1997,
and the references therein) for measurable functfons — R is

Sunp() == W({f >0} & {h>p}),

whereA denotes the symmetric difference. Obviously, the smaler,(f) is, the more{ f > 0}
coincides with the-level set oh and a functiorf minimizesSn if and only if { f > 0} is p-almost
surely identical td h > p}. Furthermore, for a sequence of functidas X — R with S, h(fn) — 0
we easily see that sigh(x) — Lin-p1 (X) for p-almost allx € X, and since is absolutely continuous
with respect tqu the same convergence hol@salmost surely. Finally, it is important to note, that
the performance measusgn p is insensitive tqi-zero sets. Since we cannot detgaero sets using
a training sefl drawn fromQ" this feature is somehow natural for our model.

Although S, n o Seems to be well-adapted to our model, it has a crucial disadvantage in that we
cannot computesno(f) since{h > p} is unknown to us. Therefore, we havedstimateit. In
our model the only information we can use for such an estimationtéstaset W= (X1,...,%m)
which is i.i.d. drawn fromQ. Unfortunately, there is no method known to estimée(f) from
W with guaranteedaccuracy in terms ah, f, pandp, and we strongly believe that such a method
cannot exist. Because of this lack, we canawipirically compare different algorithms in terms of
the performance measusgn,p.

Let us now describe another performance measure which has merits sinfjaydut addi-
tionally has an empirical counterpart, i.e. a method to estimate its value with guedateuracy
by only using a test set. This performance measure is based on interghetibg.D problem as
a binary classification problem in whichis assumed to be positively labeled and infinitely many
negatively labeled samples are available by the knowledge dfo make this precise we write
Y :={-1,1} and define

Definition 1 Letp and Q be probability measures on X ar@(@®, 1). Then the probability measure
Qospon XxY is defined by

QOsH(A) = SExla(X,1) + (1 —8)Expla(x,—1)

for all measurable subsets@ X x Y. Here we used the shorthabgl(x,y) := 1a((X,Y)).
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Roughly speaking, the distributid@ ©s L measures the “1-slice” o C X x Y by sQand the
“—1-slice” by (1—s)u. Moreover, the measure := Q s can obviously be associated with a
binary classification problem in which positive samples are drawn 8Qand negative samples
are drawn from(1 —s)u. Inspired by this interpretation let us recall that the binary classification
risk for a measurable functioh: X — R and a distributio® on X x Y is defined by

Re(f) = P({(xy) :signf(x) #y}),

where we define sign=1if t > 0 and sign = —1 otherwise. Furthermore, tiBayes riskRp of P
is the smallest possible classification risk with respe, toe.

Ro = inf{ﬂ{p(f) [f:X—=R measurabl}.

We will show in the following that learning with respect 8, is equivalent to learning with
respect takp(.). To this end we begin by computing the marginal distribufirand thesupervisor
n(x) :=P(y=1|x),xe X, of P:= Qs

Proposition 2 Let 4 and Q be probability measures on X such that Q has a density h witbates
to y, and let = (0,1). Then the marginal distribution of P=- Qosp on X is R = sQ+ (1—s)p.
Furthermore, we R-a.s. have

sh(x)

PY=10= R+ 1-s

Proof As recalled in the appendiR(y = 1|x), x € X, is a regular conditional probability and hence
we only have to check the condition of Corollary 19. To this end we firstdasby the definition
of P := Qospu that for all non-negative, measurable functidnsX x Y — R we have

/ fdP — s/ f(x,l)Q(dx)+(1—s)/ f(x, —~1)p(d)
XxY X X
Therefore, forA € 4 we obtain

sh(x)
/AXY shix)+1— sp(d)g dy)

B sh(x) sh(x)
- s/ S L CITCE RN A I
/ sou(ax)

= 5 [ B (DR + (1-9) [ Ly (x ~ V()

= 1 dP.
/A><Y X x{1}

Note that the formula for the marginal distributi®y in particular shows that thg-zero sets
of X are exactly thé>¢-zero sets oK. As an immediate consequence of the above proposition we
additionally obtain the following corollary which describes fitevel set oth with the help of the
supervisom:
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Corollary 3 Let p and Q be probability measures on X such that Q has a density h witbatet®
u. Forp > 0we write s= - and define P= Qosp. Then fom(x) := P(y = 1|x), x€ X, we have

= Ip
u(in>1/2} 5 th>p}) = 0,
i.e.{n > 1/2} p-almost surely coincides witth > p}.

Proof By Proposition 2 we see thgtx) > % is p-almost surely equivalent tg&“%_s > % which
is equivalent tch(x) > =5 = p. u

The above results in particular show that every distribufar= Q ©s 1 with dQ := hdpand
se€ (0,1) determines a triplép, h,p) with p ;= (1—s)/s and vice-versa. In the following we
therefore use the shorthaggl(f) := Synp(f).

Let us now compareRp(.) with Sp(.). To this end recall, that binary classification aims to
discriminate{n > 1/2} from {n < 1/2}. In view of the above corollary it is hence no surprise that
Re(.) can serve as a surrogate f(.) as the following theorem shows:

Theorem 4 Let p and Q be probability measures on X such that Q has a density h wihates

to p. Letp > O be a real number which satisfieg{lo = p}) = 0. We write s= Flp and define

P:= QosM. Then for all sequencddy) of measurable functions, f X — R the following are
equivalent:

i) Ro(fn) — Re.
In particular, for a measurable function:fX — R we haveSp(f) = 0if and only if Rp(f) = Rp.
Proof Forn e N we definek, := {f, > 0} A {h> p}. Since by Corollary 3 we know({h > p} A
{n> %}) = 0 it is easy to see that the classification riskiptan be computed by
Re(fn) = Ko+ [ [2n—1/dR. ®
Now, {|2n — 1| = 0} is ap-zero set and henceRx-zero set. The latter implies that the measures
|2n — 1|dR« andPx are absolutely continuous with respect to each other, and hence we have
|2n —1|dR(En) — O if and only if P« (En) — 0.

Furthermore, we have already observed after Proposition Pthamdp are absolutely continuous
with respect to each other, i.e. we also have

Px(En) — 0 if and only if H(En) — 0.
Therefore, the assertion follows frasa( fn) = W(En). [ |

Theorem 4 shows that instead of usifigas a performance measure for the density level de-
tection problem one can alternatively use the classification®igk). Therefore, we will estab-
lish some basic properties of this performance measure in the following. Terdisve write
L(y,t) := 1 _w (Y1), y € Y andt € R, for the standard classification loss function. With this nota-
tion we can comput&p( f):
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Proposition 5 Let u and Q be probability measures on X. Igor 0 we write s.= Flp and define
P := Q&sU. Then for all measurable :fX — R we have

1 . :
Ro(f) = FpEQl (1,signf) + FppELﬂ (—1,signf).

Furthermore, for the Bayes risk we have

Re < min{ﬁlp,rpp}

and

1 p
= —FEpl +—E) .
RP 1 o Q-+{h<p} 1 P H-+{h>p}

Proof The first assertion directly follows from

Re(f) = P({(xy):signf(x) #y})
= P({(x,1):signf(x) = —1}) +P({(x,—1) : signf (x) = 1})
= sQ({signf = —1}) + (1—s)u({signf = 1})
= sEgl(1,signf)+ (1—s)E,l (—1,signf).

The second assertion directly follows frafp < Rp(1x) < sandZRp < Rp(—1x) < 1—s. Finally,
for the third assertion recall thdt= 1;n. 0, — 141<p) is a function which realizes the Bayes ridl.

As described at the beginning of this section our main goal is to find a peafoze measure for
the density level detection problem which has an empirical counterpariewof Proposition 5
the choice of an empirical counterpart (. ) is rather obvious:

Definition 6 Let u be a probability measure on X apd> 0. Then for T= (xy,...,X,) € X" and a
measurable function fX — R we define

Rr(f) = ﬁiil (1,signf(xi)) + %pEul (—1,signf).

If we identify T with the corresponding empirical measure it is easy to seeRhét) is the
classification risk with respect to the measiiresu for s:= Flp. Then for measurable functions
f: X — R, e.g. Hoeffding’s inequality shows tha&s (f) approximates the true classification risk
Re(f) in a fast and controllable way.

It is highly interesting that the classification rig(.) is strongly connected with another ap-
proach for the density level detection problem which is based on thellgotexcess masisee
e.g. Hartigan, 1987; Mler and Sawitzki, 1991; Polonik, 1995; Tsybakov, 1997, and ther-refe
ences therein). To be more precise let us first recall that the excesfrmsneasurable function

f: X — R is defined by
Tp(f) = Q({f > 0}) —pu({f > 0}),

whereQ, p andp have the usual meaning. The following proposition shows Rpdt) and Zp(.)
are essentially the same:
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Proposition 7 Let u and Q be probability measures on X. Igor 0 we write s.= Flp and define
P := Q&sU. Then for all measurable :fX — R we have

Ep(f) = 1-(1+p)Re(f).
Proof We obtain the assertion by the following simple calculation:

e(f) = Q({f>0})—pu({f=0}
1-Q({f <0}) —pu({f >0})
1—Q({signf = —1}) — pu({signf = 1})
= 1-(1+p)Re(f).

If Qis an empirical measure based on a traininglset the definition of£p(.) then we obtain
am empirical performance measure which we denot&fly). By the above proposition we have

Er(f) = 1—%_il(l,signfm))—pEuu—l,signf) 1 (14 p)Rs(F) @

for all measurablef : X — R. Now, given a clasgf of measurable functions fror to R the
(empirical) excess mass approach considered e.g. by Hartigan (M819r and Sawitzki (1991);
Polonik (1995); Tsybakov (1997), chooses a functfere F which maximizesZEr (.) within 7.

By equation (2) we see that this approach is actually a type of empirical risknimation (ERM).
Surprisingly, this connection has not been observed, yet. In partitudeexcess mass has only been
considered as an algorithmic tool, but not as a performance measuteadnthe papers dealing
with the excess mass approach measures the performarng€.byIn their analysis an additional
assumption on the behaviour lofaround the levep is required. Since this condition can also be
used to establish a quantified version of Theorem 4 we will recall it now:

Definition 8 Let p be a distribution on X and:lX — [0, ) be a measurable function withhdp=
1, i.e. his a density with respect to p. For> 0 and0 < g < « we say that h hap-exponent if
there exists a constant € 0 such that for all sufficiently small:+ O we have

u({lh—p| <t}) < cti. 3)

Condition (3) was first considered by Polonik (1995, Thm. 3.6). Thisepatso provides an
example of a class of densities &4, d > 2, which has exponemt= 1. Later, Tsybakov (1997,
p. 956) used (3) for the analysis of a density level detection method whizdsiesd on a localized
version of the empirical excess mass approach.

Interestingly, condition (3) is closely related to a concept for binary iflesson called the
Tsybakov noise exponent (see e.g. Mammen and Tsybakov, 199%aKay 2004; Steinwart and
Scovel, 2004) as the following proposition proved in the appendix shows:

Proposition 9 Let y and Q be distributions on X such that Q has a density h with respectur .

p > 0 we write s= Flp and define P= Qosp. Then for0 < g < « the following are equivalent:
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i) h hasp-exponeng.

ii) P has Tsybakov noise exponent q, i.e. there exists a constar@t€Lich that for all sufficiently
small t> 0 we have

P(|2n—1/<t) < C-td 4)

In recent years Tsybakov's noise exponent has played a cratéafar establishing learning
rates faster than~2 for certain algorithms (see e.g. Mammen and Tsybakov, 1999; Tsyh2B0«;
Steinwart and Scovel, 2004). Remarkably, it was already observeddoymen and Tsybakov
(1999), that the classification problem can be analyzed by methods dgigileseloped for the
DLD problem. However, to our best knowledge the exact relation betwe=DLD problem and
binary classification has not been presented, yet. In particular, itdideen observed yet, that this
relation opens @on-heuristicway to use classification methods for the DLD problem as we will
discuss in the next section.

As already announced we can also establish inequalities betssesamd Rp(.) with the help of
the p-exponent. This is done in the following theorem:

Theorem 10 Letp > 0 and p and Q be probability measures on X such that Q has a density h with
respect to u. For s= Flp we write P:= QSs . Then the following statements hold:

i) If h is bounded then there exists a constant 6 such that for all measurable :fX — R we
have

Re(f) —Re < cSp(f).

i) If h has p-exponent ¢t (0, ] then there exists a constantcO such that for all measurable

f : X — R we have
q

Self) < o(Re(f) — Re) 7.

Proof The first assertion directly follows from (1) and Proposition 2. The sd@ssertion follows
from Proposition 9 and a result of Tsybakov (2004, Prop. 1). |

Remark 11 We note that many of the results of this section can be generalized to thevlcase
Q is not absolutely continuous with respect to 1. Indeed, select an auxitfi@asures such that
both Q and p are absolutely continuous with respecv.toFor example one could choose=

Q—;“. Consequently we have©h;v and pu= hyv for some real valued functiong land tp. Then

Proposition 2 holds with fx) := {03, where one defines the righthand side tocbghen h(x) =
ho(x) = 0. One can also show that h isR.s. independent of the choicewf Corollary 3 holds
where the measure of the symmetric difference is evaluated with either (Hmvwever it appears
that only the “Rp(f) — Rp = Sp(f) — 0" assertion of Theorem 4 holds instead of equivalence.
Finally, Propositions 5 and 7 hold, Proposition 9 holds with a suitable genextitin of Definition

8 of p-exponent, and the second assertion of Theorem 10 holds.
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3. A Support Vector Machine for Density Level Detection

In the previous section we have shown that the DLD problem can be iatethas a binary clas-
sification problem in which one conditional class probability is known. We sbaw that this
interpretation has far reaching algorithmic consequences. To this end éstsume that we give
each sample of our training s€t= (x,...,X,) drawn fromQ the label 1. Additionally we gen-
erate a second training st = (x,...,x/,) from pand label each sample of it with1l. Merging
these labeled sample sets gives a new training set which then can be usdainayy classifica-
tion algorithm. By our considerations in the previous section it seems reasadimaexpect that
the used classification algorithm actually learns the DLD problem providedttbaalgorithm is
well-adjusted to the sample set sizes and the parameter

In the following we work this high-level approach out by constructing &MSor the DLD
problem. To this end l&k: X x X — R be a positive definite kernel with reproducing kernel Hilbert
space (RKHSH. Furthermore, left be a known probability measure ghandl : Y x R — [0, )
be thehingeloss function, i.el(y,t) := max{0,1—yt}, y€ Y, t € R. Then for a training set
T =(x1,...,%) € X", aregularization parametgr> 0, andp > 0 we initially define

frun == arg{g,@\\ﬂl% le pEX~ul( 1, f(x)), (5)
and
(Fran Bryn) 1= argminh [ + oo Z' (LF(6)+5)+ ol (-1, F () +). (6)
A P
c

The decision function of th&VM without offseis fr,, : X — R and analogously, th8VM with
offsethas the decision functiofy it bT wr s X — R

Although the measurg is known, almost always the expectati@in. I (—1, f(x)) can only
be numerically computed which requires finitely many function evaluatiorfs ¢f the integrand
of this expectation was smooth we could use some known deterministic methodsosedhese
function evaluations efficiently. However, since the hinge loss is notrdifteable there is no such
method known to us. According to our above plan we will therefore usetspﬂiln— (X455 X))
which are randomly sampled fromto approximateEy.,l (—1, f(x)) by 2 S5 1I( 1,f(x)). We
denote the corresponding approximate solutions of (5) and (6 by and(fT T )\;bTT’ ), re-
spectively. Furthermore, in these cases the formulations (5) and (&ertical to the standard
L1-SVM formulations besides the weighting factors in front of the empiricadreaerms. There-
fore, the derivation of the corresponding dual problems is straigh#fiawFor example, the dual
problem for (6) can be written as follows:

max i_ﬁlai+iglori’—%iéluia,-k(xi,xj)—%l nz:1 k(X )+ Z i k(x;, Xj)

s.t. Eui—goﬂzo
=T =R (7)
0<a< (ﬁp) i=1,..n,
0<al < (lipp)n” i=1,..,n
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The fact that the SVM for DLD essentially coincides with the standard LM3so allows us to
modify many known results for these algorithms. For simplicity we will only statersistency
result which describes the case where wenisen random samples fromin order to approximate
the expectation with respect o However, it is straight forward to extend the result to the more
general case af = rn samples for some positivec Q. In order to formulate the result we have to
recall the notion of universal kernels (see Steinwart, 2001). To tlidetrX be a compact metric
space, say a closed and bounded subsBfofWe denote the space of all continuous functions on
X by C(X). As usual, this space is equipped with the supremum Hofp Then the RKHSH of a
continuous kernet on X is embedded int€(X), i.e.H C C(X), where the inclusion is continuous.
We say that the kernddis universal if in additionH is dense irC(X), i.e. for everyf € C(X) and
everye > 0 there exists g € H with || f —g]|,, < €. Some examples of universal kernels including
the Gaussian RBF kernels were presented by Steinwart (2001).

Now we can formulate the announced result:

Theorem 12 (Universal consistency)et X be a compact metric space and k be a universal kernel
on X. Furthermore, lep > 0, and p and Q be probability measures on X such that Q has a density
h with respect to yu. For s= Flp we write P:= Q&g . Then for all sequence3,,) of positive
numbers with\, — 0 and r?\ﬁ — oo and for alle > 0 we have

(Q® u)”((T,T’) eXMx X": Rp(fryin) < iRere) 0,

for n — . The same result holds for the SVM with offset if one replaces the condkfon:no
by the slightly stronger assumptiondy logn — c. Finally, for both SVMs it suffices to assume
N} — oo for somed > 0 if one uses a Gaussian RBF kernel.

Sketch of the Proof Let us introduce the shorthand= Q ® | for the product measure 6 and L.
Moreover, for a measurable functidn X — R we define the functioh® f : X x X — R by

1 P
| o f(x,X):= 1erI(l,f(x))Jr1er (-1, f(X)), x,X € X.
Furthermore, we writéo f(x,y) :=1(y, f(X)), x€ X,y € Y. Then it is easy to check that we always
haveE,l ® f =Epl o f. Analogously, we seBrq1/| © f =Ero o f, if T@ T’ denotes the product
measure of the empirical measures base@ andT’. Now, using Hoeffding’s inequality fov it is
easy to establish a concentration inequality in the sense of Steinwart (2805JIL5). The rest of
the proof is analogous to the steps of Steinwart (2005). [ |

Recall that by Theorem 4 consistency with respecR#0.) is equivalent to consistency with
respect taSp(.). Therefore we immediately obtain the following corollary

Corollary 13 Under the assumptions of Theorem 12 both the DLD-SVM with offset andutith
offset are universally consistent with respecs0.), i..Sp( fr . +br ) — 0andSp(frri5,) — 0
in probability.

Remark 14 We have just seen that our DLD-SVM whose design was based on theégsienibed
in the beginning of this section can learn arbitrary DLD problems. It shdaddalmost clear that
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a similar approach and analysis is possible for many other classificatiorridhgas. This gives a
strong justification for the well-known heuristic of adding artificial samplesrtoraaly detection
problems with unlabeled data. However, it is important to note that this justicanly holds for
the above sampling plan and suitably adjusted classification algorithms, atdtiher, heuristic
sample plans may actually lead to bad learning performance (cf. the dguamhof Section 5)

4. Experiments

We present experimental results for anomaly detection problems wheret#iéssa subset oRY.

A total of four different learning algorithms are used to produce funstiowhich declare the set
{x: f(x) < 0} anomalous. A distinct advantage of the formulation in Section 2 is that it allows us
to makequantitativecomparisons of different functions by comparing estimates of theirgigk )
which can be computed from sample data. In particular consider a datais¢88) whereS
contains samples drawn fro@ and S contains samples drawn from(in what follows (S S) is
either training data, validation data, or test data). Based on Definition 6fivediee empirical risk

of f with respect tqS, S) to be

1 . p .

Riss)(f) EDIE ngl(l,&gnf(x))Jr T+p)S| X;I( 1,signf (x)). (8)
A smaller risk indicates a better solution to the DLD problem. Since theRisk) depends ex-
plicitly on p additional insight into the performance bfcan be obtained from the two error terms.
Specifically the quantityé Yxes! (1,signf(x)) is an estimate oR({f < 0}) which we call the
alarm rate (i.e. the rate at which samples will be labeled anomalous Jpyand the quantity
ﬁ Sxes | (—1,signf(x)) is an estimate ofi({f > 0}) which we call thevolumeof the predicted
normal set. There is an obvious trade-off between these two quantitiefgritbe optimal solu-
tions for fixedp smaller alarm rates correspond to larger volumes and vice versa. Abso tlie
expression for the risk in Proposition 5 it is clear that for any two functwitis the same alarm rate
we prefer the function with the smaller volume and vice versa. More generdign comparing
different solution methods it is useful to consider the values of thesetitjgarthat are achieved
by varying the value op in the design process. Sugerformance curveare presented in the
comparisons below.

We consider three different anomaly detection problems, two are synthdtan is an applica-
tion in cybersecurity. In each case we define a problem instance to béeaddpsisting of samples
from Q, samples fromy, and a value for the density level We compare four learning algorithms
that accept a problem instance and automatically produce a funttitine density level detec-
tion support vector machine (DLD-SVM), the one-class support vecémhine (LCLASS-SVM),
the Gaussian maximum-likelihood (GML) method, the mixture of Gaussians maximulihdiéd
(MGML) method! The first is the algorithm introduced in this paper, the second is an algorithm
based on the the one-class support vector machine introduced bik&uhet al. (2001) and the
others (including the Parzen windows method) are based on some of theonusion paramet-
ric and non-parametric statistical methods for density-based anomaly detecR8. Each of the
four learning algorithms is built on a core procedure that contains one i@ fre@ parameters. The
availability of a computable risk estimate makes it possible to determine values$emhemeters

1. We also experimented with a Parzen windows method, but do not inttledesults because they were substantially
worse than the other methods in every case.
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using a principled approach that is applied uniformly to all four core ghoes. In particular this
is accomplished as follows in our experiments. The data in each problemdessgartitioned into
three pairs of sets; the training s€1§ T'), the validation set§V,V’) and the test set®,W’). The
core procedures are run on the training sets and the values of thafeeaqiers are chosen to min-
imize the empirical risk (8) on the validation sets. The test sets are used to egigrmi@nance.
We now describe the four learning algorithms in detail.

In the DLD-SVM algorithm we employ the SVMiith offsetdescribed in Section 3 with a
Gaussian RBF kernel

k(x,X) = e OIxI?,

With A ando? fixed and the expected vallg..,l (—1, f(x) + b) in (6) replaced with an empirical
estimate based of’ this formulation can be solved using, for example, €R8VC option in the
LIBSVM software (see Chang and Lin, 2004) by settthg 1 and setting the class weightswe =
1/(A[T|(1+p)) andw_1 = p/(A[T’|(14p)). The regularization parametérsandao? are chosen to
(approximately) minimize the empirical rigky ) (f) on the validation sets. This is accomplished
by employing a grid search ovarand a combined grid/iterative search o@gr In particular, for
each value ol from a fixed grid we seek a minimizer ovef by evaluating the validation risk at a
coarse grid ob? values and then performing a Golden search over the interval defintg tiyo
a2 values on either side of the coarse grid minimtims the overall search proceeds tfec?)
pair with the smallest validation risk is retained.

The 1CLASS-SVM algorithm is based on the one-class support vectdnimeamtroduced
by Sctolkopf et al. (2001). Recall that this method neither makes the assumptiothénatis a
reference distributiomu nor usesT’ in the production of its decision functioh. Consequently
it may be harder to compare the empirical results of the 1CLASS-SVM with thiodee other
methods in a fair way. Again we employ the Gaussian RBF kernel with widtinpsteac?. The
one-class formulation of Sékkopf et al. (2001) contains a parametewhich controls the size of
the set{x € T : f(x) <0} (and therefore controls the meas@€{ f < 0}) through generalization).
With v and o? fixed a solution can be obtained using thre-class-SVM  option in theLIBSVM
software. To use this 1-class algorithm to solve an instance of the DLDegpnolve determine
automatically as a function @f. In particular bottv ando? are chosen to (approximately) minimize
the validation risk using the search procedure described above forlthe /M where the grid
search fol\ is replaced by a Golden search (o@r1]) for v.

The GML algorithm produces a functioh= g —t wheret is an offset andy is a Gaussian
probability density function whose mean and inverse covariance aravdeésl from maximum
likelihood estimates formed from the training data(see e.g. Duda et al., 2000). In particular
the inverse covariance takes the fo(E+ Al)~! whereZ is the maximum likelihood covariance
estimate and the regularization tekins a scaled identity matrix which guarantees that the inverse is
well-defined and numerically stable. Once the parametegsaoé determined the offsets chosen
to minimize the training riskR;r /. The regularization parametris chosen to (approximately)
minimize the validation risk by searching a fixed grid\ofalues.

The MGML algorithm is essentially the same as the GML method excepg tha mixture oK
Gaussians whose maximum likelihood parameter estimates are determined ugtngeh&ation-
Maximization (EM) algorithm of Dempster et al. (1977). The same regularizgoameter is used

2. If the minimum occurs at more than one grid point or at an end poinGtilden search interval is defined by the
nearest grid points that include all minimal values.

222



A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

Train | Validate| Test
Number ofQ samples| 1000 500 100,000
Number ofu samples| 2000 | 2000 | 100,000

A grid (DLD-SVM/GML/MGML) | 1.0, 0.5, 0.1, 0.05, 0.01, ..., 0.0000005, 0.0000001
o grid (DLD-SVM/1CLASS-SVM)| 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100/0

Table 1: Parameters for experiments 1 and 2.

for all inverse covariance estimates and bdtandK are chosen to (approximately) minimize the
validation risk by searching a fixed grid X, K) values.

Data for the first experiment are generated using an approach des@memic a type of real
problem wherex is a feature vector whose individual components are formed as lineari-comb
nations of raw measurements and therefore the central limit theorem is ug®wdke a Gaussian
assumption foR. Specifically, samples of the random variakle Q are generated by transforming
samples of a random variahlethat is uniformly distributed ovel0, 1]2”. The transform it = Au
whereA is a 10-by-27 matrix whose rows contain betwaes 2 andm =5 non-zero entries with
value I/m (i.e. each component of is the average of uniform random variables). Thu3 is
approximately Gaussian with me&@.5,0.5) and supporf0,1]*°. Partial overlap in the nonzero
entries across the rows Afguarantee that the componentxaire partially correlated. We choge
to be the uniform distribution ove®, 1]'°. Data for the second experiment are identical to the first
except that the vectdn,0,0,0,0,0,0,0,0,1) is added to the samplesxfvith probability 0.5. This
gives a bi-modal distributio® that approximates a mixture of Gaussians. Also, since the support
of the last component is extended®2] the corresponding componentofs also extended to this
range. A summary of the data and algorithm parameters for experimentsZlisstown in Table
1. Note that the test set sizes are large enough to provide very acestiatates of the risk.

The four learning algorithms were applied for valuep odnging from.01 to 100 and the results
are shown in Figure 1. Figures 1(a) and 1(c) plot the empiricalRigky.) versusp while Figures
1(b) and 1(d) plot the corresponding performance curves. Sinaathds approximately Gaussian
it is not surprising that the best results are obtained by GML (first éxgert) and MGML (both
experiments). However, for most valuespothe next best performance is obtained by DLD-SVM
(both experiments). The performance of 1CLASS-SVM is clearly worar the other three at
smaller values op (i.e. larger values of the volume), and this difference is more substantiat in th
second experiment. In addition, although we do not show it, this diffefisres&en more pronounced
(in both experiments) at smaller training and validation set sizes. Thedesrassignificant be-
cause values @ substantially larger than one appear to have little utility here since they yield alarm
rates that do not conform to our notion that anomalies are rare evergslditionp > 1 appears
to have little utility in the general anomaly detection problem since it defines ananiraliegions
where the concentration @ is much larger than the concentrationpfwhich is contrary to our
premise that anomalies are not concentrated.

The third experiment considers an application in cybersecurity. The gdalrsonitor the
network traffic of a computer and determine when it exhibits anomalous behakie data for
this experiment was collected from an active computer in a normal workinigoenvent over the
course of 16 months. The features in Table 2 were computed from theimgitigetwork traffic.
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The averages were computed over one hour time windows giving a totdbé#1feature vectors.
The feature values were normalized to the raf@@&] and treated as samples fro;n ThusQ
has support irf0,1]*2. Although we would like to choosg to capture a notion of anomalous
behavior for this application, only the DLD-SVM method allows such a chditeis, since both
GML and MGML define densities with respect to a uniform measure and wetewisompare with
these methods, we chopéo be the uniform distribution ove, 1]*2. A summary of the data and
algorithm parameters for this experiment is shown in Table 3. Again, we Mi&eltb point out that
this choice may actually penalize the 1CLASS-SVM since this method is not loasée notion
of a reference measure. However, we currently do not know any affggoach which treats the
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1CLASS-SVM with its special strucure in a fairer way.

The four learning algorithms were applied for valuep odnging from.005 to 50 and the results
are summarized by the empirical risk curve in Figure 2(a) and the corrdsgoperformance curve
in Figure 2(b). The empirical risk values for DLD—SVM and MGML are rig&entical except for
p = 0.05 where the MGML algorithm happened to cho#se- 1 to minimize the validation risk
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Feature Number | Description

Number of sessions

Average number of source bytes per session
Average number of source packets per session
Average number of source bytes per packet
Average number of destination bytes per sessiagn
Average number of destination packets per session
Average number of destination bytes per packet
Average time per session

Number of unique destination IP addresses
Number of unique destination ports

Number of unique destination IP

addresses divided by total number of sessions
Number of unique destination

ports divided by total number of sessions

O©C O NOOOUILDWNPEF

el
N )

=
N

Table 2: Outgoing network traffic features.

Train | Validate | Test
Number ofQ samples| 4000 2000 5664
Number ofu samples| 10,000 100,000| 100,000

X grid (DLD—SVM/GML/MGML) 0.1,0.01, 0.001, ..., 0.0000001
02 grid (DLD-SVM/1CLASS-SVM)| 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.

Table 3: Parameters for cybersecurity experiment.
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(i.e. the MGML and GML solutions are identical pt= 0.05). Except for this case the empirical
risk values for DLD-SVM and MGML are much better than 1CLASS-SVM &idL at nearly
all values ofp. The performance curves confirm the superiority of DLD-SVM and MGRlut
also reveal differences not easily seen in the empirical risk curvasexample, all four methods
produced some solutions with identical performance estimates for diffeadunds ofp which is
reflected by the fact that the performance curves show fewer poimstta@orresponding empirical
risk curves.
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DLD-SVM  —%— el 1CLASS-SVM  ---8---
1CLASS-SVM  --&--- g GML -
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(a) Risk curves. (b) Performance curves.

Figure 2: Cybersecurity experiment.

5. Discussion

A review of the literature on anomaly detection suggests that there are magsytovaharacterize
anomalies (see e.g. Markou and Singh, 2003a,b). In this work we asshategzhomalies are not
concentrated. This assumption can be specified by choosing a refeneasur@ which determines
a density and a level valye The density then quantifies the degree of concentration and the density
level p establishes a threshold on the degree that determines anomalies.Eémdyp play key
roles in thedefinitionof anomalies. In practice the user choogesdp to capture some notion of
anomaly that he deems relevant to the application.

This paper advances the existing state of “density based” anomaly detictiom following
ways.

e Most existing algorithms make an implicit choiceiofusually the Lebesgue measure) whereas
our approach allowp to be any measure that defines a density. Therefore we accommodate
a larger class of anomaly detection problems. This flexibility is in particular impowhen
dealing with e.g. categorical data. In addition, it is the key ingredient wheatirdy with
hidden classification problemg/hich we will discuss below.

e Prior to this work there have been no methods known to rigorously estimatettfoerpance
based orunlabeleddata. Consequently, it has been difficult to compare different methods
for anomaly detection in practice. We have introduced an empirical perfmenaeasure,
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namely the empirical classification risk, that enables such a comparisioartloypar, it can
be used to perform a model selection based on cross validation. Furtieere infinite
sample version of this empirical performance measure is asymptotically &muiva the
standard performance measure for the DLD problem and under mild assosipequalities
between them have been obtained.

e By interpreting the DLD problem as a binary classification problem we caweadi-known
classification algorithms for DLD if we generate artificial samples fforiiVe have demon-
strated this approach which is a rigorous variant of a well-known heuf@tianomaly de-
tection in the formulation of the DLD-SVM.

These advances have created a situation in which much of the knowledtgssification can now
be used for anomaly detection. Consequently, we expect substantacadvin anomaly detection
in the future.

Finally let us consider a different learning scenario in which anomaly tietemethods are also
commonly employed. In this scenario we are interested in solving a binaryfidassn problem
given only unlabeled data. More precisely, suppose that there is a digirly on X x {—1,1}
and the samples are obtained from tharginal distributionvy on X. Since labels exist but are
hidden from the user we call this lddden classification problem (HCPMHidden classification
problems for example occur in network intrusion detection problems whereintggactical to
obtain labels. Obviously, solving a HCP is intractable if no assumptions are omatie labeling
process. One such assumption is that one class consists of anomaldysologentrated samples
(e.g. intrusions) while the other class reflects normal behaviour. Makiag@#sumption rigorous
requires the specification of a reference measuamd a thresholg. Interestingly, whervy is
absolutely continuodswith respect ta/( . |y = 1) solving the DLD problem with

Q = vx
o= v(ly=1)
p = 2v(Xx{1})

gives the Bayes classifier for the binary classification problem assdaite v. Therefore, in
principle the DLD formalism can be used to solve the binary classificationgmrobin the HCP
however, although information aboQt= vy is given to us by the samples, we must rely entirely
on first principle knowledge tguess pandp. Our inability to choosgt andp correctly determines
the model errorthat establishes the limit on how well the classification problem associated with
can be solved with unlabeled samples. This means for example that wheoraalardetection
method is used to produce a classifiefior a HCP its anomaly detection performarge( f) with
P:=Qospands:= rlp may be very different from its hidden classification performafgef ).

In particular®p(f) may be very good, i.e. very close £, while R, (f) may be very poor, i.e. far
above®,. Another consequence of the above considerations is that the comnaticg it mea-
suring the performance of anomaly detection algorithms on (hidden) bifessification problems

is problematic. Indeed, the obtained classification errors depend on tred eronk and thus they
provide an inadequate description how well the algorithms solve the anontaistida problem.

3. This assumption is actually superfluous by Remark 11.
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Furthermore, since the model error is strongly influenced by the partid@&it is almost impos-
sible to generalize from the reported results to more general statementshoddbe classification
performance of the considered algorithms.

In conclusion although there are clear similiarities between the use of the Dinafism for
anomaly detection and its use for the HCP there is also an important diffellertbe first case the
specification oftandp determines thdefinitionof anomalies and therefore there is no model error,
whereas in the second case the model error is determined by the chpiead.
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Appendix A. Regular Conditional Probabilities

In this apendix we recall some basic facts on conditional probabilities gutreconditional prob-
abilities. We begin with

Definition 15 Let (X, 4,P) be a probability space and C 4 a sube-algebra. Furthermore, let
A€ 4 and g: (X,C) — R be R-integrable. Then g is called a conditional probability of A with

respect toC if
/ 15dP = / gdP
C C

for allC € C. In this case we write (A|C) := Q.

Furthermore we need the notion of regular conditional probabilities. To tidslet (X, 4)
and(Y,B) be measurable spaces dnthe a probability measure giX x Y, 4 ® B). Denoting the
projection ofX x Y ontoX by 1y we Writengl(ﬂl) for the sube-Algebra of4 ® B which is induced
by m«. Recall, that this sulo-Algebra is generated by the collection of the gketsY, A< 4. For
later purpose, we also notice that this collection is obviously stable agaiitst ifitersections.
Finally, Px denotes the marginal distribution Bfon X, i.e. Px(A) = P(1i *(A)) for all Ac 4.

Now let us recall the definition of regular conditional probabilities:

Definition 16 Amap R.|.) : B x X — [0,1] is called aregular conditional probabilitef P if the
following conditions are satisfied:

i) P(.|x) is a probability measure ofy, B) for all x € X.
i) x — P(B|X) is 4-measurable for all Bz B.

i) Forall A € 4, Be B we have
P(Ax B) — /AP(B]x)R((dx).

Under certain conditions such regular conditional probabilities exist. Tadre precise, recall
that a topological space is calledlishif its topology is metrizable by a complete, separable metric.
The following theorem in the book of Dudley (2002, Thm. 10.2.2) givesfiicgnt condition for
the existence of a regular conditional probability:
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Theorem 17 If Y is a Polish space then a regular conditional probability.P) : B x X — [0,1]
of P exists.

Regular conditional probabilities play an important role in binary classificairoblems. In-
deed, given a probability measuPeon X x {—1,1} the aim in classification is to approximately
find the se{P(y = 1/x) > 1}, where “approximately” is measured by the classification risk.

Let us now recall the connection between conditional probabilities andbregpnditional prob-
abilities (see Dudley, 2002, p. 342 and Thm. 10.2.1):

Theorem 18 If a conditional probability F.|.) : B x X — [0, 1] of P exists then we P-a.s. have
P(Bjx) = P(X x B|rg*(2))(x,Y).

As an immediate consequence of this theorem we can formulate the followittftteegular
conditional probabilities.

Corollary 19 LetBe Band f: X — [0,1] be 4-measurable. Then(k) = P(B|x) Px-a.s. if

/ foT[de:/ 1X><BdP
AxY AxY

forall A € 4.

Proof The assertion follows from Theorem 18, the definition of conditional abdties and the
fact that the collection of the sefsx Y, A € 4 is stable against finite intersections. |

Appendix B. Proof of Proposition 9

Proof of Proposition 9 By Proposition 2 we havgn — 1| = H}%g\ and hence we observe

{lan—1/ <t} {lh—p| < (h+p)t}

{—(h+pt<h—p<(h+p)t}

1-t 1+t
= B <h<—}
{1+tp_ _1—tp ’
whenever O<t < 1.

Now let us first assume th& has Tsybakov exponeqt> 0 with some constar@ > 0. Then
using

1t 1+t
{lh—p[<tp} = {(1-t)p<h<(1+t)p} C {mpghgﬁp}

we find
Pc({Ilh—p|<tp}) < Px({|2n—1|<t}) < Ct9,

which by Px = 517Q+ 5971 shows thah hasp-exponent .
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Now let us conversely assume thahas p-exponentg with some constant > 0. Then for
0<t<1we have

Q({lh—pl<t}) = /Xlﬂh—mst}hdu

- 11h_oj<prhd

/{h 14y Hin-pisyhM

1 / Lip oenyd
(1+p) thetipy N-PI<U H
(1+pu({[h—pl <t}).

IA

UsingPx = 517Q+ 5411 we hence find

Pe({lh-pl <t}) < 2u({lh-pl <t}) < 2ct
for all sufficiently smalk € (0,1). Let us now defing := % andt; ;= % This immediately gives

1-t = 171 and 1+t = 7. Furthermore, we obviously also haye< t;. Therefore we find

{i:pghﬁiip} = {1-t)p<h<(1+t)p}
c {A-t)p<h<(1+t)p}
= {lh—p| <tp}.

1

Hence for all sufficiently smatl > 0 witht < T2

i.e.trp < 1, we obtain

P({|2n—-1/ <t}) < P({|h—p| <tp}) < 2C(tp)9 < 2C(1+2p)%I9.

From this we easily get the assertion. |
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