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Abstract

We develop a closed form asymptotic formula to compute thegimal likelihood of data given a
naive Bayesian network model with two hidden states andrpifemtures. This formula deviates
from the standard BIC score. Our work provides a concretmpi@that the BIC score is generally
incorrect for statistical models that belong to stratifigganential families. This claim stands in
contrast to linear and curved exponential families, whieeeBIC score has been proven to provide
a correct asymptotic approximation for the marginal liketd.
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1. Introduction

Statisticians are often faced with the problem of choosing the appropriatel thatibest fits a given
set of observations. One example of such problem is the choice of sguctiearning of Bayesian
networks (Heckerman et al., 1995; Cooper and Herskovits, 1992kudh cases the maximum
likelihood principle would tend to select the model of highest possible dimensantrary to the
intuitive notion of choosing the right model. Penalized likelihood approashel as AIC have
been proposed to remedy this deficiency (Akaike, 1974).

We focus on the Bayesian approach to model selection by which a mibidethosen according
to the maximum posteriori probability given the observed @ata

P(M|D) OP(M,D) =P(M)P(D|M) = P(M)/QP(D|M,00)P((0|M)d(o,

wherew denotes the model parameters ddlenotes the domain of the model parameters. In
particular, we focus on model selection using large sample approximati®iNtD), calledBIC -
Bayesian Information Criterion

The critical computational part in using this criterion is evaluating the margingliti&od in-
tegralP(D|M) = [ P(D|M, w)P(w|M)dw. Given an exponential mod& we write P(D|M) as a
function of the averaged sufficient statisti¢gsof the dateD, and the numbeN of data points irD:

1IN, Yo, M) = [ 0N coM)doo, (1)

wherep(w|M) is the prior parameter density for modd, and L is the log-likelihood function
of model M. Recall that the sufficient statistics for multinomial sampleshddinary variables
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(X1,...,%n) is simply the countdN - Yp for each of the possible"Joint states. Often the prior
P(M) is assumed to be equal for all models, in which case Bayesian model seisgbieriormed
by maximizingI[N,Yp,M]. The quantity represented I/N,Yp,M) = InI|N,Yp,M] is called the
BIC scoreof modelM.

For many types of models the asymptotic evaluation of Eq. I, -asc, uses a classical Laplace
procedure. This evaluation was first performed for Linear Exporie(iti®) models (Schwarz,
1978) and then for Curved Exponential (CE) models under some addlitentmical assumptions
(Haughton, 1988). It was shown that

S(N,YD,M):N~InP(YD]wML)—gInN+R, (2)
where InP(Yp|wwi ) is the log-likelihood ofYp given the maximum likelihood parameters of the
model andl is the model dimension, i.e., the number of parameters. The erroRterR(N, Yp, M)
was shown to be bounded for a fix¥sl (Schwarz, 1978) and uniformly bounded for'gll — Y in
CE models (Haughton, 1988) Bls— . For convenience, the dependencevbis suppressed from
our notation in the rest of this paper.

The use of BIC score for Bayesian model selection for Graphical Maslealid for Undirected
Graphical Models without hidden variables because these are LE mageistfen, 1996). The
justification of this score for Directed Graphical Models (called Bayesiatwhirks) is somewhat
more complicated. On one hand discrete and Gaussian DAG models are CE (@xlger et al.,
2001; Spirtes et al., 1997). On the other hand, the theoretical justificdtitve 8IC score for CE
models has been established under the assumption that the model containes th&tribution - the
one that has generated the observed data. This assumption limits the applichtiigyproof of
BIC score’s validity for Bayesian networks in practical setups.

Haughton (1988) proves that if at least one of several models corttensue distribution,
then the BIC score is the correct approximatiori[fd, Yo] and the correct model will be chosen
by BIC score with probability 1 asl — c0. However, this claim does not guarantee correctness of
the asymptotic expansion BN, Yp] for models that do not contain the true distribution, nor does it
guarantee correctness of model selection for fiNitd he last problem is common to all asymptotic
methods, but having a correct asymptotic approximatiori[fdrYp] provides some confidence in
this choice.

The evaluation of the marginal likelihod@N, Yp| for Bayesian networks with hidden variables
is a wide open problem because the class of distributions representeslybgi& networks with
hidden variables is significantly richer than curved exponential model# &t into the class of
Stratified Exponential (SE) models (Geiger et al., 2001). The evaluatitreaharginal likelihood
for this class is complicated by two factors. First, some of the parameters aidtel may be
redundant, and should not be accounted in the BIC score (Geiger #8986, Settimi and Smith,
1998). Second, the set of maximum likelihood points is sometimes a complex teeffeicting
surface rather than a single maximum likelihood point as in the proven aaskissiar and curved
exponential models. Recently, major progress has been achieved iziagaynd evaluating this
type of integrals (Watanabe, 2001). Herein, we apply these techniquesdel selection among
Bayesian networks with hidden variables.

The focus of this paper is the asymptotic evaluatiof{Nf Yp] for a binary naive Bayesian model
with binary features. This model, described fully in Section 3, is useful issdiaation of binary
vectors into two classes (Friedman et al., 1997). Our results are derntsat similar assumptions
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to the ones made by Schwarz (1978) and Haughton (1988). In this senspaper generalizes
the mentioned works, providing valid asymptotic formulas for a new type of imargkelihood
integrals. The resulting asymptotic approximations, presented in Theomdewidfe from the stan-
dard BIC score. Hence the standard BIC score is not justified fordayenodel selection among
Bayesian networks with hidden variables. Moreover, no uniform dconeula exists for such mod-
els; ouradjusted BIC scorehanges depending on the different types of singularities of the safficie
statistics, namely, the coefficient of theNrierm (Eq. 2) is no Iongepg but rather a function of the
sufficient statistics. An additional result presented in Theorem 5 desdfile asymptotic marginal
likelihood given a degenerate (missing links) naive Bayesian model; it conepits the main result
presented by Theorem 4.

The rest of this paper is organized as follows. Section 2 introduces tleepbof asymptotic
expansions and presents methods of asymptotic approximation of integreti®ns3 reviews naive
Bayesian models and explicates the relevant marginal likelihood integralsdee models. Sec-
tion 4 states and explains our main results and Section 5 gives a proof odtliinearem 4 that
demonstrates the mathematical techniques used herein. The full prooftbéorems is deferred to
Appendices A and B. Section 6 discusses our contributions and outlinee fesearch directions.

2. Asymptotic Approximation of Integrals

Exact analytical formulas are not available for many integrals arising iatipea In such cases
approximate or asymptotic solutions are of interest. Asymptotic analysis is ahbadranalysis
that is concerned with obtaining approximate analytical solutions to problemieatparameter or
some variable in an equation or integral becomes either very large ormaitl $n this section we
review basic definitions and results of asymptotic analysis in relation to the &hfigyr Yp] under
study.

Let zrepresent a large parameter. We say thaj is asymptotically equato g(z) for z— oo if
lim,. f/g=1, and write

f(z) ~9(z), asz— co.

Equivalently,f (z) is asymptotically equal tg(z) if lim ;.. r /g= 0, denoted = o(g), wherer(z) =
f(z) — 9(2) is the absolute error of approximation.

We often approximaté (z) by several terms via an iterative approximation of the error terms.
An asymptotic approximation by terms has the forni(z) = S1'1 angn(z) +0(gm(2)), asz — oo,
where{g} is anasymptotic sequeneehich means thadn;1(z) = 0(gn(z)) asz— . An equivalent
definition is

m-1
f(2) = 3 @0n(2) +O(gm(2)), asz— o,
n=1
where the big 'O’ symbol states that the error term is bounded by a camstétiple of gm(z). The
latter definition of asymptotic approximation is often more convenient and wi kiseein, mostly
for m= 3. A good introduction to asymptotic analysis can be found in (Murray, 1984

The objective of this paper is deriving asymptotic approximation of margirgifi&od integrals
as represented by Eq. 1, which for exponential families have the form

T[N, Yp] — /Q e N1(OYo) () dew @3)

3



RusAakov AND GEIGER

o N=1

NN
N\
///,'; “‘\‘\\\\\\w\\
AN

(@) (b) (c)

Figure 1: The classical Laplace procedure for approximation of integrer N ®u(x)dx, where
f achieves single minimum in the range of integration. (a) The exponential inte-
grand functions in one dimension, for differeNt The largeN the more mass of
the function is concentrated in the small neighborhood of the extremum. @ )}Wdn
dimensional integrand functioe~**¥*¥) (N = 1). The isosurfaces are ellipses.
(c) Ellipsoid-like isosurfaces of the three dimensional log-likelihood fumctimction
f=— [O.2In91+O.2In92+O.2In93+0.4ln(1—91— 0, — 63)]

wheref (w, Yp) = — L(Yp|w) is the minus log-likelihood function. We focus on exponential models,
for which the log-likelihood of sampled data is equaNdimes the log-likelihood of the averaged
sufficient statistics. Note that the specific models discussed in this papadaesl exponential.
Consider Eq. 3 for some fixed,. For largeN, the main contribution to the integral comes
from the neighborhood of the minimum éf i.e., the maximum of-N f(w, Yp). See illustration on
Figure 1(a,b). Thus, intuitively, the approximationI@, Yp| is determined by the form of near
its minimum onQ. In the simplest casé&(w) achieves a single minimum ey in the interior of
Q and this minimum is non-degenerate, i.e., the Hessian mafifixwy ) of f at wy is of full
rank. In this case the isosurfaces of the integrand function near the minimarmellipsoids (see
Figure 1b,c) and the approximation BN, Yp] for N — o is the classical Laplace approximation
(see, e.g., Wong, 1989, page 495) as follows.

Lemma 1 (Laplace Approximation) Let
() = [ MWy
u

where Uc RY. Suppose that f is twice differentiable and convex (#f,(u) is positive definite),
the minimum of f on U is achieved on a single internal poitwis continuous and (o) # O. If
[ (N) absolutely converges, then

I(N) ~ Ce Nfllo)N=0/2 (4)

where C= (2m)9/2u(ug) [det# f (up)] "2 is a constant.

Note that the logarithm of Eq. 4 yields the form of BIC score as presenté&aib2.

However, in many cases, and, in particular, in the case of naive Bayesiavorks to be defined
in the next section, the minimum dfis achieved not at a single point §& but rather on a variety
Wp C Q. Sometimes, this variety may l-dimensional surface (smooth manifold)@in which
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case the computation of the integral is locally equivalent todthed’ dimensional classical case.
The hardest cases to evaluate happen when the veMigtpntains self-intersections.

Recently, an advanced mathematical method for approximating this type ofalstégis been
introduced to the machine learning community by Watanabe (2001). Belowigfly latlescribe this
method and state the main results. First, we introduce the main theorem thasarsatuleevaluate
the asymptotic form of[N,Yp] asN — o computed in a neighborhood of a maximum likelihood
point}

Theorem 2 (based on Watanabe, 2001) Let
I(N) :/ e N Wy w)dw
We

where W is some closed-box around w, which is a minimum point of f in Wand f(wp) = 0.
Assume that f and p are analytic functionsapg) # 0. Then,

INT(N) =A1InN+ (m; —1)InInN 4+ O(1)

where the rational numbeéy; < 0and the natural number prare the largest pole and its multiplicity
of the meromorphic (analytic + poles) function that is analytically continued from

W= e WP (ReA) >0) (5)

wheres > 0is a sufficiently small constant.

The above theorem states the main claim of the proof of Theorem 1 in (Vida2@01). Con-
sequently, the approximation of the marginal likelihood intedfidl Yp] (Eq. 3) can be determined
by the poles of

Juo(N) = [ [F(w) = £ (o)) piw)dw

€

evaluated in the neighborhood$ of pointswg on which f attains its minimum. This claim, which
is further developed in Section 5, holds because the minimuhtwf — f (wp) is zero and the main
contribution tol[N, Yp] comes from the neighborhoods around the minimumg of

Often, however, it is not easy to find the largest pole and multiplicity(adj defined by Eq. 5.
Here, another fundamental mathematical theory is helpful. rébkelution of singularitiesn alge-
braic geometry transforms the integdgh ) into a direct product of integrals of a single variable.

Theorem 3 (Atiyah, 1970 Resolution Theorem) Let f(w) be a real analytic function defined in a
neighborhood 0B € RY. Then there exists an open set W that inclugles real analytic manifold
U, and a proper analytic map gJ — W such that:

1. g:U\Up — W\ Wp is an isomorphism, wheredi= f~1(0) and Uy = g~ (Wp).

1. Throughout this paper we use stylddsymbol to denote our particular marginal likelihood integrals rather than
standard[” symbol that denote general integrals appearing in theorems, exsiapdieauxiliary derivations.

2. Recall that the pole of the complex functiéfe) is the point where it has a finite number of negative terms in its
Laurent expansion, i.ef(z) =a_m/(z—20)"+...+ap+a1(z—2) +.. .. In this case it is said thét(z) has a pole
of order (or multiplicity)matzy. (See, e.g., Lang (1993), Sectior35
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2. For each point pe U there are local analytic coordinates, . ..,Uy) centered at p so that,
locally near p, we have

f(g(ug,...,uq)) = a(u,.. .7ud)u'§l ...ugd,

where k> 0 and gu) is an analytic function with analytic inverdg’a(u).

This theorem is based on the fundamental results of Hironaka (1964hanqmocess of changing
to u-coordinates is known as resolution of singularities.

Theorems 2 and 3 provide an approach for computing the leading terms isytmpiatic ex-
pansion of Id]N, Yp]:

1. Cover the integration domaia by a finite union of open neighborhoodg. This is possible
under the assumption th@tis compact.

2. Find a resolution magy and manifoldU, for each neighborhood/, by resolution of sin-
gularities. Note that in the process of resolution of singularltigsnay be further divided
into subregion&Jyg by neighborhoods of different poinfsc Uq, as specified by Theorem 3.
Select a finite cover dfly by Ugg, this is possible since closure of edghis also compact.

3. Compute the integral(A) (Eg. 5) in each regioM,g = da(Ugg) and find its poles and their
multiplicity. This integral, denoted by,g, becomes

JupN) = fug, FOW(w)dw
= iy T (G (W) 1(a (1) 4 (w)]du (6)

= fugs AWM R UG M(Ga (U)) |G (u)] dus

where|g,(u)| is the Jacobian determinant. The last integration (up to a constant) is done
by boundinga(u) and u(gq(u)), using the Taylor expansion fdgy|, and integrating each
variableu; separately. The largest polgg of J,g and its multiplicitym,g are now found.

4. The largest pole and multiplicity af(A) are Aqg)- = maxqp) Aqp and the corresponding
multiplicity mqg)-. If the (a)* values that maximizégg are not unique, then th@3)*
value that maximizes the corresponding multipliaity,g)- is chosen.

In order to demonstrate the above method, we conclude this section with mplexapproxi-
mating the integral

+& p+e o+
1[N] :/ 8/ s/ 8e*N(U§U§+U§U§+U§U§)du1duZdu3 @)
—-& J—¢ J—¢
asN tends to infinity. This approximation dfN] is an important component in establishing our

main results. The key properties of the integrand function in Eq. 7 are iltedtmna Figure 2.
Watanabe’s method calls for the analysis of the poles of the following function

+€ +€ +€
JA) = / / / (U2U3 + u2u3 + u3u) durdupdus. (8)
—& —& —&

To find the poles ofJ(A) we transform the integrand function into a more convenient form by
changing to new coordinates via the process of resolution of singularife®btain the needed



ASYMPTOTICMODEL SELECTION FORNAIVE BAYESIAN NETWORKS

08
0.6~
04

0.2

0.2+
04
0.6

08|

(@) (b)

Figure 2: Part (a) depicts an isosurfacedf (1t HUit5+55) (or alternatively ofi2u3+ u2u2 + U2U2)
and its set of maximum (minimum) points which coincide with the three axis. Part (b)
depicts four isosurfaces of the same function for its different valube.iJosurfaces are
not ellipsoids as in the classical Laplace case of a single maximum (see E@ure

transformations for the integral under study, we apply a technique datedng-upwhich consists
of a series ofjuadratic transformationsFor an introduction to these techniques see (Abhyankar,
1990).

Rescaling the integration range(te1,1) and then taking only the positive octant yields

_ aN+3 2012 202 21 12\A

J(A) =877 [ q)s (Ut + UTU5 + U3u3) du
_ QcdA+3 21,2 2,2 21 12\A
=8¢ (fO<UZ,U3<U1<l+ fO<U17U3<Uz<l + fO<U1,U2<U3<l) (U1U2 + U1u3 + UZUS) du.

The three integrals are symmetric, so we evaluate only the first. Using theatjodhnsformation
Uz = UpUp, Uz = UpUs, which modifies the integration range<Qus, us < u; < 1 to be(0,1)3, yields

Ji(\) :/ (u§u§+u§u§+u§u§)xdu:/ uP2(u3 + U3 4 udul) du.
O<up,uz<uy<1 (0,2)3

We now divide the rangé0, 1)3 to the regions G< uz < Uup < 1 and 0< up < uz < 1. Again these
cases are symmetric and so we continue to evaluate only the first using gfernaationus = upus,

Ju(\) = / UM 2(u3 + U3 + w3 du= / uP 2 (14 ud -+ udug)du
0<Uz<Up<1 (01)3

Since the function(1+ u + u3u3) is bounded on the region of integration, namely 1 + uZ +
usu3 < 3 for all 0 < up,uz < 1, it follows that

g [ AR dud < I < 24600 [ AR dude,  (9)
(071)2 (071)2
yielding
1
854)‘+3 < J\) < 2484)\+3 .
@3z =M= (A +3)(2A+2)
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Figure 3: A naive Bayesian model. Class variaBlis latent.

ThusJ(A) has poles ak = —3/4 and\ = —1 with multiplicity m= 1. The largest pole is = —3/4
with multiplicity m= 1. We conclude, using Theorem 2, thi| defined by Eq. 7 is asymptotically
equal tocN— 3.

We note that in this process of resolution of singularities we have implicitly cordplésterms
ki, ko, ks, the functiona(u) and the Jacobian determindgt(u)| (in Eg. 6). In particular, we have
established thadt; = 4, ko = 2, ks = 0, a(u) = 1+ u3 + ugu3 and|g'(u)| = udu, for the appropriate
range under study. The mappiggof Theorem 3) is the composition of the two transformations
we used and is defined via = uy, Up = u1U» andus = uiUpu3. However, this explicit form is not
needed for the evaluation of the target integral, as long as the vallearaf|g’'(u)| are derived.

In the proof of our theorems we perform a similar process of resolutigingfularities pro-
ducing implicitly the mappingy which is guaranteed to exist according to Theorem 3, and which
determines the values &f and|g'(u)| needed for evaluation of poles of functidf\) as required
by Theorem 2.

3. Naive Bayesian M odels

A naive Bayesian mode¥l for discrete variableX = {X,..., Xy} is a set of joint distributions for
X that factor according to the tree structure depicted on Figure 3, whectafwevariabl€ is never
observed. Formally, a probability distributi®{X = x) belongs to a naive Bayesian model if and
only if

P(X =x) = glP(C:cj)iElP(Xi =x[C=g)),

wherex = (x4, ...,X) is then-dimensional binary vector of values ¥f r is the number of hidden
states andtj denotes a particular unobserved state (class). Intuitively, this modetilies the
generation of data that comes front sourcescy,...,c.. Naive Bayesian models are a subclass
of Bayesian networks (Pearl, 1988) and they are widely used in clugtéCimeeseman and Stutz,
1995).

In this work we focus on naive Bayesian networks that have two hidteess( = 2) and
n binary feature variableX;,...,X,. We denote the parameters definipg; = 1|c1) by &, the
parameters defining(x; = 1|cz) by by, and the parameters definipfc; = 1) byt. These parameters
are called themodel parameters We denote thgoint space parameters (X = x) by 6x. The
following mapping, named,, relates these two sets of parameters:

n

9x=tﬂa‘(l—a)l‘”+<1—t)_|£lbi’“'<1—bi)l‘x‘, (10)

8
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and the marginal likelihood integral (Eqg. 1) for these models becomes
INYol = [ eNEKINO oo (11)
(071)2n+1

wherew= (ay,...,an,b1,...,bn,t) are the model parametets js the sample size, and the averaged
sufficient statistic¥ is the number of samples for whiéh= x divided by the sample sizd.

4. Main Results

This section presents an asymptotic approximation of the int&iNa¥p| (Eqg. 11) for naive Bayesian
networks consisting of binary variabl&s, . .., X, and two hidden states. It is based on two results.
First, the classification of singular points for these types of models (Geligdr, 2001). Second,
Watanabe’s approach as explained in Section 2, which provides a metluidaio the correct
asymptotic formula of[N, Yp] for the singular points not covered by the classical Laplace approxi-
mation scheme.

Let Y= {(y1,....y2)|yi > 0,3 yi = 1} be the set of possible values of the averaged sufficient
statisticSYp = (Y1,...,Yan) for dataD = {(X 1,... ,xi,n)}i'\'zl. In our asymptotic analysis we let the
sample sizéN grow to infinity.

Let Yp C Y be the pointgys, ..., yn) that correspond to the joint space parameters of the distri-
butions that can be represented by binary naive Bayesian models Wiittary variables. In other
words, assuming the indices yfare written as vector®y, ..., 8,) of n zeros and ones, points in
Yo are those that can be parameterized via

V.0 =[]0+ -0 [ (2B (12

wheret, a= (a,...,a,) andb = (by,...,by) are the 2+ 1 model parameters, as defined in Sec-
tion 3.

Geiger et al. (2001) classify the singular points of the algebraic varietiieoparameters of
binary naive Bayesian networks into two clasSesdS. This classification is used here to classify
the possible statistics arising from binary naive Bayesian networks witkrelift parameters; The
setSis the set of pointgys, ...,yn) such that Eq. 12 holds and @l = b; except for at most two
indices in{1,...,n}. Intuitively, each such point represents a probability distribution thatbean
defined by a naive Bayesian model (Figure 3) with all links removed éxatepost two.

The setS C Sis the set of points represented by a naive Bayesian model, just as Bheazs,
but with all links removed; namely, a distribution where all variables are mutiradlgpendent
and independent of the class variable as well. These statistics are parzedeway(s,,. s, =
Mlia) (1—a)d.

ClearlyS C SC Yp C Y. We call points inYp \ S regular pointsand points in setS\ S andS
typel andtype2 singularities respectively. We now present our main result.

Theorem 4 (Asymptotic Marginal Likelihood Formula) LetI[N,Yp] (Egs. 10 and 11) be the marg-
inal likelihood of data with averaged sufficient statistigs §fven the naive Bayesian model with
binary variables and two hidden states with parameters (a, b,t). Namely,

H[NvYD} = f(0’1)2n+1 eNEXYxmBX((,o) u(m)dw’
(13)
Bixa,nx) = ETTM1 & (1 — )% + (1 —t) [y by (1 — i),

9
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where x= (x1,...,Xn) denotes the binary vector of length n and the vectgraivd 6 of length2"
are indexed by x. Letpyand p satisfy the following assumptions:

A1 Bounded densityThe density (w) is bounded and bounded away from zerdbs (0,1)2"+1,
A2 Positive statisticsThe statistics Y = (Y1,...,Yxn) are such thaty>0fori=1,...,2".

A3 Statistics stabilityThere exists a sample sizg dlich that the averaged sufficient statistigs Y
is equal to a limiting statistics Y for all sample size$NNg.

Then, for > 3 as N— oo

(@) IfY € Yo\ S (regular point)

INI[N,Yp] = NInP(Y |ewL) — ntil InN -+ 0O(1), (14)
(b) IfY € S\ S (typel singularity)
2n—1
INT[N,Yp] = NInP(Y|wwL) — 5 INN+0(1), (15)
(c) IfY € S (type2 singularity)
INT[N, Yo] = NINP(Y [cow ) — %1 INN +O(1), (16)

wherewy are the maximum likelihood parameters for the averaged sufficient statistic Y
Moreover, for n=2, S= Yy = Y and

(d) IfY ¢ S (namely, Ye S\ S),

INI[N,Yp] = NInP(Y|wmL) — gInN +0(1), 17)
(e) Ifyes,
INT[N,Yp] = NInP(Y|oowmL) — :—;InN+2InInN+O(1), (18)
and for n=1,
(f) In]I[N,YD]:NInP(Y|wM|_)—%InN+O(1),
(19)
as N— oo,

The first assumption that the prior dengitis bounded has been made by all earlier works; in some
applications it holds and in some it does not. The proof and results, hawewvebe easily modified

to apply to any particular kind of singularity gf as long as the form of singularity is specified. The
second and third assumptions are made to ease the proof; the third assungstialso made by
(Schwarz, 1978). Removing these assumptions is beyond the scopepplis

10
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Note that Eq. 15 corresponds to selectig= —% andm; = 1 in Watanabe’s method and

Eq. 16 corresponds to selecting= —%1 andmy = 1. Both formulas are different from the stan-
dard BIC score, given by Eq. 14, which only applies to regular poirtsely, the points irYp \ S.

In contrast to the standard BIC score, which is uniform for all po¥fatsthe asymptotic approxi-
mation given by ouadjusted BIC scoréepends on the value ¥f= Yp through the coefficient of
InN.

One might be tempted to think that the coefficient of thienN term can be guessed by vari-
ous intuitive considerations. We now discuss three such erroneous ttefmst, the number of
parameters of the model that generates a singular j¥piig n+ 1 for case (c) because there are
n+ 1 independent binary variables (the class variablerafehture variables). This may seem to
explain the coefficient of IN in case (c). However, using the same reasoning for case (b) yields
the coefficien{n+ 3)/2 which differs from the correct coefficient. Another attempt is to claim that
the coefficient of—InN is half the number of parameters in the naive Bayesian model minus the
number of redundant parameters in the model that genefatéis particular, for case (b), the num-
ber of redundant parameters in the generative model4s3) — (n+ 1) = 2 and so the speculated
coefficient should b¢2n+1—2)/2 = (2n— 1) /2 which is the correct coefficient. However, using
the same reasoning for case (c) yields the coefficiap2 2vhich is wrong. Finally, computing the
maximum rank of the Jacobian of the map from the model parameters to the jad®t garameters
(defined by Eq. 22) at the maximum likelihood parametays for singular statistic¥p yields the
correct coefficient for case (b) but the wrong coefficigrt— 1)/2 for case (c).

The next theorem specifies the asymptotic behavior of marginal likelihoagt&isgfor degener-
ate naive Bayesian models, namely, when some of the links are missing. Tdrisrtheomplements
Theorem 4 and its proof is explicated in Appendix B.

Theorem 5 Let M be the degenerate naive Bayesian model with two hidden states dndm b
feature variables of which m are independent of the hidden state and let

w= (a.l, e ,an_m7 b:]_7 ey bn_rn,t,Cn_m_t'_]_7 .o .7Cn)

be the2n — m+ 1 model parameters of M. L&[N,Yp] be the marginal likelihood of data D with
averaged sufficient statisticg given model M. Namely,

1IN, Yo] = fio,gymis €25 (w)deo,
(20)
B = (M8 (1—a) ™ + (1-t) L0 (1 - b)) Ml mea & (1 - )%,

where x= (xg,...,%,) denotes the binary vector of length n and the vectgraivd 6 of length2"
are indexed by x. Letpyand i satisfy the following assumptions:

A1 Bounded densityThe density (w) is bounded and bounded away from zerdbs (0, 1)2"+1,
A2 Positive statisticsThe statistics Y = (Y1, ...,Yxn) are such thatyy> Ofori=1,...,2".

A3 Statistics stabilityThere exists a sample sizg duch that the averaged sufficient statistigs Y
is equal to a limiting statistics Y for all sample sizes>N\N,.

Assume also that ¥ Yy and that the parameterization of Y (as is Eq. 12) corresponds to a binary
naive Bayesian model WMwhich shares k links with model M. Then, forxim — 3 as N— oo:

11
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(@) If k> 3 (regular point)

INT[N, Yo] = NInP(Y [cow ) — meJrO(l),
(b) If k=2 (typel singularity)
INT[N, Yo] = NInP(Y[em) — me—I—O(l),

(c) Ifk=0o0r k=1 (type2 singularity)

1
INT[N, Yo] = NInP(Y [cow ) — % INN +O(1),

wherewy are the maximum likelihood parameters of statistics Y .
Furthermore, form=n—2

(d) If k=2 (typel singularity)

1
INTN, Yo] = NInP(Y e ) — % InN +O(1).

Note thathere -1 =2n—m-1, since m=n—2.

(e) Ifk=0or k=1 (type2 singularity)
n+1
INI[N,Yp] = NInP(Y |emL) — 5 INN+2InInN +O(1),

and form=n—1orm=n,
(f) INT[N, Yo] = NInP(Y[com ) — gInN+O(1),
regardless of k as N- o,

An adversary may argue that evaluating the marginal likelihood on singuilatisgs not needed
because one could exclude from the model all singular points which oré/haasure zero. The
remaining set would be a smooth manifold defining a curved exponential naodieto the standard
BIC score would be a correct asymptotic expansion as long as theYpolrets not been excluded.
However, this proposed remedy is not perfect because in some situdigotata may come from a
model that yields singular statistics relative to the models being compared.

As an example of incorrect Bayesian model selection by the standarddBt€, sonsider the
problem of selecting between two naive Bayesian modielsand M,, as depicted on Figure 4.
Suppose that the data is generated by the third nldgeBoth modeldvi; andM> can not represent
the target distributionMt) exactly, therefore, given a large enough sample, the choice of thd mode
depends on the particular distribution representedvlgyand its parameters. Intuitively, if the
dependencies 0f; andX; on the hidden nod€ in modelMr are stronger than the dependency of
X4 on the hidden node, then one should prefer mddlebver modeM,, and vice versa.

12
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Figure 4: An example of incorrect Bayesian model selection by the sti&rscore Mt repre-
sents the generating model, akid, M, represent models being compared. If the max-
imum likelihoods of data giveM; andM, happen to be equal, e.g., for true model pa-
rametersy = 0.75,a,=0.2,a3=0.12 a4 =0.17,b; = 0.33, b, = 0.12, b3 = 0.07, by =
0.77,a5 =bs = 0.2, ag = bg = 0.6, t = 0.42, then the model selection procedure based on
the standard BIC score will prefer moddl, as it is less penalized comparedMie. Us-
ing the adjusted BIC formula (Theorem 5), on the other hand, gives\antate tdvi,,
reflecting its higher marginal likelihood.

Now, if the maximum likelihoods of the data given modi&l and given modeM, happen to be
equal, which is possible whexy, depends strongly o@ in Mt (Figure 4), then the standard choice
of the model is dictated by the penalty term of the BIC score (Eq. 2). Thalfyeerm is smaller for
M1, which contains less parameters tihds and, consequently, the model preferred by the standard
BIC score isM;. However, the adjusted BIC approximation formula for the marginal likelitfood
models with hidden variables penalizes molllelless than mode¥l; (Theorem 5). Therefore, the
marginal likelihood of the data given moddb is asymptotically larger than that of moddl and
it should be chosen according to a Bayesian model selection procgikme enough data.

Note that when comparing a naive Bayesian model versus a sub-modek thie data comes
from the smaller model, then the standard BIC score may underevaluategberardel, but this
would not lead to an incorrect model selection.

5. Proof Outline of Theorem 4

The proof of Theorem 4 consists of two logical parts. The first partagtioof of claim (a) of The-
orem 4 that follows from the fact that for regular statisics Y \ Sthere are only two (symmetric)
maximum likelihood points at each of which the log-likelihood function is propestyvex. Hence,
the marginal likelihood integral can be approximated by the classical Lapiatieod (Lemma 1).
The proof of Theorem 4a, which reflects standard practice, is providdppendix A.2. The sec-
ond logical part consists of the proofs of claims (b) and (c) of Theatemd requires the advanced
techniques of Watanabe (Section 2). First, the intefjMiYp] is transformed by a series of trans-
formations into a simpler one. Second, the sets of extremum points of the etp@maximum
log-likelihood points) are found, and then the new integral is computed inglghinorhoods of
extremum points. Finally, the logarithm of the largest contribution gives tlsgatkeasymptotic
approximation of the original integral. We focus on one thread of ourfpmoich demonstrates
this method, deferring the full proof to Appendix A.

13
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5.1 Useful Transformations

Decomposing the transformatidnfrom the model paramete(a, b,t) to the joint space parameters
By, as defined by Eq. 13, facilitates the evaluation of the intdgialYp]. We decompos#& into a
series of three transformatioilsg, T, Tz such thafl = Tzo T, 0 T;. We call the model parameters
(a,b,t) - the source coordinateand the parametef - the target coordinatesThe transformations
T1 andT; are diffeomorphisms, namely, one-to-one differentiable mappings with eliffiable in-
verses, that change the source and target coordinates, redyeetickare defined in such a way
that the intermediate transformati@dy which carries all the information about the singularities, is
simple to analyze. These transformations are from (Geiger et al., 2001).

Denote the domain of the model parameterby [0, 1]2""1 and the domain of the joint space
parameters byd = Ax_q, whereAyn_1 = {(01,...,0:_1)|0; > 0,5 a; < 1} is the closed 2—1
dimensional unit simplex. Letl = T;(Q) be the image of;, A = T, }(©) be the preimage ofs,
andT, : U — A be the transformation that relates these sets. These transformationgaiasscs
follows:

T T T
Qabt) = Uugy — Nz < Og)

where the indices denote the names of the coordinates used to describerdspanding spaces.
We now present these three transformations.

Transformation T;: We definel; : Q — U via

s=2t—1, ui:ai%bi, X =ta+((1—t)b, i=1...,n (21)

The mappindf; is a diffeomorphism with detly, | = 2-"*1. The inverse transformation is given by
t=(s+1)/2, a=%x+(1-9s)u, bj=x—(1+su, i=1,...,n (22)
Furthermore, it can be verified thatis the set of point$x, u,s) € R" x R" x R such that

0<x <1 -1<s<1l, —Xx<(1-sui<l-x, Xx—1<(1+9)u <x. (23)

Transformation T3: We defineT; : A — © as the inverse of a composition of two transformations
Ts1 andTsy. First, consider the nonsingular transformatien: © — A’ defined by

Vij k= > Bxe,... %)
(X150 %n); ST Xi=Xj=...=%=1

wherev; stands for the probability of thiéh feature being truey;; stands for the probability that the
ith and jth features are both true, etc. We now expmagsi using the model paramete(a, b, t)
via

Vij.k =taaj...ac+ (1-t)bb;j...by. (24)

Using Eq. 22, we rewrite Eq. 24 obtaining
Vi=X, Vij=XX+(1-s?)uuj,

Vijk = XXXk + (1 — %) (XUj Ui + UiX; U + UiUjXi) — 25(1 — S*)Ujuj U (25)
Vi r =X1X2 - X + Si_o Pi(S) (3 “products ofi u’s andr —i x's”)

14
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wherep;(s) =1/2[(1—9)'(1+5)+ (—1—9)'(1—s)], and, in particularp,(s) = 1—s* andps(s) =
—25(1—5°).

Now we subtract products of the firstcoordinates to remove the leading terms. So, we do
Zj = Vij —Vivj. Then we subtract products of the firstoordinates with one of the new coordinates
to remove the second terms, nameily, = Vijkx — ViVjVk — ZjVk — ZkV| — ZjkVi, and so forth. We end
up with the transformatiofiz, : A’ — A defined by

Z =Vi, Zj=Vij—ViVj, Zjk =Vijk —ViVjVk— ZjVk — ZkVj — ZjVi, etc (26)

where the indices of the coordinates are non-empty subsets{af...,n}. In particular, thez
coordinate corresponding to a $&t {1,...,n} isz, thez coordinate corresponding {é} is z, and
thez coordinate corresponding @, j,k} C {1,...,n} is zj, etc.

The transformation33; andTs, are diffeomorphisms with Jacobian determinant 1. The trans-
formationTs is defined byTs = T;; o Tt : A — ©. Hence, T is a diffeomorphism with Jacobian
determinant equal to 1.

Transformation T,: We definel, : U c R?*1 — A ¢ R?1via
Z =X, zj=pAUlj, ..., Zi2 r = pPr(S)usliz...Ur (27)

obtained by combining Egs. 25 and 26. We use the notationu, s) when the dependence nfon
(x,u,s) needs to be explicated. Note that this transformation is not a diffeomorpbram>f 3.
Transformationdi, T, andTs are similar to transformations used by (Settimi and Smith, 2000)
in the study of the geometry of parametric spaces for Bayesian networks idibrhvariables.
These transformations can be regarded as reparameterizations dfthBangesian models in terms
of moments. In particular, if the hidden and observable nodes are assoimae states-1 and 1,
thens=E[C], u; = CoV\X;,C)/Var(C), pi(s) = E[(C—s)'] andzz = E[[]i_1(X —E[X])].

5.2 Preliminary Lemmas

Based on the transformatioiig, T, and T3, we present two lemmas that facilitate the evaluation
of the integrall[N,Yp]. The first lemma states that under AssumptidisandA3, the integral
I[N, Yp] can be asymptotically evaluated in theu,s) coordinates for a limiting statistics, while
dismissing the contribution of the density functipn The second lemma shows that the resulting
integralﬁ[N,Y] can be evaluated using the quadratic form inzkeordinates.

Lemma6 Letl[N,Yp] be defined by Eq. 13, namely,
_ N 3, YyIn By (w)
IIN, Yp] /(071)2“19 H(w)dw
and assume p is boundedijfand Y5 is stable (/8). Let
N, Y] = / e NTOXUS) gy duds (28)
u
where .
f(x,u,8) = fy — Y2 Y InGi[x,u,9,
(29)

B[x,u,s = (T30 T2)[x,U,8], Om[x,u,s=1—-52716[xu,s|

15
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and where § = maxy , scu 52, Y InBi[x,u,g and Y is the limiting statistics obYas specified by
Assumption B, namely, ¥ =Y for N> Ng.
Then, ¥ = P(Y|wwu.) and

INT[N,Yp] = N fy +InT[N,Y] +O(1) (30)
forallN > 1.

Proof: SinceT; is a diffeomorphismfy = P(Y|wwu) and the integral[N, Yp] can be evaluated in
(x,u,s) coordinates by introducing the constant factor of Jacobian determifaheformatioril,
Jr, = 2-™1 Moreoverp(w) is bounded and thus the integral evaluated wittv) = 1 is within
a constant factor df[N, Yp] and sinceYp is equal toY starting fromN, fixing Yp to Y introduces
finite number of approximation errors fot < Ng that can be bounded. ThugN,Y] is within a
constant factor of the integréN, Yp] multiplied by eN ™ with the constants independent Nrand
Yp. EQ. 30 expresses this fact in a logarithmic sclle.

Lemma7 Considerﬁ[N,Y} and f(x,u,s) as defined in Lemma 6 (Egs. 28 and 29). Let the zero set
Uo = argminy,seu f(x,U,s) be the set of minimum points ofxfu,s) in U. Let

N.Y] = maxJo[N.Y] and Jg [N :/ e NZ (@ w92 ?gx dud 31
JIN.Y] = maxIp[N.Y) and IpNj= | s @D
where z(x,u,s) is the I-th coordinate of(x;, u,s) = Tz[x,u,s], Z is the I-th coordinate of A, U, S|
and U is ane-box neighborhood of o= (X', U/, s") € Ug. (Note that]p,[N] does not depend onY,
while J[N,Y] depends on Y through the form of sgt)u

IfY is positive (&) and Y € Yy, then

InI[N,Y] =InJ[N,Y]+O(1) forallN> 1. (32)

The proof of this lemma uses the facts thgis a diffeomorphismyJ is compact, the contributions
of non-maximum regions of f are exponentially small, and th& @&imensional poin¥ > 0 corre-
sponds to a maximum likelihood parameters of naive Bayesian network wittybiagables and
two hidden states. The proof is explicated in Appendix A.1.

Lemmas 6 and 7 jointly state that the asymptotic forms ¢f\1Y] and InI[N, Yp| are identical
up to an additive term\ fy and a constant provided théis the limiting statistics o¥p (Assumption
A3).

5.3 Analysisof Type 2 Singularity

We now focus on the proof of Theorem 4c that deals with the singular pimirfs LetY € S.
Our starting point in proving Theorem 4c is integfaN, Y] (Eq. 31), which by Lemmas 6 and 7
specifies the asymptotic form &fN, Yp]. We evaluate the contributiord$,[N] to J[N, Y] from the
neighborhoods of extremum poingg = (X, U',s) € Up. The largest contribution determines the
asymptotic form of integrdl[N,Yp] asN — c andYp =Y.

Lety= (yi,...,Yn) be the model parameters of thendependent variables that define tHe 2
dimensional poin¥ € S, namely

y] = z Y(al,...ﬁn)a J = 1, ey n (33)
3e{0,1}",st. §j=1
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Furthermorey < S if and only if for all 6 € {0,1}", equalityYs, 5, = |‘|i”:1yi6i (1—v)*% holds

fory={y1,...,yn} given by Eq. 33.
LetV denote the closure of a 9ét The zero sett)y can be written as the union off 2 sets

n
Uo = Up_ UUg, U [ Uy, (34)
j=1
where

Uo_:{(x:y,u,s:flﬂui € (%,%),i:l,...,n}, Wo- ={(a,b=y,t=0)|a € (0,1)},

Uo+:{(x=y,u,s:1)|ui6(Lgl.%),i:l,...,n}, Woy ={(a=vy,bt=1)|b €(0,1)},
(35)
Ui =0,Vi # j;
uje (-3,1)se(-1,1); { a=bi=y,vi#j; }
Ugi =<{ (x=v,u,s ! 22 i=<(abt ,
0 (x=v,u.s)| -yj < (A-9s)u; <1-yj, Woj (ab1)] taj+ (1-t)bj =vy;j

Yj—1< (149s)uj <y;

and wheréAo_ = T, 1(Uo_), Wo = T; H(Uo), andWo; = T; *(Uo;j) are the same sets expressed
using the model paramete(a, b,t).
The zero set)p, namely the minimum points df, is divided into five disjoint sets:

CL (x,u,s) € Ugj\ UijYoi.

C2: (X,u,s) € N;Vo;.

C3: (X,u,s) € Ug- UUg; \ U;Uo;.

C4: (¥,u,s) € U [Uo- UUo; NUo; \ Uiz Uai] -
C5: (¥,U,s) € (Uo- UUo:)N); Uo;.-

These five disjoint sets and their boundaries caygrbecausd)o, NUg- = 0 and Uy NUgj =
MNkYok- The set)q is shown in Figure 5 along with a representative point fl@irthroughCs.

Note thatUyp is a union of twon-dimensional planeBgy_, Up, andn two-dimensional planes
Uoj, j =1,...,n. Consequently, one could perhaps guess from the classical Lajplpaexanation
analysis that because the zero subblgts Ug. have dimensiom, the coefficient of the IN term
would be at least-(2n+1—n)/2= —(n+1)/2. Indeed this happens, but a formal proof requires
to closely examine the form df near the different minimum points. This evaluation is complicated
by the fact that the zero planes intersect (see Figure 5), and sueh{€asC4, C5) are not covered
by the classical Laplace approximation analysis.

The proof proceeds case by case by evaluating the intefjsgN] (Eq. 31) around points
po = (X,U,s) from the setsC1 throughC5. Then, the maximal asymptotic value Hf[N] is
the approximation of [N, Y], as specified by Lemma 7. We now treat c&8ewhich demonstrates
the main ideas, deferring the other cases to Appendix A.

According to cas€2, (X, U, s’) = ;Uo;j. Each point of cas€?2 satisfiesf = 0 andx/ = y; for
i=1,...,nands # +1. Furthermore, itz coordinates satisfg = x{ foralli=1,...,nandz =0
for all other indices. Letp(x,u,s) =3, [z(X +x,U' +u,s +5) —Z]?. Note thatg(x, u,s) is term
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Projection of U, onto (s,u‘,uj), fory; =0.2, ¥ = 0.3

Figure 5: The setly projected or(s,u;, u;j), for x, =y = 0.2, x; = y; = 0.3. Examples of points of
typesC1-C5 are marked.

in the exponent of the integrand 6fN, Y] centered around the minimum poif¥,u’,s’). Using
transformationT, (Eg. 27), we obtain

oxus) = 3 [z2(X+xu+us+s) -7

= Jila— Z] + YijijlZ lej + Yiik,izj Akl Zik — Z|/Jk
(36)

= [(Xi/‘i‘xi)_xil]z‘i‘zu’i#j [(1— (SI+S)2)Uin —0]2+“higher order term’s

=S¥+ iz [(L—s?)uuj — (s+25)suuj] % + *higher order term'é

The higher order terms are multiplication of three, four and mgieand their contribution is
bounded by the terms explicitly Written in Eg. 36. For example, third terms arerof (zj, —
Z)? = 4(S +9)*(1— (S +9)?)?uuiug < 5eufuf for all s, uj, uj, Uk < € for € small enough. Similar
bounds can be obtained for all hlgh order terms in Eq. 36. Thus, thagalnpart ofg, that bounds
@ within the multiplicative constant near zero, is given by

(~|)(X, u,s) = ZXI'2+ ul uj (37)
1 ij,1#]
and@(x, u,s) < @(x,u,s) < 2¢(x,u,s) for all s, u;, u; < € for € small enough.

Since the multiplicative constants in the exponent can be transferred to thelivatitip con-
stants of integral itself by changing the integration range around zeneaandling, we only need to
evaluate the asymptotic form of mteg[ﬁé (Zi¥ 431549 gxdudsin order to get the asymptotic
form of integralJ[N,Y € S] (Eq. 31) within a constant muItipIy.
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The quadratic form i’s contributes aftN~"/2 factor to the integral[N]. This can be shown by
decomposing the integral and integrating out:t® We are left with the evaluation of the integral

= [ eMmeiiay
(—g,4+€)n

Forn = 3, this is precisely the integral evaluated as example in Section 2 which wad tobe
asymptotically equal toN~ 7. Generalizing the approach demonstrated in the example in Section 2
to n > 3 we obtain that the largest pole &f)) is A; = —n/4 with multiplicity m= 1, soJ[N] is
asymptotically equal taN~4. Thus the contribution of the neighborhood(af,u’,s) € N;Uoj to
JN,Y € S]iscN~ 7.

In summary, we have analyzed c&# showing that the contribution fN,Y € S] is cN- 7.

The dominating contributions in the casg, C4, andC5, are all equal teN— "% (the proof of this
claim is given in Appendix A). The dominating contribution in c&kis onlycN*zn—El. Also, the
various border points dfly do not contribute more than the corresponding internal points. Thus,
JIN,Y] = cN~"z for Y’ € S Consequently, due to Lemmas 6 and M Yp] = N-P(Y|oomL) —

™1 InN+0O(1), as claimed by Theorem 48

6. Discussion

This paper presents an asymptotic approximation of the marginal likelihooatafgiven a naive
Bayesian model with binary variables (Theorem 4). This Theorem prtheg the classical BIC
score that penalizes the log-likelihood of a model%byN is incorrect for Bayesian networks with
hidden variables and suggests an adjusted BIC score. Moreovarjfomu penalty term exists for
such models in the sense that the penalty term, i.e., the coefficienlptiEpends on the averaged
sufficient statistics. This result resolves an open problem regardinglidéy of the classical BIC
score for stratified exponential families, raised in (Geiger et al., 2001).

The major limitation of Theorem 4 arises from Assumptid®sandA3. While Assumption
Al (bounded density) is often satisfied in applications, Assum@b(positive statistics) is only
sometimes satisfied and AssumptiaB (statistics stability) is never satisfied in practice. Never-
theless, this Theorem is an essential advance towards developing asyBpaj@sian methods for
model selection among naive Bayesian models in particular, and for Bayestiaorks with hidden
variables in general. We now highlight the steps required for obtainin{idy peactical asymptotic
model selection score for arbitrary latent Bayesian networks, namel@aypesian networks with
hidden variables.

1. Develop a closed form asymptotic formula for marginal likelihood integ@af types of
statisticsy given an arbitrary latent Bayesian model.

2. Extend these solutions by developimgiformasymptotic approximations valid for converg-
ing statisticsYyp — Y asN — c. A uniform asymptotic approximation is an approximation
that has the error term bounded for'gllnearY and for allN.

3. Develop an algorithm that, given a Bayesian network with hidden vasainlé a data set with
statisticsYp, determines the possible singularity types of the limit statidiesid applies the
appropriate asymptotic formula developed in step 2.
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Our work provides a first step for naive Bayesian networks and areta framework to pursue
these tasks.

Theorem 4 shows that when comparing the classical BIC score with justed BIC score
(Eg. 2 versus Egs. 15, 16), one can see that a naive Bayesiarrketitioall links present is some-
what under-evaluated using the classical BIC score for singular stalfdtiecause the penalty term
reduces fron{2n+ 1) /2 in the classical score {&n—1)/2 (or (n+1)/2) in the adjusted score. We
conjecture that such under evaluation occurs for general Bayestawnks with hidden variables.
As a result, when the data shows weak dependencies for some linksiesftaing in evaluation of
the marginal likelihood near singular points of the model, then those models withlmks might
be under evaluated using BIC, but correctly evaluated with a uniformpi®tic formula that takes
the proximity to a singular points into account. An illustrative example of incomexlel choice
by the standard BIC score has been presented in Figure 4.

We conclude with two remarks. First, we note that the adjusted penalty tesn1Eg16) falls
within the range of penalty terms, studied by Keribin (2000), that lead tocaungistency estimators
in a frequentist’s interpretation.

Second, we note that, the sets of singular poBasdS are defined in (Geiger et al., 2001) as
the singular points of the algebraic varieties of distributions representbihbyy naive Bayesian
networks in the joint space parameters space, while here the same seatfirazd ds sets aftatis-
tics pointsY which give rise to singular maximum likelihood in the model parameters space.
the singular points of the joint space parameters space, regular logdir@tes do not exist and
the usual coordinates (i.e., the model parameters) that parameterizettbétress model variety
have a number of coordinates crushed into a single point. This results ineosysfaces of maxi-
mum likelihood points in the model parameter space and, consequently,saaratard behavior of
marginal likelihood integrals which we have started to explore in this papesth&n ramification
of this observation is that a bounded prior density defined on the modaheéers may accumu-
late massively on a single point on the model variety in the joint space paraspeiss, violating
the boundedness assumption of the prior density and thus yielding natasiapproximations to
marginal likelihood integrals in the joint space parameters.

Acknowledgments

The second author thanks David Heckerman and Chris Meek for yéaxdlaboration on this
subject. An early version of this paper, without proofs and without Témadb, has been presented
at the 18th UAI Conference (Rusakov and Geiger, 2002).

Appendix A. Proof of Theorem 4 (TheMain Theorem)

We start with the proof of Lemma 7, which requires two additional lemmas. Thepreceed with
a case by case proof of Theorem 4.

A.1 Proof of Lemma 7

The proof of Lemma 7 uses Lemmas 8 and 9. In particular, Lemma 8 states tlcat adosion of
the claim made by Lemma 7 (Eq. 32) holds in the neighborhood of extremum mgintsder two
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additional assumptions denoted B§ andB2. Lemma 9 shows thd&1 andB2 hold. Finally, the
proof of Lemma 7 elevates the local version to the global claim.

Lemma8 Let
f(x,u,s) = fy — Y2, Y In6i[x,u,s,

(38)
B[x,u,§ = (T30 T2)[x,U,8], On[x,u,s=1-52716[xu,s|

where § = maxy ¢)cu zizilYi In6;[x,u,s] and Y= (Yi,...,Yan) is @ non-negative vector with sum
of elements equal tb. Let the zero set )= argmin, s cu f(X,u,s) be the set of minimum points
of f(x,u,s)onU, let p = (X,U,s) be a pointin |y and let

o) [N,Y] = /U e NTuS) gy duds (39)

where U is some small neighborhood of.pAlso, let
Jpo[N] :/ e V@S -2) gy duds
Ue

where z(x, u,s) is the I-th coordinate of(x, u,s) = T2[x, u, s and % is the I-th coordinate of X, ', §].
Further assume thatX, U, s') satisfies

Bl. 6 =Tz0Ty(X,U,s) is a minimum of f as function & f(6') = 0andUgf(6") = 0.

B2. f, as a function 06, is strictly convex ab’ = 8(X', U, <), i.e., the matrixy f (6/) is positive
definite.

Then, 3
INTpo[N,Y] =InJp [N]+0O(1) forallN>1. (40)

(The right hand side of Eq. 40 depends on 'Y through tfle @rm.)

Proof: Sincelgf (6') = 0, Hp f(6') is positive definite ands : A,) — Og) is a diffeomorphism, it
follows that,f(Z) = 0 and#L4 f (Z) is positive definite. Alsof (Z) = 0. Thereforef as a function
of zcan be approximated by a quadratic form néas T,(xX,U,s) via

mZ(Z. ~-7)? < f(2) < nzZ(Z. —7)?, forze A, (41)

where/\; is some sufficiently small neighborhood #f andn,n, > 0 are slightly smaller and
larger, respectively, than all eigenvalues#éff (Z). Consequently, sincg : U — A is continuous,
there exists neighborhoddt of py such thatl,(Ug) C A¢ and Inequality 41 holds foz(x,u,s) =
Ta2(x,u,s) for all points(x, u,s) in Ug. Using Inequality 41 for evaluatinﬁo[N,Y] (Eq. 39) yields

/ e_r]ZN Yi( (Xvuvs)_zi)zdxdu ds< ﬁpo [N)Y] < / e_nlN Si(z (X,U,S)—Z;)dedu ds
Due to Theorem 2, the bounding integrals are asymptotically equivalentaimtdtiplicative con-
stant, because the poles and multiplicities of the correspod@dunctions (Eq. 5) that determine
their asymptotic behavior are the same for any constant multiplig$fx, u,s) — Z )2, and in par-
ticular, for the multipliers)1, no and 1.1
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Lemma9 Let f(u,x,s) be as defined by Eq. 38, namely,

f(x,u,8) = fy — 52, Y In8[x,u,8g,
B[x,u,§ = (T30 T2)[x,u,8], Bn[x,us=1-y2716/xu,s|

where § = maxy ysecu Ei{lYi In6;[x,u,s] and Y= (Y,...,Yn) is @ vector inYyp (defined by Eq. 12)
such that > 0 (A2). Let the zero setd)= argminy g cu f(X,U,s) be the set of minimum points of
f, and let(X,u,s) be a pointin Y. Then X, u',;s) =0, and

Bl. 8 =Tz0Ty(X,U,s) isaminimum pomtoffasfunctlonefon@ f(6)=0andOf(0') =
Furthermore 8 = (Y1,...,Y_;) andOf (X, U,s) =

B2. f as afunction o is strictly convex a®', i.e., # f (6/) is positive definite.

B3. Ifn>3and Ye Yp\ S, then fx,u,s) is strictly convex afx',u’,s'), that is, the matrix
Hiug (X, U,S) is positive definite.

B4. Also, if n> 3 and Y€ Yp\ S, then | consists only of two distinct poin{s(,u’,s’) and
(X", u",s"), such that k= X", U = —u” and $ = —¢".

Proof: The claimf (X,u’,s') = f(8') = 0 follows directly from the definitions of, & and fy.
Consider ClainB1. The pointdy = (Y1,...,Y_1) is the unique minimum of, as a function
of 8, on ©, becausefy — f(0) = ¥;YiIn6i[x,u,g is the logarithm of a multinomial distribution.
SinceY € Yy, the distribution specified b§p can be represented by the model parameters, namely,
B0 € (T30 T2)[Uo]. Consequentlydp = (Tzo T2)[Ug] becausé is the unique minimum of. So,0/ =
80 = (Y1,...,Yn_1). Furthermore, becaude> 0, 6’ is an internal point 0® yielding g f (6’) = 0.
Finally Of (xo, Uo, S0) = J(T30T2)(x0, Uo,So) e f(6') = 0 as well.
ClaimB2 is established by explicit calculations. The Hessian magik(6') at®’ = (Yi,...,Yan_1)
is given by
= fori# j
¢t fori=j

(%61 (0], = {

Consequently, for ang e RZ'-1 a0, it follows that
1

2

Claim B3 follows from the proof of Theorem 12 of (Geiger et al., 2001), whibbves that
the Jacobian of the transformatidpis of maximal rank fom > 3 for points(x,U’,s) that satisfy
0 = T,[¥,U,s] € Yo\ S The mentioned theorem and claB imply that for alla € R?"*1, a #£ 0,

2

al - Hyf(6)-a= zl—Jri

2
| >o
Y Yo 6“] >

aT'}[(x,u,s)f(X@UOaSO) a=a'- [J(TsoTz)(XO Uo, So ) %f( ) T30Tz)<X07u0750) a
= [J7oz) (X0: Uo, o) - } - HoF(0') - [J1s0my) (%0, Uo, S0) - @] =bT - Hef(8')-b >0,

whereb = Jir,.1,) (X0, Uo, S0) - @ This proves ClainB3 becauséH f (6') is positive definite ant # 0
lestJ,.t,) would not be of maximal rank.
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Claim B4 follows from claimB1 that®’ = (Y1,...,Y_1) and from Theorem 13 in (Geiger et al.,
2001), which states that f@& < Yp \ S, there are exactly two source poirfts u, s), precisely the
ones specified by ClaiB4, that satisfyd’ = T,[x,u,s. B

Proof of Lemma 7: Lemma 8 combined with Lemma 9 establish the asymptotic behavior of
ﬁ[N,Y] in the gp, neighborhood of a single minimumpg (Eq. 40). Now, sincdJ is closed and
bounded (Eqg. 23), it isompact Hence, from an arbitrary infinite set efneighborhoods of points
in U, there exist a finite subset of disjoint neighborhoods of points that coveiJ. The neighbor-
hoods that do not contain minimum points can be discarded since their ctiotibuthe integral is
exponentially small, i.e., a contribution boundedeby)'® versuse N wherec; > c,. LetU) C Ug
denote the finite set of points froby, the neighborhoods of which are chosen to ca¥gr Also,
let J|N, Y] denote the maximal contribution IN, Y], as in Lemma 7 (Eq. 31). We obtain

J[NvY] < H[N7Y] < Z JPO[N] SkJ[N>Y]> (42)
pocU}

wherek is the number of points id)). Taking the logarithm of Eq. 42 yields Eq. 32 which establishes
Lemma 71

ClaimsB3 andB4 of Lemma 9 have not been used in the proof of Lemma 7. These claims are
needed in the next section.

A.2 Proof of Theorem 4a (Regular Statistics Case)

Theorem 4a rephrases standard facts regarding asymptotic expahswegrals around a single
extremum point. Recall that Theorem 4a states thg #£ Y for N > Np, Y, >O0fori=1,...,2"and
Y € Yo\ S then asymptotic approximation ofIfN, Yp] (Eq. 13) equal&l In P(Y [w ) — 2”“ InN+

O(1) (Eqg. 14). To prove this claim we use Lemma 6 which statesl{ihatyp| and]I[N Y] have the
same asymptotic approximation up to a multiplicative consedifit and computei|N,Y] using
Lemma 1 (Laplace approximation).

We start by noticing thalN, YD] absolutely converges for afy> 1 andYp > 0. That is because
the integrand functioNZ%"&W) — . 8, (w)N% satisfies 0< By(w)N*% < 1 for all N, Yp, i and

= (a,b,t) € Q and becausp(a,b,t) is a probability density function of2, thus integral [N, Yp]
is finite (and less than 1). Consequenilm,Y] also absolutely converges for ahy> 1 and any
Y >0, as required in order to use Lemma 1.

Consider now the integrd[N,Y] = J,, e Nf*4Sdxduds Since the value o& N (49 outside
the small neighborhoods of the minimurhss exponentially small, so the asymptotic behavior of
I[N,Y] onU is actually described by integration§N, Y] in the small neighborhoods of minimums
of f (Lemma 7). Sincé[N,Y] converges and Claim3l, B3 andB4 of Lemma 9 hold, it follows
that in sufficiently small neighborhoods of the two internal minimum points tifie integraﬁ[N,Y]
can be computed by Lemma 1 (Laplace Approximation).

Consequently, integratini;:jN,Y] in the full neighborhoods of the maximum likelihood points
(X, U, ) € Up, that lie on the border df}, introduces only a constant multiplicative errors to the
approximation. This is shown by considering the inteéfNI,Y] around minimum points of in
the equivalent (sinc@; is a diffeomorphism) coordinatés, b,t), which have the full integration
domainQ = (0,1)?"1. In these coordinates, approximatifigyy a quadratic form (as performed
by Laplace approximation) ofa, b,t) and integrating in a full neighborhood of border point results
in multiplicative error factor of ®wherek is the number of border coordinates.
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We now apply Lemma 1 to the small neighborhoods of the two minimum pointsawid by
combining Eqg. 30 with the logarithm of sum of two approximations describeddoylEve obtain
the Theorem 428

Theorem 4a does not specify tB¢1) term. The constant ter@is well known in explicit form
when the minimum of is achieved on a single point, as specified by Lemma 1. In our case, the min-
imum of f is achieved on two points(,u’, s') and(x”,u”,s") and by taking the integralgy v ¢)[N]
andJ e ¢ [N] in (a,b,t) coordinates and accounting for the partial integration domains for the
border points we obtain

/ / 4/ /! /! 1/
C= wln(zmﬂn W, b, t) - Ha, bt —kIn2,
2 VdetH f(a,b,t) /detH f(a’ b t")

where(d, b/, t') = T, 1 (X, U, 9), (@,b",t") = T, (X", u",s") andk is the number of border coordi-
nates of(a’,b/,t’) (or equivalently of(a”’,b”,t”)). Note thate’ =b”, b’ =a” andt’ =1—t".

A.3 Proof of Theorem 4b (Type 1 Singularity)

Theorem 4b states thatYp =Y for N > Np, Y; > 0fori=1,...,2"andY € S\ S, then In[[N, Yp|

(Eq. 13) is asymptotically equal tdP(Y |wwu) — 2”—51 InN +O(1) (Eg. 15). To prove this claim

we first employ Lemma 6, which relatdéN, Yp] with I[N,Y] (Egs. 28 and 30) and Lemma 7,
which related[N, Y] with J[N,Y] (Egs. 31 and 32). Consequently, it remains to evalifteY] =
MaXp,cu, Jpo [N].  For this task, one needs to examine the neighborhoods of arbitrary minimum
points po € Up of f. However, forY € S\ S (singularity of type 1), the functiorf can not be
approximated by quadratic form and Lemma 1 (Laplace Approximation) n@faqplies. Instead

we use Watanabe's method.

Let (a,b,t) be the parameterization &fc Sas described by the definition 8f(Eq. 12) with
a = b for alli #1,k. Also, letZ), = T, 1(Y)k = (1— (2t — 1)?) - 3 . &b The zero sety is
given by

X=a, Vi=1...,n i#IlKk,
x =ta +(1-t)by,
Uo=<¢ (Xu,8) €U | xx=tax+ (1—1t)by; : (43)
U=0, Vi=1,...ni%lk
Uy, U, S, such thafl—s?)uug = 7,

Note thatz, # 0 anduj,u, # 0, s # +1 for (X, U, ) € Up, becaus®& ¢ S. The sel)y is depicted
in Figure 6.

We now apply the method of Watanabe, as described in Section 2, to evaledteetyrals
Jm[N, Y] for po € Up. We examine the form of the exponent functionlig[N, Y], @(x, u,s) which
is equal toy | [z (x,u,S) — Z1%, in a small neighborhood gy = (X, U,s) € Up. The coordinates of
Z =To(X,U,s) areZ = x; for all i, Z, = (1—s?)u/u, and all otherz’s are zero. Substituting
as a function ofx, u,s) into @ and translating théx, u,s) coordinates so thdi',u’,s') becomes the
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Projection of U onto (s.u,u) Projection of Uy onto (s,u u), extreme statistics

(a) (b)

Figure 6: The projection of sély onto(s,us,uy) space. The zero se is defined by type 1 singu-
larity statistics. (a) lllustration is fax; = 0.18,x, = 0.28, 7, = 0.0096, that correspond
to statisticsY generated by true distributiom; = 0.1, a, = 0.2, b; = 0.3, b, = 0.4 and
t = 0.6. Upper and lower bounds an are shown by mesh-grid. (b) lllustration of set
Uo for extreme (almost type 2) singular statistics of type 1 that is generatagd-by0.1,

a, =0.2,b; = 0.3, b, = 0.4 andt = 0.005. The zero set is very close to the zero set for
type 2 singularity statistics depicted in Figure 5(b).

origin, yields

oxus)= 3 [z(X+xU+us+s)—Z]?

= Silz(X +xU +u,s +s) —ZJ?
+ [z.k(x’+x,u’+u,s’+s)—4k]2
+ ik (>(+Xau’+u,§+5)—4]2t [Zk(X + XU +U,8 +9) — 7]
+ Y jA K |:Zij(X/+X,U,+U,S’+S)—4j:| +...

= 3l +x) = X2 )
+[(1— ($ +92) (U +u) (U + ) — (1 $?)yup]*
43k (L= (S +9D) (U +u)ui — 0>+ [(1— (S +92) (U +uu — 0]
+ 304k [(1—(S+9?)u; —0]2+...

= ILX
+[~28uus+ (1 S2)uu + (1 - s2)uuy + “smaller term&]
+ 3k [(L—$2)Uu; +“smaller termé)* + [(1— s2)uui + ...
+ 31 j4k [(1—s?)uiuj + “smaller term§] 2L,

The phrase “smaller terms” and dots denotes higher order terms that incudéles that are
present in the explicit terms of the sum and can be discarded for suffjcemnall (x,u,s). In
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particular, the ternz (x, u,s) — Z, is rewritten via
Zk(X +x,U +u,s +9) —Z, = (1—(s+5)?)(u +u) (U + ) — (1—s?)ulu

= — (28 +9uus+ ((1—52) — 28s— ) (U + W)U
+((1—5?) - 29's— &)U u.

Consequently fos' # 0, sufficiently smalle ands,u;,ux € (—¢,€) it follows thatC; < —(28' +
U, < C;, C; < [(1—52) — 28's— 2][uj + U] < C andC; < [(1—s?) — 28's— |yl < C; for C;,
1, C5, Cs, C;, C; slightly smaller and larger the®y, = —25'u/uj,, C; = (1—5?)u, Cz = (1—s?)u.
Consequently, in order to approximate the intedalN] (Eq. 31) forpp = (X', U, s') with ' # 0,

it remains to approximate the integral

J1N] = [e Ne(xusigxduds 45)
where @ (x,u,8) = 32+ [Cis+Cou +(33uk]2+ ik GiU?
and where;, G,, C; and¢ are non-zero constants.

Similar analysis of the principal part af(x,u,s) (Eq. 44) function can be applied for the
neighborhoods ofig = (X,U’,s) with s'= 0. It reveals that in order to approximalg,[N| for
po = (X, U, s) with s = 0 we should approximate the integral

J2N] = [e Ne(xusidxduds (46)
where @(x,u,8) = ;%2 + [C182+Cou +ésuk]2+ ik GiUZ,

and whereC;, C,, C3 andd are non-zero constants that are slightly larger or smaller thanu,
u anduy? 4 u2.

From Eq. 45, by changing the coordinates te Cis+ Cou; +Cai, we obtain that in the neigh-
borhoods of the points iy with ' # 0, that f can be described by quadratic form in 21
variables, so their contribution N, Y] is cN*E

The analysis of neighborhoods of pointsllg with s = 0 is harder. Integrating ow; and
u; variables yieldsl\l‘zan2 multiplicative factor to the asymptotic approximationbﬂN], leaving
us to compute of the contribution gfe NS +C2U+Csuil* dsdyduy;. The changes of variablés-
(Cu; +Cauj) /€, transforms the remaining part $$[N] to

- &1 e
Ja[N] = / ' / “e N+ gt
—&1 —&2

The zero set of the exponent function is a one-dimensional ¢urve s2, so we expecis|N] be at
leastcN~z, as verified below.
Watanabe’s method fdiz[N] calls for the analysis of the poles of the function

_ 2\
I = /(171)2(52 +t)?dsdt

Here, we transform the original integration range if#dl, 1) by rescaling, introducing only con-
stant multipliers to the integral. The analysis of the poled(af is in the spirit of example shown
in Section 2. We present this analysis completely to demonstrate a number ofantpsubtle
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points in the evaluation of integrals by resolution of singularities. E.g., we canse the binomial
formula for expandings® +t)?, sinceA is not necessarily an integer.

The integrald(A) is symmetric relative t@, so we consider onlg > O for the evaluation of its
poles. Changing the coordinates via +t2 we obtain

/ / sz+t”dsdt—/ / 2(+1?) 2Adsdt+/ / 2(L — 122 dsdt

The first integral is easy to evaluate by standard substituients for 0 < s<t < 1 andt = st for
0 <t <s< 1. Thus, the first integral contributes a pole\at —% with multiplicity 1. The second
integral, however, can not be evaluated in this way, since, the substitutidsfor0<s<t <1
gives the integraly [o 2t 2(s> — 1)?'dsdt, where the ternfs? — 1) is not bounded away from zero
on (0,1) and thus can not be ignored when identifying the poles.

To overcome this difficulty let = s+t andu = s—t, yielding

min(v,2—v)
//Zt t2)2dsdt= = // (v—u)uv?dudv
max(—V,v— 2

and

2/ /_vv u) 2)‘\/2"dudv<//2t t2)2dsdt< > //_VV DPPdudy  (47)

Computing the lower bound in Eq. 47, we obtain

%folffv(v—u)u”v”dudv: %fo VZA+1 1 ULy uz”z} }
V4)\+2dv_

1
= 3ot DD
The upper limit is correspondinglyz%. Hence, the largest pole dfA) is A = —%, with
multiplicity m=1 and the overall contribution of the neighborhoods of pomtsvith s = 0 to
JIN,Y] is againcN~ "z, and it is the same as for poingg for which s’ 0. The point(X,u’,s)
need not be an mternal point of. Such border points have a smaller domain of integration than an
internal point, therefore they do not contribute mord[fd, Y] than internal pointsl

It is interesting to compare Figure 6b and Figure 5, to see that as aYpeaii®\ S approaches
Y’ € S, the zero set fo¥ depicted by Figure 6 approaches the zero seYfaepicted in Figure 5.

A.4 Proof of Theorem 4c (Type 2 Singularity)

The outline of the proof of Theorem 4c is presented in Section 5.3 includinggticification of the
zero setJp and five principal case31-C5 that correspond to different locations of extremum points
(X,U,9) € Up. Recall that we are interested in the evaluation of the contribution of the baigh
hood of each of the points of typ€4-C5 to the integrall[N, Y] (Eq. 31). The maximal contribution
determine, according to Lemmas 6 and 7, the asymptotic behavior of the intipgrdd] (Eq. 11)
of interest. We now treat these cases one by one.

Case C1:(X,U,s) € Ugj \ Ui£jUoi for somej. Each such pointx',u’,s) satisfiesu; = 0, for
alli=1,....,ni+#j; U #0; s #=£1; z =x; andz; , = 0. Using the approach of Watanabe
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we analyze the form of the exponent functigrof integrand ofJp,[N] near the minimum point
po = (X,U,s). Centering(x, u,s) around(x,u’,s') we obtain

(p(X,U,S) = ZI[ZI(XI+X5X/+U751+S)_4]2

= il +xU +u,8+9) —ZP+5i[7;(X +x,U +u,8 +9) - Z;]?
+ Yikzjlz(X + XU +u,8 +5) — Z,]° + “higher order terné

2
= il +x) = X2+ Tixj {(1— (S +9)2) (U +uj)ui —0}
+ 3 [(L= (8 +9)?)uiuk — 0] 4 “higher order terné

2
= Si¥+Tis {(l—s’z)u’jui + “smaller termé}
+ Yikzj [(1—S?)uue— (s+ 25’)suuk]2+“higher order termé

Since,u’j # 0 ands # +1, the principal part ofp, that boundsp within a multiplicative constant, is

o(x,u,8) = X+ 5 0

Hence,Jp,[N] is cN—"2". One should have expected this result because the zeldy ga$ a 2-
dimensional surface, yielding a dimensionality drop of 2 due to two locallyrréait parameters.

Case C2:(X, U, ) =(N;Uo;j. This case is analyzed in Section 5.3.

Case C3: (X,U,s) € Up_ UUq. \ UjUgj. Each such pointx,u’,s) satisfiesu; # 0 for all
j=1,...,nands = +1. We have

ex.u,s)= Yi[z(X+xu+us+s)—7]?
= Sila(X +x U +u,s+9)—Z+ 3 i[z;(X +xU +U,8 +85) - Z;]?
+zi,j.k[zijk(xl+Xau/+uasl+s)_Zi/jk]2+-"

2
= 304 +%) = X2+ 51 | (1= (8 +97) (U +u) (U] +uj) —0]

2
3208+ 9L (S )+ 0]
- ZiXi2+Zi,j [—Zs'ui’u’js+“smallertermé}2

2
+ ik [4u{u’j u.s+ “smaller termé} + “higher order term’&

So, the principal part apis of the formy; x? +s2. The fact that integration range feis one sided,
i.e. s> 0 (ors< 0) changes the integrdh,[N] only by a constant multiply (12) relatively to the

“full” neighborhood. Thus the contribution of this regionN, Y] is cN-"3".
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Case C4:(xX,U,s) € U; [Uo- UUg NUoj \ Ni-jUqi], for somej. Each such pointx,u,s)
satisfies| # 0 for somej; uj = 0 for alli # j; ands' = +£1. We have

(p(X,U,S) = Z|[Z|(X/+X,U/—|—U,SI+S)—Z”2
= YilaX +xu+us +9) =2+ 5[z (X +xU +u,8 +5) —Z]?
+ Sikej[Zk(X +X,U +u,8 +5) — Z,]? + “higher order termé

= SR X2+ S (L (9D +uu 0]

+ Sk [(1= (8 +5)?) ik —0]° +*higher order term's (48)

2
= Zi)(i'z"'zi;éj {:Fzsujui:lzzsujl]i—SZU/jUi—SZUjUi}

+ D0kt [F2syu, — SLu; U | 2y “higher order term’s
~ Zixi2+822i¢jui2.

Integrating out thes ; X2 terms fromJ 5, [N], we see that they contribute factorf 3 to Jp,[N]. So,
we are left with analysis of the poles of

J\) :/Wesz}‘ (?Zluiz))\dsdu

The standard change of variableaite= uiy; fori=2,...,n—1 gives

n—1
JAN) =c 21+ 5 u?) dsdu
M)=cf SRS )
Thus the largest pole dffA) (for n> 2) isA = —% with multiplicity m= 1 and the contribution of

the neighborhood of thied, U, s) is cN-"%.

Case C5: (X,U,s) € (Up- UUp;)(N;Uoj. Each such poinfx’,u’,s) satisfiesu; = 0 for all
i=1,...,nands = 41. This is the deepest singularity, the crossing of all (except oneyzanes
of Ug. We have

oxus) = 3[z(X+xU+us+s)—Z?

= Jila(X+xU+u,8 49 —ZP+73; [z (X + XU +U,S +5) -7
—I—zi’j.k[ijk(X/+X,U/+U,S’+S)—Z‘-'jk]z'f-...

= Sil4+%) = X2+ 55 [(1— (8 +952)uy; — 0]

+3ijk[-2(8+9)(1— (s +9)?)uiujuc — O] ? 1 “higher order term'é (49)

= Ti+Yi; [:F25uuj—szuiuj]2
+ 3 i k[4syujug + “smaller term§]2 + “higher order terms
< SR

The higher order terms are bounded by scs%uéuj2 term, because of the special formmfs) term
inz12 i (EQ. 27). l.e., the functiop; (s +8) = 1/2(1— (S +9)?)[(1— (s +9)) "1 — (1) L(1+ (s +
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s))'~*] can be rewritten aroursl= +1 aspi(s +s) = s-1/2(28 +9)[(1— (s +9))' 1 — (—1)"1(1+
(s +9))'""!. Thus, any high-order termf, (X +x,u,+1+s) is of form

Z k(X +xu,E1+s) = Ul ug - B(9),

wherep(s) = 1/4(28 +9)?[(1— (§ +9)) 1 — (—1)""1(1+ (S +9))""1]? and where is the size of
index set{ij ...k}. Consequently, this term is boundedslﬁylizuj2 for sandu small enough.

They; x2 terms contributeN—2 multiplicative factor toJ p,[N], so we should only analyze the

poles of
A
J\) = u?u? | dsdu
e

The analysis is similar to the one presented in Section 2, but with additionablesiaThus the
largest pole ofi(A) this time isA = —% and notA = —n/4. The multiplicity of the pole\ = —% is
one and so the contribution of the neighborhood&@D, +1) is cN~—"%". This analysis is incorrect
for n = 2 because then the suph u?u contains only one term and this results in increasing the
multiplicity of the poleA = —1/2.

The interesting fact about the last two cases is that in the neighborhddgl cdindUg, the
growth of the functionp is dominated bys? and thus the multiplicity of the maximal pole 3f))
is always one and the Inkterms do not appear in the approximation af }y{N]. This changes in
the casen = 2, where the dimensionalities Bf_ andUp. are the same as bk;’s, as explicated in
the next section.

Summary of Proof of Theorem 4 for typsingularity, Y& S: Among the possible cas€4-C5
the largest contribution to th&N,Y] comes from points witls = +1. Note that various bor-
der points ofUy that we do not consider in the above analysis do not contribute more than the
corresponding internal points because their domain of integration is smaers, InJ[N,Y] =
—™1InN 4+ O(1) and due to Lemmas 6 and 7,IN,Yp] = NP(Y|ww.) — FInN + O(1) as
claimed.®

A.5 Proof of Claims (d,e) of Theorem 4 (Casen = 2)

Claims (d,e) of Theorem 4 state thatrif=2, Yp =Y for N > Ng andY; >0 fori =1,...,2",
INT[N,Yp] (Eq. 13) is asymptotically equal 8P(Y |wu) — %In N+ O(1) (Eqg. 17) forY ¢ S and
asymptotically equal ttNP(Y |wy) — %InN +2InInN + O(1) (Eq. 18) forY € S. Similar to the
proofs of Claims (b,c), we first employ Lemma 6, which reld{es Yp] with I[N, Y] (Egs. 28 and 30)
and Lemma 7, which relateIEN,Y] with J[N,Y] (Egs. 31 and 32). Consequently, it remains to
evaluatel [N, Y] = maxyecu, J p,[N]. For this task, one needs examine the neighborhoods of arbitrary
minimum pointspg € Ug of the functionf. From the definition o¥, Yo andS(Section 4) it follows
thatS= Yy = Y for n = 2. Note that there is no regular points in this case. We now modify the
proofs of type 1 and type 2 singularities to fit to the case2.

Typel singularity: The zero setg is the same set as described by Eq. 43 Wwithl andk = 2.
The analysis of the form of the exponent functipof the integrand of ,, [N] gives Egs. 45 and 46
without they . ;¢ u? terms. Thus, by the same analysis, the contribution of these regions to the

integralJ[N, Y] is cN~2 and application of Lemmas 6 and 7 concludes the proof.
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Type2 singularity: The zero sety = Ug_ UUg; UUg1UUp; is the same set as described by
Egs. 34 and 35. Now, howevedy , Ug., Uz andUg, are of the same dimension, namely, two.
This fact changes the asymptotic approximation.

Consider the casé31-C5 one by one. There is no change in caSésandC3 where the point
(X,U,9) lies on the proper two dimensional surfat&g, Uo, or Ug_, Ug,. Here, the functiorp
can be approximated by 3 variables, resulting in the contribwtior?/? of these regions td[N, Y].

The more complex situation is (€2, C4 andC5 cases, where zero planes of the same dimension
meet. Generally, the intersection points of zero surfaces of the same dimansiexpected to give
rise to a InIrN term. While this is not always a case, e.g., see example in Section 2, thix terim
does appear now. We have:

C2: The principal part o is x2 + x5 + uzu2, as specified by Eq. 37. Integrating out tfeterms
we obtain through the analysis of the poleslof) = [u?u2*du;du, that the largest pole of
J(A) is A = —1/2 with multiplicity m= 2. Thus the contribution of this region fgN, Y] is
cN=3/2InN.

C4: The principal part ofpis X2 + x3 + 5?3 or x2 + x5 + Su? (see Eq. 48). Similarly to the case
C2, the contribution of this region N, Y] is cN~%/2InN.

C5: Here, the principal part afis x2 +x2 +s?u2u2 (see Eq. 49). Once again, we integrate outthe
variables and analyze the poleslgi) = [ s?u*usdsdudu,. The largest pole ik = —1/2
with multiplicity m = 3, and thus the contribution of this region JN, Y], including the
factors from integrating out the’s, is cN~%/2In2N.

Summarizing the contributions of the neighborhoods of various critical ptntg € S, we see
thatJ[N,Y] ~ cN-¥2In?N and, consequently, iiN,Y] =N fy — 3InN+2IinInN+O(1). B

A.6 Proof of Theorem 4f (Casen=1)

Theorem 4f states that i =1, Yp =Y for N > Np and Vi, Y, > 0, then IH[N,Yp] (Eqg. 13) is
asymptotically equal tlP(Y [win ) — $INN-+0(1) (Eg. 19). Once again, we firstemploy Lemma 6,
which related[N, Yp] with I[N, Y] (Egs. 28 and 30) and Lemma 7, which reldi@s Y] with J[N, Y]
(Egs. 31 and 32). Consequently, it remains to evallifNeY| = maxycu, Jp,[N]. For this task, one
needs examingp,[N] in the neighborhoods of arbitrary minimum poimg< Ug of the functionf.

From the definitions o/, Yo andS, for n = 1, there is no distinction between different type
of statistics andr = Yo = S. Moreover, according to Theorem 2 the asymptotic form of the in-
tegral Jp,[N] = J,, e N@*U9-% dxdudsis determined by the poles dfA) = f, (z1(x,u,s) —
2’1)2"\dxdud$ where, in this case;(x,u,s) —z, = xf. Once again, contributions of poinpg € Ug
lying on the boundary df) can be ignored, since their domains of integration are smaller than do-
mains of integration of the corresponding internal points. Thus, the kgpgésofJ(A) isA = —1/2
with multiplicity m= 1 and In [N, Yp] is asymptotically equal tbl fy — % INN+0O(1). 1

We can also compute the integiié, Yp| (Eq. 11) directly fom=1 andYp =Y. Itis

IN,Y] = /( . N(Yolnfat+b(1-0)+Yan[(1-a)t-+(1-b)(1-1]) 3 b t)dadbdt
01
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whereY; = 1—Yj. Ignoring the density(a, b,t) by using the assumption of bounded densi§)(
and changing the variablesxe= at+ b(1—t), we rewritel|N, Y] is asymptotically equivalent form

. it beN(Yolnx+Y1In[H])
H[NN]:/O /0 b_a/a dxdadb

Consider now i
I1N,Y] = / NI IN(1-%) 4
a

for some 0< a< b <1 (the casd > a is symmetric). This is the integral of the beta distribution
with a = NYy+1 andp = NY; + 1 (DeGroot, 1970, page 40). Lé&tx) = YoInx+YiIn(1—Xx). The
maximum of the integrand functiofx) on [0,1] is achieved axg = Yo and it iseN (). There are
three cases to consider according to the locatio oélative to(a, b).

1. Internal point, ¥ = Yo € (a,b). In this case

f(Yo+Xx) = f(Yo)+Yoln (1+ %) +(1=Yo)In (1— ﬁ)

= f(Y)+Y (Y—XO —22t O(XS)) +(1-Yo) (;—é0 — w +O(X3))

= f(Yo)— W{YO)XZJrO()@).
Thus, in the small neighborhood &, f can be approximated by quadratic form and the
classic Laplace approximation (Lemma 1) can be applied yieltifig,Y] ~ c;eN ¥ N-1/2,
Moreover, sincel;[N,Y] and €N are continuous functions df andxg = Yo, uniform
asymptotic bounds oy [N, Y] exists for allxp in a proper closed subset ¢&,b) asN —
«. l.e., the integral1[N,Y] is bounded within a constant multiplies &N~z and these
constants are independent@fandN for all X € [a+€,b—¢] andN > 1. Note that the above
approximation off is only valid forYy # 0, 1 (AssumptiomA2). Otherwise, the approximation
of f is non-quadratic.

2. Border point, ¥ = Yp € {a,b}. The expansion fof (Y, + x) is the same, but the integration is
performed only on the half of the interval, which results in half the constantiof to the final
approximation compared with the previous case.

3. Maximum of f is outside df,b]. Let m denote the maximum o™ on [a,b], i.e., m=
MaXc(ap €"*. We havel;|N,Y] < (b—a)mN < czeN¥N~1/2, for some appropriate constant
C3.

The above analysis shows thafN, Y] < c,ppe™ *N~1/2 for some constarg,p, for all a andb. Fur-
thermore]l[N,Y] > o€ ¥ N~1/2 for somecioy > 0 for (a,b) € {(a,b)|a< Yo,b > Yo,b—a> 2& >
0}. Since the later region has a non-zero Lebesgue measure, it followgNhet ~ ce¥¥N~-1/2
and INI[N,Y] =N fy — $InN+O(1).

Appendix B. Proof of Theorem 5

Theorem 5 states the asymptotic approximation for the marginal likelihood gidegenerate bi-
nary naive Bayesian mod# that hasm missing links. In order to prove this theorem we examine
the log-likelihood function of the degenerate model and decompose it intgendeate part and
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a naive Bayesian part. These parts define two probability functions thab@ependent and the
marginal likelihood of data is computed relevant to each one of them. Combirengshlts gives

Theorem 5.
Let Y be the log-likelihood function of the marginal likelihood integral (Eq. 20)tfer degen-
erate binary naive Bayesian network described in Theorem 5. We have

ty@bt,c)= 3,Y%In6y(w)
= Ix% [In e(xl,...,xn,m)(aa b,t) + Zin:nfm_yl(xi Inci+ (1—x)In(1— Ci))]

= Z(Xl.,....,xn,m) [Ine(xls~~~;xn—m)(a’ b’t) ) Z(Xn—m+1>--~axn)YX]
+ ¥t nemea (Ex Y InGi + 3 V(1) In(1—ci))

= Z(xl....a,xn_m)Y(x1,4.4,xn,m)|ne(x1,...,xn,m)(avbat)
+ ¥ mi (I +(1-Y)In(1-q))
where(xy, ..., %) are binary vectors of lengty Yoy, x. 1) = ¥ (xo 1) Y0, x0) @NAYi =
Y (XX, L%, Yoo THE NEW statisticyy, . «, ) andYi's are positive, becauseis positive A2).
Using the assumptions of bounded densiAg)(and stable statistic#\8), the marginal likelihood
integrall[N, Y] (Eg. 20) can be rewritten as

n

I[N, Yp] ~I[N,Y] =

1
/0 ciNYi(l—ci)N“Yi)dq] /(01)zn @@, (50)
i=n—m+1 b4

wherexX’= (x1,...,X—m). The firstm integrals are integrals over the beta distribution (DeGroot,
1970, page 40) and

Ny v F(NY, +1)F(N(1-Yi)+1)
NY (1 _ o \NO-Y)qe — ' '
/0 ¢ '(1-q) dg F(N+2)
The asymptotic behavior of Gamma function is well understood and it is deschip Stirling

formula, I (2) = e 22 2/2n[1+O(z 1)] (Murray, 1984, page 38), and thuslife) = —z+ (z2—
$)Inz+0O(1). Using the equality IiY N-+1) = InY N+ O(1), we obtain

FNY+D)M(N(1-Y)+1)
r(N-+2)

In

= (NY+ 2)In(NY +2) + (N(1-Y) + 1) In(N(1 - ¥)) + 1) — (N+ 3)In(N+2) + O(1)
= (NY + 2)InNY + (N(1-Y)) + ) InN(1 - ¥) — (N+ 3)InN + O(1)
=—2InN+N(YInY; + (1-Y))In(1-Y)) + O(1).

Hence, the contribution of the first integrals to I[N, Y] is NIn p(Ya_mt1,- .-, YalomL) — ZInN.
The second integral in Eq. 50 is exactly of the type analyzed in Theoramd4he theorem follows
by summing up the contributions of these two palts.
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