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Abstract
We develop a closed form asymptotic formula to compute the marginal likelihood of data given a
naive Bayesian network model with two hidden states and binary features. This formula deviates
from the standard BIC score. Our work provides a concrete example that the BIC score is generally
incorrect for statistical models that belong to stratified exponential families. This claim stands in
contrast to linear and curved exponential families, where the BIC score has been proven to provide
a correct asymptotic approximation for the marginal likelihood.
Keywords: Bayesian networks, asymptotic model selection, Bayesian information criterion (BIC)

1. Introduction

Statisticians are often faced with the problem of choosing the appropriate model that best fits a given
set of observations. One example of such problem is the choice of structure in learning of Bayesian
networks (Heckerman et al., 1995; Cooper and Herskovits, 1992). Insuch cases the maximum
likelihood principle would tend to select the model of highest possible dimension, contrary to the
intuitive notion of choosing the right model. Penalized likelihood approachessuch as AIC have
been proposed to remedy this deficiency (Akaike, 1974).

We focus on the Bayesian approach to model selection by which a modelM is chosen according
to the maximum posteriori probability given the observed dataD:

P(M|D) ∝ P(M,D) = P(M)P(D|M) = P(M)
Z

Ω
P(D|M,ω)P(ω|M)dω,

whereω denotes the model parameters andΩ denotes the domain of the model parameters. In
particular, we focus on model selection using large sample approximation forP(M|D), calledBIC -
Bayesian Information Criterion.

The critical computational part in using this criterion is evaluating the marginal likelihood in-
tegralP(D|M) =

R

Ω P(D|M,ω)P(ω|M)dω. Given an exponential modelM we writeP(D|M) as a
function of the averaged sufficient statisticsYD of the dataD, and the numberN of data points inD:

I[N,YD,M] =
Z

Ω
eL(YD,N|ω,M)µ(ω|M)dω, (1)

whereµ(ω|M) is the prior parameter density for modelM, andL is the log-likelihood function
of model M. Recall that the sufficient statistics for multinomial samples ofn binary variables
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(X1, . . . ,Xn) is simply the countsN ·YD for each of the possible 2n joint states. Often the prior
P(M) is assumed to be equal for all models, in which case Bayesian model selectionis performed
by maximizingI[N,YD,M]. The quantity represented byS(N,YD,M) ≡ lnI[N,YD,M] is called the
BIC scoreof modelM.

For many types of models the asymptotic evaluation of Eq. 1, asN→∞, uses a classical Laplace
procedure. This evaluation was first performed for Linear Exponential (LE) models (Schwarz,
1978) and then for Curved Exponential (CE) models under some additional technical assumptions
(Haughton, 1988). It was shown that

S(N,YD,M) = N · lnP(YD|ωML)−
d
2

lnN+R, (2)

where lnP(YD|ωML) is the log-likelihood ofYD given the maximum likelihood parameters of the
model andd is the model dimension, i.e., the number of parameters. The error termR= R(N,YD,M)
was shown to be bounded for a fixedYD (Schwarz, 1978) and uniformly bounded for allYD→Y in
CE models (Haughton, 1988) asN→∞. For convenience, the dependence onM is suppressed from
our notation in the rest of this paper.

The use of BIC score for Bayesian model selection for Graphical Models is valid for Undirected
Graphical Models without hidden variables because these are LE models (Lauritzen, 1996). The
justification of this score for Directed Graphical Models (called Bayesian Networks) is somewhat
more complicated. On one hand discrete and Gaussian DAG models are CE models (Geiger et al.,
2001; Spirtes et al., 1997). On the other hand, the theoretical justification of the BIC score for CE
models has been established under the assumption that the model contains the true distribution - the
one that has generated the observed data. This assumption limits the applicabilityof the proof of
BIC score’s validity for Bayesian networks in practical setups.

Haughton (1988) proves that if at least one of several models containsthe true distribution,
then the BIC score is the correct approximation toI[N,YD] and the correct model will be chosen
by BIC score with probability 1 asN→ ∞. However, this claim does not guarantee correctness of
the asymptotic expansion ofI[N,YD] for models that do not contain the true distribution, nor does it
guarantee correctness of model selection for finiteN. The last problem is common to all asymptotic
methods, but having a correct asymptotic approximation forI[N,YD] provides some confidence in
this choice.

The evaluation of the marginal likelihoodI[N,YD] for Bayesian networks with hidden variables
is a wide open problem because the class of distributions represented by Bayesian networks with
hidden variables is significantly richer than curved exponential models andit falls into the class of
Stratified Exponential (SE) models (Geiger et al., 2001). The evaluation ofthe marginal likelihood
for this class is complicated by two factors. First, some of the parameters of themodel may be
redundant, and should not be accounted in the BIC score (Geiger et al.,1996; Settimi and Smith,
1998). Second, the set of maximum likelihood points is sometimes a complex self-intersecting
surface rather than a single maximum likelihood point as in the proven cases for linear and curved
exponential models. Recently, major progress has been achieved in analyzing and evaluating this
type of integrals (Watanabe, 2001). Herein, we apply these techniques tomodel selection among
Bayesian networks with hidden variables.

The focus of this paper is the asymptotic evaluation ofI[N,YD] for a binary naive Bayesian model
with binary features. This model, described fully in Section 3, is useful in classification of binary
vectors into two classes (Friedman et al., 1997). Our results are derivedunder similar assumptions
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to the ones made by Schwarz (1978) and Haughton (1988). In this sense,our paper generalizes
the mentioned works, providing valid asymptotic formulas for a new type of marginal likelihood
integrals. The resulting asymptotic approximations, presented in Theorem 4,deviate from the stan-
dard BIC score. Hence the standard BIC score is not justified for Bayesian model selection among
Bayesian networks with hidden variables. Moreover, no uniform scoreformula exists for such mod-
els; ouradjusted BIC scorechanges depending on the different types of singularities of the sufficient
statistics, namely, the coefficient of the lnN term (Eq. 2) is no longer−d

2 but rather a function of the
sufficient statistics. An additional result presented in Theorem 5 describes the asymptotic marginal
likelihood given a degenerate (missing links) naive Bayesian model; it complements the main result
presented by Theorem 4.

The rest of this paper is organized as follows. Section 2 introduces the concept of asymptotic
expansions and presents methods of asymptotic approximation of integrals. Section 3 reviews naive
Bayesian models and explicates the relevant marginal likelihood integrals forthese models. Sec-
tion 4 states and explains our main results and Section 5 gives a proof outline of Theorem 4 that
demonstrates the mathematical techniques used herein. The full proof of our theorems is deferred to
Appendices A and B. Section 6 discusses our contributions and outlines future research directions.

2. Asymptotic Approximation of Integrals

Exact analytical formulas are not available for many integrals arising in practice. In such cases
approximate or asymptotic solutions are of interest. Asymptotic analysis is a branch of analysis
that is concerned with obtaining approximate analytical solutions to problems where a parameter or
some variable in an equation or integral becomes either very large or very small. In this section we
review basic definitions and results of asymptotic analysis in relation to the integral I[N,YD] under
study.

Let z represent a large parameter. We say thatf (z) is asymptotically equalto g(z) for z→ ∞ if
limz→∞ f/g = 1, and write

f (z)∼ g(z), asz→ ∞.

Equivalently,f (z) is asymptotically equal tog(z) if lim z→∞ r/g= 0, denotedr = o(g), wherer(z) =
f (z)−g(z) is the absolute error of approximation.

We often approximatef (z) by several terms via an iterative approximation of the error terms.
An asymptotic approximation bym terms has the formf (z) = ∑m

n=1angn(z)+o(gm(z)), asz→ ∞,
where{gn} is anasymptotic sequencewhich means thatgn+1(z) = o(gn(z)) asz→∞. An equivalent
definition is

f (z) =
m−1

∑
n=1

angn(z)+O(gm(z)), asz→ ∞,

where the big ’O’ symbol states that the error term is bounded by a constant multiple ofgm(z). The
latter definition of asymptotic approximation is often more convenient and we useit herein, mostly
for m= 3. A good introduction to asymptotic analysis can be found in (Murray, 1984).

The objective of this paper is deriving asymptotic approximation of marginal likelihood integrals
as represented by Eq. 1, which for exponential families have the form

I[N,YD] =
Z

Ω
e−N f(ω,YD)µ(ω)dω (3)
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Figure 1: The classical Laplace procedure for approximation of integrals
R

e−N f(x)µ(x)dx, where
f achieves single minimum in the range of integration. (a) The exponential inte-
grand functions in one dimension, for differentN. The largeN the more mass of
the function is concentrated in the small neighborhood of the extremum. (b) The two
dimensional integrand functione−(x2−xy+y2), (N = 1). The isosurfaces are ellipses.
(c) Ellipsoid-like isosurfaces of the three dimensional log-likelihood function function
f =− [0.2lnθ1 +0.2lnθ2 +0.2lnθ3 +0.4ln(1−θ1−θ2−θ3)].

wheref (ω,YD) =−L(YD|ω) is the minus log-likelihood function. We focus on exponential models,
for which the log-likelihood of sampled data is equal toN times the log-likelihood of the averaged
sufficient statistics. Note that the specific models discussed in this paper areindeed exponential.

Consider Eq. 3 for some fixedYD. For largeN, the main contribution to the integral comes
from the neighborhood of the minimum off , i.e., the maximum of−N f(ω,YD). See illustration on
Figure 1(a,b). Thus, intuitively, the approximation ofI[N,YD] is determined by the form off near
its minimum onΩ. In the simplest casef (ω) achieves a single minimum atωML in the interior of
Ω and this minimum is non-degenerate, i.e., the Hessian matrixH f (ωML) of f at ωML is of full
rank. In this case the isosurfaces of the integrand function near the minimumf are ellipsoids (see
Figure 1b,c) and the approximation ofI[N,YD] for N→ ∞ is the classical Laplace approximation
(see, e.g., Wong, 1989, page 495) as follows.

Lemma 1 (Laplace Approximation) Let

I(N) =
Z

U
e−N f(u)µ(u)du,

where U⊂ Rd. Suppose that f is twice differentiable and convex (i.e.,H f (u) is positive definite),
the minimum of f on U is achieved on a single internal point u0, µ is continuous and µ(u0) 6= 0. If
I(N) absolutely converges, then

I(N)∼Ce−N f(u0)N−d/2, (4)

where C= (2π)d/2µ(u0)[detH f (u0)]
− 1

2 is a constant.

Note that the logarithm of Eq. 4 yields the form of BIC score as presented by Eq. 2.
However, in many cases, and, in particular, in the case of naive Bayesian networks to be defined

in the next section, the minimum off is achieved not at a single point inΩ but rather on a variety
W0 ⊂ Ω. Sometimes, this variety may bed′-dimensional surface (smooth manifold) inΩ in which
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case the computation of the integral is locally equivalent to thed−d′ dimensional classical case.
The hardest cases to evaluate happen when the varietyW0 contains self-intersections.

Recently, an advanced mathematical method for approximating this type of integrals has been
introduced to the machine learning community by Watanabe (2001). Below we briefly describe this
method and state the main results. First, we introduce the main theorem that enables us to evaluate
the asymptotic form ofI[N,YD] asN→ ∞ computed in a neighborhood of a maximum likelihood
point.1

Theorem 2 (based on Watanabe, 2001) Let

I(N) =
Z

Wε

e−N f(w)µ(w)dw

where Wε is some closedε-box around w0, which is a minimum point of f in Wε, and f(w0) = 0.
Assume that f and µ are analytic functions, µ(w0) 6= 0. Then,

ln I(N) = λ1 lnN+(m1−1) ln lnN+O(1)

where the rational numberλ1 < 0 and the natural number m1 are the largest pole and its multiplicity
of the meromorphic (analytic + poles) function that is analytically continued from

J(λ) =
Z

f (w)<ε
f (w)λµ(w)dw (Re(λ) > 0) (5)

whereε > 0 is a sufficiently small constant.2

The above theorem states the main claim of the proof of Theorem 1 in (Watanabe, 2001). Con-
sequently, the approximation of the marginal likelihood integralI[N,YD] (Eq. 3) can be determined
by the poles of

Jw0(λ) =
Z

Wε

[ f (w)− f (w0)]
λ µ(w)dw

evaluated in the neighborhoodsWε of pointsw0 on which f attains its minimum. This claim, which
is further developed in Section 5, holds because the minimum off (w)− f (w0) is zero and the main
contribution toI[N,YD] comes from the neighborhoods around the minimums off .

Often, however, it is not easy to find the largest pole and multiplicity ofJ(λ) defined by Eq. 5.
Here, another fundamental mathematical theory is helpful. Theresolution of singularitiesin alge-
braic geometry transforms the integralJ(λ) into a direct product of integrals of a single variable.

Theorem 3 (Atiyah, 1970, Resolution Theorem) Let f(w) be a real analytic function defined in a
neighborhood of0∈ Rd. Then there exists an open set W that includes0, a real analytic manifold
U, and a proper analytic map g: U →W such that:

1. g: U \U0→W \W0 is an isomorphism, where W0 = f−1(0) and U0 = g−1(W0).

1. Throughout this paper we use styled ’I’ symbol to denote our particular marginal likelihood integrals rather than
standard ’I ’ symbol that denote general integrals appearing in theorems, examples and auxiliary derivations.

2. Recall that the pole of the complex functionf (z) is the point where it has a finite number of negative terms in its
Laurent expansion, i.e.,f (z) = a−m/(z−z0)

m+ . . .+a0 +a1(z−z0)+ . . .. In this case it is said thatf (z) has a pole
of order (or multiplicity)matz0. (See, e.g., Lang (1993), Section 5.3.)
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2. For each point p∈U there are local analytic coordinates(u1, . . . ,ud) centered at p so that,
locally near p, we have

f (g(u1, . . . ,ud)) = a(u1, . . . ,ud)u
k1
1 . . .ukd

d ,

where ki ≥ 0 and a(u) is an analytic function with analytic inverse1/a(u).

This theorem is based on the fundamental results of Hironaka (1964) andthe process of changing
to u-coordinates is known as resolution of singularities.

Theorems 2 and 3 provide an approach for computing the leading terms in the asymptotic ex-
pansion of lnI[N,YD]:

1. Cover the integration domainΩ by a finite union of open neighborhoodsWα. This is possible
under the assumption thatΩ is compact.

2. Find a resolution mapgα and manifoldUα for each neighborhoodWα by resolution of sin-
gularities. Note that in the process of resolution of singularitiesUα may be further divided
into subregionsUαβ by neighborhoods of different pointsp∈Uα, as specified by Theorem 3.
Select a finite cover ofUα by Uαβ, this is possible since closure of eachUα is also compact.

3. Compute the integralJ(λ) (Eq. 5) in each regionWαβ = gα(Uαβ) and find its poles and their
multiplicity. This integral, denoted byJαβ, becomes

Jαβ(λ) =
R

Wαβ
f (w)λµ(w)dw

=
R

Uαβ
f (gα(w))λµ(gα(u))|g′α(u)|du

=
R

Uαβ
a(u)λ uλk1

1 uλk2
2 . . .uλkd

d µ(gα(u)) |g′α(u)| du.

(6)

where |g′a(u)| is the Jacobian determinant. The last integration (up to a constant) is done
by boundinga(u) andµ(gα(u)), using the Taylor expansion for|g′α|, and integrating each
variableui separately. The largest poleλαβ of Jαβ and its multiplicitymαβ are now found.

4. The largest pole and multiplicity ofJ(λ) are λ(αβ)∗ = max(αβ) λαβ and the corresponding
multiplicity m(αβ)∗ . If the (αβ)∗ values that maximizeλαβ are not unique, then the(αβ)∗

value that maximizes the corresponding multiplicitym(αβ)∗ is chosen.

In order to demonstrate the above method, we conclude this section with an example, approxi-
mating the integral

I [N] =
Z +ε

−ε

Z +ε

−ε

Z +ε

−ε
e−N(u2

1u2
2+u2

1u2
3+u2

2u2
3) du1du2du3 (7)

asN tends to infinity. This approximation ofI [N] is an important component in establishing our
main results. The key properties of the integrand function in Eq. 7 are illustrated in Figure 2.

Watanabe’s method calls for the analysis of the poles of the following function

J(λ) =
Z +ε

−ε

Z +ε

−ε

Z +ε

−ε
(u2

1u2
2 +u2

1u2
3 +u2

2u2
3)

λ du1du2du3. (8)

To find the poles ofJ(λ) we transform the integrand function into a more convenient form by
changing to new coordinates via the process of resolution of singularities.To obtain the needed
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(a) (b)

Figure 2: Part (a) depicts an isosurface ofe−N(u2
1u2

2+u2
1u2

3+u2
2u2

3) (or alternatively ofu2
1u2

2+u2
1u2

3+u2
2u2

3)
and its set of maximum (minimum) points which coincide with the three axis. Part (b)
depicts four isosurfaces of the same function for its different values. The isosurfaces are
not ellipsoids as in the classical Laplace case of a single maximum (see Figure1c).

transformations for the integral under study, we apply a technique calledblowing-upwhich consists
of a series ofquadratic transformations. For an introduction to these techniques see (Abhyankar,
1990).

Rescaling the integration range to(−1,1) and then taking only the positive octant yields

J(λ) = 8ε4λ+3 R

(0,1)3(u2
1u2

2 +u2
1u2

3 +u2
2u2

3)
λdu

= 8ε4λ+3
(

R

0<u2,u3<u1<1+
R

0<u1,u3<u2<1+
R

0<u1,u2<u3<1

)

(u2
1u2

2 +u2
1u2

3 +u2
2u2

3)
λdu.

The three integrals are symmetric, so we evaluate only the first. Using the quadratic transformation
u2 = u1u2, u3 = u1u3, which modifies the integration range 0< u2,u3 < u1 < 1 to be(0,1)3, yields

J1(λ) =
Z

0<u2,u3<u1<1
(u2

1u2
2 +u2

1u2
3 +u2

2u2
3)

λdu=
Z

(0,1)3
u4λ+2

1 (u2
2 +u2

3 +u2
2u2

3)
λdu.

We now divide the range(0,1)3 to the regions 0< u3 < u2 < 1 and 0< u2 < u3 < 1. Again these
cases are symmetric and so we continue to evaluate only the first using the transformationu3 = u2u3,

J11(λ) =
Z

0<u3<u2<1
u4λ+2

1 (u2
2 +u2

3 +u2
2u2

3)
λdu=

Z

(0,1)3
u4λ+2

1 u2λ+1
2 (1+u2

3 +u2
2u2

3)du.

Since the function(1+ u2
3 + u2

2u2
3) is bounded on the region of integration, namely 1≤ 1+ u2

3 +
u2

2u2
3≤ 3 for all 0≤ u2,u3≤ 1, it follows that

8ε4λ+3
Z

(0,1)2
u4λ+2

1 u2λ+1
2 du1du2 ≤ J(λ) ≤ 24ε4λ+3

Z

(0,1)2
u4λ+2

1 u2λ+1
2 du1du2, (9)

yielding

8ε4λ+3 1
(4λ+3)(2λ+2)

≤ J(λ) ≤ 24ε4λ+3 1
(4λ+3)(2λ+2)

.
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X1 X2 Xn

C

Figure 3: A naive Bayesian model. Class variableC is latent.

ThusJ(λ) has poles atλ =−3/4 andλ =−1 with multiplicity m= 1. The largest pole isλ =−3/4
with multiplicity m= 1. We conclude, using Theorem 2, thatI [N] defined by Eq. 7 is asymptotically
equal tocN−

3
4 .

We note that in this process of resolution of singularities we have implicitly computed the terms
k1, k2, k3, the functiona(u) and the Jacobian determinant|g′(u)| (in Eq. 6). In particular, we have
established thatk1 = 4, k2 = 2, k3 = 0, a(u) = 1+u2

3 +u2
2u2

3 and|g′(u)|= u2
1u2 for the appropriate

range under study. The mappingg (of Theorem 3) is the composition of the two transformations
we used and is defined viau1 = u1, u2 = u1u2 andu3 = u1u2u3. However, this explicit form is not
needed for the evaluation of the target integral, as long as the values ofki and|g′(u)| are derived.

In the proof of our theorems we perform a similar process of resolution ofsingularities pro-
ducing implicitly the mappingg which is guaranteed to exist according to Theorem 3, and which
determines the values ofki and|g′(u)| needed for evaluation of poles of functionJ(λ) as required
by Theorem 2.

3. Naive Bayesian Models

A naive Bayesian modelM for discrete variablesX = {X1, . . . ,Xn} is a set of joint distributions for
X that factor according to the tree structure depicted on Figure 3, where theclass variableC is never
observed. Formally, a probability distributionP(X = x) belongs to a naive Bayesian model if and
only if

P(X = x) =
r

∑
j=1

P(C = c j)
n

∏
i=1

P(Xi = xi |C = c j),

wherex = (x1, . . . ,xn) is then-dimensional binary vector of values ofX, r is the number of hidden
states andc j denotes a particular unobserved state (class). Intuitively, this model describes the
generation of datax that comes fromr sourcesc1, . . . ,cr . Naive Bayesian models are a subclass
of Bayesian networks (Pearl, 1988) and they are widely used in clustering (Cheeseman and Stutz,
1995).

In this work we focus on naive Bayesian networks that have two hidden states (r = 2) and
n binary feature variablesX1, . . . ,Xn. We denote the parameters definingp(xi = 1|c1) by ai , the
parameters definingp(xi = 1|c2) bybi , and the parameters definingp(c1 = 1) by t. These parameters
are called themodel parameters. We denote thejoint space parameters P(X = x) by θx. The
following mapping, namedT, relates these two sets of parameters:

θx = t
n

∏
i=1

axi
i (1−ai)

1−xi +(1− t)
n

∏
i=1

bxi
i (1−bi)

1−xi , (10)
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and the marginal likelihood integral (Eq. 1) for these models becomes

I[N,YD] =
Z

(0,1)2n+1
eN∑xYx lnθx(ω)µ(ω)dω (11)

whereω = (a1, . . . ,an,b1, . . . ,bn, t) are the model parameters,N is the sample size, and the averaged
sufficient statisticsYx is the number of samples for whichX = x divided by the sample sizeN.

4. Main Results

This section presents an asymptotic approximation of the integralI[N,YD] (Eq. 11) for naive Bayesian
networks consisting of binary variablesX1, . . . ,Xn and two hidden states. It is based on two results.
First, the classification of singular points for these types of models (Geiger et al., 2001). Second,
Watanabe’s approach as explained in Section 2, which provides a method toobtain the correct
asymptotic formula ofI[N,YD] for the singular points not covered by the classical Laplace approxi-
mation scheme.

Let ϒ = {(y1, . . . ,y2n)|yi ≥ 0,∑yi = 1} be the set of possible values of the averaged sufficient
statisticsYD = (Y1, . . . ,Y2n) for dataD = {(xi,1, . . . ,xi,n)}Ni=1. In our asymptotic analysis we let the
sample sizeN grow to infinity.

Let ϒ0⊂ ϒ be the points(y1, . . . ,y2n) that correspond to the joint space parameters of the distri-
butions that can be represented by binary naive Bayesian models withn binary variables. In other
words, assuming the indices ofyi are written as vectors(δ1, . . . ,δn) of n zeros and ones, points in
ϒ0 are those that can be parameterized via

y(δ1,...,δn) = t
n

∏
i=1

aδi
i (1−ai)

1−δi +(1− t)
n

∏
i=1

bδi
i (1−bi)

1−δi (12)

wheret, a = (a1, . . . ,an) andb = (b1, . . . ,bn) are the 2n+ 1 model parameters, as defined in Sec-
tion 3.

Geiger et al. (2001) classify the singular points of the algebraic variety ofthe parameters of
binary naive Bayesian networks into two classesSandS′. This classification is used here to classify
the possible statistics arising from binary naive Bayesian networks with different parameters; The
setS is the set of points(y1, . . . ,y2n) such that Eq. 12 holds and allai = bi except for at most two
indices in{1, . . . ,n}. Intuitively, each such point represents a probability distribution that canbe
defined by a naive Bayesian model (Figure 3) with all links removed except at most two.

The setS′ ⊂ S is the set of points represented by a naive Bayesian model, just as the setSdoes,
but with all links removed; namely, a distribution where all variables are mutuallyindependent
and independent of the class variable as well. These statistics are parameterized viay(δ1,...,δn) =

∏n
i=1aδi

i (1−ai)
1−δi .

ClearlyS′ ⊂ S⊂ ϒ0⊂ ϒ. We call points inϒ0\S regular points, and points in setsS\S′ andS′

type1 andtype2 singularities, respectively. We now present our main result.

Theorem 4 (Asymptotic Marginal Likelihood Formula) LetI[N,YD] (Eqs. 10 and 11) be the marg-
inal likelihood of data with averaged sufficient statistics YD given the naive Bayesian model with
binary variables and two hidden states with parametersω = (a,b, t). Namely,

I[N,YD] =
R

(0,1)2n+1 eN∑xYx lnθx(ω)µ(ω)dω,

θ(x1,...,xn) = t ∏n
i=1axi

i (1−ai)
1−xi +(1− t)∏n

i=1bxi
i (1−bi)

1−xi ,

(13)
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where x= (x1, . . . ,xn) denotes the binary vector of length n and the vectors YD andθ of length2n

are indexed by x. Let YD and µ satisfy the following assumptions:

A1 Bounded density.The density µ(ω) is bounded and bounded away from zero onΩ = (0,1)2n+1.

A2 Positive statistics.The statistics YD = (Y1, . . . ,Y2n) are such that Yi > 0 for i = 1, . . . ,2n.

A3 Statistics stability.There exists a sample size N0 such that the averaged sufficient statistics YD

is equal to a limiting statistics Y for all sample sizes N≥ N0.

Then, for n≥ 3 as N→ ∞:

(a) If Y ∈ ϒ0\S (regular point)

lnI[N,YD] = N lnP(Y|ωML)−
2n+1

2
lnN+O(1), (14)

(b) If Y ∈ S\S′ (type1 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
2n−1

2
lnN+O(1), (15)

(c) If Y ∈ S′ (type2 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+O(1), (16)

whereωML are the maximum likelihood parameters for the averaged sufficient statistic Y.
Moreover, for n= 2, S= ϒ0 = ϒ and

(d) If Y 6∈ S′ (namely, Y∈ S\S′),

lnI[N,YD] = N lnP(Y|ωML)−
3
2

lnN+O(1), (17)

(e) If Y∈ S′,

lnI[N,YD] = N lnP(Y|ωML)−
3
2

lnN+2ln lnN+O(1), (18)

and for n= 1,

( f ) lnI[N,YD] = N lnP(Y|ωML)−
1
2

lnN+O(1),

(19)
as N→ ∞.

The first assumption that the prior densityµ is bounded has been made by all earlier works; in some
applications it holds and in some it does not. The proof and results, however, can be easily modified
to apply to any particular kind of singularity ofµ, as long as the form of singularity is specified. The
second and third assumptions are made to ease the proof; the third assumptionwas also made by
(Schwarz, 1978). Removing these assumptions is beyond the scope of thispaper.

10
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Note that Eq. 15 corresponds to selectingλ1 = −2n−1
2 andm1 = 1 in Watanabe’s method and

Eq. 16 corresponds to selectingλ1 =−n+1
2 andm1 = 1. Both formulas are different from the stan-

dard BIC score, given by Eq. 14, which only applies to regular points, namely, the points inϒ0\S.
In contrast to the standard BIC score, which is uniform for all pointsYD, the asymptotic approxi-
mation given by ouradjusted BIC scoredepends on the value ofY = YD through the coefficient of
lnN.

One might be tempted to think that the coefficient of the− lnN term can be guessed by vari-
ous intuitive considerations. We now discuss three such erroneous attempts. First, the number of
parameters of the model that generates a singular pointYD is n+ 1 for case (c) because there are
n+ 1 independent binary variables (the class variable andn feature variables). This may seem to
explain the coefficient of lnN in case (c). However, using the same reasoning for case (b) yields
the coefficient(n+3)/2 which differs from the correct coefficient. Another attempt is to claim that
the coefficient of− lnN is half the number of parameters in the naive Bayesian model minus the
number of redundant parameters in the model that generatesYD. In particular, for case (b), the num-
ber of redundant parameters in the generative model is(n+3)− (n+1) = 2 and so the speculated
coefficient should be(2n+1−2)/2 = (2n−1)/2 which is the correct coefficient. However, using
the same reasoning for case (c) yields the coefficient 2n/2 which is wrong. Finally, computing the
maximum rank of the Jacobian of the map from the model parameters to the joint space parameters
(defined by Eq. 22) at the maximum likelihood parameterswML for singular statisticsYD yields the
correct coefficient for case (b) but the wrong coefficient(2n−1)/2 for case (c).

The next theorem specifies the asymptotic behavior of marginal likelihood integrals for degener-
ate naive Bayesian models, namely, when some of the links are missing. This theorem complements
Theorem 4 and its proof is explicated in Appendix B.

Theorem 5 Let M be the degenerate naive Bayesian model with two hidden states and n binary
feature variables of which m are independent of the hidden state and let

ω = (a1, . . . ,an−m,b1, . . . ,bn−m, t,cn−m+1, . . . ,cn)

be the2n−m+ 1 model parameters of M. LetI[N,YD] be the marginal likelihood of data D with
averaged sufficient statistics YD given model M. Namely,

I[N,YD] =
R

(0,1)2n+1 eN∑xYx lnθx(ω)µ(ω)dω,

θx =
(

t ∏n−m
i=1 axi

i (1−ai)
1−xi +(1− t)∏n−m

i=1 bxi
i (1−bi)

1−xi
)

∏n
i=n−m+1cxi

i (1−ci)
1−xi ,

(20)

where x= (x1, . . . ,xn) denotes the binary vector of length n and the vectors YD andθ of length2n

are indexed by x. Let YD and µ satisfy the following assumptions:

A1 Bounded density.The density µ(ω) is bounded and bounded away from zero onΩ = (0,1)2n+1.

A2 Positive statistics.The statistics YD = (Y1, . . . ,Y2n) are such that Yi > 0 for i = 1, . . . ,2n.

A3 Statistics stability.There exists a sample size N0 such that the averaged sufficient statistics YD

is equal to a limiting statistics Y for all sample sizes N≥ N0.

Assume also that Y∈ ϒ0 and that the parameterization of Y (as is Eq. 12) corresponds to a binary
naive Bayesian model M′, which shares k links with model M. Then, for m≤ n−3 as N→ ∞:

11



RUSAKOV AND GEIGER

(a) If k≥ 3 (regular point)

lnI[N,YD] = N lnP(Y|ωML)−
2n+1−m

2
lnN+O(1),

(b) If k = 2 (type1 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
2n−1−m

2
lnN+O(1),

(c) If k = 0 or k = 1 (type2 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+O(1),

whereωML are the maximum likelihood parameters of statistics Y .
Furthermore, for m= n−2

(d) If k = 2 (type1 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+O(1).

Note that here n+1 = 2n−m−1, since m= n−2.

(e) If k= 0 or k = 1 (type2 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+2ln lnN+O(1),

and for m= n−1 or m= n,

( f ) lnI[N,YD] = N lnP(Y|ωML)−
n
2

lnN+O(1),

regardless of k as N→ ∞.

An adversary may argue that evaluating the marginal likelihood on singular points is not needed
because one could exclude from the model all singular points which only have measure zero. The
remaining set would be a smooth manifold defining a curved exponential model,and so the standard
BIC score would be a correct asymptotic expansion as long as the pointYD has not been excluded.
However, this proposed remedy is not perfect because in some situationsthe data may come from a
model that yields singular statistics relative to the models being compared.

As an example of incorrect Bayesian model selection by the standard BIC score, consider the
problem of selecting between two naive Bayesian modelsM1 and M2, as depicted on Figure 4.
Suppose that the data is generated by the third modelMT . Both modelsM1 andM2 can not represent
the target distribution (MT) exactly, therefore, given a large enough sample, the choice of the model
depends on the particular distribution represented byMT and its parameters. Intuitively, if the
dependencies ofX1 andX2 on the hidden nodeC in modelMT are stronger than the dependency of
X4 on the hidden node, then one should prefer modelM1 over modelM2, and vice versa.

12
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C

X6X5X4X3X2X1

C

X6X5X4X3X2X1

C

X6X5X4X3X2X1

MT M1 M2

Figure 4: An example of incorrect Bayesian model selection by the standard BIC score.MT repre-
sents the generating model, andM1, M2 represent models being compared. If the max-
imum likelihoods of data givenM1 andM2 happen to be equal, e.g., for true model pa-
rametersa1 = 0.75, a2 = 0.2, a3 = 0.12, a4 = 0.17, b1 = 0.33, b2 = 0.12, b3 = 0.07, b4 =
0.77, a5 = b5 = 0.2, a6 = b6 = 0.6, t = 0.42, then the model selection procedure based on
the standard BIC score will prefer modelM1, as it is less penalized compared toM2. Us-
ing the adjusted BIC formula (Theorem 5), on the other hand, gives an advantage toM2,
reflecting its higher marginal likelihood.

Now, if the maximum likelihoods of the data given modelM1 and given modelM2 happen to be
equal, which is possible whenX4 depends strongly onC in MT (Figure 4), then the standard choice
of the model is dictated by the penalty term of the BIC score (Eq. 2). The penalty term is smaller for
M1, which contains less parameters thanM2, and, consequently, the model preferred by the standard
BIC score isM1. However, the adjusted BIC approximation formula for the marginal likelihoodfor
models with hidden variables penalizes modelM2 less than modelM1 (Theorem 5). Therefore, the
marginal likelihood of the data given modelM2 is asymptotically larger than that of modelM1 and
it should be chosen according to a Bayesian model selection procedure,given enough data.

Note that when comparing a naive Bayesian model versus a sub-model, where the data comes
from the smaller model, then the standard BIC score may underevaluate the larger model, but this
would not lead to an incorrect model selection.

5. Proof Outline of Theorem 4

The proof of Theorem 4 consists of two logical parts. The first part is the proof of claim (a) of The-
orem 4 that follows from the fact that for regular statisticsY ∈ ϒ0\Sthere are only two (symmetric)
maximum likelihood points at each of which the log-likelihood function is properlyconvex. Hence,
the marginal likelihood integral can be approximated by the classical Laplacemethod (Lemma 1).
The proof of Theorem 4a, which reflects standard practice, is provided in Appendix A.2. The sec-
ond logical part consists of the proofs of claims (b) and (c) of Theorem4 and requires the advanced
techniques of Watanabe (Section 2). First, the integralI[N,YD] is transformed by a series of trans-
formations into a simpler one. Second, the sets of extremum points of the exponent (maximum
log-likelihood points) are found, and then the new integral is computed in the neighborhoods of
extremum points. Finally, the logarithm of the largest contribution gives the desired asymptotic
approximation of the original integral. We focus on one thread of our proof, which demonstrates
this method, deferring the full proof to Appendix A.
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5.1 Useful Transformations

Decomposing the transformationT from the model parameters(a,b, t) to the joint space parameters
θx, as defined by Eq. 13, facilitates the evaluation of the integralI[N,YD]. We decomposeT into a
series of three transformationsT1, T2, T3 such thatT = T3 ◦T2 ◦T1. We call the model parameters
(a,b, t) - the source coordinatesand the parametersθx - the target coordinates. The transformations
T1 andT3 are diffeomorphisms, namely, one-to-one differentiable mappings with differentiable in-
verses, that change the source and target coordinates, respectively, and are defined in such a way
that the intermediate transformationT2, which carries all the information about the singularities, is
simple to analyze. These transformations are from (Geiger et al., 2001).

Denote the domain of the model parameters byΩ = [0,1]2n+1 and the domain of the joint space
parameters byΘ = ∆̄2n−1, where∆̄2n−1 = {(α1, . . . ,α2n−1)|αi ≥ 0,∑αi ≤ 1} is the closed 2n− 1
dimensional unit simplex. LetU = T1(Ω) be the image ofT1, Λ = T−1

3 (Θ) be the preimage ofT3,
andT2 : U → Λ be the transformation that relates these sets. These transformations are chained as
follows:

Ω(a,b,t)
T1←→U(x,u,s)

T2−→ Λ(z)
T3←→Θ(θ)

where the indices denote the names of the coordinates used to describe the corresponding spaces.
We now present these three transformations.

Transformation T1: We defineT1 : Ω→U via

s= 2t−1, ui =
ai−bi

2
, xi = tai +(1− t)bi , i = 1, . . . ,n. (21)

The mappingT1 is a diffeomorphism with|detJT1|= 2−n+1. The inverse transformation is given by

t = (s+1)/2, ai = xi +(1−s)ui , bi = xi− (1+s)ui , i = 1, . . . ,n. (22)

Furthermore, it can be verified thatU is the set of points(x,u,s) ∈ Rn×Rn×R such that

0≤ xi ≤ 1, −1≤ s≤ 1, −xi ≤ (1−s)ui ≤ 1−xi , xi−1≤ (1+s)ui ≤ xi . (23)

Transformation T3: We defineT3 : Λ→ Θ as the inverse of a composition of two transformations
T31 andT32. First, consider the nonsingular transformationT31 : Θ→ Λ′ defined by

νi j ...k = ∑
(x1,...,xn), s.t. xi=x j=...=xk=1

θ(x1,...,xn)

whereνi stands for the probability of theith feature being true,νi j stands for the probability that the
ith and jth features are both true, etc. We now expressνi j ...k using the model parameters(a,b, t)
via

νi j ...k = taia j . . .ak +(1− t)bib j . . .bk. (24)

Using Eq. 22, we rewrite Eq. 24 obtaining

νi = xi , νi j = xix j +(1−s2)uiu j ,
νi jk = xix jxk +(1−s2)(xiu juk +uix juk +uiu jxk)−2s(1−s2)uiu juk

ν12...r = x1x2 · · ·xr +∑r
i=2 pi(s)(∑ “products ofi u′s andr− i x′s′′)

(25)
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wherepi(s) = 1/2
[

(1−s)i(1+s)+(−1−s)i(1−s)
]

, and, in particular,p2(s) = 1−s2 andp3(s) =
−2s(1−s2).

Now we subtract products of the firstn coordinates to remove the leading terms. So, we do
zi j = νi j −νiν j . Then we subtract products of the firstn coordinates with one of the new coordinates
to remove the second terms, namely,zi jk = νi jk−νiν jνk−zi j νk−zikν j−zjkνi , and so forth. We end
up with the transformationT32 : Λ′→ Λ defined by

zi = νi , zi j = νi j −νiν j , zi jk = νi jk −νiν jνk−zi j νk−zikν j −zjkνi , etc. (26)

where the indices of thez coordinates are non-empty subsets of{1, . . . ,n}. In particular, thez
coordinate corresponding to a setI ⊆ {1, . . . ,n} is zI , thezcoordinate corresponding to{i} is zi , and
thez coordinate corresponding to{i, j,k} ⊆ {1, . . . ,n} is zi jk , etc.

The transformationsT31 andT32 are diffeomorphisms with Jacobian determinant 1. The trans-
formationT3 is defined byT3 = T−1

31 ◦T−1
32 : Λ→ Θ. Hence,T3 is a diffeomorphism with Jacobian

determinant equal to 1.

Transformation T2: We defineT2 : U ⊂ R2n+1→ Λ⊂ R2n−1 via

zi = xi , zi j = p2(s)uiu j , . . . , z12...r = pr(s)u1u2 . . .ur (27)

obtained by combining Eqs. 25 and 26. We use the notationzI (x,u,s) when the dependence ofzI on
(x,u,s) needs to be explicated. Note that this transformation is not a diffeomorphism for n > 3.

TransformationsT1, T2 andT3 are similar to transformations used by (Settimi and Smith, 2000)
in the study of the geometry of parametric spaces for Bayesian networks with hidden variables.
These transformations can be regarded as reparameterizations of the naive Bayesian models in terms
of moments. In particular, if the hidden and observable nodes are assumedto have states−1 and 1,
thens= E[C], ui = Cov(Xi ,C)/Var(C), pi(s) = E[(C−s)i ] andz12...r = E[∏r

i=1(Xi−E[Xi ])].

5.2 Preliminary Lemmas

Based on the transformationsT1, T2 andT3, we present two lemmas that facilitate the evaluation
of the integralI[N,YD]. The first lemma states that under AssumptionsA1 andA3, the integral
I[N,YD] can be asymptotically evaluated in the(x,u,s) coordinates for a limiting statisticsY, while
dismissing the contribution of the density functionµ. The second lemma shows that the resulting
integralĨ[N,Y] can be evaluated using the quadratic form in thez coordinates.

Lemma 6 Let I[N,YD] be defined by Eq. 13, namely,

I[N,YD] =
Z

(0,1)2n+1
eN∑xYx lnθx(ω)µ(ω)dω

and assume µ is bounded (A1) and YD is stable (A3). Let

Ĩ[N,Y] =
Z

U
e−N f(θ[x,u,s])dxduds (28)

where
f (x,u,s) = fY−∑2n

i=1Yi lnθi [x,u,s],

θ[x,u,s] = (T3◦T2)[x,u,s], θ2n[x,u,s] = 1−∑2n−1
i=1 θi [x,u,s],

(29)
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and where fY = max(x,u,s)∈U ∑2n

i=1Yi lnθi [x,u,s] and Y is the limiting statistics of YD as specified by
Assumption A3, namely, YD = Y for N≥ N0.

Then, fY = P(Y|ωML) and

lnI[N,YD] = N fY + ln Ĩ[N,Y]+O(1) (30)

for all N > 1.

Proof: SinceT1 is a diffeomorphism,fY = P(Y|ωML) and the integralI[N,YD] can be evaluated in
(x,u,s) coordinates by introducing the constant factor of Jacobian determinant of transformationT1,
JT1 = 2−n+1. Moreoverµ(ω) is bounded and thus the integral evaluated withµ(ω) ≡ 1 is within
a constant factor ofI[N,YD] and sinceYD is equal toY starting fromN0, fixing YD to Y introduces
finite number of approximation errors forN < N0 that can be bounded. Thus,Ĩ[N,Y] is within a
constant factor of the integralI[N,YD] multiplied byeN fY with the constants independent onN and
YD. Eq. 30 expresses this fact in a logarithmic scale.�

Lemma 7 ConsiderĨ[N,Y] and f(x,u,s) as defined in Lemma 6 (Eqs. 28 and 29). Let the zero set
U0 = argmin(x,u,s)∈U f (x,u,s) be the set of minimum points of f(x,u,s) in U. Let

J[N,Y] = max
p0∈U0

Jp0[N,Y] and Jp0[N] =
Z

Uε∩U
e−N∑I (zI (x,u,s)−z′I )

2
dxduds, (31)

where zI (x,u,s) is the I-th coordinate of z(x,u,s) = T2[x,u,s], z′I is the I-th coordinate of T2[x′,u′,s′]
and Uε is anε-box neighborhood of p0 = (x′,u′,s′) ∈U0. (Note thatJp0[N] does not depend on Y,
whileJ[N,Y] depends on Y through the form of set U0.)

If Y is positive (A2) and Y∈ ϒ0, then

ln Ĩ[N,Y] = lnJ[N,Y]+O(1) for all N > 1. (32)

The proof of this lemma uses the facts thatT3 is a diffeomorphism,U is compact, the contributions
of non-maximum regions of− f are exponentially small, and the 2n dimensional pointY > 0 corre-
sponds to a maximum likelihood parameters of naive Bayesian network with binary variables and
two hidden states. The proof is explicated in Appendix A.1.

Lemmas 6 and 7 jointly state that the asymptotic forms of lnJ[N,Y] and lnI[N,YD] are identical
up to an additive termN fY and a constant provided thatY is the limiting statistics ofYD (Assumption
A3).

5.3 Analysis of Type 2 Singularity

We now focus on the proof of Theorem 4c that deals with the singular pointsin S′. Let Y ∈ S′.
Our starting point in proving Theorem 4c is integralJ[N,Y] (Eq. 31), which by Lemmas 6 and 7
specifies the asymptotic form ofI[N,YD]. We evaluate the contributionsJp0[N] to J[N,Y] from the
neighborhoods of extremum pointsp0 = (x′,u′,s′) ∈U0. The largest contribution determines the
asymptotic form of integralI[N,YD] asN→ ∞ andYD = Y.

Let γ = (γ1, . . . ,γn) be the model parameters of then independent variables that define the 2n

dimensional pointY ∈ S′, namely

γ j = ∑
δ∈{0,1}n,s.t. δ j=1

Y(δ1,...,δn), j = 1, . . . ,n. (33)
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Furthermore,Y ∈ S′ if and only if for all δ ∈ {0,1}n, equalityY(δ1,...,δn) = ∏n
i=1 γδi

i (1− γi)
1−δi holds

for γ = {γ1, . . . ,γn} given by Eq. 33.
Let V̄ denote the closure of a setV. The zero setU0 can be written as the union ofn+2 sets

U0 = Ū0−∪Ū0+∪
n

[

j=1

Ū0 j , (34)

where

U0− =
{

(x = γ,u,s=−1) | ui ∈
(

−γi
2 , 1−γi

2

)

, i = 1, . . . ,n
}

, W0− = {(a,b = γ, t = 0) | ai ∈ (0,1)} ,

U0+ =
{

(x = γ,u,s= 1) | ui ∈
(

γi−1
2 , γi

2

)

, i = 1, . . . ,n
}

, W0+ = {(a = γ,b, t = 1) | bi ∈ (0,1)} ,

U0 j =















(x = γ,u,s) |
ui = 0,∀i 6= j;
u j ∈

(

− 1
2 , 1

2

)

;s∈ (−1,1);
−γ j < (1−s)u j < 1− γ j ,
γ j −1 < (1+s)u j < γ j















, W0 j =

{

(a,b, t) | ai = bi = γi ,∀i 6= j;
ta j +(1− t)b j = γ j

}

,

(35)

and whereW0− = T−1
1 (U0−), W0+ = T−1

1 (U0+), andW0 j = T−1
1 (U0 j) are the same sets expressed

using the model parameters(a,b, t).
The zero setU0, namely the minimum points off , is divided into five disjoint sets:

C1: (x′,u′,s′) ∈U0 j \
S

i 6= j U0i .

C2: (x′,u′,s′) ∈T

j U0 j .

C3: (x′,u′,s′) ∈U0−∪U0+ \
S

j Ū0 j .

C4: (x′,u′,s′) ∈S

j

[

U0−∪U0+∩Ū0 j \
S

i6= j Ū0i
]

.

C5: (x′,u′,s′) ∈ (U0−∪U0+)
T

j Ū0 j .

These five disjoint sets and their boundaries coverU0, becauseU0+ ∩U0− = /0 andU0i ∩U0 j =
T

kU0k. The setU0 is shown in Figure 5 along with a representative point fromC1 throughC5.
Note thatU0 is a union of twon-dimensional planesU0−, U0+ andn two-dimensional planes

U0 j , j = 1, . . . ,n. Consequently, one could perhaps guess from the classical Laplace approximation
analysis that because the zero subsetsU0−, U0+ have dimensionn, the coefficient of the lnN term
would be at least−(2n+1−n)/2 =−(n+1)/2. Indeed this happens, but a formal proof requires
to closely examine the form off near the different minimum points. This evaluation is complicated
by the fact that the zero planes intersect (see Figure 5), and such cases (C2,C4,C5) are not covered
by the classical Laplace approximation analysis.

The proof proceeds case by case by evaluating the integralsJp0[N] (Eq. 31) around points
p0 = (x′,u′,s′) from the setsC1 throughC5. Then, the maximal asymptotic value ofJp0[N] is
the approximation ofJ[N,Y], as specified by Lemma 7. We now treat caseC2 which demonstrates
the main ideas, deferring the other cases to Appendix A.

According to caseC2, (x′,u′,s′) =
T

j U0 j . Each point of caseC2 satisfiesu′i = 0 andx′i = γi for
i = 1, . . . ,n ands′ 6=±1. Furthermore, itsz coordinates satisfyz′i = x′i for all i = 1, . . . ,n andz′I = 0
for all other indices. Letφ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I ]

2. Note thatφ(x,u,s) is term
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Figure 5: The setU0 projected on(s,ui ,u j), for xi = γi = 0.2, x j = γ j = 0.3. Examples of points of
typesC1-C5 are marked.

in the exponent of the integrand ofJ[N,Y] centered around the minimum point(x′,u′,s′). Using
transformationT2 (Eq. 27), we obtain

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I ]
2

= ∑i [zi−z′i ]
2 +∑i j ,i6= j [zi j −z′i j ]

2 +∑i jk,i6= j 6=k[zi jk −z′i jk ]
2 + . . .

= ∑i [(x
′
i +xi)−x′i ]

2 +∑i j ,i6= j

[

(1− (s′+s)2)uiu j −0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i j ,i6= j

[

(1−s′2)uiu j − (s+2s′)suiu j
]2

+ “higher order terms′′.

(36)

The higher order terms are multiplication of three, four and moreui ’s and their contribution is
bounded by the terms explicitly written in Eq. 36. For example, third terms are of form (zi jk −
z′i jk)

2 = 4(s′+s)2(1−(s′+s)2)2u2
i u2

j u
2
k ≤ 5ε2u2

i u2
j for all s,ui ,u j ,uk < ε for ε small enough. Similar

bounds can be obtained for all high order terms in Eq. 36. Thus, the principal part ofφ, that bounds
φ within the multiplicative constant near zero, is given by

φ̃(x,u,s) = ∑
i

x2
i + ∑

i j ,i6= j

u2
i u2

j . (37)

andφ̃(x,u,s)≤ φ(x,u,s)≤ 2φ̃(x,u,s) for all s,ui ,u j < ε for ε small enough.
Since the multiplicative constants in the exponent can be transferred to the multiplicative con-

stants of integral itself by changing the integration range around zero andrescaling, we only need to
evaluate the asymptotic form of integral

R

e−N(∑i x
2
i +∑i j ,i 6= j u

2
i u2

j )dxdudsin order to get the asymptotic
form of integralJ[N,Y ∈ S′] (Eq. 31) within a constant multiply.
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The quadratic form inxi ’s contributes anN−n/2 factor to the integral̃J[N]. This can be shown by
decomposing the integral and integrating out thexi ’s. We are left with the evaluation of the integral

J̃[N] =
Z

(−ε,+ε)n
e−N∑i j ,i 6= j u

2
i u2

j du.

Forn= 3, this is precisely the integral evaluated as example in Section 2 which was found to be
asymptotically equal tocN−

3
4 . Generalizing the approach demonstrated in the example in Section 2

to n≥ 3 we obtain that the largest pole ofJ(λ) is λ1 = −n/4 with multiplicity m= 1, soJ̃[N] is
asymptotically equal tocN−

n
4 . Thus the contribution of the neighborhood of(x′,u′,s′) ∈ T

j U0 j to

J[N,Y ∈ S′] is cN−
3n
4 .

In summary, we have analyzed caseC2, showing that the contribution toJ[N,Y ∈ S′] is cN−
3n
4 .

The dominating contributions in the casesC3,C4, andC5, are all equal tocN−
n+1

2 (the proof of this
claim is given in Appendix A). The dominating contribution in caseC1 is onlycN−

2n−1
2 . Also, the

various border points ofU0 do not contribute more than the corresponding internal points. Thus,
J[N,Y] = cN−

n+1
2 for Y′ ∈ S. Consequently, due to Lemmas 6 and 7, lnI[N,YD] = N ·P(Y|ωML)−

n+1
2 lnN+O(1), as claimed by Theorem 4c.�

6. Discussion

This paper presents an asymptotic approximation of the marginal likelihood of data given a naive
Bayesian model with binary variables (Theorem 4). This Theorem proves that the classical BIC
score that penalizes the log-likelihood of a model byd

2 lnN is incorrect for Bayesian networks with
hidden variables and suggests an adjusted BIC score. Moreover, no uniform penalty term exists for
such models in the sense that the penalty term, i.e., the coefficient of lnN, depends on the averaged
sufficient statistics. This result resolves an open problem regarding thevalidity of the classical BIC
score for stratified exponential families, raised in (Geiger et al., 2001).

The major limitation of Theorem 4 arises from AssumptionsA2 andA3. While Assumption
A1 (bounded density) is often satisfied in applications, AssumptionA2 (positive statistics) is only
sometimes satisfied and AssumptionA3 (statistics stability) is never satisfied in practice. Never-
theless, this Theorem is an essential advance towards developing asymptotic Bayesian methods for
model selection among naive Bayesian models in particular, and for Bayesian networks with hidden
variables in general. We now highlight the steps required for obtaining a valid, practical asymptotic
model selection score for arbitrary latent Bayesian networks, namely, for Bayesian networks with
hidden variables.

1. Develop a closed form asymptotic formula for marginal likelihood integrals for all types of
statisticsY given an arbitrary latent Bayesian model.

2. Extend these solutions by developinguniformasymptotic approximations valid for converg-
ing statisticsYD → Y asN→ ∞. A uniform asymptotic approximation is an approximation
that has the error term bounded for allYD nearY and for allN.

3. Develop an algorithm that, given a Bayesian network with hidden variables and a data set with
statisticsYD, determines the possible singularity types of the limit statisticsY and applies the
appropriate asymptotic formula developed in step 2.
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Our work provides a first step for naive Bayesian networks and a concrete framework to pursue
these tasks.

Theorem 4 shows that when comparing the classical BIC score with our adjusted BIC score
(Eq. 2 versus Eqs. 15, 16), one can see that a naive Bayesian network with all links present is some-
what under-evaluated using the classical BIC score for singular statisticsY because the penalty term
reduces from(2n+1)/2 in the classical score to(2n−1)/2 (or(n+1)/2) in the adjusted score. We
conjecture that such under evaluation occurs for general Bayesian networks with hidden variables.
As a result, when the data shows weak dependencies for some links, oftenresulting in evaluation of
the marginal likelihood near singular points of the model, then those models with more links might
be under evaluated using BIC, but correctly evaluated with a uniform asymptotic formula that takes
the proximity to a singular points into account. An illustrative example of incorrect model choice
by the standard BIC score has been presented in Figure 4.

We conclude with two remarks. First, we note that the adjusted penalty term (Eqs. 15, 16) falls
within the range of penalty terms, studied by Keribin (2000), that lead to sureconsistency estimators
in a frequentist’s interpretation.

Second, we note that, the sets of singular pointsSandS′ are defined in (Geiger et al., 2001) as
the singular points of the algebraic varieties of distributions represented bybinary naive Bayesian
networks in the joint space parameters space, while here the same sets are defined as sets ofstatis-
tics pointsY which give rise to singular maximum likelihood in the model parameters space. At
the singular points of the joint space parameters space, regular local coordinates do not exist and
the usual coordinates (i.e., the model parameters) that parameterize the rest of the model variety
have a number of coordinates crushed into a single point. This results in complex surfaces of maxi-
mum likelihood points in the model parameter space and, consequently, a non-standard behavior of
marginal likelihood integrals which we have started to explore in this paper. Another ramification
of this observation is that a bounded prior density defined on the model parameters may accumu-
late massively on a single point on the model variety in the joint space parameterspace, violating
the boundedness assumption of the prior density and thus yielding non-standard approximations to
marginal likelihood integrals in the joint space parameters.

Acknowledgments

The second author thanks David Heckerman and Chris Meek for years of collaboration on this
subject. An early version of this paper, without proofs and without Theorem 5, has been presented
at the 18th UAI Conference (Rusakov and Geiger, 2002).

Appendix A. Proof of Theorem 4 (The Main Theorem)

We start with the proof of Lemma 7, which requires two additional lemmas. Then we proceed with
a case by case proof of Theorem 4.

A.1 Proof of Lemma 7

The proof of Lemma 7 uses Lemmas 8 and 9. In particular, Lemma 8 states that a local version of
the claim made by Lemma 7 (Eq. 32) holds in the neighborhood of extremum pointsp0 under two
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additional assumptions denoted byB1 andB2. Lemma 9 shows thatB1 andB2 hold. Finally, the
proof of Lemma 7 elevates the local version to the global claim.

Lemma 8 Let

f (x,u,s) = fY−∑2n

i=1Yi lnθi [x,u,s],

θ[x,u,s] = (T3◦T2)[x,u,s], θ2n[x,u,s] = 1−∑2n−1
i=1 θi [x,u,s],

(38)

where fY = max(x,u,s)∈U ∑2n

i=1Yi lnθi [x,u,s] and Y= (Y1, . . . ,Y2n) is a non-negative vector with sum
of elements equal to1. Let the zero set U0 = argmin(x,u,s)∈U f (x,u,s) be the set of minimum points
of f(x,u,s) on U, let p0 = (x′,u′,s′) be a point in U0 and let

Ĩp0[N,Y] =
Z

Uε

e−N f(x,u,s)dxduds, (39)

where Uε is some small neighborhood of p0. Also, let

Jp0[N] =
Z

Uε

e−N∑I (zI (x,u,s)−z′I )
2
dxduds,

where zI (x,u,s) is the I-th coordinate of z(x,u,s)= T2[x,u,s] and z′I is the I-th coordinate of T2[x′,u′,s′].
Further assume that(x′,u′,s′) satisfies

B1. θ′ = T3◦T2(x′,u′,s′) is a minimum of f as function ofθ, f (θ′) = 0 and∇θ f (θ′) = 0.

B2. f , as a function ofθ, is strictly convex atθ′ = θ(x′,u′,s′), i.e., the matrixHθ f (θ′) is positive
definite.

Then,
ln Ĩp0[N,Y] = lnJp0[N]+O(1) for all N > 1. (40)

(The right hand side of Eq. 40 depends on Y through the O(1) term.)

Proof: Since∇θ f (θ′) = 0, Hθ f (θ′) is positive definite andT3 : Λ(z)→ Θ(θ) is a diffeomorphism, it
follows that∇z f (z′) = 0 andHz f (z′) is positive definite. Also,f (z′) = 0. Therefore,f as a function
of zcan be approximated by a quadratic form nearz′ = T2(x′,u′,s′) via

η1∑
I

(zI −z′I )
2 < f (z) < η2∑

I

(zI −z′I )
2, for z∈ Λε, (41)

whereΛε is some sufficiently small neighborhood ofz′, andη1,η2 > 0 are slightly smaller and
larger, respectively, than all eigenvalues ofHz f (z′). Consequently, sinceT2 : U → Λ is continuous,
there exists neighborhoodUε of p0 such thatT2(Uε) ⊆ Λε and Inequality 41 holds forz(x,u,s) =
T2(x,u,s) for all points(x,u,s) in Uε. Using Inequality 41 for evaluating̃Ip0[N,Y] (Eq. 39) yields

Z

Uε

e−η2N∑I (zI (x,u,s)−z′I )
2
dxduds< Ĩp0[N,Y] <

Z

Uε

e−η1N∑I (zI (x,u,s)−z′I )
2
dxduds.

Due to Theorem 2, the bounding integrals are asymptotically equivalent up toa multiplicative con-
stant, because the poles and multiplicities of the correspondingJ(λ) functions (Eq. 5) that determine
their asymptotic behavior are the same for any constant multiplies of∑(zI (x,u,s)−z′I )

2, and in par-
ticular, for the multipliersη1, η2 and 1.�
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Lemma 9 Let f(u,x,s) be as defined by Eq. 38, namely,

f (x,u,s) = fY−∑2n

i=1Yi lnθi [x,u,s],

θ[x,u,s] = (T3◦T2)[x,u,s], θ2n[x,u,s] = 1−∑2n−1
i=1 θi [x,u,s],

where fY = max(x,u,s)∈U ∑2n

i=1Yi lnθi [x,u,s] and Y= (Y1, . . . ,Y2n) is a vector inϒ0 (defined by Eq. 12)
such that Yi > 0 (A2). Let the zero set U0 = argmin(x,u,s)∈U f (x,u,s) be the set of minimum points of
f , and let(x′,u′,s′) be a point in U0. Then f(x′,u′,s′) = 0, and

B1. θ′= T3◦T2(x′,u′,s′) is a minimum point of f as function ofθ onΘ, f (θ′) = 0 and∇θ f (θ′) = 0.
Furthermore,θ′ = (Y1, . . . ,Y2n−1) and∇ f (x′,u′,s′) = 0.

B2. f as a function ofθ is strictly convex atθ′, i.e.,Hθ f (θ′) is positive definite.

B3. If n≥ 3 and Y∈ ϒ0\S, then f(x,u,s) is strictly convex at(x′,u′,s′), that is, the matrix
H(x,u,s) f (x′,u′,s′) is positive definite.

B4. Also, if n≥ 3 and Y∈ ϒ0 \S, then U0 consists only of two distinct points(x′,u′,s′) and
(x′′,u′′,s′′), such that x′ = x′′, u′ =−u′′ and s′ =−s′′.

Proof: The claim f (x′,u′,s′) = f (θ′) = 0 follows directly from the definitions off , θ′ and fY.
Consider ClaimB1. The pointθ0 = (Y1, . . . ,Y2n−1) is the unique minimum off , as a function

of θ, on Θ, becausefY − f (θ) = ∑i Yi lnθi [x,u,s] is the logarithm of a multinomial distribution.
SinceY ∈ ϒ0, the distribution specified byθ0 can be represented by the model parameters, namely,
θ0∈ (T3◦T2)[U0]. Consequently,θ0 = (T3◦T2)[U0] becauseθ0 is the unique minimum off . So,θ′=
θ0 = (Y1, . . . ,Y2n−1). Furthermore, becauseY > 0, θ′ is an internal point ofΘ yielding∇θ f (θ′) = 0.
Finally ∇ f (x0,u0,s0) = JT

(T3◦T2)
(x0,u0,s0)∇θ f (θ′) = 0 as well.

ClaimB2 is established by explicit calculations. The Hessian matrixHθ f (θ′) atθ′= (Y1, . . . ,Y2n−1)
is given by

[

Hθ f (θ′)
]

i j =

{

1
Y2n

for i 6= j
1
Yi

+ 1
Y2n

for i = j

Consequently, for anya∈ R2n−1, a 6= 0, it follows that

aT ·Hθ f (θ′) ·a =
2n−1

∑
i=1

a2
i

Yi
+

1
Y2n

[

2n−1

∑
i=1

ai

]2

> 0.

Claim B3 follows from the proof of Theorem 12 of (Geiger et al., 2001), which shows that
the Jacobian of the transformationT2 is of maximal rank forn≥ 3 for points(x′,u′,s′) that satisfy
θ′ = T2[x′,u′,s′] ∈ ϒ0\S. The mentioned theorem and claimB2 imply that for alla∈ R2n+1, a 6= 0,

aT ·H(x,u,s) f (x0,u0,s0) ·a = aT ·
[

JT
(T3◦T2)

(x0,u0,s0) ·Hθ f (θ′) ·J(T3◦T2)(x0,u0,s0)
]

·a
=
[

J(T3◦T2)(x0,u0,s0) ·a
]T ·Hθ f (θ′) ·

[

J(T3◦T2)(x0,u0,s0) ·a
]

= bT ·Hθ f (θ′) ·b > 0,

whereb= J(T3◦T2)(x0,u0,s0) ·a. This proves ClaimB3 becauseHθ f (θ′) is positive definite andb 6= 0
lestJ(T3◦T2) would not be of maximal rank.
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ClaimB4 follows from claimB1 thatθ′ = (Y1, . . . ,Y2n−1) and from Theorem 13 in (Geiger et al.,
2001), which states that forθ′ ∈ ϒ0 \S, there are exactly two source points(x,u,s), precisely the
ones specified by ClaimB4, that satisfyθ′ = T2[x,u,s]. �

Proof of Lemma 7: Lemma 8 combined with Lemma 9 establish the asymptotic behavior of
Ĩ[N,Y] in the εp0 neighborhood of a single minimump0 (Eq. 40). Now, sinceU is closed and
bounded (Eq. 23), it iscompact. Hence, from an arbitrary infinite set ofε-neighborhoods of points
in U , there exist a finite subset of disjoint neighborhoods of points inU that coverU . The neighbor-
hoods that do not contain minimum points can be discarded since their contribution to the integral is
exponentially small, i.e., a contribution bounded bye−Nc1 versuse−Nc2 wherec1 > c2. LetU ′0⊆U0

denote the finite set of points fromU0, the neighborhoods of which are chosen to coverU0. Also,
let J[N,Y] denote the maximal contribution toĨ[N,Y], as in Lemma 7 (Eq. 31). We obtain

J[N,Y] ≤ Ĩ[N,Y] ≤ ∑
p0∈U ′0

Jp0[N]≤ k ·J[N,Y], (42)

wherek is the number of points inU ′0. Taking the logarithm of Eq. 42 yields Eq. 32 which establishes
Lemma 7.�

ClaimsB3 andB4 of Lemma 9 have not been used in the proof of Lemma 7. These claims are
needed in the next section.

A.2 Proof of Theorem 4a (Regular Statistics Case)

Theorem 4a rephrases standard facts regarding asymptotic expansionof integrals around a single
extremum point. Recall that Theorem 4a states that ifYD =Y for N≥N0, Yi > 0 for i = 1, . . . ,2n and
Y∈ϒ0\S, then asymptotic approximation of lnI[N,YD] (Eq. 13) equalsN lnP(Y|wML)− 2n+1

2 lnN+
O(1) (Eq. 14). To prove this claim we use Lemma 6 which states thatI[N,YD] andĨ[N,Y] have the
same asymptotic approximation up to a multiplicative constanteN fY and computẽI[N,Y] using
Lemma 1 (Laplace approximation).

We start by noticing thatI[N,YD] absolutely converges for anyN≥ 1 andYD≥ 0. That is because
the integrand functioneN∑xYx lnθx(w) = ∏x θx(w)NYx satisfies 0≤ θx(w)NYx ≤ 1 for all N, YD, i and
w = (a,b, t) ∈Ω and becauseµ(a,b, t) is a probability density function onΩ, thus integralI[N,YD]
is finite (and less than 1). Consequently,Ĩ[N,Y] also absolutely converges for anyN ≥ 1 and any
Y ≥ 0, as required in order to use Lemma 1.

Consider now the integralĨ[N,Y] =
R

U e−N f(x,u,s)dxduds. Since the value ofe−N f(x,u,s) outside
the small neighborhoods of the minimumsf is exponentially small, so the asymptotic behavior of
Ĩ[N,Y] onU is actually described by integration ofĨ[N,Y] in the small neighborhoods of minimums
of f (Lemma 7). SincẽI[N,Y] converges and ClaimsB1, B3 andB4 of Lemma 9 hold, it follows
that in sufficiently small neighborhoods of the two internal minimum points off , the integral̃I[N,Y]
can be computed by Lemma 1 (Laplace Approximation).

Consequently, integrating̃I[N,Y] in the full neighborhoods of the maximum likelihood points
(x′,u′,s′) ∈U0, that lie on the border ofU , introduces only a constant multiplicative errors to the
approximation. This is shown by considering the integralĨ[N,Y] around minimum points off in
the equivalent (sinceT1 is a diffeomorphism) coordinates(a,b, t), which have the full integration
domainΩ = (0,1)2n+1. In these coordinates, approximatingf by a quadratic form (as performed
by Laplace approximation) on(a,b, t) and integrating in a full neighborhood of border point results
in multiplicative error factor of 2k wherek is the number of border coordinates.
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We now apply Lemma 1 to the small neighborhoods of the two minimum points off and by
combining Eq. 30 with the logarithm of sum of two approximations described by Eq. 4 we obtain
the Theorem 4a.�

Theorem 4a does not specify theO(1) term. The constant termC is well known in explicit form
when the minimum off is achieved on a single point, as specified by Lemma 1. In our case, the min-
imum of f is achieved on two points(x′,u′,s′) and(x′′,u′′,s′′) and by taking the integralsJ(x′,u′,s′)[N]
andJ(x′′,u′′,s′′)[N] in (a,b, t) coordinates and accounting for the partial integration domains for the
border points we obtain

C =
2n+1

2
ln(2π)+ ln

[

µ(a′,b′, t ′)
√

detH f (a′,b′, t ′)
+

µ(a′′,b′′, t ′′)
√

detH f (a′′,b′′, t ′′)

]

−k ln2,

where(a′,b′, t ′) = T−1
1 (x′,u′,s′), (a′′,b′′, t ′′) = T−1

1 (x′′,u′′,s′′) andk is the number of border coordi-
nates of(a′,b′, t ′) (or equivalently of(a′′,b′′, t ′′)). Note thata′ = b′′, b′ = a′′ andt ′ = 1− t ′′.

A.3 Proof of Theorem 4b (Type 1 Singularity)

Theorem 4b states that ifYD = Y for N≥ N0, Yi > 0 for i = 1, . . . ,2n andY ∈ S\S′, then lnI[N,YD]
(Eq. 13) is asymptotically equal toNP(Y|wML)− 2n−1

2 lnN + O(1) (Eq. 15). To prove this claim
we first employ Lemma 6, which relatesI[N,YD] with Ĩ[N,Y] (Eqs. 28 and 30) and Lemma 7,
which relates̃I[N,Y] with J[N,Y] (Eqs. 31 and 32). Consequently, it remains to evaluateJ[N,Y] =
maxp0∈U0 Jp0[N]. For this task, one needs to examine the neighborhoods of arbitrary minimum
points p0 ∈ U0 of f . However, forY ∈ S\S′ (singularity of type 1), the functionf can not be
approximated by quadratic form and Lemma 1 (Laplace Approximation) no longer applies. Instead
we use Watanabe’s method.

Let (a,b, t) be the parameterization ofY ∈ S as described by the definition ofS (Eq. 12) with
ai = bi for all i 6= l ,k. Also, letz′lk = T−1

3 (Y)lk = (1− (2t−1)2) · al−bl
2 · ak−bk

2 . The zero setU0 is
given by

U0 =























(x,u,s) ∈U |

xi = ai , ∀i = 1, . . . ,n, i 6= l ,k,
xl = tal +(1− t)bl ,
xk = tak +(1− t)bk;
ui = 0, ∀i = 1, . . . ,n, i 6= l ,k,
ul ,uk,s, such that(1−s2)ul uk = z′lk























. (43)

Note thatz′lk 6= 0 andu′l ,u
′
k 6= 0, s′ 6=±1 for (x′,u′,s′) ∈U0, becauseY 6∈ S′. The setU0 is depicted

in Figure 6.

We now apply the method of Watanabe, as described in Section 2, to evaluate the integrals
Jp0[N,Y] for p0 ∈U0. We examine the form of the exponent function inJp0[N,Y], φ(x,u,s) which
is equal to∑I [zI (x,u,s)−z′I ]

2, in a small neighborhood ofp0 = (x′,u′,s′) ∈U0. The coordinates of
z′ = T2(x′,u′,s′) arez′i = xi for all i, z′lk = (1− s′2)u′l u

′
k and all otherz′I ’s are zero. SubstitutingzI

as a function of(x,u,s) into φ and translating the(x,u,s) coordinates so that(x′,u′,s′) becomes the
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Figure 6: The projection of setU0 onto(s,u1,u2) space. The zero setU0 is defined by type 1 singu-
larity statistics. (a) Illustration is forx′1 = 0.18,x′2 = 0.28,z′12 = 0.0096, that correspond
to statisticsY generated by true distribution:a1 = 0.1, a2 = 0.2, b1 = 0.3, b2 = 0.4 and
t = 0.6. Upper and lower bounds onu1 are shown by mesh-grid. (b) Illustration of set
U0 for extreme (almost type 2) singular statistics of type 1 that is generated bya1 = 0.1,
a2 = 0.2, b1 = 0.3, b2 = 0.4 andt = 0.005. The zero set is very close to the zero set for
type 2 singularity statistics depicted in Figure 5(b).

origin, yields

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I ]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i ]
2

+
[

zlk(x′+x,u′+u,s′+s)−z′lk
]2

+∑i 6=l ,k

[

zil (x′+x,u′+u,s′+s)−z′il
]2

+
[

zik(x′+x,u′+u,s′+s)−z′ik
]2

+∑i, j 6=l ,k

[

zi j (x′+x,u′+u,s′+s)−z′i j

]2
+ . . .

= ∑n
i=1[(x

′
i +xi)−x′i ]

2

+
[

(1− (s′+s)2)(u′l +ul )(u′k +uk)− (1−s′2)u′l u
′
k

]2

+∑i 6=l ,k

[

(1− (s′+s)2)(u′l +ul )ui−0
]2

+
[

(1− (s′+s)2)(u′k +uk)ui−0
]2

+∑i, j 6=l ,k

[

(1− (s′+s)2)uiu j −0
]2

+ . . .

= ∑n
i=1x2

i

+
[

−2s′u′l u
′
ks+(1−s′2)u′kul +(1−s′2)u′l uk + “smaller terms′′

]2

+∑i 6=l ,k

[

(1−s′2)u′l ui + “smaller terms′′
]2

+
[

(1−s′2)u′kui + . . .
]2

+∑i, j 6=l ,k

[

(1−s′2)uiu j + “smaller terms′′
]2

+ . . . .

(44)

The phrase “smaller terms” and dots denotes higher order terms that includevariables that are
present in the explicit terms of the sum and can be discarded for sufficiently small (x,u,s). In
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particular, the termzlk(x,u,s)−z′lk is rewritten via

zlk(x′+x,u′+u,s′+s)−z′lk = (1− (s+s′)2)(ul +u′l )(uk +u′k)− (1−s′2)u′l u
′
k

= −(2s′+s)u′l u
′
ks+((1−s′2)−2s′s−s2)(u′k +uk)ul

+((1−s′2)−2s′s−s2)u′l uk.

Consequently fors′ 6= 0, sufficiently smallε and s,ul ,uk ∈ (−ε,ε) it follows that C-
1 < −(2s′+

s)u′l u
′
k < C+

1, C-
2 < [(1−s′2)−2s′s−s2][u′k +uk] < C+

2 andC-
3 < [(1−s′2)−2s′s−s2]u′l < C+

3 for C-
1,

C+
1, C-

2, C+
2, C-

3, C+
3 slightly smaller and larger thanC1 =−2s′u′l u

′
k, C2 = (1−s′2)u′k, C3 = (1−s′2)u′l .

Consequently, in order to approximate the integralJp0[N] (Eq. 31) forp0 = (x′,u′,s′) with s′ 6= 0,
it remains to approximate the integral

J̃1[N] =
R

e−Nφ̃1(x,u,s)dxduds,

where φ̃1(x,u,s) = ∑i x
2
i +
[

C̃1s+C̃2ul +C̃3uk
]2

+∑i6=l ,k c̃iu2
i

(45)

and whereC̃1, C̃2, C̃3 andc̃i are non-zero constants.
Similar analysis of the principal part ofφ(x,u,s) (Eq. 44) function can be applied for the

neighborhoods ofp0 = (x′,u′,s′) with s′ = 0. It reveals that in order to approximateJp0[N] for
p0 = (x′,u′,s′) with s′ = 0 we should approximate the integral

J̃2[N] =
R

e−Nφ̃2(x,u,s)dxduds,

where φ̃2(x,u,s) = ∑i x
2
i +
[

Ĉ1s2 +Ĉ2ul +Ĉ3uk
]2

+∑i6=l ,k ĉiu2
i ,

(46)

and whereĈ1, Ĉ2, Ĉ3 andĉi are non-zero constants that are slightly larger or smaller thanu′l u
′
k, u′k,

u′l andu′2l +u′2k .
From Eq. 45, by changing the coordinates tov= C̃1s+C̃2ul +C̃3uk, we obtain that in the neigh-

borhoods of the points inU0 with s′ 6= 0, that f can be described by quadratic form in 2n− 1
variables, so their contribution toJ[N,Y] is cN

2n−1
2 .

The analysis of neighborhoods of points inU0 with s′ = 0 is harder. Integrating outxi and
ui variables yieldsN−

2n−2
2 multiplicative factor to the asymptotic approximation ofJ̃2[N], leaving

us to compute of the contribution of
R

e−N[Ĉ1s2+Ĉ2ui+Ĉ3u j ]
2
dsdui duj . The changes of variablest =

(C̃2ui +C̃3u j)/C̃1 transforms the remaining part ofJ̃2[N] to

J̃3[N] =
Z +ε1

−ε1

Z +ε2

−ε2

e−N(s2+t)2
dsdt.

The zero set of the exponent function is a one-dimensional curvet =−s2, so we expect̃J3[N] be at
leastcN−

1
2 , as verified below.

Watanabe’s method for̃J3[N] calls for the analysis of the poles of the function

J(λ) =
Z

(−1,1)2
(s2 + t)2λdsdt.

Here, we transform the original integration range into(−1,1) by rescaling, introducing only con-
stant multipliers to the integral. The analysis of the poles ofJ(λ) is in the spirit of example shown
in Section 2. We present this analysis completely to demonstrate a number of important subtle
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points in the evaluation of integrals by resolution of singularities. E.g., we can not use the binomial
formula for expanding(s2 + t)2λ, sinceλ is not necessarily an integer.

The integralJ(λ) is symmetric relative tos, so we consider onlys> 0 for the evaluation of its
poles. Changing the coordinates viat =±t2 we obtain

1
2

J(λ) =
Z 1

−1

Z 1

0
(s2 + t)2λdsdt=

Z 1

0

Z 1

0
2t(s2 + t2)2λdsdt+

Z 1

0

Z 1

0
2t(s2− t2)2λdsdt.

The first integral is easy to evaluate by standard substitutionss= ts for 0 < s< t < 1 andt = st for
0 < t < s< 1. Thus, the first integral contributes a pole atλ =−3

4 with multiplicity 1. The second
integral, however, can not be evaluated in this way, since, the substitutions= ts for 0 < s< t < 1
gives the integral

R 1
0

R 1
0 2t4λ+2(s2−1)2λdsdt, where the term(s2−1) is not bounded away from zero

on (0,1) and thus can not be ignored when identifying the poles.
To overcome this difficulty letv = s+ t andu = s− t, yielding

Z 1

0

Z 1

0
2t(s2− t2)2λdsdt=

1
2

Z 2

0

Z min(v,2−v)

max(−v,v−2)
(v−u)u2λv2λdudv

and

1
2

Z 1

0

Z v

−v
(v−u)u2λv2λdudv<

Z 1

0

Z 1

0
2t(s2− t2)2λdsdt<

1
2

Z 2

0

Z v

−v
(v−u)u2λv2λdudv. (47)

Computing the lower bound in Eq. 47, we obtain

1
2

R 1
0

R v
−v(v−u)u2λv2λdudv= 1

2

R 1
0

[

v2λ+1 1
2λ+1u2λ+1−v2λ 1

2λ+2u2λ+2
∣

∣

v

−v

]

dv

= 1
2

R 1
0

2
2λ+1v4λ+2dv= 1

(2λ+1)(4λ+3) .

The upper limit is correspondingly 24λ+3

(2λ+1)(4λ+3) . Hence, the largest pole ofJ(λ) is λ = −1
2, with

multiplicity m = 1 and the overall contribution of the neighborhoods of pointsp0 with s′ = 0 to
J[N,Y] is againcN−

2n−1
2 , and it is the same as for pointsp0 for which s′ 6= 0. The point(x′,u′,s′)

need not be an internal point ofU . Such border points have a smaller domain of integration than an
internal point, therefore they do not contribute more toJ[N,Y] than internal points.�

It is interesting to compare Figure 6b and Figure 5, to see that as a pointY ∈ S\Sapproaches
Y′ ∈ S′, the zero set forY depicted by Figure 6 approaches the zero set forY′ depicted in Figure 5.

A.4 Proof of Theorem 4c (Type 2 Singularity)

The outline of the proof of Theorem 4c is presented in Section 5.3 including the specification of the
zero setU0 and five principal casesC1-C5 that correspond to different locations of extremum points
(x′,u′,s′) ∈U0. Recall that we are interested in the evaluation of the contribution of the neighbor-
hood of each of the points of typesC1-C5 to the integralJ[N,Y] (Eq. 31). The maximal contribution
determine, according to Lemmas 6 and 7, the asymptotic behavior of the integralI[N,YD] (Eq. 11)
of interest. We now treat these cases one by one.

Case C1:(x′,u′,s′) ∈U0 j \∪i6= jU0i for some j. Each such point(x′,u′,s′) satisfiesu′i = 0, for
all i = 1, . . . ,n, i 6= j; u′j 6= 0; s′ 6= ±1; z′i = x′i ; andz′i j ..k = 0. Using the approach of Watanabe
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we analyze the form of the exponent functionφ of integrand ofJp0[N] near the minimum point
p0 = (x′,u′,s′). Centering(x,u,s) around(x′,u′,s′) we obtain

φ(x,u,s) = ∑I [zI (x′+x,x′+u,s′+s)−z′I ]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i ]
2 +∑i 6= j [zi j (x′+x,u′+u,s′+s)−z′i j ]

2

+∑i,k6= j [zik(x′+x,u′+u,s′+s)−z′ik]
2 + “higher order terms′′

= ∑i [(x
′
i +xi)−x′i ]

2 +∑i 6= j

[

(1− (s′+s)2)(u′j +u j)ui−0
]2

+∑i,k6= j

[

(1− (s′+s)2)uiuk−0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i 6= j

[

(1−s′2)u′jui + “smaller terms′′
]2

+∑i,k6= j

[

(1−s′2)uiuk− (s+2s′)suiuk
]2

+ “higher order terms′′.

Since,u′j 6= 0 ands 6=±1, the principal part ofφ, that boundsφ within a multiplicative constant, is

φ̃(x,u,s) = ∑
i=1,...,n

x2
i + ∑

i=1,...,n; i6= j

u2
i .

Hence,Jp0[N] is cN−
2n−1

2 . One should have expected this result because the zero setU0, j is a 2-
dimensional surface, yielding a dimensionality drop of 2 due to two locally redundant parameters.

Case C2:(x′,u′,s′) =
T

j U0 j . This case is analyzed in Section 5.3.

Case C3: (x′,u′,s′) ∈ U0− ∪U0+ \ ∪ jŪ0 j . Each such point(x′,u′,s′) satisfiesu′j 6= 0 for all
j = 1, . . . ,n ands′ =±1. We have

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I ]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i ]
2 +∑i, j [zi j (x′+x,u′+u,s′+s)−z′i j ]

2

+∑i, j,k[zi jk(x′+x,u′+u,s′+s)−z′i jk ]2 + . . .

= ∑i [(x
′
i +xi)−x′i ]

2 +∑i, j

[

(1− (s′+s)2)(u′i +ui)(u′j +u j)−0
]2

+∑i, j,k

[

−2(s′+s)(1− (s′+s)2)(u′i +ui)(u′j +u j)(u′k +uk)−0
]2

+ . . .

= ∑i x
2
i +∑i, j

[

−2s′u′iu
′
js+ “smaller terms′′

]2

+∑i, j,k

[

4u′iu
′
ju
′
ks+ “smaller terms′′

]2
+ “higher order terms′′.

So, the principal part ofφ is of the form∑i x
2
i +s2. The fact that integration range fors is one sided,

i.e. s> 0 (or s< 0) changes the integralJp0[N] only by a constant multiply (1/2) relatively to the

“full” neighborhood. Thus the contribution of this region toJ[N,Y] is cN−
n+1

2 .
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Case C4:(x′,u′,s′) ∈ S

j

[

U0−∪U0+∩Ū0 j \∩i6= jŪ0i
]

, for some j. Each such point(x′,u′,s′)
satisfiesu′j 6= 0 for somej; u′i = 0 for all i 6= j; ands′ =±1. We have

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I ]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i ]
2 +∑i 6= j [zi j (x′+x,u′+u,s′+s)−z′i j ]

2

+∑i,k6= j [zik(x′+x,u′+u,s′+s)−z′ik]
2 + “higher order terms′′

= ∑i [(x
′
i +xi)−x′i ]

2 +∑i 6= j

[

(1− (s′+s)2)(u′j +u j)ui−0
]2

+∑i,k6= j

[

(1− (s′+s)2)uiuk−0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i 6= j

[

∓2su′jui∓2sujui−s2u′jui−s2u jui

]2

+∑i,k6= j

[

∓2suiuk−s2uiuk
]2

+ “higher order terms′′

≈ ∑i x
2
i +s2 ∑i 6= j u

2
i .

(48)

Integrating out the∑i x
2
i terms fromJp0[N], we see that they contribute factor ofN−

n
2 to Jp0[N]. So,

we are left with analysis of the poles of

J(λ) =
Z

Wε

s2λ

(

n−1

∑
i=1

u2
i

)λ

dsdu.

The standard change of variables toui = u1ui for i = 2, . . . ,n−1 gives

J(λ) = c
Z

(0,1)n
s2λu2λ+n−2

1 (1+
n−1

∑
i=2

u2
i )

λdsdu.

Thus the largest pole ofJ(λ) (for n > 2) is λ =−1
2 with multiplicity m= 1 and the contribution of

the neighborhood of this(x′,u′,s′) is cN−
n+1

2 .
Case C5: (x′,u′,s′) ∈ (U0−∪U0+)

T

j Ū0 j . Each such point(x′,u′,s′) satisfiesu′i = 0 for all
i = 1, . . . ,n ands′ =±1. This is the deepest singularity, the crossing of all (except one) zeroplanes
of U0. We have

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I ]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i ]
2 +∑i, j [zi j (x′+x,u′+u,s′+s)−z′i j ]

2

+∑i, j,k[zi jk(x′+x,u′+u,s′+s)−z′i jk ]2 + . . .

= ∑i [(x
′
i +xi)−x′i ]

2 +∑i, j

[

(1− (s′+s)2)uiu j −0
]2

+∑i, j,k

[

−2(s′+s)(1− (s′+s)2)uiu juk−0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i, j

[

∓2suiu j −s2uiu j
]2

+∑i, j,k [4suiu juk + “smaller terms′′]2 + “higher order terms′′

≈ ∑i x
2
i +s2 ∑i, j u

2
i u2

j .

(49)

The higher order terms are bounded by somes2u2
i u2

j term, because of the special form ofpi(s) term
in z12...i (Eq. 27). I.e., the functionpi(s′+s) = 1/2(1−(s′+s)2)[(1−(s′+s))i−1−(−1)i−1(1+(s′+
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s))i−1] can be rewritten arounds=±1 aspi(s′+s) = s·1/2(2s′+s)[(1−(s′+s))i−1−(−1)i−1(1+
(s′+s))i−1]. Thus, any high-order termz2

i j ...r(x
′+x,u,±1+s) is of form

z2
i j ...k(x

′+x,u,±1+s) = s2u2
i u2

j . . .u
2
k · p̃(s),

wherep̃(s) = 1/4(2s′+s)2[(1− (s′+s))r−1− (−1)r−1(1+(s′+s))r−1]2 and wherer is the size of
index set{i j . . .k}. Consequently, this term is bounded bys2u2

i u2
j for s andu small enough.

The ∑i x
2
i terms contributeN−

n
2 multiplicative factor toJp0[N], so we should only analyze the

poles of

J(λ) =
Z

(0,1)n+1
s2λ

(

∑
l ,k

u2
l u2

k

)λ

dsdu.

The analysis is similar to the one presented in Section 2, but with additional variable s. Thus the
largest pole ofJ(λ) this time isλ =−1

2 and notλ =−n/4. The multiplicity of the poleλ =−1
2 is

one and so the contribution of the neighborhoods of(x′,0,±1) is cN−
n+1

2 . This analysis is incorrect
for n = 2 because then the sum∑l ,k u2

l u2
k contains only one term and this results in increasing the

multiplicity of the poleλ =−1/2.
The interesting fact about the last two cases is that in the neighborhood ofU0− andU0+ the

growth of the functionφ is dominated bys2 and thus the multiplicity of the maximal pole ofJ(λ)
is always one and the ln lnN terms do not appear in the approximation of lnJp0[N]. This changes in
the casen = 2, where the dimensionalities ofU0− andU0+ are the same as ofU0 j ’s, as explicated in
the next section.

Summary of Proof of Theorem 4 for type2 singularity, Y∈ S′: Among the possible casesC1-C5
the largest contribution to theJ[N,Y] comes from points withs′ = ±1. Note that various bor-
der points ofU0 that we do not consider in the above analysis do not contribute more than the
corresponding internal points because their domain of integration is smaller.Thus, lnJ[N,Y] =
−n+1

2 lnN + O(1) and due to Lemmas 6 and 7, lnI[N,YD] = NP(Y|wML)− n+1
2 lnN + O(1) as

claimed.�

A.5 Proof of Claims (d,e) of Theorem 4 (Case n = 2)

Claims (d,e) of Theorem 4 state that ifn = 2, YD = Y for N ≥ N0 andYi > 0 for i = 1, . . . ,2n,
lnI[N,YD] (Eq. 13) is asymptotically equal toNP(Y|wML)− 3

2 lnN + O(1) (Eq. 17) forY 6∈ S′ and
asymptotically equal toNP(Y|wML)− 3

2 lnN + 2ln lnN + O(1) (Eq. 18) forY ∈ S′. Similar to the
proofs of Claims (b,c), we first employ Lemma 6, which relatesI[N,YD] with Ĩ[N,Y] (Eqs. 28 and 30)
and Lemma 7, which relates̃I[N,Y] with J[N,Y] (Eqs. 31 and 32). Consequently, it remains to
evaluateJ[N,Y] = maxp0∈U0 Jp0[N]. For this task, one needs examine the neighborhoods of arbitrary
minimum pointsp0 ∈U0 of the functionf . From the definition ofϒ, ϒ0 andS(Section 4) it follows
that S= ϒ0 = ϒ for n = 2. Note that there is no regular points in this case. We now modify the
proofs of type 1 and type 2 singularities to fit to the casen = 2.

Type1 singularity: The zero setU0 is the same set as described by Eq. 43 withl = 1 andk = 2.
The analysis of the form of the exponent functionφ of the integrand ofJp0[N] gives Eqs. 45 and 46
without the∑l 6=i, j cl u2

l terms. Thus, by the same analysis, the contribution of these regions to the

integralJ[N,Y] is cN−
3
2 and application of Lemmas 6 and 7 concludes the proof.
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Type2 singularity: The zero setU0 = Ū0− ∪ Ū0+ ∪ Ū01∪ Ū02 is the same set as described by
Eqs. 34 and 35. Now, however,̄U0−, Ū0+, Ū01 andŪ02 are of the same dimension, namely, two.
This fact changes the asymptotic approximation.

Consider the casesC1-C5 one by one. There is no change in casesC1 andC3 where the point
(x′,u′,s′) lies on the proper two dimensional surfacesU01, U02 or U0−, U0+. Here, the functionφ
can be approximated by 3 variables, resulting in the contributioncN−3/2 of these regions toJ[N,Y].

The more complex situation is inC2,C4 andC5 cases, where zero planes of the same dimension
meet. Generally, the intersection points of zero surfaces of the same dimension are expected to give
rise to a ln lnN term. While this is not always a case, e.g., see example in Section 2, the ln lnN term
does appear now. We have:

C2: The principal part ofφ is x2
1 +x2

2 +u2
1u2

2, as specified by Eq. 37. Integrating out thex2
i terms

we obtain through the analysis of the poles ofJ(λ) =
R

u2λ
1 u2λ

2 du1du2 that the largest pole of
J(λ) is λ = −1/2 with multiplicity m= 2. Thus the contribution of this region toJ[N,Y] is
cN−3/2 lnN.

C4: The principal part ofφ is x2
1 + x2

2 + s2u2
2 or x2

1 + x2
2 + s2u2

1 (see Eq. 48). Similarly to the case
C2, the contribution of this region toJ[N,Y] is cN−3/2 lnN.

C5: Here, the principal part ofφ isx2
1+x2

2+s2u2
1u2

2 (see Eq. 49). Once again, we integrate out thexi

variables and analyze the poles ofJ(λ) =
R

s2λu2λ
1 u2λ

2 dsdu1du2. The largest pole isλ =−1/2
with multiplicity m = 3, and thus the contribution of this region toJ[N,Y], including the
factors from integrating out thexi ’s, is cN−3/2 ln2N.

Summarizing the contributions of the neighborhoods of various critical pointsfor Y ∈ S′, we see
thatJ[N,Y]∼ cN−3/2 ln2N and, consequently, lnI[N,Y] = N fY− 3

2 lnN+2ln lnN+O(1). �

A.6 Proof of Theorem 4f (Case n = 1)

Theorem 4f states that ifn = 1, YD = Y for N ≥ N0 andY1,Y2 > 0, then lnI[N,YD] (Eq. 13) is
asymptotically equal toNP(Y|wML)− 1

2 lnN+O(1) (Eq. 19). Once again, we first employ Lemma 6,
which relatesI[N,YD] with Ĩ[N,Y] (Eqs. 28 and 30) and Lemma 7, which relatesĨ[N,Y] with J[N,Y]
(Eqs. 31 and 32). Consequently, it remains to evaluateJ[N,Y] = maxp0∈U0 Jp0[N]. For this task, one
needs examineJp0[N] in the neighborhoods of arbitrary minimum pointsp0 ∈U0 of the functionf .

From the definitions ofϒ, ϒ0 andS′, for n = 1, there is no distinction between different type
of statistics andϒ = ϒ0 = S′. Moreover, according to Theorem 2 the asymptotic form of the in-
tegral Jp0[N] =

R

Uε
e−N(z1(x,u,s)−z′1)

2
dxdudsis determined by the poles ofJ(λ) =

R

Uε
(z1(x,u,s)−

z′1)
2λdxduds, where, in this case,z1(x,u,s)−z′1 = x2

1. Once again, contributions of pointsp0 ∈U0

lying on the boundary ofU can be ignored, since their domains of integration are smaller than do-
mains of integration of the corresponding internal points. Thus, the largest pole ofJ(λ) is λ =−1/2
with multiplicity m= 1 and lnI [N,YD] is asymptotically equal toN fY− 1

2 lnN+O(1). �

We can also compute the integralI[N,YD] (Eq. 11) directly forn = 1 andYD = Y. It is

I[N,Y] =
Z

(0,1)3
eN(Y0 ln[at+b(1−t)]+Y1 ln[(1−a)t+(1−b)(1−t)])µ(a,b, t)dadbdt
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whereY1 = 1−Y0. Ignoring the densityµ(a,b, t) by using the assumption of bounded density (A1)
and changing the variables tox= at+b(1− t), we rewriteI[N,Y] is asymptotically equivalent form

Ĩ[N,Y] =
Z 1

0

Z 1

0

1
b−a

Z b

a
eN(Y0 lnx+Y1 ln[1−x])dxdadb.

Consider now

I1[N,Y] =
Z b

a
eN(Y0 lnx+Y1 ln(1−x))dx

for some 0≤ a < b≤ 1 (the caseb > a is symmetric). This is the integral of the beta distribution
with α = NY0 +1 andβ = NY1 +1 (DeGroot, 1970, page 40). Letf (x) = Y0 lnx+Y1 ln(1−x). The
maximum of the integrand functionf (x) on [0,1] is achieved atx0 = Y0 and it iseN f(Y0). There are
three cases to consider according to the location ofx0 relative to(a,b).

1. Internal point, x0 = Y0 ∈ (a,b). In this case

f (Y0 +x) = f (Y0)+Y0 ln
(

1+ x
Y0

)

+(1−Y0) ln
(

1− x
1−Y0

)

= f (Y0)+Y0

(

x
Y0
− x2

2Y2
0

+O(x3)
)

+(1−Y0)
(

−x
1−Y0
− x2

2(1−Y0)2 +O(x3)
)

= f (Y0)− 1
2Y0(1−Y0)

x2 +O(x3).

Thus, in the small neighborhood ofx0, f can be approximated by quadratic form and the
classic Laplace approximation (Lemma 1) can be applied yieldingI1[N,Y] ∼ c1eN fYN−1/2.
Moreover, sinceI1[N,Y] and eN f(Y0) are continuous functions ofN and x0 = Y0, uniform
asymptotic bounds onI1[N,Y] exists for allx0 in a proper closed subset of(a,b) asN→
∞. I.e., the integralI1[N,Y] is bounded within a constant multiplies ofeN fYN−

1
2 and these

constants are independent ofx0 andN for all x0∈ [a+ε,b−ε] andN≥ 1. Note that the above
approximation off is only valid forY0 6= 0,1 (AssumptionA2). Otherwise, the approximation
of f is non-quadratic.

2. Border point, x0 = Y0 ∈ {a,b}. The expansion forf (Y0 +x) is the same, but the integration is
performed only on the half of the interval, which results in half the constant factor to the final
approximation compared with the previous case.

3. Maximum of f is outside of[a,b]. Let m denote the maximum ofef (x) on [a,b], i.e., m =
maxx∈[a,b] e

f (x). We haveI1[N,Y]≤ (b−a)mN < c3eN fYN−1/2, for some appropriate constant
c3.

The above analysis shows thatI1[N,Y] < cuppeN fYN−1/2 for some constantcupp for all a andb. Fur-
thermore,I[N,Y] > cloweN fYN−1/2 for someclow > 0 for (a,b)∈ {(a,b)|a<Y0,b>Y0,b−a> 2ε >
0}. Since the later region has a non-zero Lebesgue measure, it follows thatI[N,Y] ∼ ceN fYN−1/2

and lnI[N,Y] = N fY− 1
2 lnN+O(1).

Appendix B. Proof of Theorem 5

Theorem 5 states the asymptotic approximation for the marginal likelihood givena degenerate bi-
nary naive Bayesian modelM that hasm missing links. In order to prove this theorem we examine
the log-likelihood function of the degenerate model and decompose it into a degenerate part and
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a naive Bayesian part. These parts define two probability functions that are independent and the
marginal likelihood of data is computed relevant to each one of them. Combining the results gives
Theorem 5.

Let ψ be the log-likelihood function of the marginal likelihood integral (Eq. 20) forthe degen-
erate binary naive Bayesian network described in Theorem 5. We have

1
N ψ(a,b, t,c) = ∑xYx lnθx(ω)

= ∑xYx
[

lnθ(x1,...,xn−m)(a,b, t)+∑n
i=n−m+1(xi lnci +(1−xi) ln(1−ci))

]

= ∑(x1,...,xn−m)

[

lnθ(x1,...,xn−m)(a,b, t) ·∑(xn−m+1,...,xn)Yx
]

+∑n
i=n−m+1(∑xYxxi lnci +∑xYx(1−xi) ln(1−ci))

= ∑(x1,...,xn−m)Y(x1,...,xn−m) lnθ(x1,...,xn−m)(a,b, t)
+∑n

i=n−m+1 (Yi lnci +(1−Yi) ln(1−ci))

where(x1, . . . ,xk) are binary vectors of lengthk, Y(x1,...,xn−m) = ∑(xn−m+1,...,xn)Y(x1,...,xn) andYi =

∑(x1,...,xi−1,1,xi+1,...,xn)Yx. The new statisticsY(x1,...,xn−m) andYi ’s are positive, becauseY is positive (A2).
Using the assumptions of bounded density (A1) and stable statistics (A3), the marginal likelihood
integralI[N,Y] (Eq. 20) can be rewritten as

I[N,YD]∼ Î[N,Y] =

[

n

∏
i=n−m+1

Z 1

0
cNYi

i (1−ci)
N(1−Yi)dci

]

Z

(0,1)2n−2m+1
eN∑x̃Yx̃ lnθx̃(ω)dω. (50)

wherex̃ = (x1, . . . ,xn−m). The firstm integrals are integrals over the beta distribution (DeGroot,
1970, page 40) and

Z 1

0
cNYi

i (1−ci)
N(1−Yi)dci =

Γ(NYi +1)Γ(N(1−Yi)+1)

Γ(N+2)

The asymptotic behavior of Gamma function is well understood and it is described by Stirling
formula,Γ(z) = e−zzz− 1

2
√

2π
[

1+O(z−1)
]

(Murray, 1984, page 38), and thus lnΓ(z) = −z+(z−
1
2) lnz+O(1). Using the equality ln(YN+1) = lnYN+O(1), we obtain

ln Γ(NYi+1)Γ(N(1−Yi)+1)
Γ(N+2)

= (NYi +
1
2) ln(NYi +1)+(N(1−Yi)+ 1

2) ln(N(1−Yi)+1)− (N+ 3
2) ln(N+2)+O(1)

= (NYi +
1
2) lnNYi +(N(1−Yi)+ 1

2) lnN(1−Yi)− (N+ 3
2) lnN+O(1)

=−1
2 lnN+N(Yi lnYi +(1−Yi) ln(1−Yi))+O(1).

Hence, the contribution of the firstm integrals to ln̂I[N,Y] is N ln p(Yn−m+1, . . . ,Yn|cML)− m
2 lnN.

The second integral in Eq. 50 is exactly of the type analyzed in Theorem 4,and the theorem follows
by summing up the contributions of these two parts.�
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