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Abstract

We present a sparse dynamic programming algorithm thagngivo stringss andt, a gap penalty
A, and an integep, computes the value of the gap-weighted lengsubsequences kernel. The al-
gorithm works in timeO(p|M|log|t|), whereM = {(i, j)|s =t; } is the set of matches of characters
in the two sequences. The algorithm is easily adapted toldddinded length subsequences and
different gap-penalty schemes, including penalizing teyttital length of gaps and the number of
gaps as well as incorporating character-specific matchggaglties.

The new algorithm is empirically evaluated against a fulh@yic programming approach and
a trie-based algorithm both on synthetic and newswire lartiata. Based on the experiments,
the full dynamic programming approach is the fastest ontsftangs, and on long strings if the
alphabet is small. On large alphabets, the new sparse dgmangramming algorithm is the most
efficient. On medium-sized alphabets the trie-based apprizabest if the maximum number of
allowed gaps is strongly restricted.

Keywords: kernel methods, string kernels, text categorization,spdynamic programming

1. Introduction

Machine learning algorithms working on sequence data are needed batiinfobmatics and text
categorization and mining. In contrast, standard machine learning algoritbrk®wfeature vector
representation, thus requiring a feature extraction phase to map seaistadnto feature vectors.

Representing these feature vectors explicitly is often problematic due to tastipdly high
dimensionality. Kernel methods (Vapnik, 1995; Cristianini and Shawdef,a3000) provide an ef-
ficient way of tackling the problem of dimensionality via the use of a kernadtion, corresponding
to the inner product of two feature vectors. With these precomputed imodugts, it is possible
to efficiently accomplish a variety of machine learning and data analysis &sgksclassification,
regression and clustering.

The family of kernel functions defined on feature vectors computed Btiings, are called
string kernelgdWatkins, 2000; Haussler, 1999). These kernels are based oneeaturresponding
to occurrences of certain kinds of subsequences in the string. Tteenads variety of string kernels
depending on how the subsequences are defined: they can be cost@uwon-contiguous, they
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can have bounded or unbounded length, and the mismatches or gaps pamatized in different
ways.

There are three main approaches in computing string kernels efficientharig programming
approaches (Lodhi et al., 2000; Cancedda et al., 2003) are bassainposing the solution from
simpler subproblems, in this case, from kernel values of shorter sudxsegs and prefixes of the
two strings. These approaches usually have time complexity of @(glg||t|) since one typically
needs to compute intermediate results for each charactespaifor each subsequence length
1 <1 < p. However, there is no extra computational cost associated when ugingegalties
or mismatch costs between the characters. In trie-based approackée éteal., 2003; Leslie
and Kuang, 2003) one makes a depth-first traversal to an implicit trie ttatawse. The search
continues along each trie path while in both of the strings there exist anrencarof thep-gram
corresponding to the trie node. This termination condition prunes the sg@ack very efficiently
if the number of gaps is restricted enough. The third approach is to builffia sae of one of
the strings and then compute matching statistics of the other string by traversiagfiix tree to
compute matching statistics (Vishwanathan and Smola, 2003). The computatienkefnel value
takes a linear time. However, the approach does not deal with gappegsstrin

In this paper, we concentrate on improving the time-efficiency of the dynamgramming ap-
proach to gapped string kernel computation. In Section 2 we review typesrels that are used in
text categorization and sequence analysis tasks. As a full review dlkesised machine learning
is not possible in the context of this article, a reader not familiar with kerngiogls might want to
refer to the introductory text book of Cristianini and Shawe-Taylor @@0, for a more broad treat-
ment, the books by Sétkopf and Smola (2001) and Shawe-Taylor and Cristianini (2004) el S
tion 3, we review trie-based and a dynamic programming approachegfevegjghted string kernel
computation before presenting the main contribution of this article, a spansenity programming
algorithm for efficiently computing the kernel on large alphabets. We alswsksvariants and im-
plementation of the algorithm. In Section 4 the new algorithm is experimentally cechpgainst
the full dynamic programming approach and a trie-based algorithm. Resultgpangroblems are
discussed in Section 5 followed by conclusions in Section 6.

2. Kernels for Sequence Data

Kernel methods encompass a family of pattern analysis methods that sloaner®is aspect: map-
ping the inputx € X to some potentially high-dimensional feature spgcéy defining a feature
map@: X — F, and then solving the pattern analysis task by linear methods, such as fanding
separating hyperplane for instances of different classes (supgcidr machines, SVM), or find-
ing principal components of the feature vect(s) (kernel PCA), or finding correlations between
two views @ (x), @2(x) of the same data (kernel canonical correlation analysis, KCCA). Working
in these high-dimensional spaces in made possible by the use of the so katieel trick’: one
does not need to handle the feature vectors explicitly, as long as the irodercp thekerne|
K(x,2) = o(X)" @(z) has been computed.

For example, support vector machines (Vapnik, 1995) find for the tigugkataf (x;, i) }/_, the
maximum margin separating hyperplane in the feature space. Both learnihggéplane and
classifying points can be done without explicitly using the feature vectamiley requires solving
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a quadratic programme

¢
gllg.é( , aj — l/ZivjzlaiGjyiyjK(Xi,Xj) st. IZGiyi =0,
and the SVM prediction can be expressed @g = sign(3; a;yiK(x;,X) +b). Thus, the learning and
prediction can be performed in space that has dimension in the order afrfigen of the training
points.

When handling input data that already comes in vector form, there is no tibfiga introduce a
special kernel function. The inner product of the ingkits, z) = x" z, also called the ’linear kernel’,
can be used. However, when using structured data such as segjueees or graphs, one needs to
convert the structured representation to a vector form.

For sequences the most common feature representation is to countlotfahegistence of sub-
sequence occurrences, when the subsequences are taken fxethindiex set. Different choices
for the index set and accounting for occurrences give rise to a famifgatfire representations
and kernels. Below we review the main forms of representation for segaemd the computation
kernels for such representations.

Word spectrum (Bag-of-words) kernels. In the most widely used feature representation for
strings in a natural language, informally calledg-of-words(BoW), the index set is taken as the
set of words in the language, possibly excluding some frequently aegwstop words (Salton et
al., 1975). The representation was brought to SVM learning by Joachibas).

In the case of a string containing English text, for each English wardwe define the feature
value

Qu(s) =[{ilsj---Sjrju—1= U}, 1)
as the number of times occurs in some positionj of s. For the example text = 'The cat
was chased by the fat dog’the Bow will contain the following non-zero entrieg;se (S) = 2,
Qaog(S) =1, Puas(S) = 1, Penasea(S) =1, Poy(S) = 1, Pear (S) = 1, Pcar = 1. These occurrence counts
can also be weighted, for example by scaling by the inverse documenefreg (TFIDF, Salton &
Young, 1973):

@u(s) = {ilsj---Sjju = u}] x 10g; N/Ny,
whereN, is the number of documents whareccurs andN is the total number of documents in the
collection.

Although the dimension of the feature space may be very high, computatioa Bbiv kernel
can be efficiently implemented by scanning the two strings, constructingd.(stendL(t) of pairs
(u,cy) of word u and occurrence count, ordered in the lexicographical order of the substrings
and finally traversing the two lists to compute the dot product.

Substring spectrum kernels. For strings that do not encompass a crisply defined word-structure,
for example, biological sequences, a different approach is more &uit@iven an alphabef, a
simple choice is to takldl = >P, the set of strings of length. The featuresy,(s),u € ZP are then
defined as in (1). For example, if we chogse- 4 resulting feature values for our example text
include@pe. = 2, Ptne = 1, Pcar = 1, Qa0 = 1, along with close to thirty additional 4-grams.

There is a two-fold difficulty in focusing in fixed length subsequencesstllgirone may not
know how to best choose the length Secondly, there maybe important subsequences of differ-
ent lengths in the sequences. This problem can be circumvented by alltveirigngths of the
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subsequences vary within a range:
U=390u5%1...uUzP for some 1< q < p. 2)

We call the resulting kernel thieounded-length substringernel. In our example text, we could
setq= 3 andp = 5 to include features such &gog, @chase@Nd@ ¢4, for instance. In the extreme
case, we can takp = 1 andqg = o, thus including in the index set all non-empty sequences of
alphabetx. It should be noted that the choice of parametpesd p has several effects: First, as
will be discussed in the next section, the time to compute the kernels will indogarsereasingp.
Secondly, if all important subsequences have length at least ggrsettingq < go will probably
make the spectrum more 'noisy’. Similarly, settigg< g will probably lose some of the 'signal’.
An interesting direction, that is out of scope of this paper, would be to kb@rparameterp andq
from the data.

The most efficient approaches, working@ip(|s| + [t|)) time, to compute substring spectrum
kernels are based on suffix trees (Leslie et al., 2002; Vishwanathth®mola, 2003), although
dynamic programming and trie-based approaches also can be used.

Gapped substring spectrum kernels. Another way to add flexibility to our feature representation
is to allow gaps in the subsequence occurrences. In that case, thesatd#}2) can still be used
but the definition of the features changes. For convenience of notatidne following we will
use boldface letters to indicate ordered collections of indiges:(j1, jo,...,jq),j1 < j2 < -+ <

jq and denotes(j) = sj, ...sj,. We define the featureg,(s) to count the number of such unique
sequences of indicgsthat the corresponding subsequesge..s;j, equals tou, in other words
@u(s) = [{j|s(j) = u}|. Our example stringThe cat was chased by the fat dog’ canbe seen
to contain, among others, the following gapped substrings of lengp.3= 7, Qreqa = 5, Paog = 2.

This definition does not make a difference between occurrences tiaircéew gaps and those
that contain several gaps, or the lengths thereof; all contribute to therdeealue equally. For
example, the substring éa’ will have a high weight as it occurs many times in the text, although
it never occurs with fewer than two gaps and the total length of gaps issattteae. At the same
time, 'dog’ will have much smaller weight although it occurs in the text without any gaps.

A solution for this problem is to downweight occurrences that contain matong gaps. Such
feature representation is the basigiap-weighted string kernel$n string matching, there are many
approaches for weighting gaps (see e.g. Eppstein, 1989; Gordb2808). We consider two gap-
weighting schemes, both of which downweight occurrences exponeritiatigreasing gap number
or length.

When downweighting by the total length of gaps the weight of an occuereac(iy,...,iq)
with spanspar(i) = iq— i1+ 1 is defined aa3P21) where 0< A < 1 is a fixed penalty constant.
The feature values are then defined as a normalized sum of occuweiytes

Q(s) =1/A% 5 APl

iu=s(i)

The normalization A9 ensures that only gaps—not matches—are penalized. This normalization is
important when using substrings of different lengths as the indek/setherwise short substrings
easily get too much weight.

In some applications the actual length of the gaps may not be important but itiieenof
contiguous substrings that compose the gapped subsequence may belevarg. The features to
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be computed will then be
@u(s) = Z AZilliea=ii>1] 5P,
i:u=s(i)
where the expression inside the indicator functjehcounts pairs of adjacent indic€s,ij1)
within i where there’s a gap in between the two indices.

In literature, two approaches for computing gapped substring kernpésagpa dynamic pro-
gramming approach (Lodhi et al., 2002) and a trie-based approaskiglet al., 2002), both of
which can deal with gap-weighting as well. We review the dynamic programmipgpaph and
a variant of the trie-based computation in Section 3, followed by a present#Htibe new sparse
dynamic programming approach.

Generalized alphabets. We conclude this section by noting that treating text as strings of charac-
ters is not the only and not necessarily the best approach. Depemtihg application, considering
larger units such as syllables (c.f. Saunders et al., 2002) or word<@nicedda et al., 2003) may
be beneficial. Using the texthe cat was chased by the fat dog’ as the example, if words

are used as the alphabet:

e Substrings are word sequences, or phrases: Was chased’.

e Gapped substrings will be phrases with some words skippeat: ? chased ? ? ?
dog’.

e Penalizing gaps will decrease the weight of phrases that span too lortysegenent. For
example, the weight otat was chased’ would be higher than that otat ? chased ?
? ? dog’ as the former phrase exists in the text as such whereas the latter contains tw
gaps of total length four.

Using phrases as features has a potential advantage over the wagdsfrepresentation, as the
ordering and the proximity of the words is taken into account. Thus sugbresentation should be
able to more closely capture syntactically and, ideally, semantically similar taxiesds.

There is, however, one drawback in using words or phrases asahgde, namely the slight
variations in the word occurrences that still correspond to the same meddiryy variations in-
clude alternative spellings, prefixes/suffixes attached to words or stends. These problems can
of course be tackled by preprocessing the documents. An alternapiveaa is the use of sylla-
ble alphabet: the text is treated as a sequence of syllafiles: cat was cha sed by the fat
dog’. The benefit is that small spelling variations or inflection of the word (echja'se’ vs. 'cha
sed’) are likely to retain some of the original syllables.

Compared to the character alphabet, word and syllable alphabets shavernefits. Firstly,
as argued above, using phrases of words or syllables are more likelptare meaning in the
text than arbitrary substring of characters. Secondly, as the docigizendrastically goes down
when moving from character to syllable and word alphabets, computateqatements decrease
as well.

3. Computing Gap-Weighted String Kernels

Let us now concentrate to the question how to efficiently compute the gapmedigtring kernel:

K(Svt) = %%(S)%(t)v 3)
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Figure 1: The co-occurrence trie of the example strings (top), and thetalive indices for the
substringst he’ and 't he dog’ in the two strings with numbers of gaps ranging from O
to 6 (bottom).

where the index set satisfigls=>PorU =9U...3P, and

Q(s) =1/AP 5 A (4)

i:u=s(i)

We will present three algorithms all of which are then experimentally compargdction 4. The
first is based on constructing an implicit trie data structure for the co-oogugapped substrings
in sandt. The second algorithm is the dynamic programming approach by Lodhi €@02), and
the third is a new method based on sparse dynamic programming.

As a running example we we use two strirgys 'The cat was chased by the fat dog’
andt = 'The fat cat bit the dog’ and, for illustration, we apply the word alphabet. Hence,
in the example, ’letters’ corresponds to English words, 'substrings’arisequences’ to English
phrases.

3.1 Trie-Based Computation

Trie-based computation (Leslie and Kuang, 2003; Cristianini and SHawler, 2004) of the gap
weighted subsequence kernel is based on making depth-first sefarcb-accurring subsequences
in the two strings, starting from co-occurring one-letter matches and emtgtite matches letter

by letter until the desired lengtp is reached. The search composes an implicit trie-structure of
matching subsequences in the two strings: each path from root to a nodspmnds to a subse-
guence that co-occurs in the two strings, in one or more locations, with muohlgaps at most
given integeigmax. The number of gaps need to be restricted in order to keep computatioargffic
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Thus the resulting kernel can be considered as an approximation ohgewo-occurrences with
mor thangmax gaps are discarded.

Figure 1 shows the trie structure of co-occurring subsequencesea@xdmple strings, when
the index set is fixed t&) = 23, the three word phrases. Below we briefly describe a trie-based
algorithm that is a slight variation of the one described by Shawe-Taytb€aistianini (2004) and
also bear resemblance to the related mismatch string kernel algorithm by Ltegli¢2003).

In a trie-node corresponding to subsequemeal; - - - Ug the algorithm keeps track of all matches
s(i) = u that could still be extended further. For each such index s .. .ig, the last indexq is
stored in a list ofalive matchesAs(u, g) whereg = sparii) — g is the number of gaps in the match.
Similarly for t the listsA;(u,g) are maintained. To expand a nodethe algorithm looks for all
possible letters the matching subsequence can be extended to a longenen&tmhan alive match
i € As(u,0) and allg’ < gmax— g the algorithm puts the indicast 1+ ¢’ into As(uS111¢,9+9').

The listsA(ut11,¢,9+¢') are constructed the same way. The search is continued for medes
for which both(UgAs(uc, g)) and (UgA[(uc, g)) are non-empty, that is, there is at least one occur-
rence ofucin boths andt, with some number of gaps. This makes the trie much sparser than the
subsequence tries for either one of the strings alone would be.

In our example (Figure 1)} he’ is encountered in positions 1 and 6 gfwith (trivially) no
gaps, and in positions 1 and 5tinTo find the alive indices fort’he dog’ the algorithm searches
for the occurrence ofdog’, in sfrom indices 2 and 7 onwards, and finds the occurrence in position
6, corresponding to an occurrence with 1 and 4 gaps, respectivlijaSanalysis is performed for
t. When a nodei in depthd is encountered one easily obtains the relevant terms in the kernel via
computing the sum

WEXM = T AFA(U,go)| - AT A (U, gy)].
Os,0t
If a lengthp subsequence kernel is being computed this computation only need to bepesf
in the leaves of the trie. For bounded-length subsequence kernel, tgutation needs to be
performed in all trie nodes that are in detkc d < p.

Note that the above approach differs from tlgek)-gapped trie algorithm by Leslie and Kuang
(2003) in two respects: First, the stringandt are not broken into frames before the search but
the algorithm maintains the lisfs(u, g) to keep track of the subsequence occurrences. Second, the
algorithm keeps track of the number of gaps in the occurrences durirsg#tieh. This relieves us
from the need to embark on dynamic programming search in the trie leaves tateothe values
Qu(S)Qult).

The worst-case time complexity of the algoritk@(,(p+gma*) (Is|+1t])), arises whes=t, which
follows from noticing that each position in the two strings is a start location o-accurring
subsequence, and there a)e(p+gmax)) possible combinations of assignipdetters andymax gaps
in a window of lengthp+ gmax Note that if no gaps are allowed we get the time complexity
O(p(|s| + |t|) matching the suffix tree approach.

3.2 Dynamic Programming Computation

The basis of dynamic programming computation of the string kernel (3) is llbe/fog observation:
if there is a co-occurrence of substring. .. ug that ends in positionkth and|’th position ofs and
t, respectively, two conditions must be satisfied:

1. there must be a matching pair of characters in the last positgast;, and
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dog ) )\2” dogw L

Figure 2: The co-occurrence weights of length-one (a) and lengthifijveubstrings. Computing
K2(6,8) requires efficiently maintaining the appropriately scaled sum of the weights in
the shaded region af;.

2. there must be a matching prefix...uy—1 that ends in some positian< k in string s and
some positionj < | in stringt.

Moreover, ignoring the normalizatiory429, the co-occurrence weight can be computed by from
the weight of the prefix co-occurrence by extending the subseqgsievitek —i andl — j letters,
respectively:

psparifis...igK) . yspart[is....ig!]) — yspar(fiv.-iq)) . yspar(is-.ial) . \k-iqp! ~ia.

Denoting bykq(k,!) the sum of weights of length-substring co-occurrences, again ignoring the
normalization 1)\2‘1, that end at positionlsandl in sandt, respectively, the above observations can
be summarized in the following recurrence

kg(k.l) = N[sc=1] o forq=1, and )
T T S ja N Ik ) [sc=t],  forg>1,

where Figure 2 depicts the idea behind the recurrence (5): to comg®t&) we need to extend the
length-1 matches in the shaded regiefii, j),i < 5, ] < 6, into length-2 matches by adding gaps.
The weights of two length-1 matches in positiqdsl) and(3,2) are rescaled before summation:
)\8 +)\11 — )\573+672)\2 +)\57l+671)\2_

The dynamic programming algorithm (Figure 4) computes this recurrendatiyng with sub-
sequence length 1, which requires looping through all pairs of positionsin the two strings,
checking for matching letters and summing up the co-occurrence weightscoReenience, the
algorithm computes the sum of weights without the normalizatioxf9that is applied in the final
phase when computing the kernel vakig).

Longer subsequences are handled in increasing order of lengthcondaoce to (5). How-
ever, computing the double sum for egéhl) (e.g. the shaded region in Figure 2) would be very
inefficient, hence instead, a separate table storing the double sum

SIel) =3 3 Nl
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3 3
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Figure 3: The tablé& (right) stores the scaled sums of co-occurrence weights of the prefites
strings. The valug(k, ) is computed in constant time by addingkip 1(k, 1) AS(k—1,1)
(horizontally striped area) ankiS(k,| — 1) (the vertically striped area) and subtracting
A2S(k—1,1 — 1) (the intersection) that would otherwise be doubly counted.

is maintained. With that auxiliary table, computing the recurrence is very simple
Kq(k,1) = [sc =t ]A2S(k— 1,1 - 1).
Maintenance of the tabl®can be done efficiently via the relationship
S(k,1) = Kg-1(k,1) +AS(k—1,1) +AS(k,| — 1) —A2S(k— 1, — 1), (6)

where the first term computes the contribution of the gell), the two middle terms the regions
{(i, D]i<k,j<l}yand{(i,])|i <k, j <}, respectively, and the last term subtracts the twice counted
region{(i, j)|i <k, j <I}.

In Figure 3 the computation of the val&¢4,5) = A® + A% is depicted. The value can be seen as
the sum of weights of matchinghe ? ? 2 with’the 2 2 2 ?’' (weightA*-A%) and t he’
(A%-A), and cat’with’cat 2 2?2 2 2 (weightA-AS).

The algorithm has time complexit(p|s||t|) which is immediately seen from the pseudocode
in Figure 4. It is possible to optimize the algorithm to consume less memory. As thgutation
proceeds in increasing order of subsequence length and only theysdength is referred to, it
suffices to maintain a single taltethat is reused for values,, ..., K. Also, it suffices to maintain
a one-dimensional vectd¥(j) instead of the matrbXS(i, j), as the computation proceeds in the
increasing order afand only the value§(i — 1,:) are referred to when computirgi, :).

3.3 A Sparse Dynamic Programming Algorithm

In this section we describe a new algorithm for gap-weighted string keoraputation that is
based orsparse dynamic programmir(@&ppstein et al., 1992). These algorithms utilise the fact
that most entries in the dynamic programming matrix do not actually contribute teshés. The
technique has been previously used, for example, to speed up traiaspiogariant string matching
(Makinen, 2003) and, more close to our problem, in computing the longest-cosubsaquence
of two strings given a fixed set of basis fragments (Baker and Giand24s3).
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function K = DYNPROG(s,t,p,lambda)

K1 = zeroglength(s),lengtht));
K(1) = 0; % length-1 co-occurrences
for i =1:length(s)
for j =1 :lengtht)
it s(i) =t(j)
Ki(i, ) =A%
K(1) = K(1) +Ka(i, });
end
end
end
K(1) = K(1)/A?; % renormalize

for | =2: p % co-occurrences of length 2...p
K(l)=0;
S(1:(1—-1),1:lengtht)) =0;S(I : length(s),1: (I —1)) = O0;
for i =1 :length(s)
for j =1:lengtht)
S(i7 J) = Kl—l(i7 J)+)\S(| -1, J)+
NS, j—1)—A2-Si-1,j-1);
it s(i) =t(j)
K|(i,j):)\2'S(i—1,j—1);
K =K +ki(i,j);

end
end
K(I) =K(I)/A?; % renormalize
end

Figure 4: Dynamic programming algorithm for gap-weighted subsequestcelkcomputation. It
takes a input two strings, subsequence lengénd a penalty coefficiet, and returns
the kernel value& (1),...,K(p) corresponding to different subsequence lengths.
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Our algorithm is easiest to understand as a speed-up method for the dypragiamming
approach described in Section 3.2. Despite its relatively low time-complexitgldloeithm makes
unnecessary computations: the vafijk, |) is required only whes, = t;, but computing that value
using (6) dictates that all valuéi, j),i <k, j <| are computed. In the following we present an
algorithm that avoids these unnecessary computations via replacing the 8waitixa query tree
that can be used to retrieve the val@s j) as needed in logtime.

Another change to the original dynamic programming algorithm is that the matisreplaced
with a set of match lists

Mq(i) = ((J1,Kq(i, })), (J2,Kq(i 1)), - )

whereKq(i, j) = A™ 11 . kq(i, j)) can be interpreted as extending the lengtbe-occurrences
ending withs andt;, respectively, with dummy gaps spanning positiohd tomin sand positions
j+1tonint. The use of such dummy gap weighting relieves us from repeatedly scaditkgthel
values as the search progresses: for @b it holds that

Ro(kl) = [8=t] Y ¥ Ko 1(i ) ()
i<kj)<

and the valueS(k,1) = 3y Y j<1Kq-1(i, j) can be updated as the search proceeds without perform-
ing any rescaling of the itenfS(k, 1) = S(k— 1,1) + 5 ;1 Kq-1(K, j). This fact will be essential for
maintaining our range-sum tree data structure, described below.

The data structure used for the queries belongs to the family of one-dimahsimge query
data structures, frequently used in computational geometry, online anbjytizessing (OLAP)
and other fields where efficient range queries are needed (de Balrgk997; Agarwal and Erick-
son, 1999).

Therange sum treéor a set of key-value pait$ = {(j1,v1),...,(jn,Vh)} C {1,...,n} xRisa
binary tree of heighh = [logn| where the nodes are in one-to-one correspondence with the keys
in the range. The root contains the kéy Baves contain all odd keys in the range and and if an
internal node in deptl = {0,...,h— 1} contains keyj, its left child contains the key — 2h-1-d
and the right child, when it exists, contains the key 2"1-9. With each keyj in depthd a value
is stored that represents a sum of item weights in a subrigngg™ 9 + 1, j]. Itis easy to see that
this subrange exactly covers the keys that are covered by the ndtisisdaee and the node itself.
The range sum can be used to return the sum of values within an infgrjiaih O(logn) time by
traversing the path from the nogéo the root, and computing the sum

Rangesurtil, j]) = v; + v
{heAncestor§j)|h<j}

Also, adding an itentj,v)to the tree takes tim@®(logn): we need to add to nodej and the set
{h € Ancestorsj)|h > j}.

For our algorithm, we will use the tree to query the valGég|) = A™*"-IS(k I). To cope
with this two-dimensional query region, we maintain the tree so that, whengwsiogethe match
list Mq(k) the tree will contain itemgj,vj), 1 < j < n, v; = 3 «Kq-1(i, ), and thus the one-
dimensional range query

Rangesurfil,| —1]) = Zvj = Z(Ziq,l(i, i) =98kl

< i<k]<
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Figure 5: The range-sum tree on the right, with a query path (emphagigesg)eand an area of
thek1 matrix corresponding to the query path (grey and black strips) on the taftirt
from the leaf, the values in nodes that are left children of their pareatsdated together.

will return the desired answer.

Figure 5 depicts the state of the range-sum tree when computing thexyggfii6). The node 5
will contain value 0 as there are no subsequence co-occurrences thehstrip(i,5),i < 5. On the
other hand, the key 4 will contain the val& + A4 corresponding to the two co-occurrences within
the (shaded) regiofi, j),i < 5, ] € [1,4], scaled with the dummy gapall = A2A\6-3+8-2 \14 —
A2A\6-1+8-1 The sum of weights in the shaded region is computed by adding the valueo@iérbn
corresponding to the empty black region, the value in node 4 correspptadihe grey region and
skipping node 6 as 6 5.

The sparse dynamic programming algorithm is shown in Figure 6. The algda#tes as input
asetM; = {My(1),...,M1(m)} of match lists

Ma(i) = ((ja,Ka(i, J)), (J2,Ka(i, ])),-- )

that have been created in a preprocessing step t&ing- m+ |Z| + [M1|) time and space. This
preprocessing involves creating for each characterz a list1(c) = {j[tj = c} of indices in the
stringt that contain the character To create a match li$¢1(i) then involves copying the indices
in 1(s) to My(i) and storing the corresponding valuegi, j) = A™ +"~IA2 with the indices.

The main algorithm computes the kerigls,t) = kp(m, n) by incrementally working out match
setsMy, ..., Mp, corresponding to subsequence lengths.2p.

The processing of subsequence lergémtails making one pass through the match Bkts; (k)
in increasing order ok. When constructing match lidélq(k) the algorithm traverses match list
Mq-1(k), and for each itengj, K) in the list makes a range queRangeSuiil,| —1]) = 3« ¥ j< Kq-1(i, ),
and, if the result is non-zero, inserts the itéiyRangeSuiij1,| — 1])) to the listMq(k). After cre-
ating each lisMq(Kk) the tree is updated with the contentsvf_1 (k).

Finally, the kernel valu&(s,t) is computed by traversing the match lidty(k),1 <k <m,
rescaling the stored values to remove the dummy gap and summing up the reatadsd
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function K = SPARSEM1, p,A)

forg=2:(p—1)
RangeSuifi : [t|) = O0; % initially the ranges are empty
fori=p:m
% compute the kappa values for the next level
Mq(i) = {};

for (jn,Kn) € Mg-1(i)
S=queryRangeSuml, j, — 1]); % make range query
if S>0
Ma(i) = Mq(i) U (jn, S);
end
end
% update the range witklq_1 (i)
for (jn,Kn) € Mg-1(i)
updatéRangeSunt jh,Kn));
end
end
end
% compute the values for the final level
K=0;
fori=p:(m-1)
for (jn,Kn) € Mp_1(i);

if jn < n
K = K +KnA!*th: 9% rescale to remove the dummy gap
end
end

end

Figure 6: The algorithm for computing the gap-weighted subsequencasl Ker two stringss
andt. The algorithm takes as input a match 8t = {M1(1),...,M1(m)}, a penalty
coefficient O< A < 1 and subsequence length
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The queries and updates amoun@idogn) per item in the match list so the time complexity to
process leved| is O(|Mq|logn). Since we havéM| > M| > --- > |[My], the total time complexity
will be O(p|M3]|logn). On random stringfM4| ~ |s||t|/|Z|. Hence, the sparse algorithm is likely to
excel when log/|Z| is small, which we verify in the experiments presented in Section 4.

3.4 Variants and Implementation
The presented algorithm can be modified to compute many of the string kemmeaits:

e A kernel only counting the number of co-occurrences of substringsvially obtained by
settingA = 1. In practical implementation, one can remove the scaling/rescaling opearation
from the algorithm, thus reducing the constants hidden in the asymptotic time-ocdtyiple

e Bounded-length subsequence kernels are straight-forward to olftaineach subsequence
lengthg < | < p, the sum of weights in the match lists, rescaled to remove the dummy gaps,
needs to be computed, as opposed for the lepgihly, as in the original algorithm. Thus,
kernels of the fornK(s,t) = zg:lquq(s,t),wq € R are easily obtained.

e Weighting by the number of gaps and the use of character specific gaftipgonly require
minor modifications to the algorithm (see below).

However, soft matching approaches (c.f Saunders et al., 2002)ewiwst of the characters can be
matched with each other with different costs (or utilities), are beyond thisitdgo This is because
the efficiency of the algorithm relies on the match détsto be sparse.

Weighting by the number of gaps. It is straightforward to modify the algorithm to penalize the
number of gaps in the subsequence, instead of the total gap length. rileé ke

Kam(st)= 5 (SO, with ¢f(s) = 3 ATzl y e 5P,
ue2P

iu=s(i)

can be computed via the recurrence
Kq(k,l): [S :td( Z )\qufl(i,j)
i<k-1)<l-1

+ AKg—1(i,1 —=1)+ AKg-1(k—1,]) +Kg-1(k—1,1 —1)) (8)
i<k—1 j<l-1

which again leads to th@(p|g||t|) time complexity. The first term takes into account co-occurrences
where one gap is inserted to both the matched subsequences. Theaeddiidd term correspond
to matches where a gap is inserted to occurrence®inly andt only, respectively. The last term
takes into account matches where no gap is inserted to sitrér

The sparse dynamic programming algorithm can be made to compute this neeusti-
ciently by a simple modification: The range sum tree updates need to be lagagen literation
so that, when creating the match I (k), the tree will not yet contain the values in the match list
Mg-1(k—1); these values will be added to the tree after handling the matdiddig). By such an
arrangement, the recurrence can be computed as

Kq(k,1) =[s =tj] <}\2-Rangesur(r{l,l —2])+A-Rangesurfjl —1,1 —1]) +Ar(j) +Kg-1(k—1,1 — 1)),
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where the values(j) = ¥j-_1Kq-1(k—1,]) are incrementally computed while processing the
match listMq_1(k— 1). The algorithm’s time complexit®( p|M|logn) will not change.

Character-specific gap and match weights. Another variant is to let the gap penalty depend on
the character that was skipped, so that we have a set of perfditiesc ~}. To implement this
we need to precompute a vectg = (Ask)l‘il, Ask = Ag, X -+ X Ag_ @nd an analogous vectdy
for stringt. In the algorithm, when storing the itery_1(i, j) in the range sum tree, it is first
scaled byAsm/As;i - Atn/A,j to introduce a dummy gaggi + 1 : m) andt(j + 1 : n) with character
specific weighting. As with uniform gap weights, when computing the finall leescaling by
Ask/Asm- At /A0 is needed to recover the valug(k, ).

The approach can easily extended to handle different weights for nsaiodeyaps, as suggested
by Cancedda et al., (2003). This only requires performing a scaling

Kq(k,1) = Ya ﬁRangeSuml, I —1]),
)\Sk )\t|
wherey, andA, are the match and gap decays for letiarespectively, to reflect the fact thatwas
matched td; rather than skipped over.

Implementation. The algorithm described above has been implemented in MATLAB 7.0. The
code has been heavily tweaked to ensure that the benefits suggestedreyithal analysis can also
be realized in practise. The major tweaks include

e Range sum tree storageln our MATLAB implementation, the range sum tree is implicitly
stored in a weight vectav storing the sum of the left subtree of each node jI< n. To speed
up computations we also precompute in separate tables the nodes that negibied when
guerying or updating the range sum tree. For example, in the situation dkjpidteure (5)
the precomputeduery pathfor will contain the nodes 4 and 5. The correspondipglate
pathwill contain the nodes 6 and 8.

e Avoiding numerical underflow. The algorithm in Figure 6 stores the items in the form
)\m‘””—qu,l(i, j) and rescales them when computing the lgwelThis approach suffers
from the potential of numerical underflow when handling long stringsrdieioto avoid that,
we divide the index plane into rectangles of height and width sufficiently sfiefiending
on the value\) such that within a rectangle’,x"] x [y,y”] the values are stored in the form

MY == The handling of the boundaries of the rectangles causes a small additivead
to the time complexity. The same technique can be used with the above discasaats\as
well.

The implementation of the sparse dynamic programming algorithm is available via \Wgviw
the home page of Juho Roushitp: //wwwcshelsinkifi/juho.rousu

4. Empirical Evaluation

We compared the time consumption of the following gapped string kernel algitall imple-
mented in MATLAB:

SPARSE The new sparse dynamic programming algorithm.
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Time consumption of SPARSE on random strings Relative time consumption: time(SPARSE)/time(DYNPROG)

10000

1000

on

000%

me consumpt
A A

a5 a

Q8 o

g g3

L L

relative t

10% 77 ; 2

512 1024

21024048

2048

s 1024
Eitns 51 )
< 32 64 12829 409 g19p" 2048 alphabet size |A|
g 16

32 2 4 string length |s],|t|

string length [s],|t| alphabet size |A|

Figure 7: The time consumption of SPARSE in seconds (left) and relative timguogption of
SPARSE relative to the time consumption of DYNPROG (right). The subseguen
lengthp = 10 was used. Note the logarithmic scale on all axes.

DyNPROG. The full dynamic programming approach of Section 3.2.
TRIE. The Trie-based computation approach of Section 3.1.

Note that, differently from RIE, DYyNPROGand S ARSEplace no hard restriction on the gap length
but softly penalize the increase in gap length. We used three data setsfipaxng the algorithms.

e Randomly generated strings, with varying length and alphabet sizes.

e 1000 random English news article pairs from the Reuters-21578 caguesented as se-
quences of syllables. The size of the syllable alphabet was 3769.

e 1000 random document pairs from the Chinese part of the Reuter's muwaliiRCV-2 cor-
pus. The size of the alphabet was 3142.

The tests were run on a 3GHZ Pentium 4 processor with 1.5GB main memory.

4.1 Results on Random Strings

In our first test we tested the time-consumption of the algorittnRSE as a function of string
length and alphabet size. Figure 7 depicts the results. On the left the atgerthsolute time
consumption is shown. The inverse dependency of the time-consumption aipttabet size is
clearly visible. Also, the larger the alphabet, the slower the time-consumpticgases when the
string length is increased.

On therightin Figure 7 the time-consumption of the sparse approach retathefull dynamic
programming approach is shown. With small alphabets and short strimgsHD G is faster than
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Relative time consumption: time(TRIE)/time(SPARSE)
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Figure 8: The relative time consumption time(E)/time(SPARSE of the algorithms, as a function
of alphabet size and gap length. The subsequence lgngttO and string lengttg|, |t| =
512 was used. Note the logarithmic scale.

SPARSE With long strings and large alphabets the roles reverse: on strings litvaget 024 letters
and alphabet sizes over 256, theaBsecan be an order of magnitude faster therNBROG.

In our second test we compare the speed®miETalgorithm to the 8aArRsEalgorithm. Figure 8
depicts the relative time consumption as a function of alphabet size and ggb.|&Subsequence
length of 10 and string length of 512 were used. SineeR&Edoes not place any restriction to
the gap length, in the comparison only the time taken ByeTactually varied when the maximum
number of gaps was varied.

The figure shows thatRiE algorithm gets very significantly slower tharA&RSewhen more
gaps are allowed especially so on small alphabetsleTs faster than BARSE only when the
number of gaps is restricted to 2 or below. On very large alphabets eadloding gaps does not
bring TRIE below the time consumption ofFARSE

The fastest algorithm as a function of string length and alphabet size icteljn Figure 9,
with different settings for the subsequence lengthand the maximum number of gaps allowed in
the TRIE algorithm. DrNPROG s the fastest method on short strings independent on the alphabet
size and the subsequence length (a-d). If no gaps are allowad,i§ competitive on small to
medium-size alphabets and long strings (a). When the subsequence leingiteésed, RIE is
faster than 8ARSE even on large alphabets (c). The situation changes when gaps aredallowe
in TRIE algorithm: then 8ARSEIs the best method on large alphabets, arvakBrROG on small
alphabets, RIE excelling on medium-sized alphabets if long subsequences are seavcled f
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subseq. length p=5, gaps=0 subseq. length p=5, gaps=3

(@) (b)

1500

=
o
S
=]

string length
string length

a
=3
]

500 1000 1500 2000 500 1000 1500 2000
alphabet size alphabet size

© subseq. length p=20 @ subseq. length p=20

string length
string length

500 1000 1500 2000 500 1000 1500 2000
alphabet size alphabet size

Figure 9: The fastest algorithm as a function of string length and alpls&metwith different sub-
sequence lengths (p) and upper bounds for the number of gaps irtBal§orithm.

4.2 Results on Reuter’'s News Articles

Our second set of experiments tests the speed of kernel computation dRetwer's newswire
article data sets, English articles from Reuters-21578 corpus repedssssequences of syllables
and Chinese articles from the multilingual RCV-2 corpus.

We computed the gap-weighted string kernel usingNBrROG and SPARSEfor 1000 random
document pairs, varying the subsequence lengths in the range 5@@. preliminary experiments,
TRIE was significantly slower than both of the dynamic programming approachbssadata sets.
Hence, we omitted that algorithm from the comparison.

The results on the English news articles are summarized in Figure 10. Indhe égch docu-
ment pair is plotted to the location corresponding to the (geometric) mean leniyth dbcuments
(x-axis) and the inverse of the match frequensijt|/|M| (y-axis), which also can be thought as
the effective alphabet size: if the syllables were independently randorayndfrom alphabet of
size|Z| = |9||t|/|M], the expected size of the match set wouldMé Note that, due to the skewed
distribution of syllables in the documents this number is usually significantly lovaerttie size of
the syllable alphabet.

The marker type corresponds to the minimum subsequence lpngtijuired to make SARSE
run faster than BNPROG on that document pair. Document pairs marked with '+’ require
20, circles require 1¥ p < 20, boxes require & p < 10, and for diamondp < 5 is sufficient.
Similar behaviour to that observed in the tests involving random strings caede the longer the
documents and the sparser the match matrix, the smaller valpeswafices to make SARSEthe
faster algorithm.
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Subsequence length regimes where SPARSE is faster than DYNPROG, English text, syllable representation
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Figure 10: Regimes of subsequence lengtldocument size (x-axis) and inverse frequency of
matching letters (y-axis), whererSRSEis faster than ®NPROG on English syllable-
represented news articles. Document pairs marked with '+’ require20, circles re-
quire 11< p < 20, boxes require & p < 10, and for diamondp = 5 is sufficient.

The results on Chinese news are summarized in Figure 11. The behaMiberatgorithms can
be seen to be essentially the same as on the syllable converted English textodomgents and a
sparse match matrix favourSRSE

5. Discussion and Open Problems

Based on the presented experiments, the full dynamic programming appsdhe fastest method
on short strings. On longer strings, the best algorithm depends onpattemeters: if the alphabet
is large the new sparse dynamic programming approach is the fastest methed|fpfhabet is small

DYNPROG s the best method. On medium-sized alphabets, the trie-based approantpétitive

if the number of gaps can be strongly restricted.

The observed relative performance can be explained as follows. Wieealphabet size is
small, allowing more gaps rapidly expands the number of partially matching quéisees. Since
TRIE explicitly keeps track of them, its time-consumption increase@RSEalso suffers on small
alphabets. However, it can never be worse thamBroOG by more than a log factor. On large
alphabets, RIE has an overhead of keeping track of all subtrees that may or may nbtode
expanded. The improving performance ®IE by increasing subsequence length is also easy to
explain: the trie becomes the sparser the deeper the search level. Epenitg the search is
relatively cheap.

From the point of view algorithm development, an open question is whethgmtbeomplexity
of the sparse dynamic programming approach could reduced li@{p\M|logn). The literature
on geometric range searching does not a direct route forward: ng stdectures are known for
one or two-dimensional range queries that can be maintained in less thatizathOflogn) time
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Subsequence length regimes where SPARSE is faster than DYNPROG, Chinese text
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Figure 11: Regimes of subsequence lengtldocument size (x-axis) and inverse frequency of
matching letters (y-axis), whererSRsSEis faster than PNPROG on Chinese news ar-
ticles. Document pairs marked with '+’ requie> 20, circles require 1X p < 20,
boxes require 62 p < 10, and for diamondp = 5 is sufficient.

per query (Agarwal and Erickson, 1999), even when taking adgerafithe fact that the points are
situated on an integer grid (Overmars, 1988, Alstrup et al., 2000). Orthiee lsand the best lower
bounds are of orde®(loglogn) per query (Chazelle, 1995).

There are amortize@(a(n)) time range query methods, wherén) is the inverse Ackermann’s
function, but they requir®(|s||t|) (Chazelle and Rosenberg, 1989)2{tM|?) preprocessing (Poon,
2003)—which would lead t@®(p|s||t|) andO(p|M|?) total time complexity in our case, if applied in
a straightforward manner. But, could we @¥tp|M|a(|M|) +|g||t|) complexity by taking advantage
of the fact that the match sets satisfy > M, O --- D Mp? Moreover, each match 9 is highly
structured: for each < i < |s| we make the the range quesgquencdl, j1] C [1, 2] C --- C
[1,jr], wheres =t;,,l < jn < [t|. In addition, fori andi’ that satisfys = s, exactly the same
guery sequence is made. However, taking advantage of this appearadarivial. For example,
maintaining a separate range-query index for each character woultine®(p|M||Z|) ~ O(p|d||t|)
time complexity.

6. Conclusions

We presented a sparse dynamic programming algorithm that efficiently casrthatgap-weighted
string kernels. The algorithm is easily adaptable to different string keer&lnts, including fixed-
length and bounded-length subsequence kernels and differentegafization schemes, includ-
ing penalization by total length of the gaps and number of the gaps as weéiaeacter specific
gap/match penalization.

Our empirical results suggest that the sparse dynamic programming appmadd be useful in
text categorization applications when using syllable or word alphabeth. &jpicabets have shown
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to be useful in document classification tasks (Saunders et al., 2002e@#met al., 2003). As the
algorithm scales well to long documents when the alphabet is large, it codldgein classification
of longer documents than the relatively short news stories, for instankckngth research articles.
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