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Abstract
A new algorithmic framework called denoising source separation (DSS) is introduced. The

main benefit of this framework is that it allows for the easy development of new source separation
algorithms which can be optimised for specific problems. In this framework, source separation
algorithms are constructed around denoising procedures. The resulting algorithms can range from
almost blind to highly specialised source separation algorithms. Both simple linear and more com-
plex nonlinear or adaptive denoising schemes are considered. Some existing independent compo-
nent analysis algorithms are reinterpreted within the DSS framework and new, robust blind source
separation algorithms are suggested. The framework is derived as a one-unit equivalent to an EM
algorithm for source separation. However, in the DSS framework it is easy to utilise various kinds
of denoising procedures which need not be based on generative models. In the experimental sec-
tion, various DSS schemes are applied extensively to artificial data, to real magnetoencephalograms
and to simulated CDMA mobile network signals. Finally, various extensions to the proposed DSS
algorithms are considered. These include nonlinear observation mappings, hierarchical models and
over-complete, nonorthogonal feature spaces. With these extensions, DSS appears to have rele-
vance to many existing models of neural information processing.
Keywords: blind source separation, BSS, prior information, denoising, denoising source separa-
tion, DSS, independent component analysis, ICA, magnetoencephalograms, MEG, CDMA

1. Introduction

In recent years, source separation of linearly mixed signals has attracted a wide range of researchers.
The focus of this research has been on developing algorithms that make minimal assumptions about
the underlying process, thus approaching blind source separation (BSS). Independent component
analysis (ICA) (Hyv̈arinen et al., 2001b) clearly follows this tradition. This blind approach gives
the algorithms a wide range of possible applications. ICA has been a valuabletool, in particular,
in testing certain hypotheses in magnetoencephalogram (MEG) and electroencephalogram (EEG)
analysis (see Viǵario et al., 2000).
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Nearly always, however, there is further information available in the experimental setup, other
design specifications or from accumulated knowledge due to scientific research. For example in
biomedical signal analysis (see Gazzaniga, 2000; Rangayyan, 2002), careful design of experimental
setups provides us with presumed signal characteristics. In man-made technology, such as a CDMA
mobile system (see Viterbi, 1995), the transmitted signals are even more restricted.

The Bayesian approach provides a sound framework for including prior information into in-
ferences about the signals. Recently, several Bayesian ICA algorithmshave been suggested (see
Knuth, 1998; Attias, 1999; Lappalainen, 1999; Miskin and MacKay, 2001; Choudrey and Roberts,
2001; d. F. R. Højen-Sørensen et al., 2002; Chan et al., 2003). Theyoffer accurate estimations
for the linear model parameters. For instance, universal density approximation using a mixture of
Gaussians (MoG) may be used for the source distributions. Furthermore,hierarchical models can be
used for incorporating complex prior information (see Valpola et al., 2001). However, the Bayesian
approach does not always result in simple or computationally efficient algorithms.

FastICA (Hyv̈arinen, 1999) provides a set of algorithms for performing ICA based onoptimis-
ing easily calculable contrast functions. The algorithms are fast but oftenmore accurate results can
be achieved by computationally more demanding algorithms (Giannakopoulos etal., 1999), for ex-
ample by the Bayesian ICA algorithms. Valpola and Pajunen (2000) analysedthe factors behind the
speed of FastICA. The analysis suggested that the nonlinearity used in FastICA can be interpreted
as denoising and taking Bayesian noise filtering as the nonlinearity resulted infast Bayesian ICA.

Denoising corresponds to procedural knowledge while in most approaches to source separation,
the algorithms are derived from explicit objective functions or generative models. This corresponds
to declarative knowledge. Algorithms are procedural, however. Thus declarative knowledge has to
be translated into procedural form, which may result in complex and computationally demanding
algorithms.

In this paper, we generalise the denoising interpretation of Valpola and Pajunen (2000) and
introduce a source separation framework called denoising source separation (DSS). We show that
it is actually possible to construct the source separation algorithms around the denoising methods
themselves. Fast and accurate denoising will result in a fast and accurate separation algorithm.
We suggest that various kinds of prior knowledge can be easily formulated in terms of denoising.
In some cases a denoising scheme has been used to post-process the results after separation (see
Vigneron et al., 2003), but in the DSS framework this denoising can be used for the source separation
itself.

The paper is organised as follows: After setting the general problem of linear source separation
in Sec. 2, we review an expectation-maximisation (EM) algorithm as a solution to agenerative linear
model and a one-unit version of it (Sec. 2.1). We interpret the nonlinearity as denoising and call this
one-unit algorithm DSS. Equivalence of the linear DSS and a power methodis shown in Sec. 2.2.
In Sec. 2.3, the convergence of the DSS algorithms is analysed. The linearDSS is analysed via the
power method. To shed light on the convergence of the nonlinear DSS, wedefine local eigenvalues,
giving analysis similar to the linear case. The applicability of two common extensions of the power
method—deflation and spectral shift—are discussed in the rest of the section. In Sec. 3, we suggest
an approximation for an objective function that is maximised by the DSS algorithms. We then
introduce some practical denoising functions in Sec. 4. These denoising functions are extensively
applied to artificial mixtures (Sec. 5.1) and to MEG recordings (Secs. 5.2 and 5.3). We also apply a
DSS algorithm to bit-stream recovery in a simulated CDMA network (Sec. 5.4).Finally, in Sec. 6,
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we discuss extensions to the DSS framework and their connections to models of neural information
processing.

2. Source Separation by Denoising

Consider a linear instantaneous mixing of sources:

X = AS+ν , (1)

where
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The source matrixS consists ofN sources. Each individual sourcesi consists ofT samples, that
is, si = [si(1) . . . si(t) . . . si(T)]. Note that in order to simplify the notation throughout the paper,
we have defined each source to be a row vector instead of the more traditional column vector.
The symbolt often stands for time, but other possibilities include,e.g., space. For the rest of
the paper, we refer tot as time, for convenience. The observationsX consist ofM mixtures of
the sources, that is,xi = [xi(1) . . . xi(t) . . . xi(T)]. Usually it is assumed thatM ≥ N. The linear
mappingA = [a1a2 · · · aN] consists of the mixing vectorsai = [a1i a2i . . . aMi ]

T , and is usually called
the mixing matrix. In the model, there is some Gaussian noiseν, too. The sources, the noise and
hence also the mixtures can be assumed to have zero mean without losing generality because the
mean can always be removed from the data.

If the sources are assumed i.i.d. Gaussian, this is a general, linear factor analysis model with
rotational invariance. There are several ways to fix the rotation,i.e., to separate the original sources
S. Some approaches assume structure for the mixing matrix. If no structure is assumed, the solution
to this problem is usually called blind source separation (BSS). Note that this approach is not really
blind, since one always needs some information to be able to fix the rotation. One such piece of
information is the non-Gaussianity of the sources, which leads to the recentlypopular ICA methods
(see Hyv̈arinen et al., 2001b). The temporal structure of the sources may be usedtoo, as in Tong
et al. (1991); Molgedey and Schuster (1994); Belouchrani et al. (1997); Ziehe and M̈uller (1998);
Pham and Cardoso (2001).

The rest of this section is organised as follows: first we review an EM algorithm for source
separation and a one-unit version derived from it in Sec. 2.1. The E- and M-steps have natural
interpretations as denoising of the sources and re-estimation of the mixing vector, respectively, and
the derived algorithm provides the starting point for the DSS framework. In Sec. 2.2, we show that
a Gaussian source model leads to linear denoising. Such a DSS is equivalent to PCA of suitably
filtered data, implemented by the classical power method. The convergence of the DSS algorithms
are discussed in Sec. 2.3. For the linear DSS algorithms, the well-known convergence results of the
power method are used. Furthermore, the same results may be exploited for the nonlinear case by
defining local eigenvalues. They play a similar role as the (global) eigenvalues in the linear case.
Deflation and symmetric method for extracting several sources are reviewed in Sec. 2.4. Sec. 2.5
discusses a speedup technique called spectral shift.
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2.1 One-Unit Algorithm for Source Separation

The EM algorithm (Dempster et al., 1977) is a method for performing maximum likelihood esti-
mation when part of the data is missing. One way to perform EM estimation in the case of linear
models is to assume that the missing data consists of the sources and that the mixingmatrix needs to
be estimated. In the following, we review one such EM algorithm by Bermond and Cardoso (1999)
and a derivation of a one-unit version of it by Hyvärinen et al. (2001b).

The algorithm proceeds by alternating two steps: 1) E-step and 2) M-step.In the E-step, the
posterior distribution for the sources is calculated based on the known dataand the current estimate
of the mixing matrix using Bayes’ theorem. In the M-step, the mixing matrix is fitted to thenew
source estimates. In other words:

E−step :computeq(S) = p(S|A,X) = p(X|A,S)p(S)/p(X|A) (2)

M −step :findAnew = argmax
A

Eq(S)[logp(S,X|A)] = CXSC−1
SS . (3)

The covariances are computed as expectations overq(S):

CXS =
1
T

T

∑
t=1

E[x(t)s(t)T |X,A] =
1
T

T

∑
t=1

x(t)E[s(t)T |X,A] (4)

CSS=
1
T

T

∑
t=1

E[s(t)s(t)T |X,A], (5)

wherex(t) = [x1(t) · · · xi(t) · · · xM(t)]T ands(t) = [s1(t) · · · sj(t) · · · sN(t)]T are used to denote the
values of all of the mixtures and the sources at the time instancet, respectively.

Many source separation algorithms preprocess the data by normalising the covariance to the unit
matrix, i.e., CXX = XXT/T = I . This is referred to as sphering or whitening and its result is that any
signal obtained by projecting the sphered data on any unit vector has zero mean and unit variance.
Furthermore, orthogonal projections yield uncorrelated signals. Sphering is often combined with
reducing the dimension of the data by selecting a principal subspace which contains most of the
energy of the original data.

Because of the indeterminacy of scale in linear models, it is necessary to fix either the variance
of the sources or the norm of the mixing matrix. It is usual to fix the variance of the sources to unity:
SST/T = I . Then, assuming that the linear independent-source model holds and there is an infinite
amount of data, with Gaussian noise, the covariance of the sphered data isASSTAT/T + Σν =
AAT + Σν = I , i.e., a unit matrix because of the sphering. If the noise variance is proportional
to the covariance of the data that is due to the sources,i.e., Σν ∝ AAT , it holds thatAAT ∝ I ,
which means that the mixing matrixA is orthogonal for sphered data. Furthermore, the likelihood
L(S) = p(X|A,S) of S can be factorised:

L(S) = C∏
i

Li(si) , (6)

where the constantC is independent ofS. The constantC reflects the fact that likelihoods do not
normalise the same way as probability densities. The above factorisation still becomes unique if
Li(si) are appropriately normalised. In the case of a linear model with Gaussian noise, a convenient
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normalisation is to require the maximum ofLi(si) to equal one. The terms can then be shown to
equal

Li(si) = exp

(

−1
2
(si −a−1

i X)Σ−1
s,ν (si −a−1

i X)T
)

, (7)

wherea−1
i is theith row vector ofA−1 andΣs,ν ∝ I is a diagonal matrix with the diagonal elements

equallingσ2
ν/(aT

i ai).
Since the priorp(S) factorises, too, the sources are independent in the posteriorq(S) and the

covarianceCSS is diagonal. This means thatC−1
SS reduces to scaling of individual sources in the

M-step (3).
Noisy estimates of the sources can be recovered byS= A−1X which is the mode of the likeli-

hood. SinceA−1 ∝ AT because of the sphering and the posteriorq(S) depends on the data only
through the likelihoodL(S), the expectation E[S|X,A] is a function ofATX, or for individual
sources, E[si |X,A] = f(aT

i X). In the case of Gaussian source modelp(S), this function is linear
(further discussion in Sec. 2.2). The expectation can be computed exactlyin some other cases, too,
e.g., when the source distributions are mixtures of Gaussians (MoG).1 In other cases the expectation
can be approximated for instance by Eq(S)[S] = S+ ε ∂ logp(S)/∂S, where the constantε depends
on the noise variance.

In the EM algorithm, all the components are estimated simultaneously. However, pre-sphering
renders it possible to extract the sources one-by-one (see Hyvärinen et al., 2001b, for a similarly
derived algorithm):

s= wTX (8)

s+ = f(s) (9)

w+ = Xs+T (10)

wnew =
w+

||w+|| . (11)

In this algorithm, the first step (8) calculates the noisy estimate of one source and corresponds to the
mode of the likelihood. It is a convention to denote the mixing vectora, which in this case is also
the separating vector, byw. The second step (9) corresponds to the expectation ofs overq(S) and
can be seen as denoising based on the model of the sources. Note thatf(s) is a row-vector-valued
function of a row-vector argument. The re-estimation step (10) calculates the new ML estimate of
the mixing vector and the M-step (3) is completed by normalisation (11). This prevents the norm
of the mixing vector from diverging. Although this algorithm separates only one component, it has
been shown that the original sources correspond to stable fixed points of the algorithm under quite
general conditions (see Theorem 8.1, Hyvärinen et al., 2001b), provided that the independent-source
model holds.

In this paper, we interpret the step (9) as denoising. While this interpretationis not novel, it
allows for the development of new algorithms that are not derived starting from generative mod-
els. We call all of the algorithms where Eq. (9) can be interpreted as denoising and that have the
form (8)–(11) DSS algorithms.

1. MoG as the source distributions would lead to ICA.
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2.2 Linear DSS

In this section, we show that separation of Gaussian sources using the DSS algorithm results in
linear denoising. This is called linear DSS and it converges to the eigenvector of a data matrix that
has been suitably filtered. The algorithm is equivalent to the classical power method applied to the
covariance of the filtered data.

First, let us assume the Gaussian source to have an autocovariance matrixΣss. The prior proba-
bility density function for a Gaussian source is given by

p(s) =
1

√

|2πΣss|
exp

(

−1
2

sΣ−1
ss sT

)

,

whereΣss is the autocovariance matrix of the source and|Σss| is its determinant. Furthermore, as
noted in Eq. (7), the likelihoodL(s) is an unnormalised Gaussian with a diagonal covarianceΣs,ν:

L(s) = exp

(

−1
2
(s−wTX)Σ−1

s,ν(s−wTX)T
)

.

After some algebraic manipulation, the Gaussian posterior is reached:

q(s) =
1

√

|2πΣ|
exp

(

−1
2
(s−µ)Σ−1(s−µ)T

)

,

with meanµ = wTX
(

I +σ2
νΣ−1

ss

)−1
, and varianceΣ−1 = 1

σ2
ν
+ Σ−1

ss . Hence, the denoising step (9)
becomes

s+ = f(s) = s
(

I +σ2
νΣ−1

ss

)−1
= sD, (12)

which corresponds to linear denoising. The denoising step in the DSS algorithm s+ = f(s) is thus
equivalent to multiplying the current source estimateswith a constant matrixD.

To gain more intuition about the denoising, it is useful to consider the eigenvalue decomposition
of D. It turns out thatD andΣss have the same eigenvectors and the eigenvalue decompositions are

Σss= VΛΣVT (13)

D = VΛDVT , (14)

whereV is an orthonormal matrix with the eigenvectors as columns andΛ is a diagonal matrix with
the corresponding eigenvalues on the diagonal. The eigenvalues are related as

λD,i =
1

1+ σ2
ν

λΣ,i

.

Note thatλD,i is a monotonically increasing function ofλΣ,i . Those directions ofs are suppressed
the most which have the smallest variances according to the prior model ofs.

Now, let us pack the different phases of the algorithm (8), (12), (10)together:

w+ = Xs+T = XDsT = XDXTw .

The transpose was dropped fromD since it is symmetric. By writingΛD = Λ
1
2
DΛ

1
2T
D = Λ∗Λ∗T and

addingVTV = I in the middle, we may split the denoising matrix into two parts:

D = D∗D∗T ,
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whereD∗ = VΛ∗VT . Further, let us denoteZ = XD∗. This brings the DSS algorithm for estimating
one separating vector into the form

w+ = ZZTw . (15)

This is the classicalpower method(see Wilkinson, 1965) implementation for principal component
analysis (PCA). Note thatZZT is the unnormalised covariance matrix. The algorithm converges to
thefixed pointw∗ satisfying

λw∗ = ZZT/T w∗ , (16)

whereλ corresponds to the principal eigenvalue of the covariance matrixZZT/T and w∗ is the
principal direction. The asterisk is used to stress the fact that the estimate is at the fixed point.

The operation of the linear DSS algorithm is depicted in Fig. 1. Figure 1a shows two sources
that have been mixed into Fig. 1b. The mixing vectors have been plotted by the dashed lines. The
curve shows the standard deviation of the data projected in different directions. It is evident that the
principal eigenvector (solid line) does not separate any of the sources. For that two things would
be needed: 1) The mixing vectors should be orthogonal. 2) The eigenvalues should differ. After
sphering in Fig. 1c, the basis and sphered mixing vectors are roughly orthogonal. However, any
unit-length projection yields unit variance, and PCA still cannot separate the sources. The first
source has a somewhat slower temporal evolution and low-pass filtering retains more of that signal,
giving it a larger eigenvalue. This is evident in Fig. 1d which shows the denoised data and the first
eigenvector, which is now aligned with the (sphered) mixing vector of the slowsource. The sources
can then be recovered bys= wTX.

There are other algorithms for separating Gaussian sources (Tong et al., 1991; Molgedey and
Schuster, 1994; Belouchrani et al., 1997; Ziehe and Müller, 1998) and, although functionally dif-
ferent, they yield similar results for the example given above. All these algorithms assume that the
autocovariance structure of the sources is time-invariant corresponding to Toeplitz autocovariance
and filtering matricesΣssandD. In our analysis,Σsscan be any covariance matrix, and only one out
of four examples in Sec. 4.1 has the Toeplitz form.

2.3 Convergence Analysis

In this section, we analyse the convergence properties of DSS algorithms.In the case of linear de-
noising, we will refer to well-known convergence properties of the power method (e.g., Wilkinson,
1965). The analysis extends to nonlinear denoising under the assumptionsthat the mixing model
holds and there is an infinite amount of data.

Linear DSS is equivalent to the power method whose convergence is governed by the eigenval-
uesλi corresponding to the fixed pointsw∗

i . If some of the eigenvalues are equal (λi = λ j , i 6= j),
the fixed points are degenerate and there are subspaces of fixed points. In any case, it is possible to
choose an orthonormal basis spanned byw∗

i . This means that anyw can be represented as

w = ∑
i

ciw∗
i , (17)

whereci = wTw∗
i . With a linear denoising functionf lin , the unnormalised estimatew+ is

w+ = XfT
lin

(

∑
i

cis∗i

)

= X ∑
i

ci fT
lin(s∗i ) = ∑

i

ciXfT
lin(s∗i ) = T ∑

i

ciλiw∗
i , (18)
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Figure 1: (a) Original sources, (b) scatter-plot of the mixtures, (c) sphered dataX and (d) denoised
dataZ = XD∗. The dashed lines depict the mixing vectors and the solid lines the largest
eigenvector. The curves denote the standard deviation of the projection of the data in
different directions.
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whereλi is the ith eigenvalue corresponding tow∗
i ands∗i = w∗T

i X. The normalisation step (11)
changes the contributions of the fixed points by equal fractions. Aftern iterations, the relative
contributions of the fixed points thus change fromci

c j
into ciλn

i
c j λn

j
.

If there are two fixed pointsw∗
i andw∗

j that have identical eigenvaluesλi = λ j , the linear DSS
cannot separate between the two. This means, for instance, that it is not possible to separate Gaus-
sian sources that have identical autocovariance matrices,i.e., Σsisi = Σsj sj or in other words sources
whose time structures do not differ. Otherwise, as long asci 6= 0, the algorithm converges globally
to the source with the largest eigenvalue.

The speed of convergence in the power method (hence in linear DSS) depends linearly on the
log-ratio of the largest (absolute) eigenvalues log|λ1|/|λ2|, where|λ1| ≥ |λ2| ≥ |λi |, i = 3, . . . ,N.
Note that absolute values of the eigenvalues have been used. While the eigenvalues are usually
positive, there are cases where negative eigenvalues may exist, for instance in the case of complex
data or when using the so-calledspectral shift, which is discussed in Sec. 2.5.

The above analysis for linear denoising functions makes no assumptions about the data-generating
process. As such it does not extend to nonlinear denoising functions because there can be more or
less fixed points than the dimensionality of the data, and the fixed pointsw∗

i are not, in general,
orthogonal. We shall therefore assume that the data are generated by independent sources by the
model (1) and the assumptions discussed in Sec. 2.1 hold,i.e., the mixing vectors are orthogonal
after sphering. Under these assumptions, the orthonormal basis spanned by the mixing vectors
corresponds to fixed points of the DSS algorithm. This holds because fromthe independence of
different sourcessi it follows that

lim
T→∞

1
T

T

∑
t=1

sj(t) ft(si) = 0 (19)

for i 6= j.
In the linear power method, eigenvaluesλi govern the rate of relative changes of the contribu-

tions of individual basis vectors in the estimate. We shall definelocal eigenvaluesλi(s) which play
similar roles in nonlinear DSS. Unlike the constant eigenvaluesλi , the local eigenvalues have dif-
ferent values depending on the current source estimate. The formal definition is as follows. Assume
that the current weight vector and the subsequent unnormalised new weight vector are

w = ∑
i

ci(s)w∗
i (20)

w+ = ∑
i

γi(s)w∗
i . (21)

The local eigenvalue is defined to be the relative change in the contribution:

γi(s) = Tci(s)λi(s) ⇔ λi(s) =
γi(s)

Tci(s)
. (22)

The idea of the DSS framework is that the user can tailor the denoising function to the task at hand.
The denoising can but need not be based on the E-step (2) derived from a generative model. The
purpose of defining the local eigenvalues is to draw attention to the factors influencing separation
quality and convergence speed.

The first thing to consider is whether the algorithm converges at all. It is possible to view the
nonlinear denoising as linear denoising which is constantly adapted to the source estimate. This

241
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means that different sources can have locally the largest eigenvalue. If the adaptation is consistent,
i.e., λi(s) grows monotonically withci , all stable fixed points correspond to the original sources. In
general, the best separation quality and the fastest convergence is achieved whenλi(s) is very large
compared to allλ j(s) with j 6= i in the vicinity ofs∗i .

Sometimes it may be sufficient to separate a signal subspace. Then it is enough for the denoising
function to make the eigenvalues corresponding to this subspace large compared to the rest but the
eigenvalues do not need to differ within the subspace.

If the mixture model (1) holds and there is an infinite amount of data, the sources can usually
be separated even in the linear case because minute differences in the eigenvalues of the sources are
sufficient for separation. In practice, the separation is based on a finitenumber of samples and the
ICA model only holds approximately. Conceptually, we can think that there are true eigenvalues and
mixing vectors but the finite sample size introduces noise to the eigenvalues andleakage between
mixing vectors. In practice the separation quality is therefore much better if thelocal eigenval-
ues differ significantly around the fixed points and this is often easiest to achieve with nonlinear
denoising which utilises a lot of prior information.

2.4 Deflation

The classical power method has two common extensions: deflation and spectral shift. They are
readily available for the linear DSS since it is equivalent to the power method applied to filtered
data via Eq. (2.2). It is also relatively straightforward to apply them in the nonlinear case.

Linear DSS algorithms converge globally to the source whose eigenvalue has the largest magni-
tude. Nonlinear DSS algorithms may have several fixed points but even thenit is useful to guarantee
that the algorithm converges to a source estimate which has not been extracted yet. The deflation
method is a procedure which allows one to estimate several sources by iteratively applying the DSS
algorithm several times. The convergence to previously extracted sources is prevented by making
their eigenvalues zero:worth = w−AATw (Luenberger, 1969), whereA now contains the already
estimated mixing vectors.

Note that in this deflation scheme, it is possible to use different kinds of denoising procedures
when the sources differ in characteristics. Also, if more than one sourceis estimated simultaneously,
the symmetric orthogonalisation methods proposed for symmetric FastICA (Hyvärinen, 1999) can
be used. It should be noted, however, that such symmetric orthogonalisation cannot separate sources
with linear denoising where the eigenvalues of the sources are globally constant.

2.5 Spectral Shift

As discussed in Sec. 2.2, the matrix multiplication (15) in the power method does not promote the
largest eigenvalue effectively compared to the second largest eigenvalue if they have comparable
values. The convergence speed in such cases can be increased by so-called spectral shift2 (Wilkin-
son, 1965) which modifies the eigenvalues without changing the fixed points. At the fixed point of
the DSS algorithm,

λw∗ = XfT(s∗)/T . (23)

2. The set of the eigenvalues is often called the eigenvalue spectrum.
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If the denoising function is multiplied by a scalar, the convergence of the algorithm does not change
in any way because the scaling will be overruled by the normalisation step (11). All eigenvalues
will be scaled but their ratios, which are what count in convergence, are not affected.

Adding a multiple ofs into f(s) does not affect the fixed points becauseXsT ∝ w. However the
ratios of the eigenvalues get affected and hence the convergence speed. In summary,f(s) can be
replaced by

α(s)[f(s)+β(s)s] , (24)

whereα(s) andβ(s) are scalars. The multiplierα(s) is overruled by the normalisation step (11) and
has no effect on the algorithm. The termβ(s)s is turned intoTβ(s)w in the re-estimation step (8)
and does affect the convergence speed but not the fixed points (however, it can turn a stable fixed
point unstable or vice versa). This is because all eigenvalues are shifted by β(s):

X[f(s∗)+β(s∗)s∗]T/T = λw∗ +β(s∗)w∗ = [λ+β(s∗)]w∗ .

The spectral shift usingβ(s) modifies the ratios of the eigenvalues and the ratio of the two largest
eigenvalues3 becomes|[λ1 + β(s)]/[λ2 + β(s)]| > |λ1/λ2|, provided thatβ(s) is negative but not
much smaller than−λ2. This procedure can greatly accelerate convergence.

For very negativeβ(s), some eigenvalues will become negative. In fact, ifβ(s) is small enough,
the absolute value of the originally smallest eigenvalue will exceed that of the originally largest
eigenvalue. Iterations of linear DSS will then minimise the eigenvalue rather thanmaximise it.

We suggest that it is often reasonable to shift the eigenvalue corresponding to the Gaussian
signalν to zero. Some eigenvalues may then become negative and the algorithms can converge
to fixed points corresponding to these eigenvalues rather than the positiveones. In many cases,
this is perfectly acceptable because, as will be further discussed in Sec.3.3, any deviation from
the Gaussian eigenvalue is indicative of signal. A side effect of a negative eigenvalue is that the
estimatew changes its sign at each iteration. This is not a problem but needs to be kept in mind
when determining the convergence.

Since the convergence of the nonlinear DSS is governed by local eigenvalues, the spectral shift
needs to be adapted to the changing local eigenvalues to achieve optimal convergence speed. In
practice, the eigenvalueλν of a Gaussian signal can be estimated by linearisingf(s) around the
current source estimates:

f(s+∆s) ≈ f(s)+∆sJ(s) (25)

λν(s) ≈
f(s+ εν)− f(s)

ε
νT/T ≈ ενJ(s)

ε
νT/T = νJ(s)νT/T (26)

β(s) = E[−λν(s)] ≈− trJ(s)/T (27)

The last step follows from the fact that the elements ofν are mutually uncorrelated and have zero
mean and unit variance. HereJ(s) denotes the Jacobian matrix off(s) computed ats. For lin-
ear denoisingJ(s) = D and henceβ does not depend ons. If denoising is instantaneous,i.e.,
f(s) = [ f1(s(1)) f2(s(2)) . . .], the shift can be written asβ(s) = −∑t f ′t (s(t))/T. This is the spectral
shift used in FastICA (Hyv̈arinen, 1999), but it has been justified as an approximation to Newton’s
method and our analysis thus provides a novel interpretation.

3. Since the denoising operation presumably preserves some of the signal and noise, it is reasonable to assume that all
eigenvalues are originally positive.
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Sometimes the spectral shift turns out to be either too modest or too strong, leading to slow
convergence or lack of convergence, respectively. For this reason, we suggest a simple stabilisation
rule, henceforth called 179-rule: instead of updatingw into wnew defined by Eq. (11), it is updated
into

wadapted= orth(w+ γ∆w) (28)

∆w = wnew−w , (29)

whereγ is the step size and the orthogonalisation has been added in case several sources are to be
extracted. Originallyγ = 1, but if the consecutive steps are taken in nearly opposite directions,i.e.,
the angle between∆w and∆wold is greater than 179◦, thenγ = 0.5 for the rest of the iterations.
A stabilised version of FastICA has been proposed by Hyvärinen (1999) as well and a procedure
similar to the one above has been used. The different speedup techniques considered above, and
some additional ones, are studied further by Valpola and Särel̈a (2004).

Sometimes there are several signals with similar large eigenvalues. It may then be impossible to
use spectral shift to accelerate their separation significantly because ofsmall eigenvalues that would
assume very negative values exceeding the signal eigenvalues in magnitude. In that case, it may be
beneficial to first separate the subspace of the signals with large eigenvalues from the smaller ones.
Spectral shift will then be useful in the signal subspace.

3. Approximation for the Objective Function

The virtue of the DSS framework is that it allows one to develop proceduralsource separation
algorithms without referring to an exact objective function or a generative model. However, in many
cases an approximation of the underlying objective function is nevertheless useful. In this section,
we propose such an approximation (Sec. 3.1) and discuss its uses, including monitoring (Sec. 3.2)
and acceleration of convergence (Sec. 3.3) as well as analysis of separation results (Sec. 3.4).

3.1 The Objective Function of DSS

The power-method version of the linear DSS algorithm maximises the variance||wTZ||2. When
the denoising is performed for the source estimatesf(s) = sD, the equivalent objective function is
g(s) = sDsT = sfTlin(s) . We propose this formula as an approximation ˆg for the objective function
for nonlinear DSS as well:

ĝ(s) = sfT(s) . (30)

There is, however, an important caveat to be made. Note that Eq. (24) includes the scalar func-
tionsα(s) andβ(s). This means that functionally equivalent DSS algorithms can be implemented
with slightly different denoising functionsf(s) and while they would converge exactly to the same
results, the approximation (30) might yield completely different values. In fact, by tuningα(s),
β(s) or both, the approximation ˆg(s) could be made to yield any function which need not have any
correspondence to the trueg(s).

Due toα(s) andβ(s), it seems virtually impossible to write down a simple approximation of
g(s) that could not go wrong with a malevolent choice off(s). In the following, however, we argue
that Eq. (30) is in most cases a good approximation and it is usually easy to check whether it behaves
as desired—yields values which are monotonic in signal-to-noise ratio (SNR). If it does not,α(s)
andβ(s) can be easily tuned to correct this.
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Let us first check what would be the DSS algorithm maximising ˆg(s). Obviously, the approxi-
mation is good if the algorithm turns out to use a denoising similar tof(s). The following Lagrange
equation holds at the optimum:

∇w[ĝ(s)−ξTh(w)] = 0, (31)

whereh denotes the constraints under which the optimisation is performed andξ are the corre-
sponding Lagrange multipliers. In this case, only unit-length projection vectors w are considered,
i.e., h(w) = wTw−1 = 0, and it thus follows that

X∇sĝ
T(s)−2ξw = 0. (32)

Substituting 2ξ with the appropriate normalising factor which guarantees||w|| = 1 results in the
following fixed point:

w =
X∇sĝT(s)

||X∇sĝT(s)|| . (33)

Usings= wTX and (30), and omitting normalisation yields

w+ = X[fT(s)+JT(s)sT ] , (34)

whereJ is the Jacobian off. This should conform with the corresponding steps (9) and (10) in the
nonlinear DSS which usesf(s) for denoising. This is true if the two terms in the square brackets
have the same form,i.e., f(s) ∝ sJ(s).

As expected, in the linear case the two algorithms are exactly the same becausethe Jacobian is
a constant matrix andf(s) = sJ. The denoised sources are also proportional tosJ(s) in some special
nonlinear cases, for instance, whenf(s) = sn.

3.2 Negentropy Ordering

The approximation (30) can be readily used for monitoring the convergence of DSS algorithms. It is
also easy to use it for ordering the sources based on their SNR if several sources are estimated using
DSS with the samef(s). However, simple ordering based on Eq. (30) is not possible if different
denoising functions are used for different sources because the approximation does not provide a
universal scaling.

In these cases it is useful to order the source estimates by their negentropy which is a nor-
malised measure of structure in the signal. Differential entropyH of a random variable is a measure
of disorder and is dependent on the variance of the variable. Negentropy is a normalised quantity
measuring the difference between the differential entropy of the component and a Gaussian compo-
nent with the same variance. Negentropy is zero for the Gaussian distribution and non-negative for
all distributions since among the distributions with a given variance, the Gaussian distribution has
the highest entropy.

Calculation of the differential entropy assumes the distribution to be known. Usually this is
not the case and estimation of the distribution is often difficult and computationallydemanding.
Following Hyvärinen (1998), we approximate the negentropyN(s) by

N(s) = H(ν)−H(s) ≈ ηg[ĝ(s)− ĝ(ν)]2 , (35)

whereν is a normally distributed variable. The reasoning behind Eq. (35) is that ˆg(s) carries in-
formation about the distribution ofs. If ĝ(s) equals ˆg(ν), there is no evidence of the negentropy to
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be greater than zero, so this is whenN(s) should be minimised. A Taylor series expansion ofN(s)
w.r.t. ĝ(s) around ˆg(ν) yields the approximation (35) as the first non-zero term.

Comparison of signals extracted with different optimisation criteria presumes that the weighting
constantsηg are known. We propose thatηg can be calibrated by generating a signal with a known,
nonzero negentropy. Negentropy ordering is most useful for signalswhich have a relatively poor
SNR—the signals with a good SNR will most likely be selected in any case. Therefore we choose
our calibration signal to have SNR of 0 dB,i.e., it contains equal amounts of signal and noise in
terms of energy:ss = (ν + sopt)/

√
2, wheresopt is a pure signal having no noise. It obeys fully

the signal model implicitly defined by the corresponding denoising functionf. Sincesopt andν are
uncorrelated,ss has unit variance. The entropy ofν/

√
2 is

H(ν/
√

2) = H(ν)+ log1/
√

2 = H(ν)−1/2log2.

Since the entropy can only increase by adding a second, independent signal sopt, H(ss) ≥ H(ν)−
1/2log2. It thus holdsN(ss) = H(ν)−H(ss) ≤ 1/2log2. One can usually expect thatsopt has a lot
of structure,i.e., its entropy is low. Then its addition toν/

√
2 does not significantly increase the

entropy. It is therefore often reasonable to approximate

N(ss) ≈ 1/2log2= 1/2bit, (36)

where we chose base-2 logarithm yielding bits. Depending onsopt, it may also be possible to
compute the negentropyN(ss) exactly. This can then be used instead of the approximation (36).

The coefficientsηg in Eq. (35) can now be solved by requiring that the approximation (35)
yields Eq. (36) forss. This results in

ηg =
1

2(ĝ(ss)− ĝ(ν))2bit (37)

and finally, substitution of the approximation of the objective function (30) and Eq. (37) into Eq.
(35) yields the calibrated approximation of the negentropy:

N(s) ≈
[

sfT(s)−ν fT(ν)
]2

2[ssfT(ss)−ν fT(ν)]2
bit. (38)

3.3 Spectral Shift Revisited

In Sec. 2.5, we suggested that a reasonable spectral shift is to move the eigenvalue corresponding
to a Gaussian signalν to zero. This leads to minimisingg(s), when the largest absolute eigenvalue
is negative. It does not seem very useful to minimiseg(s), a function that measures the SNR of the
sources, but as we saw with negentropy and its approximation (35), values g(s) < g(ν) are, in fact,
indicative of signal. A reasonable selection forβ is thus−λν given by (27) which leads linear DSS
to extremiseg(s)−g(ν) or, equivalently, to maximise the negentropy approximation (35).

A well known example where the spectral shift by the eigenvalue of a Gaussian signal is use-
ful is the mixture of both super- and sub-Gaussian distributions. A DSS algorithm designed for
super-Gaussian distributions would lead toλ > λν for super-Gaussian andλ < λν for sub-Gaussian
distributions,λν being the eigenvalue of the Gaussian signal. By shifting the eigenvalue spectrum
by −λν, the most non-Gaussian distributions will result in the largest absolute eigenvalues regard-
less of whether the distribution is super- or sub-Gaussian. By using the spectral shift it is therefore
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possible to extract both super- and sub-Gaussian distributions with a denoising scheme which is
designed for one type of distribution only.

Consider for instancef(s) = tanhs which can be used as a denoising function for sub-Gaussian
signals while, as will be further discussed in Sec. 4.2.3,s− tanhs = −(tanhs− s) is a suitable
denoising for super-Gaussian signals. This shows that depending on the choice ofβ, DSS can
find either sub-Gaussian (β = 0) or super-Gaussian (β = −1) sources. With the FastICA spectral
shift (27),β will always lie in the range−1 < β ≤ tanh21−1≈−0.42. In general,β will be closer
to −1 for super-Gaussian sources which shows that FastICA is able to adapt its spectral shift to the
source distribution.

3.4 Detection of Overfitting

In exploratory data analysis, DSS is very useful for giving better insight into the data using a linear
factor model. However, it is possible that DSS extracts structures that aredue to noise,i.e., the
results may be overfits.

Overfitting in ICA has been extensively studied by Särel̈a and Viǵario (2003). It was observed
that it typically results in signals that are mostly inactive, except for a single spike. In DSS the type
of the overfitted results depends on the denoising criterion.

To detect an overfitted result, one should know what it looks like. As a first approximation, DSS
can be performed with the same amount of i.i.d. Gaussian data. Then all the results present cases of
overfitting. An even better characterisation of the overfitting results can beobtained by mimicking
the actual data characteristics as closely as possible. In that case it is important to make sure that
the structure assumed by the signal model has been broken. Both the Gaussian overfitting test and
the more advanced test are used throughout the experiments in Secs. 5.2–5.3.

Note that in addition to visual test, the methods described above provide us witha quantitative
measure as well. Using the negentropy approximation (38), we can set a threshold under which the
sources are very likely overfits and do not carry much real structure.In the simple case of linear
DSS, the negentropy can be approximated easily using the correspondingeigenvalue.

4. Denoising Functions in Practice

DSS is a framework for designing source separation algorithms. The idea isthat the algorithms
differ in the denoising functionf(s) while the other parts of the algorithm remain mostly the same.
Denoising is useful as such and therefore there is a wide literature of sophisticated denoising meth-
ods to choose from (see Anderson and Moore, 1979). Moreover, one usually has some knowledge
about the signals of interest and thus possesses the information needed for denoising. In fact, quite
often the signals extracted by BSS techniques would be post-processed toreduce noise in any case
(see Vigneron et al., 2003). In the DSS framework, the available denoising methods can be directly
applied to source separation, producing better results than purely blind techniques. There are also
very general noise reduction techniques such as wavelet denoising (Donoho et al., 1995; Vetterli
and Kovacevic, 1995) or median filtering (Kuosmanen and Astola, 1997) which can be applied in
exploratory data analysis.

In this section, we discuss denoising functions ranging from simple but powerful linear ones to
sophisticated nonlinear ones with the goal of inspiring others to try out their own denoising methods.
The range of applicability of the examples spans from cases where knowledge about the signals is
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relatively specific to almost blind source separation. Many of the denoisingfunctions discussed in
this section are applied in experiments in Sec. 5.

The DSS framework has been implemented in an open-source and publicly available MATLAB
package (DSS, 2004). The package contains the denoising functions and speedups discussed in this
paper and in another paper (Valpola and Särel̈a, 2004). It is modular and allows for custom-made
functions (denoising, spectral shift, and other parts) to be nested in the core program.

Before proceeding to examples of denoising functions, we note that DSS would not be very
useful if very exact denoising would be needed. Fortunately, this is usually not the case and it
is enough for the denoising functionf(s) to remove more noise than signal (see Hyvärinen et al.,
2001b, Theorem 8.1), assuming that the independent source model holds. This is because the re-
estimation steps (10) and (11) constrain the sources to the subspace spanned by the data. Even if
the denoising discards parts of the signal or creates nonexistent signals, re-estimation steps restore
them.

If there is no detailed knowledge about the characteristics of the signals to start with, it is useful
to bootstrap the denoising functions. This can be achieved by starting with relatively general signal
characteristics and then tuning the denoising functions based on analysesof the structure in the noisy
signals extracted in the first phase. In fact, some of the nonlinear DSS algorithms can be regarded
as linear DSS algorithms where a linear denoising function is adapted to the sources, leading to
nonlinear denoising.

4.1 Detailed Linear Denoising Functions

In this section, we consider several detailed, simple but powerful, linear denoising schemes. We
introduce the denoisings using the denoising matrixD when feasible. We consider efficient imple-
mentation of the denoisings as well.

The eigenvalue decomposition (14) shows that any denoising in linear DSS can be implemented
as an orthonormal rotation followed by a point-wise scaling of the samples androtation back to the
original space. The eigenvalue decomposition of the denoising matrixD often offers good intuitive
insight into the denoising function as well as practical means for its implementation.

4.1.1 ON/OFF-DENOISING

Consider designed experiments,e.g., in the fields of psychophysics or biomedicine. It is usual to
control them by having periods of activity and non-activity. In such experiments, the denoising can
be simply implemented by

D = diag(m) , (39)

whereD refers to the linear denoising matrix in Eq. (9) and

m =

{

1, for the active parts

0, for the inactive parts
(40)

This amounts to multiplying the source estimates by a binary mask,4 where ones represent the
active parts and zeroes the non-active parts. Notice that this masking procedure actually satisfies
D = DDT . This means that DSS is equivalent to the PCA applied to denoisedZ = XD even with

4. By masking we refer to point-wise multiplication of a signal or a transformation of a signal.
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exactly the same filtering. In practice this DSS algorithm could be implemented by PCA applied to
the active parts of the data with the sphering stage would still involving the wholedata set.

4.1.2 DENOISING BASED ON FREQUENCYCONTENT

If, on the other hand, signals are characterised by having certain frequency components, one can
transform the source estimate to a frequency space, mask the spectrum,e.g., with a binary mask,
and inverse transform to obtain the denoised signal:

D = VΛDVT ,

whereV is the transform,ΛD is the matrix with the mask on its diagonal, andVT is the inverse
transform. The transformV can be implemented for example with the Fourier transform5 or by
discrete cosine transform (DCT). After the transform, the signal is filtered using the diagonal matrix
Λ, i.e., by a point-wise scaling of the frequency bins. Finally the signal is inversetransformed
using VT . In the case of linear time-invariant (LTI) filtering, the filtering matrix has a Toeplitz
structure and the denoising characteristics are manifested only in the diagonal matrixΛD, while the
transforming matrixV represents a constant rotation. When this is the case, the algorithm can be
further simplified by imposing the transformation on the sphered dataX. Then the iteration can be
performed in the transformed basis. This trick has been exploited in the firstexperiment of Sec. 5.2.

4.1.3 SPECTROGRAMDENOISING

Often a signal is well characterised by what frequencies occur at what times. This is evident,e.g.,
in oscillatory activity in the brain where oscillations often occur in bursts. An example of source
separation in such data is studied in Sec. 5.2. The time-frequency behaviour can be described
by calculating DCT in short windows in time. This results in a combined time and frequency
representation, i.e., a spectrogram, where the masking can be applied.

There is a known dilemma in the calculation of the spectrogram: detailed description of the
frequency content does not allow detailed information of the activity in time andvice versa. In other
words, a large amount of different frequency binsTf will result in a small amount of time locations
Tt . Wavelet transforms (Donoho et al., 1995; Vetterli and Kovacevic, 1995) have been suggested
to overcome this problem. There an adaptive or predefined basis, different from the pure sinusoids
used in Fourier transform or DCT, is used to divide the resources of time and frequency behaviour
optimally in some sense. Another possibility is to use the so-called multitaper technique (Percival
and Walden, 1993, Ch. 7).

Here we apply an overcomplete-basis approach related to the above methods. Instead of having
just one spectrogram, we use several time-frequency analyses with differentTt ’s andTf ’s. Then the
new estimate of the projectionw+ is achieved by summing the new estimatesw+

i of each of the
time-frequency analyses:w+ = ∑i w

+
i .

4.1.4 DENOISING OFQUASIPERIODICSIGNALS

As a final example of denoising based on detailed source characteristics,consider Fig. 2a. Let us
assume to be known beforehand that the signals has a repetitive structure and that the average

5. Note that the eigenvalue decomposition contains real rotations instead ofcomplex, but Fourier transform is usu-
ally seen as a complex transformation. To keep the theory simple, we consider real Fourier transform where the
corresponding sine and cosine terms have been separated in different elements.
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repetition rate is known. The quasi-periodicity of the signal can be used to perform DSS to get a
better estimate. The denoising proceeds as follows:
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Figure 2: a) Current source estimatesof a quasiperiodic signal b) Peak estimates c) Average signal
save (two periods are shown for clarity). d) Denoised source estimates+. e) Source
estimate corresponding to the re-estimatedwnew.

1. Estimate the locations of the peaks of the current source estimates (Fig. 2b).

2. Chop each period from peak to peak.

3. Dilate each period to a fixed length L (linearly or nonlinearly).

4. Average the dilated periods (Fig. 2c).

5. Let the denoised source estimates+ be a signal where each period has been replaced by the
averaged period dilated back to its original length (Fig. 2d).

The re-estimated signal in Fig. 2e, based on the denoised signals+, shows significantly better
SNR compared to the original source estimates, in Fig. 2a.

This averaging is a form of linear denoising since it can be implemented as matrixmultiplica-
tion. Furthermore, it presents another case in addition to the binary masking,where DSS is equiva-
lent to the power method even with exactly the same filtering. It would not be easy to see from the
denoising matrixD itself thatD = DDT . However, this becomes evident should one consider the
averaging of source estimates+ (Fig. 2d) that is already averaged.

Note that there are cases where chopping from peak to peak does not guarantee the best result.
This is especially true when the periods do not span the whole section from peak to peak, but there
are parts where the response is silent. Then there is a need to estimate the lengths of the periods
separately.
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4.2 Denoising Based on Estimated Signal Variance

In the previous section, several denoising schemes were introduced. In all of them, the details of the
denoising were assumed to be known. It is as well possible to estimate the denoising specifications
from the data. This makes the denoising nonlinear or adaptive. In this section, we consider a
particular ICA algorithm in the DSS framework, suggesting modifications whichimprove separation
results and robustness.

4.2.1 KURTOSIS-BASED ICA

Consider one of the best known BSS approaches, ICA by optimisation of the sample kurtosis of the
sources. The objective function is theng(s) = ∑s4(t)/T−3

(

∑s2(t)/T
)2

. Since the source variance
has been fixed to unity, we can simply useg(s) = ∑s4(t)/T and derive the functionf(s) from
gradient ascend. This yields∇sg(s) = 4/T s3, wheres3 = [s3(1)s3(2) . . .]. Selectingα(s) = T/4
andβ(s) = 0 in Eq. (24) then result in

f(s) = s3 . (41)

This implements an ICA algorithm with nonlinear denoising. So far, we have notreferred to denois-
ing, but a closer examination of Eq. (41) reveals that one can, in fact, interprets3 as beingsmasked
by s2, the latter being a somewhat naı̈ve estimate of signal variance and thus relating to SNR.

Kurtosis as an objective function is notorious for being prone to overfittingand producing very
spiky source estimates (Särel̈a and Viǵario, 2003; Hyv̈arinen, 1998). For illustration of this consider
Fig. 3. There one iteration of DSS using kurtosis-based denoising is shown. Assume that via
some means, the source estimate shown in Fig. 3a has been reached. The source seems to contain
increased activity in three portions (around time instances 1000, 2300 and6000). As well, it contains
a peak roughly at time instance 4700. The signal variance estimate,i.e., the mask is shown in Fig. 3b.
While it has boosted somewhat the broad activity compared to the silent parts,the magnification of
the peak is far greater. Thus the denoised source estimates+ (Fig. 3c) has nearly nothing else except
the peak. The new source estimatesnew, based on the new projectionwnew, is a clear spike having
little left of the broad activity.

The denoising interpretation suggests that the failure to extract the broad activity is due to a poor
estimate of SNR.

4.2.2 BETTER ESTIMATE FOR THESIGNAL VARIANCE

Let us now consider a related but better founded estimate. Assume thats is composed of Gaussian
noise with a constant varianceσ2

n and of a Gaussian signal with non-stationary varianceσ2
s(t). From

Eq. (12) it follows that

s+(t) = s(t)
σ2

s(t)

σ2
tot(t)

, (42)

whereσ2
tot(t) = σ2

s(t) + σ2
n is the total variance of the observation. This is also the maximum-a-

posteriori (MAP) estimate.
The kurtosis-based DSS (41) can be obtained from this MAP estimate if the signal variance is

assumed to be far smaller than the total variance. In that case it is reasonable to assumeσ2
tot to

be constant andσ2
s(t) can be estimated bys2(t)−σ2

n. Subtraction ofσ2
n does not affect the fixed

points as it can be embedded in the termβ(s) = −σ2
n in Eq. (24). Likewise, the division byσ2

tot(t)
is absorbed byα(s).
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Figure 3: a) Source estimates b) Mask s2(t) c) Denoised source estimates+ = f(s) = s3 d) Source
estimate corresponding to the re-estimatedwnew.

Comparison of Eq. (42) and Eq. (41) immediately suggests improvements to the kurtosis-based
DSS. For instance, it is clear that ifs2(t) is large enough, it is not reasonable to assume thatσ2

s(t) is
small compared toσ2

n(t). Instead, the mask should saturate for larges2(t). This already improves
robustness against outliers and alleviates the tendency to produce spiky source estimates.

We suggest the following improvements over the kurtosis-based denoising function (41):

1. The estimates of signal variance and total variance are based on several observations. The
rationale of smoothing is the assumption of smoothness of the signal variance.In practice this
can be achieved by low-pass filtering the variance of the time, frequency or time-frequency
description ofs(t), yielding the approximation of total variance.

2. The noise variance is likewise estimated from the data. It should be some kind of soft min-
imum of the estimated total variances because the estimate can be expected to have random
fluctuations. We suggest the following formula:

σ2
n = C

(

exp
{

E
[

log
(

σ2
tot(t)+σ2

n

)]}

−σ2
n

)

. (43)

The noise varianceσ2
n appears on both sides of the equation, but at the right-hand side, it

appears only to prevent rare small values ofσ2
tot from spoiling the estimate. Hence, we suggest

to use the previously estimated value on the right-hand side. The constantC is tuned such that
the formula gives a consistent estimate of the noise variance if the source estimate is, in fact,
nothing but Gaussian noise.

3. The signal variance should be close to the estimate of the total variance minus the estimate of
the noise variance. Since a variance cannot be negative and the estimate of the total variance
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has fluctuations, we use a formula which yields zero only when the total variance is zero but
which asymptotically approachesσ2

tot(t)−σ2
n for large values of the total variance:

σ2
s(t) =

√

σ4
tot(t)+σ4

n−σ2
n . (44)

As an illustration of these improvements consider Fig. 4 where one iteration of DSS using the
MAP estimate is shown. The first two subplots (Fig. 4a and b) are identical to the ones using
kurtosis-based denoising. In Fig. 4c, the variance estimate is smoothed using low-pass filtering.
Note that the broad activity has been magnified when compared to the spike around time instance
4700. The noise levelσ2

n, calculated using Eq. (43), is shown using a dashed line. Corresponding
masking (Fig. 4d) results in a denoised source estimate using Eq. (42), shown in Fig. 4e. Finally, the
new source estimatesnew is shown after five iterations of DSS in Fig. 4f. DSS using the MAP-based
denoising has clearly removed a considerable amount of background noise as well as the lonely
spike.
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Figure 4: a) Source estimatesb) s2(t) c) Smoothed total variance with the noise level in dashed line
d) Denoising mask e) Denoised source estimates+ f) Source estimate after five iterations
of DSS.

The exact details of these improvements are not crucial, but we wanted to show that the denois-
ing interpretation of Eq. (41) can carry us quite far. The above estimates plugged into Eq. (42) yield
a DSS algorithm which is far more robust against overfitting, does not produce the spiky signal
estimates and in general yields signals with better SNRs than kurtosis.

Despite the merits of the DSS algorithm described above, there is still one problem with it.
While the extracted signals have excellent SNR, they do not necessarily correspond to independent
sources,i.e., the sources may remain mixed. This is because there is nothing in the denoisingwhich
could discard other sources. In terms of eigenvalues, whens is in the vicinity of one of the fixed
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pointss∗i , the local eigenvalueλi(s∗i ) is much larger thanλν, as it should, butλ j(s∗i ) may be large,
too, which means that the iterations do not remove the contribution of the weaker sources efficiently.

Assume, for instance, that two sources have clear-cut and non-overlapping times of strong ac-
tivity (σ2

s(t) � 0) and remain silent for most of the time (σ2
s(t) = 0). Suppose that one source is

present for some time at the beginning of the data and another at the end. Ifthe current source
estimate is a mixture of both, the mask will have values close to one at the beginningand at the
end of the signal. Denoising can thus clean the noise from the signal estimate,but it cannot decide
between the two sources.

In this respect, kurtosis actually works better than DSS based on the aboveimprovements. This
is because the mask never saturates and small differences in the strengthsof the relative contribu-
tions of two original sources in the current source estimate will be amplified. This problem only
occurs in the saturated regime of the mask and we therefore suggest a simplemodification of the
MAP estimate (42):

ft(s) = s(t)
σ2µ

s (t)

σ2
tot(t)

, (45)

whereµ is a constant slightly greater or equal to one. Note that this modification is usually needed
at the beginning of the iterations only. Once the source estimate is dominated by one of the original
sources and the contributions of the other sources fall closer to the noiselevel, the values of the
mask are smaller for the other original sources possibly still present in the estimated source.

Another approach is based on the observation that orthogonalising the mixing vectorsA cancels
only the linear correlations between different sources. Higher-ordercorrelations may still exist.
It can be assumed that competing sources contribute to the current variance estimate:σ2

tot(t) =
σ2

s(t) + σ2
n + σ2

others(t), whereσ2
others(t) stands for the estimate of total leakage of variance from

the other sources. Valpola and Särel̈a (2004) showed that decorrelating the variance-based masks
actively promotes the separation of the sources. This bares resemblanceto proposals of the role of
divisive normalisation on cortex (Schwartz and Simoncelli, 2001) and to the classical ICA method
called JADE (Cardoso, 1999).

The problems related to kurtosis are well known and several other improvednonlinear functions
f(s) have been proposed. However, some aspects of the above denoising,especially smoothing
of the total-variance estimates2(t), have not been suggested previously although they arise quite
naturally from the denoising interpretation.

4.2.3 TANH-NONLINEARITY INTERPRETED ASSATURATED VARIANCE ESTIMATE

A popular replacement of the kurtosis-based nonlinearity (41) is the hyperbolic tangent tanh(s)
operating point-wise on the sources. It is generally considered to be morerobust against overfitted
and spiky source estimates than kurtosis. By selectingα(s) = −1 andβ(s) = −1, we arrive at

ft(s) = s(t)− tanh[s(t)] = s(t)

(

1− tanh[s(t)]
s(t)

)

. (46)

Now the term multiplyings(t) can be interpreted as a mask related to SNR. Unlike the naı̈ve mask
s2(t) resulting from kurtosis, the tanh-based mask (46) saturates, though notvery fast.

The variance based mask (45) with the improvements considered above offers a new interpre-
tation for the robustness of the tanh-mask. Parameter valuesσ2

n = 1 andµ = 1.08 give an excellent
fit between the masks as shown in Fig. 5. The advantages of the denoising wepropose are thatσ2

n
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Figure 5: The tanh-based denoising mask1− tanh(s)/s is shown together with the variance-based
denoising mask proposed here. The parameters in the proposed maskwereσ2

n = 1 and
µ= 1.08. We have scaled the proposed mask to match the scale of the tanh-based mask.

can be tuned to the source estimate,µ can be controlled during the iterations and the estimate of the
signal variance can be smoothed. These features contribute to the resistance against overfitting and
spiky source estimates.

4.3 Other Denoising Functions

There are cases where the system specification itself suggests some denoising schemes. One such
case, CDMA transmission, is described in Sec. 5.4. Another example is source separation with a
microphone array combined with speech recognition. Many speech recognition systems rely on
generative models which can be readily used to denoise the speech signals.

Often it would be useful to be able to separate the sources online,i.e., in real time. Since there
exists online sphering algorithms (see Douglas and Cichocki, 1997; Oja, 1992), real time DSS can
be considered as well. One simple case of online denoising is presented by moving-average filters.
Such online filters are typically not symmetric and the eigenvalues (14) of the matrix XDXT may
be complex numbers. These eigenvalues come in conjugate pairs and are analogous to sine-cosine
pairs. The resulting DSS algorithm converges to a 2-D subspace corresponding to the eigenvalues
with largest absolute magnitude, but fails to converge within the subspace. Consider, for example,
a case of two harmonic oscillatory sources. It has a rotational invariancein a space defined by the
corresponding sine-cosine pair. Batch DSS algorithms with temporally symmetricdenoising would
converge to some particular rotation, but non-symmetric on-line denoising byf(s(t)) = s(t − 1)
would keep oscillating between sine and cosine components.
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The above is a special case of subspace analysis and there are several other examples where
the sources can be grouped to form interesting subspaces. This can bethe case,e.g., when all the
sources are not independent of each others, but form subspacesthat are mutually independent. It
may be desirable to use the information in all sourcesS for denoising any particular sourcesi . This
leads to the following denoising function:s+

i = f i(S). Some form of subspace rules can be used to
guide the extraction of interesting subspaces in DSS. It is possible to further relax the independence
criterion at the borders of the subspaces. This can be achieved by incorporating a neighbourhood
denoising rule in DSS, resulting in a topographic ordering of the sources.This suggests a fast fixed-
point algorithm that can be used instead of the gradient-descent-based topographic ICA (Hyv̈arinen
et al., 2001a).

It is also possible to combine various denoising functions when the sourcesare characterised by
more than one type of structure. Note that the combination order might be crucial for the outcome.
This is simply because, in general,f i (f j(s)) 6= f j (f i(s)) wheref i andf j present two different linear
or nonlinear denoisings. As an example, consider the combination of the linear on/off-mask (39)
and (40), and the nonlinear variance-based mask (45): the noise estimation becomes significantly
more accurate when the on/off-masking is performed only after the nonlinear denoising.

Finally, a source might be almost completely known. Then it is possible to apply adetailed
matched filter to estimate the mixing coefficients or the noise level. Detailed matched filters have
been used in Sec. 5.1 to get an upper limit of the SNRs of the source estimates.

4.4 Spectral Shift and Approximation of the Objective Function with Mask-Based
Denoisings

In Sec. 3.1, it was mentioned that a DSS algorithm may work perfectly fine but(30) may still fail to
approximate the true objective function ifα(s) andβ(s) are not selected suitably. As an example,
consider the mask-based denoisings where denoising is implemented by multiplying the source
point-wise by a mask. Without loss of generality, it can be assumed that the data has been rotated
with V and the masking operates directly on the source. According to Eq. (30),g(s) = ∑t s2(t)m(t),
wherem(t) is the mask. If the mask is constant w.r.t.s, denoising is linear and Eq. (30) is an exact
formula, but let us assume that the mask is computed based on the current source estimates.

In some cases it may be useful to normalise the mask and this could be implemented inseveral
ways. Some possibilities that may come to mind are to normalise the maximum value or the sum
of squared values of the mask. While this type of normalisation has no effecton the behaviour of
DSS, it can render the approximation (30) useless. This is because a maximally flat mask usually
corresponds to a source with a low SNR. However, after normalisation, thesum of values in the
mask would be greatest for a maximally flat mask and this tends to produce high values of the
approximation ofg(s) conflicting with the low SNR.

As a simple example, consider the mask to bem(t) = s2(t). This corresponds to the kurtosis-
based denoising (41). Now the sum of squared values of the mask is∑s4(t), but so issfT(s). If
the mask were normalised by dividing by the sum of squares, the approximation (30) would always
yield a constant value of one, totally independent ofs.

A better way of normalising a mask is to normalise the sum of the values. Then Eq.(30) should
always yield approximately the same value if the mask and source estimate are unrelated, but the
value would be greater for cases where the magnitude of the source is correlated with the value of
the mask. This is usually a sign of a structured source and a high SNR.
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The above normalisation also has the benefit that the eigenvalue of a Gaussian signal can be
expected to be roughly constant. Assuming that the maskm(t) does not depend very much on the
source estimate, the Jacobian matrixJ(s) of f(s) is roughly diagonal withm(t) as the elements on
the diagonal. The trace ofJ(s) needed for the estimate of the eigenvalue of a Gaussian signal in
(27) is then∑t m(t) and the appropriate spectral shift is

β = − 1
T ∑

t
m(t) . (47)

The spectral shift can thus be approximated to be constant due to the normalisation.

5. Experiments

In this section, we demonstrate the separation capabilities of the algorithms presented earlier. The
experiments can be carried out using the publicly available MATLAB package (DSS, 2004).

The experimental section contains the following experiments: First, in Sec. 5.1, we separate ar-
tificial signals with different DSS schemes, some of which can be implemented byFastICA (1998);
Hyvärinen (1999). Furthermore, we compare the results to one standard ICAalgorithm, JADE
(1999); Cardoso (1999). In Secs. 5.2–5.3, linear and nonlinear DSSalgorithms are applied exten-
sively in the study of magnetoencephalograms (MEG). Finally, in Sec. 5.4, recovery of CDMA
signals is demonstrated. In each experiment after the case of artificial sources, we first discuss
the nature of the expected underlying sources. Then we describe this knowledge in the form of
denoising.

5.1 Artificial Signals

Artificial signals were mixed to compare different DSS schemes and JADE (Cardoso, 1999). Ten
mixtures of the five sources were produced and independent white noisewas added with different
SNRs ranging from nearly noiseless mixtures of 50dB to -10dB, a very noisy case. The original
sources and the mixtures are shown in Figs. 6a and 6b respectively. Themixtures shown have SNR
of 50 dB.

5.1.1 LINEAR DENOISING

In this section, we show how the simple linear denoising schemes described in Sec. 4.1 can be
used to separate the artificial sources. These schemes require prior knowledge about the source
characteristics.

The base frequencies of the first two signals were assumed to be known.Thus two band-pass
filtering masks were constructed around these base frequencies. The third and fourth source esti-
mates were known to have periods of activity and non-activity. The third was known to be active
in the second quadrant and the fourth a definite period in the latter half. They were denoised using
binary masks in the time domain. Finally, the fifth source had a known quasi-periodic repetition
rate and was denoised using the averaging procedure described in Sec. 4.1.4 and Fig. 2. Since all
the five denoisings are linear, five separate filtered data sets were produced and PCA was used to
recover the principal components. The separation results are described in Sec. 5.1.3 together with
the results of other DSS schemes and JADE.
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(a) (b)

Figure 6: (a) Five artificial signals with simple frequency content (signals 1 and 2), simple on/off
non-stationarity in time domain (signals 3 and 4) or quasi-periodicity (signal5). (b) Ten
mixtures of the signals in (a).

5.1.2 NONLINEAR EXPLORATORY DENOISING

In this section, we describe an exploratory source separation of the artificial signals. One author of
this paper gave the mixtures to the other author whose task was to separate theoriginal signals. The
testing author did not receive any additional information, so he was forced to apply a blind approach.
He chose to use the masking procedure based on the instantaneous variance estimate, described in
Sec. 4.2. To enable the separation of both sub- and super-Gaussian sources in the MAP-based
signal-variance-estimate denoising, he used the spectral shift (47). Toensure convergence, he used
the 179-rule to control the step sizeγ (28). Finally, he did not smooths2(t) but used it directly as
the estimate of the total instantaneous varianceσ2

tot(t).

Based on the separation results of the variance-based DSS, he furtherdevised specific masks for
each of the sources. He chose to denoise the first source in frequency domain with a strict band-pass
filter around the main frequency. The testing author decided to denoise the second source by a sim-
ple denoising functionf(s) = sign(s). This makes quite an accurate signal model though it neglects
the behaviour of the source in time. The third and fourth signal seemed to have periods of activity
and non-activity. He found an estimate for the active periods by inspectingthe instantaneous vari-
ance estimatess2, and devised simple binary masks. The last signal seemed to consist of alternating
positive and negative peaks with a fixed inter-peak-interval as well as some additive Gaussian noise.
The signal model was tuned to model the peaks only.

5.1.3 SEPARATION RESULTS

In this section, we compare the separation results of the linear denoising (Sec. 5.1.1), variance-based
denoising and adapted denoising (Sec 5.1.2) to other DSS algorithms. In particular, we compare to
the popular denoising schemesf(s) = s3 andf(s) = tanh(s), suggested for use with FastICA (1998).
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We compare to JADE (Cardoso, 1999) as well. During sphering in JADE, the number of dimensions
was either reduced (n = 5) or all the ten dimensions were kept (n = 10).

We restrained from using deflation in all the different DSS schemes to avoidsuffering from
cumulative errors in the separation of the first sources. Instead one source was extracted with each
of the masks several times using different initial vectorw until five sufficiently different source
estimates were reached (see Himberg and Hyvärinen, 2003; Meinecke et al., 2002, for further pos-
sibilities along these lines). Deflation was only used if no estimate could be foundfor all the 5
sources. This was often the case for poor SNR under 0dB.

To get some idea of statistical significance of the results, each algorithm wasused to separate
the sources ten times with the same mixtures, but with different measurement noises. The average
SNRs of the sources are depicted in Fig. 7. The straight line above all the DSS schemes represents
the optimal separation. It is achieved by calculating the unmixing matrix explicitly using the true
sources.
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Figure 7:Average SNRs for the estimated sources averaged over 10 runs.

With outstanding SNR (> 20 dB), linear DSS together with JADE and kurtosis-based DSS
perform the worst, while the other, nonlinear DSS approaches: tanh-based, sophisticated variance
estimate and the adapted one perform better. The gap between these groups is more than two
standard deviations of the 10 runs, making the difference statistically significant.

With moderate SNRs (between 0 and 20 dB), all algorithms perform quite alike.With poor SNR
(< 0 dB), the upper group consist of the linear and adapted DSS as well as the optimal one and the
lower group consists of the blind approaches. This seems reasonable, since it makes sense to rely
more on prior knowledge when the data are very noisy.
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5.2 Exploratory Source Separation in Rhythmic MEG Data

In biomedical research it is usual to design detailed experimental frameworks to examine inter-
esting phenomena. Hence it offers a nice field of application for both blind and specialised DSS
schemes. In the following, we test the developed algorithms in signal analysisof magnetoencephalo-
grams (MEG, Ḧamäläinen et al., 1993). MEG is a completely non-invasive brain imaging technique
measuring the magnetic fields on scalp caused by synchronous activity in thecortex.

Since the early EEG and MEG recordings, cortical electromagnetic rhythms have played an
important role in clinical research,e.g., in detection of various brain disorders, and in studies of
development and aging. It is believed that the spontaneous rhythms, in different parts of the brain,
form a kind of resting state that allows for quicker responses to stimuli by those specific areas.
For example deprivation of visual stimuli by closing one’s eyes induces so-calledα-rhythm on the
visual cortex, characterised by a strong 8–13 Hz frequency component. For a more comprehensive
discussion regarding EEG and MEG, and their spontaneous rhythms, seethe works by Niedermeyer
and Lopes da Silva (1993) and Hämäläinen et al. (1993).

In this paper, we examine an MEG experiment where the subject is asked to relax by closing
her eyes (producingα-rhythm). There is also a control state where the subject has her eyes open.
The data has been sampled withfs = 200 Hz, and there areT = 65536 time samples giving total
of more than 300 seconds of measurement. The magnetic fields are measuredusing a 122-channel
MEG device. Some source separation results of this data have been reported by S̈arel̈a et al. (2001).
Prior to any analysis, the data are high-pass filtered with cut-off frequency of 1 Hz, to get rid of the
dominating very low frequencies.

5.2.1 DENOISING IN RHYTHMIC MEG

Examination of the average spectrogram in Fig. 8a reveals clear structures indicating the existence
of several, presumably distinct, phenomena. The burst-like activity around 10 Hz and the steady
activity at 50 Hz dominate the data, but there seem to be some weaker phenomena as well,e.g.,
on frequencies higher than 50 Hz. To amplify these, we not only sphere the data spatially but
temporally as well. This temporal decorrelation actually makes the separation harder but finding the
weaker phenomena easier. The normalised and filtered spectrogram is shown in Fig. 8b.

The spectrogram data seems well suited for demonstrating the exploratory-data-analysis use
of DSS. As some of the sources seem to have quite steady frequency content in time, along with
others changing in time, we used two different time-frequency analyses asdescribed in Sec. 4.1.3
with lengths of the spectraTf = 1 andTf = 256. The first spectrogram is then actually the original
frequency-normalised and filtered data with time information only.

We apply the several noise-reduction principles based on the estimated variance of the signal
and the noise discussed in Sec. 4.2. Specifically, the power spectrogramof the source estimate is
smoothed over time and frequency using 2-D convolution with Gaussian windows. The standard
deviations of the Gaussian windows wereσt = 8/π andσ f = 8/π. After this, the instantaneous esti-
mate of the source variance is found using Eq. (44). Then we get the denoised source estimate using
Eq. (45) together with the spectral shift (47). Initially we have setµ = 1.3. This is then decreased
by 0.1 every time DSS has converged, untilµ < 1 is reached. Finally, the new projection vector is
calculated using the stabilised version (28), (29) with the 179-rule in orderto ensure convergence.
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Figure 8: (a) Averaged spectrogram of all 122 MEG channels. (b) Frequencynormalised spectro-
gram.

5.2.2 SEPARATION RESULTS

The separated signals, depicted in Fig. 9, include several interesting sources. Due to poor contrast
in Fig. 9, we show enhanced and smoothed spectrograms of selected interesting, but low contrast,
components (1a, 1b, 1c and 4c) in Fig. 10. There exist several sources withα-activity (1a, 1d and
2b for example). The second and fifth source are clearly related to the power-line. The third source
depicts an interesting signal caused probably by some anomaly in either the measuring device itself
or its physical surroundings. In source 4c, there is another, presumably artefactual source, composed
of at least two steady frequencies around 70 Hz.

The DSS approach described above seems to be reliable and fast: the temporal decorrelation of
the data enabled the finding of very weak sources and yet we found several clearα-sources as well.
Valpola and S̈arel̈a (2004) have further studied the convergence speed, reliability and stability of
DSS with various speedup methods, such as the spectral shift used in FastICA. Convergence speed
exceeding standard FastICA by 50 % was reported.

Though quite a clear separation of the sources was achieved, some cross-talk between the sig-
nals remains. Better SNR and less talk would probably be achieved by tuning the denoising to
the characteristics of each different signal group. In the next section, we show that with specific
knowledge it is possible to find even very weak phenomena in MEG data usingDSS.

5.3 Adaptive Extraction of the Cardiac Subspace in MEG

Cardiac activity causes magnetic fields as well. Sometimes these are strongly reflected in MEG and
can pose a serious problem for the signal analysis of the neural phenomena of interest. In this data,
however, the cardiac signals are not visible to the naked eye. Thus, we want to demonstrate the
capability of DSS to extract some very weak cardiac signals, using detailed prior information in an
adaptive manner.
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Figure 9: Spectrograms of the extracted components (comps. 1a–1e on the topmost row).
Time and frequency axes as in Fig. 8.

5.3.1 DENOISING OF THECARDIAC SUBSPACE

A clear QRS complex, which is the main electromagnetic pulse in the cardiac cycle,can be extracted
from the MEG data using standard BSS methods, such as kurtosis- or tanh-based denoising. Due
to its sparse nature, this QRS signal can be used to estimate the places of the heart beats. With the
places known, we can guide further search using the averaging DSS, as described in Sec. 4.1. Every
now and then, we re-estimate the QRS onsets needed for the averaging DSS.

When the estimation of the QRS locations has been stabilised, a subspace that iscomposed of
signals having activity phase-locked to the QRS complexes can be extracted.

5.3.2 SEPARATION RESULTS

Figure 11 depicts five signals averaged around the QRS complexes, found using the procedure
above.6 The first signal presents a very clear QRS complex, whereas the second one contains the

6. For clarity, two identical cycles of averaged heart beats are alwaysshown.
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Figure 10: Enhanced and smoothed spectrograms of the selected components (correspond to
sources 1a, 1b, 1c and 4c in Fig. 9). Time and frequency axes as in Fig.8.

small P and the T waves. An interesting phenomenon is found in the third signal:there is a clear
peak at the QRS onset, which is followed by a slow attenuation phase. We presume that it originates
from some kind of relaxing state.

Two other heart-related signals were also extracted. They both show a clear deflection during
the QRS complex, but have as well significant activity elsewhere. These two signals might present
a case of overfitting, which was contemplated in Sec. 3.4. To test this hypothesis, we performed
DSS using the same procedure and the same denoising function, but for time-reversed data. As the
estimated QRS onsets will then be misaligned, the resulting signals should be pureoverfits. The
results are shown in Fig. 12. The eigenvalues corresponding to the QRS complex and the second
signal having the P and T waves are approximately 10 times higher than the principal eigenvalue
of the reversed data. Thus they clearly exhibit some real structure in the data, as already expected.
The eigenvalues corresponding to the last three signals are comparable tothe principal eigenvalue
of the reversed data, the two largest being somewhat greater. It is reasonable to expect that all three
carry some real structure as there is a nonzero correlation between the first two signals having the
main cardiac responses and the overfitted component corresponding to the largest eigenvalue from
the reversed data. In the three other signals, there probably occurs some overfitting as well, since
the signals have similar structures to the last two signals of the actual subspace experiment shown
in Fig. 11.
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Figure 11:Averages of three heart-related signals and presumably two overfitting results.

It is worth noticing that even the strongest component of the cardiac subspace is rather weakly
present in the original data. The other components of the subspace are hardly detectable without
advanced methods beyond blind source separation. This clearly demonstrates the power that DSS
can provide for an exploring researcher.

5.4 Signal Recovery in CDMA

Mobile systems constitute another important signal processing application area, in addition to biomed-
ical signal processing. There are several ways to allow multiple users to use the same communica-
tion channel, one being a modulation scheme called code-division-multiple-access (CDMA, Viterbi,
1995). In this section we consider bit-stream recovery in a simplified simulationof a CDMA net-
work.

In CDMA, each user has a unique signature quasi-orthogonal to the signatures of the other
users. The user codes each complex bit7 which he sends using this signature. This coded bit
stream is transmitted through the communication channel, where it is mixed with the signals of the
other transmitters. The mixture is corrupted by some noise as well, due to multi-pathpropagation,
Doppler shifts, interfering signals, etc.

To recover the sent bit stream, the receiver decodes the signal with the known signature. Ideally
then, the result would be ones and zeros repeated the number of times corresponding to the signa-

7. Here a scheme called QAM is used: two bits are packed into one complex bit by making a 90◦ phase shift in the other
bit.
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Figure 12:Averages of five signals from the cardiac control experiment, showing clear overfits.

ture length. In practice, noise and other interfering signals cause variationand the bits are usually
extracted by majority voting.

If there are multiple paths through which a particular bit stream is sent to the receiver or the
transmitter and receiver have multiple antennas, the so-called RAKE procedure can be used: The
path coefficients are estimated based on the so-called pilot bit streams that are fixed known bit
streams and sent frequently by the transmitter. Different bit streams are then summed together
before the majority voting. In RAKE-ICA (Raju and Ristaniemi, 2002), ICA is used to blindly
separate the desired signal from the interference of other users and noise. This yields better results
in the majority voting.

5.4.1 DENOISING OFCDMA SIGNALS

We know that the original bit stream should consist of repeated coding signatures convoluted by
the original complex bits. First the bit stream is decoded using a standard detection algorithm. The
denoised signal is then the recoding of the decoded bit stream.

This DSS approach is nonlinear. If the original bit-stream estimate is very inaccurate,e.g., due
to serious interference of other users or external noise, the nonlinearapproach might get stuck in a
deficient local minimum. To prevent this, we first initialise by running a simpler, linear DSS. There
we only exploit the fact that the signal should consist of repetitions of the signature multiplied by a
complex number. The nonlinearity of the denoising is gradually increased in the first iterations.
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5.4.2 SEPARATION RESULTS

We sent 100 blocks of 200 complex bits. The sent bits were mixed using the streams of 15 other
users. For simplicity we set all the path delays to zero. The signal-to-noise-ratio (SNR) varied from
-10 to 15 dB. The length of the spreading signature was 31. The mixtures were measured using
three antennas. We did not consider multi-path propagation.

Figure 13 sums up the results of the CDMA experiments. The comparison to the RAKE algo-
rithm shows that DSS performs better in all situations except in the highest SNR, where RAKE is
slightly better. Note that RAKE needs the pilot bits to estimate the mixing while our implementation
of DSS was able to do without them. The better performance of DSS for low SNR is explained by
the fact that DSS actively cancels disturbing signals while RAKE ignores them.
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Figure 13:Bit- and block-error rates for different SNRs for DSS and RAKE.

CDMA bit streams consist of known headers that are necessary for standard CDMA techniques
to estimate several properties of the transmission channel. The DSS framework is able to use the
redundancy of the payload signal, and therefore less pilot sequencesare needed. In addition, bits
defined by the actual data such as error-correcting or check bits allow an even better denoising of
the desired stream. Furthermore, it is possible to take multi-path propagation intoaccount using
several delayed versions of the received signal. This should then result in a kind of averaging
denoising when a proper delay is used analogous to the multi-resolution spectrogram DSS described
in Sec. 4.1.3. In the case of moving transmitters and receivers, DSS may exploit the Doppler effect.
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6. Discussion

In this paper, we developed several DSS algorithms. Moreover, DSS offers a promising framework
for developing additional extensions. In this section, we first summarise theextensions that have
already been mentioned in previous sections and then discuss some auxiliaryextensions.

We discussed an online learning strategy in Sec. 4.3, where we noted that asymmetric online
denoising may fail to converge within a 2-D subspace. However, symmetric denoising procedures
performing similar functions may easily be generated.

We also noted that the masking based on the instantaneous variance in Sec. 4.2 may have prob-
lems in separating the actual sources, though it effectively separates thenoise subspace from the
signal subspace. We proposed a simple modification to magnify small differences between the vari-
ance estimates of different sources. Furthermore, we noted that a betterfounded alternative is to
consider explicitly the leakage of variance between the signals. Then the variances of the signals
can be decorrelated using similar techniques to those suggested by Schwartz and Simoncelli (2001).
This idea has been pursued further in the DSS framework (Valpola and Särel̈a, 2004), making the
variance-based masking a very powerful approach to source separation. Furthermore, the variance-
based mask saturates on large values. This reduces the tendency to suffer from outliers. However,
data values that differ utterly from other data points probably carry no interesting information at all.
Even more robustness could then be achieved if the mask would start to decrease on large enough
values.

In this paper, we usually considered the sources to have a one-dimensional structure, which
is used to implement the denoising. We already applied successfully two-dimensional denoising
techniques for the spectrograms. Furthermore, it was mentioned in Sec. 2 that the indext of different
sampless(t) might refer as well to space as to time. In space it becomes natural to apply filtering
in 2D or even in 3D. For example, the astrophysical ICA (Funaro et al., 2003) would clearly benefit
from multi-dimensional filtering.

Source separation is not the only application of ICA-like algorithms. Another, important field
of application is feature extraction. ICA has been used for example in the extraction of features
from natural images, similar to those that are found in the primary visual cortex (Olshausen and
Field, 1996). It is reasonable to consider DSS extensions that have been suggested in the field of
feature extraction as well. For instance, until now we have only considered the extraction of mul-
tiple components by forcing the projections to be orthogonal. However, nonorthogonal projections
resulting from over-complete representations provide some clear advantages, especially in sparse
codes (F̈oldiák, 1990), and may be found useful in the DSS framework as well.

Throughout this paper, we have considered linear mapping from the sources to the observations
but nonlinear mappings can be used, too. One such approach is slow feature analysis (SFA, Wiskott
and Sejnowski, 2002) where the observations are first expanded nonlinearly and sphered. The ex-
panded data are then high-pass filtered and projections minimising the variance are estimated. Due
to the nonlinear expansion, it is possible to stack several layers of SFA ontop of each others to
extract higher-level slowly changing features, resulting in hierarchical SFA.

Interestingly, SFA is directly related to DSS. Instead of minimising the variance after high-pass
filtering as in SFA, the same result may be obtained by maximising the variance after low-pass
filtering. SFA is thus equivalent to DSS with nonlinear data expansion and low-pass filtering as
denoising. This is similar to earlier proposals,e.g., by Földiák (1991).
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There are several possibilities for the nonlinear feature expansion in hierarchical DSS. For in-
stance kernel PCA (Schölkopf et al., 1998), sparse coding or liquid state machines (Maass et al.,
2002) can be used.

The hierarchical DSS can be used in a fully supervised setting by fixing the activations of the
topmost layer to target outputs. Supervised learning often suffers fromslow learning in deep hierar-
chies because the way information is represented gradually changes in thehierarchy. It is therefore
difficult to use the information about the target output for learning the layers close to the inputs. The
benefit of hierarchical DSS is that learning on lower levels is not dependent only on the information
propagated from the target output because the context includes lateralor delayed information from
the inputs. In this approach, the mode of learning shifts smoothly from mostly unsupervised learn-
ing to mostly supervised learning from the input layer towards the output layer. A similar mixture
of supervised and unsupervised learning has been suggested by Körding and K̈onig (2001).

7. Conclusion

The work in linear source separation has concentrated on blind approaches to fix the rotational am-
biguity left by the factor analysis model. Usually, however, there is additional information available
to find the rotation either more efficiently or more accurately. In this paper we developed an algo-
rithmic framework called denoising source separation (DSS). We showed that denoising can be used
for source separation and that the results are often better than with blind approaches. The better the
denoising is, the better the results are. Furthermore, many blind source separation techniques can
be interpreted as DSS algorithms using very general denoising principles.In particular, we showed
that FastICA is a special case of DSS which also implies that DSS can be computationally very
efficient.

The main benefit of the DSS framework is that it allows for easy developmentof new source sep-
aration algorithms which are optimised for the specific problem at hand. There is a wide literature
on signal denoising to choose from and in some cases denoising would be used for post-processing
in any case. All the tools needed for DSS are then readily available.

We have launched an open-source MATLAB package for implementing DSSalgorithms (DSS,
2004). It contains the denoising functions and speedup method presented here. But more impor-
tantly, the modular coding style makes it easy to tune the denoising functions to better suit the
separation problems at hand and even to build in completely new denoising functions to achieve
better performance.

In the experimental section, we demonstrated DSS in various source separation tasks. We
showed how denoising can be adapted to the observed characteristics ofsignals extracted with
denoising based on vague knowledge. From MEG signals, we were able toextract very accurately
subspaces such as theα-subspace or the very weak components of the cardiac subspace. DSSalso
proved to be able to recover CDMA signals better than the standard RAKE technique under poor
SNR.

Finally, we discussed potential extensions of DSS. It appears that DSS offers a sound basis for
developing hierarchical, nonlinear feature extraction methods and the connections to cortical models
of attention and perception suggest a promising starting point for future work.
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O. Schwartz and E. P. Simoncelli. Natural signal statistics and sensory gaincontrol. Nature Neuro-
science, 4(8):819 – 825, 2001.

L. Tong, V. Soo, R. Liu, and Y. Huang. Indeterminacy and identifiability ofblind identification.
IEEE Transactions on Circuits and Systems, 38:499–509, 1991.

H. Valpola and P. Pajunen. Fast algorithms for Bayesian independent component analysis. InPro-
ceedings of the Second International Workshop on Independent Component Analysis and Signal
Separation (ICA2000), pages 233–237, Helsinki, Finland, 2000.

H. Valpola, T. Raiko, and J. Karhunen. Building blocks for hierarchical latent variable models.
In Proceedings of the Third International Conference on Independent Component Analysis and
Signal Separation (ICA2001), pages 710–715, San Diego, USA, 2001.

H. Valpola and J. S̈arel̈a. Accurate, fast and stable denoising source separation algorithms. InPro-
ceedings of the Fifth International Conference on Independent Component Analysis and Signal
Separation (ICA2004), pages 64 – 71, Granada, Spain, 2004.

M. Vetterli and J. Kovacevic.Wavelets and subband coding. Prentice-Hall, 1995.

R. Vigário, J. S̈arel̈a, V. Jousm̈aki, M. Hämäläinen, and E. Oja. Independent component approach
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