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Abstract
This work deals with a method for building a reproducing kernel Hilbert space (RKHS) from a
Hilbert space with frame elements having special properties. Conditions on existence and a method
of construction are given. Then, these RKHS are used within the framework of regularization
theory for function approximation. Implications on semiparametric estimation are discussed and a
multiscale scheme of regularization is also proposed. Results on toy and real-world approximation
problems illustrate the effectiveness of such methods.
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1. Introduction

A reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions with special prop-
erties (Aronszajn, 1950). It plays an important role in approximation and regularization theory as
it allows writing in a simple way the solution of a learning from empirical data problem (Wahba,
1990, 2000). Since the development of support vector machines (SVMs) (Vapnik, 1995; Vapnik
et al., 1997; Burges, 1998; Vapnik, 1998) as a machine learning for data classification and func-
tional estimation, there is a growing interest around reproducing kernel Hilbert spaces. In fact,
for nonlinear classification or approximation, SVMs map the input space into ahigh dimensional
feature space by means of a nonlinear transformationΦ (Boser et al., 1992). Usually in SVMs,
the mapping function is related to an integral operator kernelK(x,y) which corresponds to the dot
product of the mapped data:

K(x,y) = 〈Φ(x),Φ(y)〉
wherex andy belong to the input space.

In regularization theory (Tikhonov and Arsénin, 1977; Groetsch, 1993; Morosov, 1984), the ill-
conditioned estimation from data problem is transformed into a well-conditioned problem by means
of a stabilizer, which is a functional with specific properties.

For both SVMs and regularization theory, one can consider special cases of kernel and stabilizer:
the kernel and the norm associated with an RKHS (Girosi, 1998; Smola et al.,1998; Evgeniou et al.,
2000). This justifies the appeal of RKHS as it allows the development of a general framework that
includes several approximation schemes.

One of the most important issues in a learning problem is the choice of the data representation.
For instance, in SVMs this corresponds to the selection of the nonlinear mapping Φ. It is a key
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problem since the mapping has a direct influence on the kernel and thus, ithas an influence on
the solution of the approximation or classification problem. In practical cases, the choice of an
appropriate data representation is as important as the choice of the learningmachine. In fact, prior
information on a specific problem can be used for choosing an efficient input representation, or
for choosing a good hypothesis space that leads to enhanced performance of the learning machine
(Scholkopf et al., 1998; Jaakkola and Haussler, 1999; Niyogi et al., 1998).

The purpose of this paper is to present a method for constructing an RKHSand its associated
kernel by means of frame theory (Duffin and Schaeffer, 1952; Daubechies, 1992). A frame of a
Hilbert space spans any vector of the space by linear combination of the frame elements. But unlike
a basis, a frame is not necessarily linear independent although it achieves stable representation.
Since a frame is a more general way to represent elements of Hilbert space, it allows flexibility in
the representation of any vector of the space. By giving conditions for constructing arbitrary RKHS
from frame elements, our goal is to widen the choice of kernel so that in future applications, one
can adapt its RKHS to prior information available concerning a problem at hand.

The paper is organized as follows: in Section 2, we recall the problem of estimating function
from data and the way of solving it owing to regularization theory. Section 3 deals with frame.
After a short introduction about frame theory, we give conditions for a Hilbert space described by
a frame to be an RKHS and then derive the corresponding kernel. In Section 4, a practical way for
building RKHS is given. Section 5 discusses implication of these results on regularization technique
and proposes an algorithm for multiscale approximation. Section 6 presents estimation results on
numerical experiments on toy and real-world problems while Section 7 concludes the paper and
contains remarks and other issues about this work.

2. Regularized Approximation

As argued by Girosi et al. (1995), learning from data can be viewed asa multivariate function
approximation from sparse data. Supposing that one has a set of data{(xi ,yi),xi ∈ R

d,yi ∈ R, i =
1. . . `} provided by the random sampling of a noisy functionf , the goal is to recover the unknown
function f , from the knowledge of the data set. It is well-known that such a problem isill-posed as
there exists an infinity of functions that pass perfectly through the data. One way to transform this
problem into a well-posed one is to assume that the functionf presents some smoothness properties
and hence, the problem becomes a variational problem of finding the function f ∗ that minimizes the
functional (Tikhonov and Arśenin, 1977):

H[ f ] =
1
`

`

∑
i=1

C(yi , f (xi))+λΩ[ f ] (1)

whereλ is a positive number,C a cost function which determines how differences betweenf (xi) and
yi should be penalized andΩ[ f ] a functional which denotes the prior information on the functionf .
λ balances the trade-off between fitness off to the data and smoothness off . This regularization
principle leads to different approximation schemes depending on the cost functionC(·, ·). Classical
L2 cost function (C(yi), f (xi)) = (yi − f (xi))

2 leads to the so-called Regularization Networks (Girosi
et al., 1995; Evgeniou et al., 2000) whereas cost function like Vapnik’sε−insensitive function leads
to SVMs.

When the functionalΩ[ f ] is defined as‖ f‖2
H

, the square norm off in a reproducing kernel
Hilbert spaceH associated to a positive definite function K (the square norm in a Hilbert space
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being related to the inner product by‖ f‖2
H

= 〈 f , f 〉H ) , the solution of Equation (1) is under general
conditions

f ∗(x) =
`

∑
i=1

ciK(x,xi). (2)

The case of‖ f‖H being a seminorm leads to a minimizer with the following form:

f ∗(x) =
`

∑
i=1

ciK(x,xi)+
m

∑
j=1

d jg j(x) (3)

where{g j} j=1...m span the null space of the functional‖ f‖2
H

.
In a nutshell, looking for a functionf of the form (3) is equivalent to minimizing the functional

H[ f ], and thus the solution which depends onλ is the “best” balance between smoothness inH

and fitness to the data. Choosing a kernelK is equivalent to specifying a prior information on the
RKHS, therefore having a large choice of RKHS should be fruitful for the approximation accuracy,
if overfitting is properly controlled, since one can adapt its hypothesis space to each specific data
set.

3. Frames and Reproducing Kernel Hilbert Spaces

In this section, we give an introduction to frame theory that will be useful for the remainder of
the paper.

3.1 A Brief Review of Frame Theory

Frame theory was introduced by Duffin and Schaeffer (1952) (Daubechies, 1992) in order to
establish general conditions under which one can reconstruct perfectly a function f in a Hilbert
spaceH from its inner product(〈·, ·〉H ) with a family of vectors{φn}n∈Γ with Γ being a finite or
infinite countable index set.

Definition 1 A set of vectors{φn}n∈Γ is a frame of a Hilbert spaceH if there exists two constants
A > 0 and∞ > B≥ A > 0 so that

∀ f ∈ H , A|| f ||2
H
≤ ∑

n∈Γ
|〈 f ,φn〉H |2 ≤ B|| f ||2

H
. (4)

The frame is said to be tight if A and B are equal.

If the set{φn}n∈Γ satisfies the frame condition then the frame operatorU can be defined as

U :
H −→ `2

f −→ {〈 f ,φn〉H }n∈Γ.
(5)

The reconstruction off from its frame coefficients needs the definition of a dual frame. For this
purpose, one introduces the adjoint operatorU∗ of U which exists and is unique because it lies on a
Hilbert space:

U∗ :
`2 −→ H

{cn}n∈Γ −→ ∑n∈Γ cnφn.
(6)
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Theorem 1 (Daubechies, 1992) Let{φn}n∈Γ be a frame ofH with frame bounds A and B. Let us
define the dual frame{φ̄n}n∈Γ as φ̄n = (U?U)−1φn. For all f ∈ H , we have

1
B
‖ f‖2

H
≤ ∑

n∈Γ
|〈 f , φ̄n〉H |2 ≤ 1

A
‖ f‖2

H
(7)

and
f = ∑

n∈Γ
〈 f , φ̄n〉H φn = ∑

n∈Γ
〈 f ,φn〉H φ̄n. (8)

If the frame is tight then̄φn = 1
Aφn .

This theorem also shows that the dual frame{φ̄n}n∈Γ is a family of vectors which allows to
recover anyf ∈ H , and consequently one can write each vector of the frame and the dual frame as

∀m∈ Γ, φ̄m = ∑
n∈Γ

〈φ̄m,φn〉H φ̄n (9)

and
∀m∈ Γ, φm = ∑

n∈Γ
〈φm,φn〉H φ̄n. (10)

According to this theorem and the above equations, one can note that an orthonormal basis
of H is a special case of frame whereA = B = 1, φ̄n = φn and ‖φn‖ = 1. However, as stated
by Daubechies (1992), frame redundancy can be statistically useful. Also note that in the general
case, we do not have an analytical expression of the dual frame, and thus it has to be computed
numerically. Grochenig has proposed such an algorithm (Grochenig, 1993) which is based on a
iterative conjugate gradient method. We have briefly described this algorithm in the appendix but
for further details, one should refer to the original paper.

For the sake of simplicity, in the following we will call frameable Hilbert space, a Hilbert space
H for which there exists a set of vector ofH that forms a frame ofH . Note that all separable
Hilbert spaces are frameable since by definition they have a countable orthonormal basis.

3.2 A Reproducing Kernel Hilbert Space and Its Frame

After this short introduction on frame theory, let us look at the conditions under which a frame-
able Hilbert space is also a reproducing kernel Hilbert space.

First of all, we introduce some notations that will be used throughout the rest of the paper: let
R

Ω be the set of all functions defined on a domainΩ ⊂ R
d with values inR.

For the purpose of being self-contained, we propose here some useful definitions and proper-
ties concerning RKHS. However, the reader who is interested in deeper details can refer to books
describing mathematical aspects (Atteia, 1992; Berlinet and Agnan, 2004).

Definition 2 A Hilbert spaceH with inner product〈·, ·〉H is a reproducing kernel Hilbert space of
R

Ω if:

• H is a subspace ofRΩ
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• ∀t ∈ Ω ,∃Mt > 0 so that
∀ f ∈ H , | f (t)| ≤ Mt || f ||. (11)

This latter property means that for any t∈ Ω, the linear functionalFt (also called the evalu-
ation functional) defined as

Ft( f ) :
H −→ R

f −→ Ft( f ) = f (t)

is a bounded linear functional.

Note that for any Hilbert space of functions, the evaluation functional is linear, thus the impor-
tant point for having the reproducing kernel property is this evaluational functional being bounded.

Definition 3 We callHilb(RΩ) the set of all RKHS ofRΩ.

Owing to the Riesz theorem, one can state that:

Theorem 4 Let H ∈ Hilb(RΩ), there exists an unique symmetric function K(·, t) of H called the
reproducing kernel ofH so that

∀t ∈ Ω, ∀ f ∈ H , f (t) = 〈 f |K(·, t)〉H . (12)

Theorem 5 Let H be a Hilbert space and{φn}n∈Γ be a frame of this space. If{φn}n∈Γ is a (finite
or infinite) set of functions ofRΩ, so that:

∀t ∈ Ω,

∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(·)φn(t)

∥

∥

∥

∥

∥

H

< ∞. (13)

ThenH is a reproducing kernel Hilbert space.

Proof

Step 1 Any φn is both an element ofRΩ andH . Hence the equation

∀ f ∈ H , f = ∑
n∈Γ

〈 f , φ̄n〉H φn

holds inH according to the frame property given in Equation (8) (Mallat, 1998; Daubechies, 1992).
Now since,RΩ has a structure of vector space,f = ∑n∈Γ〈 f , φ̄n〉φn is also valid inR

Ω and thusf also
belongs toRΩ. Now, if for eacht ∈ Ω, we define the seminorm on the vector spaceR

Ω as

∀ f ∈ R
Ω, ‖ f‖t = | f (t)|.

According to this seminorm, we get the following pointwise convergence:

f = ∑
n∈Γ

〈 f , φ̄n〉H φn ⇔ f (t) = ∑
n∈Γ

〈 f , φ̄n〉H φn(t). (14)
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Step 2 Now let’s show that∀t ∈ Ω, ∃Mt > 0 so that

∀ f ∈ H , | f (t)| ≤ Mt‖ f‖H . (15)

All elements ofH can be expanded with regards to the frame elements, so according to Equation
(14), we have for allf in H andR

Ω:

| f (t)| =
∣

∣

∣

∣

∣

∑
n∈Γ

〈 f (·), φ̄n(·)〉H φn(t)

∣

∣

∣

∣

∣

(16)

and consequently,

| f (t)| =

∣

∣

∣

∣

∣

〈

f (·), ∑
n∈Γ

φ̄n(·)φn(t)

〉

H

∣

∣

∣

∣

∣

≤ ‖ f‖H

∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(·)φn(t)

∥

∥

∥

∥

∥

H

(17)

by definingMt , ‖∑n∈Γ φ̄n(·)φn(t)‖H one can conclude thatH is a reproducing kernel Hilbert space
sinceMt is finite by hypothesis and therefore,H admits an unique reproducing kernel.

Remark 6 In this proof, we have chosen to expand a function f ofH according to f= ∑n∈Γ〈 f , φ̄n〉φn.
However choosing the relationship f= ∑n∈Γ〈 f ,φn〉φ̄n would have led to the following equivalent
condition to Equation (13):

∀t ∈ Ω,

∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(t)φn(·)
∥

∥

∥

∥

∥

H

< ∞. (18)

Now let’s try to express the reproducing kernel of such a Hilbert space.

Theorem 7 Let H be a reproducing kernel Hilbert space andH ∈ Hilb(RΩ), and the family
{φn}n∈Γ be a frame of this space, the reproducing kernel is K(s, t) defined by:

K :

∣

∣

∣

∣

Ω×Ω → R

s× t → K(s, t) = ∑n∈Γ φ̄n(s)φn(t)
(19)

Proof
At first, note that according to the frame inequality:

∑
n∈Γ

φ2
n(t) = ∑

n∈Γ
|〈K(t, ·),φn(·)〉H |2 ≤ B‖K(t, ·)‖2

H
< ∞.

Furthermore, according to Theorem (1) we know that{φ̄n}n∈Γ is another frame ofH . Thus, sim-
ilarly to Equation (6), we can define the adjoint operatorU∗

φ̄ associated to this dual frame. And,
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applyingU∗
φ̄ to the`2 sequence{φn(t)} shows that the function∑n∈Γ φ̄n(·)φn(t) is a well-defined

function ofH .
Furthermore, anyf ∈ H can be expanded by means of the frame ofH , thus according to

Equation (14):

f (t) = ∑
n∈Γ

〈 f , φ̄n〉H φn(t)

=

〈

f (·), ∑
n∈Γ

φ̄n(·)φn(t)

〉

H

(20)

and sinceH is an RKHS, we have

∀ f ∈ H , ∀t ∈ Ω, f (t) = 〈 f (·),K(·, t)〉H . (21)

Hence, by identifying Equation (20) and (21) due to the unicity of the reproducing kernel, we have

K(·, t) = ∑
n∈Γ

φ̄n(·)φn(t)

and thus, we can conclude that

K(s, t) = ∑
n∈Γ

φ̄n(s)φn(t).

These propositions show that a Hilbert space which can be described byits frame is under gen-
eral conditions, a reproducing kernel Hilbert space and its reproducing kernel is given by a linear
combination of its frame and dual frame product.

A simple corollary to Theorem (7) is that for any RKHSH with family {φn}n∈Γ as a frame,
the inequality (13) holds. This naturally stems from the fact thatK(·, t) = ∑n∈Γ φ̄n(·)φn(t) is a well-
defined function ofH (as stated in the proof of Theorem 7) and thus it has a finite norm inH .

The symmetry and the positivity of the kernelK(s, t) are direct consequences ofK(·, ·) being
a kernel of an RKHS. However, these properties can also be easily shown owing to the frame
representation. In fact, according to Equation (8) and (14), we get:

x(t) = ∑
n∈Γ

〈x, φ̄n〉H φn(t) = ∑
n∈Γ

〈x,φn〉H φ̄n(t)

=

〈

x(·), ∑
n∈Γ

φ̄n(·)φn(t)

〉

H

=

〈

x(·), ∑
n∈Γ

φn(·)φ̄n(t)

〉

H

(22)

thus, owing to the uniqueness of the functional evaluation in a RKHS, one can deduce from Equation
(22) that

K(s, t) = ∑
n∈Γ

φ̄n(s)φn(t) = ∑
n∈Γ

φ̄n(t)φn(s) = K(t,s).
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The positivity can also be proved from the following reasoning. Letx1, · · · ,x` be some vectors ofΩ
anda1, · · · ,a` some scalar values inR, we want to show that for any set{xi} and{ai}:

`

∑
i, j

aia jK(xi ,x j) ≥ 0.

According to Equation (10), we can write

K(xi ,x j) = ∑
n∈Γ

φ̄n(xi) ∑
m∈Γ

φ̄m(x j)〈φn,φm〉H .

Thus, we have
`

∑
i, j

aia jK(xi ,x j) =
`

∑
i, j

aia j ∑
n,m∈Γ

φ̄n(xi)φ̄m(x j)〈φn,φm〉H

=

〈

`

∑
i

∑
n∈Γ

ai φ̄n(xi)φn(·),
`

∑
j

∑
m∈Γ

a j φ̄m(x j)φm(·)
〉

H

=

∥

∥

∥

∥

∥

`

∑
i

∑
n∈Γ

ai φ̄n(xi)φn(·)
∥

∥

∥

∥

∥

2

H

≥ 0.

4. Learning Schemes Using Frames

In the previous section, conditions for a frameable Hilbert space being anRKHS were given.
Here, we are interested in constructing a reproducing kernel Hilbert space together with its frame
and discuss about the implications of such result in a functional estimation framework.

4.1 Learning on Frameable Hilbert Spaces

An interesting point of frameable Hilbert space is that under weak conditions, it becomes easy
to build RKHS. The following theorem proves such point.

Theorem 8 Let N ∈ N and {φn}n=1...N be a finite set of non-zero functions of a Hilbert space
(B,〈·, ·〉) with B ⊂ R

Ω so that

∃M,∀t ∈ Ω, ∀n 1≤ n≤ N, |φn(t)| ≤ M.

Let H be the set of functions so that

H = { f =
N

∑
n=1

anφn : an ∈ R, n = 1, . . . ,N}

(H ,〈·, ·〉B) is an RKHS and its reproducing kernel is

K(s, t) =
N

∑
n=1

φ̄n(s)φn(t),

where{φ̄n}n=1,...,N is the dual frame of{φn}n=1,...,N in H .
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Proof

Step 1 H is a Hilbert space.

This is straightforward sinceH is a closed subspace of a Hilbert spaceB, and is endowed with
B inner product. HenceH is a Hilbert space.

Step 2 {φn} is a frame ofH . A proof of this step is also given in Christensen (1993). We have
to show that there existsA andB satisfying equation (4). Let us consider the non trivial case that
span{φn}n=1..N 6= 0.

The existence ofB is straightforward applying Cauchy-Schwartz inequality. In fact, for all
f ∈ H

|〈 f ,φn〉|2 ≤ ‖ f‖2‖φn‖2

and thus
N

∑
n=1

|〈 f ,φn〉|2 ≤ ‖ f‖2
N

∑
n=1

‖φn‖2.

Thus by takingB= ∑N
n=1‖φn‖2, we haveB< ∞ andB satisfies the right-hand inequality of Equation

(4).
Let H ∗ , { f ∈ H : ‖ f‖H > 0} andS( f ) be the following mapping:

S:

∣

∣

∣

∣

H ∗ −→ R

f −→ S( f ) = ∑n∈Γ |〈 f ,φn〉|2.
(23)

This mapping is continuous and becauseH ∗ is of finite dimension the restriction ofSto the unit
ball in span{φn}n=1..N reach its infimum (Brezis, 1983): there isg∈ span{φn}n=1,...,N with ‖g‖ = 1
such that

∑
n∈Γ

|〈g,φn〉|2 = inf

{

∑
n∈Γ

|〈 f ,φn〉|2, f ∈ H ∗ so that‖ f‖ = 1

}

.

Let A be∑n∈Γ |〈g,φn〉|2. HenceA > 0, and as‖g‖ = 1, one has for anyf ∈ H ∗:

A‖ f‖2 ≤
N

∑
n=1

|〈 f ,φn〉|2.

Step 3 Now let’s prove thatH is an RKHS. For that it suffices to prove that the frame{φn}
satisfies condition given in Theorem 5.

This is straightforward since{φn}n=1,...,N is a frame ofH and owing to Theorem 1, the dual
frame{φ̄n}n=1,...,N is also a frame ofH . Hence, the norm of each̄φn is finite. Besides,|φn(t)| is
supposed to be bounded byM. Hence,

∥

∥

∥

∥

∥

N

∑
n=1

φ̄n(·)φn(t)

∥

∥

∥

∥

∥

≤ M
N

∑
n=1

‖φ̄n(·)‖ < ∞

and consequently,H is an RKHS with a kernel equal to:

K(s, t) =
N

∑
n=1

φ̄n(s)φn(t).
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Figure 1: Examples of wavelet frame elements (left) anf their dual elements (right).

Here, we give some examples of RKHS that have been derived from the direct application of
this theorem.

Example 1 Any finite set of bounded, real-valued, pointwise-defined and squareintegrable func-
tions onΩ endowed with the inner product〈 f ,g〉 =

R

Ω f (t)g(t)dt spans a RKHS. For instance, the
set of functions which expressions are given below spans an RKHS.

∀t ∈ Ω,φn(t) = t ·e−(t−n)2
, n∈ [nmin,nmax] with (nmin,nmax) ∈ N

2

Example 2 Any finite set of bounded and pointwise-defined functions belonging to Sobolev space
(Berlinet and Agnan, 2004) spans an RKHS. The set of functions, given in the previous example
spans also an RKHS in a Sobolev inner product sense.

Example 3 Consider a finite set of wavelet onR
{

ψ j,k(t) =
1√
a j

ψ
(

t −ku0a j

a j

)

, j ∈ Z : jmin ≤ j ≤ jmax, k∈ Z : kmin ≤ k≤ kmax

}

where(a,u0) ∈ R
∗
+×R, and( jmin, jmax,kmin,kmax) ∈ Z

4. Then the span of these functions endowed
with the inner product〈 f ,g〉 =

R

R
f (t)g(t)dt is an RKHS. Figure (1) plots an example of wavelet

frame and dual frame elements for a dilation j= −7.

The main interest of Theorem (8) is the flexibility it introduces in the RKHS choice or in the
choice of the functions that span the hypothesis space. However, this theorem only deals withfinite
dimension RKHS. For building infinite dimensional RKHS, Theorem (5) has to be used. The main
difference between the finite andinfinite dimensional case and thus between Theorems (5) and (8)
is that a finite set of functions{φn}n=1,...,N, if endowed with an adequate inner product, is always
a frame of the space it spans (see step 2 of the proof of Theorem (8)) .This is not always true
for an infinite set of functions and in this case, the frame condition given in Equation (4) and the
boundedness of the evaluation functional in Equation (13) have to be verified. Next examples are
examples of infinite dimension RKHS which kernels are given explicitly by their frame elements.
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Example 4 Let us considerH as the space of continuous and differentiable functions onΩ = [0,1]
with the constraints that for any f∈ H , f (0) = f (1) = 0 and ∂ f ∈ L2(Ω) where∂ f is the usual
derivative of f . Endowed with the inner product:

∀ f and g∈ H , 〈 f ,g〉H =
Z

Ω
∂x f (x)∂xg(x)dx

one can show thatH is a Hilbert space of functions onΩ and that the set

{φn(t)}n∈N∗ =

{√
2

nπ
sin(nπt)

}

n∈N∗

is an orthonormal basis ofH (Debnath and Mikusinki, 1998; Atteia and Gaches, 1999). Hence,
{φn(x)}n∈N∗ is a tight frame ofH with the frame constant A equals to 1. Let us show that this frame
verify the condition given in Theorem (5) in order to prove thatH is an RKHS.

At first, let us prove that for all t∈ Ω, the sequence{φn(t)}n∈N∗ belongs tò 2. Becausēφn = φn,
we have for any t∈ Ω:

∑
n∈N∗

φ2
n(t) = ∑

n∈N∗
φ̄2

n(t) = ∑
n∈N∗

2
n2π2 sin2(nπt)

≤ 2
π2 ∑

n∈N∗

1
n2

< ∞.

Hence, according to the adjoint frame operator U∗ given in equation (6), for any t∈ Ω, the function
∑n∈N∗ φn(·)φn(t) is a well-defined function ofH . Thus,

∥

∥

∥

∥

∥

∑
n∈N∗

φn(·)φn(t)

∥

∥

∥

∥

∥

2

H

= ∑
n∈N∗

φ2
n(t) < ∞.

HenceH is a infinite dimensional RKHS with kernel

∀s, t ∈ Ω, K(s, t) =
∞

∑
n=1

2
n2π2 sin(nπs)sin(nπt).

Example 5 This other example shows a way for constructing an infinite dimensional RKHS from
its frame. Let{αn}n∈Γ be a set of strictly positive real values and define the subspace`2

α of `2 as

`2
α =

{

c = {cn}n∈Γ, cn ∈ R : ∑
n∈Γ

c2
n

αn
< ∞

}

.

Endowed with the inner product〈c,d〉`2
α
≡ ∑n∈Γ

cndn
αn

, one can show that̀2α is a Hilbert space. Now,

let {φn}n∈Γ be a set of functions onRΩ so that:

∀t ∈ Ω, ∑
n∈Γ

αnφ2
n(t) < ∞
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and T the mapping:

T :
`2

α → H ⊂ R
Ω

c → f = ∑n∈Γ cnφn.

It is simple to show thatH is a space of functions onΩ since for all t∈ Ω,{αnφn(t)}n∈Γ belongs to
`2

α. Then we have,

〈c,{αnφn(t)}n∈Γ〉`2
α
= ∑

n∈Γ

cnαnφn(t)
αn

= ∑
n∈Γ

cnφn(t) < ∞.

Suppose furthermore for simplicity and clarity that{φn}n∈Γ has been chosen so that T is an injective
mapping. Then the range of the mapping T also defined as

H =

{

f = ∑
n∈Γ

cnφn : {cn}n∈Γ ∈ `2
α

}

and endowed with the inner product:

〈 f ,g〉H ≡ 〈c,d〉`2
α
= ∑

n∈Γ

cndn

αn
with f = ∑

n∈Γ
cnφnand g= ∑

n∈Γ
dnφn

is also a Hilbert space since in this case T is an isometric isomorphism between`2
α andH (Debnath

and Mikusinki, 1998). Note that this way of building a Hilbert space is also described by Opfer
(2004a) and Amato et al. (2004). However, none of them has presented the following frame-based
point of view for showing that under some weak hypothesisH can be an RKHS.

At first, note that due to the one-to-one mapping between`2
α and H , the following equality

holds:

∀k,n∈ Γ, 〈φk,φn〉H =
δk,n

αk

whereδk,n is the Kronecker symbol.
Let us show that{φn}n∈Γ is a frame ofH . Owing to the above property, we have∑n∈Γ |〈 f ,φn〉|2 =

∑n∈Γ
c2

n
α2

n
and‖ f‖2

H
= ∑n∈Γ

c2
n

αn
, then it is clear that the following inequality holds:

1
αmax

‖ f‖2
H
≤ ∑

n∈Γ
|〈 f ,φn〉|2 ≤

1
αmin

‖ f‖2
H

whereαmax = maxn∈Γ αn and αmin = minn∈Γ αn. Since according to the frame property given in
Equation (8), each frame element can be expanded asφk = ∑n∈Γ〈φk,φn〉φ̄n, we haveφk = 1

αk
φ̄k.

Hence since the frame and dual frame elements are so that for any t∈ Ω, we have

∑
n∈Γ

αnφ2
n(t) = ∑

n∈Γ

(φ̄n(t))2

αn
< ∞. (24)

Then{φ̄n(t)}n∈Γ ∈ `2
α and consequently, the function K(·, t) = ∑n∈Γ φ̄n(t)φn(·) is well-defined, be-

longs by construction toH and is so that
∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(t)φn(·)
∥

∥

∥

∥

∥

H

< ∞,
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andH is an RKHS whose kernel is

K(s, t) = ∑
n∈Γ

φ̄n(t)φn(s) = ∑
n∈Γ

αnφn(s)φn(t).

A practical example of such an infinite dimensional RKHS can be obtained as follows. Let us con-
sider thatΩ = R and eachφn(t) = 1√

2J
ϕ

(

t−n
2J

)

with n∈ Z, J∈ Z andϕ(t) a pointwise-defined onΩ
and compactly supported function so that{φn}n∈Γ are linearly independent. Examples of such func-
tionsϕ(t) are functions that are classically used in wavelet-based multiresolution analysis (Mallat,
1998). Since eachφn is a compactly supported shift of a functionϕ, for any t, the sum in Equation
(24) becomes a finite sum of non-zero terms which convergence is consequently guaranteed for any
{αn}n∈Γ. At this point, we can state that the space

H =

{

f = ∑
n∈Γ

cn√
2J

ϕ
(

t −n
2J

)

: ∑
n∈Γ

c2
n

αn
< ∞

}

is a reproducing kernel Hilbert space.
If we wantH to be the span of different dilations and shifts ofϕ, we can also show thatH is

an RKHS by choosing the{αn}n∈Γ to be related to the dilation parameter J so that the inequality in
(24) holds.

4.2 Other Classes of Frame-Based Kernels

Recently, Gao et al. (2001) have proposed another class of frame-based kernels. Their approach
is based on the connection between regularization operator and supportvector kernel as described in
Smola et al. (1998). Supposing thatU is the frame operator of a either finite or infinite dimensional
RKHS, their kernel is based on the statement that the operatorQ = U∗U is a symmetric positive
definite operator and the Green function associated to this operator is a Mercer kernel. Thus, the
kernel they proposed, named the frame operator kernel, can be expanded with respect to the dual
frame elements as

K(s, t) = ∑
n∈Γ

φ̄n(s)φ̄n(t).

A detailed proof of this equation is given in Gao et al. (2001).
From the point of view of the regularization theory (Smola et al., 1998), this frame-operator

kernel of Gao et al. is different from the one we propose as the regularization operator associated
to each of them are different. In fact, in our case the regularization operator can be considered as
the projector of any function space onH whereas in the Gao et al. case, it can be seen as the frame
operatorU .

More recently, Opfer (2004b) has shown that the kernel associated toan RKHSH can be
expanded as

K(s, t) = ∑
n∈Γ

φn(s)φn(t)

if and only if the set of functions{φn}n∈Γ is a super tight frame (which is a tight frame with frame
bounds equal to 1) ofH . This results is a particular case of Theorem (7) since for a super tight
frame each dual frame element isφ̄n = φn. Furthermore, compared to Opfer’s work, our Theorem
(5) gives a frame-based condition for a Hilbert space to be an RKHS.
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The works of Amato et al. (2004) and Opfer (2004a) where they both proposed the concept of
multiscale kernels can also be related to our work. Interestingly, they have both shown that a Hilbert
space spanned by wavelet can be under some weak hypotheses an RKHS. The way they build their
RKHS H is very similar to the one we described in example (5) and the related reproducing kernel
is naturally

K(s, t) = ∑
n∈Γ

αnφn(s)φn(t),

where eachαn is a strictly positive real value. On one hand, Amato et al. ended up with this kernel
by considering that{φn}n∈Γ are a orthonormal wavelet basis ofL2([0,1]) and showing that for their
spaceH , the evaluation functional is continuous. On the other hand, for achievingthis result, Opfer
has shown that the functionK(·, t) belongs toH and satisfies the reproducing property without
explicit explanations on how this kernel has been obtained. Hence, although very similar to the
work of Opfer, the example (5) gives the functional setting on how the kernel in (Opfer, 2004a) can
be derived.

5. Discussions

Propositions presented in previous sections describe a way for easily building RKHS and its
associate reproducing kernel. Hence, this kernel can be used within theframework of regularization
networks or SVMs for functional estimation.
For SVMs, one usually chooses as a kernel a continuous symmetric function K in L2(Ω) (Ω being
a compact subset ofRd) that has to satisfy the following condition, known as Mercer’s condition:

Z

Ω

Z

Ω
K(x,y) f (x) f (y)dxdy≥ 0 (25)

for all f ∈ L2(Ω).
Now, one may ask what are the advantages and drawbacks of using kernels built by means of

Theorem (5) or (8).

• Both Mercer’s condition and frameable RKHS allow to obtain a positive definitefunction.
However, it is obvious that conditions for having frameable RKHS are easier to verify than
Mercer’s condition. Thus, this can be interpreted as a flexibility for adapting kernel to a
particular problem. Examples of this flexibility will be given below within the context of
semiparametric estimation. Notice that methods for choosing the appropriate frame elements
of the RKHS are not given here.

Example 6 Consider the set of functions onR

{

φn(s) = sin(π(s−n))
π(s−n)

}

n=1...N
. The space spanned

by these frame elements associated to L2(R) inner product is an RKHS. Thus, as a direct
corollary of Theorem 8, the kernel

K(s, t) =
N

∑
i=1

φ̄i(s)φi(t)

is an admissible kernel for SVMs.

A representation of such a kernel with N= 9 is given in Figure (2).
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Figure 2: The sinc kernel.

• Since conditions for obtaining a frameable RKHS hold mainly for finite dimensional space
(although, it may exists infinite dimensional Hilbert space which frame elements satisfy hy-
potheses of Theorem (5)), it is fairest to compare the frameable kernelto a finite dimensional
kernel. According to Mercer’s condition, or other more detailed papers on the subject (Aron-
szajn, 1950; Wahba, 2000), Mercer’s kernel can be expanded asfollows:

K(s, t) =
N

∑
n=1

1
λn

ψn(s)ψn(t)

wheres andt belong toΩ, λl is a positive real number and{ψl}i=1..N is a set of orthogonal
functions. Conditions for constructing frameable kernel are less restricting since the orthogo-
nality of the frame elements are not needed. One can note that for tight frameor orthonormal
basis, frameable kernel leads to the following expansion:

K(s, t) =
N

∑
n=1

1
A

ψn(s)ψn(t)

since dual frame elements is equal to frame elements up to a multiplicative constantdepending
on the frame boundA . Tightness of a frame is a very interesting property since in this case
processing the dual frame is no more needed. However, unless we explicitly build the RKHS
H so that it is spanned by a tight frame (as in example (5) or in Opfer (2004b)), tightness of
a frame needs more constraints on the frame elements than other frames. Thusa tight frame
of a space is harder to build than other frame of the same space.

1499



RAKOTOMAMONJY AND CANU

• The conditions for a frameable Hilbert space being an RKHS is given in Equation (13) and
they hold also for infinite dimensional case for which the kernel is written

K(s, t) = ∑
n

φ̄n(s)φn(t).

Again in this case, the frame kernel expansion is similar to the Mercer’s kernel one. The main
difference between the finite and infinite dimensional case relies on the factthat a finite set
of functions{φn} is always a frame of the space it spans (provided that this latter is endowed
with an adequate inner product). This is not always true for an infinite setof functions.
However, we have shown in example (5) that under some mild conditions, it is possible to
build an infinite dimensional RKHS.

• In the SVMs algorithm, the kernel realizes the dot product of the data pointsmapped in some
feature space:

K(s, t) = 〈Φ(s),Φ(t)〉

with Φ being the mapping. Usually, this mapping is not explicitly given since one only needs
for computing the optimal hyperplane the dot product in the feature space.With frame-based
kernels, we have the relation

K(s, t) =
N

∑
n=1

φ̄n(s)φn(t)

=
N

∑
n=1

φ̄n(s)
N

∑
j=1

φ̄ j(t)〈φ j(·),φn(·)〉H according to Equation (10)

=

〈

N

∑
n=1

φ̄n(s)φn(·),
N

∑
j=1

φ̄ j(t)φ j(·)
〉

H

.

Thus the data embedding can be defined as

Φ :
Ω −→ H

t −→ ∑N
n=1 φ̄n(t)φn(·).

The data points are mapped to a function belonging toH . The mapping is consequently
strictly related to the frame elements{φn} and is implicitly defined by them.

• Besides, since the kernel has an expansion with regards to the frame elements, the solution of
Equation (1) is of easier interpretation. Indeed, although the solution depends on the kernel
expression, it can be rewritten as a linear combination of the frame elements. Thus, compared
to other kernels for which basis functions are unknown, using frame-based kernel increases
model interpretability.

• Drawbacks of using frame-based kernel rely mainly on the time complexity burden that is
added for constructing the data model. For both SVMs and regularization networks, one has
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to process the kernel matrixK with elementsKi, j = K(xi ,x j). Thus, with frame-based kernel,
one has to compute the dual frame elements, (for instance, by means of an iterative algorithm,
as the one described in (Grochenig, 1993)). This by its own may be time-consuming. Further-
more, the construction of the matrixK needs the processing of the sum. Hence, if the number
N of frame elements describing the kernel and the number` of data are large, buildingK
becomes rapidly very time-consuming (of an order ofN2 · `2).

Some of these points suggest that frame-based kernels can be useful by themselves. However,
within the context of semiparametric estimation, this flexibility for building kernel offers some other
interesting perspectives. Semiparametric estimation can be introduced by the following theorem.

Theorem 9 (Kimeldorf and Wahba, 1971)
LetHK be an RKHS of real valued functions onΩ with reproducing kernel K. Denote by{(xi ,yi)i=1...`}
the training set and let{g j , j = 1. . .N} be a set of functions onΩ such that the matrix Gi, j = g j(xi)
has maximal rank. Then, the solution to the problem

min
f∈span(g)+h,h∈HK

1
`

`

∑
i=1

C(yi , f (xi))+λ‖ f‖2
HK

(26)

has a representation of the form

f (·) =
`

∑
i=1

ciK(xi , ·)+
N

∑
j=1

d jg j(·).

The solution of this problem can be interpreted as a semiparametric estimation since one part of the
solution (the first sum) comes from a non-parametric estimation (the regularization problem) while
the other term is due to the parametric expansion (the span of{g j}). As stated by Smola in his
thesis (Smola, 1998), semiparametric estimation can be advantageous with regards to a fully non
parametric estimation as it exploits some prior knowledge on the estimation problem (for instance
major properties of the data are described by linear combination of a small setof functions), and
making a “good” guess (on the set of functions{g j}) can have a large effect on performance.

Again in this context, the flexibility of frame-based kernel can be exploited. In fact, letG =
{gi}i=1...N be a set ofN linearly independent functions that satisfies Theorem 8, hence, any subset
of G, {gi}i∈Γ,( Γ being an index set of sizen0 < N) can be used for building an RKHSHK while
the remaining vectors can be used in the parametric part of the Kimeldorf-Wahba theorem. Hence
in this case, the solution of (26) is written

f (·) =
`

∑
i=1

ci ∑
k∈Γ

ḡk(xi)gk(·)+ ∑
j∈CΓ

d jg j(·).

The flexibility comes from the fact that in a learning problem, any elements of G can be regular-
ized (if involved in the span ofHK) or can be kept as it is (if used in the parametric part). Intuitively,
one should use any vector that comes from “good” prior knowledge, in the parametric part of the
approximation while leaving in the kernel expansion the other frame elements. Notice also that only
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Figure 3: Example of multiscale approximation on 3 levels. Each spaceH j can be decomposed in
a trend spaceH j−1 and a detail spaceF j−1. In this case,H3 can be considered as the sum
of H0, F0, F1 andF2.
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Figure 4: Example of multiscale approximation on 3 levels: the kernel point of view. For instance,
here we want to learn a functionf (x) that has generated the samples(xi ,yi)i=1,n under
some noisy condition. The first step consists of decomposing the hypothesisspace into
a parametric part spanned by{Φ j,2(x)} and a non parametric part spanned byK j,2(x,xi).
Then the resulting parametric approximation is decomposed again in two parts and so
on. The multiscale approximation off (x) is then f̂ (x) = ∑d jΦ j(x) + ∑c jK j(x,xi) +

∑c j,1K j,1(x,xi)+∑c j,2K j,2(x,xi).
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the subset ofG which is used in the parametric part has to be linearly independent.

Another perspective which follows directly from this finding is a technique of regularization
that we call multiscale regularization which is inspired from the multiresolution analysis of Mallat
(1998). Here, we just sketch the idea behind this concept and in no way,the following paragraph
should be considered a complete study of this new technique since the analysis of its properties
goes beyond the scope of this paper. Consider the same problem as the one described in Theorem
9. Now, suppose that{gi} is a set ofN linearly independent functions verifying Theorem (8). Let
{Γi}i=0...m be a set of index set such that∪m

i=0Γi = {1, . . . ,N} andΓi ∩Γ j = /0 for i 6= j andH being
the RKHS spanned by{gi}. By subdividing the set{gi} with the index set{Γi}i=0...m, one can
constructmRKHS{Fi}i=0...m−1 in such a way that

∀i = 1. . .m, Fi−1 = span{gk}k∈Γi

and reproducing kernel ofFi is notedKi . Now, denote asHi the RKHS such that

∀i = 1. . .m, Hi = Hi−1 +Fi−1

with H0 = span{gk}k∈Γ0. By construction, the spaceHi are nested spaces:

H0 ⊂ H1 ⊂ . . . ⊂ Hm = H .

In this case, one can interpretH0 as the space of lower approximation capacity whereasHm is
the space with higher capacity. Besides, sinceHi = Hi−1+Fi−1, one can think ofFi−1 as the details
needed to be added toHi−1 to obtainHi , thus we will call spacesFi the “details” spaces whereas
spacesHi are the “trend” spaces. Every of these spacesFi andHi are an RKHS since any subset of
{gi} satisfies Theorem (8).

Multiscale regularization is an iterative technique that at stepk = 1, . . . ,m consists of looking
for the solutionfm−k(·) of the following minimization problem:

min
f∈Hm−k+1

1
n

n

∑
i=1

C(yi,m−k, f (xi))+λm−k‖ f‖2
Fm−k

(27)

whereyi,m−1 = yi , yi,m−(k+1) = yi,m−k−∑n
j=1c j,m−kKm−k(x j ,xi). According to the representer The-

orem (9), fm−k(·) can be written:

fm−k(·) =
n

∑
i=1

ci,m−kKm−k(xi , ·)+ ∑
j∈∪m−k

l=0 Γl

d j,m−kg j(·) (28)

and thus the overall solution of the so-called multiscale regularization is

f̂ (·) =
m

∑
k=1

n

∑
i=1

ci,m−kKm−k(xi , ·)+ ∑
j∈Γ0

d j,0g j(·). (29)

The solutionf̂ of the multiscale regularization is the sum of different approximations on nested
spaces. At first, one seeks to approximate the data on the highest approximation capacity space
by regularizing only the details. Then, these details are subtracted to the dataand one tries to
approximate this residual on the next space by keeping regularizing the details on this space, and
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so on. Thus at each step, one can control the “amount” of regularizationbrought to each details
space, increasing in this way the capacity control capability of the model. Figure (3) and (4) show
an example of how the algorithm works for a 3-level approximation scheme.

The framework of additive models of Hastie et al. (Hastie and Tibshirani (1990)) can give other
insights to multiscale regularization. In fact, if we suppose that the family{gi}i=1,...,N forms an
orthonormal basis ofH and build the spacesH0 andFm in the same way as described above, then
by construction, we have

H = H0⊕F0⊕·· ·⊕Fm−1.

Hence any functionf ∈ H can be written asf (x) = ∑m
i=0 fi(x) with f0 ∈ H0 and fi ∈ Fi−1 for

i = 1, . . . ,m. Thus, the multiscale regularization algorithm can be interpreted as an algorithm which
looks for the functionf that minimizes the following empirical risk:

Rreg[ f ] =
1
`

`

∑
i=1

C(yi ,
m

∑
j=0

f j(xi))+
m

∑
j=1

λ j‖ f j‖2
F j−1

(30)

where eachλ j is a hyperparameter that controls the amount of regularization forF j−1. This min-
imization problem is typically the problem of fitting an additive model as proposedby Hastie and
Tibshirani (1990).

Illustrations of the multiscale regularization algorithm on both toy and real-worldproblems are
given in the next section.

6. Numerical Experiments

This section describes some experiments that compare frame-based kernels to classical one (for
instance gaussian kernel) on some regression problems. Besides, illustrations of some points raised
in the discussion such as the multiscale approximation algorithm are given.

6.1 Experiment 1

This first experiment aims at comparing the behavior of different kernelsusing regularization
networks and support vector regression. The function to be approximated is

f (x) = sinx+sinc(π(x−5))+sinc(5π(x−2)) (31)

where sinc(x) = sinx
x . Data used for the approximation is corrupted by an additive noise, thusyi =

f (xi)+εi whereεi is a zero-mean gaussian noise of standard deviation 0.2 . Pointsxi are drawn from
uniform random sampling of interval[0,10]. Three kernels have been used for the approximation:

• Gaussian kernel:

K(x,y) = e−
‖x−y‖2

2σ2

• Wavelet kernel:
K(x,y) = ∑

i∈Γ
ψ̄i(x)ψi(y)

where i denote a multi index andψi(x) = ψ j,k(x) = 1√
a j

ψ
(

x−ku0a j

a j

)

. ψ(x) is the mother

wavelet which in this experiment is a mexican hat wavelet. Dilation parameterj takes value
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Regularization Networks Support vector regression
Gaussian kernel 0.0218±0.0049 0.0248±0.0058
Wavelet kernel 0.0249±0.0078 0.0291±0.0086
Sin/Sinc kernel 0.0249±0.0122 0.0302±0.0176

Table 1: True generalization error for Gaussian, Wavelet, Sin/Sinc kernels with Regularization Net-
works and support vector regression for the best hyperparameters.

in the set{−5,0,5} whereask is chosen so that a given waveletψ j,k(x) has its support in the
interval [0,10]. For now on, we setu0 = 1 anda = 20.25. These values are those proposed by
Daubechies (Daubechies, 1992) so that a wavelet set is a frame ofL2(R). Notice that in our
case, we only use a subset of this frame.

• Sin/Sinc kernel:
K(x,y) = ∑

i∈Γ
φ̄i(x)φi(y)

whereφi(x) = {1,sin(x),cos(x),sinc( jπ(x−k)) : j ∈ {1,3,6},k∈ [1. . .9])}.

For frame-based kernel, if necessary the dual frame is processed using Grochenig’s algorithm.
For both regularization network and support vector regression, some hyperparameters have to

be tuned. Different approaches are possible for solving this model selection problem. In this study,
the true generalization error has been evaluated for a range of finely sampled values of hyperpa-
rameters. This is repeated for a hundred different data sets, and the mean and standard deviation
of the generalization error are thus obtained. Table 1 depicts the true generalization error evaluated
on 200 datapoints for the two learning machines and the different kernels using the best hyperpa-
rameters setting. Analysis of this table leads to the following observation: The different kernels
and learning machines give comparable results (all averages are within one standard deviation from
each other). Using prior knowledge on the problem in this context does not improve performance
(Sin/Sinc kernel or wavelet kernel compared to gaussian kernel). A justification can be that such
kernels use strong prior knowledge (thesin frame element) that is included in the kernel expansion
and thus this prior knowledge gets regularized as much as other frame elements. This suggests that
semiparametric regularization should be more appropriate to get advantage of such a kernel.

6.2 Experiment 2

In this experiment, we suppose that some additional knowledge on the approximation problem
is available, and thus its exploitation using semiparametric approximation should lead to better
performance. We have kept the same experimental setup as the one used inthe first example but we
have restricted our study to regularization networks.

Basis functions and kernel used are the following:

• Gaussian kernel and sinusoidal basis functions{1,sin(x),cos(x)}.

• Gaussian kernel and wavelet basis functions
{

ψ j,k(x) = 1√
a j

ψ
(

x−ku0a j

a j

)

, j ∈ {0,5}
}
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• Wavelet kernel and wavelet basis functions: these functions are the same as in the previous
case but the kernel is built only with low dilation wavelet (j = −10). In a nutshell, we
can consider that the RKHS associated to the kernel used in the non- parametric context
(experiment 1) has been splitted in two RKHS. One that leads to a hypothesis space that have
to be regularized and another one that does not have to be controlled.

• Sinc kernel and Sin/Sinc basis functions: in this setting, the kernel is givenby the following
equation:

K(x,y) = ∑
i∈Γ

φ̄i(x)φi(y)

with φi(x) = {sinc( jπ(x−k)) : j ∈ {3,6}, k∈ [1. . .9]}
and the basis functions are{1,sinx,cosx,sinc(π(x−k) : k∈ [1. . .9]}.

For each kernel, model selection has been solved by cross-validation using 50 data sets. Then,
after having spotted the best hyperparameters, the experiment was run ahundred times and the true
generalization error in a mean-square sense, was evaluated. Table 2 summarizes all these trials
and describes the performance improvement achieved by different kernels compared to the gaussian
kernel and sin basis functions. From this table, one can note that:

- exploiting prior knowledge on the function to be approximated leads immediately toa lower
generalization error (compare Table 1 and Table 2).

- as one may have expected, using strong prior knowledge on the hypothesis space and the
related kernel gives considerably higher performances than gaussian kernel. In fact, the sinc-
based kernel achieves by far the lower mean square error. The idea of including the “good”
knowledge in a non-regularized hypothesis space while including the “bad” prior knowledge
in the RKHS span seems to be fruitful in this case (the frame elements sinc(3π(x− k)) and
sinc(6π(x−k)) can be termed as “bad” knowledge as, they are not used in the target function
).

- wavelet kernel achieves minor improvement of performance compared togaussian kernel.
However, this is still of interest as using wavelet kernel and basis functions does corresponds
to prior knowledge that can be reformulated as: “the function to be approximated contains
smooth structure (thesin part), irregular structures (thesinc part) and noise”. It is obvious
that knowing the true basis function leads to better performance, howeverthat information is
not always available and using bad knowledge may result in poorer performance. Thus, prior
knowledge on structures which may be easiest to get than prior knowledgeon basis function
can be easily exploited by means of wavelet span and wavelet kernel.

6.3 Experiment 3

This last simulated example targets at illustrating the concept of multiscale regularization. We
have compared several learning algorithms in function approximation problems. The learning ma-
chines are: regularization networks, SVM, semiparametric regularization and multiscale regulariza-
tion. For the two first methods, a gaussian kernel is used whereas for thetwo latter, wavelet kernel
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Kernel / Basis Functions M.S.E Improvement (%)
Gaussian / Sin 0.0216±0.0083 (6) 0

Gaussian / Wavelet 0.0202±0.0072 (4) 4.6
Wavelet / Wavelet 0.0195±0.0077 (2) 9.7

Sinc / Sin 0.0156±0.0076 (88) 27.8

Table 2: True generalization performance for semiparametric regressionnetworks and different set-
tings of kernel and basis functions. The number in parentheses reflectsthe number of trials
for which the model has been the best model.
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Figure 5: Original functions used for benchmarking in experiment 3. (a)f1 (b) f2. Top: multiscale
structure on 3 levels. Bottom: Complete function.

and basis functions are taken. The true functions used for benchmarking are the following:

f1(x) = sinx+sinc(3π(x−5))+sinc(6π(x−2)),

f2(x) = sinx+sinc(3π(x−5))+sinc(6π(x−2))+sinc(6π(x−8)).

The two functionsf1 and f2 have been randomly sampled on the interval[0,10]. Gaussian noiseεi

of standard deviation 0.2 is added to the samples, thus the entries of the learning machines become
{xi , f (xi)+ εi}. Here again, a range of finely sampled values of hyperparameters has been tested
for model selection. In each case, an averaging of the true error generalization over 100 data sets of
200 samples was evaluated using a uniform measure.

For semiparametric regularization, the kernel and basis setting was built with awavelet set given
by

ψ j,k(x) =
1√
a j

ψ
(

x−ku0a j

a j

)

.
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f1 f2
Gaussian Reg. Networks0.0266±0.0085 0.0385±0.0141

Gaussian SVM 0.0328±0.0093 0.0475±0.0155
Semip Reg. Networks 1 0.0266±0.0085 0.0397±0.0113
Semip Reg. Networks 2 0.0236±0.0063 0.0353±0.0080
Multi. Regularization 0.0246±0.0060 0.0344±0.0069

Table 3: True mean-square-error generalization for regularization networks, SVM, semiparametric
regularization networks, and multiscale regularization forf1 and f2.

The kernel is constructed from a set of wavelet frame of dilationjSPH and the basis functions
are given by another wavelet set described byjSPL. For multiscale regularization, the setting of the
nested spaces are the following:

H0 = span

{

1√
a j

ψ
(

t −ku0a j

a j

)

, j = 5

}

,

F0 = span

{

1√
a j

ψ
(

t −ku0a j

a j

)

, j = 0

}

,

F1 = span

{

1√
a j

ψ
(

t −ku0a j

a j

)

, j = −10

}

.

These dilation parameters have been set in aad hocway, but their choices can be justified by the
following reasoning: Three distinct levels have been used for separating the approximation in three
structures which should be smooth (j = 5), irregular (j = 0) and highly irregular (j = −10). The
same values ofj were used in the semiparametric context. Two semiparametric settings have been
tested: the first one usesjSPH = −10 and jSPL= {0,5} and the other one is configured as follows
jSPH = {−10,0} and jSPL= 5.

Table 3 presents the average of the mean-square error of the different learning machines for
the two functions and for the best hyperparameter value found by cross-validation. Comments and
analysis of this experiment validating the concept of multiscale approximation are:

- semiparametric 2 and multiscale approximation give the best mean-square error. They achieve
respectively a performance improvement with regards to gaussian regularization networks of
11.2% and 7.5% for f1, and 8.3% and 10.6% for f2. Also note that both learning machines
give the lowest standard deviation of the mean square error.

- multiscale approximation balances loss of approximation due to error at eachlevel (see Fig-
ure) and flexibility of regularization, thus its performance is better than semiparametric one’s
when the multiscale structure of the signal is more pronounced.

- comparison of the two semiparametric settings shows that the second setup outperforms the
first one (especially forf2). This highlights the importance of selecting the hypothesis space
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Figure 6: Top: Multiscale structure of a typical prediction of off1 (left) and f2 (right) by multiscale

wavelet approximation Bottom: full approximation and true function
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to be regularized. In this experiment, it seems that leaving the space spanned by wavelet of
dilation j = 0 on the parametric span (the space which is not regularized) leads to overfitting.

- multiscale approximation is able to catch all the structures of the signal (see Figure (7) ). One
can see that each level of approximation represents one structure of thefunction f1 and f2:
the lowest dilation (j =−10) represents the wiggles due to the highest frequency sinc, at level
j = 0, one has the sinc(3x) function whereas thesin is located on the highest dilationj = 5.

- Figure (6.3) shows that multiscale and semiparametric algorithms achieve betterapproxi-
mation of the “wiggles” than nonparametric methods without compromising smoothness in
region of the functions where it is needed.

6.4 Experiments on Real-World Data Sets

This paragraph presents some estimation results on real-world time-series. These times-series
are publicly available in a time-series data library (Hyndman and Akram (1998)) and have already
been widely used in the field of statistics. The first oneenginesconcerns a monthly measured ratio
between the motor vehicles engines production and the consumer price indexin Canada whereas
the second onebasirondeals with the monthly production of iron in Australia. The problem we
want to solve is the estimation of these time-series after a zero-mean normalization.

For this purpose, two models have been compared, the first one being a regularization networks
with a gaussian kernel whereas the other one is a multiscale regularization algorithm with an or-
thogonal wavelet kernel. The wavelet that has been used is aSymmletwavelet with 4 vanishing
moments (Mallat, 1998). The kernel of the corresponding hypothesis space H which have been
split into three orthogonal spaces, is so that

H = H0⊕F0⊕F1 and KH (x,y) = KH0
(x,y)+KF0(x,y)+KF1(x,y)

with

KH0
(x,y) =

j1

∑
j= jmin

∑
k

ψ j,k(x)ψ j,k(y)+∑
k

φ j,k(x)φ j,k(y), (32)

KF0(x,y) =
j2

∑
j= j1+1

∑
k

ψ j,k(x)ψ j,k(y), (33)

KF1(x,y) =
jmax

∑
j= j2+1

∑
k

ψ j,k(x)ψ j,k(y), (34)

and the dilation indexes are so thatjmin≤ j1 ≤ j2 ≤ jmax. For both data sets, we have setjmin =−3,
j1 = 0, j2 = 4 and jmax= 7.

For each estimation trial, each data set has been randomly split in a learning set of 100 samples
with the remaining samples being considered as the test set. The results that wepresent are the
normalized mean-squared error averaged over 30 trials for the best hyperparameters values of each
model: for the gaussian regularization networks and the multiscale regularization networks, these
hyperparameters are respectively{λ,σ} and{λ0,λ1,λ2} which are the regularization parameters
associated to each scale. The best hyperparameters have been obtained by evaluating the test error
on a large range of finely sampled values of these hyperparameters.
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basiron engine
Gaussian Reg. Networks 10.55±1.24(1) 37.57±5.62(8)

Multi. Regularization 9.58±1.21(29) 36.00±4.30(22)

Table 4: Averaged normalized mean-square error of estimation of real-world time-series with a
gaussian and a wavelet multiscale regularization networks. The number withinparenthesis
is the number of time a given model has performed better than the other.

Table (4) summarizes the performance of each model. It shows that for both time-series, the
multiscale algorithm performs better than the gaussian regularization networks. Indeed, for the
basirondata set, although the difference in normalized mean-squared error is onlyabout 0.9%, the
multiscale approach has given the best results on 29 of the 30 trials. For theenginestime-series,
although the difference in normalized mean-squared error is higher (1%), our algorithm gives better
results on only 22 trials. Figure (8) depicts some examples of estimation for bothtime-series and
algorithms. This figure shows that the best model for the gaussian regularization networks is rather
a smooth model whereas the wavelet multiscale model is far less smooth. This is essentially due to
the nature of the time-series which are composed of a slow-varying part denoting the trend of the
series, and a fast-varying part denoting the fluctuation of the time-series around the trend. Hence,
because of the particular structure of the signal to be estimated, the gaussian model is not able to
estimate correctly both the trend and the fluctuation whereas the multiscale model gives a better
estimate. This is particularly clear for thebasirondata set which is composed of a slow-varying
trend and fluctuations.

7. Conclusions

In this paper, we showed that an RKHS can be defined by its frame elements and conversely, one
can construct an RKHS from a frame. One of the key result is that the space spanned by any finite
number of functions belonging to a given Hilbert space, endowed with an adequate inner product,
is an RKHS with a kernel that can be at least numerically described. We have also proposed some
conditions for a infinite dimensional Hilbert space to be an RKHS. These conditions depend on the
frame and the dual frame elements of the Hilbert space and under some weakhypothesis, these
conditions are easy to check (see example 5) . Hence, we have essentiallyprovided some methods
for building a specific kernel adapted to a problem at hand.

By exploiting this new way for constructing RKHS, a multiscale algorithm using nested RKHS
has been introduced and examples given in this paper showed that using this algorithm or a semi-
parametric approach with frame-based kernel improves the result of a regression problem with re-
gards to nonparametric approximation. It has also been shown that these frame-based kernels allow
better approximation only if exploited in a semiparametric context. Using them as a regularization
network or SVMs kernels are not as efficient as one may have expected. However, depending on
the prior knowledge on the problem, one can build appropriate kernels thatcan enhance the quality
of the regressor within a semiparametric approach. However, for fully taking advantage of the main
theorem proposed in this paper, one has to answer some open questions:
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Figure 8: Examples of estimation of real-world time-series. The left and rightcolumns respec-
tively depict estimation ofbasironandengines. The top and bottom figures respectively
show the full time-series estimations and a zoomed version of these estimations. The+
marks at the bottom of each figure denote the position of the learning examplesin the
time-series. (solid) true function. (dotted) gaussian regularization networks estimation.
(dashed) wavelet multiscale regularization networks estimation.

• we give conditions for building RKHS to be used for approximation. But the difficulty stands
in one question: How to transform prior information on the learning problem toframe ele-
ments? This is still an open issue.

• reconstruction from frame elements has been shown to be more robust in presence of noise
(Daubechies, 1992). In fact, redundancy attenuates noise effects on the frame coefficients.
Thus, this is a good statistical argument for using frame with high redundancy. However, this
implies the computing of the dual frame and consequently a higher time complexity ofthe
algorithm. Hence, fast algorithms still have to be derived.

• a multiscale regularization algorithm has been sketched in this paper in order totake ad-
vantage of frame kernels. Although some experiments show that in some situations, this
algorithm performs well, it is not clear whether it theoretically sounds or not.Hence, some
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further works have to be carried for a better theoretical understandingof this novel regulariza-
tion method and for a better implementation of the algorithm and all the subsequentproblems
such as model selection.
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Appendix A.

We recall in this appendix a numerical method to process the dual frame of a frameable Hilbert
spaceH with frame elements{φn}n∈Γ. Let us define the operatorS

S:

∣

∣

∣

∣

H −→ H

f −→ ∑n∈Γ〈 f ,φn〉φn.
(35)

One can also write the operatorSasS,U∗U whereU is the frame operator defined in equation
(5) and (6). Our goal is to process

∀n, φ̄n = S−1φn.

Grochenig (1993) has proposed an algorithm to compute the problemf = S−1g . The idea is to
calculate f with a gradient descent algorithm along orthogonal directions with respect to norm
induced by the symmetric operatorS:

‖ f‖2
S = ‖S f‖2.

This norm is useful to compute the error.

Theorem 10 Let g∈ H . To compute f= S−1g, one has to initialize

f0 = 0 , r0 = p0 = g , p−1 = 0.

Then, for any n≥ 0, one defines by induction,

λn =
〈rn, pn〉
〈pn,Spn〉

(36)

fn+1 = fn +λnpn (37)

rn+1 = rn−λnSpn (38)

pn+1 = Spn−
〈Spn,Spn〉
〈pn,Spn〉

pn−
〈Spn,Spn−1〉
〈pn−1,Spn−1〉

pn−1. (39)

If σ =
√

B−
√

A√
B+

√
A

, then

‖ f − fn‖S≤
2σn

1+2σn‖ f‖S (40)

and thus,limn→+∞ fn = f .

Then, in order to process numerically the dual frame ofH , one has to apply this algorithm on
each element of the frame.

One can note that the speed of convergence is highly dependent on frame boundsA andB.
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