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Abstract
We present a sparse dynamic programming algorithm that, given two stringss andt, a gap penalty
λ, and an integerp, computes the value of the gap-weighted length-p subsequences kernel. The al-
gorithm works in timeO(p|M| log|t|), whereM = {(i, j)|si = t j} is the set of matches of characters
in the two sequences. The algorithm is easily adapted to handle bounded length subsequences and
different gap-penalty schemes, including penalizing by the total length of gaps and the number of
gaps as well as incorporating character-specific match/gappenalties.

The new algorithm is empirically evaluated against a full dynamic programming approach and
a trie-based algorithm both on synthetic and newswire article data. Based on the experiments,
the full dynamic programming approach is the fastest on short strings, and on long strings if the
alphabet is small. On large alphabets, the new sparse dynamic programming algorithm is the most
efficient. On medium-sized alphabets the trie-based approach is best if the maximum number of
allowed gaps is strongly restricted.
Keywords: kernel methods, string kernels, text categorization, sparse dynamic programming

1. Introduction

Machine learning algorithms working on sequence data are needed both in bioinformatics and text
categorization and mining. In contrast, standard machine learning algorithms work on feature vector
representation, thus requiring a feature extraction phase to map sequence data into feature vectors.

Representing these feature vectors explicitly is often problematic due to the potentially high
dimensionality. Kernel methods (Vapnik, 1995; Cristianini and Shawe-Taylor, 2000) provide an ef-
ficient way of tackling the problem of dimensionality via the use of a kernel function, corresponding
to the inner product of two feature vectors. With these precomputed inner products, it is possible
to efficiently accomplish a variety of machine learning and data analysis tasks,e.g. classification,
regression and clustering.

The family of kernel functions defined on feature vectors computed fromstrings, are called
string kernels(Watkins, 2000; Haussler, 1999). These kernels are based on features corresponding
to occurrences of certain kinds of subsequences in the string. There isa wide variety of string kernels
depending on how the subsequences are defined: they can be contiguous or non-contiguous, they
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can have bounded or unbounded length, and the mismatches or gaps can be penalized in different
ways.

There are three main approaches in computing string kernels efficiently. Dynamic programming
approaches (Lodhi et al., 2000; Cancedda et al., 2003) are based on composing the solution from
simpler subproblems, in this case, from kernel values of shorter subsequences and prefixes of the
two strings. These approaches usually have time complexity of orderΩ(p|s||t|) since one typically
needs to compute intermediate results for each character pairsi , t j for each subsequence length
1 ≤ l ≤ p. However, there is no extra computational cost associated when using gap penalties
or mismatch costs between the characters. In trie-based approaches (Leslie et al., 2003; Leslie
and Kuang, 2003) one makes a depth-first traversal to an implicit trie data structure. The search
continues along each trie path while in both of the strings there exist an occurrence of thep-gram
corresponding to the trie node. This termination condition prunes the searchspace very efficiently
if the number of gaps is restricted enough. The third approach is to build a suffix tree of one of
the strings and then compute matching statistics of the other string by traversing the suffix tree to
compute matching statistics (Vishwanathan and Smola, 2003). The computation ofthe kernel value
takes a linear time. However, the approach does not deal with gapped strings.

In this paper, we concentrate on improving the time-efficiency of the dynamic programming ap-
proach to gapped string kernel computation. In Section 2 we review types of kernels that are used in
text categorization and sequence analysis tasks. As a full review of kernel based machine learning
is not possible in the context of this article, a reader not familiar with kernel methods might want to
refer to the introductory text book of Cristianini and Shawe-Taylor (2000) or, for a more broad treat-
ment, the books by Schölkopf and Smola (2001) and Shawe-Taylor and Cristianini (2004). In Sec-
tion 3, we review trie-based and a dynamic programming approaches for gap-weighted string kernel
computation before presenting the main contribution of this article, a sparse dynamic programming
algorithm for efficiently computing the kernel on large alphabets. We also discuss variants and im-
plementation of the algorithm. In Section 4 the new algorithm is experimentally compared against
the full dynamic programming approach and a trie-based algorithm. Results andopen problems are
discussed in Section 5 followed by conclusions in Section 6.

2. Kernels for Sequence Data

Kernel methods encompass a family of pattern analysis methods that share a common aspect: map-
ping the inputsx ∈ X to some potentially high-dimensional feature spaceF by defining a feature
mapφ : X 7→ F , and then solving the pattern analysis task by linear methods, such as findinga
separating hyperplane for instances of different classes (supportvector machines, SVM), or find-
ing principal components of the feature vectorsφ(x) (kernel PCA), or finding correlations between
two viewsφ1(x),φ2(x) of the same data (kernel canonical correlation analysis, KCCA). Working
in these high-dimensional spaces in made possible by the use of the so called ’kernel trick’: one
does not need to handle the feature vectors explicitly, as long as the inner product, thekernel,
K(x,z) = φ(x)Tφ(z) has been computed.

For example, support vector machines (Vapnik, 1995) find for the training data{(xi ,yi)}
`
i=1 the

maximum margin separating hyperplane in the feature space. Both learning thehyperplane and
classifying points can be done without explicitly using the feature vectors: learning requires solving
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a quadratic programme

max
αi≥0

∑
i

αi −1/2
`

∑
i, j=1

αiα jyiy jK(xi ,x j) s.t.∑
i

αiyi = 0,

and the SVM prediction can be expressed asf (x) = sign(∑i αiyiK(xi ,x)+b). Thus, the learning and
prediction can be performed in space that has dimension in the order of the number of the training
points.

When handling input data that already comes in vector form, there is no obligation to introduce a
special kernel function. The inner product of the inputsK(x,z) = xTz, also called the ’linear kernel’,
can be used. However, when using structured data such as sequences, trees or graphs, one needs to
convert the structured representation to a vector form.

For sequences the most common feature representation is to count or check the existence of sub-
sequence occurrences, when the subsequences are taken from a fixed index setU . Different choices
for the index set and accounting for occurrences give rise to a family offeature representations
and kernels. Below we review the main forms of representation for sequences and the computation
kernels for such representations.

Word spectrum (Bag-of-words) kernels. In the most widely used feature representation for
strings in a natural language, informally calledbag-of-words(BoW), the index set is taken as the
set of words in the language, possibly excluding some frequently occurring stop words (Salton et
al., 1975). The representation was brought to SVM learning by Joachims (1998).

In the case of a strings containing English text, for each English wordu, we define the feature
value

φu(s) = |{ j|sj . . .sj+|u|−1 = u}|, (1)

as the number of timesu occurs in some positionj of s. For the example texts = ’The cat
was chased by the fat dog’ the BoW will contain the following non-zero entries:φthe(s) = 2,
φdog(s) = 1, φwas(s) = 1, φchased(s) = 1, φby(s) = 1, φfat(s) = 1, φcat = 1. These occurrence counts
can also be weighted, for example by scaling by the inverse document frequency (TFIDF, Salton &
Young, 1973):

φu(s) = |{ j|sj . . .sj+|u| = u}|× log2N/Nu,

whereNu is the number of documents whereu occurs andN is the total number of documents in the
collection.

Although the dimension of the feature space may be very high, computation of the BoW kernel
can be efficiently implemented by scanning the two strings, constructing listsL(s) andL(t) of pairs
(u,cu) of word u and occurrence countcu ordered in the lexicographical order of the substringsu,
and finally traversing the two lists to compute the dot product.

Substring spectrum kernels. For strings that do not encompass a crisply defined word-structure,
for example, biological sequences, a different approach is more suitable. Given an alphabetΣ, a
simple choice is to takeU = Σp, the set of strings of lengthp. The featuresφu(s),u∈ Σp are then
defined as in (1). For example, if we choosep = 4 resulting feature values for our example text
includeφthe = 2, φ the = 1, φ cat = 1, φ dog = 1, along with close to thirty additional 4-grams.

There is a two-fold difficulty in focusing in fixed length subsequences: Firstly, one may not
know how to best choose the lengthp. Secondly, there maybe important subsequences of differ-
ent lengths in the sequences. This problem can be circumvented by allowingthe lengths of the
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subsequences vary within a range:

U = Σq∪Σq+1 · · ·∪Σp for some 1≤ q≤ p. (2)

We call the resulting kernel thebounded-length substringkernel. In our example text, we could
setq = 3 andp = 5 to include features such asφdog, φchaseandφ f at , for instance. In the extreme
case, we can takep = 1 andq = ∞, thus including in the index set all non-empty sequences of
alphabetΣ. It should be noted that the choice of parametersq and p has several effects: First, as
will be discussed in the next section, the time to compute the kernels will increaseby increasingp.
Secondly, if all important subsequences have length at least someq0, settingq < q0 will probably
make the spectrum more ’noisy’. Similarly, settingq0 < q will probably lose some of the ’signal’.
An interesting direction, that is out of scope of this paper, would be to learnthe parametersp andq
from the data.

The most efficient approaches, working inO(p(|s|+ |t|)) time, to compute substring spectrum
kernels are based on suffix trees (Leslie et al., 2002; Vishwanathan and Smola, 2003), although
dynamic programming and trie-based approaches also can be used.

Gapped substring spectrum kernels. Another way to add flexibility to our feature representation
is to allow gaps in the subsequence occurrences. In that case, the indexset of (2) can still be used
but the definition of the features changes. For convenience of notation,in the following we will
use boldface letters to indicate ordered collections of indices:j = ( j1, j2, . . . , jq), j1 < j2 < · · · <
jq and denotes(j) = sj1 . . .sjq. We define the featuresφu(s) to count the number of such unique
sequences of indicesj that the corresponding subsequencesj1 . . .sjq equals tou, in other words
φu(s) = |{j |s(j) = u}|. Our example string’The cat was chased by the fat dog’ can be seen
to contain, among others, the following gapped substrings of length 3:φtea = 7,φted = 5,φdog = 2.

This definition does not make a difference between occurrences that contain few gaps and those
that contain several gaps, or the lengths thereof; all contribute to the feature value equally. For
example, the substring ’tea’ will have a high weight as it occurs many times in the text, although
it never occurs with fewer than two gaps and the total length of gaps is at least three. At the same
time, ’dog’ will have much smaller weight although it occurs in the text without any gaps.

A solution for this problem is to downweight occurrences that contain many or long gaps. Such
feature representation is the basis ofgap-weighted string kernels. In string matching, there are many
approaches for weighting gaps (see e.g. Eppstein, 1989; Gordon et al., 2003). We consider two gap-
weighting schemes, both of which downweight occurrences exponentiallyin increasing gap number
or length.

When downweighting by the total length of gaps the weight of an occurrence i = (i1, . . . , iq)
with spanspan(i) = iq− i1 + 1 is defined asλspan(i), where 0< λ ≤ 1 is a fixed penalty constant.
The feature values are then defined as a normalized sum of occurrenceweights

φu(s) = 1/λq ∑
i:u=s(i)

λspan(i).

The normalization 1/λq ensures that only gaps—not matches—are penalized. This normalization is
important when using substrings of different lengths as the index setU, otherwise short substrings
easily get too much weight.

In some applications the actual length of the gaps may not be important but the number of
contiguous substrings that compose the gapped subsequence may be morerelevant. The features to
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be computed will then be
φu(s) = ∑

i:u=s(i)

λ∑ jJi j+1−i j>1K,u∈ Σp,

where the expression inside the indicator functionJ·K counts pairs of adjacent indices(i j , i j+1)
within i where there’s a gap in between the two indices.

In literature, two approaches for computing gapped substring kernels appear, a dynamic pro-
gramming approach (Lodhi et al., 2002) and a trie-based approach (Leslie et al., 2002), both of
which can deal with gap-weighting as well. We review the dynamic programming approach and
a variant of the trie-based computation in Section 3, followed by a presentation of the new sparse
dynamic programming approach.

Generalized alphabets. We conclude this section by noting that treating text as strings of charac-
ters is not the only and not necessarily the best approach. Depending on the application, considering
larger units such as syllables (c.f. Saunders et al., 2002) or words (c.f. Cancedda et al., 2003) may
be beneficial. Using the text ’The cat was chased by the fat dog’ as the example, if words
are used as the alphabet:

• Substrings are word sequences, or phrases: ’cat was chased’.

• Gapped substrings will be phrases with some words skipped: ’cat ? chased ? ? ?
dog’.

• Penalizing gaps will decrease the weight of phrases that span too long a text segment. For
example, the weight of ’cat was chased’ would be higher than that of ’cat ? chased ?
? ? dog’ as the former phrase exists in the text as such whereas the latter contains two
gaps of total length four.

Using phrases as features has a potential advantage over the bag-of-words representation, as the
ordering and the proximity of the words is taken into account. Thus such a representation should be
able to more closely capture syntactically and, ideally, semantically similar text segments.

There is, however, one drawback in using words or phrases as the features, namely the slight
variations in the word occurrences that still correspond to the same meaning. Such variations in-
clude alternative spellings, prefixes/suffixes attached to words or wordstems. These problems can
of course be tackled by preprocessing the documents. An alternative approach is the use of sylla-
ble alphabet: the text is treated as a sequence of syllables: ’The cat was cha sed by the fat
dog’. The benefit is that small spelling variations or inflection of the word (e.g. ’cha se’ vs. ’cha
sed’) are likely to retain some of the original syllables.

Compared to the character alphabet, word and syllable alphabets share twobenefits. Firstly,
as argued above, using phrases of words or syllables are more likely to capture meaning in the
text than arbitrary substring of characters. Secondly, as the documentsize drastically goes down
when moving from character to syllable and word alphabets, computational requirements decrease
as well.

3. Computing Gap-Weighted String Kernels

Let us now concentrate to the question how to efficiently compute the gap-weighted string kernel:

K(s, t) = ∑
u∈U

φu(s)φu(t), (3)
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Figure 1: The co-occurrence trie of the example strings (top), and the sets of alive indices for the
substrings ’the’ and ’the dog’ in the two strings with numbers of gaps ranging from 0
to 6 (bottom).

where the index set satisfiesU = Σp or U = Σq∪ . . .Σp, and

φu(s) = 1/λp ∑
i:u=s(i)

λspan(i) (4)

We will present three algorithms all of which are then experimentally comparedin Section 4. The
first is based on constructing an implicit trie data structure for the co-occurring gapped substrings
in sandt. The second algorithm is the dynamic programming approach by Lodhi et al.,(2002), and
the third is a new method based on sparse dynamic programming.

As a running example we we use two stringss = ’The cat was chased by the fat dog’
andt = ’The fat cat bit the dog’ and, for illustration, we apply the word alphabet. Hence,
in the example, ’letters’ corresponds to English words, ’substrings’ and’subsequences’ to English
phrases.

3.1 Trie-Based Computation

Trie-based computation (Leslie and Kuang, 2003; Cristianini and Shawe-Taylor, 2004) of the gap
weighted subsequence kernel is based on making depth-first search into co-occurring subsequences
in the two strings, starting from co-occurring one-letter matches and extending the matches letter
by letter until the desired lengthp is reached. The search composes an implicit trie-structure of
matching subsequences in the two strings: each path from root to a node corresponds to a subse-
quence that co-occurs in the two strings, in one or more locations, with number of gaps at most
given integergmax. The number of gaps need to be restricted in order to keep computation efficient.
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Thus the resulting kernel can be considered as an approximation of (3) where co-occurrences with
mor thangmax gaps are discarded.

Figure 1 shows the trie structure of co-occurring subsequences for the example strings, when
the index set is fixed toU = Σ3, the three word phrases. Below we briefly describe a trie-based
algorithm that is a slight variation of the one described by Shawe-Taylor and Cristianini (2004) and
also bear resemblance to the related mismatch string kernel algorithm by Leslie et al. (2003).

In a trie-node corresponding to subsequenceu= u1 · · ·uq the algorithm keeps track of all matches
s(i) = u that could still be extended further. For each such index seti = i1 . . . iq, the last indexiq is
stored in a list ofalive matchesAs(u,g) whereg = span(i)−q is the number of gaps in the match.
Similarly for t the listsAt(u,g) are maintained. To expand a nodeu, the algorithm looks for all
possible letters the matching subsequence can be extended to a longer matchuc. For an alive match
i ∈ As(u,g) and allg′ ≤ gmax−g the algorithm puts the indicesi + 1+ g′ into As(usi+1+g′ ,g+ g′).
The listsAt(uti+1+g′ ,g+ g′) are constructed the same way. The search is continued for nodesuc
for which both

(

S

gAs(uc,g)
)

and
(

S

gAt(uc,g)
)

are non-empty, that is, there is at least one occur-
rence ofuc in boths andt, with some number of gaps. This makes the trie much sparser than the
subsequence tries for either one of the strings alone would be.

In our example (Figure 1), ’the’ is encountered in positions 1 and 6 ofs, with (trivially) no
gaps, and in positions 1 and 5 int. To find the alive indices for ’the dog’ the algorithm searches
for the occurrence of ’dog’, in s from indices 2 and 7 onwards, and finds the occurrence in position
6, corresponding to an occurrence with 1 and 4 gaps, respectively. Similar analysis is performed for
t. When a nodeu in depthd is encountered one easily obtains the relevant terms in the kernel via
computing the sum

φu(s)φu(t) = ∑
gs,gt

λgs+d|As(u,gs)| ·λgt+d|At(u,gt)|.

If a length-p subsequence kernel is being computed this computation only need to be performed
in the leaves of the trie. For bounded-length subsequence kernel, the computation needs to be
performed in all trie nodes that are in depthq≤ d ≤ p.

Note that the above approach differs from the(g,k)-gapped trie algorithm by Leslie and Kuang
(2003) in two respects: First, the stringss andt are not broken into frames before the search but
the algorithm maintains the listsAs(u,g) to keep track of the subsequence occurrences. Second, the
algorithm keeps track of the number of gaps in the occurrences during thesearch. This relieves us
from the need to embark on dynamic programming search in the trie leaves to compute the values
φu(s)φu(t).

The worst-case time complexity of the algorithm,O(
(p+gmax

p

)

(|s|+ |t|)), arises whens= t, which
follows from noticing that each position in the two strings is a start location of a co-occurring
subsequence, and there areO(

(p+gmax
p

)

) possible combinations of assigningp letters andgmax gaps
in a window of lengthp+ gmax. Note that if no gaps are allowed we get the time complexity
O(p(|s|+ |t|) matching the suffix tree approach.

3.2 Dynamic Programming Computation

The basis of dynamic programming computation of the string kernel (3) is the following observation:
if there is a co-occurrence of substringu1 . . .uq that ends in positionsk’th and l ’th position ofs and
t, respectively, two conditions must be satisfied:

1. there must be a matching pair of characters in the last positions:sk = tl , and
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Figure 2: The co-occurrence weights of length-one (a) and length-two(b) substrings. Computing
κ2(6,8) requires efficiently maintaining the appropriately scaled sum of the weights in
the shaded region ofκ1.

2. there must be a matching prefixu1 . . .uq−1 that ends in some positioni < k in string s and
some positionj < l in stringt.

Moreover, ignoring the normalization 1/λ2q, the co-occurrence weight can be computed by from
the weight of the prefix co-occurrence by extending the subsequences with k− i and l − j letters,
respectively:

λspan([i1...,iq,k]) ·λspan([ j1..., jq,l ]) = λspan([i1...,iq]) ·λspan([ j1..., jq]) ·λk−iqλl− jq.

Denoting byκq(k, l) the sum of weights of length-q substring co-occurrences, again ignoring the
normalization 1/λ2q, that end at positionsk andl in sandt, respectively, the above observations can
be summarized in the following recurrence

κq(k, l) =

{

λ2Jsk = tl K for q = 1, and

∑i<k ∑ j<l λk−i+l− jκq−1(i, j)Jsk = tl K, for q > 1,
(5)

where Figure 2 depicts the idea behind the recurrence (5): to computeκ2(5,6) we need to extend the
length-1 matches in the shaded region,κ1(i, j), i < 5, j < 6, into length-2 matches by adding gaps.
The weights of two length-1 matches in positions(1,1) and(3,2) are rescaled before summation:
λ8 +λ11 = λ5−3+6−2λ2 +λ5−1+6−1λ2.

The dynamic programming algorithm (Figure 4) computes this recurrence by starting with sub-
sequence length 1, which requires looping through all pairs of positions(i, j) in the two strings,
checking for matching letters and summing up the co-occurrence weights. For convenience, the
algorithm computes the sum of weights without the normalization 1/λ2q that is applied in the final
phase when computing the kernel valueK(q).

Longer subsequences are handled in increasing order of length, in accordance to (5). How-
ever, computing the double sum for each(k, l) (e.g. the shaded region in Figure 2) would be very
inefficient, hence instead, a separate table storing the double sum

S(k, l) = ∑
i<k

∑
j<l

λk−i+l− jκq−1(i, j)
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Figure 3: The tableS (right) stores the scaled sums of co-occurrence weights of the prefixesof the
strings. The valueS(k, l) is computed in constant time by adding upκq−1(k, l) λS(k−1, l)
(horizontally striped area) andλS(k, l − 1) (the vertically striped area) and subtracting
λ2S(k−1, l −1) (the intersection) that would otherwise be doubly counted.

is maintained. With that auxiliary table, computing the recurrence is very simple

κq(k, l) = Jsk = tl Kλ2S(k−1, l −1).

Maintenance of the tableScan be done efficiently via the relationship

S(k, l) = κq−1(k, l)+λS(k−1, l)+λS(k, l −1)−λ2S(k−1, l −1), (6)

where the first term computes the contribution of the cell(k, l), the two middle terms the regions
{(i, j)|i < k, j ≤ l} and{(i, j)|i ≤ k, j < l}, respectively, and the last term subtracts the twice counted
region{(i, j)|i < k, j < l}.

In Figure 3 the computation of the valueS(4,5) = λ6 +λ9 is depicted. The value can be seen as
the sum of weights of matching ’the ? ? ?’ with ’ the ? ? ? ?’ (weight λ4 ·λ5) and ’the’
(λ3 ·λ), and ’cat’ with ’ cat ? ? ? ?’ (weight λ ·λ5).

The algorithm has time complexityO(p|s||t|) which is immediately seen from the pseudocode
in Figure 4. It is possible to optimize the algorithm to consume less memory. As the computation
proceeds in increasing order of subsequence length and only the previous length is referred to, it
suffices to maintain a single tableκ that is reused for valuesκ1, . . . ,κp. Also, it suffices to maintain
a one-dimensional vectorS( j) instead of the matrixS(i, j), as the computation proceeds in the
increasing order ofi and only the valuesS(i−1, :) are referred to when computingS(i, :).

3.3 A Sparse Dynamic Programming Algorithm

In this section we describe a new algorithm for gap-weighted string kernelcomputation that is
based onsparse dynamic programming(Eppstein et al., 1992). These algorithms utilise the fact
that most entries in the dynamic programming matrix do not actually contribute to the results. The
technique has been previously used, for example, to speed up transposition invariant string matching
(Mäkinen, 2003) and, more close to our problem, in computing the longest-commonsubsequence
of two strings given a fixed set of basis fragments (Baker and Giancarlo, 1998).
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function K = DYNPROG(s,t,p,lambda)

κ1 = zeros(length(s), length(t));
K(1) = 0; % length-1 co-occurrences
for i = 1 : length(s)

for j = 1 : length(t)
if s(i) = t( j)

κ1(i, j) = λ2;
K(1) = K(1)+κ1(i, j);

end
end

end
K(1) = K(1)/λ2; % renormalize

for l = 2 : p % co-occurrences of length 2...p
K(l) = 0;
S(1 : (l −1),1 : length(t)) = 0;S(l : length(s),1 : (l −1)) = 0;
for i = 1 : length(s)

for j = 1 : length(t)
S(i, j) = κl−1(i, j)+λ ·S(i−1, j)+

λ ·S(i, j −1)−λ2 ·S(i−1, j −1);
if s(i) = t( j)

κl (i, j) = λ2 ·S(i−1, j −1);
K(l) = K(l)+κl (i, j);

end
end

end
K(l) = K(l)/λ2l ; % renormalize

end

Figure 4: Dynamic programming algorithm for gap-weighted subsequence kernel computation. It
takes a input two strings, subsequence lengthp and a penalty coefficientλ, and returns
the kernel valuesK(1), . . . ,K(p) corresponding to different subsequence lengths.
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Our algorithm is easiest to understand as a speed-up method for the dynamicprogramming
approach described in Section 3.2. Despite its relatively low time-complexity, thealgorithm makes
unnecessary computations: the valueS(k, l) is required only whensk = tl , but computing that value
using (6) dictates that all valuesS(i, j), i ≤ k, j ≤ l are computed. In the following we present an
algorithm that avoids these unnecessary computations via replacing the matrixSwith a query tree
that can be used to retrieve the valuesS(i, j) as needed in logn time.

Another change to the original dynamic programming algorithm is that the matrixκq is replaced
with a set of match lists

Mq(i) = (( j1,κq(i, j)),( j2,κq(i, j)), . . .)

whereκq(i, j) = λm−i+n− j · κq(i, j)) can be interpreted as extending the length-q co-occurrences
ending withsi andt j , respectively, with dummy gaps spanning positionsi +1 tom in sand positions
j +1 ton in t. The use of such dummy gap weighting relieves us from repeatedly scaling the kernel
values as the search progresses: for any(k, l) it holds that

κq(k, l) = Jsk = tl K∑
i<k

∑
j<l

κq−1(i, j). (7)

and the valuesS(k, l) = ∑i<k ∑ j<l κq−1(i, j) can be updated as the search proceeds without perform-
ing any rescaling of the itemsS(k, l) = S(k−1, l)+ ∑ j<l κq−1(k, j). This fact will be essential for
maintaining our range-sum tree data structure, described below.

The data structure used for the queries belongs to the family of one-dimensional range query
data structures, frequently used in computational geometry, online analytical processing (OLAP)
and other fields where efficient range queries are needed (de Berg et al., 1997; Agarwal and Erick-
son, 1999).

Therange sum treefor a set of key-value pairsS = {( j1,v1), . . . ,( jh,vh)} ⊂ {1, . . . ,n}×R is a
binary tree of heighth = dlogne where the nodes are in one-to-one correspondence with the keys
in the range. The root contains the key 2h, leaves contain all odd keys in the range and and if an
internal node in depthd = {0, . . . ,h−1} contains keyj, its left child contains the keyj −2h−1−d

and the right child, when it exists, contains the keyj +2h−1−d. With each keyj in depthd a value
is stored that represents a sum of item weights in a subrange[ j −2h−d +1, j]. It is easy to see that
this subrange exactly covers the keys that are covered by the node’s left subtree and the node itself.
The range sum can be used to return the sum of values within an interval[1, j] in O(logn) time by
traversing the path from the nodej to the root, and computing the sum

Rangesum([1, j]) = v j + ∑
{h∈Ancestors( j)|h< j}

vh

Also, adding an item( j,v)to the tree takes timeO(logn): we need to addv to node j and the set
{h∈ Ancestors( j)|h > j}.

For our algorithm, we will use the tree to query the valuesS(k, l) = λm−k+n−l S(k, l). To cope
with this two-dimensional query region, we maintain the tree so that, when processing the match
list Mq(k) the tree will contain items( j,v j), 1 ≤ j ≤ n, v j = ∑i<k κq−1(i, j), and thus the one-
dimensional range query

Rangesum([1, l −1]) = ∑
j<l

v j = ∑
i<k

∑
j<l

κq−1(i, j) = S(k, l)
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Figure 5: The range-sum tree on the right, with a query path (emphasized edges) and an area of
theκ1 matrix corresponding to the query path (grey and black strips) on the left. Starting
from the leaf, the values in nodes that are left children of their parents are added together.

will return the desired answer.
Figure 5 depicts the state of the range-sum tree when computing the valueκ2(5,6). The node 5

will contain value 0 as there are no subsequence co-occurrences withinthe strip(i,5), i < 5. On the
other hand, the key 4 will contain the valueλ11+λ14 corresponding to the two co-occurrences within
the (shaded) region(i, j), i < 5, j ∈ [1,4], scaled with the dummy gaps:λ11 = λ2λ6−3+8−2,λ14 =
λ2λ6−1+8−1. The sum of weights in the shaded region is computed by adding the value 0 in node 5
corresponding to the empty black region, the value in node 4 corresponding to the grey region and
skipping node 6 as 6> 5.

The sparse dynamic programming algorithm is shown in Figure 6. The algorithmtakes as input
a setM1 = {M1(1), . . . ,M1(m)} of match lists

M1(i) = (( j1,κ1(i, j)),( j2,κ1(i, j)), . . .) ,

that have been created in a preprocessing step takingO(n+ m+ |Σ|+ |M1|) time and space. This
preprocessing involves creating for each characterc ∈ Σ a list I(c) = { j|t j = c} of indices in the
string t that contain the characterc. To create a match listM1(i) then involves copying the indices
in I(si) to M1(i) and storing the corresponding valuesκ1(i, j) = λm−i+n− jλ2 with the indices.

The main algorithm computes the kernelK(s, t) = κp(m,n) by incrementally working out match
setsM2, . . . ,Mp, corresponding to subsequence lengths 2, . . . , p.

The processing of subsequence lengthq entails making one pass through the match setsMq−1(k)
in increasing order ofk. When constructing match listMq(k) the algorithm traverses match list
Mq−1(k), and for each item( j,κ) in the list makes a range queryRangeSum([1, l−1])= ∑i<k ∑ j<l κq−1(i, j),
and, if the result is non-zero, inserts the item(l ,RangeSum([1, l −1])) to the listMq(k). After cre-
ating each listMq(k) the tree is updated with the contents ofMq−1(k).

Finally, the kernel valueK(s, t) is computed by traversing the match listsMp(k),1 ≤ k ≤ m,
rescaling the stored values to remove the dummy gap and summing up the rescaledvalues.
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function K = SPARSE(M1, p,λ)
for q = 2 : (p−1)

RangeSum(1 : |t|) = 0; % initially the ranges are empty
for i = p : m

% compute the kappa values for the next level
Mq(i) = {};
for ( jh,κh) ∈ Mq−1(i)

S= query(RangeSum, [1, jh−1]); % make range query
if S> 0

Mq(i) = Mq(i)∪ ( jh,S);
end

end
% update the range withMq−1(i)
for ( jh,κh) ∈ Mq−1(i)

update(RangeSum,( jh,κh));
end

end
end
% compute the values for the final level
K = 0;
for i = p : (m−1)

for ( jh,κh) ∈ Mp−1(i);
if jh < n

K = K +κhλi+ jh; % rescale to remove the dummy gap
end

end
end

Figure 6: The algorithm for computing the gap-weighted subsequences kernel for two stringss
and t. The algorithm takes as input a match setM1 = {M1(1), . . . ,M1(m)}, a penalty
coefficient 0< λ ≤ 1 and subsequence lengthp.
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The queries and updates amount toO(logn) per item in the match list so the time complexity to
process levelq is O(|Mq| logn). Since we have|M1| ≥ |M2| ≥ · · · ≥ |Mp|, the total time complexity
will be O(p|M1| logn). On random strings|M1| ≈ |s||t|/|Σ|. Hence, the sparse algorithm is likely to
excel when logn/|Σ| is small, which we verify in the experiments presented in Section 4.

3.4 Variants and Implementation

The presented algorithm can be modified to compute many of the string kernel variants:

• A kernel only counting the number of co-occurrences of substrings is trivially obtained by
settingλ = 1. In practical implementation, one can remove the scaling/rescaling operations
from the algorithm, thus reducing the constants hidden in the asymptotic time-complexity.

• Bounded-length subsequence kernels are straight-forward to obtain.For each subsequence
lengthq≤ l ≤ p, the sum of weights in the match lists, rescaled to remove the dummy gaps,
needs to be computed, as opposed for the lengthp only, as in the original algorithm. Thus,
kernels of the formK(s, t) = ∑p

q=1wqKq(s, t),wq ∈ R are easily obtained.

• Weighting by the number of gaps and the use of character specific gap penalties only require
minor modifications to the algorithm (see below).

However, soft matching approaches (c.f Saunders et al., 2002), where most of the characters can be
matched with each other with different costs (or utilities), are beyond this algorithm. This is because
the efficiency of the algorithm relies on the match setsMq to be sparse.

Weighting by the number of gaps. It is straightforward to modify the algorithm to penalize the
number of gaps in the subsequence, instead of the total gap length. The kernel

κGap#(s, t) = ∑
u∈Σp

φp
u(s)φ

p
u(t), with φp

u(s) = ∑
i:u=s(i)

λ∑ j [i j+1−i j>1],u∈ Σp,

can be computed via the recurrence

κq(k, l) = [si = t j ]

(

∑
i<k−1, j<l−1

λ2κq−1(i, j)

+ ∑
i<k−1

λκq−1(i, l −1)+ ∑
j<l−1

λκq−1(k−1, j)+κq−1(k−1, l −1)

)

(8)

which again leads to theO(p|s||t|) time complexity. The first term takes into account co-occurrences
where one gap is inserted to both the matched subsequences. The secondand third term correspond
to matches where a gap is inserted to occurrences ins only andt only, respectively. The last term
takes into account matches where no gap is inserted to eithers or t.

The sparse dynamic programming algorithm can be made to compute this recurrence effi-
ciently by a simple modification: The range sum tree updates need to be lagged by one iteration
so that, when creating the match listMq(k), the tree will not yet contain the values in the match list
Mq−1(k−1); these values will be added to the tree after handling the match listMq(k). By such an
arrangement, the recurrence can be computed as

κq(k, l)= [si = t j ]

(

λ2 ·Rangesum([1, l−2])+λ·Rangesum([l−1, l−1])+λr( j)+κq−1(k−1, l−1)

)

,
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where the valuesr( j) = ∑ j<l−1 κq−1(k− 1, j) are incrementally computed while processing the
match listMq−1(k−1). The algorithm’s time complexityO(p|M| logn) will not change.

Character-specific gap and match weights. Another variant is to let the gap penalty depend on
the character that was skipped, so that we have a set of penalties{λa|a ∈ Σ}. To implement this

we need to precompute a vectorΛs = (λs,k)
|s|
k=1, λs,k = λs1 × ·· ·×λsk and an analogous vectorΛt

for string t. In the algorithm, when storing the itemκq−1(i, j) in the range sum tree, it is first
scaled byλs,m/λs,i ·λt,n/λt, j to introduce a dummy gapss(i +1 : m) andt( j +1 : n) with character
specific weighting. As with uniform gap weights, when computing the final level, rescaling by
λs,k/λs,m ·λt,l/λt,n is needed to recover the valueκp(k, l).

The approach can easily extended to handle different weights for matches and gaps, as suggested
by Cancedda et al., (2003). This only requires performing a scaling

κq(k, l) =
γsk

λsk

γtl

λtl
RangeSum([1, l −1]),

whereγa andλa are the match and gap decays for lettera, respectively, to reflect the fact thatsk was
matched totl rather than skipped over.

Implementation. The algorithm described above has been implemented in MATLAB 7.0. The
code has been heavily tweaked to ensure that the benefits suggested by theoretical analysis can also
be realized in practise. The major tweaks include

• Range sum tree storage.In our MATLAB implementation, the range sum tree is implicitly
stored in a weight vectorw storing the sum of the left subtree of each node 1≤ j ≤ n. To speed
up computations we also precompute in separate tables the nodes that need to be visited when
querying or updating the range sum tree. For example, in the situation depicted in Figure (5)
the precomputedquery pathfor will contain the nodes 4 and 5. The correspondingupdate
pathwill contain the nodes 6 and 8.

• Avoiding numerical underflow. The algorithm in Figure 6 stores the items in the form
λm−i+n− jκq−1(i, j) and rescales them when computing the levelp. This approach suffers
from the potential of numerical underflow when handling long strings. In order to avoid that,
we divide the index plane into rectangles of height and width sufficiently small(depending
on the valueλ) such that within a rectangle[x′,x′′]× [y′,y′′] the values are stored in the form
λx′′+y′′−i− j . The handling of the boundaries of the rectangles causes a small additiveoverhead
to the time complexity. The same technique can be used with the above discussed variants as
well.

The implementation of the sparse dynamic programming algorithm is available via WWWfrom
the home page of Juho Rousu:htt p : //www.cs.helsinki. f i/ juho.rousu.

4. Empirical Evaluation

We compared the time consumption of the following gapped string kernel algorithms, all imple-
mented in MATLAB:

SPARSE. The new sparse dynamic programming algorithm.
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Figure 7: The time consumption of SPARSE in seconds (left) and relative time consumption of

SPARSE relative to the time consumption of DYNPROG (right). The subsequence
lengthp = 10 was used. Note the logarithmic scale on all axes.

DYNPROG. The full dynamic programming approach of Section 3.2.

TRIE. The Trie-based computation approach of Section 3.1.

Note that, differently from TRIE, DYNPROGand SPARSEplace no hard restriction on the gap length
but softly penalize the increase in gap length. We used three data sets for comparing the algorithms.

• Randomly generated strings, with varying length and alphabet sizes.

• 1000 random English news article pairs from the Reuters-21578 corpus, represented as se-
quences of syllables. The size of the syllable alphabet was 3769.

• 1000 random document pairs from the Chinese part of the Reuter’s multilingual RCV-2 cor-
pus. The size of the alphabet was 3142.

The tests were run on a 3GHZ Pentium 4 processor with 1.5GB main memory.

4.1 Results on Random Strings

In our first test we tested the time-consumption of the algorithm SPARSE as a function of string
length and alphabet size. Figure 7 depicts the results. On the left the algorithms absolute time
consumption is shown. The inverse dependency of the time-consumption on thealphabet size is
clearly visible. Also, the larger the alphabet, the slower the time-consumption increases when the
string length is increased.

On the right in Figure 7 the time-consumption of the sparse approach relativeto the full dynamic
programming approach is shown. With small alphabets and short strings DYNPROG is faster than
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Figure 8: The relative time consumption time(TRIE)/time(SPARSE) of the algorithms, as a function
of alphabet size and gap length. The subsequence lengthp= 10 and string length|s|, |t|=
512 was used. Note the logarithmic scale.

SPARSE. With long strings and large alphabets the roles reverse: on strings longerthan 1024 letters
and alphabet sizes over 256, the SPARSEcan be an order of magnitude faster then DYNPROG.

In our second test we compare the speed of TRIE algorithm to the SPARSEalgorithm. Figure 8
depicts the relative time consumption as a function of alphabet size and gap length. Subsequence
length of 10 and string length of 512 were used. Since SPARSE does not place any restriction to
the gap length, in the comparison only the time taken by TRIE actually varied when the maximum
number of gaps was varied.

The figure shows that TRIE algorithm gets very significantly slower than SPARSEwhen more
gaps are allowed especially so on small alphabets. TRIE is faster than SPARSE only when the
number of gaps is restricted to 2 or below. On very large alphabets even disallowing gaps does not
bring TRIE below the time consumption of SPARSE.

The fastest algorithm as a function of string length and alphabet size is depicted in Figure 9,
with different settings for the subsequence length (p) and the maximum number of gaps allowed in
the TRIE algorithm. DYNPROG is the fastest method on short strings independent on the alphabet
size and the subsequence length (a-d). If no gaps are allowed, TRIE is competitive on small to
medium-size alphabets and long strings (a). When the subsequence length isincreased, TRIE is
faster than SPARSE even on large alphabets (c). The situation changes when gaps are allowed
in TRIE algorithm: then SPARSE is the best method on large alphabets, and DYNPROG on small
alphabets, TRIE excelling on medium-sized alphabets if long subsequences are searched for (d).
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Figure 9: The fastest algorithm as a function of string length and alphabetsize, with different sub-
sequence lengths (p) and upper bounds for the number of gaps in the TRIE algorithm.

4.2 Results on Reuter’s News Articles

Our second set of experiments tests the speed of kernel computation on twoReuter’s newswire
article data sets, English articles from Reuters-21578 corpus represented as sequences of syllables
and Chinese articles from the multilingual RCV-2 corpus.

We computed the gap-weighted string kernel using DYNPROG and SPARSE for 1000 random
document pairs, varying the subsequence lengths in the range 5-20. Inour preliminary experiments,
TRIE was significantly slower than both of the dynamic programming approaches onthese data sets.
Hence, we omitted that algorithm from the comparison.

The results on the English news articles are summarized in Figure 10. In the figure each docu-
ment pair is plotted to the location corresponding to the (geometric) mean length ofthe documents
(x-axis) and the inverse of the match frequency|s||t|/|M| (y-axis), which also can be thought as
the effective alphabet size: if the syllables were independently randomly drawn from alphabet of
size|Σ| = |s||t|/|M|, the expected size of the match set would be|M|. Note that, due to the skewed
distribution of syllables in the documents this number is usually significantly lower than the size of
the syllable alphabet.

The marker type corresponds to the minimum subsequence lengthp required to make SPARSE

run faster than DYNPROG on that document pair. Document pairs marked with ’+’ requirep >
20, circles require 11≤ p ≤ 20, boxes require 6≤ p ≤ 10, and for diamondsp ≤ 5 is sufficient.
Similar behaviour to that observed in the tests involving random strings can beseen: the longer the
documents and the sparser the match matrix, the smaller value ofp suffices to make SPARSE the
faster algorithm.
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Figure 10: Regimes of subsequence lengthp, document size (x-axis) and inverse frequency of
matching letters (y-axis), where SPARSE is faster than DYNPROG on English syllable-
represented news articles. Document pairs marked with ’+’ requirep > 20, circles re-
quire 11≤ p≤ 20, boxes require 6≤ p≤ 10, and for diamondsp = 5 is sufficient.

The results on Chinese news are summarized in Figure 11. The behaviour of the algorithms can
be seen to be essentially the same as on the syllable converted English text: longdocuments and a
sparse match matrix favour SPARSE.

5. Discussion and Open Problems

Based on the presented experiments, the full dynamic programming approach is the fastest method
on short strings. On longer strings, the best algorithm depends on otherparameters: if the alphabet
is large the new sparse dynamic programming approach is the fastest method, ifthe alphabet is small
DYNPROG is the best method. On medium-sized alphabets, the trie-based approach is competitive
if the number of gaps can be strongly restricted.

The observed relative performance can be explained as follows. Whenthe alphabet size is
small, allowing more gaps rapidly expands the number of partially matching subsequences. Since
TRIE explicitly keeps track of them, its time-consumption increases. SPARSEalso suffers on small
alphabets. However, it can never be worse than DYNPROG by more than a logn factor. On large
alphabets, TRIE has an overhead of keeping track of all subtrees that may or may not need to be
expanded. The improving performance of TRIE by increasing subsequence length is also easy to
explain: the trie becomes the sparser the deeper the search level. Thus deepening the search is
relatively cheap.

From the point of view algorithm development, an open question is whether thetime-complexity
of the sparse dynamic programming approach could reduced belowO(p|M| logn). The literature
on geometric range searching does not a direct route forward: no index structures are known for
one or two-dimensional range queries that can be maintained in less than amortizedO(logn) time
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Figure 11: Regimes of subsequence lengthp, document size (x-axis) and inverse frequency of
matching letters (y-axis), where SPARSE is faster than DYNPROG on Chinese news ar-
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boxes require 6≤ p≤ 10, and for diamondsp = 5 is sufficient.

per query (Agarwal and Erickson, 1999), even when taking advantage of the fact that the points are
situated on an integer grid (Overmars, 1988, Alstrup et al., 2000). On the other hand the best lower
bounds are of orderΩ(log logn) per query (Chazelle, 1995).

There are amortizedO(α(n)) time range query methods, whereα(n) is the inverse Ackermann’s
function, but they requireO(|s||t|) (Chazelle and Rosenberg, 1989) orO(|M|2) preprocessing (Poon,
2003)—which would lead toO(p|s||t|) andO(p|M|2) total time complexity in our case, if applied in
a straightforward manner. But, could we getO(p|M|α(|M|)+ |s||t|) complexity by taking advantage
of the fact that the match sets satisfyM1 ⊃ M2 ⊃ ·· · ⊃ Mp? Moreover, each match setMl is highly
structured: for eachl ≤ i ≤ |s| we make the the range querysequence[1, j1] ⊂ [1, j2] ⊂ ·· · ⊂
[1, jr ], wheresi = t jh, l < jh ≤ |t|. In addition, for i and i′ that satisfysi = si′ exactly the same
query sequence is made. However, taking advantage of this appears to be non-trivial. For example,
maintaining a separate range-query index for each character would result in O(p|M||Σ|)≈O(p|s||t|)
time complexity.

6. Conclusions

We presented a sparse dynamic programming algorithm that efficiently computes the gap-weighted
string kernels. The algorithm is easily adaptable to different string kernelvariants, including fixed-
length and bounded-length subsequence kernels and different gap penalization schemes, includ-
ing penalization by total length of the gaps and number of the gaps as well as character specific
gap/match penalization.

Our empirical results suggest that the sparse dynamic programming approach could be useful in
text categorization applications when using syllable or word alphabets. Such alphabets have shown
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to be useful in document classification tasks (Saunders et al., 2002, Cancedda et al., 2003). As the
algorithm scales well to long documents when the alphabet is large, it could find use in classification
of longer documents than the relatively short news stories, for instance,full-length research articles.
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