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Abstract

A new algorithmic framework called denoising source sefiamaDSS) is introduced. The
main benefit of this framework is that it allows for the easyalepment of new source separation
algorithms which can be optimised for specific problems. hiis framework, source separation
algorithms are constructed around denoising procedutas.rdsulting algorithms can range from
almost blind to highly specialised source separation #lgos. Both simple linear and more com-
plex nonlinear or adaptive denoising schemes are consid&ame existing independent compo-
nent analysis algorithms are reinterpreted within the D@s&work and new, robust blind source
separation algorithms are suggested. The framework igatkds a one-unit equivalent to an EM
algorithm for source separation. However, in the DSS fraamkw is easy to utilise various kinds
of denoising procedures which need not be based on gereeratidels. In the experimental sec-
tion, various DSS schemes are applied extensively to datifiata, to real magnetoencephalograms
and to simulated CDMA mobile network signals. Finally, wais extensions to the proposed DSS
algorithms are considered. These include nonlinear ohServmappings, hierarchical models and
over-complete, nonorthogonal feature spaces. With thetemsions, DSS appears to have rele-
vance to many existing models of neural information procgss
Keywords: blind source separation, BSS, prior information, dengisdenoising source separa-
tion, DSS, independent component analysis, ICA, magnegg@ralograms, MEG, CDMA

1. Introduction

In recent years, source separation of linearly mixed signals has atteaatie range of researchers.
The focus of this research has been on developing algorithms that make d@sgumptions about
the underlying process, thus approaching blind source separati@).(Bependent component
analysis (ICA) (Hywarinen et al., 2001b) clearly follows this tradition. This blind approachggive
the algorithms a wide range of possible applications. ICA has been a valoahlén particular,

in testing certain hypotheses in magnetoencephalogram (MEG) and etegipbalogram (EEG)
analysis (see Vigrio et al., 2000).
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Nearly always, however, there is further information available in the axeatal setup, other
design specifications or from accumulated knowledge due to scientifiarobseFor example in
biomedical signal analysis (see Gazzaniga, 2000; Rangayyan, 28@2ful design of experimental
setups provides us with presumed signal characteristics. In man-madelteph such as a CDMA
mobile system (see Viterbi, 1995), the transmitted signals are even moreteglstric

The Bayesian approach provides a sound framework for including jprfiormation into in-
ferences about the signals. Recently, several Bayesian ICA algorfthwesbeen suggested (see
Knuth, 1998; Attias, 1999; Lappalainen, 1999; Miskin and MacKay,12@houdrey and Roberts,
2001; d. F. R. Hgjen-Sgrensen et al., 2002; Chan et al., 2003). dffezyaccurate estimations
for the linear model parameters. For instance, universal densityxdp@tion using a mixture of
Gaussians (MoG) may be used for the source distributions. Furthermerar,chical models can be
used for incorporating complex prior information (see Valpola et al., 208&yvever, the Bayesian
approach does not always result in simple or computationally efficientitigcs.

FastICA (Hy\warinen, 1999) provides a set of algorithms for performing ICA baseapbimis-
ing easily calculable contrast functions. The algorithms are fast but oftea accurate results can
be achieved by computationally more demanding algorithms (Giannakopowbs¥399), for ex-
ample by the Bayesian ICA algorithms. Valpola and Pajunen (2000) analyséaictors behind the
speed of FastICA. The analysis suggested that the nonlinearity usedti@/&aan be interpreted
as denoising and taking Bayesian noise filtering as the nonlinearity resufeest Bayesian ICA.

Denoising corresponds to procedural knowledge while in most apipesdo source separation,
the algorithms are derived from explicit objective functions or generatigdels. This corresponds
to declarative knowledge. Algorithms are procedural, however. Thokdhtive knowledge has to
be translated into procedural form, which may result in complex and compudijialemanding
algorithms.

In this paper, we generalise the denoising interpretation of Valpola anad?aj2000) and
introduce a source separation framework called denoising sourceaiepgdDSS). We show that
it is actually possible to construct the source separation algorithms aroemtivising methods
themselves. Fast and accurate denoising will result in a fast and seca@aration algorithm.
We suggest that various kinds of prior knowledge can be easily forntuilateerms of denoising.
In some cases a denoising scheme has been used to post-processithaftes separation (see
Vigneron et al., 2003), but in the DSS framework this denoising can lzefasthe source separation
itself.

The paper is organised as follows: After setting the general problemezrisource separation
in Sec. 2, we review an expectation-maximisation (EM) algorithm as a solutiogeexative linear
model and a one-unit version of it (Sec. 2.1). We interpret the nonligesr denoising and call this
one-unit algorithm DSS. Equivalence of the linear DSS and a power méthsbbwn in Sec. 2.2.
In Sec. 2.3, the convergence of the DSS algorithms is analysed. Theli&&is analysed via the
power method. To shed light on the convergence of the nonlinear DS&fime local eigenvalues,
giving analysis similar to the linear case. The applicability of two common extensiathe power
method—deflation and spectral shift—are discussed in the rest of thersdoti®ec. 3, we suggest
an approximation for an objective function that is maximised by the DSS algoritiWes then
introduce some practical denoising functions in Sec. 4. These denoigiotidns are extensively
applied to artificial mixtures (Sec. 5.1) and to MEG recordings (Secs. 8.3.8). We also apply a
DSS algorithm to bit-stream recovery in a simulated CDMA network (Sec. bisally, in Sec. 6,
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we discuss extensions to the DSS framework and their connections to mbdelsal information
processing.

2. Source Separation by Denoising

Consider a linear instantaneous mixing of sources:

X =AS+v, (1)
where
X1 S
X2 S
X = . ) S=
XM SN

The source matriXs consists ofN sources. Each individual sourseconsists ofT samples, that
is,s =[s(1)...s(t)...s(T)]. Note that in order to simplify the notation throughout the paper,
we have defined each source to be a row vector instead of the more traditadomn vector.
The symbolt often stands for time, but other possibilities inclugeg, space. For the rest of
the paper, we refer tb as time, for convenience. The observatidhgonsist ofM mixtures of
the sources, that i = [X(1) ... x(t) ... %(T)]. Usually it is assumed thafl > N. The linear
mappingA = [a; a; - - - an] consists of the mixing vectoes = [az ayi ... avi] ", and is usually called
the mixing matrix. In the model, there is some Gaussian ngiseo. The sources, the noise and
hence also the mixtures can be assumed to have zero mean without losingligebecause the
mean can always be removed from the data.

If the sources are assumed i.i.d. Gaussian, this is a general, linear faatgsia model with
rotational invariance. There are several ways to fix the rotatiento separate the original sources
S. Some approaches assume structure for the mixing matrix. If no structwsuisiad, the solution
to this problem is usually called blind source separation (BSS). Note thaipieach is not really
blind, since one always needs some information to be able to fix the rotatiom s piece of
information is the non-Gaussianity of the sources, which leads to the repempiljar ICA methods
(see Hyarinen et al., 2001b). The temporal structure of the sources may beagsems in Tong
et al. (1991); Molgedey and Schuster (1994); Belouchrani et 897}t Ziehe and Nlller (1998);
Pham and Cardoso (2001).

The rest of this section is organised as follows: first we review an EMridthgo for source
separation and a one-unit version derived from it in Sec. 2.1. Then&-Masteps have natural
interpretations as denoising of the sources and re-estimation of the mixitgg, vespectively, and
the derived algorithm provides the starting point for the DSS framewaorkek. 2.2, we show that
a Gaussian source model leads to linear denoising. Such a DSS is egfuigaRCA of suitably
filtered data, implemented by the classical power method. The convergktime@SS algorithms
are discussed in Sec. 2.3. For the linear DSS algorithms, the well-knowargemce results of the
power method are used. Furthermore, the same results may be exploiteel fimniinear case by
defining local eigenvalues. They play a similar role as the (global) eigeswatuthe linear case.
Deflation and symmetric method for extracting several sources are relievgec. 2.4. Sec. 2.5
discusses a speedup technique called spectral shift.
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2.1 One-Unit Algorithm for Source Separation

The EM algorithm (Dempster et al., 1977) is a method for performing maximum ldeditesti-
mation when part of the data is missing. One way to perform EM estimation in tleeotdisear
models is to assume that the missing data consists of the sources and that themaixingeeds to
be estimated. In the following, we review one such EM algorithm by BermoddCamdoso (1999)
and a derivation of a one-unit version of it by Hyrinen et al. (2001b).

The algorithm proceeds by alternating two steps: 1) E-step and 2) M-btahe E-step, the
posterior distribution for the sources is calculated based on the knowamththe current estimate
of the mixing matrix using Bayes’ theorem. In the M-step, the mixing matrix is fitted tonéve
source estimates. In other words:

E —step :computg(S) = p(S|A, X) = p(X|A, S)p(S)/p(X|A) (2)
M — step :findAnew = argmaxEy s [log p(S, X|A)] = CysCasa- (3)

The covariances are computed as expectationsgf@r

17 17
Cxs= 3 EX()st )TIX,A] = = Zi )TIX,A] 4)
t=
1 T
Css= f E[S t)S<t)T’X7A]7 (5)

wherex(t) = [xy(t) -+~ xi(t) --- xm(t)]T ands(t) = [sy(t) -~ sj(t) --- sy(t)]T are used to denote the
values of all of the mixtures and the sources at the time instamespectively.

Many source separation algorithms preprocess the data by normalisiraytv@ace to the unit
matrix,i.e., Cxx = XXT /T = 1. This is referred to as sphering or whitening and its result is that any
signal obtained by projecting the sphered data on any unit vector hasean and unit variance.
Furthermore, orthogonal projections yield uncorrelated signals. Byghisroften combined with
reducing the dimension of the data by selecting a principal subspace wdnthirts most of the
energy of the original data.

Because of the indeterminacy of scale in linear models, it is necessary ithéx e variance
of the sources or the norm of the mixing matrix. It is usual to fix the variahtieessources to unity:
SS' /T =1. Then, assuming that the linear independent-source model holds aadstherinfinite
amount of data, with Gaussian noise, the covariance of the sphered ds&SiA" /T + 3, =
AAT +5, =1, i.e, a unit matrix because of the sphering. If the noise variance is propattion
to the covariance of the data that is due to the sourices,>, 0 AAT, it holds thatAAT O,
which means that the mixing matri is orthogonal for sphered data. Furthermore, the likelihood
L(S) = p(X]A,S) of S can be factorised:

L(S) =C[Li(s). (6)

where the constar@ is independent 0&. The constanC reflects the fact that likelihoods do not
normalise the same way as probability densities. The above factorisation stithies unique if
Li(s) are appropriately normalised. In the case of a linear model with Gauss&e) a@onvenient
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normalisation is to require the maximum Iof(s) to equal one. The terms can then be shown to
equal

Lis) =exp(~ 5(s —a ) Zd e —a )7 @)

wherea ! is theith row vector ofA~! andZs, 01 is a diagonal matrix with the diagonal elements
equallingo?/(a &).

Since the priomp(S) factorises, too, the sources are independent in the postgBprand the
covarianceCss is diagonal. This means th&gs reduces to scaling of individual sources in the
M-step (3).

Noisy estimates of the sources can be recoveref syA ~1X which is the mode of the likeli-
hood. SinceA~! O AT because of the sphering and the postegi@®) depends on the data only
through the likelihood.(S), the expectation [B|X,A] is a function of ATX, or for individual
sources, 5[X,A] = f(aTX). In the case of Gaussian source mogé$), this function is linear
(further discussion in Sec. 2.2). The expectation can be computed eixaestlgne other cases, too,
e.g, when the source distributions are mixtures of Gaussians (M®&Jther cases the expectation
can be approximated for instance by (S| = S+¢&dlogp(S)/dS, where the constarstdepends
on the noise variance.

In the EM algorithm, all the components are estimated simultaneously. Howesesppering
renders it possible to extract the sources one-by-one (seéridgn et al., 2001b, for a similarly
derived algorithm):

s=w'X (8)

st =1(s) 9)

wt =XstT (10)
W

Whew = W (11)

In this algorithm, the first step (8) calculates the noisy estimate of one scquta®aesponds to the
mode of the likelihood. It is a convention to denote the mixing veatavhich in this case is also
the separating vector, by. The second step (9) corresponds to the expectatisreérg(S) and
can be seen as denoising based on the model of the sources. Ndt{s)tisha row-vector-valued
function of a row-vector argument. The re-estimation step (10) calculadesetln ML estimate of
the mixing vector and the M-step (3) is completed by normalisation (11). Thieptethe norm
of the mixing vector from diverging. Although this algorithm separates on@mponent, it has
been shown that the original sources correspond to stable fixed pbthis @gorithm under quite
general conditions (see Theorem 8.1, Egmen et al., 2001b), provided that the independent-source
model holds.

In this paper, we interpret the step (9) as denoising. While this interpretatioot novel, it
allows for the development of new algorithms that are not derived stantimy §enerative mod-
els. We call all of the algorithms where Eq. (9) can be interpreted as deg@isd that have the
form (8)—(11) DSS algorithms.

1. MoG as the source distributions would lead to ICA.
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2.2 Linear DSS

In this section, we show that separation of Gaussian sources using Balp&ithm results in
linear denoising. This is called linear DSS and it converges to the eigened@alata matrix that
has been suitably filtered. The algorithm is equivalent to the classicalrpoethod applied to the
covariance of the filtered data.

First, let us assume the Gaussian source to have an autocovariancexnairhe prior proba-
bility density function for a Gaussian source is given by

1 1
— —___ex ——sZ‘lsT> ,
/7‘2_’_[255‘ p( 2 SS

whereZgs is the autocovariance matrix of the source &hg| is its determinant. Furthermore, as
noted in Eq. (7), the likelihoot(s) is an unnormalised Gaussian with a diagonal covariaigge

p(s) =

L(s) = exp(—%(s— wTX)Zg o (s— WTX)T> .

After some algebraic manipulation, the Gaussian posterior is reached:

1 1
s) = exp| —Z(s— = I(s— T),
(9 = —ar-exp( (s (s
with meanp = wTX (I +032g51)_1, and varianc& ' = % + 3., Hence, the denoising step (9)
becomes )
st =f(s) =s(l +025d) " =sD, (12)
which corresponds to linear denoising. The denoising step in the DSSthaigar = f(s) is thus
equivalent to multiplying the current source estimaeth a constant matri.
To gain more intuition about the denoising, it is useful to consider the eigendacomposition
of D. It turns out thaD andZsshave the same eigenvectors and the eigenvalue decompositions are
Tss=VAsVT (13)
D=VApVT, (14)
whereV is an orthonormal matrix with the eigenvectors as columns/arsth diagonal matrix with
the corresponding eigenvalues on the diagonal. The eigenvaluescdeel i@s
1

= > -
1+f—;i

Ap;

Note thathp; is a monotonically increasing function a ;. Those directions of are suppressed
the most which have the smallest variances according to the prior moslel of
Now, let us pack the different phases of the algorithm (8), (12), tddgther:

w = XstT = XDs" = XDX Tw.

11
The transpose was dropped frdnsince it is symmetric. By writing\p = /\5/\5T =A*A*T and
addingVTV =1 in the middle, we may split the denoising matrix into two parts:

D — D*D*T’
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whereD* = VA*VT. Further, let us denot = XD*. This brings the DSS algorithm for estimating
one separating vector into the form

t=77Tw. (15)

This is the classicgbower methodsee Wilkinson, 1965) implementation for principal component
analysis (PCA). Note thatZ " is the unnormalised covariance matrix. The algorithm converges to
thefixed pointw* satisfying

AW =227 /Tw*, (16)

where corresponds to the principal eigenvalue of the covariance magix/T andw* is the
principal direction. The asterisk is used to stress the fact that the estimataeésfixed point.

The operation of the linear DSS algorithm is depicted in Fig. 1. Figure lashewsources
that have been mixed into Fig. 1b. The mixing vectors have been plotted byshedilines. The
curve shows the standard deviation of the data projected in differewtidims. It is evident that the
principal eigenvector (solid line) does not separate any of the souFmeghat two things would
be needed: 1) The mixing vectors should be orthogonal. 2) The eigesvshould differ. After
sphering in Fig. 1c, the basis and sphered mixing vectors are roughlygortal. However, any
unit-length projection yields unit variance, and PCA still cannot separatesdhrces. The first
source has a somewhat slower temporal evolution and low-pass filtetaigsrenore of that signal,
giving it a larger eigenvalue. This is evident in Fig. 1d which shows theided data and the first
eigenvector, which is now aligned with the (sphered) mixing vector of the stmwce. The sources
can then be recovered lsy=w"X.

There are other algorithms for separating Gaussian sources (TohgX% ; Molgedey and
Schuster, 1994; Belouchrani et al., 1997; Ziehe aridiéd, 1998) and, although functionally dif-
ferent, they yield similar results for the example given above. All theseigigms assume that the
autocovariance structure of the sources is time-invariant corresgptalifoeplitz autocovariance
and filtering matrice&ssandD. In our analysiszsscan be any covariance matrix, and only one out
of four examples in Sec. 4.1 has the Toeplitz form.

2.3 Convergence Analysis

In this section, we analyse the convergence properties of DSS algorithriige case of linear de-
noising, we will refer to well-known convergence properties of the pawethod €.g, Wilkinson,
1965). The analysis extends to nonlinear denoising under the assumipiditise mixing model
holds and there is an infinite amount of data.

Linear DSS is equivalent to the power method whose convergence ingovigy the eigenval-
uesA; corresponding to the fixed pointg". If some of the eigenvalues are equil€ Aj, i # j),
the fixed points are degenerate and there are subspaces of fixed [yoantyg case, it is possible to
choose an orthonormal basis spannedpyThis means that any can be represented as

w=3 gw, a7)
.Z !
wherec; = wTwi*. With a linear denoising functiofy,, the unnormalised estimate™ is

Xfl (Z cS ) X qu“n Zc,Xfl,n s)=T ZCi)\iwi*, (18)
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Figure 1: (a) Original sources, (b) scatter-plot of the mixtures, (c) sphe@@ X and (d) denoised
dataZ = XD*. The dashed lines depict the mixing vectors and the solid lines the largest
eigenvector. The curves denote the standard deviation of the projedtitme alata in
different directions.
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where); is theith eigenvalue corresponding tg ands’ = w;TX. The normalisation step (11)
changes the contributions of the fixed points by equal fractions. Aftiéerations, the relative

contributions of the fixed points thus change fr@;rrinto E;;ﬂ
J

If there are two fixed pointe/;” andwj that have identical eigenvaluas= Aj, the linear DSS
cannot separate between the two. This means, for instance, that it isssilble to separate Gaus-
sian sources that have identical autocovariance matiiee,ss = Zs;5; Or in other words sources
whose time structures do not differ. Otherwise, as long as0, the algorithm converges globally
to the source with the largest eigenvalue.

The speed of convergence in the power method (hence in linear DS&)definearly on the
log-ratio of the largest (absolute) eigenvalues|lag/|A2|, where|A1| > |Ao| > |Ai|, i =3,...,N.
Note that absolute values of the eigenvalues have been used. While theatigs are usually
positive, there are cases where negative eigenvalues may exist,tfordasn the case of complex
data or when using the so-callsdectral shiftwhich is discussed in Sec. 2.5.

The above analysis for linear denoising functions makes no assumptimunsiaé data-generating
process. As such it does not extend to nonlinear denoising functi@asi®e there can be more or
less fixed points than the dimensionality of the data, and the fixed pejntge not, in general,
orthogonal. We shall therefore assume that the data are generatecepgmaeént sources by the
model (1) and the assumptions discussed in Sec. 2.1 heldthe mixing vectors are orthogonal
after sphering. Under these assumptions, the orthonormal basis dpayitiee mixing vectors
corresponds to fixed points of the DSS algorithm. This holds becausetfr@imdependence of
different sources; it follows that

.1
lim ?t;Sj (t)fi(s)=0 (19)

fori # j.

In the linear power method, eigenvalugsgovern the rate of relative changes of the contribu-
tions of individual basis vectors in the estimate. We shall ddéinal eigenvalued;(s) which play
similar roles in nonlinear DSS. Unlike the constant eigenvaljethe local eigenvalues have dif-
ferent values depending on the current source estimate. The forfirdlide is as follows. Assume
that the current weight vector and the subsequent unnormalised rigiMwector are

w=Y ci(sw; (20)

wh = > vi(swi . (21)

The local eigenvalue is defined to be the relative change in the contribution:

¥i(s)
¥i(s) =TG(9Ai(s) & Ai(s) = = Ok (22)
The idea of the DSS framework is that the user can tailor the denoising fartottbe task at hand.
The denoising can but need not be based on the E-step (2) derradchfgenerative model. The
purpose of defining the local eigenvalues is to draw attention to the factarsrining separation
quality and convergence speed.
The first thing to consider is whether the algorithm converges at all. Itssiple to view the

nonlinear denoising as linear denoising which is constantly adapted to theesgatimate. This

241



SARELA AND VALPOLA

means that different sources can have locally the largest eigenvhathe.ddaptation is consistent,
i.e., Ai(s) grows monotonically witlt;, all stable fixed points correspond to the original sources. In
general, the best separation quality and the fastest convergencéeigedcivhen\;(s) is very large
compared to al\j(s) with j # i in the vicinity of 5.

Sometimes it may be sufficient to separate a signal subspace. Then it ghdoothe denoising
function to make the eigenvalues corresponding to this subspace largeredrpéhe rest but the
eigenvalues do not need to differ within the subspace.

If the mixture model (1) holds and there is an infinite amount of data, the a®@an usually
be separated even in the linear case because minute differences in tivalkeige of the sources are
sufficient for separation. In practice, the separation is based on arfinitéer of samples and the
ICA model only holds approximately. Conceptually, we can think that therérae eigenvalues and
mixing vectors but the finite sample size introduces noise to the eigenvaludsadage between
mixing vectors. In practice the separation quality is therefore much better [bta¢ eigenval-
ues differ significantly around the fixed points and this is often easiesthievacwith nonlinear
denoising which utilises a lot of prior information.

2.4 Deflation

The classical power method has two common extensions: deflation andasghifit They are
readily available for the linear DSS since it is equivalent to the power metpplikd to filtered
data via Eqg. (2.2). It is also relatively straightforward to apply them in thdinear case.

Linear DSS algorithms converge globally to the source whose eigenvadubénkargest magni-
tude. Nonlinear DSS algorithms may have several fixed points but eveit theseful to guarantee
that the algorithm converges to a source estimate which has not beeregktyat The deflation
method is a procedure which allows one to estimate several sources bydigrapiplying the DSS
algorithm several times. The convergence to previously extractedesoigrprevented by making
their eigenvalues zeravyh = w — AATw (Luenberger, 1969), wher now contains the already
estimated mixing vectors.

Note that in this deflation scheme, it is possible to use different kinds ofislaggrocedures
when the sources differ in characteristics. Also, if more than one s@estimated simultaneously,
the symmetric orthogonalisation methods proposed for symmetric FastiCA(idgn, 1999) can
be used. It should be noted, however, that such symmetric orthogdimalisannot separate sources
with linear denoising where the eigenvalues of the sources are globalliacbns

2.5 Spectral Shift

As discussed in Sec. 2.2, the matrix multiplication (15) in the power method do@samote the
largest eigenvalue effectively compared to the second largest elgeriféhey have comparable
values. The convergence speed in such cases can be increasedaed spectral shift(Wilkin-
son, 1965) which modifies the eigenvalues without changing the fixed pdinhthe fixed point of
the DSS algorithm,

AW = XfT(s)/T. (23)

2. The set of the eigenvalues is often called the eigenvalue spectrum.
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If the denoising function is multiplied by a scalar, the convergence of theitigodoes not change
in any way because the scaling will be overruled by the normalisation stg¢p Allleigenvalues
will be scaled but their ratios, which are what count in convergeneehatraffected.

Adding a multiple ofsinto f(s) does not affect the fixed points becadx& [ w. However the
ratios of the eigenvalues get affected and hence the convergerem dpesummaryf(s) can be
replaced by

a(s)[f(s) +B(s)s], (24)

wherea (s) andf(s) are scalars. The multiplier(s) is overruled by the normalisation step (11) and
has no effect on the algorithm. The tefdfs)s is turned intoT 3(s)w in the re-estimation step (8)
and does affect the convergence speed but not the fixed pointglavit can turn a stable fixed
point unstable or vice versa). This is because all eigenvalues areddbyffis):

X[f(s) +B(s)S]T /T = MW" + B(s )W* = [\ + B(S")]w*.

The spectral shift usinf(s) modifies the ratios of the eigenvalues and the ratio of the two largest
eigenvalued becomes[A1 + B(S)]/[A2 + B(S)]| > |A1/A2|, provided thatB(s) is negative but not
much smaller thar-A,. This procedure can greatly accelerate convergence.

For very negativg(s), some eigenvalues will become negative. In fadd(#) is small enough,
the absolute value of the originally smallest eigenvalue will exceed that ofribmally largest
eigenvalue. Iterations of linear DSS will then minimise the eigenvalue rathenthaimise it.

We suggest that it is often reasonable to shift the eigenvalue cordiggoto the Gaussian
signalv to zero. Some eigenvalues may then become negative and the algorithmaeargeo
to fixed points corresponding to these eigenvalues rather than the pasigge In many cases,
this is perfectly acceptable because, as will be further discussed irBSe@ny deviation from
the Gaussian eigenvalue is indicative of signal. A side effect of a negaienvalue is that the
estimatew changes its sign at each iteration. This is not a problem but needs to bim kejmd
when determining the convergence.

Since the convergence of the nonlinear DSS is governed by local elgesythe spectral shift
needs to be adapted to the changing local eigenvalues to achieve optimalgaste speed. In
practice, the eigenvalug, of a Gaussian signal can be estimated by lineari§{sgaround the
current source estimage

f(s+ As) =~ f(s) + AsJ(s) (25)
Mo(8) ~ —f(S“‘Q iGN —sv‘l(s)vT JT =vI(VT/T (26)
B(S) = E[-A(S)] ~ —trd(s)/T 27)

The last step follows from the fact that the elements afe mutually uncorrelated and have zero
mean and unit variance. Hedgs) denotes the Jacobian matrix ) computed as. For lin-

ear denoisingl(s) = D and hence3 does not depend os If denoising is instantaneouse.,

f(s) = [f1(s(1)) f2(s(2)) ...], the shift can be written g¥s) = — 3 f/(s(t))/T. This is the spectral
shift used in FastICA (Hyarinen, 1999), but it has been justified as an approximation to Newton'’s
method and our analysis thus provides a novel interpretation.

3. Since the denoising operation presumably preserves some of tiaamghnoise, it is reasonable to assume that all
eigenvalues are originally positive.
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Sometimes the spectral shift turns out to be either too modest or too strodinglea slow
convergence or lack of convergence, respectively. For this neasosuggest a simple stabilisation
rule, henceforth called 179-rule: instead of updatninto wney defined by Eq. (11), it is updated
into

AW = Wnew— W, (29)

wherey is the step size and the orthogonalisation has been added in case seweras sre to be
extracted. Originallyy = 1, but if the consecutive steps are taken in nearly opposite directiens,
the angle betweeAw and Awyq is greater than 179 theny = 0.5 for the rest of the iterations.
A stabilised version of FastiICA has been proposed bydtyen (1999) as well and a procedure
similar to the one above has been used. The different speedup techoapsdered above, and
some additional ones, are studied further by Valpola creis (2004).

Sometimes there are several signals with similar large eigenvalues. It mayetirapdssible to
use spectral shift to accelerate their separation significantly becassebifeigenvalues that would
assume very negative values exceeding the signal eigenvalues in magittitat case, it may be
beneficial to first separate the subspace of the signals with large digesnfiaom the smaller ones.
Spectral shift will then be useful in the signal subspace.

3. Approximation for the Objective Function

The virtue of the DSS framework is that it allows one to develop procedimaice separation
algorithms without referring to an exact objective function or a generativdel. However, in many
cases an approximation of the underlying objective function is neverthesesul. In this section,
we propose such an approximation (Sec. 3.1) and discuss its uses, igatuaitoring (Sec. 3.2)
and acceleration of convergence (Sec. 3.3) as well as analysisavhtiep results (Sec. 3.4).

3.1 The Objective Function of DSS

The power-method version of the linear DSS algorithm maximises the varjamtg||>. When
the denoising is performed for the source estimétgs= sD, the equivalent objective function is
g(s) = sDs" = sfl_(s). We propose this formula as an approximatgfor the objective function
for nonlinear DSS as well:

G(s) =sf (s). (30)

There is, however, an important caveat to be made. Note that Eq. (2ddié@scthe scalar func-
tionsa(s) andf(s). This means that functionally equivalent DSS algorithms can be implemented
with slightly different denoising functionf§s) and while they would converge exactly to the same
results, the approximation (30) might yield completely different values. ¢ty fay tuninga(s),

B(s) or both, the approximatiog($) could be made to yield any function which need not have any
correspondence to the trgés).

Due toa(s) andf(s), it seems virtually impossible to write down a simple approximation of
g(s) that could not go wrong with a malevolent choicef (). In the following, however, we argue
that Eg. (30) is in most cases a good approximation and it is usually easydk whether it behaves
as desired—yields values which are monotonic in signal-to-noise ratio (SNiRjloes not,a(s)
andp(s) can be easily tuned to correct this.
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Let us first check what would be the DSS algorithm maximigj(g). "Obviously, the approxi-
mation is good if the algorithm turns out to use a denoising similéfdo The following Lagrange
equation holds at the optimum:

Ow[d(s) — € h(w)] =0, (31)

whereh denotes the constraints under which the optimisation is performed amne the corre-
sponding Lagrange multipliers. In this case, only unit-length projection x®est@re considered,
i.e, h(w) =w™w —1=0, and it thus follows that

XOs8' (s) — 28w = 0. (32)

Substituting 2 with the appropriate normalising factor which guarantge$| = 1 results in the
following fixed point:
XOG" ()
W= -—— 33
X7 3

Usings=w'X and (30), and omitting normalisation yields
wt =X[fT(s)+J7(5)s'], (34)

whereld is the Jacobian df. This should conform with the corresponding steps (9) and (10) in the
nonlinear DSS which usd$s) for denoising. This is true if the two terms in the square brackets
have the same formge., f(s) 0 sJ(s).

As expected, in the linear case the two algorithms are exactly the same bdwudaeobian is
a constant matrix anfs) = sJ. The denoised sources are also proportionaliXs) in some special
nonlinear cases, for instance, wheg) = s".

3.2 Negentropy Ordering

The approximation (30) can be readily used for monitoring the conveegafiiaSS algorithms. Itis
also easy to use it for ordering the sources based on their SNR if kswaraes are estimated using
DSS with the samé(s). However, simple ordering based on Eq. (30) is not possible if differen
denoising functions are used for different sources because thexapgation does not provide a
universal scaling.

In these cases it is useful to order the source estimates by their negentnagh is a nor-
malised measure of structure in the signal. Differential entiémf a random variable is a measure
of disorder and is dependent on the variance of the variable. Neggrit@ normalised quantity
measuring the difference between the differential entropy of the compand a Gaussian compo-
nent with the same variance. Negentropy is zero for the Gaussian distnilaumibnon-negative for
all distributions since among the distributions with a given variance, the @audistribution has
the highest entropy.

Calculation of the differential entropy assumes the distribution to be knowsually this is
not the case and estimation of the distribution is often difficult and computatiodgeifyanding.
Following Hyvarinen (1998), we approximate the negentrdijg) by

N(s) = H(v) —H(s) ~ ng[d(s) — §(v)]?, (35)

wherev is a normally distributed variable. The reasoning behind Eq. (35) isgitsatcarries in-
formation about the distribution &f If §(s) equalsg(v), there is no evidence of the negentropy to
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be greater than zero, so this is whe(s) should be minimised. A Taylor series expansiorNg$)
w.r.t. §(s) aroundg(v) yields the approximation (35) as the first non-zero term.

Comparison of signals extracted with different optimisation criteria presuraggigweighting
constants)g are known. We propose tha} can be calibrated by generating a signal with a known,
nonzero negentropy. Negentropy ordering is most useful for sigvailsh have a relatively poor
SNR—the signals with a good SNR will most likely be selected in any case. fbhense choose
our calibration signal to have SNR of 0 dBg., it contains equal amounts of signal and noise in
terms of energyss = (v +sopt)/\/§, wheresopt is a pure signal having no noise. It obeys fully
the signal model implicitly defined by the corresponding denoising funéti@incesyp: andv are
uncorrelatedss has unit variance. The entropywf/2 is

H(v/v2) =H(v)+logl/v2=H(v)—1/2log2.

Since the entropy can only increase by adding a second, indepeimgteaitssy;, H(ss) > H(v) —
1/2log2. It thus holdN(ss) = H(v) —H(ss) < 1/2log2. One can usually expect thsgg; has a lot
of structure,i.e., its entropy is low. Then its addition t/+/2 does not significantly increase the
entropy. It is therefore often reasonable to approximate

N(ss) ~ 1/2log2= 1/2bit, (36)

where we chose base-2 logarithm yielding bits. Dependingog it may also be possible to
compute the negentropy(ss) exactly. This can then be used instead of the approximation (36).

The coefficients)g in Eq. (35) can now be solved by requiring that the approximation (35)
yields Eq. (36) forss. This results in

1
9= 2@ — o))

and finally, substitution of the approximation of the objective function (3@) &g. (37) into Eq.
(35) yields the calibrated approximation of the negentropy:

bit (37)

2
N(S) ~ [sfT(s) —viT(v)]

T =

3.3 Spectral Shift Revisited

In Sec. 2.5, we suggested that a reasonable spectral shift is to movgeheadue corresponding
to a Gaussian signa&lto zero. This leads to minimising(s), when the largest absolute eigenvalue
is negative. It does not seem very useful to mining&®), a function that measures the SNR of the
sources, but as we saw with negentropy and its approximation (35) s\@kle< g(v) are, in fact,
indicative of signal. A reasonable selection fois thus—A, given by (27) which leads linear DSS
to extremisegy(s) — g(v) or, equivalently, to maximise the negentropy approximation (35).

A well known example where the spectral shift by the eigenvalue of askausignal is use-
ful is the mixture of both super- and sub-Gaussian distributions. A DSSithgodesigned for
super-Gaussian distributions would lead\to A, for super-Gaussian ardd< A, for sub-Gaussian
distributions A, being the eigenvalue of the Gaussian signal. By shifting the eigenvalugspec
by —Ay, the most non-Gaussian distributions will result in the largest absoluteveiges regard-
less of whether the distribution is super- or sub-Gaussian. By using ¢#ograpshift it is therefore
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possible to extract both super- and sub-Gaussian distributions with @itgnecheme which is
designed for one type of distribution only.

Consider for instancgs) = tanhs which can be used as a denoising function for sub-Gaussian
signals while, as will be further discussed in Sec. 4.8.3,tanhs = —(tanhs— s) is a suitable
denoising for super-Gaussian signals. This shows that dependingearhtice of3, DSS can
find either sub-Gaussiaf8 & 0) or super-Gaussiad (= —1) sources. With the FastICA spectral
shift (27), B will always lie in the range-1 < B < tantf 1— 1 ~ —0.42. In generalp will be closer
to —1 for super-Gaussian sources which shows that FastICA is able tbitsdspectral shift to the
source distribution.

3.4 Detection of Overfitting

In exploratory data analysis, DSS is very useful for giving better insigh the data using a linear
factor model. However, it is possible that DSS extracts structures thaluaréo noisej.e., the
results may be overfits.

Overfitting in ICA has been extensively studied b§r&a and Vidario (2003). It was observed
that it typically results in signals that are mostly inactive, except for a simijfke sin DSS the type
of the overfitted results depends on the denoising criterion.

To detect an overfitted result, one should know what it looks like. Astdimsroximation, DSS
can be performed with the same amount of i.i.d. Gaussian data. Then allulite present cases of
overfitting. An even better characterisation of the overfitting results canbtzéned by mimicking
the actual data characteristics as closely as possible. In that case it isantgormake sure that
the structure assumed by the signal model has been broken. Both thadBamgerfitting test and
the more advanced test are used throughout the experiments in Sebs35.2—

Note that in addition to visual test, the methods described above provide ua githntitative
measure as well. Using the negentropy approximation (38), we can setshald under which the
sources are very likely overfits and do not carry much real structaréhe simple case of linear
DSS, the negentropy can be approximated easily using the correspeigimyalue.

4. Denoising Functions in Practice

DSS is a framework for designing source separation algorithms. The idbkatithe algorithms
differ in the denoising functiofi(s) while the other parts of the algorithm remain mostly the same.
Denoising is useful as such and therefore there is a wide literature lissicpted denoising meth-
ods to choose from (see Anderson and Moore, 1979). Moreorerusually has some knowledge
about the signals of interest and thus possesses the information neededdising. In fact, quite
often the signals extracted by BSS techniques would be post-procegsetiite noise in any case
(see Vigneron et al., 2003). In the DSS framework, the available degoisithods can be directly
applied to source separation, producing better results than purely blimidees. There are also
very general noise reduction techniques such as wavelet denoisimpliD et al., 1995; Vetterli
and Kovacevic, 1995) or median filtering (Kuosmanen and Astola, 198hwcan be applied in
exploratory data analysis.

In this section, we discuss denoising functions ranging from simple bugifolinear ones to
sophisticated nonlinear ones with the goal of inspiring others to try out tiveidenoising methods.
The range of applicability of the examples spans from cases where kagevébout the signals is
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relatively specific to almost blind source separation. Many of the dendigirgjions discussed in
this section are applied in experiments in Sec. 5.

The DSS framework has been implemented in an open-source and pubtitgbéey MATLAB
package (DSS, 2004). The package contains the denoising functidepaedups discussed in this
paper and in another paper (Valpola aréde®, 2004). It is modular and allows for custom-made
functions (denoising, spectral shift, and other parts) to be nested imtbgrgram.

Before proceeding to examples of denoising functions, we note that Gt wot be very
useful if very exact denoising would be needed. Fortunately, this iallysoot the case and it
is enough for the denoising functidifs) to remove more noise than signal (see Hymen et al.,
2001b, Theorem 8.1), assuming that the independent source mods! Adid is because the re-
estimation steps (10) and (11) constrain the sostttethe subspace spanned by the data. Even if
the denoising discards parts of the signal or creates nonexistent signalgimation steps restore
them.

If there is no detailed knowledge about the characteristics of the signaétavih, it is useful
to bootstrap the denoising functions. This can be achieved by starting Vetived/ general signal
characteristics and then tuning the denoising functions based on anaiitsestructure in the noisy
signals extracted in the first phase. In fact, some of the nonlinear DSBtlalge can be regarded
as linear DSS algorithms where a linear denoising function is adapted to trmespleading to
nonlinear denoising.

4.1 Detailed Linear Denoising Functions

In this section, we consider several detailed, simple but powerful, lin@wising schemes. We
introduce the denoisings using the denoising mdxiwhen feasible. We consider efficient imple-
mentation of the denoisings as well.

The eigenvalue decompaosition (14) shows that any denoising in linear @83 edmplemented
as an orthonormal rotation followed by a point-wise scaling of the samplesogatibn back to the
original space. The eigenvalue decomposition of the denoising niawiten offers good intuitive
insight into the denoising function as well as practical means for its implementation

4.1.1 ON/OFF-DENOISING

Consider designed experimengsg, in the fields of psychophysics or biomedicine. It is usual to
control them by having periods of activity and non-activity. In suchegipents, the denoising can
be simply implemented by

D =diagm), (39)

whereD refers to the linear denoising matrix in Eg. (9) and

(40)

1,for the active parts
0, for the inactive parts

This amounts to multiplying the source estimatby a binary mask, where ones represent the
active parts and zeroes the non-active parts. Notice that this maskiogdpre actually satisfies
D = DDT. This means that DSS is equivalent to the PCA applied to dendiseXD even with

4. By masking we refer to point-wise multiplication of a signal or a transédiom of a signal.
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exactly the same filtering. In practice this DSS algorithm could be implemented Ayapflied to
the active parts of the data with the sphering stage would still involving the vadadéeset.

4.1.2 DENOISING BASED ONFREQUENCY CONTENT

If, on the other hand, signals are characterised by having certaineiney components, one can
transform the source estimate to a frequency space, mask the speemgumijth a binary mask,
and inverse transform to obtain the denoised signal:

D=VApV',

whereV is the transform/\p is the matrix with the mask on its diagonal, avid is the inverse
transform. The transforrv can be implemented for example with the Fourier transfoomby
discrete cosine transform (DCT). After the transform, the signal is fdtesing the diagonal matrix

A, i.e, by a point-wise scaling of the frequency bins. Finally the signal is inveesesformed
usingVT. In the case of linear time-invariant (LTI) filtering, the filtering matrix has @pliz
structure and the denoising characteristics are manifested only in the diagainix \p, while the
transforming matrix/ represents a constant rotation. When this is the case, the algorithm can be
further simplified by imposing the transformation on the sphered X¥afehen the iteration can be
performed in the transformed basis. This trick has been exploited in theXpstiment of Sec. 5.2.

4.1.3 PECTROGRAMDENOISING

Often a signal is well characterised by what frequencies occur attimhes. This is evident.g,
in oscillatory activity in the brain where oscillations often occur in bursts. Rangple of source
separation in such data is studied in Sec. 5.2. The time-frequency behasgiobe described
by calculating DCT in short windows in time. This results in a combined time andiérexy
representation, i.e., a spectrogram, where the masking can be applied.

There is a known dilemma in the calculation of the spectrogram: detailed destrgftibe
frequency content does not allow detailed information of the activity in timevaredversa. In other
words, a large amount of different frequency biRswill result in a small amount of time locations
T;. Wavelet transforms (Donoho et al., 1995; Vetterli and Kovacevichl8@ve been suggested
to overcome this problem. There an adaptive or predefined basisgediffeom the pure sinusoids
used in Fourier transform or DCT, is used to divide the resources of timiéraquency behaviour
optimally in some sense. Another possibility is to use the so-called multitaper teehifgtcival
and Walden, 1993, Ch. 7).

Here we apply an overcomplete-basis approach related to the above mdtisidad of having
just one spectrogram, we use several time-frequency analyses wétediff;’'s andTs’s. Then the
new estimate of the projection™ is achieved by summing the new estimates of each of the
time-frequency analysesr™ = y;w;".

4.1.4 DENOISING OFQUASIPERIODIC SIGNALS

As a final example of denoising based on detailed source charactemstissder Fig. 2a. Let us
assume to be known beforehand that the sigrnads a repetitive structure and that the average

5. Note that the eigenvalue decomposition contains real rotations instezmngiex, but Fourier transform is usu-
ally seen as a complex transformation. To keep the theory simple, wéeomsal Fourier transform where the
corresponding sine and cosine terms have been separated in diffier@ents.
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repetition rate is known. The quasi-periodicity of the signal can be usedrform DSS to get a
better estimate. The denoising proceeds as follows:

5 \ \
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Figure 2: a) Current source estimateof a quasiperiodic signal b) Peak estimates c) Average signal
Save (two periods are shown for clarity). d) Denoised source estingate e) Source
estimate corresponding to the re-estimaigg,..

Estimate the locations of the peaks of the current source estitfitg 2b).
Chop each period from peak to peak.
Dilate each period to a fixed length L (linearly or nonlinearly).

Average the dilated periods (Fig. 2c).

a . nhpoE

Let the denoised source estimatebe a signal where each period has been replaced by the
averaged period dilated back to its original length (Fig. 2d).

The re-estimated signal in Fig. 2e, based on the denoised signsthows significantly better
SNR compared to the original source estingta Fig. 2a.

This averaging is a form of linear denoising since it can be implemented as mmaittiplica-
tion. Furthermore, it presents another case in addition to the binary masitiege DSS is equiva-
lent to the power method even with exactly the same filtering. It would not heteage from the
denoising matrixD itself thatD = DDT. However, this becomes evident should one consider the
averaging of source estimaté (Fig. 2d) that is already averaged.

Note that there are cases where chopping from peak to peak doesamahtge the best result.
This is especially true when the periods do not span the whole section fakitp peak, but there
are parts where the response is silent. Then there is a need to estimate the térige periods
separately.
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4.2 Denoising Based on Estimated Signal Variance

In the previous section, several denoising schemes were introducaitiof them, the details of the
denoising were assumed to be known. It is as well possible to estimate thisidgrspecifications
from the data. This makes the denoising nonlinear or adaptive. In this rIseet@ consider a
particular ICA algorithm in the DSS framework, suggesting modifications wimghove separation
results and robustness.

4.2.1 KURTOSISBASEDICA

Consider one of the best known BSS approaches, ICA by optimisatioe shtinple kurtosis of the
sources. The objective function is thefs) = 3 s*(t)/T —3(3 sz(t)/T)z. Since the source variance
has been fixed to unity, we can simply ug@) = S s*(t)/T and derive the functiori(s) from
gradient ascend. This yieldsg(s) = 4/Ts°, wheres® = [$3(1)s*(2) ...]. Selectinga(s) = T/4
andp(s) =0in Eqg. (24) then resultin

f(s)=¢. (41)

This implements an ICA algorithm with nonlinear denoising. So far, we havesftred to denois-
ing, but a closer examination of Eq. (41) reveals that one can, in faatpiete® as beings masked
by &%, the latter being a somewnhatinea estimate of signal variance and thus relating to SNR.

Kurtosis as an objective function is notorious for being prone to overfigmjproducing very
spiky source estimatesg&h and Vidario, 2003; Hywarinen, 1998). For illustration of this consider
Fig. 3. There one iteration of DSS using kurtosis-based denoising isnshéssume that via
some means, the source estimate shown in Fig. 3a has been reachedurtheseems to contain
increased activity in three portions (around time instances 1000, 23@Day. As well, it contains
a peak roughly at time instance 4700. The signal variance estingatthe mask is shown in Fig. 3b.
While it has boosted somewhat the broad activity compared to the silenttbarteagnification of
the peak is far greater. Thus the denoised source estghglég. 3c) has nearly nothing else except
the peak. The new source estimaig,, based on the new projectiavhey, is a clear spike having
little left of the broad activity.

The denoising interpretation suggests that the failure to extract the brtigitlyds due to a poor
estimate of SNR.

4.2.2 BETTERESTIMATE FOR THE SIGNAL VARIANCE

Let us now consider a related but better founded estimate. Assumgishaamposed of Gaussian
noise with a constant variancd and of a Gaussian signal with non-stationary variasgge). From
Eqg. (12) it follows that
o5(t)
ofy(t)’
whereo?,(t) = o2(t) + 02 is the total variance of the observation. This is also the maximum-a-
posteriori (MAP) estimate.

The kurtosis-based DSS (41) can be obtained from this MAP estimate if thal siriance is
assumed to be far smaller than the total variance. In that case it is reEstmassumes?, to
be constant and?(t) can be estimated bs?(t) — 2. Subtraction ofo? does not affect the fixed
points as it can be embedded in the tfdta) = —o3 in Eq. (24). Likewise, the division bg2,(t)
is absorbed bw(s).

st (t) = s(t)

(42)
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Figure 3: a) Source estimateb) Mask $(t) c) Denoised source estimate = f(s) = s° d) Source
estimate corresponding to the re-estimatagd,..

Comparison of Eq. (42) and Eq. (41) immediately suggests improvements tortbhsik-based
DSS. For instance, it is clear thatsf(t) is large enough, it is not reasonable to assumedfid) is
small compared t@?(t). Instead, the mask should saturate for lasgf¢). This already improves
robustness against outliers and alleviates the tendency to produce cpikg gstimates.

We suggest the following improvements over the kurtosis-based denaisiotjadn (41):

1. The estimates of signal variance and total variance are based aalssw&ervations. The
rationale of smoothing is the assumption of smoothness of the signal variaqeactice this
can be achieved by low-pass filtering the variance of the time, frequanayne-frequency
description ofs(t), yielding the approximation of total variance.

2. The noise variance is likewise estimated from the data. It should be sodheflkdoft min-
imum of the estimated total variances because the estimate can be expectes taniaawm
fluctuations. We suggest the following formula:

o5 = C (exp{E [log (oy(t) +03)] } — 03) - (43)

The noise variance? appears on both sides of the equation, but at the right-hand side, it
appears only to prevent rare small valuesgffrom spoiling the estimate. Hence, we suggest
to use the previously estimated value on the right-hand side. The co@stanined such that

the formula gives a consistent estimate of the noise variance if the sotiroatess, in fact,
nothing but Gaussian noise.

3. The signal variance should be close to the estimate of the total variance tménestimate of
the noise variance. Since a variance cannot be negative and the estfith&téotal variance
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has fluctuations, we use a formula which yields zero only when the totahearia zero but
which asymptotically approacheg,(t) — a? for large values of the total variance:

03(t) = \/Ofey(t) + 0 — 0. (44)

As an illustration of these improvements consider Fig. 4 where one iteratio®8fusing the
MAP estimate is shown. The first two subplots (Fig. 4a and b) are identicaletoribs using
kurtosis-based denoising. In Fig. 4c, the variance estimate is smoothedlosipass filtering.
Note that the broad activity has been magnified when compared to the spikalaime instance
4700. The noise levad?, calculated using Eq. (43), is shown using a dashed line. Corresgpndin
masking (Fig. 4d) results in a denoised source estimate using Eq. (42)) 8hbig. 4e. Finally, the
new source estimatgew is shown after five iterations of DSS in Fig. 4f. DSS using the MAP-based
denoising has clearly removed a considerable amount of backgrouse a® well as the lonely
spike.
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Figure 4: a) Source estimateb) §(t) ¢) Smoothed total variance with the noise level in dashed line
d) Denoising mask e) Denoised source estingath Source estimate after five iterations
of DSS.

The exact details of these improvements are not crucial, but we wanteovwaisat the denois-
ing interpretation of Eq. (41) can carry us quite far. The above estimhigged into Eq. (42) yield
a DSS algorithm which is far more robust against overfitting, does natugmthe spiky signal
estimates and in general yields signals with better SNRs than kurtosis.

Despite the merits of the DSS algorithm described above, there is still onkeprotith it.
While the extracted signals have excellent SNR, they do not necessarigpond to independent
sourcesi.e., the sources may remain mixed. This is because there is nothing in the dendigihg
could discard other sources. In terms of eigenvalues, vghern the vicinity of one of the fixed
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pointss’, the local eigenvalug;(s) is much larger than,, as it should, buh(s") may be large,
too, which means that the iterations do not remove the contribution of the neakees efficiently.

Assume, for instance, that two sources have clear-cut and nolapping times of strong ac-
tivity (02(t) > 0) and remain silent for most of the time4(t) = 0). Suppose that one source is
present for some time at the beginning of the data and another at the etid: ddirrent source
estimate is a mixture of both, the mask will have values close to one at the begamdnaft the
end of the signal. Denoising can thus clean the noise from the signal estbagiiecannot decide
between the two sources.

In this respect, kurtosis actually works better than DSS based on the iatyonaements. This
is because the mask never saturates and small differences in the strignselative contribu-
tions of two original sources in the current source estimate will be amplifiéis @roblem only
occurs in the saturated regime of the mask and we therefore suggest a wiagifieation of the
MAP estimate (42):

2u
fu(s) = s(t)it;—tﬁg

wherep is a constant slightly greater or equal to one. Note that this modification ilyuseaded
at the beginning of the iterations only. Once the source estimate is dominatee loy the original
sources and the contributions of the other sources fall closer to the Isvedethe values of the
mask are smaller for the other original sources possibly still present irstimeaged source.

Another approach is based on the observation that orthogonalising thegmedtorsA cancels
only the linear correlations between different sources. Higher-azdeelations may still exist.
It can be assumed that competing sources contribute to the currentceagatimate:o?,(t) =
02(t) + 02 + 02erdt), Wherea?, . {t) stands for the estimate of total leakage of variance from
the other sources. Valpola anér8h (2004) showed that decorrelating the variance-based masks
actively promotes the separation of the sources. This bares resemtugroposals of the role of
divisive normalisation on cortex (Schwartz and Simoncelli, 2001) and tol#ssical ICA method
called JADE (Cardoso, 1999).

The problems related to kurtosis are well known and several other impnovethear functions
f(s) have been proposed. However, some aspects of the above denempegjally smoothing
of the total-variance estima®g(t), have not been suggested previously although they arise quite
naturally from the denoising interpretation.

; (45)

4.2.3 TANH-NONLINEARITY INTERPRETED ASSATURATED VARIANCE ESTIMATE

A popular replacement of the kurtosis-based nonlinearity (41) is therbgjie tangent tants)
operating point-wise on the sources. It is generally considered to berotmrst against overfitted
and spiky source estimates than kurtosis. By selectiisy= —1 andp(s) = —1, we arrive at

fi(s) = s(t) — tanHs(t)] = s(t) <1— %) . (46)
Now the term multiplyings(t) can be interpreted as a mask related to SNR. Unlike theemaask
s?(t) resulting from kurtosis, the tanh-based mask (46) saturates, thougkmdast.
The variance based mask (45) with the improvements considered abeve affiew interpre-
tation for the robustness of the tanh-mask. Parameter vafiiesl andu = 1.08 give an excellent
fit between the masks as shown in Fig. 5. The advantages of the denoisprgpase are thai?
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0.1f —— tanh-based mask B
— - variance-based mas

Figure 5: The tanh-based denoising makk tanh(s) /s is shown together with the variance-based
denoising mask proposed here. The parameters in the proposedwessi? = 1 and
p= 1.08. We have scaled the proposed mask to match the scale of the tanh-tesed m

can be tuned to the source estimatean be controlled during the iterations and the estimate of the
signal variance can be smoothed. These features contribute to theresiatginst overfitting and
spiky source estimates.

4.3 Other Denoising Functions

There are cases where the system specification itself suggests sonsngeschemes. One such
case, CDMA transmission, is described in Sec. 5.4. Another example isesseparation with a
microphone array combined with speech recognition. Many speechnitiongsystems rely on

generative models which can be readily used to denoise the speech.signals

Often it would be useful to be able to separate the sources onknen real time. Since there
exists online sphering algorithms (see Douglas and Cichocki, 1997; (Ja),Ir@al time DSS can
be considered as well. One simple case of online denoising is presented/mgraverage filters.
Such online filters are typically not symmetric and the eigenvalues (14) of thiexi¥®X ™ may
be complex numbers. These eigenvalues come in conjugate pairs anclagoas to sine-cosine
pairs. The resulting DSS algorithm converges to a 2-D subspace ponaiag to the eigenvalues
with largest absolute magnitude, but fails to converge within the subspacesider, for example,
a case of two harmonic oscillatory sources. It has a rotational invariarecepace defined by the
corresponding sine-cosine pair. Batch DSS algorithms with temporally symrdetraising would
converge to some particular rotation, but non-symmetric on-line denoisirfgsfy) = s(t — 1)
would keep oscillating between sine and cosine components.
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The above is a special case of subspace analysis and there amld stver examples where
the sources can be grouped to form interesting subspaces. This tam ¢tesee.g, when all the
sources are not independent of each others, but form subsihatese mutually independent. It
may be desirable to use the information in all sou8ésr denoising any particular sourse This
leads to the following denoising functiog = fi(S). Some form of subspace rules can be used to
guide the extraction of interesting subspaces in DSS. It is possible torfoethg the independence
criterion at the borders of the subspaces. This can be achieved bpanating a neighbourhood
denoising rule in DSS, resulting in a topographic ordering of the souftes suggests a fast fixed-
point algorithm that can be used instead of the gradient-descent-baseglaphic ICA (Hywarinen
etal., 2001a).

Itis also possible to combine various denoising functions when the scaneebaracterised by
more than one type of structure. Note that the combination order might bialdiarche outcome.
This is simply because, in gener8l(f;(s)) # f; (fi(s)) wheref; andf; present two different linear
or nonlinear denoisings. As an example, consider the combination of the énézf-mask (39)
and (40), and the nonlinear variance-based mask (45): the noise estitnatiomes significantly
more accurate when the on/off-masking is performed only after the nontieeaising.

Finally, a source might be almost completely known. Then it is possible to apgétaled
matched filter to estimate the mixing coefficients or the noise level. Detailed matchesi Hdiee
been used in Sec. 5.1 to get an upper limit of the SNRs of the source estimates.

4.4 Spectral Shift and Approximation of the Objective Function with Mask-Based
Denoisings

In Sec. 3.1, it was mentioned that a DSS algorithm may work perfectly fingBbymay still fail to
approximate the true objective functionafs) and(s) are not selected suitably. As an example,
consider the mask-based denoisings where denoising is implemented by mudtighigirsource
point-wise by a mask. Without loss of generality, it can be assumed that théas been rotated
with V and the masking operates directly on the source. According to Eqg@D)= 3, s?(t)m(t),
wherem(t) is the mask. If the mask is constant w.stdenoising is linear and Eg. (30) is an exact
formula, but let us assume that the mask is computed based on the cutnest sstimats.

In some cases it may be useful to normalise the mask and this could be implemeseedra
ways. Some possibilities that may come to mind are to normalise the maximum value anthe s
of squared values of the mask. While this type of normalisation has no effettte behaviour of
DSS, it can render the approximation (30) useless. This is because a riafiatanask usually
corresponds to a source with a low SNR. However, after normalisatiorsutineof values in the
mask would be greatest for a maximally flat mask and this tends to produce dligis\of the
approximation ofy(s) conflicting with the low SNR.

As a simple example, consider the mask tonfe) = s?(t). This corresponds to the kurtosis-
based denoising (41). Now the sum of squared values of the mags&*{s), but so issf (s). If
the mask were normalised by dividing by the sum of squares, the approxinfa@ipwould always
yield a constant value of one, totally independers.of

A better way of normalising a mask is to hormalise the sum of the values. Th€B®ahould
always yield approximately the same value if the mask and source estimaterelated but the
value would be greater for cases where the magnitude of the sourceetated with the value of
the mask. This is usually a sign of a structured source and a high SNR.
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The above normalisation also has the benefit that the eigenvalue of aigbasigmal can be
expected to be roughly constant. Assuming that the maskdoes not depend very much on the
source estimate, the Jacobian mafr{g) of f(s) is roughly diagonal withm(t) as the elements on
the diagonal. The trace df(s) needed for the estimate of the eigenvalue of a Gaussian signal in
(27) is theny, m(t) and the appropriate spectral shift is

1
B=—5 3 m). (47)
The spectral shift can thus be approximated to be constant due to thelisatina.

5. Experiments

In this section, we demonstrate the separation capabilities of the algorithresjge®arlier. The
experiments can be carried out using the publicly available MATLAB paekB$S, 2004).

The experimental section contains the following experiments: First, in Seavé deparate ar-
tificial signals with different DSS schemes, some of which can be implementBddtyCA (1998);
Hyvarinen (1999). Furthermore, we compare the results to one standaralt@Athm, JADE
(1999); Cardoso (1999). In Secs. 5.2-5.3, linear and nonlineardlfg®ithms are applied exten-
sively in the study of magnetoencephalograms (MEG). Finally, in Sec. &cbyvery of CDMA
signals is demonstrated. In each experiment after the case of artifici@espuwve first discuss
the nature of the expected underlying sources. Then we describe twdekige in the form of
denoising.

5.1 Artificial Signals

Artificial signals were mixed to compare different DSS schemes and JAREI(So, 1999). Ten
mixtures of the five sources were produced and independent whitewiassadded with different
SNRs ranging from nearly noiseless mixtures of 50dB to -10dB, a vesyrase. The original
sources and the mixtures are shown in Figs. 6a and 6b respectivelpiXtuees shown have SNR
of 50 dB.

5.1.1 UNEAR DENOISING

In this section, we show how the simple linear denoising schemes describedt.id.$ can be
used to separate the artificial sources. These schemes require pvde#éige about the source
characteristics.

The base frequencies of the first two signals were assumed to be kidwa.two band-pass
filtering masks were constructed around these base frequencies. ifthartti fourth source esti-
mates were known to have periods of activity and non-activity. The thilkmawn to be active
in the second quadrant and the fourth a definite period in the latter haly. Wéiee denoised using
binary masks in the time domain. Finally, the fifth source had a known quasiderepetition
rate and was denoised using the averaging procedure described khBéand Fig. 2. Since all
the five denoisings are linear, five separate filtered data sets werecptbdnd PCA was used to
recover the principal components. The separation results are desiriBec. 5.1.3 together with
the results of other DSS schemes and JADE.
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Figure 6: (a) Five artificial signals with simple frequency content (signals 1 andig)pke on/off
non-stationarity in time domain (signals 3 and 4) or quasi-periodicity (sigalb) Ten
mixtures of the signals in (a).

5.1.2 NONLINEAR EXPLORATORY DENOISING

In this section, we describe an exploratory source separation of theiartignals. One author of
this paper gave the mixtures to the other author whose task was to separatigittad signals. The
testing author did not receive any additional information, so he wasdaocapply a blind approach.
He chose to use the masking procedure based on the instantaneousevastimate, described in
Sec. 4.2. To enable the separation of both sub- and super-Gaussigessm the MAP-based
signal-variance-estimate denoising, he used the spectral shift (4énstive convergence, he used
the 179-rule to control the step sigg28). Finally, he did not smoot¥(t) but used it directly as
the estimate of the total instantaneous variasggt).

Based on the separation results of the variance-based DSS, he flatisrd specific masks for
each of the sources. He chose to denoise the first source in frgo@main with a strict band-pass
filter around the main frequency. The testing author decided to denoisedtwedssource by a sim-
ple denoising functiofi(s) = sign(s). This makes quite an accurate signal model though it neglects
the behaviour of the source in time. The third and fourth signal seemed ¢oplesiods of activity
and non-activity. He found an estimate for the active periods by inspetttingpstantaneous vari-
ance estimates’, and devised simple binary masks. The last signal seemed to consist oétitgr
positive and negative peaks with a fixed inter-peak-interval as wedlrag sidditive Gaussian noise.
The signal model was tuned to model the peaks only.

5.1.3 SPARATION RESULTS

In this section, we compare the separation results of the linear denoismd($4.), variance-based
denoising and adapted denoising (Sec 5.1.2) to other DSS algorithmstitujgay we compare to
the popular denoising schenfgs) = s® andf(s) = tanh(s), suggested for use with FastICA (1998).
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We compare to JADE (Cardoso, 1999) as well. During sphering in JAREuimber of dimensions
was either reduced(= 5) or all the ten dimensions were kept=£ 10).

We restrained from using deflation in all the different DSS schemes to awufidring from
cumulative errors in the separation of the first sources. Instead oneeseas extracted with each
of the masks several times using different initial veatountil five sufficiently different source
estimates were reached (see Himberg anddrdyen, 2003; Meinecke et al., 2002, for further pos-
sibilities along these lines). Deflation was only used if no estimate could be floural the 5
sources. This was often the case for poor SNR under 0dB.

To get some idea of statistical significance of the results, each algorithmsedsto separate
the sources ten times with the same mixtures, but with different measuremesd.nbie average
SNRs of the sources are depicted in Fig. 7. The straight line above all38esBhemes represents
the optimal separation. It is achieved by calculating the unmixing matrix explicithgubke true
sources.

60
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soll linear DSS
-o- pow3 DSS
-+ - tanh DSS
@ 401 —— variance—based DSS
g ~o adapted DSS
DZ: 30H V- JADE, n=5 X PR T
n -&- JADE, n =10 S I
Q Y- §S DD
[ - TR « . S
5 20 A e BT A T T T E
o
(2]
S 10
g
®  of
-10r%
_20 | | | | | | |
-10 0 10 20 30 40 50
data SNR / dB

Figure 7:Average SNRs for the estimated sources averaged over 10 runs.

With outstanding SNR> 20 dB), linear DSS together with JADE and kurtosis-based DSS
perform the worst, while the other, nonlinear DSS approaches: tasdgdbaophisticated variance
estimate and the adapted one perform better. The gap between thess igrougre than two
standard deviations of the 10 runs, making the difference statistically sagmtific

With moderate SNRs (between 0 and 20 dB), all algorithms perform quite &llite poor SNR
(< 0 dB), the upper group consist of the linear and adapted DSS as weé aptilmal one and the
lower group consists of the blind approaches. This seems reasoriab&ejtsnakes sense to rely
more on prior knowledge when the data are very noisy.
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5.2 Exploratory Source Separation in Rhythmic MEG Data

In biomedical research it is usual to design detailed experimental frarkeworexamine inter-
esting phenomena. Hence it offers a nice field of application for both bliddspecialised DSS
schemes. In the following, we test the developed algorithms in signal anafysagnetoencephalo-
grams (MEG, Fumalainen et al., 1993). MEG is a completely non-invasive brain imaging technique
measuring the magnetic fields on scalp caused by synchronous activitydortbg.

Since the early EEG and MEG recordings, cortical electromagnetic rhytlames glayed an
important role in clinical researclke.g, in detection of various brain disorders, and in studies of
development and aging. It is believed that the spontaneous rhythms,aredifiparts of the brain,
form a kind of resting state that allows for quicker responses to stimuli byetlspecific areas.
For example deprivation of visual stimuli by closing one’s eyes inducesmbeda-rhythm on the
visual cortex, characterised by a strong 8-13 Hz frequency compoRer a more comprehensive
discussion regarding EEG and MEG, and their spontaneous rhythnibesgerks by Niedermeyer
and Lopes da Silva (1993) andakfalainen et al. (1993).

In this paper, we examine an MEG experiment where the subject is askeldtaoy closing
her eyes (producing-rhythm). There is also a control state where the subject has her egas op
The data has been sampled with= 200 Hz, and there aré = 65536 time samples giving total
of more than 300 seconds of measurement. The magnetic fields are maasinged 122-channel
MEG device. Some source separation results of this data have beeteddppreh et al. (2001).
Prior to any analysis, the data are high-pass filtered with cut-off frexyuefinl Hz, to get rid of the
dominating very low frequencies.

5.2.1 DENOISING INRHYTHMIC MEG

Examination of the average spectrogram in Fig. 8a reveals clear strsigtdieating the existence
of several, presumably distinct, phenomena. The burst-like activity dr&QrHz and the steady
activity at 50 Hz dominate the data, but there seem to be some weaker pmenameell,e.g,
on frequencies higher than 50 Hz. To amplify these, we not only spherddta spatially but
temporally as well. This temporal decorrelation actually makes the separatiter lhat finding the
weaker phenomena easier. The normalised and filtered spectrogramwis ishFig. 8b.

The spectrogram data seems well suited for demonstrating the explodat@rgnalysis use
of DSS. As some of the sources seem to have quite steady frequerteytciontime, along with
others changing in time, we used two different time-frequency analyseéssasibed in Sec. 4.1.3
with lengths of the spectrfs = 1 andT; = 256. The first spectrogram is then actually the original
frequency-normalised and filtered data with time information only.

We apply the several noise-reduction principles based on the estimatadceaof the signal
and the noise discussed in Sec. 4.2. Specifically, the power spectrofjtamsource estimate is
smoothed over time and frequency using 2-D convolution with Gaussian wgd®he standard
deviations of the Gaussian windows wexe= 8/mtandos = 8/1t After this, the instantaneous esti-
mate of the source variance is found using Eq. (44). Then we get tlogsdersource estimate using
Eq. (45) together with the spectral shift (47). Initially we havelset1.3. This is then decreased
by 0.1 every time DSS has converged, uptit 1 is reached. Finally, the new projection vector is
calculated using the stabilised version (28), (29) with the 179-rule in dodmsure convergence.
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Figure 8: (a) Averaged spectrogram of all 122 MEG channels. (b) Frequecsnalised spectro-
gram.

5.2.2 FPARATION RESULTS

The separated signals, depicted in Fig. 9, include several interestingesolDue to poor contrast
in Fig. 9, we show enhanced and smoothed spectrograms of selectedtintgrbut low contrast,
components (1a, 1b, 1c and 4c) in Fig. 10. There exist severalesowitha-activity (1a, 1d and
2b for example). The second and fifth source are clearly related to tergime. The third source
depicts an interesting signal caused probably by some anomaly in either theringalevice itself
or its physical surroundings. In source 4c, there is another, prddyardefactual source, composed
of at least two steady frequencies around 70 Hz.

The DSS approach described above seems to be reliable and fast: thealedeporrelation of
the data enabled the finding of very weak sources and yet we fourtaseleara-sources as well.
Valpola and @rek (2004) have further studied the convergence speed, reliability abititgtaf
DSS with various speedup methods, such as the spectral shift usedlDA=aSonvergence speed
exceeding standard FastICA by 50 % was reported.

Though quite a clear separation of the sources was achieved, soradatkogetween the sig-
nals remains. Better SNR and less talk would probably be achieved by tumirgetivising to
the characteristics of each different signal group. In the next seatiershow that with specific
knowledge it is possible to find even very weak phenomena in MEG data DSIBg

5.3 Adaptive Extraction of the Cardiac Subspace in MEG

Cardiac activity causes magnetic fields as well. Sometimes these are strdlegiedein MEG and
can pose a serious problem for the signal analysis of the neural pleeaoof interest. In this data,
however, the cardiac signals are not visible to the naked eye. Thusawetawdemonstrate the
capability of DSS to extract some very weak cardiac signals, using detaitedrgormation in an
adaptive manner.
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Figure 9: Spectrograms of the extracted components (comps. la—1e on thestapwmp
Time and frequency axes as in Fig. 8.

5.3.1 DENOISING OF THECARDIAC SUBSPACE

A clear QRS complex, which is the main electromagnetic pulse in the cardiac cgolbe extracted
from the MEG data using standard BSS methods, such as kurtosis- dpaaeb-denoising. Due
to its sparse nature, this QRS signal can be used to estimate the places @frthehts. With the
places known, we can guide further search using the averaging B88seribed in Sec. 4.1. Every
now and then, we re-estimate the QRS onsets needed for the averaging DSS

When the estimation of the QRS locations has been stabilised, a subspacetmpased of
signals having activity phase-locked to the QRS complexes can be extracted

5.3.2 SPARATION RESULTS

Figure 11 depicts five signals averaged around the QRS complexesl @isimg the procedure
above® The first signal presents a very clear QRS complex, whereas thedsenercontains the

6. For clarity, two identical cycles of averaged heart beats are alslaysn.
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Figure 10: Enhanced and smoothed spectrograms of the selected componemtsgond to
sources 1a, 1b, 1c and 4c in Fig. 9). Time and frequency axes as iB.Fig.

small P and the T waves. An interesting phenomenon is found in the third sifpeaé is a clear
peak at the QRS onset, which is followed by a slow attenuation phase. Wemedhat it originates
from some kind of relaxing state.

Two other heart-related signals were also extracted. They both showradeibection during
the QRS complex, but have as well significant activity elsewhere. Thessigmals might present
a case of overfitting, which was contemplated in Sec. 3.4. To test this hgmtiee performed
DSS using the same procedure and the same denoising function, but foetiereed data. As the
estimated QRS onsets will then be misaligned, the resulting signals should bevetfits. The
results are shown in Fig. 12. The eigenvalues corresponding to the QRSeax and the second
signal having the P and T waves are approximately 10 times higher than tlogatiaigenvalue
of the reversed data. Thus they clearly exhibit some real structure iratheab already expected.
The eigenvalues corresponding to the last three signals are comparéideptincipal eigenvalue
of the reversed data, the two largest being somewhat greater. It @edds to expect that all three
carry some real structure as there is a nonzero correlation betweersthe/di signals having the
main cardiac responses and the overfitted component correspondirglangbst eigenvalue from
the reversed data. In the three other signals, there probably ocecuesm@rfitting as well, since
the signals have similar structures to the last two signals of the actual selesgeseriment shown
in Fig. 11.
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Figure 11:Averages of three heart-related signals and presumably two overfigsugts.

It is worth noticing that even the strongest component of the cardiapaoéss rather weakly
present in the original data. The other components of the subspacardte thetectable without
advanced methods beyond blind source separation. This clearly deatesdtre power that DSS
can provide for an exploring researcher.

5.4 Signal Recovery in CDMA

Mobile systems constitute another important signal processing applicatepriraaeldition to biomed-
ical signal processing. There are several ways to allow multiple usesetthe same communica-
tion channel, one being a modulation scheme called code-division-multippssa(CDMA, Viterbi,
1995). In this section we consider bit-stream recovery in a simplified simulafiafCDMA net-
work.

In CDMA, each user has a unique signature quasi-orthogonal to thatsigs of the other
users. The user codes each complex bihich he sends using this signature. This coded bit
stream is transmitted through the communication channel, where it is mixed with ttzdsso the
other transmitters. The mixture is corrupted by some noise as well, due to mulipogtagation,
Doppler shifts, interfering signals, etc.

To recover the sent bit stream, the receiver decodes the signal withahenlsignature. Ideally
then, the result would be ones and zeros repeated the number of timespoarding to the signa-

7. Here a scheme called QAM is used: two bits are packed into one conipligxrbaking a 90 phase shift in the other
bit.
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Figure 12:Averages of five signals from the cardiac control experiment, shovaag overfits.

ture length. In practice, noise and other interfering signals cause varatwthe bits are usually
extracted by majority voting.

If there are multiple paths through which a particular bit stream is sent to teévee or the
transmitter and receiver have multiple antennas, the so-called RAKE preceaiu be used: The
path coefficients are estimated based on the so-called pilot bit streamseHatear known bit
streams and sent frequently by the transmitter. Different bit streams arestimemed together
before the majority voting. In RAKE-ICA (Raju and Ristaniemi, 2002), ICA sed to blindly
separate the desired signal from the interference of other usersesd fhis yields better results
in the majority voting.

5.4.1 DENOISING OFCDMA SIGNALS

We know that the original bit stream should consist of repeated codimgtsiges convoluted by
the original complex bits. First the bit stream is decoded using a standactida algorithm. The
denoised signal is then the recoding of the decoded bit stream.

This DSS approach is nonlinear. If the original bit-stream estimate is vecgumnate .9, due
to serious interference of other users or external noise, the nonippasach might get stuck in a
deficient local minimum. To prevent this, we first initialise by running a simpleggirDSS. There
we only exploit the fact that the signal should consist of repetitions ofigratire multiplied by a
complex number. The nonlinearity of the denoising is gradually increased firshiterations.
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5.4.2 FPARATION RESULTS

We sent 100 blocks of 200 complex bits. The sent bits were mixed using darstrof 15 other
users. For simplicity we set all the path delays to zero. The signal-to-retise(lSNR) varied from

-10 to 15 dB. The length of the spreading signature was 31. The mixtunesme&asured using
three antennas. We did not consider multi-path propagation.

Figure 13 sums up the results of the CDMA experiments. The comparison toAKE Rigo-
rithm shows that DSS performs better in all situations except in the highd®t Bhere RAKE is
slightly better. Note that RAKE needs the pilot bits to estimate the mixing while our impkaiem
of DSS was able to do without them. The better performance of DSS for IdwiSKxplained by
the fact that DSS actively cancels disturbing signals while RAKE ignores.the
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Figure 13:Bit- and block-error rates for different SNRs for DSS and RAKE.

CDMA bit streams consist of known headers that are necessary fatasthCDMA techniques
to estimate several properties of the transmission channel. The DSS frawisvable to use the
redundancy of the payload signal, and therefore less pilot sequareegeded. In addition, bits
defined by the actual data such as error-correcting or check bits all@vem better denoising of
the desired stream. Furthermore, it is possible to take multi-path propagatioaictiant using
several delayed versions of the received signal. This should theit hesa kind of averaging
denoising when a proper delay is used analogous to the multi-resolutianogpam DSS described
in Sec. 4.1.3. In the case of moving transmitters and receivers, DSS miait &x@ Doppler effect.
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6. Discussion

In this paper, we developed several DSS algorithms. Moreover, D8 af promising framework
for developing additional extensions. In this section, we first summarisextieasions that have
already been mentioned in previous sections and then discuss some agxilergions.

We discussed an online learning strategy in Sec. 4.3, where we notedyinaatric online
denoising may fail to converge within a 2-D subspace. However, symmetnigising procedures
performing similar functions may easily be generated.

We also noted that the masking based on the instantaneous variance ir2Seaysave prob-
lems in separating the actual sources, though it effectively separatesidgesubspace from the
signal subspace. We proposed a simple modification to magnify small difiesdretween the vari-
ance estimates of different sources. Furthermore, we noted that afoetteled alternative is to
consider explicitly the leakage of variance between the signals. Then ttla@ees of the signals
can be decorrelated using similar techniques to those suggested by &anvebBimoncelli (2001).
This idea has been pursued further in the DSS framework (Valpola aredS2004), making the
variance-based masking a very powerful approach to sourceasigpar-urthermore, the variance-
based mask saturates on large values. This reduces the tendencetdrsuifoutliers. However,
data values that differ utterly from other data points probably carry nosisti@g information at all.
Even more robustness could then be achieved if the mask would start &adean large enough
values.

In this paper, we usually considered the sources to have a one-dimansiarcture, which
is used to implement the denoising. We already applied successfully two-dimahdenoising
techniques for the spectrograms. Furthermore, it was mentioned in Sattfzdlindex of different
sampless(t) might refer as well to space as to time. In space it becomes natural to appindilte
in 2D or even in 3D. For example, the astrophysical ICA (Funaro et &d3R@ould clearly benefit
from multi-dimensional filtering.

Source separation is not the only application of ICA-like algorithms. Angpthegortant field
of application is feature extraction. ICA has been used for example in tihacérn of features
from natural images, similar to those that are found in the primary visuabc@@shausen and
Field, 1996). It is reasonable to consider DSS extensions that hameshggested in the field of
feature extraction as well. For instance, until now we have only considbesextraction of mul-
tiple components by forcing the projections to be orthogonal. Howeveagrtiwsgonal projections
resulting from over-complete representations provide some clear ageantspecially in sparse
codes (Bldiak, 1990), and may be found useful in the DSS framework as well.

Throughout this paper, we have considered linear mapping from tmeesoto the observations
but nonlinear mappings can be used, too. One such approach is stavefaaalysis (SFA, Wiskott
and Sejnowski, 2002) where the observations are first expanddidesmty and sphered. The ex-
panded data are then high-pass filtered and projections minimising the easignestimated. Due
to the nonlinear expansion, it is possible to stack several layers of SEépoaf each others to
extract higher-level slowly changing features, resulting in hierartBEA.

Interestingly, SFA is directly related to DSS. Instead of minimising the variafteelagh-pass
filtering as in SFA, the same result may be obtained by maximising the variancdoaftpass
filtering. SFA is thus equivalent to DSS with nonlinear data expansion angéss filtering as
denoising. This is similar to earlier proposadsy, by Foldiak (1991).
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There are several possibilities for the nonlinear feature expansionrertidcal DSS. For in-
stance kernel PCA (Sékkopf et al., 1998), sparse coding or liquid state machines (Maass et al.,
2002) can be used.

The hierarchical DSS can be used in a fully supervised setting by fixingcthvat@ons of the
topmost layer to target outputs. Supervised learning often suffersdimmlearning in deep hierar-
chies because the way information is represented gradually changesierdrehy. It is therefore
difficult to use the information about the target output for learning the taglesse to the inputs. The
benefit of hierarchical DSS is that learning on lower levels is not dep@rahly on the information
propagated from the target output because the context includes tatelelhyed information from
the inputs. In this approach, the mode of learning shifts smoothly from mosilypenvised learn-
ing to mostly supervised learning from the input layer towards the output [&ysimilar mixture
of supervised and unsupervised learning has been suggestsitding{and Knig (2001).

7. Conclusion

The work in linear source separation has concentrated on blind apye®txfix the rotational am-
biguity left by the factor analysis model. Usually, however, there is additiof@mation available
to find the rotation either more efficiently or more accurately. In this papereveldped an algo-
rithmic framework called denoising source separation (DSS). We showeddhoising can be used
for source separation and that the results are often better than with bpnobapes. The better the
denoising is, the better the results are. Furthermore, many blind soume@tep techniques can
be interpreted as DSS algorithms using very general denoising prindipleatticular, we showed
that FastICA is a special case of DSS which also implies that DSS can be tiiopally very
efficient.

The main benefit of the DSS framework is that it allows for easy developofi@etv source sep-
aration algorithms which are optimised for the specific problem at handeTharwide literature
on signal denoising to choose from and in some cases denoising wouseéthéan post-processing
in any case. All the tools needed for DSS are then readily available.

We have launched an open-source MATLAB package for implementingdf@sithms (DSS,
2004). It contains the denoising functions and speedup method prédere But more impor-
tantly, the modular coding style makes it easy to tune the denoising functionstéo beit the
separation problems at hand and even to build in completely new denoisicigphsito achieve
better performance.

In the experimental section, we demonstrated DSS in various sourceasepansks. We
showed how denoising can be adapted to the observed characteristighals extracted with
denoising based on vague knowledge. From MEG signals, we were abt&agot very accurately
subspaces such as thesubspace or the very weak components of the cardiac subspacealdsSS
proved to be able to recover CDMA signals better than the standard RAKBitee under poor
SNR.

Finally, we discussed potential extensions of DSS. It appears that B&S a sound basis for
developing hierarchical, nonlinear feature extraction methods and thecions to cortical models
of attention and perception suggest a promising starting point for future wo
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