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Abstract

This work deals with a method for building a reproducing letrdilbert space (RKHS) from a
Hilbert space with frame elements having special proper@mnditions on existence and a method
of construction are given. Then, these RKHS are used witiénftamework of regularization
theory for function approximation. Implications on semgnaetric estimation are discussed and a
multiscale scheme of regularization is also proposed. IResn toy and real-world approximation
problems illustrate the effectiveness of such methods.
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1. Introduction

A reproducing kernel Hilbert space (RKHS) is a Hilbert space of fions with special prop-
erties (Aronszajn, 1950). It plays an important role in approximation agdlarization theory as
it allows writing in a simple way the solution of a learning from empirical data probfé/ahba,
1990, 2000). Since the development of support vector machines (B¥pnik, 1995; Vapnik
et al., 1997; Burges, 1998; Vapnik, 1998) as a machine learning fardassification and func-
tional estimation, there is a growing interest around reproducing keritte¢rtispaces. In fact,
for nonlinear classification or approximation, SVMs map the input space ihtghadimensional
feature space by means of a nonlinear transformatiqiBoser et al., 1992). Usually in SVMs,
the mapping function is related to an integral operator keirig|y) which corresponds to the dot
product of the mapped data:

K(xy) = (®(x), P(y))

wherex andy belong to the input space.

In regularization theory (Tikhonov and Asin, 1977; Groetsch, 1993; Morosov, 1984), the ill-
conditioned estimation from data problem is transformed into a well-conditiomdudgm by means
of a stabilizer, which is a functional with specific properties.

For both SVMs and regularization theory, one can consider specid chkernel and stabilizer:
the kernel and the norm associated with an RKHS (Girosi, 1998; Smola®98; Evgeniou et al.,
2000). This justifies the appeal of RKHS as it allows the development ofiergkeframework that
includes several approximation schemes.

One of the most important issues in a learning problem is the choice of theegatgsentation.
For instance, in SVMs this corresponds to the selection of the nonlinearimgagp It is a key
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problem since the mapping has a direct influence on the kernel and tthas @n influence on
the solution of the approximation or classification problem. In practical cdlseschoice of an
appropriate data representation is as important as the choice of the leawadhgne. In fact, prior
information on a specific problem can be used for choosing an efficipnt representation, or
for choosing a good hypothesis space that leads to enhanced peréerofahe learning machine
(Scholkopf et al., 1998; Jaakkola and Haussler, 1999; Niyogi et@93)1

The purpose of this paper is to present a method for constructing an RIKH8s associated
kernel by means of frame theory (Duffin and Schaeffer, 1952; Behibs, 1992). A frame of a
Hilbert space spans any vector of the space by linear combination ofie flements. But unlike
a basis, a frame is not necessarily linear independent although it esligalde representation.
Since a frame is a more general way to represent elements of Hilbert gpalt@vs flexibility in
the representation of any vector of the space. By giving conditionofmstoucting arbitrary RKHS
from frame elements, our goal is to widen the choice of kernel so that inefapplications, one
can adapt its RKHS to prior information available concerning a problemrat.ha

The paper is organized as follows: in Section 2, we recall the problemtimh&ing function
from data and the way of solving it owing to regularization theory. Sectioe&sdwith frame.
After a short introduction about frame theory, we give conditions foilbert space described by
a frame to be an RKHS and then derive the corresponding kernel. tioSdg a practical way for
building RKHS is given. Section 5 discusses implication of these results ataregation technique
and proposes an algorithm for multiscale approximation. Section 6 presgimson results on
numerical experiments on toy and real-world problems while Section 7 caxlind paper and
contains remarks and other issues about this work.

2. Regularized Approximation

As argued by Girosi et al. (1995), learning from data can be viewedrasltivariate function
approximation from sparse data. Supposing that one has a set df(gatg),x € R%,y; € R,i =
1.../} provided by the random sampling of a noisy functigrthe goal is to recover the unknown
function f, from the knowledge of the data set. It is well-known that such a problélipigsed as
there exists an infinity of functions that pass perfectly through the data.w@wg to transform this
problem into a well-posed one is to assume that the fundtipresents some smoothness properties
and hence, the problem becomes a variational problem of finding thedari¢ that minimizes the
functional (Tikhonov and Aiisnin, 1977):

l
HIf) = § 3 Con F0)-+ A0 )

whereA is a positive numbeg a cost function which determines how differences betwigey) and
yi should be penalized art[ f] a functional which denotes the prior information on the function
A balances the trade-off between fithesd db the data and smoothness fof This regularization
principle leads to different approximation schemes depending on theurms$tdnC(-,-). Classical
L, cost functionC(y;), f(x)) = (vi — f(x))? leads to the so-called Regularization Networks (Girosi
etal., 1995; Evgeniou et al., 2000) whereas cost function like Vapgikissensitive function leads
to SVMs.

When the functiona)[f] is defined ag|f|2,, the square norm of in a reproducing kernel
Hilbert space# associated to a positive definite function K (the square norm in a Hilbecespa
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being related to the inner product tpf/]@[ = (f, f)4), the solution of Equation (1) is under general

conditions ,

f*(x) = _ZlciK(x, Xi). (2)

The case of| f || ,, being a seminorm leads to a minimizer with the following form:
¢

m
f*(X):ZCiK(X%)Jerjgj(X) (3)
i= =1

where{g; }j=1..m span the null space of the functiod)&ﬂ”ﬁ{.

In a nutshell, looking for a functiof of the form (3) is equivalent to minimizing the functional
H[f], and thus the solution which depends i the “best” balance between smoothnesgin
and fitness to the data. Choosing a ketdat equivalent to specifying a prior information on the
RKHS, therefore having a large choice of RKHS should be fruitful ferapproximation accuracy,
if overfitting is properly controlled, since one can adapt its hypothesisesfmaeach specific data
set.

3. Frames and Reproducing Kernel Hilbert Spaces

In this section, we give an introduction to frame theory that will be usefuiife remainder of
the paper.

3.1 A Brief Review of Frame Theory

Frame theory was introduced by Duffin and Schaeffer (1952) (Dzhibg, 1992) in order to
establish general conditions under which one can reconstruct peréefunction f in a Hilbert
space# from its inner product(-,-) ;) with a family of vectors{@,}r with I being a finite or
infinite countable index set.

Definition 1 A set of vector§ @, }ner is a frame of a Hilbert spacé/ if there exists two constants
A>0andwo > B> A> 0so that

vies,  Alf|5 < ZIU%MIZSBHH@[- (4)
ne

The frame is said to be tight if A and B are equal.

If the set{n }ner satisfies the frame condition then the frame operdtoan be defined as

H — 12
u: 5
fo— {(f, @) adner ®)
The reconstruction df from its frame coefficients needs the definition of a dual frame. For this
purpose, one introduces the adjoint operétbdiof U which exists and is unique because it lies on a
Hilbert space:
02 — H
u*: 6
{Catner —  Yner Cnth. ©

1487



RAKOTOMAMONJY AND CANU

Theorem 1 (Daubechies, 1992) Ldip}ner be a frame off with frame bounds A and B. Let us
define the dual framégn}ner as@, = (U*U)~1@,. Forall f € #, we have

1 2 . 2 1 2

- < < =

BHfH}[_n;\(f,%M! < 215 7
and _ _

If the frame is tight therp, = @y .

This theorem also shows that the dual fra{qu}ner is a family of vectors which allows to
recover anyf € #, and consequently one can write each vector of the frame and the domed &s

ymer, @m= Z@n,mﬂ@n (9)

and B
vmerl, @n= Z<(ﬂm%>y{%- (10)
ne

According to this theorem and the above equations, one can note thathamamal basis
of H is a special case of frame whefe=B =1, ¢, = @, and ||| = 1. However, as stated
by Daubechies (1992), frame redundancy can be statistically usefud. néke that in the general
case, we do not have an analytical expression of the dual frame, agdt thas to be computed
numerically. Grochenig has proposed such an algorithm (Grocher@3) 1¢hich is based on a
iterative conjugate gradient method. We have briefly described this algoiriththe appendix but
for further details, one should refer to the original paper.

For the sake of simplicity, in the following we will call frameable Hilbert spacejlbéft space
A for which there exists a set of vector 8f that forms a frame of/. Note that all separable
Hilbert spaces are frameable since by definition they have a countabbmorthal basis.

3.2 A Reproducing Kernel Hilbert Space and Its Frame

After this short introduction on frame theory, let us look at the conditiormeuwhich a frame-
able Hilbert space is also a reproducing kernel Hilbert space.

First of all, we introduce some notations that will be used throughout theftdse paper: let
RR? be the set of all functions defined on a dom@irc R? with values inR.

For the purpose of being self-contained, we propose here somd deéhitions and proper-
ties concerning RKHS. However, the reader who is interested in deepeisdcan refer to books
describing mathematical aspects (Atteia, 1992; Berlinet and Agnan,.2004)

Definition 2 A Hilbert space# with inner product(, -}, is a reproducing kernel Hilbert space of
R if:

e 7 is a subspace dk®
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e Vt € Q dM; > 0sothat
vie A, MOIES AR (11)

This latter property means that for anytQ, the linear functionalf; (also called the evalu-
ation functional) defined as

H
R
is a bounded linear functional.

Note that for any Hilbert space of functions, the evaluation functional &alinthus the impor-
tant point for having the reproducing kernel property is this evaluatiomational being bounded.

Definition 3 We callHilb (R?) the set of all RKHS dR®.

Owing to the Riesz theorem, one can state that:

Theorem 4 Let # ¢ Hilb(R®), there exists an unique symmetric function,K) of #/ called the
reproducing kernel of{ so that

VteQ, Vied, ft)=(fK(t)y. (12)
|

Theorem 5 Let A be a Hilbert space andg, }ner be a frame of this space. {fp }ner is a (finite
or infinite) set of functions dR9, so that:

VteQ, < oo, (13)

Z@(-)%(t)

H

Then# is a reproducing kernel Hilbert space.

Proof

Step 1 Any @, is both an element &* and#{. Hence the equation

er}[a f:Z<f7@>ﬂ%
ne

holds in# according to the frame property given in Equation (8) (Mallat, 1998; Bahies, 1992).
Now sinceR? has a structure of vector spades S e (f, @) @n is also valid inR®? and thus also
belongs tdR®. Now, if for eacht € Q, we define the seminorm on the vector sp&&eas

v eR?, [[f =T

According to this seminorm, we get the following pointwise convergence:

= 3 (Lt = FO= 3 (1@)0m(0) (14)

ne ne
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Step 2 Now let’s show thatt € Q, 3M; > 0 so that
viest,  [F()] <M flls. (15)

All elements of # can be expanded with regards to the frame elements, so according to Bquatio
(14), we have for alf in # andR®:

FO)[ = Z<f(->,<5n(-)>ﬂ%(t) (16)
and consequently,
fOl = |<f(-)a @(-)%(t)>
n; H
< |f]l (- )en(t) 17
" n; H

by definingM; £ || S ner @n(-)on(t)|| 5y one can conclude thaf is a reproducing kernel Hilbert space
sinceM; is finite by hypothesis and therefor&, admits an unique reproducing kernel.

Remark 6 In this proof, we have chosen to expand a function #afccording to f= zn6r<f,(ﬁq>(ﬂq.
However choosing the relationship=f S .- (f, )@, would have led to the following equivalent
condition to Equation (13):

VteQ, < oo (18)

n; n(t)en(-)

H

Now let’s try to express the reproducing kernel of such a Hilbert space

Theorem 7 Let H be a reproducing kernel Hilbert space amd € Hilb(R?), and the family
{®n}ner be a frame of this space, the reproducing kernel {s,K defined by:

QxQ—R

] sxt = K(St) = Sner t(9n()

(19)

Proof
At first, note that according to the frame inequality:

Zﬁﬁ(t) = Z (Kt ) ()l < BIK(E, )15 < oo.

ne

Furthermore, according to Theorem (1) we know tfigt}ner is another frame of. Thus, sim-
ilarly to Equation (6), we can define the adjoint operalkgrassociated to this dual frame. And,
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applyingUi to the /> sequencegg(t)} shows that the functiofy .- @ (-)@n(t) is a well-defined
function of .

Furthermore, anyf € # can be expanded by means of the frame#ff thus according to
Equation (14):

flt) = Z<f,<ﬁ1>ﬂ%(t)

ne

_ <f<->, ;@<->%<t>> @0
ne H

and sinceH is an RKHS, we have
ViecH, vteQ, f(t)=(f(),K(:,1)) - (21)

Hence, by identifying Equation (20) and (21) due to the unicity of the ywing kernel, we have

K(,t) = Z(ﬁw(')%(t)

and thus, we can conclude that

K(st) = Z%(S)(Ph(t)

ne

These propositions show that a Hilbert space which can be describegdftame is under gen-
eral conditions, a reproducing kernel Hilbert space and its repiogllkernel is given by a linear
combination of its frame and dual frame product.

A simple corollary to Theorem (7) is that for any RKH# with family {@}ncr as a frame,
the inequality (13) holds. This naturally stems from the fact K@ft) = 5 ner Oa(-)@h(t) is a well-
defined function of#/ (as stated in the proof of Theorem 7) and thus it has a finite nori.in

The symmetry and the positivity of the kerrt€(s,t) are direct consequenceskf-,-) being
a kernel of an RKHS. However, these properties can also be easiynstwing to the frame
representation. In fact, according to Equation (8) and (14), we get:

X(t) = Z(X,@y{%(t):Z(X,%M@(t)

ne

= <X('),§r@n(-)%(t)> =<X(-)7Z%(‘)<_ﬂw(t)> (22)
ne 3 ne H

thus, owing to the uniqueness of the functional evaluation in a RKHS, angezhuce from Equation
(22) that

K(st) = Z@(S)%(t) = Z@(t)%(s) =K(t,9).
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The positivity can also be proved from the following reasoning.x:et: - ,x, be some vectors @@
anday,--- ,a some scalar values R, we want to show that for any séx;} and{a; }:

¢
Za;ajK(xi,xj) > 0.
]

According to Equation (10), we can write
KOGX5) = S @h(X) S @n(X)) (@hs G -

Thus, we have

14 4 — —
> aaiKXj) = > adj 3 h()Pm(X;)(n, Gm)ss
1]

1] n,mel

¢ _ ¢ _
= <Izn;ai%(xi)%('):zm%ai(pf'ﬂ(xj)%(')>

2

H
4 —
aiPn(%)¢n()

I ne

H
> 0

4. Learning Schemes Using Frames

In the previous section, conditions for a frameable Hilbert space beiiRKdS were given.
Here, we are interested in constructing a reproducing kernel Hilbatestmgether with its frame
and discuss about the implications of such result in a functional estimatioedvark.

4.1 Learning on Frameable Hilbert Spaces

An interesting point of frameable Hilbert space is that under weak consjtibhecomes easy
to build RKHS. The following theorem proves such point.

Theorem 8 Let N € N and {@¢}n—1..n be a finite set of non-zero functions of a Hilbert space

(B,(-,-)) with B C R? so that
IM,vteQ,Vn 1<n<N, ()] < M.

Let H be the set of functions so that

N
H={f= zancpn capn€R, n=1,....N}
n=1

(H,(-,")3) is an RKHS and its reproducing kernel is

N _
K(st) = an(s)e(t),

n=1

where{c?h}n:le is the dual frame of g }n=1,n in #.
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Proof

Step1 A is a Hilbert space.

This is straightforward sincé/ is a closed subspace of a Hilbert spa&;eand is endowed with
B inner product. Hencé{ is a Hilbert space.

Step 2 {@,} is a frame of#. A proof of this step is also given in Christensen (1993). We have
to show that there exis#s andB satisfying equation (4). Let us consider the non trivial case that
spaf{@h}n-1.N # 0.
The existence oB is straightforward applying Cauchy-Schwartz inequality. In fact, for all
feH
(F, @) 2 < (112 nl|?

N

> 1(F ) < ]2 lel%\lz-

n=1
Thus by takingd = TN, [|gn||?, we haveB < « andB satisfies the right-hand inequality of Equation

(4).
Let #* = {f € ;|| f||4y > 0} andS(f) be the following mapping:

S:‘?[* — R

and thus

=z

23
— S0 = Sner (L) @9

This mapping is continuous and becatgéis of finite dimension the restriction &to the unit
ball in spaf ¢h}n—1.n reach its infimum (Brezis, 1983): theregs spaf{¢n}n—1,.n With |[g]| =1
such that

(g, @n)|? = inf{ [(f. @)%, f e sothat|f| = 1}-

LetAbeS cr [(g,®)|% HenceA > 0, and ag|g|| = 1, one has for any € #*:

N
AFIZ< S I(F. 2.
n=1

Step 3 Now let’s prove that# is an RKHS. For that it suffices to prove that the frafug}
satisfies condition given in Theorem 5.

This is straightforward sincég,}n—1,.n is a frame of# and owing to Theorem 1, the dual
frame {@n}n=1.. N is also a frame of/. Hence, the norm of eaap, is finite. Besides|@g(t)| is
supposed to be bounded b} Hence,

N _ N
> BOHO| <M 10 <o

and consequentlyy is an RKHS with a kernel equal to:

N _
K(SH) =T t(Sm(t).

n=1
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Frame Elements Dual Frame Elements
T T T

— Phil
Phi2

— Phil
Phi2

Amplitude

Figure 1. Examples of wavelet frame elements (left) anf their dual elemagits)(r

Here, we give some examples of RKHS that have been derived fromrdet dpplication of
this theorem.

Example 1 Any finite set of bounded, real-valued, pointwise-defined and sdpizgrable func-
tions onQ endowed with the inner produ¢t,g) = [, f(t)g(t)dt spans a RKHS. For instance, the
set of functions which expressions are given below spans an RKHS.

\V/t G Q, (n'](t) — t . e—(t—n)27 n 6 [nmin, nmax] W|th (nmin, nmax) 6 Nz

Example 2 Any finite set of bounded and pointwise-defined functions belonging tdeSapace
(Berlinet and Agnan, 2004) spans an RKHS. The set of functions) givae previous example
spans also an RKHS in a Sobolev inner product sense.

Example 3 Consider a finite set of wavelet @

1 " t — kupal
- Val al
where(a, Up) € R%. x R, and (jmin, jmax Kmin, Kmax) € Z*. Then the span of these functions endowed

with the inner product f,g) = J; f(t)g(t)dt is an RKHS. Figure (1) plots an example of wavelet
frame and dual frame elements for a dilatior=j—7.

{lpj,k(t) )ajGZ:jminﬁj§jmaX7k€Z:krnin§k§kmax}

The main interest of Theorem (8) is the flexibility it introduces in the RKHS ahoicin the
choice of the functions that span the hypothesis space. However, thiethenly deals witlinite
dimension RKHS. For building infinite dimensional RKHS, Theorem (5) hagtoded. The main
difference between the finite aimfinite dimensional case and thus between Theorems (5) and (8)
is that a finite set of function§g, }n—1,.. N, if endowed with an adequate inner product, is always
a frame of the space it spans (see step 2 of the proof of Theorem {B))s.is not always true
for an infinite set of functions and in this case, the frame condition giverguafon (4) and the
boundedness of the evaluation functional in Equation (13) have to fesderNext examples are
examples of infinite dimension RKHS which kernels are given explicitly by tmamé elements.
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Example 4 Let us consider? as the space of continuous and differentiable functionQea|[0, 1]
with the constraints that for any € #, f(0) = f(1) =0andof € Lo(Q) wheredf is the usual
derivative of f. Endowed with the inner product:

vf and ge #, (f,g)y = /anf(x)axg(x)dx

one can show that{ is a Hilbert space of functions aR and that the set

{on(t) tnen- = {\n/—g sin(nm)}

neN*

is an orthonormal basis of{ (Debnath and Mikusinki, 1998; Atteia and Gaches, 1999). Hence,
{®(X) }nen- is a tight frame of# with the frame constant A equals to 1. Let us show that this frame
verify the condition given in Theorem (5) in order to prove titats an RKHS. _

At first, let us prove that for all € Q, the sequencég,(t) }nen belongs ta/,. Becausep, = @y,
we have for any € Q:

3 EO= Y GO = 3 s

2 1

< = il

< 00,

Hence, according to the adjoint frame operatot tiven in equation (6), for any4 Q, the function
S nen: $h(-)@n(t) is a well-defined function off. Thus,

3 neN*

HenceX is a infinite dimensional RKHS with kernel

(o)

2 .
Vst € Q, K(sit) = Z —— sin(nrs) sin(nt).
=y 7T

Example 5 This other example shows a way for constructing an infinite dimensionalSRidh
its frame. Let{a }ner be a set of strictly positive real values and define the subs@f@oéﬂz as

2
c

2=Sc={C}ner, CnER: S 2 <0y,
ne On

Endowed with the inner produ¢t,d);z = Y ner Cg(—g” one can show that is a Hilbert space. Now,

let {@h}ner be a set of functions dR® so that:

VteQ, S an@(t) <o
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and T the mapping:

2 — HCRO

¢ — f=3ncrcan

It is simple to show that{ is a space of functions a2 since for all te Q, {on@n(t) }ner belongs to
/2. Then we have,

T:

(. {0nh(®) ner iz = Z%“‘“(t) = 3 (D) <o

Suppose furthermore for simplicity and clarity tHa } ner has been chosen sothat T is an injective
mapping. Then the range of the mapping T also defined as

H = {f :n;cnqh {Cn}ner eﬁé}

and endowed with the inner product:

CnChn

(f,0) 4 = (c,d)p2 = with f =y chgand g= Y dngy

n

is also a Hilbert space since in this case T is an isometric isomorphism betegd # (Debnath
and Mikusinki, 1998). Note that this way of building a Hilbert space is alstiileed by Opfer
(2004a) and Amato et al. (2004). However, none of them has pesbéme following frame-based
point of view for showing that under some weak hypoth#sean be an RKHS.

At first, note that due to the one-to-one mapping betw&eand #/, the following equality

holds:

vkner, (@)= %’k”

wheredy  is the Kronecker symbol.
Let us show thafe, }ner is a frame of#/. Owing to the above property, we haygr |(f, @) |2 =

S ner (xﬁ% and||f ||§[ = S ner aﬁz then it is clear that the following inequality holds:

1 1
—||f]I% < foon))% < ——|f|2
GmaXH Hy{_ng [(f, @) _aminll 15¢

wheremax = MaXer 0y and amin = Minner 0. Since according to the frame property given in
Equation (8), each frame element can be expandegkas 3 .r (@, ¢n)@n, we havep = q—lk(g(
Hence since the frame and dual frame elements are so that for@y, tve have

Zanqﬁ(t) = Z @O° _, (24)

Ohn

Then{n(t)}ner € £2 and consequently, the functior(4¢) = S ner @h(t)@n(-) is well-defined, be-
longs by construction tg{ and is so that

< oo,
9

n; n(t)¢n(-)
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and A is an RKHS whose kernel is
K(st)=S ht)gn(s) = an@h(9)en(t).

A practical example of such an infinite dimensional RKHS can be obtaméallaws. Let us con-
sider thatQ = R and eachg,(t) = % (57) withne Z, J € Z and¢(t) a pointwise-defined of)
and compactly supported function so tHah }ner are linearly independent. Examples of such func-
tions¢(t) are functions that are classically used in wavelet-based multiresolution sisgMallat,
1998). Since eacty, is a compactly supported shift of a functipnfor any t, the sum in Equation
(24) becomes a finite sum of non-zero terms which convergenceseqontly guaranteed for any

{an}ner. At this point, we can state that the space

Cn t—n c2
H=1f= —¢<—>: N <o
{ ne V2 2’ ngl‘ On
is a reproducing kernel Hilbert space.
If we want# to be the span of different dilations and shiftspofwe can also show that/ is

an RKHS by choosing thex, }ner to be related to the dilation parameter J so that the inequality in
(24) holds.

4.2 Other Classes of Frame-Based Kernels

Recently, Gao et al. (2001) have proposed another class of fraseelkarnels. Their approach
is based on the connection between regularization operator and supgtortkernel as described in
Smola et al. (1998). Supposing thats the frame operator of a either finite or infinite dimensional
RKHS, their kernel is based on the statement that the opefatot) *U is a symmetric positive
definite operator and the Green function associated to this operator iscaernel. Thus, the
kernel they proposed, named the frame operator kernel, can bededpaith respect to the dual
frame elements as

K= 5 BE(0).

A detailed proof of this equation is given in Gao et al. (2001).

From the point of view of the regularization theory (Smola et al., 1998), this\é-operator
kernel of Gao et al. is different from the one we propose as the négatian operator associated
to each of them are different. In fact, in our case the regularizatioratperan be considered as
the projector of any function space gfiwhereas in the Gao et al. case, it can be seen as the frame
operatoiJ.

More recently, Opfer (2004b) has shown that the kernel associatad ®RKHS # can be
expanded as

K(st) = Z%(S)%(t)

if and only if the set of function$q, }ner is @ super tight frame (which is a tight frame with frame
bounds equal to 1) af{ . This results is a particular case of Theorem (7) since for a super tight
frame each dual frame elementgs= @,. Furthermore, compared to Opfer’'s work, our Theorem
(5) gives a frame-based condition for a Hilbert space to be an RKHS.
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The works of Amato et al. (2004) and Opfer (2004a) where they bathqsed the concept of
multiscale kernels can also be related to our work. Interestingly, they luaivesbown that a Hilbert
space spanned by wavelet can be under some weak hypotheses & RidHvay they build their
RKHS # is very similar to the one we described in example (5) and the related rejmgdernel
is naturally

K(st) = Zancpn(sm(t),

ne

where eachu, is a strictly positive real value. On one hand, Amato et al. ended up with tmeke
by considering thaf@, }ner are a orthonormal wavelet basislof([0, 1)) and showing that for their
spaceAH, the evaluation functional is continuous. On the other hand, for achigvisgesult, Opfer
has shown that the functiok(-,t) belongs to# and satisfies the reproducing property without
explicit explanations on how this kernel has been obtained. Hence, ghthary similar to the
work of Opfer, the example (5) gives the functional setting on how thedtén (Opfer, 2004a) can
be derived.

5. Discussions

Propositions presented in previous sections describe a way for eaddinQURKHS and its
associate reproducing kernel. Hence, this kernel can be used withHnathework of regularization
networks or SVMs for functional estimation.

For SVMs, one usually chooses as a kernel a continuous symmetric fuictioL,(Q) (Q being
a compact subset @) that has to satisfy the following condition, known as Mercer’s condition:

[ [ Kixy 1 (y)axdy=0 25)
QJQ

forall f € Lo(Q).
Now, one may ask what are the advantages and drawbacks of usirgjkbuilt by means of
Theorem (5) or (8).

e Both Mercer’s condition and frameable RKHS allow to obtain a positive deffaitetion.
However, it is obvious that conditions for having frameable RKHS areee&s verify than
Mercer's condition. Thus, this can be interpreted as a flexibility for adggternel to a
particular problem. Examples of this flexibility will be given below within the cohiax
semiparametric estimation. Notice that methods for choosing the appropriate dfaments
of the RKHS are not given here.

Example 6 Consider the set of functions w{(pn(s) = W} LN The space spanned
e

by these frame elements associated 4GR) inner product is an RKHS. Thus, as a direct
corollary of Theorem 8, the kernel

N _
K(s =5 @90

is an admissible kernel for SVMs.
A representation of such a kernel with-N9 is given in Figure (2).
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Sinc Kernel
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Figure 2: The sinc kernel.

e Since conditions for obtaining a frameable RKHS hold mainly for finite dimensgpece
(although, it may exists infinite dimensional Hilbert space which frame elematisfyshy-
potheses of Theorem (5)), it is fairest to compare the frameable keradinite dimensional
kernel. According to Mercer’s condition, or other more detailed papeth® subject (Aron-
szajn, 1950; Wahba, 2000), Mercer’s kernel can be expandied@ss:

N 1
K(st) = Zl)\—nq—'n(s)an(t)

wheres andt belong toQ, A, is a positive real number anfdy, }i—1 n is a set of orthogonal
functions. Conditions for constructing frameable kernel are less ri@sgrgince the orthogo-
nality of the frame elements are not needed. One can note that for tight draorghonormal
basis, frameable kernel leads to the following expansion:

N 1
K(st) = letun(S)wn(U

since dual frame elements is equal to frame elements up to a multiplicative categtanding

on the frame bound . Tightness of a frame is a very interesting property since in this case
processing the dual frame is no more needed. However, unless wetéxplidd the RKHS

H so that it is spanned by a tight frame (as in example (5) or in Opfer (2DQé#htness of

a frame needs more constraints on the frame elements than other frames. tigiigrame

of a space is harder to build than other frame of the same space.
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e The conditions for a frameable Hilbert space being an RKHS is given imatitqu(13) and
they hold also for infinite dimensional case for which the kernel is written

K(st) = T Gr(s)am(t).

Again in this case, the frame kernel expansion is similar to the Mercer'ekene. The main
difference between the finite and infinite dimensional case relies on théhaa finite set

of functions{,} is always a frame of the space it spans (provided that this latter is endowed
with an adequate inner product). This is not always true for an infiniteofséinctions.
However, we have shown in example (5) that under some mild conditions, is&hpe to

build an infinite dimensional RKHS.

¢ In the SVMs algorithm, the kernel realizes the dot product of the data poimpped in some
feature space:
K(s,t) = (®(s),®(t))

with @ being the mapping. Usually, this mapping is not explicitly given since one omgisie
for computing the optimal hyperplane the dot product in the feature sp¥itte frame-based
kernels, we have the relation

N _
K(st) = ilcnq(S)cnn(t)
NN
= S &S %O®(),;())x  according to Equation (10)
n=1 =1

Thus the data embedding can be defined as

e,

The data points are mapped to a function belonging{to The mapping is consequently
strictly related to the frame elemerit$,} and is implicitly defined by them.

e Besides, since the kernel has an expansion with regards to the frametdgtie solution of
Equation (1) is of easier interpretation. Indeed, although the solutiomdep the kernel
expression, it can be rewritten as a linear combination of the frame eleméints,. cbmpared
to other kernels for which basis functions are unknown, using frarseebkernel increases
model interpretability.

e Drawbacks of using frame-based kernel rely mainly on the time complexityebuthat is
added for constructing the data model. For both SVMs and regularizatiamores, one has
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to process the kernel matrik with elements; j = K(x;, Xj). Thus, with frame-based kernel,
one has to compute the dual frame elements, (for instance, by means o&tivatalgorithm,

as the one described in (Grochenig, 1993)). This by its own may be timssoong. Further-
more, the construction of the mattneeds the processing of the sum. Hence, if the number
N of frame elements describing the kernel and the nunéledrdata are large, building
becomes rapidly very time-consuming (of an ordeNéf ¢2).

Some of these points suggest that frame-based kernels can be ystfehtselves. However,
within the context of semiparametric estimation, this flexibility for building kernfgrgfsome other
interesting perspectives. Semiparametric estimation can be introduced lojldérfg theorem.

Theorem 9 (Kimeldorf and Wahba, 1971)

LetHx be an RKHS of real valued functions @rwith reproducing kernel K. Denote Byxi, Vi )i—1..¢}
the training set and lefg;, j = 1...N} be a set of functions 0 such that the matrix § = g;(x)
has maximal rank. Then, the solution to the problem

1 l
min " C Iy (X)) +A|f 2 26
fespang)+hhe s ¢ i; (v, F0%)) | ||5;.4< (26)

has a representation of the form

14

N
f(-)= ZqK(m,-) + Zldjg,-(-).
1= =

The solution of this problem can be interpreted as a semiparametric estimatierosapart of the
solution (the first sum) comes from a non-parametric estimation (the reguilanizaoblem) while
the other term is due to the parametric expansion (the spdg;¢j. As stated by Smola in his
thesis (Smola, 1998), semiparametric estimation can be advantageous witis riega fully non
parametric estimation as it exploits some prior knowledge on the estimation prdioleimstance
major properties of the data are described by linear combination of a small gtctions), and
making a “good” guess (on the set of functidfwg }) can have a large effect on performance.

Again in this context, the flexibility of frame-based kernel can be exploitedfadt, letG =
{gi}i=1..n be a set oN linearly independent functions that satisfies Theorem 8, hence, asgtsu
of G, {gi }ier,( I being an index set of siza) < N) can be used for building an RKH8k while
the remaining vectors can be used in the parametric part of the Kimeldotiatakorem. Hence
in this case, the solution of (26) is written

¢
f(-)=i;cik;‘g_k(xi)gk(-)+jE d;g;(-)-

The flexibility comes from the fact that in a learning problem, any elements aff®e regular-
ized (if involved in the span afk) or can be kept as it is (if used in the parametric part). Intuitively,
one should use any vector that comes from “good” prior knowledge drp#inametric part of the
approximation while leaving in the kernel expansion the other frame elemeutiseMlso that only
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N

Ho P

N
N

Figure 3: Example of multiscale approximation on 3 levels. Each spa@an be decomposed in
atrend spacé{,_; and a detail spac€j_1. In this casej# can be considered as the sum

of Hy, Fo, F1 and F.

Hs

(X, ¥i)i=1n
3 dj2®j2(x) 5 ¢j 2K 2(X, %) noise
> dja®ja(x) Y Cj1Kj 1 (X, %) noise

> dj®;(x) 5 ¢iK;j (%, %) noise

Figure 4: Example of multiscale approximation on 3 levels: the kernel poinitef. \For instance,
here we want to learn a functiof(x) that has generated the samp{&sy;)i—1, under
some noisy condition. The first step consists of decomposing the hyposipasis into
a parametric part spanned b®; »(x)} and a non parametric part spannedgy(X, X;).
Then the resulting parametric approximation is decomposed again in two pdrsan
on. The multiscale approximation df(x) is then f(x) = S dj®j(x) + 5 ¢iKj (X, %) +
> Cj.1Kj (%, %) + 3 Cj 2K 2(%, %)
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the subset o6 which is used in the parametric part has to be linearly independent.

Another perspective which follows directly from this finding is a technigtieegularization
that we call multiscale regularization which is inspired from the multiresolution aisadf Mallat
(1998). Here, we just sketch the idea behind this concept and in nateajollowing paragraph
should be considered a complete study of this new technique since theisumdlits properties
goes beyond the scope of this paper. Consider the same problem a ttiesornibed in Theorem
9. Now, suppose thdlg; } is a set ofN linearly independent functions verifying Theorem (8). Let
{Fi}i—o..m be a set of index set such thgt ,I'i = {1,...,N} andl; NI ; = O for i # j andAH being
the RKHS spanned byg;}. By subdividing the se{g;} with the index sefTl’}i—o._m, One can
constructm RKHS { % }i—o..m-1 in such a way that

Vi=1...m  F_1=span{gk}ker;

and reproducing kernel ¢f; is notedK;. Now, denote ag4 the RKHS such that

Vi=1...m, H=H_1+F_1
with Ho = span{ gk }ker,- By construction, the spack are nested spaces:

HoCHyC...C Hm=H.

In this case, one can interprefy as the space of lower approximation capacity wherdass
the space with higher capacity. Besides, sit¢e- 4 1+ % _1, one can think off;_; as the details
needed to be added t4_; to obtain#, thus we will call space§; the “details” spaces whereas
spacesH; are the “trend” spaces. Every of these spagesnd # are an RKHS since any subset of
{gi} satisfies Theorem (8).

Multiscale regularization is an iterative technique that at &tepl, ..., m consists of looking
for the solutionfy,_k(-) of the following minimization problem:

1
min  —

n
C(Yim-k: (%)) +Am—kl f 115 7
fem,mni; (Vi.mk £(%)) +Amei| I, (27)

whereyim-1 = Vi, ¥im—(k+1) = Yim k — z?zchm,ka,k(xj ,X ). According to the representer The-
orem (9),fn_k(+) can be written:

n

fmfk(‘):Zci,mkamfk(Xia')JF > dimkgi() (28)

1= jeum
and thus the overall solution of the so-called multiscale regularization is

m n

fo=3% Z,Ci,m—kam(Xia')Jr Z dj.00;(-)- (29)
1€lo

k=1i=

The solutionf of the multiscale regularization is the sum of different approximations onaeste
spaces. At first, one seeks to approximate the data on the highest iapgior capacity space
by regularizing only the details. Then, these details are subtracted to therhtane tries to
approximate this residual on the next space by keeping regularizing thiésdm this space, and
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so on. Thus at each step, one can control the “amount” of regulariZattarght to each details
space, increasing in this way the capacity control capability of the modelre={@uand (4) show
an example of how the algorithm works for a 3-level approximation scheme.

The framework of additive models of Hastie et al. (Hastie and Tibshir&8)) can give other
insights to multiscale regularization. In fact, if we suppose that the fafgily;—1 . n forms an
orthonormal basis of{ and build the space&p and 7, in the same way as described above, then
by construction, we have

H=Ho®Fo® D Fm-1.

Hence any functiorf € # can be written asf(x) = S, fi(x) with fo € # and f; € F_1 for
i =1,...,m. Thus, the multiscale regularization algorithm can be interpreted as an afgaviich
looks for the functionf that minimizes the following empirical risk:

l m m
Realf] = § 3 0 3 15000+ 3 Al (30)
i= i= i=

where each\; is a hyperparameter that controls the amount of regularizatiotffoy. This min-
imization problem is typically the problem of fitting an additive model as propbsedastie and
Tibshirani (1990).

lllustrations of the multiscale regularization algorithm on both toy and real-wiydtllems are
given in the next section.

6. Numerical Experiments

This section describes some experiments that compare frame-basdd t@oh@ssical one (for
instance gaussian kernel) on some regression problems. Besides tilustcd some points raised
in the discussion such as the multiscale approximation algorithm are given.

6.1 Experiment 1
This first experiment aims at comparing the behavior of different keumgtegy regularization
networks and support vector regression. The function to be apprtednsa

f(X) = sinx+singT(x—5)) + sing51(x — 2)) (31)

where singx) = %‘ Data used for the approximation is corrupted by an additive noiseyihts
f(x)+€& whereg; is a zero-mean gaussian noise of standard deviat®bnRointsx; are drawn from
uniform random sampling of intervéd, 10]. Three kernels have been used for the approximation:

e Gaussian kernel:
_lxy)?

Kixy)=e =%

e Wavelet kernel:

KOy = 3 0w

wherei denote a multi index andgyj(x) = Wjk(x) = \/%UJ (%Lﬂ) Y(x) is the mother
wavelet which in this experiment is a mexican hat wavelet. Dilation paranjé¢tdes value
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Regularization Networks Support vector regression
Gaussian kernel 0.0218+0.0049 0.0248+0.0058
Wavelet kernel 0.0249+0.0078 0.0291+0.0086
Sin/Sinc kernel 0.0249+0.0122 0.0302+0.0176

Table 1. True generalization error for Gaussian, Wavelet, Sin/Sineleamith Regularization Net-
works and support vector regression for the best hyperparameters

in the set{ —5,0,5} whereask is chosen so that a given wavelgfy(x) has its support in the
interval[0,10]. For now on, we setp = 1 anda = 22°. These values are those proposed by
Daubechies (Daubechies, 1992) so that a wavelet set is a fram€Ry. Notice that in our
case, we only use a subset of this frame.

e Sin/Sinc kernel:

K(xy) = Z_cﬁ (A (y)

where@ (x) = {1,sin(x),cogx),sind jr(x—k)) : j € {1,3,6},ke [1...9)])}.

For frame-based kernel, if necessary the dual frame is processgd@r®chenig’s algorithm.

For both regularization network and support vector regression, sgperfrarameters have to
be tuned. Different approaches are possible for solving this modetieeigoroblem. In this study,
the true generalization error has been evaluated for a range of fimalylesh values of hyperpa-
rameters. This is repeated for a hundred different data sets, and timeameéatandard deviation
of the generalization error are thus obtained. Table 1 depicts the trusatizaton error evaluated
on 200 datapoints for the two learning machines and the different kersigelg the best hyperpa-
rameters setting. Analysis of this table leads to the following observation: ifieeedt kernels
and learning machines give comparable results (all averages are withgtandard deviation from
each other). Using prior knowledge on the problem in this context daeisnpoove performance
(Sin/Sinc kernel or wavelet kernel compared to gaussian kernel). thigation can be that such
kernels use strong prior knowledge (thia frame element) that is included in the kernel expansion
and thus this prior knowledge gets regularized as much as other frame &eifieis suggests that
semiparametric regularization should be more appropriate to get advanwgsha kernel.

6.2 Experiment 2

In this experiment, we suppose that some additional knowledge on thexapption problem
is available, and thus its exploitation using semiparametric approximation shodldddzetter
performance. We have kept the same experimental setup as the one tieefirgt example but we
have restricted our study to regularization networks.

Basis functions and kernel used are the following:

e Gaussian kernel and sinusoidal basis functighsin(x),cogx)}.

al

e Gaussian kernel and wavelet basis functi{q.qk(x) = %UJ (X"‘”"aj) ,j €10, 5}}

1505



RAKOTOMAMONJY AND CANU

e Wavelet kernel and wavelet basis functions: these functions are ithe @s in the previous
case but the kernel is built only with low dilation wavelgt-€ —10). In a nutshell, we
can consider that the RKHS associated to the kernel used in the nomagidcacontext
(experiment 1) has been splitted in two RKHS. One that leads to a hypothasisthat have
to be regularized and another one that does not have to be controlled.

¢ Sinc kernel and Sin/Sinc basis functions: in this setting, the kernel is diyehne following
equation:

K(x,y) = _Z_cﬁ (@ (y)

with @ (x) = {sinqjii(x—K)) : j € {3,6}, ke [1...9]}

and the basis functions afé, sinx,cosx,singm(x—K) : ke [1...9]}.

For each kernel, model selection has been solved by cross-validatimnasdata sets. Then,
after having spotted the best hyperparameters, the experiment wabundred times and the true
generalization error in a mean-square sense, was evaluated. Tabientasees all these trials
and describes the performance improvement achieved by differer@lk@ompared to the gaussian
kernel and sin basis functions. From this table, one can note that:

- exploiting prior knowledge on the function to be approximated leads immediatalyoiwer
generalization error (compare Table 1 and Table 2).

- as one may have expected, using strong prior knowledge on the hgjsoiace and the
related kernel gives considerably higher performances than gaukssisel. In fact, the sinc-
based kernel achieves by far the lower mean square error. Thefideduaing the “good”
knowledge in a non-regularized hypothesis space while including thé fivamt knowledge
in the RKHS span seems to be fruitful in this case (the frame elemen{8sinc- k)) and
sing 6m(x—Kk)) can be termed as “bad” knowledge as, they are not used in the targgbfun

)-

- wavelet kernel achieves minor improvement of performance compargdussian kernel.
However, this is still of interest as using wavelet kernel and basis fursctioes corresponds
to prior knowledge that can be reformulated as: “the function to be appat&d contains
smooth structure (thsin part), irregular structures (th&nc part) and noise”. It is obvious
that knowing the true basis function leads to better performance, hoteatenformation is
not always available and using bad knowledge may result in pooresrpehce. Thus, prior
knowledge on structures which may be easiest to get than prior knowtedigasis function
can be easily exploited by means of wavelet span and wavelet kernel.

6.3 Experiment 3

This last simulated example targets at illustrating the concept of multiscale riegtitax. We
have compared several learning algorithms in function approximation problEmedearning ma-
chines are: regularization networks, SVM, semiparametric regularizatsbmaltiscale regulariza-
tion. For the two first methods, a gaussian kernel is used whereas fovdhatter, wavelet kernel
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Kernel / Basis Functions M.S.E Improvement (%)
Gaussian / Sin 0.021640.0083 (6) 0
Gaussian / Wavelet | 0.0202+0.0072 (4) 4.6
Wavelet / Wavelet 0.0195+0.0077 (2) 9.7
Sinc/ Sin 0.0156+ 0.0076 (88) 27.8

Table 2: True generalization performance for semiparametric regrassioorks and different set-
tings of kernel and basis functions. The number in parentheses refiectsmber of trials
for which the model has been the best model.

Amplitude
w IS
§
I I I
Amplitude

Figure 5: Original functions used for benchmarking in experiment 3fy(&)) f,. Top: multiscale
structure on 3 levels. Bottom: Complete function.

and basis functions are taken. The true functions used for benchmanirihe following:

fi(x) = sinx+sing3m(x—5)) + sind6r(x— 2)),
fa(x) = sinx4-sing3m(x—5)) 4 sing6r(X — 2)) + sing6r(x — 8)).

The two functionsf; and f, have been randomly sampled on the intef@al(]. Gaussian noisg
of standard deviation 0.2 is added to the samples, thus the entries of thedeaathines become
{x, f(x) +¢&}. Here again, a range of finely sampled values of hyperparametersebaddsted
for model selection. In each case, an averaging of the true errorajieation over 100 data sets of
200 samples was evaluated using a uniform measure.

For semiparametric regularization, the kernel and basis setting was built wétedet set given

by
1 X — kupa)
w0 = e ().
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f

fa

Gaussian Reg. Network

50.0266+ 0.0085

0.0385+0.0141

Gaussian SVM

0.0328+0.0093

0.04754+0.0155

Semip Reg. Networks 1

0.0266+ 0.0085

0.0397+0.0113

Semip Reg. Networks 2

0.0236+0.0063

0.0353+0.0080

Multi. Regularization

0.0246+0.0060

0.0344+0.0069

Table 3: True mean-square-error generalization for regularizatiovones, SVM, semiparametric
regularization networks, and multiscale regularizationffoand f.

The kernel is constructed from a set of wavelet frame of dilajigsy and the basis functions
are given by another wavelet set described&p(. For multiscale regularization, the setting of the
nested spaces are the following:

B 1 [t—kuwal .
%_span{\/EqJ( al )’J_S}’
B 1 t—kual) .
1 t—kual \ .
flzspan{\/an( a;ba>’J:_lo}'

These dilation parameters have been setad hocway, but their choices can be justified by the
following reasoning: Three distinct levels have been used for sepguthtrapproximation in three
structures which should be smooth=£ 5), irregular § = 0) and highly irregular { = —10). The
same values of were used in the semiparametric context. Two semiparametric settings have been
tested: the first one usgspy = —10 andjsp. = {0,5} and the other one is configured as follows
jspH = {—10, 0} andjspL: 5.

Table 3 presents the average of the mean-square error of the diffeaeming machines for
the two functions and for the best hyperparameter value found by-gatistion. Comments and
analysis of this experiment validating the concept of multiscale approximaton ar

- semiparametric 2 and multiscale approximation give the best mean-squard by achieve
respectively a performance improvement with regards to gaussian riegtitan networks of
11.2% and 75% for f1, and 83% and 106% for f,. Also note that both learning machines
give the lowest standard deviation of the mean square error.

- multiscale approximation balances loss of approximation due to error aleasttfsee Fig-
ure) and flexibility of regularization, thus its performance is better than seampetric one’s
when the multiscale structure of the signal is more pronounced.

- comparison of the two semiparametric settings shows that the second sggagfams the
first one (especially fof,). This highlights the importance of selecting the hypothesis space
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Multiscale Approximation s
T

Amplitude
© -
§
Amplitude
w »
i
. . .

0 1 2 3 4 5 6 7 8 9 10

Figure 6: Top: Multiscale structure of a typical prediction offp{left) and f, (right) by multiscale
wavelet approximation Bottom: full approximation and true function

Example of approximation Example of approximation
T T T T

T T T
— Original

T T
— Original
/ SemiParam2 SemiParam2
h — - MultiReg — - MultiReg
150 i — - Regnet 1 15F R — - Regnet

Amplitude
Amplitude

Figure 7: Examples of approximation &f (left) and f, (right): Original function (Solid), Semi-
parametric 2 (dotted), Multiscale regularization (dashed), Regularizagitvvork (dash-
dotted

1509



RAKOTOMAMONJY AND CANU

to be regularized. In this experiment, it seems that leaving the space sgaymavelet of
dilation j = 0 on the parametric span (the space which is not regularized) leads fittimger

- multiscale approximation is able to catch all the structures of the signal (seeKi) ). One
can see that each level of approximation represents one structurefahttien f; and f,:
the lowest dilation [ = —10) represents the wiggles due to the highest frequency sinc, at level
j =0, one has the siri8x) function whereas thsinis located on the highest dilatign= 5.

- Figure (6.3) shows that multiscale and semiparametric algorithms achieve dyapterxi-
mation of the “wiggles” than nonparametric methods without compromising smashmne
region of the functions where it is needed.

6.4 Experiments on Real-World Data Sets

This paragraph presents some estimation results on real-world time-senese fimes-series
are publicly available in a time-series data library (Hyndman and Akram () 2@@l have already
been widely used in the field of statistics. The first enginesconcerns a monthly measured ratio
between the motor vehicles engines production and the consumer priceinn@Gaxada whereas
the second onbasirondeals with the monthly production of iron in Australia. The problem we
want to solve is the estimation of these time-series after a zero-mean normalization

For this purpose, two models have been compared, the first one beigglarization networks
with a gaussian kernel whereas the other one is a multiscale regularizataitredgwith an or-
thogonal wavelet kernel. The wavelet that has been usedigranletwvavelet with 4 vanishing
moments (Mallat, 1998). The kernel of the corresponding hypothesce spavhich have been
split into three orthogonal spaces, is so that

H=HdFodF1 and Ky (Xy) = Ky (XY) + Ko (X,y) + K (X Y)

with

i1

Kog(xy) = > Zka(X)wJ’,k(Y)+Z(Pj,k(x)([’j,k(w7 (32)
J= Imin
iz

K?O(va) = Z lej,k(x)lpj,k()’), (33)
=+l
jmax

Knboy) = 3 3 UtUu) (34)
j=l2+1

and the dilation indexes are so thath < j1 < j2 < jmax FOr both data sets, we have $gf, = —3,
j1=0,j2=4andjmax="7.

For each estimation trial, each data set has been randomly split in a learn@id .66 samples
with the remaining samples being considered as the test set. The results thegsert are the
normalized mean-squared error averaged over 30 trials for the hestdayameters values of each
model: for the gaussian regularization networks and the multiscale regtitamizeetworks, these
hyperparameters are respectivély,o} and {Ao,A1,A2} which are the regularization parameters
associated to each scale. The best hyperparameters have beerddiyagmaluating the test error
on a large range of finely sampled values of these hyperparameters.
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basiron engine
Gaussian Reg. Networks 10.55+1.24(1) | 37.57+5.62(8)
Multi. Regularization || 9.58+1.21(29) | 36.00+4.30(22)

Table 4: Averaged normalized mean-square error of estimation of re&d-tmme-series with a
gaussian and a wavelet multiscale regularization networks. The number pattenthesis
is the number of time a given model has performed better than the other.

Table (4) summarizes the performance of each model. It shows that ttoitibwe-series, the
multiscale algorithm performs better than the gaussian regularization netwbrteed, for the
basirondata set, although the difference in normalized mean-squared error iatwmly 09%, the
multiscale approach has given the best results on 29 of the 30 trials. Fendimeestime-series,
although the difference in normalized mean-squared error is higher @edlgorithm gives better
results on only 22 trials. Figure (8) depicts some examples of estimation fotibwtfseries and
algorithms. This figure shows that the best model for the gaussian rezgtilan networks is rather
a smooth model whereas the wavelet multiscale model is far less smooth. Ttisnsi@ty due to
the nature of the time-series which are composed of a slow-varying paotidg the trend of the
series, and a fast-varying part denoting the fluctuation of the time-sedandathe trend. Hence,
because of the particular structure of the signal to be estimated, the gaossiel is not able to
estimate correctly both the trend and the fluctuation whereas the multiscale nieebhgoetter
estimate. This is particularly clear for thrasirondata set which is composed of a slow-varying
trend and fluctuations.

7. Conclusions

In this paper, we showed that an RKHS can be defined by its frame elemerdsraversely, one
can construct an RKHS from a frame. One of the key result is that thee sgmnned by any finite
number of functions belonging to a given Hilbert space, endowed witldaquate inner product,
is an RKHS with a kernel that can be at least numerically described. VWedisy proposed some
conditions for a infinite dimensional Hilbert space to be an RKHS. Thesditbmms depend on the
frame and the dual frame elements of the Hilbert space and under somehwmatkesis, these
conditions are easy to check (see example 5) . Hence, we have ess@ntiaitied some methods
for building a specific kernel adapted to a problem at hand.

By exploiting this new way for constructing RKHS, a multiscale algorithm usirsgegteRKHS
has been introduced and examples given in this paper showed that usiatgtrithm or a semi-
parametric approach with frame-based kernel improves the result gfesston problem with re-
gards to nonparametric approximation. It has also been shown that theselhased kernels allow
better approximation only if exploited in a semiparametric context. Using themeagutarization
network or SVMs kernels are not as efficient as one may have expddtagever, depending on
the prior knowledge on the problem, one can build appropriate kernelsghanhance the quality
of the regressor within a semiparametric approach. However, for fuliggadvantage of the main
theorem proposed in this paper, one has to answer some open questions:
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Figure 8: Examples of estimation of real-world time-series. The left and oglumns respec-
tively depict estimation obasironandengines The top and bottom figures respectively
show the full time-series estimations and a zoomed version of these estimatiens. T
marks at the bottom of each figure denote the position of the learning examjiles
time-series. (solid) true function. (dotted) gaussian regularization netvestimation.
(dashed) wavelet multiscale regularization networks estimation.

¢ we give conditions for building RKHS to be used for approximation. But iffecdity stands
in one question: How to transform prior information on the learning problefratoe ele-
ments? This is still an open issue.

e reconstruction from frame elements has been shown to be more robussi&npe of noise
(Daubechies, 1992). In fact, redundancy attenuates noise effie¢tedrame coefficients.
Thus, this is a good statistical argument for using frame with high redugdeliogvever, this
implies the computing of the dual frame and consequently a higher time complextg of
algorithm. Hence, fast algorithms still have to be derived.

e a multiscale regularization algorithm has been sketched in this paper in ortkdtet@d-
vantage of frame kernels. Although some experiments show that in some sig &tics
algorithm performs well, it is not clear whether it theoretically sounds or Hefnce, some
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further works have to be carried for a better theoretical understaodiihgs novel regulariza-
tion method and for a better implementation of the algorithm and all the subseqaobtgms
such as model selection.
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Appendix A.

We recall in this appendix a numerical method to process the dual framearhadble Hilbert
spaceH with frame element$@, }ner. Let us define the operat&r

S H — H
= Yner(f ).
One can also write the opera®asS= U*U whereU is the frame operator defined in equation
(5) and (6). Our goal is to process _
vn, @ =S"1q.
Grochenig (1993) has proposed an algorithm to compute the problen$ g . The idea is to

calculatef with a gradient descent algorithm along orthogonal directions with régpemorm
induced by the symmetric operatsr

(35)

If2= (S f|2.
This norm is useful to compute the error.
Theorem 10 Let ge . To compute = S g, one has to initialize
fo=0,r0=po=9g, p-1=0.
Then, for any n> 0, one defines by induction,

<rn7 pn>
— 36
" <pn,sp'|> ( )
far1 = fn+AnpPn (37)
Mi1=rn—AnSH (38)
(S, Sm) (Smh,Sm-1)
=Sp, — — 1. 39
pn+1 p] <pn,sp]> pn <pn,1,Sp],l> pn 1 ( )
_ VB—VA
If o= Jm\/ﬂ,then

1~ falls < 2 || (40)

IS =71120n"" 1S

and thusjJim,_ . f, = f.

Then, in order to process numerically the dual frameHgfone has to apply this algorithm on
each element of the frame.
One can note that the speed of convergence is highly dependentmmbaundsA andB.
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