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Abstract

AdaBoost produces a linear combination of base hypothegbgradicts with the sign of this linear
combination. The linear combination may be viewed as a lptpee in feature space where the
base hypotheses form the features. It has been observeth¢hgeneralization error of the algo-
rithm continues to improve even after all examples are omdineect side of the current hyperplane.
The improvement is attributed to the experimental obsemahat the distances (margins) of the
examples to the separating hyperplane are increasing éeemkhexamples are on the correct side.

We introduce a new version of AdaBoost, called AdaBpo#tat explicitly maximizes the
minimum margin of the examples up to a given precision. Therithm incorporates a current es-
timate of the achievable margin into its calculation of ine&r coefficients of the base hypotheses.
The bound on the number of iterations needed by the new #igwsiis the same as the number
needed by a known version of AdaBoost that must have an éxgditmate of the achievable mar-
gin as a parameter. We also illustrate experimentally thastgorithm requires considerably fewer
iterations than other algorithms that aim to maximize thegima

1. Introduction

Boosting algorithms are greedy methods for forming linear combinations efiygmtheses. In the
most common scenario the algorithm is given a fixed set of labeled training éemampl in each
iteration updates a distribution on these examples (i.e. a set of non-negaiiyets that sum to
one). It then is given dasehypothesis whose weighted error (probability of wrong classification)
is slightly below 50%. This base hypothesis is used to update the distributioreaexémples:
The algorithm increases the weights of those examples that were wrongsffield by the base
hypothesis. At the end of each stage the base hypothesis is added to thedmé@ation, and the
sign of this linear combination forms the current hypothesis of the boostiogitdo.

x. Part of this work was done while G.a&ch was at Fraunhofer FIRST Berlin, at UC Santa Cruz, the Australian
National University and the Max Planck Institute for biological Cybernet&sRatsch was partially funded by DFG
under contract JA 379/91, JA 379/71, MU 987/1-1 and by EU in the Neoltdl project. M.K. Warmuth and visits
of G. Ratsch to UC Santa Cruz were partially funded by the NSF grant CCR-882T Ratsch thanks S. Mika, S.
Sonnenburg, S. Lemm and K.-R.iler for discussions. M.K. Warmuth thanks J. Liao and Karen Glocetifeir
help.

(©2005 Gunnar Btsch and Manfred K. Warmuth.



RATSCH AND WARMUTH

The most well known boosting algorithm is AdaBoost (Freund and Sah&l®07). It is "adap-
tive” in that the linear coefficient of the base hypothesis depends ondighted error of the base
hypothesis at the time when the base hypothesis was added to the linear dammbiAaaBoost
has two interesting properties. First, along with earlier boosting algorithnmaffde, 1992; Freund,
1995), its training error has the following exponential convergencpgrty: if the weighted train-
ing error of thet-th base hypothesis &g = %— %yt, then an upper bound on the training error of
the signed linear combination is reduced by a factoref%b/t2 at stagd. Second, it has been ob-
served experimentally that AdaBoost continues to “learn” even afterdfrarg error of the signed
linear combination is zero (Schapire et al., 1998). That is, in experimentgeti@ralization error
continues to improve. The signed linear combination can be viewed as a hoetaghyperplane
in a feature space, where each base hypothesis represents one deatimension. We define the
margin of an example as a signed distance to the hyperplane timeslibel (See Sectian/2 and
Appendix A for precise definitions). As soon as the training error is zBmexamples are on the
right side and all have positive margin. It has also been observed thatalgins of the examples
continue to increase even after the training error is zero. There anetitabbounds on the gen-
eralization error of linear classifiers (e.g. Schapire et al., 1998; Breifr®39; Koltchinskii et al.,
2001) that improve with the margin of the classifier, which is defined as theokil® minimum
margin of the examples. Thus the fact that the margins improve experimentathsde explain
why AdaBoost still learns after the training error is zero.

There is one flaw in this argument: AdaBoost has not been proven to maxhmeiggargin of the
final hypothesis. We demonstrate this experimentally in Section 5. MordRudim et al. (2004a,
2005) recently showed that there are cases where AdaBoost fyrdeegs not maximize the margin.
Breiman (1999) proposed a modified algorithm — called Arc-@x€{ng-GameValue) — suitable
for this task and showed thatasymptoticallynaximizes the margin. Similar results are shown in
Grove and Schuurmans (1998) and Bennett et al. (2000). In this pegperesent an algorithm that
produces a final hypothesis with margin at leaist- v, wherep* is the unknown maximum margin
achievable by any convex combination of base hypotheses amiecision parameter.

If we know p*, then a linear combination with margin at le@$t— v can be found by a pa-
rameterized version of AdaBoost called AdaBgdsf. Ratsch et al. (2001); &sch and Warmuth
(2002)): When the parameterof AdaBoos} is set top* — v, then afterz\'}izN iterations, where
N is the number of examples, the margin of the produced linear combination iangeed to be
at leastp* —v. The case whep* is not known is more difficult. In a preliminary conference
paper (Ratsch and Warmuth, 2002) we used AdaBgdsratively in a binary search like fashion:
log,(2/v) calls to AdaBoostare guaranteed to produce a margin at Ipastv. All but the last call
to AdaBoos are used to find a suitable value of the parametand in the last call this parameter
is used to create the final linear combination in at n?@%l iterations.

In this paper we greatly simplify our answer for the case whéms unknown. We have a
newone passlgorithm called AdaBoogstthat produces a linear combination with margin at least
p*—v afterZLLZN iterations. Note that this is the same guarantee we had on the number of iterations
of AdaBoos} when it used the theoretically optimal paramgter p* —v. The new algorithm
AdaBoosj uses the parameterand acurrent estimatef the achievable margin in the computation
of the linear coefficients of the base learners.

Except for the algorithm presented in the previous conference pidpers the first result on
the fast convergence of a boosting algorithm to the maximum margin solutiomthks for all
p* € [—1,1]. Using previous results one can only show that AdaBasgmptoticallyconverges to
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EFFICIENT MARGIN MAXIMIZATION WITH BOOSTING

a final hypothesis with margin at legst/2 if p* > 0 and if subtle conditions on the chosen base
hypotheses are satisfied (cf. Corollary 5).

Recently other versions of AdaBoost have been published that arergeed to produce a lin-
ear combination of margin at leagt — v after Q(v—3) iterations (Rudin et al., 2004c,b). Even
though these algorithms have weaker iteration bounds than AdgBduosy were reported to per-
form better experimentally (Rudin et al., 2004c,a). We briefly compare Adsf3to these more
recent algorithms and show that the better empirical performance was theavtoong choice 09.

The original AdaBoost was designed to find a final hypothesis of maigieaat zero. Our
algorithm maximizes the margin for all values@t This includes the inseparable case (.e< 0),
where one minimizes the overlap between the two classes. In this case AtaBos forever
without necessarily increasing the margin. Our algorithm is also usefuh Wieebase hypotheses
given to the Boosting algorithm argrongin the sense that they already separate the data and
have margin greater than zero, but less than one. In this casp*0< 1 and AdaBoost aborts
immediately because the linear coefficients of such hypotheses becomendetoIn contrast, our
new algorithm also maximizes the margin when presented with strong learners.

The big advantage of this algorithm is an absolute bound on the number dioisraAfter
Z{)LZN iterations AdaBoogtis guaranteed to produce a hypothesis with margin at [astv. Our
algorithm is applicable in sophisticated settings where the number of hypstimesebe infinite. In
Appendix B we use AdaBogsto learn a convex combination of support vector kernels and show
that the same guarantees hold on the number of iterations of the algorithm.

The paper is structured as follows: Section 2 introduces some basic na@atiam Section 3 we
first describeAdaBoost which requires a lower bourglof the maximum margip* as a parameter.
Then we present our new algorithAdaBoos}, which is similar to AdaBoogt but continuously
adaptsp based on a precision parameterUp to this point we stay at a high level of presentation
with the goal of making our algorithms accessible to the quick reader. In 8ettiee introduce
more notation and give a detailed analysis of both algorithms. First, we pravé the weighted
training error of the-th base hypothesis & = %— %yt, then an upper bound on the fraction of
examples with margin smaller tharis reduced by a factor of 4 %(p—yt)2 at stage of AdaBoos}

(cf. Section 4.2) (A slightly improved factor is shown for the case wihen0). However, to achieve

a large margin one needs to assume that the gusssmaller tharp*. For the latter case we prove
an exponential convergence rate of AdaBgo$hen we discuss a method for automatically tuning
p depending on the errors of the base hypotheses and a precision framéfe show that after
roughly Z{}Lz’\‘ iterations our new one-pass algorithm AdaBgastguaranteed to produce a linear
combination with margin at leapt — v. This strengthens the results of our preliminary conference
paper (Raitsch and Warmuth, 2002), which had an additiona}(2gv) factor in the total number
times the weak learner is called and much higher constants. In Section Smpeamthe algorithms
experimentally and discuss heuristics for tuninig Section 5.2. Finally we briefly summarize and
discuss our results in the Conclusion Section.

2. Preliminaries and Basic Notation

We consider the standard two-class supervised machine learning proBieem a set oN i.i.d.
training examplegxn,yn), N=1,...,N, with X, € X andy, € 9 := {-1,+1}, we would like to

learn a functionf : X — 9" that is able to generalize well on unseen data generated from the same
distribution as the training data.
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In the case of ensemble learning (like boosting), there is a fixed undedgirgfbasehypothe-
sesH :={h|h: X — [-1,1]} from which the ensemble is built. For now we only assume #fiat
is finite, but we will show in Section 4.5 that this assumption can be dropped inaasss and that
all of the following analysis also applies to the case of infinite hypothesis sets.

Boosting algorithms iteratively form non-negative linear combinations obthgses fron.
In each iteration, a base hypothesks € # with a non-negative coefficient is added to the linear
combination. We denote the combined hypothesis as follows (Note that welimadthe weights):

Ot
-
2r=tOr

The “black box” that selects the base hypothesis in each iteration is calledettidearner. For
AdaBoost, it has been shown that if the weak learner is guaranteed th batee hypotheses of
weighted error slightly below 50%, then the combined hypothesis is consigthrihe training set
in a small number of iterations (Freund and Schapire, 1997). We will didomsnds on the number
of iterations in detail in Section 4. Since at most one new base hypothesieid edeach iteration,
the size of the final hypothesis is bounded by the number of iterationse Toemds are important
because the sample size bounds provable in the PAC model grow with thé thiedinal hypothesis
(Schapire, 1992; Freund, 1995).

In more recent research (Schapire et al., 1998) it was also showa bwtnd on the general-
ization error decreases with the size of the margin of the final hypotlie3ise margin of a single
example(xn, yn) w.r.t. f is defined ag, fo (Xn). Thus the margin quantifies by how far this example
is on they, side of the hyperplané. In Appendix A we clarify how the margin of an example is re-
lated to its/-distance to the hyperplane with nornesal The margin of the combined hypothesis
theminimum margirof all N examples. The goal of this paper is to find a small non-negative linear
combination of base hypotheses fraiwith margin close to the maximum achievable margin.

The following table gives some of the main notations that will be used throughisupaper:

.
fo(X) = signfy(x), wherefq(x) = zl he(x), he(x) € #, anda >0 .
t=

Symbol Description

n,N index and number of examples

m,M index and number of hypotheses if finite
t, T index and number of iterations

X input space

4 label spacq +1}

(X,y) an example and its label
H,hy  setof base hypotheses and th¢h element

o hypothesis weight vector

d weighting on the training set

[(-) the indicator functioni (true) = 1 andl (false) =0
p the margin parameter of AdaBogst

{pt} the sequence of margin parameters of AdaBggst
p* the maximum margin

o margin in thet-th iteration

Vv the accuracy parameter of AdaBgpst

€ weighted classification error

A the minimum edge
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Symbol Description
% an arbitrary edge threshold
Ve the edge of thé-th hypothesis

3. AdaBoos}, and AdaBoost,

The original AdaBoost was designed to find a consistent hypottiestich is defined as a signed
linear combinationf with margin greater zero. We start with a slight modification of AdaBoost,
which finds (if possible) a linear combination of base learners with magirherep is a parameter
(cf. Algorithmm)m We call this algorithm AdaBoogt as it naturally generalizes AdaBoost for the
case when th&arget marginis p. The original AdaBoost algorithm now becomes AdaBgost

Algorithm 1: — The AdaBoosgtalgorithm — with margin parameter
1. Input: S= ((X1,¥1),---,(Xn,YN)), No. of Iterations T, margin target p

2. Initialize: di = foralln=1...N
3. Dofort=1,....T,

(a) Train classifier on {S d'} and obtain hypothesis h; : X — [—1,1]

N
(b) Calculate the edge vt of hy: yt = drynhk (Xn)
n=1

(¢) if |vi| =1, thenay =sign(yt), hy = h, T = 1; break
1 14w 1 1+p
(d) Seta; = 2In1_yt > nl—p
dh exp(—aynht (xn))
Z ’
where Z; = SN_; df, exp(—atynh (Xn))

ot
(e) Update weights: d'* =

Ot

.
2r=1

T
4. Output: fu(X) = h (X
p (x) t; ar()

The algorithm AdaBoogtwas already known asnnormalized Arcing(Breiman, 1999) or
AdaBoost-type AlgorithniRatsch et al., 2001). Moreover, it is related to algorithms proposed in
Freund and Schapire (1999) and Zhang (2002). The only differenm AdaBoost is the choice of
the hypothesis coefficients: An additional term—% In %g appears in the expression for the hy-
pothesis coefficient;. This term vanishes whegm= 0. The parametgy can be seen asguessof
the maximum margip*. If p is chosen properly (slightly belop*), then AdaBoostwill converge
exponentially fast to a combined hypothesis with nearly the maximum margin. e8tiers4.2 for

details.

1. The original AdaBoost algorithm was formulated in terms of weighteditrg errore; of a base hypothesis. Here

we use an equivalent more convenient formulation in terms of the gdgdereg; = % — %yt (cf. Section 4.1).
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The following example illustrates how AdaBogstorks. Assume the weak learner returns the
constant hypothesils (x) = 1. The weighted error of this hypothesis is the sum of all negative
weights, i.egy = ¥, _ 1 dj and its edge igt = 1— 2¢;. The coefficient, is chosen so that the edge
of hy with respect to the new distribution is exacpy(instead of 0 as for the original AdaBoost).
More precisely, the given choice of assures that this edgeg®nly for +-1-valued base hypotheses.

For a more general base hypothdsisvith continuous rangé—1,+1|, choosinga; such that
Z; as a function ofy; is minimized, guarantees that the edgehofvith respect to the distribution
d*1is p. See Schapire and Singer (1999) for a similar discussion. Choosiag in step 3 (d)
approximately minimizeg; when the range df; is [—1, +1].

In Kivinen and Warmuth (1999) and Lafferty (1999), the standardsting algorithms are in-
terpreted as approximate solutions to the following optimization problem: chodstributiond
of maximum entropy subject to the constraints that the edges of the preyipatbses arequal
to zero. In this paper we use tiveequality constraints that the edges of the previous hypotheses
are at mosp. Theay’s function as Lagrange multipliers for these inequality constraints. Since
g(x) = 3In £ is an increasing function,

at:fln——fn—p >0 iff w>p . 1)

Notice that wherp = 0, addingh; or —h; leads to the same distributiai*®. This symmetry is
broken forp # 0.

Since one does not know the value of the optimum mapgiis not known beforehand, one also
needs to fincp*. In Ratsch and Warmuth (2002) we presented Marginal AdaBoosialgorithm
which constructs a sequenép, }X_; converging top*. A fast way to find a real value up to a
certain accuracy in the interval[—1,1] is abinary searchsince one needs only lg(/Vv) steps@
Thus the previous Marginal AdaBoost algorithm uses AdaBp@atgorithm|1) to decide whether
the current guesg; is larger or smallerthanp*. Depending on the outcomg; can be chosen so
that the region of uncertainty f@* is roughly cut in half. However, in the previous algorithm all
but the last of the log2/v)

In this paper we propose a different algorithm, called AdaBpobterev > 0 is a precision
parameter. The algorithm finds a non-negative linear combination with madrigiasp* —v. Like
Arc-GV (Breiman, 1999), the new algorithm essentially runs AdaBposte but instead of using
a fixed margin estimate, it updatesp in an appropriate way. We shall show iteration bounds
for our algorithm AdaBoogtwhich are not known for Arc-GV. The latter algorithm produces an
essentiallj monotonically increasing sequence of margin estimates, while in AdaBaestise
a monotonically decreasing sequence. The improved sequence of estisriaassd on two new
theoretical insights, which will be developed in the next section.

We will show that the number of iterations required by the new one-pasBa@uad, algorithm
(see Algorithm 2 for pseudo-code) is at mé@ﬁ. This equals the iteration bound for the best
algorithm we know of for the case wheri is known and we seek a linear combination of margin
at leastp” —v: AdaBoos} with parametep = p* —Vv. The iteration bound for the new algorithm
is the same as the iteration bound for the last call to AdaBaxfshe previous Marginal AdaBoost
algorithm.

2. If one knows thap* € [a,b], one needs only log(b—a)/v) steps.
3. In the original formulation the sequence was not necessarily innggdmit Ratsch (2001) showed that it leads to the
same result and easier proofs if one restricts it to be monotonically singea
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Algorithm 2: — The AdaBoogtalgorithm — with accuracy parameter

1. Input: S= ((X1,¥1),---,(Xn,YN)), No. of Iterations T, desired accuracy v
2. Initialize: d} =1/Nforalln=1...N
3. Dofort=1,....T,

(a) Train classifier on {S d'} and obtain hypothesis h; : X — [—1,1]
N

(b) Calculate the edge y of h: i = 5 diynhe (Xn)
n=1

(¢) if x| =1, thenay =sign(yt), hy = h, T = 1; break

1 1+ 1 14
(e) Seta; = 2In1_yI 2In1_pt
df, exp(—0tynhk (xn))
Z '
where Z; = SN, df exp(—atynh (xn))

e gt
(f) Update weights: d'" =

O

-
2r=10r

4. Output: fy(x) = i ht (X)

4. Detailed Analysis

In this section we are going to analyze the algorithms in detail. We start by sipthdnelationship
between optimal edges and margins, prove and illustrate the convergepesties of AdaBoogt
and finally prove the convergence of AdaBgost

4.1 Weak learning and margins

The standard assumption made on the weak learning algorithm for the PAGiard Boosting
algorithm is that the weak learner returns a hypothbdiem a fixed setH that is slightly better
than random guessing. That is, that the error eaie consistently smaller thaél. Note that the
error rate of% could easily be reached by a fair coin, assuming both classes have thegame
probabilities. More formally, the errar of a +1 valued hypothesis is defined as the fraction of
examples that are misclassified. In Boosting this is extended to weighted exsatgpénd the error
is defined as

N

en(d) = Z dn 1 (Yn # h(xn)),

n=1

wherehis the hypothesis returned by the weak learnerlaadhe indicator function with(true) = 1
andl (false) = 0. The distributiord = (dy, ..., dy) of the examples is such thét > 0 andy N, dn =
1.
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When the range of a hypothesis the entire interval-1, +1], then theedgeyn(d) = SN_; dnynh(Xn)
is a more convenient quantity for measuring the qualitir.of his edge is an affine transformation
of the error for the case whénhas ranget-1: en(d) = 3 — Syn(d) anden(d) < 3 iff yn(d) > 0.

Recall from Section 2 that the margin of a given exan{glgyy) is defined ay, fq (Xn). Also
recall that# is the set from which the weak learner chooses its base hypothesasmé\ésr a
moment that/{ is finite. If we combine all hypotheses frof, then the following well-known the-
orem establishes the connection between margins and edges (first seanéction with Boosting
in Freund and Schapire, 1996; Breiman, 1%9):

Theorem 1 (Min-Max-Theorem, von Neumann (1928))

M

N
Vimmin e, 3 i) = mp min i 3 anfx) =0 (2

.....

whered € PN, a € PM and M= | #|. HereP¥ denotes theklimensional probability simplex

Thus, the minimum edgg that can be achieved over all possible distributidres the training set
is equal to the maximum margpt of any linear combination of hypotheses froth Also, for any
non-optimal distributionsl and and hypothesis weightswe always have

LTB{[th(d) > y'=p" > n:Tir?’NYn fo(Xn).
In particular, if the weak learning algorithm is guaranteed to return a hgpwthvith edge at least

y for any distribution on the examples, thgn> y and by the above duality there exists a combined
hypothesis with margin at leagt If y is equal to its upper boung then there exists a combined
hypothesis with margin exactly= p* that only uses hypotheses that are actually returned by the
weak learner in response to certain distributions on the examples.

From this discussion we can derive a sufficient condition on the weakihggalgorithm to reach
the maximum margin (for the case whehfinite). If the weak learner returns hypotheses whose
edges are at leagt, then there exists a linear combination of these hypotheses that attains a margin
y* = p*. We will prove later that our AdaBodstlgorithm efficiently finds a linear combination
with margin close t@* (cf. Theorem 6).

Constraining the edges of the previous hypotheses to equal zerm@mdbetotally corrective
algorithmof Kivinen and Warmuth (1999)) leads to a problem if there is no solutionfgiisthese
constraints. At the end of tria) the set of previous hypothesesfig= {hy,...,h} and the totally
corrective algorithm finds a distribution such tlygtd) = 0, for allh € 7{. Because of the above
duality and the fact thatf C A,

‘= min maxyy(d) < =p* .
¥ = mi heMWh()_WP

The non-decreasing sequen@g) converges t@* from below. If p* > 0, then the equality con-
straints on the edges are not satisfiable as sogha%.

In contrast our new algorithm AdaBo¢ss motivated by a system of inequality constraints
yh(d) < p, for h € H;, wherep is adapted. Again, ip < p*, then the system of inequalities with this

4. This is a zero-sum game with payoff matyitim(xn). The row player finds a mixturé over the rows/examples and
the column player a mixture over the column/hypotheses. Adding a row/example makes the minimax ebthe
game go down and adding a column/hypothesis makes it go up.
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p may not have a solution (and the Lagrange multipliers may diverge to infinityddaBoos} we
start withp large and decrease it when necessary. As we shall see, the algorithtainsa margin
parametep that is always at leagt" — v.

4.2 Convergence properties of AdaBoogt

Let AdaBoost,, denote the version of AdaBogghat uses a time varying margin paramegeat
iterationt. Thus in step 3 (d) of the algorithmp,is replaced byy. This extension will be necessary
for the later analysis of AdaBogst The sequencefp: }{_, might be specified while running the
algorithm. For instance, in the algorithm Arc-GV, Breiman (1999) chopfsas m|n ynfo(t 1 (Xn)-

-----

Breiman |(1999) showed that Arc-G&symptoticallyconverges to the maX|mum margln (see dis-
cussion in next section). In the following we answer the question how tochesse the sequence
{pt} so as to optimize bounds on the fraction of examples which have a margin apmost

Lemma 2 For anyp € [-1,1], the final hypothesis,fof AdaBoost,; satisfies the following in-
equality:

N
% Z (Wnfa(Xn) <p) < <I_!Zt> eXp{ Zpat} r!exp{pat +Inz} (3)

where 2= 5N diexp(—0yahi (xn)) andoy = 3In £ Ljn 1tr

The proof directly follows from a simple extensmn of Theorem 1 in SchapieSinger (1999)
(see also Schapire et al. (1998)).

We now use a lemma fromdgsch et al. (2001) to upper bound the right hand side (rhs) of the
above inequality:

Lemma 3 Lety be the edge ofihin the t-th iteration of AdaBoogs,. Assume-1 < p; <y. Then
forall pe [—1,1],

1 1 1- 1-
exp{pat+InZ(}<exp<— erpln<1j:5tt>— 2pIn<l_5:>>. 4

Note that this generalizes Theorem 5 of (Freund and Schapire, 199%7¢ ttase when the target
margin is not zero.

AdaBoost,,, makes progress, if the rhs of (4) is smaller than one. Suppose we woulm like
reach a margip on all training examples, where we obviously need to asgurm@*. We can then
ask which sequence ép; }{_; one should use to find such combined hypothesis in as few iterations
as possible. The rhs of|(4) can be rewritten as

exp(Az2(p, pt) —L2(p, 1)) ,

wheref;(a,b) := 1521n }ig 152In =2 denotes the binary relative entropy betweene [—1,1].
Therefore the rhs oF(4) is m|n|m|zed fp{ p (independent of;) and one should always use this
constant choice.

This means that whep; = p then the rhs of (4) is reduced by a factor of eéxp(p,vt)),
which can be upper bounded by inspecting the Taylor expansigrn=ap and noticing that when

0 < p <\, all terms of order three and higher are negative:

exp(-alpp) <1 3 O

forO<p <. (5)
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The denominator % p? speeds up the convergence wiges- 0. Notice that whem = 0, then we
recover the original AdaBoost bound.

Now we determine an upper bound on the number of iterations needed BpAsiafor achiev-
ing a margin ofp on all examples, given that the maximum margipis

Corollary 4 Assume the weak learner always returns a base hypothesis with aryedge’. If
0<p<p*—v,v >0, then AdaBoogtwill converge to a solution with margin at leagton all

. p— 2 . -
examples in at mo '”N\% P") jterations.

Proof By Lemma 2 and (4), (5):

1 N T ( 1(p—yt)2) ( 1 V2 >T
— X < < 1—— <|(1l-= .
N Z (nf () < p) tD 2 1-p? 21— p?

The margin is at leagi for all examples, if the rhs is smaller thﬁn hence after at most

INN 2InN(1 p?)
_m<1_%ﬁ;)" V2
iterations, which proves the statement. [

Whenp < 0, then inequality (5) can be replaced with the following weaker inequality whadds
for all distinctp, vt € [—1,1]:

exi - 0a(poy) < exp( 5P~ W2 ©

This leads to the same bound as in the above corollary except that the (factpf) is omitted.
Thus wherp < 0, the bound on the number of iterations becor%té% (Ratsch, 2001, page 25).

4.3 Asymptotic Margin of AdaBoost,

With the methods shown so far we can determine the asymptotic value of margmfoffbthesis
produced by the original AdaBoost algorithm. First, we state a lower bouarttie margin that is
achieved by AdaBoogt There is a gap between this lower bound and the upper bound of Théore
In a second part we consider an experiment that shows that dependgugne subtle properties of
the weak learner, the margin of combined hypotheses generated by dstafdm converge to quite
different values (while the maximum margin is kept constant). We obsertththareviously lower
bound on the margin is quite tight in empirical cases.

As long as each factor in the rhs of Eq. (3) is smaller than 1, the boundates. If the factor is
at most 1- pandp > 0, then the rhs converges exponentially fast to zero. The followindlaoyo
considers the asymptotic case and gives a lower bound on the margin.

Corollary 5 (Ratsch (2001)) Assume AdaBogsgenerates hypothesis i, ... with edgesy, Yo,
.. and coefficientsty,ap,. ... Lety™ =infi_1 > v and assumg™" > p. Furthermore, let

_ Yn 311 0rhr (Xn)
n=1,..N zﬁzlar
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be the achieved margin in the t-th iteration apie- Sup_; , _pt. Then the margi of the combined
hypothesis is bounded from below by

In(1-p?) —In(1—(y"")?)
In (i—ﬁ) —In (%g) .

From (7) one can understand the interaction betV\teandymiﬁ: If the difference betweey™n
andp is small, then the rhs of (7) is small. Thusgifwith p < y™" is large, therp must be large,
i.e. choosing a larggp results in a larger margin on the training examples. A Taylor expansion of

the rhs of((7) shows that the margin is lower boundeéﬁ@. This known lower bound (Breiman,
1999, Theorem 7.2) is greater thauf y™" > p.

In Section 4.1 we reasoned th&t" < p*. If the parameter AdaBogsts chosen too small, then
we guarantee only that the margin of the produced linear combination gmsvasymptotically to

a value at belovp*. In the original formulation of AdaBoost we hape= 0 and we guarantee only

that AdaBoosi achieves a margin of at Iea&igl = %y""”. This shortfall in the margin provable

for AdaBoost motivates our new AdaBopsthich is guaranteed to optimize the margin.

>

(7)

o

4.3.1 EXPERIMENTAL ILLUSTRATION OF COROLLARY/5

To illustrate the above-mentioned gap, we perform an experiment shoamgdht (7) can be. We
analyze two different settings: (i) the weak learner selects the hypotlgkitargest edge over all
hypotheses (i.e. the best case) and (ii) the weak learner selects thbdsipavith minimum edge
among all hypotheses with edge larger tipari.e. the worst case). Corollary 5 holds for both cases
since the weak learner is allowed to retamy hypothesis with edge larger thah.

We use random data witN training examples, wherd is drawn uniformly between 10 and
200. The labels are drawn at random from a binomial distribution with gupaddability. We use
a hypothesis set with f@andom hypotheses with range- 1, —1}. We first choose a parameter
uniformly in (0,1). Then the label of each hypothesis on each example s&nho agree with the
label of the example with probabilitgﬁ First we compute the solutiget of the margin-LP problem
via the left hand side of (2). Then we compute the combined hypothesisageddy AdaBoogt
after 1¢f iterations forp = 0 andp = % using the best and the worst selection strategy, respectively.
The latter algorithm depends @ri. We chose 300 hypothesis sets based on 300 random draws of
p. The random choice gb ensures that there are cases with small and large optimal margins. For
each hypothesis set we did two runs of AdaBgasting the best and worst selection strategies. The
result of each run is represented as a point in Figure 1. The abscibsarisaximum achievable
marginp* for each run. The ordinate is the margin of AdaBgassing the best (green) and the
worst strategy (red).

There is a large difference between these selection strategies. Wtierenargin of the worst
strategy igightly lower bounded by (7), the best strategy has near maximum margin. These e
ments show that one obtains different results by changing the selectitaggtod the weak learning
algorithm. Our lower bound holds for both selection strategies. The losseri¢he bounds is in-
deed a problem, as we cannot predict where AdaBamstverges 6. However, note that moving
p closer top* reduces the gap (see also Figure 1 [right]).

5. We do not allow duplicate hypotheses or hypotheses that agree witlb&ie ¢ all examples.
6. One might even be able to construct cases where the outputs atatabaverging.
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Figure 1: Achieved margins of AdaBogsusing the best (green) and the worst (red) selection on rando
data forp = 0 [leftj andp = % [right]. On the abscissa is the maximum achievable mapgin
and on the ordinate the margin achieved by AdaBptistone data realization. For comparison
we plotted the upper bound= x and the lower bound (7). On the interyal 1], there is a clear
gap between the performance of the worst and best sele¢tairgies. The margin of the worst
strategy is very close to the lower bouhd (7) and the begesglydhas near maximum margin.df
is chosen slightly below the maximum achievable margin thengap is reduced to 0.

Recently, it has been shown by Rudin et al. (2005) that there exist edme the weighting'
on the examples cycles indefinitely between non-optimal solutions. ThisptioaeAdaBoost does
not generally maximize the margin. Furthermore, it was shown in Rudin etQfl4{8) that the gap
exhibited in Figure 1 is not an experimental artifact: under certain conditf@®bwer bound (7)
was proven to be tight.

4.3.2 DECREASING THESTEP SIZE

Breiman (1999) conjectured that the inability to maximize the margin is due to théhtaicthe
normalized hypothesis coefficients may “circulate endlessly through thexaet”, which is de-
fined by the lower bound on the margin. In fact, motivated from our prevéyeriments, it seems
possible to implement a weak learner that appropriately switches between logtidhaorst case
performance, leading to non-convergent normalized hypothesisaents.

Rosset et al. (2002) have shown that AdaBoost with infinitesimally smallsiteg may max-
imize the margin, if the weak learner uses the best selection strategy. This ig somwhat we
found empirically for finite step sizes and motivates us to analyze AdaBwatt step sizes chosen
as follows:
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for somen > 0. Forn =1 we recover AdaBoogt Following the same proof technique as for
Corollary 5, we can show that under the same conditions as given in Ggrblla

—In((1+y)exp(—a) + (1 —y)exp@))

0>
p= a

)

whered = %In% — %In % Note that ifn goes to zero, thep = y. Interestingly, this is inde-

pendent of the choice @f. Thus if the weak learner always returns hypotheses with eglgep*
(t=12...), wherep* is the maximum margin, then by the Min-Max Theorem, the margin is
maximized whem goes to zero. However, there are no guarantees on the convegpsate

4.4 Convergence of AdaBoost
The AdaBoost algorithm is based on two insights:

e According to the discussion after Lemma 3, the most rapid convergencecimlzireed hy-
pothesis with margip* — v occurs for AdaBoogtwhen one choosgs; as close as possible
top* —v.

e For distributions on the examples that are hard for the weak learner (i.eucthle learner
achieves a small edge), the edgvill be close top*.

The idea is that by choosimg = (min,—1__tY;) — Vv we concentrate on the hardest distribution we
generated so far and can so findlaseoverestimate op* —v. This forces an acceleration of the
convergence to a large margin and leads to distributions for which the waaleltehas to return
small edges.

Note that if the weak learner always returns hypotheses with gdgep* which is the worst
case under the assumption tlyat> p*, thenp, = p* — v in each iteration. In this case the same
smallest step size is taken in every iteration which is determinegt tandv. This smallest step
size decreases with the desired accunacyhich matches the intuition from Section 4.3.2 that
decreasing the step size achieves larger and therefore more accugitesma

We will now state and prove our main theorem:

Theorem 6 Assume the weak learner always returns a base hypothesis with a;eegé. Then
after Z{)LZN iterations AdaBoost(Algorithm 2) is guaranteed to produce a combined hypothesis f of

margin at leasp* —v.

Proof Letp = p* —v be the margin that we would like to achieve. By assumption on the perfor-
mance of the weak learngy < min_1__ 1Yy = ¥ and thusp = p* —v <y —v. In step 3 (d)
of Algorithm[2, p; was set tof™ —v. Hencep < p; for each iteration.

Lemmas 2 and 3 imply that

1N T 1+p, (1+p\ 1-p, [(1-p
anll(y”f(xn)gp)gﬂexp< 2 In<1+vt> 2 In(l—vt>>

We now rewrite the rhs using; = 3In i—& —1iin i—g:
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By (1), a; > 0 sincep; < . By replacingp by its upper boung; we get:

T 1+pt <1+pt> 1-p <l_pt>>
<[lexp| — In — In
—ﬂ p< 2 1+y 2 Ty

Finally, by (6) we have:

T ; i 2 2
- t|1exp(—A(pt,yt)) < Uexp(_w) . exp(_%)‘

is at most, then by the above chain of inequalitigsy I, 1 (yn f (Xn) < p) < % and the margin of
each of theN examples is at leagt The theorem now follows from the fact th§t< exp(—%Tvz),
if the number of iterationd is at leasiN. -

If one assumeg; > 0, then Theorem|6 could be improved by a factot bf- p?) in each iteration,
using the refined upper bound of Corollary 4. Simge> p* —v, one would obtain the bound

* 2
"‘N(l*v(+")) if p* > v, but this factor will only matter for very large margins.

4.5 Infinite Hypothesis Sets

So far we have implicitly assumed that the hypothesis space is finite. In thisrsediwill show
that this assumption is (often) not necessary. Also note, if the output dighatheses is discrete,
the hypothesis space is effectively finitea®ch et al., 2002). Famfinite hypothesis set¥heorem 1
can be restated in a weaker form as:

Theorem 7 (Weak Min-Max, e.g. Nash and Sofer (1996))

N

‘=minsu h(xn)dn > sup min Aghg(Xn) =: p*, 3
Ve hGJ?nzlyn (a)dn > o(pnzl,“.,Ny"q:(%>0 qha(Xn) =P (8

whered € PN, a e 2”1 with finite support.

We calll” = y* — p* the “duality gap”. In particular for ang € PN, sug,,, zﬁzlynh(xn)dn >V
and for anyo € P! with finite support, MiR-1__ N Yn 3 qa,=00thg(Xn) < p*.

In theory the duality gap may be nonzero. However, Lemma 3 and Theodom6t assume
finite hypothesis sets and show that the margin will converge arbitrarily tboge as long as the
weak learning algorithm can return a hypothesis in each iteration that hedgamot smaller than
p".

In other words, the duality gap may result from the fact that the sup on fth&ide cannot be
replaced by a max, i.e. there might not existsirgle hypothesish with edge larger or equal to
p*. By assuming that the weak learner is always able to pick good enoughtheges® p*), one
automatically gets by Lemma 3 thiat= 0.

Under certain conditions off this maximum always exists and strong duality holds (for details
see e.g. Rtsch et al., 2002; &sch, 2001; Hettich and Kortanek, 1993; Nash and Sofer, 1996):

Theorem 8 (Strong Min-Max) If the set of vector§(h(x1),...,h(xn)) | he #} is compact, thefr=
0.
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In general, this requirement can be fulfilled by the weak learning algorithhtse outputs
continuously depend on the distributidn Furthermore, the outputs of the hypotheses need to be
bounded (cf. step 3a in AdaBogkt The first requirement might be a problem with weak learning
algorithms that are some variants of decision stumps or decision trees. efptimre is a simple
trick to avoid this problem: Roughly speaking, at each point with discontirtiityne adds all
hypotheses td{ that are limit points of (S, d®), where{d®}J ; is an arbitrary sequence converging
tod and L(S d) denotes the hypothesis returned by the weak learning algorithm for digiritzl
and training sampl& (Ratsch, 2001). This procedure assures #as closed.

The above theorem is applied in Appendix B to obtain iteration bounds foBéals{, in the
context of learning a convex combination of support vector kernels.

5. Experimental Comparison

In this section we discuss two experiments: The first one shows that aretloal bounds can be
tight on artificial data and the second one compares our algorithm to the@pespd in Rudin et al.
(2004a).

5.1 lllustration on Toy Examples

We are aware that maximizing the margin of the ensemble does not lead to imgenemlization
performance in all cases. In fact for fairly noisy data sets the oppasitbden reported (cf. Quinlan,
1996; Breiman, 1999; Grove and Schuurmans, 1998séh et al., 2001). Also, Breiman (1998)
reported an example where the margins of all examples are larger in araldaghan another and
the latter generalized considerably better.

3
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Figure 2: The twaiscriminative dimensionsf our separable one hundred dimensional data set.

Nonetheless, the theoretical bounds on the generalization error of tlsessifiers improves
with the margin. We therefore expect to be able to measure differences getieealization error
between a function that maximizes the margin and one that does not. Similar trestdtbeen
obtained in Schapire et al. (1998) on a multi-class optical characternigioogproblem.
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Here we report experiments on artificial data to illustrate how our algorithmksvand how
it compares to AdaBoost. Our data is 100 dimensional and contains 98 celidemensions with
uniform noise. The other two dimensions are plotted exemplary in Figure 2trdining we use
only 100 examples which means that controlling the capacity of the ensembéeidiat

As the weak learning algorithm we use C4.5 decision trees provided by QUit882) using
an option to control the number of nodes in the tree. We have tuned C4.5 ¢oageirees with
about three nodes. Otherwise, the weak learner often classifies alhdgraxamples correctly and
over-fits the data already. Furthermore, since in this case the margin idyalreimum (equal to
1), boosting algorithms would stop singe= 1. We therefore need to limit the complexity of the
weak learner, in good agreement with the bounds on the generalizatiori®chapire et al., 1998).

Moreover, we have to deal with the fact that C4.5 cannot use weighiegies. We therefore
use weighted bootstrapping (e.g. Efron and Tibshirani, 1994). Hemvthis amplifies the problem
that the resulting hypotheses might in some cases have an edge smaller tmaxithem margin,
which according to the Min-Max-Theorem should not occur if the wealalrgperforms optimally.
We deal with this problem by repeatedly calling C4.5 on different bootst&alizations if the edge
is smaller than the margin of the current linear combination. Furthermore,daBdosj, a small
edge of one hypothesis can spoil the margin estinpateWe address this problem by resetting
pt = Pt +V, whenevep; < pr, wherep is the margin of the currently combined hypothesis.

In Figure 3 we see a typical run of AdaBoost, Marginal AdaBoost, Autaf and Arc-GV for
v = .1. For comparison we plot the margins of the hypotheses generated Boasta(cf. Figure 3
(left)). One observes that it is not able to achieve a large margin efficieftgr 1000 iterations
p=.37.

Marginal AdaBoost as proposed iach and Warmuth (2002) proceeds in stages and first tries
to find an estimate of the margin using a binary search. It calls AdaBtust times. The first call
of AdaBoos} for p = 0 stops after four iterations because it has generated a consistent edmbin
hypothesis. The lower bouridbn p* as computed by Marginal AdaBoostlis= .07 and the upper
boundu is .94. The second timg is chosen to be in the middle of the interfiau] and AdaBoost
reaches the margin @f= .51 after 80 iterations. The interval is nds1,.77). Because the length
of the intervalu — I = .27 is small enough, Marginal AdaBoost leaves the loop through an exit
condition, calls AdaBoosgtthe last time fop = u—v = .41 and finally achieves the margin &5.

In a run of Arc-GV for thousand iterations we observe a margin of the aweddhypothesis of
.53, while for our new algorithm, AdaBogstwe find.58. In this case the margin for AdaBopst
larger than the margins of all other algorithms when executed for one thoussations. It starts
with slightly lower margins in the beginning, but then catches up due the betiieeabf the margin
estimate.

C4.5 AdaBoost Marginal AdaBoost AdaBopst

Egen 7.4+.11% 40+.11% 36+.10% 35+.10%
P — .31+ .01 .55+ .01 .58+ .01

Table 2: Estimated generalization performances and margins with confieégicals for decision
trees (C4.5), AdaBoost, Marginal AdaBoost and AdaBpostthe toy data. All numbers
are averaged over 200 splits into 100 training and 19900 test examples.
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Figure 3: lllustration of the achieved margin of AdaBeo@eft), Marginal AdaBoost (middle),
Arc-GV, and AdaBoost (right) at each iteration. Marginal AdaBoost calls AdaBgost
three times while adapting (dash-dotted). We also plot the values foandu as in
Marginal AdaBoost (dashed). (For details se@tdeh and Warmuth, 2002) AdaBopst
achieves larger margins than AdaBoost. Compared to Arc-GV it starts islbutethen
catches up in the later iterations. Here the correct choice of the pargmstienportant.

In Table 2 we see the average performances of the four classifieradBBoost and AdaBodgist
we combined 200 hypotheses for the final prediction. For Marginal AdaBwe use = .1 and let
the algorithm combine only 200 hypotheses for the final prediction to get a fawmrcomparison.
We see a large improvement of all ensemble methods over the single cla$ifie.is also a slight,
but — according to &test with confidence level 98% — significant difference between thergéra-
tion performances of AdaBoost and Marginal AdaBoost as well aBAdat and AdaBoost Note
also that the margins of the combined hypothesis achieved by Marginalcs$aBnd AdaBoost
are on average almost twice as large as for AdaBoost. The differegem@ralization performance
between AdaBoostand Marginal AdaBoost is not statistically significant.

The differences between the achieved margins of both algorithms seertlysigmificant
(96%). The slightly larger margins generated by Marginal AdaBoosbeattributed to the fact that
it uses many more calls to the weak learner than AdaBaosd after an estimate of the achievable
margin is available, it starts optimizing the linear combination using this estimate.

It would be natural to use a two-pass algorithm: In the first pass use @agBo get a margin
estimatep size at leasp* —v and then use this estimate in a final run of AdaBgo$he hypothesis
produced in the second pass should have a larger margin and usd&sgdrypotheses.

5.2 Heuristics for Tuning the Precision Parametewn

Our main results says that aft%{fTN iterations AdaBoogtproduces a hypothesis of margin at least

p* —v. Thus if the algorithm is allowed to run fdr iterations, thew should be set to = 4/ Z'%N
If vis chosen much larger thar, then afterT iterations AdaBoogtoften achieves a margin below

p* —vr. Similarly, if v is chosen much smaller thar, then AdaBooststarts too slowly and after
T iterations its margin is typically again belgi — vr.

Recently, Rudin et al. (2004a,c) proposed an algorithm, calledrdinate Ascent Boosting
which solves the same problem as AdaBgo3their analysis of the algorithm shows that it needs
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at mostQ(v—3) iterations to achieve a margin of at le@st—v. While this theoretical result is
clearly inferior to the guarantees which we provide for AdaBpaosteir experimental evaluation

of the algorithms seemed to suggest that the algorithm requires significantly iterations than
AdaBoosj in practice. However, their observations were only due to the impropeceiod the
accuracy parameter for AdaBoos}: Forv = 102 (as chosen in their study), AdaBopstould
need millions of iterations to achieve a guaranteed marginv. However, only the first 20 it-
erations were displayed and in this range their algorithms achieve a largginm&or T = 20K
andN = 50, the precision parameter prescribed by our bounds is .02. When this parameter is
used, then AdaBoastlearly beats all the other related algorithms (cf. Figure 4). We leave it to the
reader to explore other heuristics for tunimgased on the theoretical results of this paper (See also
the discussion at the end of the last subsection).

il Arc—G\V Coonfl,n_%t_e_ﬁ{c_e_r_]f_____; ,,,,, S maximum - Arc-GV  Coordinate Ascent
v margin p*
0.22} * 0.23 v \
maximum L e
0.2 margin b : = 0.02
c \ | o
5 018 #
]
£ 0.6 0.22 [yt
Boul |
> 0141
Q 4
S 012 o
&
. AdaBoostp | 5 ‘ g
0. o =p-/0.02 . 021 AdaBoost;
== 0.02
0.08 P
0.06
0.04'% : P / = ” 0.2t e
10 10 10 10 10 10
number of iterations number of iterations

Figure 4: AdaBoostwith different choices ob is compared to Arc-GV and the Coordinate Ascent
Algorithm on the same artificial dataset 1 used in Rudin et al. (2004c) (ddmséructed
this dataset from a figure given in Rudin et al. (2004b)): The numbeteddtions is
T = 20K, the dimension of the examplesNs= 50, and we assume that the base learner
returns a hypothesis with maximum edgev lis set to a reasonably close range around
the valuevt = .02 prescribed by our bound, then AdaBgasthieves the margin which is
significantly larger than the margins achieved by the other algorithnvs=If001 < vy
as chosen in Rudin et al. (2004c), then AdaBpassarts too slowly. In the case when the
base learner returns a random hypothesis with edge only at least astgig then our
algorithm compares even more favorably (not shown).
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6. Conclusion

We have analyzed a generalized version of AdaBoost in the contextg# taargin algorithms.
From von Neumann’s Min-Max theorem we know that if the weak learrvead returns a hypoth-
esis with weighted classification error less thlan %ythen the maximum achievable marginis

at leasty. The asymptotic analysis lead us to a lower bound on the margin of the finaliages
generated by AdaBogstwhich was shown to be rather tight in empirical cases. Our results indicate
that vanilla AdaBoost generally does not maximize the margin, and only ashéemargin of about
half the optimum.

To overcome these problems we provided an algorithm AdaBeda#t the following provable
guarantees: It produces a linear combination with margin at fgastv and the number of base
hypotheses used in this linear combination is at n%%ﬁ The new algorithm decreases its esti-
matep of the margin iteratively, such that the gap between the best and the vasestbecomes
arbitrarily small. Our analysis did not require additional properties of thekviearning algorithm.
In simulation experiments we have illustrated the validity of our theoretical asalys

Appendix A. Margins

First recall the definition of margin used in this paper, which is defined fioxeal set of exam-
ples{(xn,yn) : 1 < n < N} and a set of hypothese® = {hy,...,hu} (here finite for the sake of
simplicity):

M

P (H) = max mlnNyn Z amhm(Xn), wherea is on the simplexpM.
n=

Note that we minimize over the margins of individual examples and maximize ovhygigeplanes.
Define the one-norm margip;(#) in the same way but now lies in the larger se{a : a €
RM and||a||; = 1}. It is well known that for a fixed examplen, yn) and normab € RM, the one-

norm marglnﬁg—w is the minimunv..-distance of the example to the hyperplane with normal
o (Mangasarian, "1999;®sch et al., 2002), where the latter distance is defined as

inf max |hm(Xn) — Zm|.
ZeRM S.t. a.z=0 anblqu| m(Xn) — Zm

Note that in this appendix, margins are defined as a function of the the Iegesthet/ because
we will vary this set in a moment. Let(cH) be the closure off under negation, i.e. ¢H) =
HU{—h:he H}. Now, the following relationships are straightforward:

1. p*(5) < p1(#), p*(cl(#)) = 0, andp™(cl(#)) = p1(H).
2. If p*(cl(#)) > 0, thenp*(cl(H)) = p;(H).
3. If py(#) > 0, thenp* (cl(#)) = p; ().

In summary, if the one-norm margin 6f is non-negative, then the margin of the closed hypotheses
class c[H) coincides with the one-norm margin.

2149



RATSCH AND WARMUTH

Appendix B. An Application to Multiple Kernel Learning

Sonnenburg et al. (2005) proposed a new algorithm for solving the mul&preklearning (MKL)

problem that was introduced iin Lanckriet et al. (2004); Bach et aD420The idea of MKL is to

find a convex combination afsupport vector kernels : X x X — R (] = 1,...,J) that maximizes
the SVM soft margin (cf. Bach et al. (2004)). In Sonnenburg et 80%2 the original quadratically-
constraint quadratic program was reformulated to the following semi-infingatiprogram:

J

min sup BiSi(a 9)
BePIqca = . J( )
where
1 N N
S(a) = _ér;larasyryskj(xraxs)+nzlan

a4 - {

andC is the SVM regularization constant. Note that this problem has infinitely manstreonts:
one for every vectom in its domain4. Note that problem (9) is of the same type as the semi-infinite
programming problem (8) which can be solved with AdaBpdst. discussion in Section 4.5).
Since theS;(a) are continuous functions and is compact, it follows from Theorem 8 that the
duality gap is zero.

When AdaBoost, is applied to this problem, a hypothesis with large edge has to be found in
each iteration. In this case the hypothesesiavectors and the edge is

J J
ZBij(a) = _% zarGSYrYS (Z Bik; (XI’aXS)> + zai-
1= rs =1 ]

It has been noted that the edge in this case is nothing else than the neydtiabfgctive function

for the combined kerndd(x;, xs) = zle Bjk;j(xr,Xs). Hence, identifying aa vector with maximum
edge amounts to solving the vanilla SVM quadratic optimization problem. Fortunatahy effi-

cient SVM packages are available to solve this problem. Thus, the MKLgroban be efficiently
solved using AdaBoosiand our iteration bound for AdaBogss applicable.

N
aeRVN.0<a<1C, ZYnGnZO}
n=1
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