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Abstract
AdaBoost produces a linear combination of base hypotheses and predicts with the sign of this linear
combination. The linear combination may be viewed as a hyperplane in feature space where the
base hypotheses form the features. It has been observed thatthe generalization error of the algo-
rithm continues to improve even after all examples are on thecorrect side of the current hyperplane.
The improvement is attributed to the experimental observation that the distances (margins) of the
examples to the separating hyperplane are increasing even after all examples are on the correct side.

We introduce a new version of AdaBoost, called AdaBoost∗
ν, that explicitly maximizes the

minimum margin of the examples up to a given precision. The algorithm incorporates a current es-
timate of the achievable margin into its calculation of the linear coefficients of the base hypotheses.
The bound on the number of iterations needed by the new algorithms is the same as the number
needed by a known version of AdaBoost that must have an explicit estimate of the achievable mar-
gin as a parameter. We also illustrate experimentally that our algorithm requires considerably fewer
iterations than other algorithms that aim to maximize the margin.

1. Introduction

Boosting algorithms are greedy methods for forming linear combinations of base hypotheses. In the
most common scenario the algorithm is given a fixed set of labeled training examples and in each
iteration updates a distribution on these examples (i.e. a set of non-negativeweights that sum to
one). It then is given abasehypothesis whose weighted error (probability of wrong classification)
is slightly below 50%. This base hypothesis is used to update the distribution on the examples:
The algorithm increases the weights of those examples that were wrongly classified by the base
hypothesis. At the end of each stage the base hypothesis is added to the linear combination, and the
sign of this linear combination forms the current hypothesis of the boosting algorithm.
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The most well known boosting algorithm is AdaBoost (Freund and Schapire, 1997). It is ”adap-
tive” in that the linear coefficient of the base hypothesis depends on the weighted error of the base
hypothesis at the time when the base hypothesis was added to the linear combination. AdaBoost
has two interesting properties. First, along with earlier boosting algorithms (Schapire, 1992; Freund,
1995), its training error has the following exponential convergence property: if the weighted train-
ing error of thet-th base hypothesis isεt = 1

2 −
1
2γt , then an upper bound on the training error of

the signed linear combination is reduced by a factor of 1− 1
2γ2

t at staget. Second, it has been ob-
served experimentally that AdaBoost continues to “learn” even after the training error of the signed
linear combination is zero (Schapire et al., 1998). That is, in experiments thegeneralization error
continues to improve. The signed linear combination can be viewed as a homogeneoushyperplane
in a feature space, where each base hypothesis represents one feature or dimension. We define the
marginof an example as a signed distance to the hyperplane times its± label (See Section 2 and
Appendix A for precise definitions). As soon as the training error is zero,the examples are on the
right side and all have positive margin. It has also been observed that the margins of the examples
continue to increase even after the training error is zero. There are theoretical bounds on the gen-
eralization error of linear classifiers (e.g. Schapire et al., 1998; Breiman, 1999; Koltchinskii et al.,
2001) that improve with the margin of the classifier, which is defined as the sizeof the minimum
margin of the examples. Thus the fact that the margins improve experimentally seems to explain
why AdaBoost still learns after the training error is zero.

There is one flaw in this argument: AdaBoost has not been proven to maximizethe margin of the
final hypothesis. We demonstrate this experimentally in Section 5. Moreover,Rudin et al. (2004a,
2005) recently showed that there are cases where AdaBoost provably does not maximize the margin.
Breiman (1999) proposed a modified algorithm – called Arc-GV (Arc ing-GameValue) – suitable
for this task and showed that itasymptoticallymaximizes the margin. Similar results are shown in
Grove and Schuurmans (1998) and Bennett et al. (2000). In this paper we present an algorithm that
produces a final hypothesis with margin at leastρ∗−ν, whereρ∗ is the unknown maximum margin
achievable by any convex combination of base hypotheses andν a precision parameter.

If we know ρ∗, then a linear combination with margin at leastρ∗ − ν can be found by a pa-
rameterized version of AdaBoost called AdaBoostρ (cf. Rätsch et al. (2001); R̈atsch and Warmuth
(2002)): When the parameterρ of AdaBoostρ is set toρ∗ − ν, then after2lnN

ν2 iterations, where
N is the number of examples, the margin of the produced linear combination is guaranteed to be
at leastρ∗ − ν. The case whenρ∗ is not known is more difficult. In a preliminary conference
paper (R̈atsch and Warmuth, 2002) we used AdaBoostρ iteratively in a binary search like fashion:
log2(2/ν) calls to AdaBoostρ are guaranteed to produce a margin at leastρ∗−ν. All but the last call
to AdaBoostρ are used to find a suitable value of the parameterρ and in the last call this parameter
is used to create the final linear combination in at most2lnN

ν2 iterations.
In this paper we greatly simplify our answer for the case whenρ∗ is unknown. We have a

newone passalgorithm called AdaBoost∗ν that produces a linear combination with margin at least
ρ∗−ν after 2lnN

ν2 iterations. Note that this is the same guarantee we had on the number of iterations
of AdaBoostρ when it used the theoretically optimal parameterρ = ρ∗ − ν. The new algorithm
AdaBoost∗ν uses the parameterν and acurrent estimateof the achievable margin in the computation
of the linear coefficients of the base learners.

Except for the algorithm presented in the previous conference paper,this is the first result on
the fast convergence of a boosting algorithm to the maximum margin solution thatworks for all
ρ∗ ∈ [−1,1]. Using previous results one can only show that AdaBoostasymptoticallyconverges to
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EFFICIENT MARGIN MAXIMIZATION WITH BOOSTING

a final hypothesis with margin at leastρ∗/2 if ρ∗ > 0 and if subtle conditions on the chosen base
hypotheses are satisfied (cf. Corollary 5).

Recently other versions of AdaBoost have been published that are guaranteed to produce a lin-
ear combination of margin at leastρ∗ − ν after Ω(ν−3) iterations (Rudin et al., 2004c,b). Even
though these algorithms have weaker iteration bounds than AdaBoost∗

ν, they were reported to per-
form better experimentally (Rudin et al., 2004c,a). We briefly compare AdaBoost∗ν to these more
recent algorithms and show that the better empirical performance was due tothe wrong choice ofν.

The original AdaBoost was designed to find a final hypothesis of margin at least zero. Our
algorithm maximizes the margin for all values ofρ∗. This includes the inseparable case (i.e.ρ∗ < 0),
where one minimizes the overlap between the two classes. In this case AdaBoost runs forever
without necessarily increasing the margin. Our algorithm is also useful when the base hypotheses
given to the Boosting algorithm arestrong in the sense that they already separate the data and
have margin greater than zero, but less than one. In this case 0< ρ∗ < 1 and AdaBoost aborts
immediately because the linear coefficients of such hypotheses become unbounded. In contrast, our
new algorithm also maximizes the margin when presented with strong learners.

The big advantage of this algorithm is an absolute bound on the number of iterations: After
2lnN

ν2 iterations AdaBoost∗ν is guaranteed to produce a hypothesis with margin at leastρ∗−ν. Our
algorithm is applicable in sophisticated settings where the number of hypotheses may be infinite. In
Appendix B we use AdaBoost∗

ν to learn a convex combination of support vector kernels and show
that the same guarantees hold on the number of iterations of the algorithm.

The paper is structured as follows: Section 2 introduces some basic notationand in Section 3 we
first describeAdaBoostρ which requires a lower boundρ of the maximum marginρ∗ as a parameter.
Then we present our new algorithmAdaBoost∗ν, which is similar to AdaBoostρ, but continuously
adaptsρ based on a precision parameterν. Up to this point we stay at a high level of presentation
with the goal of making our algorithms accessible to the quick reader. In Section 4 we introduce
more notation and give a detailed analysis of both algorithms. First, we prove that if the weighted
training error of thet-th base hypothesis isεt = 1

2 −
1
2γt , then an upper bound on the fraction of

examples with margin smaller thanρ is reduced by a factor of 1− 1
2(ρ−γt)

2 at staget of AdaBoostρ
(cf. Section 4.2) (A slightly improved factor is shown for the case whenρ > 0). However, to achieve
a large margin one needs to assume that the guessρ is smaller thanρ∗. For the latter case we prove
an exponential convergence rate of AdaBoostρ. Then we discuss a method for automatically tuning
ρ depending on the errors of the base hypotheses and a precision parameter ν. We show that after
roughly 2lnN

ν2 iterations our new one-pass algorithm AdaBoost∗
ν is guaranteed to produce a linear

combination with margin at leastρ∗−ν. This strengthens the results of our preliminary conference
paper (R̈atsch and Warmuth, 2002), which had an additional log2(2/ν) factor in the total number
times the weak learner is called and much higher constants. In Section 5, we compare the algorithms
experimentally and discuss heuristics for tuningν in Section 5.2. Finally we briefly summarize and
discuss our results in the Conclusion Section.

2. Preliminaries and Basic Notation

We consider the standard two-class supervised machine learning problem:Given a set ofN i.i.d.
training examples(xn,yn), n = 1, . . . ,N, with xn ∈ X andyn ∈ Y := {−1,+1}, we would like to
learn a functionf : X → Y that is able to generalize well on unseen data generated from the same
distribution as the training data.
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In the case of ensemble learning (like boosting), there is a fixed underlyingset ofbasehypothe-
sesH := {h | h : X → [−1,1]} from which the ensemble is built. For now we only assume thatH

is finite, but we will show in Section 4.5 that this assumption can be dropped in most cases and that
all of the following analysis also applies to the case of infinite hypothesis sets.

Boosting algorithms iteratively form non-negative linear combinations of hypotheses fromH .
In each iterationt, a base hypothesisht ∈ H with a non-negative coefficientαt is added to the linear
combination. We denote the combined hypothesis as follows (Note that we normalized the weights):

f̃α(x) = sign fα(x), where fα(x) =
T

∑
t=1

αt

∑T
r=t αr

ht(x), ht(x) ∈ H , andαt ≥ 0 .

The “black box” that selects the base hypothesis in each iteration is called theweaklearner. For
AdaBoost, it has been shown that if the weak learner is guaranteed to select base hypotheses of
weighted error slightly below 50%, then the combined hypothesis is consistentwith the training set
in a small number of iterations (Freund and Schapire, 1997). We will discuss bounds on the number
of iterations in detail in Section 4. Since at most one new base hypothesis is added in each iteration,
the size of the final hypothesis is bounded by the number of iterations. These bounds are important
because the sample size bounds provable in the PAC model grow with the size of the final hypothesis
(Schapire, 1992; Freund, 1995).

In more recent research (Schapire et al., 1998) it was also shown thata bound on the general-
ization error decreases with the size of the margin of the final hypothesisf . The margin of a single
example(xn,yn) w.r.t. f is defined asyn fα(xn). Thus the margin quantifies by how far this example
is on theyn side of the hyperplanẽf . In Appendix A we clarify how the margin of an example is re-
lated to its̀ ∞-distance to the hyperplane with normalα. The margin of the combined hypothesisf is
theminimum marginof all N examples. The goal of this paper is to find a small non-negative linear
combination of base hypotheses fromH with margin close to the maximum achievable margin.

The following table gives some of the main notations that will be used throughout this paper:

Symbol Description
n,N index and number of examples
m,M index and number of hypotheses if finite
t,T index and number of iterations
X input space
Y label space{±1}
(x,y) an example and its label
H ,hm set of base hypotheses and them-th element
α hypothesis weight vector
d weighting on the training set
I(·) the indicator function:I(true) = 1 andI( f alse) = 0
ρ the margin parameter of AdaBoostρ
{ρt} the sequence of margin parameters of AdaBoost{ρt}

ρ∗ the maximum margin
ρ̂t margin in thet-th iteration
ν the accuracy parameter of AdaBoost∗

ν
ε weighted classification error
γ∗ the minimum edge
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Symbol Description
γ an arbitrary edge threshold
γt the edge of thet-th hypothesis

3. AdaBoostρ and AdaBoost∗ν

The original AdaBoost was designed to find a consistent hypothesisf̃ which is defined as a signed
linear combinationf with margin greater zero. We start with a slight modification of AdaBoost,
which finds (if possible) a linear combination of base learners with marginρ, whereρ is a parameter
(cf. Algorithm 1).1 We call this algorithm AdaBoostρ, as it naturally generalizes AdaBoost for the
case when thetarget marginis ρ. The original AdaBoost algorithm now becomes AdaBoost0.

Algorithm 1: – The AdaBoostρ algorithm – with margin parameterρ

1. Input: S= 〈(x1,y1), . . . ,(xN,yN)〉, No. of Iterations T, margin target ρ

2. Initialize: d1
n = 1

N for all n = 1. . .N

3. Do for t = 1, . . . ,T,

(a) Train classifier on {S,dt} and obtain hypothesis ht : x 7→ [−1,1]

(b) Calculate the edge γt of ht : γt =
N

∑
n=1

dt
nynht(xn)

(c) if |γt | = 1, then α1 = sign(γt), h1 = ht , T = 1; break

(d) Set αt =
1
2

ln
1+ γt

1− γt
−

1
2

ln
1+ρ
1−ρ

(e) Update weights: dt+1
n =

dt
nexp(−αtynht(xn))

Zt
,

where Zt = ∑N
n=1dt

nexp(−αtynht(xn))

4. Output: fα(x) =
T

∑
t=1

αt

∑T
r=1 αr

ht(x)

The algorithm AdaBoostρ was already known asunnormalized Arcing(Breiman, 1999) or
AdaBoost-type Algorithm(Rätsch et al., 2001). Moreover, it is related to algorithms proposed in
Freund and Schapire (1999) and Zhang (2002). The only difference from AdaBoost is the choice of
the hypothesis coefficientsαt : An additional term−1

2 ln 1+ρ
1−ρ appears in the expression for the hy-

pothesis coefficientαt . This term vanishes whenρ = 0. The parameterρ can be seen as aguessof
the maximum marginρ∗. If ρ is chosen properly (slightly belowρ∗), then AdaBoostρ will converge
exponentially fast to a combined hypothesis with nearly the maximum margin. See Section 4.2 for
details.

1. The original AdaBoost algorithm was formulated in terms of weighted training errorεt of a base hypothesis. Here
we use an equivalent more convenient formulation in terms of the edgeγt , whereεt = 1

2 −
1
2γt (cf. Section 4.1).
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The following example illustrates how AdaBoostρ works. Assume the weak learner returns the
constant hypothesisht(x) ≡ 1. The weighted error of this hypothesis is the sum of all negative
weights, i.e.εt = ∑yn=−1dt

n and its edge isγt = 1−2εt . The coefficientαt is chosen so that the edge
of ht with respect to the new distribution is exactlyρ (instead of 0 as for the original AdaBoost).
More precisely, the given choice ofαt assures that this edge isρ only for±1-valued base hypotheses.

For a more general base hypothesisht with continuous range[−1,+1], choosingαt such that
Zt as a function ofαt is minimized, guarantees that the edge ofht with respect to the distribution
dt+1 is ρ. See Schapire and Singer (1999) for a similar discussion. Choosingαt as in step 3 (d)
approximately minimizesZt when the range ofht is [−1,+1].

In Kivinen and Warmuth (1999) and Lafferty (1999), the standard boosting algorithms are in-
terpreted as approximate solutions to the following optimization problem: choose adistributiond
of maximum entropy subject to the constraints that the edges of the previous hypotheses areequal
to zero. In this paper we use theinequalityconstraints that the edges of the previous hypotheses
are at mostρ. The αt ’s function as Lagrange multipliers for these inequality constraints. Since
g(x) = 1

2 ln 1+x
1−x is an increasing function,

αt =
1
2

ln
1+ γt

1− γt
−

1
2

ln
1+ρ
1−ρ

≥ 0 iff γt ≥ ρ . (1)

Notice that whenρ = 0, addinght or −ht leads to the same distributiondt+1. This symmetry is
broken forρ 6= 0.

Since one does not know the value of the optimum marginρ∗ is not known beforehand, one also
needs to findρ∗. In Rätsch and Warmuth (2002) we presented theMarginal AdaBoostalgorithm
which constructs a sequence{ρr}

R
r=1 converging toρ∗. A fast way to find a real value up to a

certain accuracyν in the interval[−1,1] is abinary searchsince one needs only log2(2/ν) steps.2

Thus the previous Marginal AdaBoost algorithm uses AdaBoostρr (Algorithm 1) to decide whether
the current guessρr is larger or smaller thanρ∗. Depending on the outcome,ρr can be chosen so
that the region of uncertainty forρ∗ is roughly cut in half. However, in the previous algorithm all
but the last of the log2(2/ν)

In this paper we propose a different algorithm, called AdaBoost∗
ν. Hereν > 0 is a precision

parameter. The algorithm finds a non-negative linear combination with margin at leastρ∗−ν. Like
Arc-GV (Breiman, 1999), the new algorithm essentially runs AdaBoostρ once but instead of using
a fixed margin estimateρ, it updatesρ in an appropriate way. We shall show iteration bounds
for our algorithm AdaBoost∗ν which are not known for Arc-GV. The latter algorithm produces an
essentially3 monotonically increasing sequence of margin estimates, while in AdaBoost∗

ν we use
a monotonically decreasing sequence. The improved sequence of estimatesis based on two new
theoretical insights, which will be developed in the next section.

We will show that the number of iterations required by the new one-pass AdaBoost∗ν algorithm
(see Algorithm 2 for pseudo-code) is at most2lnN

ν2 . This equals the iteration bound for the best
algorithm we know of for the case whenρ∗ is known and we seek a linear combination of margin
at leastρ∗−ν: AdaBoostρ with parameterρ = ρ∗−ν. The iteration bound for the new algorithm
is the same as the iteration bound for the last call to AdaBoostρ of the previous Marginal AdaBoost
algorithm.

2. If one knows thatρ∗ ∈ [a,b], one needs only log2((b−a)/ν) steps.
3. In the original formulation the sequence was not necessarily increasing, but R̈atsch (2001) showed that it leads to the

same result and easier proofs if one restricts it to be monotonically increasing.
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Algorithm 2: – The AdaBoost∗ν algorithm – with accuracy parameterν

1. Input: S= 〈(x1,y1), . . . ,(xN,yN)〉, No. of Iterations T, desired accuracy ν

2. Initialize: d1
n = 1/N for all n = 1. . .N

3. Do for t = 1, . . . ,T,

(a) Train classifier on {S,dt} and obtain hypothesis ht : x 7→ [−1,1]

(b) Calculate the edge γt of ht : γt =
N

∑
n=1

dt
nynht(xn)

(c) if |γt | = 1, then α1 = sign(γt), h1 = ht , T = 1; break

(d) γmin
t = min

r=1,...,t
γr ; ρt = γmin

t −ν

(e) Set αt =
1
2

ln
1+ γt

1− γt
−

1
2

ln
1+ρt

1−ρt

(f) Update weights: dt+1
n =

dt
nexp(−αtynht(xn))

Zt
,

where Zt = ∑N
n=1dt

nexp(−αtynht(xn))

4. Output: fα(x) =
T

∑
t=1

αt

∑T
r=1 αr

ht(x)

4. Detailed Analysis

In this section we are going to analyze the algorithms in detail. We start by showing the relationship
between optimal edges and margins, prove and illustrate the convergence properties of AdaBoostρ
and finally prove the convergence of AdaBoost∗

ν.

4.1 Weak learning and margins

The standard assumption made on the weak learning algorithm for the PAC analysis of Boosting
algorithm is that the weak learner returns a hypothesish from a fixed setH that is slightly better
than random guessing. That is, that the error rateε is consistently smaller than12. Note that the
error rate of12 could easily be reached by a fair coin, assuming both classes have the sameprior
probabilities. More formally, the errorε of a ±1 valued hypothesis is defined as the fraction of
examples that are misclassified. In Boosting this is extended to weighted examplesets and the error
is defined as

εh(d) =
N

∑
n=1

dn I(yn 6= h(xn)),

whereh is the hypothesis returned by the weak learner andI is the indicator function withI(true) = 1
andI(false) = 0. The distributiond = (d1, . . . ,dN) of the examples is such thatdn ≥ 0 and∑N

n=1dn =
1.
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When the range of a hypothesish is the entire interval[−1,+1], then theedgeγh(d)= ∑N
n=1dnynh(xn)

is a more convenient quantity for measuring the quality ofh. This edge is an affine transformation
of the error for the case whenh has range±1: εh(d) = 1

2 −
1
2γh(d) andεh(d) ≤ 1

2 iff γh(d) ≥ 0.
Recall from Section 2 that the margin of a given example(xn,yn) is defined asyn fα(xn). Also

recall thatH is the set from which the weak learner chooses its base hypotheses. Assume for a
moment thatH is finite. If we combine all hypotheses fromH , then the following well-known the-
orem establishes the connection between margins and edges (first seen inconnection with Boosting
in Freund and Schapire, 1996; Breiman, 1999):4

Theorem 1 (Min-Max-Theorem, von Neumann (1928))

γ∗ := min
d

max
m=1,...,M

N

∑
n=1

dnynhm(xn) = max
α

min
n=1,...,N

yn

M

∑
m=1

αmhm(xn) =: ρ∗, (2)

whered ∈ P N, α ∈ P M and M= |H |. HereP k denotes the k-dimensional probability simplex.

Thus, the minimum edgeγ∗ that can be achieved over all possible distributionsd of the training set
is equal to the maximum marginρ∗ of any linear combination of hypotheses fromH . Also, for any
non-optimal distributionsd and and hypothesis weightsα we always have

max
h∈H

γh(d) > γ∗ = ρ∗ > min
n=1,...,N

yn fα(xn).

In particular, if the weak learning algorithm is guaranteed to return a hypothesis with edge at least
γ for any distribution on the examples, thenγ∗ ≥ γ and by the above duality there exists a combined
hypothesis with margin at leastγ. If γ is equal to its upper boundγ∗ then there exists a combined
hypothesis with margin exactlyγ = ρ∗ that only uses hypotheses that are actually returned by the
weak learner in response to certain distributions on the examples.

From this discussion we can derive a sufficient condition on the weak learning algorithm to reach
the maximum margin (for the case whenH finite). If the weak learner returns hypotheses whose
edges are at leastγ∗, then there exists a linear combination of these hypotheses that attains a margin
γ∗ = ρ∗. We will prove later that our AdaBoost∗

ν algorithm efficiently finds a linear combination
with margin close toρ∗ (cf. Theorem 6).

Constraining the edges of the previous hypotheses to equal zero (as done in thetotally corrective
algorithmof Kivinen and Warmuth (1999)) leads to a problem if there is no solution satisfying these
constraints. At the end of trialt, the set of previous hypotheses isHt = {h1, . . . ,ht} and the totally
corrective algorithm finds a distribution such thatγh(d) = 0, for all h∈ Ht . Because of the above
duality and the fact thatHt ⊆ H ,

γ∗t := min
d

max
h∈Ht

γh(d) ≤ γ∗ = ρ∗ .

The non-decreasing sequence(γ∗t ) converges toρ∗ from below. If ρ∗ > 0, then the equality con-
straints on the edges are not satisfiable as soon asγ∗t > 0.

In contrast our new algorithm AdaBoost∗
ν is motivated by a system of inequality constraints

γh(d)≤ ρ, for h∈ Ht , whereρ is adapted. Again, ifρ < ρ∗, then the system of inequalities with this

4. This is a zero-sum game with payoff matrixynhm(xn). The row player finds a mixtured over the rows/examples and
the column player a mixtureα over the column/hypotheses. Adding a row/example makes the minimax value of the
game go down and adding a column/hypothesis makes it go up.
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ρ̂ may not have a solution (and the Lagrange multipliers may diverge to infinity). In AdaBoost∗ν we
start withρ large and decrease it when necessary. As we shall see, the algorithm maintains a margin
parameterρ that is always at leastρ∗−ν.

4.2 Convergence properties of AdaBoostρ

Let AdaBoost{ρt} denote the version of AdaBoostρ that uses a time varying margin parameterρt at
iterationt. Thus in step 3 (d) of the algorithm,ρ is replaced byρt . This extension will be necessary
for the later analysis of AdaBoost∗

ν. The sequences{ρt}
T
t=1 might be specified while running the

algorithm. For instance, in the algorithm Arc-GV, Breiman (1999) choosesρt as min
n=1,...,N

yn fαt−1(xn).

Breiman (1999) showed that Arc-GVasymptoticallyconverges to the maximum margin (see dis-
cussion in next section). In the following we answer the question how to best choose the sequence
{ρt} so as to optimize bounds on the fraction of examples which have a margin at mostρ.

Lemma 2 For any ρ ∈ [−1,1], the final hypothesis fα of AdaBoost{ρt} satisfies the following in-
equality:

1
N

N

∑
n=1

I (yn fα(xn) ≤ ρ) ≤

(

T

∏
t=1

Zt

)

exp

{

T

∑
t=1

ραt

}

=
T

∏
t=1

exp{ραt + lnZt} (3)

where Zt = ∑N
n=1dt

nexp(−αtynht(xn)) andαt = 1
2 ln 1+γt

1−γt
− 1

2 ln 1+ρt
1−ρt

.

The proof directly follows from a simple extension of Theorem 1 in Schapireand Singer (1999)
(see also Schapire et al. (1998)).

We now use a lemma from Rätsch et al. (2001) to upper bound the right hand side (rhs) of the
above inequality:

Lemma 3 Let γt be the edge of ht in the t-th iteration of AdaBoost{ρt}. Assume−1≤ ρt ≤ γt . Then
for all ρ ∈ [−1,1],

exp{ραt + lnZt} ≤ exp

(

−
1+ρ

2
ln

(

1+ρt

1+ γt

)

−
1−ρ

2
ln

(

1−ρt

1− γt

))

. (4)

Note that this generalizes Theorem 5 of (Freund and Schapire, 1997) tothe case when the target
margin is not zero.

AdaBoost{ρt} makes progress, if the rhs of (4) is smaller than one. Suppose we would liketo
reach a marginρ on all training examples, where we obviously need to assumeρ ≤ ρ∗. We can then
ask which sequence of{ρt}

T
t=1 one should use to find such combined hypothesis in as few iterations

as possible. The rhs of (4) can be rewritten as

exp(∆2(ρ,ρt)−∆2(ρ,γt)) ,

where∆2(a,b) := 1+a
2 ln 1+a

1+b + 1−a
2 ln 1−a

1−b denotes the binary relative entropy betweena,b∈ [−1,1].
Therefore the rhs of (4) is minimized forρt = ρ (independent ofγt) and one should always use this
constant choice.

This means that whenρt = ρ then the rhs of (4) is reduced by a factor of exp(−∆2(ρ,γt)),
which can be upper bounded by inspecting the Taylor expansion atγt = ρ and noticing that when
0≤ ρ < γt , all terms of order three and higher are negative:

exp(−∆2(ρ,γt)) < 1−
1
2

(ρ− γt)
2

1−ρ2 , for 0≤ ρ < γt . (5)
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The denominator 1−ρ2 speeds up the convergence whenρ � 0. Notice that whenρ = 0, then we
recover the original AdaBoost bound.

Now we determine an upper bound on the number of iterations needed by AdaBoostρ for achiev-
ing a margin ofρ on all examples, given that the maximum margin isρ∗:

Corollary 4 Assume the weak learner always returns a base hypothesis with an edgeγt ≥ ρ∗. If
0 ≤ ρ ≤ ρ∗− ν, ν > 0, then AdaBoostρ will converge to a solution with margin at leastρ on all

examples in at most2lnN(1−ρ2)
ν2 iterations.

Proof By Lemma 2 and (4), (5):

1
N

N

∑
n=1

I (yn f (xn) ≤ ρ) <
T

∏
t=1

(

1−
1
2

(ρ− γt)
2

1−ρ2

)

≤

(

1−
1
2

ν2

1−ρ2

)T

.

The margin is at leastρ for all examples, if the rhs is smaller than1N ; hence after at most

lnN

− ln
(

1− 1
2

ν2

1−ρ2

) ≤
2lnN(1−ρ2)

ν2

iterations, which proves the statement.

Whenρ < 0, then inequality (5) can be replaced with the following weaker inequality which holds
for all distinctρ,γt ∈ [−1,1]:

exp(−∆2(ρ,γt)) < exp

(

−
1
2
(ρ− γt)

2
)

. (6)

This leads to the same bound as in the above corollary except that the factor(1− ρ2) is omitted.
Thus whenρ < 0, the bound on the number of iterations becomes2lnN

ν2 (Rätsch, 2001, page 25).

4.3 Asymptotic Margin of AdaBoostρ

With the methods shown so far we can determine the asymptotic value of margin of the hypothesis
produced by the original AdaBoost algorithm. First, we state a lower boundon the margin that is
achieved by AdaBoostρ. There is a gap between this lower bound and the upper bound of Theorem 1.
In a second part we consider an experiment that shows that dependingon some subtle properties of
the weak learner, the margin of combined hypotheses generated by AdaBoost can converge to quite
different values (while the maximum margin is kept constant). We observe that the previously lower
bound on the margin is quite tight in empirical cases.

As long as each factor in the rhs of Eq. (3) is smaller than 1, the bound decreases. If the factor is
at most 1−µ andµ > 0, then the rhs converges exponentially fast to zero. The following corollary
considers the asymptotic case and gives a lower bound on the margin.

Corollary 5 (Rätsch (2001))Assume AdaBoostρ generates hypothesis h1,h2, . . . with edgesγ1, γ2,
. . . and coefficientsα1,α2, . . .. Letγmin = inft=1,2,... γt and assumeγmin > ρ. Furthermore, let

ρ̂t = min
n=1,...,N

yn ∑t
r=1 αrhr(xn)

∑t
r=1 αr
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be the achieved margin in the t-th iteration andρ̂ = supt=1,2,... ρ̂t . Then the margin̂ρ of the combined
hypothesis is bounded from below by

ρ̂ ≥
ln(1−ρ2)− ln(1− (γmin)2)

ln
(

1+γmin

1−γmin

)

− ln
(

1+ρ
1−ρ

) . (7)

From (7) one can understand the interaction betweenρ andγmin: If the difference betweenγmin

andρ is small, then the rhs of (7) is small. Thus, ifρ with ρ ≤ γmin is large, then̂ρ must be large,
i.e. choosing a largerρ results in a larger margin on the training examples. A Taylor expansion of

the rhs of (7) shows that the margin is lower bounded byγmin+ρ
2 . This known lower bound (Breiman,

1999, Theorem 7.2) is greater thanρ if γmin > ρ.
In Section 4.1 we reasoned thatγmin ≤ ρ∗. If the parameter AdaBoostρ is chosen too small, then

we guarantee only that the margin of the produced linear combination converges asymptotically to
a value at belowρ∗. In the original formulation of AdaBoost we haveρ = 0 and we guarantee only

that AdaBoost0 achieves a margin of at leastγmin+ρ
2 = 1

2γmin. This shortfall in the margin provable
for AdaBoost motivates our new AdaBoost∗

ν which is guaranteed to optimize the margin.

4.3.1 EXPERIMENTAL ILLUSTRATION OF COROLLARY 5

To illustrate the above-mentioned gap, we perform an experiment showing how tight (7) can be. We
analyze two different settings: (i) the weak learner selects the hypothesiswith largest edge over all
hypotheses (i.e. the best case) and (ii) the weak learner selects the hypothesis with minimum edge
among all hypotheses with edge larger thanρ∗ (i.e. the worst case). Corollary 5 holds for both cases
since the weak learner is allowed to returnanyhypothesis with edge larger thanρ∗.

We use random data withN training examples, whereN is drawn uniformly between 10 and
200. The labels are drawn at random from a binomial distribution with equalprobability. We use
a hypothesis set with 104 random hypotheses with range{+1,−1}. We first choose a parameterp
uniformly in (0,1). Then the label of each hypothesis on each example is chosen to agree with the
label of the example with probabilityp.5 First we compute the solutionρ∗ of the margin-LP problem
via the left hand side of (2). Then we compute the combined hypothesis generated by AdaBoostρ
after 104 iterations forρ = 0 andρ = 1

3 using the best and the worst selection strategy, respectively.
The latter algorithm depends onρ∗. We chose 300 hypothesis sets based on 300 random draws of
p. The random choice ofp ensures that there are cases with small and large optimal margins. For
each hypothesis set we did two runs of AdaBoostρ using the best and worst selection strategies. The
result of each run is represented as a point in Figure 1. The abscissa isthe maximum achievable
marginρ∗ for each run. The ordinate is the margin of AdaBoostρ using the best (green) and the
worst strategy (red).

There is a large difference between these selection strategies. Whereasthe margin of the worst
strategy istightly lower bounded by (7), the best strategy has near maximum margin. These experi-
ments show that one obtains different results by changing the selection strategy of the weak learning
algorithm. Our lower bound holds for both selection strategies. The looseness of the bounds is in-
deed a problem, as we cannot predict where AdaBoostρ converges to.6 However, note that moving
ρ̂ closer toρ∗ reduces the gap (see also Figure 1 [right]).

5. We do not allow duplicate hypotheses or hypotheses that agree with the labels on all examples.
6. One might even be able to construct cases where the outputs are not at all converging.
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Figure 1: Achieved margins of AdaBoostρ using the best (green) and the worst (red) selection on random
data forρ = 0 [left] and ρ = 1

3 [right]. On the abscissa is the maximum achievable marginρ∗

and on the ordinate the margin achieved by AdaBoostρ for one data realization. For comparison
we plotted the upper boundy = x and the lower bound (7). On the interval[ρ,1], there is a clear
gap between the performance of the worst and best selection strategies. The margin of the worst
strategy is very close to the lower bound (7) and the best strategy has near maximum margin. Ifρ
is chosen slightly below the maximum achievable margin thenthis gap is reduced to 0.

Recently, it has been shown by Rudin et al. (2005) that there exist cases where the weightingdt

on the examples cycles indefinitely between non-optimal solutions. This proves that AdaBoost does
not generally maximize the margin. Furthermore, it was shown in Rudin et al. (2004b) that the gap
exhibited in Figure 1 is not an experimental artifact: under certain conditionsthe lower bound (7)
was proven to be tight.

4.3.2 DECREASING THESTEP SIZE

Breiman (1999) conjectured that the inability to maximize the margin is due to the factthat the
normalized hypothesis coefficients may “circulate endlessly through the convex set”, which is de-
fined by the lower bound on the margin. In fact, motivated from our previous experiments, it seems
possible to implement a weak learner that appropriately switches between optimal and worst case
performance, leading to non-convergent normalized hypothesis coefficients.

Rosset et al. (2002) have shown that AdaBoost with infinitesimally small stepsizes may max-
imize the margin, if the weak learner uses the best selection strategy. This is similar to what we
found empirically for finite step sizes and motivates us to analyze AdaBoostρ with step sizes chosen
as follows:

α̂t = ηαt =
η
2

ln
1+ γt

1− γt
−

η
2

ln
1+ρ
1−ρ

,
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for someη > 0. For η = 1 we recover AdaBoostρ. Following the same proof technique as for
Corollary 5, we can show that under the same conditions as given in Corollary 5

ρ̂ ≥
− ln((1+ γ)exp(−α̂)+(1− γ)exp(α̂))

α̂
,

whereα̂ = η
2 ln 1+γ

1−γ −
η
2 ln 1+ρ

1−ρ . Note that ifη goes to zero, then̂ρ = γ. Interestingly, this is inde-
pendent of the choice ofρ. Thus if the weak learner always returns hypotheses with edgesγt ≥ ρ∗

(t = 1,2, . . .), whereρ∗ is the maximum margin, then by the Min-Max Theorem, the margin is
maximized whenη goes to zero. However, there are no guarantees on the convergencespeed.

4.4 Convergence of AdaBoost∗ν

The AdaBoost∗ν algorithm is based on two insights:

• According to the discussion after Lemma 3, the most rapid convergence to a combined hy-
pothesis with marginρ∗−ν occurs for AdaBoostρ when one choosesρt as close as possible
to ρ∗−ν.

• For distributions on the examples that are hard for the weak learner (i.e. theweak learner
achieves a small edge), the edgeγt will be close toρ∗.

The idea is that by choosingρt = (minr=1,...,t γt)−ν we concentrate on the hardest distribution we
generated so far and can so find acloseoverestimate ofρ∗−ν. This forces an acceleration of the
convergence to a large margin and leads to distributions for which the weak learner has to return
small edges.

Note that if the weak learner always returns hypotheses with edgeγt = ρ∗ which is the worst
case under the assumption thatγt ≥ ρ∗, thenρt = ρ∗− ν in each iteration. In this case the same
smallest step size is taken in every iteration which is determined byρ∗ andν. This smallest step
size decreases with the desired accuracyν, which matches the intuition from Section 4.3.2 that
decreasing the step size achieves larger and therefore more accurate margins.

We will now state and prove our main theorem:

Theorem 6 Assume the weak learner always returns a base hypothesis with an edgeγt ≥ ρ∗. Then
after 2lnN

ν2 iterations AdaBoost∗ν (Algorithm 2) is guaranteed to produce a combined hypothesis f of
margin at leastρ∗−ν.

Proof Let ρ = ρ∗−ν be the margin that we would like to achieve. By assumption on the perfor-
mance of the weak learner,ρ∗ ≤ minr=1,...,T γr = γmin

T and thusρ = ρ∗−ν ≤ γmin
T −ν. In step 3 (d)

of Algorithm 2,ρt was set toγmin
t −ν. Henceρ ≤ ρt for each iteration.

Lemmas 2 and 3 imply that

1
N

N

∑
n=1

I (yn f (xn) ≤ ρ) ≤
T

∏
t=1

exp

(

−
1+ρ

2
ln

(

1+ρt

1+ γt

)

−
1−ρ

2
ln

(

1−ρt

1− γt

))

We now rewrite the rhs usingαt = 1
2 ln 1+γt

1−γt
− 1

2 ln 1+ρt
1−ρt

:

=
T

∏
t=1

exp

(

−
1
2

ln

(

1+ρt

1+ γt

)

−
1
2

ln

(

1−ρt

1− γt

)

+ραt

)
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By (1), αt ≥ 0 sinceρt ≤ γt . By replacingρ by its upper boundρt we get:

≤
T

∏
t=1

exp

(

−
1+ρt

2
ln

(

1+ρt

1+ γt

)

−
1−ρt

2
ln

(

1−ρt

1− γt

))

Finally, by (6) we have:

=
T

∏
t=1

exp(−∆(ρt ,γt)) <
T

∏
t=1

exp(−
(ρt − γt)

2

2
) ≤ exp(−

Tν2

2
).

is at most1
N , then by the above chain of inequalities,1

N ∑N
n=1 I(yn f (xn) ≤ ρ) < 1

N and the margin of
each of theN examples is at leastρ. The theorem now follows from the fact that1

N < exp
(

−1
2Tν2

)

,
if the number of iterationsT is at least2lnN

ν2 .

If one assumesρt ≥ 0, then Theorem 6 could be improved by a factor of(1−ρ2
t ) in each iteration,

using the refined upper bound of Corollary 4. Sinceρt ≥ ρ∗ − ν, one would obtain the bound
lnN(1−(ρ∗−ν)2)

ν2 if ρ∗ ≥ ν, but this factor will only matter for very large margins.

4.5 Infinite Hypothesis Sets

So far we have implicitly assumed that the hypothesis space is finite. In this section we will show
that this assumption is (often) not necessary. Also note, if the output of thehypotheses is discrete,
the hypothesis space is effectively finite (Rätsch et al., 2002). Forinfinite hypothesis sets, Theorem 1
can be restated in a weaker form as:

Theorem 7 (Weak Min-Max, e.g. Nash and Sofer (1996))

γ∗ := min
d

sup
h∈H

N

∑
n=1

ynh(xn)dn ≥ sup
α

min
n=1,...,N

yn ∑
q:αq>0

αqhq(xn) =: ρ∗, (8)

whered ∈ P N, α ∈ P |H | with finite support.

We call Γ = γ∗−ρ∗ the “duality gap”. In particular for anyd ∈ P N, suph∈H ∑N
n=1ynh(xn)dn ≥ γ∗

and for anyα ∈ P|H | with finite support, minn=1,...,N yn ∑q:αq≥0 αthq(xn) ≤ ρ∗.
In theory the duality gap may be nonzero. However, Lemma 3 and Theorem 6do not assume

finite hypothesis sets and show that the margin will converge arbitrarily closeto ρ∗, as long as the
weak learning algorithm can return a hypothesis in each iteration that has anedge not smaller than
ρ∗.

In other words, the duality gap may result from the fact that the sup on the left side cannot be
replaced by a max, i.e. there might not exists asinglehypothesish with edge larger or equal to
ρ∗. By assuming that the weak learner is always able to pick good enough hypotheses (≥ ρ∗), one
automatically gets by Lemma 3 thatΓ = 0.

Under certain conditions onH this maximum always exists and strong duality holds (for details
see e.g. R̈atsch et al., 2002; R̈atsch, 2001; Hettich and Kortanek, 1993; Nash and Sofer, 1996):

Theorem 8 (Strong Min-Max) If the set of vectors{(h(x1), . . . ,h(xN)) |h∈H } is compact, thenΓ=
0.
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In general, this requirement can be fulfilled by the weak learning algorithms whose outputs
continuously depend on the distributiond. Furthermore, the outputs of the hypotheses need to be
bounded (cf. step 3a in AdaBoostρ). The first requirement might be a problem with weak learning
algorithms that are some variants of decision stumps or decision trees. However, there is a simple
trick to avoid this problem: Roughly speaking, at each point with discontinuityd̂, one adds all
hypotheses toH that are limit points ofL(S,ds), where{ds}∞

s=1 is an arbitrary sequence converging
to d̂ andL(S,d) denotes the hypothesis returned by the weak learning algorithm for distribution d
and training sampleS(Rätsch, 2001). This procedure assures thatH is closed.

The above theorem is applied in Appendix B to obtain iteration bounds for AdaBoost∗ν in the
context of learning a convex combination of support vector kernels.

5. Experimental Comparison

In this section we discuss two experiments: The first one shows that our theoretical bounds can be
tight on artificial data and the second one compares our algorithm to the one proposed in Rudin et al.
(2004a).

5.1 Illustration on Toy Examples

We are aware that maximizing the margin of the ensemble does not lead to improvedgeneralization
performance in all cases. In fact for fairly noisy data sets the opposite has been reported (cf. Quinlan,
1996; Breiman, 1999; Grove and Schuurmans, 1998; Rätsch et al., 2001). Also, Breiman (1998)
reported an example where the margins of all examples are larger in one ensemble than another and
the latter generalized considerably better.

0 1 2 3 4
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−0.5

0

0.5

1

1.5

2

2.5

3

Figure 2: The twodiscriminative dimensionsof our separable one hundred dimensional data set.

Nonetheless, the theoretical bounds on the generalization error of linearclassifiers improves
with the margin. We therefore expect to be able to measure differences in thegeneralization error
between a function that maximizes the margin and one that does not. Similar resultshave been
obtained in Schapire et al. (1998) on a multi-class optical character recognition problem.
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Here we report experiments on artificial data to illustrate how our algorithm works and how
it compares to AdaBoost. Our data is 100 dimensional and contains 98 nuisance dimensions with
uniform noise. The other two dimensions are plotted exemplary in Figure 2. For training we use
only 100 examples which means that controlling the capacity of the ensemble is essential.

As the weak learning algorithm we use C4.5 decision trees provided by Quinlan (1992) using
an option to control the number of nodes in the tree. We have tuned C4.5 to generate trees with
about three nodes. Otherwise, the weak learner often classifies all training examples correctly and
over-fits the data already. Furthermore, since in this case the margin is already maximum (equal to
1), boosting algorithms would stop sinceγ = 1. We therefore need to limit the complexity of the
weak learner, in good agreement with the bounds on the generalization error (Schapire et al., 1998).

Moreover, we have to deal with the fact that C4.5 cannot use weighted samples. We therefore
use weighted bootstrapping (e.g. Efron and Tibshirani, 1994). However, this amplifies the problem
that the resulting hypotheses might in some cases have an edge smaller than themaximum margin,
which according to the Min-Max-Theorem should not occur if the weak learner performs optimally.
We deal with this problem by repeatedly calling C4.5 on different bootstrap realizations if the edge
is smaller than the margin of the current linear combination. Furthermore, for AdaBoost∗ν, a small
edge of one hypothesis can spoil the margin estimateρt . We address this problem by resetting
ρt = ρ̂t +ν, wheneverρt ≤ ρ̂t , whereρ̂t is the margin of the currently combined hypothesis.

In Figure 3 we see a typical run of AdaBoost, Marginal AdaBoost, AdaBoost∗ν and Arc-GV for
ν = .1. For comparison we plot the margins of the hypotheses generated by AdaBoost (cf. Figure 3
(left)). One observes that it is not able to achieve a large margin efficiently. After 1000 iterations
ρ̂ = .37.

Marginal AdaBoost as proposed in Rätsch and Warmuth (2002) proceeds in stages and first tries
to find an estimate of the margin using a binary search. It calls AdaBoostρ three times. The first call
of AdaBoostρ for ρ = 0 stops after four iterations because it has generated a consistent combined
hypothesis. The lower boundl on ρ∗ as computed by Marginal AdaBoost isl = .07 and the upper
boundu is .94. The second timeρ is chosen to be in the middle of the interval[l ,u] and AdaBoostρ
reaches the margin ofρ = .51 after 80 iterations. The interval is now[.51, .77]. Because the length
of the intervalu− l = .27 is small enough, Marginal AdaBoost leaves the loop through an exit
condition, calls AdaBoostρ the last time forρ = u−ν = .41 and finally achieves the margin of.55.

In a run of Arc-GV for thousand iterations we observe a margin of the combined hypothesis of
.53, while for our new algorithm, AdaBoost∗

ν, we find.58. In this case the margin for AdaBoost∗
ν is

larger than the margins of all other algorithms when executed for one thousand iterations. It starts
with slightly lower margins in the beginning, but then catches up due the better choice of the margin
estimate.

C4.5 AdaBoost Marginal AdaBoost AdaBoost∗
ν

Egen 7.4± .11% 4.0± .11% 3.6± .10% 3.5± .10%
ρ̂ — .31± .01 .55± .01 .58± .01

Table 2: Estimated generalization performances and margins with confidenceintervals for decision
trees (C4.5), AdaBoost, Marginal AdaBoost and AdaBoost∗

ν on the toy data. All numbers
are averaged over 200 splits into 100 training and 19900 test examples.
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Figure 3: Illustration of the achieved margin of AdaBoost0 (left), Marginal AdaBoost (middle),
Arc-GV, and AdaBoost∗ν (right) at each iteration. Marginal AdaBoost calls AdaBoostρ
three times while adaptingρ (dash-dotted). We also plot the values forl and u as in
Marginal AdaBoost (dashed). (For details see Rätsch and Warmuth, 2002) AdaBoost∗

ν
achieves larger margins than AdaBoost. Compared to Arc-GV it starts slower, but then
catches up in the later iterations. Here the correct choice of the parameterρ is important.

In Table 2 we see the average performances of the four classifiers. For AdaBoost and AdaBoost∗
ν

we combined 200 hypotheses for the final prediction. For Marginal AdaBoost we useν = .1 and let
the algorithm combine only 200 hypotheses for the final prediction to get a more fair comparison.
We see a large improvement of all ensemble methods over the single classifier.There is also a slight,
but – according to at-test with confidence level 98% – significant difference between the generaliza-
tion performances of AdaBoost and Marginal AdaBoost as well as AdaBoost and AdaBoost∗ν. Note
also that the margins of the combined hypothesis achieved by Marginal AdaBoost and AdaBoost∗ν
are on average almost twice as large as for AdaBoost. The difference ingeneralization performance
between AdaBoost∗ν and Marginal AdaBoost is not statistically significant.

The differences between the achieved margins of both algorithms seem slightly significant
(96%). The slightly larger margins generated by Marginal AdaBoost canbe attributed to the fact that
it uses many more calls to the weak learner than AdaBoost∗

ν and after an estimate of the achievable
margin is available, it starts optimizing the linear combination using this estimate.

It would be natural to use a two-pass algorithm: In the first pass use AdaBoost∗ν to get a margin
estimateρ size at leastρ∗−ν and then use this estimate in a final run of AdaBoostρ. The hypothesis
produced in the second pass should have a larger margin and use fewerbase hypotheses.

5.2 Heuristics for Tuning the Precision Parameterν

Our main results says that after2lnN
ν2 iterations AdaBoost∗ν produces a hypothesis of margin at least

ρ∗−ν. Thus if the algorithm is allowed to run forT iterations, thenν should be set toνT =
√

2lnN
T .

If ν is chosen much larger thanνT , then afterT iterations AdaBoost∗ν often achieves a margin below
ρ∗−νT . Similarly, if ν is chosen much smaller thanνT , then AdaBoost∗ν starts too slowly and after
T iterations its margin is typically again belowρ∗−νT .

Recently, Rudin et al. (2004a,c) proposed an algorithm, calledCoordinate Ascent Boosting,
which solves the same problem as AdaBoost∗

ν. Their analysis of the algorithm shows that it needs
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RÄTSCH AND WARMUTH

at mostΩ(ν−3) iterations to achieve a margin of at leastρ∗ − ν. While this theoretical result is
clearly inferior to the guarantees which we provide for AdaBoost∗

ν, their experimental evaluation
of the algorithms seemed to suggest that the algorithm requires significantly fewer iterations than
AdaBoost∗ν in practice. However, their observations were only due to the improper choice of the
accuracy parameterν for AdaBoost∗ν: For ν = 10−3 (as chosen in their study), AdaBoost∗

ν would
need millions of iterations to achieve a guaranteed marginρ∗− ν. However, only the first 20K it-
erations were displayed and in this range their algorithms achieve a larger margin. ForT = 20K
andN = 50, the precision parameter prescribed by our bounds isνT = .02. When this parameter is
used, then AdaBoost∗ clearly beats all the other related algorithms (cf. Figure 4). We leave it to the
reader to explore other heuristics for tuningν based on the theoretical results of this paper (See also
the discussion at the end of the last subsection).

Figure 4: AdaBoost∗ν with different choices ofν is compared to Arc-GV and the Coordinate Ascent
Algorithm on the same artificial dataset 1 used in Rudin et al. (2004c) (We reconstructed
this dataset from a figure given in Rudin et al. (2004b)): The number ofiterations is
T = 20K, the dimension of the examples isN = 50, and we assume that the base learner
returns a hypothesis with maximum edge. Ifν is set to a reasonably close range around
the valueνT = .02 prescribed by our bound, then AdaBoost∗

ν achieves the margin which is
significantly larger than the margins achieved by the other algorithms. Ifν = .001� νT

as chosen in Rudin et al. (2004c), then AdaBoost∗
ν starts too slowly. In the case when the

base learner returns a random hypothesis with edge only at least as large asρ∗, then our
algorithm compares even more favorably (not shown).
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6. Conclusion

We have analyzed a generalized version of AdaBoost in the context of large margin algorithms.
From von Neumann’s Min-Max theorem we know that if the weak learner always returns a hypoth-
esis with weighted classification error less than1

2 −
1
2γ then the maximum achievable marginρ∗ is

at leastγ. The asymptotic analysis lead us to a lower bound on the margin of the final hypotheses
generated by AdaBoostρ, which was shown to be rather tight in empirical cases. Our results indicate
that vanilla AdaBoost generally does not maximize the margin, and only achieves a margin of about
half the optimum.

To overcome these problems we provided an algorithm AdaBoost∗
ν with the following provable

guarantees: It produces a linear combination with margin at leastρ∗− ν and the number of base
hypotheses used in this linear combination is at most2lnn

ν2 . The new algorithm decreases its esti-
mateρ of the margin iteratively, such that the gap between the best and the worst case becomes
arbitrarily small. Our analysis did not require additional properties of the weak learning algorithm.
In simulation experiments we have illustrated the validity of our theoretical analysis.

Appendix A. Margins

First recall the definition of margin used in this paper, which is defined for afixed set of exam-
ples{(xn,yn) : 1 ≤ n ≤ N} and a set of hypothesesH = {h1, . . . ,hM} (here finite for the sake of
simplicity):

ρ∗(H ) = max
α

min
n=1,...,N

yn

M

∑
m=1

αmhm(xn), whereα is on the simplexP M.

Note that we minimize over the margins of individual examples and maximize over thehyperplanes.
Define the one-norm marginρ∗

1(H ) in the same way but nowα lies in the larger set{α : α ∈
R

M and||α||1 = 1}. It is well known that for a fixed example(xn,yn) and normalα ∈ R
M, the one-

norm margin∑M
m=1 αmhm(xn)

∑M
m |αm|

is the minimum̀ ∞-distance of the example to the hyperplane with normal

α (Mangasarian, 1999; R̈atsch et al., 2002), where the latter distance is defined as

inf
z∈RM s.t. α·z=0

yn max
m=1,...,M

|hm(xn)−zm|.

Note that in this appendix, margins are defined as a function of the the hypotheses setH because
we will vary this set in a moment. Let cl(H ) be the closure ofH under negation, i.e. cl(H ) =
H ∪{−h : h∈ H }. Now, the following relationships are straightforward:

1. ρ∗(H ) ≤ ρ∗
1(H ), ρ∗(cl(H )) ≥ 0, andρ∗(cl(H )) ≥ ρ∗

1(H ).

2. If ρ∗(cl(H )) > 0, thenρ∗(cl(H )) = ρ∗
1(H ).

3. If ρ∗
1(H ) ≥ 0, thenρ∗(cl(H )) = ρ∗

1(H ).

In summary, if the one-norm margin ofH is non-negative, then the margin of the closed hypotheses
class cl(H ) coincides with the one-norm margin.
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Appendix B. An Application to Multiple Kernel Learning

Sonnenburg et al. (2005) proposed a new algorithm for solving the multiple kernel learning (MKL)
problem that was introduced in Lanckriet et al. (2004); Bach et al. (2004). The idea of MKL is to
find a convex combination ofJ support vector kernelsk j : X ×X 7→ R ( j = 1, . . . ,J) that maximizes
the SVM soft margin (cf. Bach et al. (2004)). In Sonnenburg et al. (2005) the original quadratically-
constraint quadratic program was reformulated to the following semi-infinite linear program:

min
β∈P J

sup
α∈A

J

∑
j=1

β jSj(α) (9)

where

Sj(α) := −
1
2

N

∑
r,s=1

αrαsyrysk j(xr ,xs)+
N

∑
n=1

αn

A :=

{

α

∣

∣

∣

∣

∣

α ∈ R
N,0≤ α ≤ 1C,

N

∑
n=1

ynαn = 0

}

andC is the SVM regularization constant. Note that this problem has infinitely many constraints:
one for every vectorα in its domainA . Note that problem (9) is of the same type as the semi-infinite
programming problem (8) which can be solved with AdaBoost∗

ν (cf. discussion in Section 4.5).
Since theSj(α) are continuous functions andA is compact, it follows from Theorem 8 that the
duality gap is zero.

When AdaBoost∗ν is applied to this problem, a hypothesis with large edge has to be found in
each iteration. In this case the hypotheses areα vectors and the edge is

J

∑
j=1

β jSj(α) = −
1
2 ∑

r,s
αrαsyrys

(

J

∑
j=1

β jk j(xr ,xs)

)

+∑
i

αi .

It has been noted that the edge in this case is nothing else than the negative SVM objective function
for the combined kernelk(xr ,xs) = ∑J

j=1 β jk j(xr ,xs). Hence, identifying anα vector with maximum
edge amounts to solving the vanilla SVM quadratic optimization problem. Fortunately, many effi-
cient SVM packages are available to solve this problem. Thus, the MKL problem can be efficiently
solved using AdaBoost∗

ν and our iteration bound for AdaBoost∗
ν is applicable.
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