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Abstract

We provide a new unifying view, including all existing progerobabilistic sparse approximations
for Gaussian process regression. Our approach relies arssipg theeffective priorwhich the
methods are using. This allows new insights to be gainedhaidights the relationship between
existing methods. It also allows for a clear theoreticallgtified ranking of the closeness of the
known approximations to the corresponding full GPs. Finael point directly to designs of new
better sparse approximations, combining the best of th&iegistrategies, within attractive com-
putational constraints.
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machine
Regression models based on Gaussian processes (GPs) are simple to imppllexible, fully
probabilistic models, and thus a powerful tool in many areas of applicatibair ain limitation
is that memory requirements and computational demands grow as the sqiliatbamespectively,
of the number of training cases effectively limiting a direct implementation to problems with
at most a few thousand cases. To overcome the computational limitations msnaertbors have
recently suggested a wealthggdarseapproximations. Common to all these approximation schemes
is that only a subset of the latent variables are treated exactly, and thmiregnariables are given
some approximate, but computationally cheaper treatment. However, thehealdigorithms have
widely different motivations, emphasis and exposition, so it is difficult toagebverview (see
Rasmussen and Williams, 2006, chapter 8) of how they relate to each atldewhach can be
expected to give rise to the best algorithms.

In this paper we provide a unifying view of sparse approximations for &ffession. Our
approach is simple, but powerful: for each algorithm we analyze the nmstand compute the
effective priorwhich it is using. Thus, we reinterpret the algorithms as “exact inferenttean
approximated prior”, rather than the existing (ubiquitous) interpretatiopr@apmate inference
with the exact prior”. This approach has the advantage of directly sgjorg the approximations in
terms of prior assumptions about the function, which makes the conseguitise approximations
much easier to understand. While our view of the approximations is not th@palgossible, it has
the advantage of putting all existing probabilistic sparse approximations ondeumbrella, thus
enabling direct comparison and revealing the relation between them.

In Section 1 we briefly introduce GP models for regression. In Section gregent our uni-
fying framework and write out the key equations in preparation for theyungfanalysis of sparse
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algorithms in Sections 4-7. The relation of transduction and augmentation gparse framework
is covered in Section 8. All our approximations are written in terms of a newfsetiucing vari-
ables The choice of these variables is itself a challenging problem, and is déstirssSection
9. We comment on a few special approximations outside our general sche®aetion 10 and
conclusions are drawn at the end.

1. Gaussian Processes for Regression

Probabilistic regression is usually formulated as follows: given a trainingDset {(x;,Vi),i =
1,...,n} of n pairs of (vectorial) inputs; and noisy (real, scalar) outputs compute the predictive
distribution of the function values, (or noisyy,) at test locations.,. In the simplest case (which
we deal with here) we assume that the noise is additive, independent asdi&ya such that the
relationship between the (latent) functibéfx) and the observed noisy targgtare given by

yi = f(x)+&, where g ~ A(O, cﬁoise)a 1)

whered? . is the variance of the noise.

Definition 1 A Gaussian process (GP) is a collection of random variables, any finitebeu of
which have consistehjoint Gaussian distributions.

Gaussian process (GP) regression is a Bayesian approach whiatesss GP pridrover functions,
i.e. assumes a priori that function values behave according to

p(f|X1,X2,...,Xn) = AN(0, K), 2

wheref = [f1, f,..., f] T is a vector of latent function value§,= f(x;) andK is a covariance ma-
trix, whose entries are given by teevariance functionKi; = k(x;,x;). Note that the GP treats the
latent function values; as random variables, indexed by the corresponding input. In the follpwin
for simplicity we will always neglect the explicit conditioning on the inputs; ther@dtel and all
expressions are always conditional on the corresponding inputsGPhaodel is concerned only
with the conditional of the outputs given the inputs; we do not model anythdogtahe inputs
themselves.

Remark 2 Note, that to adhere to a strict Bayesian formalism, the GP covarifumetion? which
defines the prior, should not depend on the data (although it can deppeadditional parameters).

As we will see in later sections, some approximations are strictly equivalenP$ @hile others
are not. That is, the implied prior may still be multivariate Gaussian, but theriaoea function
may be different for training and test cases.

Definition 3 A Gaussian process is callelgeneratdf the covariance function has a finite number
of non-zero eigenvalues.

1. By consistency is meant simply that the random variables obey thérutesof marginalization, etc.
2. For notational simplicity we exclusively use zero-mean priors.
3. The covarianctunctionitself shouldn’t depend on the data, though its value at a specific pairwatsigbcourse will.
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Degenerate GPs (such as e.g. with polynomial covariance functiorgspamd tofinite linear
(-in-the-parameters) models, whereas non-degenerate GPs (seah asth squared exponential
or RBF covariance function) do not. The prior for a finitelimensional linear model only consid-
ers a universe of at most linearly independent functions; this may often be too restrictive when
n>> m. Note however, that non-degeneracy on its own doesn’t guarargexigtence of the “right
kind” of flexibility for a given particular modelling task. For a more detailedkzgound on GP
models, see for example that of Rasmussen and Williams (2006).

Inference in the GP model is simple: we put a joint GP prior on training andbtesit valuest
andf,#, and combine it with the likelihoddp(y|f) using Bayes rule, to obtain the joint posterior

p(f,f.) p(ylf)
p(y)

The final step needed to produce the desired posterior predictive digirilis to marginalize out
the unwanted training set latent variables:

p(f.f.ly) = . (3)

1
plt.ly) = [ pit.fyydl = 5 [ ool pif fdf @

or in words: the predictive distribution is the marginal of the renormalized jwilar times the
likelihood. The joint GP prior and the independent likelihood are both Gauiss

p(f.f) = 2(0.[ (" 1)) and pivID) = AU oRoed) (5)

whereK is subscript by the variables between which the covariance is computédv@nse the
asterisks as shorthand fof,) and| is the identity matrix. Since both factors in the integral are
Gaussian, the integral can be evaluated in closed form to give the Gapssdictive distribution

p(fily) = N(K*,f (Kes+ U%oisel )—1y7 Ki v — Kif (Kf g+ Uﬁoisel )_1Kf.,*) ) (6)

see the relevant Gaussian identity in appendix A. The problem with the @&pvession is that it
requires inversion of a matrix of sizex n which requiresO(n®) operations, whera is the number
of training cases. Thus, the simple exact implementation can handle problernet withst a few
thousand training cases.

2. A New Unifying View

We now seek to modify the joint prig(f., f) from (5) in ways which will reduce the computational
requirements from (6). Let us first rewrite that prior by introducing dditional set ofm latent
variablesu = [uy, ...,un] ', which we call thenducing variables These latent variables are values
of the Gaussian process (as alsandf,), corresponding to a set of input locatioXg, which we
call theinducing inputs Whereas the additional latent variablesre always marginalized out in
the predictive distribution, the choice of inducing inpdtsesleave an imprint on the final solution.

4. We will mostly consider a vector of test cagegrather than a singlé,).
5. You may have been expecting the likelihood writtemp@sf., f) but since the likelihood is conditionally independent
of everything else givef this makes no difference.
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The inducing variables will turn out to be generalizations of variables wiiiclr authors have re-
ferred to variously as “support points”, “active set” or “pseudotits). Particular sparse algorithms
choose the inducing variables in various different ways; some algorithosedhe inducing inputs
to be a subset of the training set, others not, as we will discuss in Secti@mr oW consider any
arbitrary inducing variables.

Due to theconsistencyf Gaussian processes, we know that we can recpfferf) by simply
integrating (marginalizing) out from the joint GP priomp(f.,f,u)

o(f.. ) /pf*,f,u Jdu = /pf*,f|u du, where p(u) = N0, Kyy). (7)

This is an exact expression. Now, we introduce the fundamental appt@n which gives rise
to almost all sparse approximations. We approximate the joint prior by asstihaitiy andf are
conditionally independent givan see Figure 1, such that

p(f..) = q(f.§) = [ a(f.Ju)(flu) plu)du ®)

The namenducing variable is motivated by the fact thatandf, can only communicate though

u, andu thereforeinducesthe dependencies between training and test cases. As we shall detail in
the following sections, the different computationally efficient algorithms psed in the literature
correspond to differenddditional assumptionabout the two approximateducing conditionals
q(f|u), q(f«|u) of the integral in (8). It will be useful for future reference to spedifyre the exact
expressions for the two conditionals

training conditional: p(flu) = N(Kf,uKL;&u, Kis—Qrf) , (9a)

testconditional: p(filu) = AL(KiuKygu, Kis — Qi) (9b)

where we have introduced the shorthand not&ti@s, = KauK; Ky . We can readily identify the
expressions in (9) as special (noise free) cases of the standdictipeeequation (6) withu playing
the role of (noise free) observations. Note that the (positive semi-défioitariance matrices in (9)
have the fornK — Q with the following interpretation: the prior covariankeminus a (non-negative
definite) matrixQ quantifying how much information provides about the variables in questidoi
f.). We emphasize that all the sparse methods discussed in the papepa@odresnply to different
approximations to the conditionals in (9), and throughout we use the exalilhéilkd and inducing
prior

P(yIf) = AF, 0%oisd), @nd p(u) = A0, Kuu) - (10)

3. The Subset of Data (SoD) Approximation

Before we get started with the more sophisticated approximations, we mentidraasline method
the simplest possible sparse approximation (which doesn't fall inside engrgl scheme): use
only a subset of the data (SoD). The computational complexity is redua@thté), wherem < n.
We would not generally expect SoD to be a competitive method, since it weelth émpossible
(even with fairly redundant data and a good choice of the subset) to rgetistic picture of the

6. Note, thalQ, , depends om although this is not explicit in the notation.
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Figure 1: Graphical model of the relation between the inducing variabltee training latent func-
tions valued = [fy,..., f)] " and the test function valug. The thick horizontal line rep-
resents a set of fully connected nodes. The observagigns , y,, Y. (not shown) would
dangle individually from the corresponding latent values, by way of Waetg(factored)
likelihood (5). Left graph: the fully connected graph corresponds to the case where
no approximation is made to the full joint Gaussian process distribution betinesa
variables. The inducing variablesare superfluous in this case, since all latent func-
tion values can communicate with all otheiRight graph: assumption otonditional
independencéetween training and test function values givenThis gives rise to the
separation between training and test conditionals from (8). Notice thatchaut the
communication path between training and test latent function values, infornfiedrar
can only be transmitted tf). via the inducing variables.

uncertainties, when only a part of the training data is even considerethcWee it here mostly as
a baseline against which to compare better sparse approximations.

In Figure 5 top, left we see how the SoD method produces wide predidsitrébdtions, when
training on a randomly selected subset of 10 cases. A fair comparisondp rat#thods would
take into account that the computational complexity is independemesfopposed to other more
advanced methods. These extra computational resources could ldrspenumber of ways,
e.g. largemm, or an active (rather than random) selection of th@oints. In this paper we will
concentrate on understanding the theoretical foundations of the vappueximations rather than
investigating the necessary heuristics needed to turn the approximationexhto actually prac-
tical algorithms.

4. The Subset of Regressors (SoR) Approximation

The Subset of Regressors (SoR) algorithm was given by Silverm&d),1&nd mentioned again by
Wahba et al. (1999). It was then adapted by Smola and Bartlett (200tppoge a sparse greedy
approximation to Gaussian process regression. SoR models are finitatisitbarparameters mod-
els with a particular prior on the weights. For any input the corresponding function value is
given by:

f, = KeuWa, with p(wy) = A0, Kyg), (11)

where there is one weight associated to each inducing inpXjt.ilNote that the covariance matrix
for the prior on the weights is thaverseof that onu, such that we recover the exact GP priorpn
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which is Gaussian with zero mean and covariance
u = Ku’uWu = <UUT> — KU,U<WUWJ>KU7U — Ku7u . (12)

Using the effective prior o and the fact thatv, = Kuﬁju we can redefine the SoR model in an
equivalent, more intuitive way:

f, = KeaKigu, with u ~ A0, Kyy) . (13)

We are now ready to integrate the SoR model in our unifying frameworkerGikiat there is a
deterministiaelation between anfy andu, the approximate conditional distributions in the integral
in eq. (8) are given by:

Osor(flU) = A (KruKygu, 0), and ggor(fi|u) = A (K.uKygu, 0), (14)

with zero conditional covariance, compare to (9). The effective prior irddiethe SoR approxi-
mation is easily obtained from (8), giving

o 1:) = (0 [ 3 ]). (15)

where we recalQap £ KavuKu‘jKu’b. A more descriptive name for this method, would be the
Deterministic Inducing Conditional (DIC) approximation. We see that this apmate prior is
degenerate. There are omydegrees of freedom in the model, which implies that anlynearly
independent functions can be drawn from the prior. fit¥e1-th one is a linear combination of the
previous. For example, in a very low noise regime, the posterior couldveeede constrained by
only mtraining cases.

The degeneracy of the prior causes unreasonable predictive distnfulndeed, the approx-
imate prior over functions is so restrictive, that given enough data onbrgalimited family of
functions will be plausible under the posterior, leading to overconfidesdtigtive variances. This
is a general problem of finite linear models with small numbers of weights (foe metails see
Rasmussen and Qionero-Candela, 2005). Figure 5, top, right panel, illustrates thesonable
predictive uncertainties of the SoR approximation on a toy dafaset.

The predictive distribution is obtained by using the SoR approximate prigrifistead of the
true prior in (4). For each algorithm we give two forms of the predictivéridbistion, one which is
easy to interpret, and the other which is economical to compute with:

qSoR(f* |Y) = N(Q*.f(Qf,f + oﬁoiseI )_1ya Q*,* - Q*,f(Qf,f + o-ﬁoisel )_le,*) s (163-)
= N (072K uZKury, KiuZKus) , (16b)

where we have definel = (G*ZKu,fo,u + Ku7u)*1. Equation (16a) is readily recognized as the
regular prediction equation (6), except that the covaridadms everywhere been replacedQy
which was already suggested by (15). This corresponds to repla@mptariance functiok with
Ksor(XisXj) = K(Xi, u)Ku‘jk(u, X;j). The new covariance function has rank (at mostY'hus we have
the following

7. Wary of this fact, Smola and Bartlett (2001) propose using the preelictiriances of the SoD, or a more accurate
computationally costly alternative (more details are given byiiQuero-Candela, 2004, Chapter 3).
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Remark 4 The SoR approximation is equivalent to exact inference in the degenesatgsian
process with covariance functiog lg(xi, xj) = k(xi,u)KL;&k(u,x i)

The equivalent (16b) is computationally cheaper, and with (11) in nkrid the covariance of the
posterior on the weights,. Note that as opposed to the subset of data method, all training cases
are taken into account. The computational complexitp(sn¥) initially, and O(m) andO(m?) per

test case for the predictive mean and variance respectively.

5. The Deterministic Training Conditional (DTC) Approximati on

Taking up ideas already contained in the work of @said Opper (2002), Seeger et al. (2003)
recently proposed another sparse approximation to Gaussian pregesssion, which does not
suffer from the nonsensical predictive uncertainties of the SoR appation, but that interestingly
leads to exactly the same predictive mean. Seeger et al. (2003), who tb&letethod Projected
Latent Variables (PLV), presented the method as relying tikedihood approximation, based on
the projectiorf = K, K ju:

p(yf) ~ d(ylu) = A(KsuKygU, Ohoisd) - (17)

The method has also been called the Projected Process Approximationk? Resmussen and
Williams (2006, Chapter 8). One way of obtaining an equivalent model igamréhe usual likeli-
hood, but to impose a deterministic training conditional and the exact testiomadifrom eq. (9b)

dorc(flu) = A(Kry K;Ll,u,O), and dprc(flu) = p(fifu). (18)

This reformulation has the advantage of allowing us to stick to our view oftémBerence (with
exact likelihood) with approximate priors. Indeed, under this model theitional distribution
of f givenu is identical to that of the SoR, given in the left of (14). A systematic name fer th
approximation is the Deterministic Training Conditional (DTC).

The fundamental difference with SoR is that DTC uses the exact tesitioordl (9b) instead of
the deterministic relation betweénandu of SoR. The joint prior implied by DTC is given by:

Gorc(f.f.) = A((0, [g”f 1) (29)
which is surprisingly similar to the effective prior implied by the SoR approximati®). The
fundamental difference is that under the DTC approximafiohas a prior variance of its own,
given byK, .. This prior variance reverses the behaviour of the predictive uncies and turns
them into sensible ones, see Figure 5 for an illustration.

The predictive distribution is now given by:

Gore(fely) = A(Qu£(Qts+ Ohoisd) 1Y, K — Qur(Qrf + Ohoisd ) Qs (20a)
= AN(07 2K uZKugY, Koo — Qus +KiuZK/y) | (20b)

where again we have defin@d= (o‘zKu’fo,u + Ku7u)—1 as in (16). The predictive mean for the
DTC is identical to that of the SoR approximation (16), but the predictiviamae replaces th@. .
from SoR withK, . (which is larger, sinc&, . — Q. . is positive definite). This added term is the
predictive variance of the posterior 6f conditioned oru. It grows to the prior varianck, .. asx.
moves far from the inducing inputs KX,.
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Figure 2: Graphical model for the FITC approximation. Compared to thoBeimre 1, all edges
between latent function values have been removed: the latent functioesvata con-
ditionally fully independent given the inducing variables Although strictly speaking
the SoR and DTC approximations could also be represented by this gaaphihat both
further assume a deterministic relation betwéandu.

Remark 5 The only difference between the predictive distribution of DTC and SoR isitiz@ee.
The predictive variance of DTC is never smaller than that of SoR.

Note, that since the covariances for training cases and test casesrgreted differently, see (19),
it follows that

Remark 6 The DTC approximation does not correspond exactly to a Gaussiaegspc

as the covariance between latent values depends on whether theynaigeoed training or test
cases, violating consistency, see Definition 1. The computational complastthe same order as
for SoR.

6. The Fully Independent Training Conditional (FITC) Approxi mation

Recently Snelson and Ghahramani (2006) proposed another likelilppodxdmation to speed up
Gaussian process regression, which they called Sparse Gauss@@sde® using Pseudo-inputs
(SGPP). While the DTC is based on the likelihood approximation given by (1 5GPP proposes
a more sophisticated likelihood approximation with a richer covariance

p(y[f) =~ q(ylu) = A(KruKgau, diagKss — Qrf] + 0uisd ) » (21)

where diad¢A] is a diagonal matrix whose elements match the diagon&l. oAs we did in (18)
for the DTC, we provide an alternative equivalent formulation called Fultlependent Training
Conditional (FITC) based on the inducing conditionals:

Arire(flu) = l] p(fiju) = N(Kf.u KJ,&U7 diag[Kf,f—Qf,f]) ,and ggre(filu) = p(fifu). (22)

We see that as opposed to SoR and DTC, FITC does not impose a determéfagion betweerh
andu. Instead of ignoring the variance, FITC proposes an approximation tegiineng conditional
distribution off givenu as a further independence assumption. In addition, the exact test coatitio
from (9b) is used in (22), although for reasons which will become cleaards the end of this
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section, we initially consider only a single test caie,The corresponding graphical model is given
in Figure 2. The effective prior implied by the FITC is given by

Aerc(f, f) = N<0’ [Qf,fdianE?”K”] (Kglj) ) (23)

Note, that the sole difference between the DTC and FITC is that in the tomleféer of the implied
prior covariance, FITC replaces the approximate covariances of DT exact ones on the
diagonal. The predictive distribution is

Arre(Fely) = N(Qur(Qrs +A) Yy, Ky — Qus(Qrs +A)1Qx ) (24a)
= N(KnuZKu,fAil% K*,* - Q*,* + K*,UZKU,*) y (24b)

where we have definel= (Kyy + Ky A~ Ksy) "t andA = diagKs s — Qt s + 02,cd |. The compu-
tational complexity is identical to that of SoR and DTC.

So far we have only considered a single test case. There are two ofgrgost predictions,
either 1) use the exact full test conditional from (9b), or 2) extend thtianal factorizing as-
sumption to the test conditional. Although Snelson and Ghahramani (200%edplicitly discuss
joint predictions, it would seem that they probably intend the second optidimereas the addi-
tional independence assumption for the test cases is not really ngciesgamputational reasons,
it does affect the nature of the approximation. Under option 1) the traimiddesst covariance are
computed differently, and thus this does not correspond to our stricititwfi of a GP model, but

Remark 7 Iff the assumption of full independence is extended to the test conditioa&| T ap-
proximation is equivalent to exact inference in a non-degenerate Gauggiaess with covariance

function k(% Xj) = Ksor(Xi, X)) + 81 j [K(Xi, Xj) — Ksor(Xis Xj)],

whered; j is Kronecker's delta. A logical name for the method where the conditionalsifig and
test) are always forced to be fully independent would be the Fully Intigog Conditional (FIC)
approximation. The effective prior implied by FIC is:

_ Qr s — diagQr f — K] Q.
eic(ff.) = (0 | Q.5 0. diagon. K. @

7. The Partially Independent Training Conditional (PITC) App roximation

In the previous section we saw how to improve the DTC approximation by gippating the train-
ing conditional with an independent distribution, i.e. one with a diagonalr@vee matrix. In this
section we will further improve the approximation (while remaining computation#iigcive) by
extending the training conditional to have a block diagonal covariance:

Oprrc(flu) = AL(Kiu Ky tu, blockdiadKss — Qrf]) . and dpire(fsju) = p(fiu).  (26)

where blockdiaf is a block diagonal matrix (where the blocking structure is not explicitly stated)
We represent graphically the PITC approximation in Figure 3. Developisgtialogously to the
FITC approximation from the previous section, we get the joint prior

Aprrc(f, fi) = N(Q [Qf’f_bIOCkgiiQQf’f_Kf’f] %i D ) (27)
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Figure 3: Graphical representation of the PITC approximation. Thef satemt function value$;,
indexed by the the set of indicésis fully connected. The PITC differs from FITC (see
graph in Fig. 2) in that conditional independence is now betweek greupsof training
latent function values. This corresponds to the block diagonal apprérima the true
training conditional given in (26).

and the predictive distribution is identical to (24), except for the alteraad®finition of A =
blockdiagKs  — Qs s + 02,d ] An identical expression was obtained by Schwaighofer and Tresp
(2003, Sect. 3), developing from the original Bayesian committee mach@®&l{By Tresp (2000).
The relationship to the FITC was pointed out by Lehel @s@he BCM was originally proposed as

a transductive learner (i.e. where tiestinputs have to be known before training), and the inducing
inputsX, were chosen to be the test inputs. We discuss transduction in detail in theeatzn.

It is important to realize that the BCM proposes two orthogonal ideas: thies)lock diagonal
structure of the partially independent training conditional, and secondgst#ttrinducing inputs to
be the test inputs. These two ideas can be used independently and in 8awgopropose using
the first without the second.

The computational complexity of the PITC approximation depends on the bipskincture
imposed in (26). A reasonable choice, also recommended by Tresp)(8@80be to choose
k = n/m blocks, each of sizenx m. The computational complexity remair@nn?). Since in
the PITC model the covariance is computed differently for training and ésstsc

Remark 8 The PITC approximation does not correspond exactly to a Gaussiaepso

This is because computing covariances requires knowing whether poinfioe the training- or
test-set, (27). One can obtain a Gaussian process from the PITC bgiext¢he partial conditional
independence assumption to the test conditional, as we did in Remark 7 fdiftbe F

8. Transduction and Augmentation

The idea of transduction is that one should restrict the goal of learningettigion on a pre-
specified set of test cases, rather than trying to learn an entire funictituc{ion) and then evaluate
it at the test inputs. There may be no universally agreed upon definitimamgduction. In this
paper we use

Definition 9 Transduction occurs only if the predictive distribution depends on otheimests.
This operational definition excludes models for which there exist an algmvinductive counter-

part. According to this definition, it is irrelevant when the bulk of the computatdes place.
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Figure 4: Two views on Augmentation. One view is to see that the test latectidarnvalue f,
is now part of the inducing variablas and therefore has access to the training latent
function values. An equivalent view is to consider that we have drofimedssumption
of conditional independence betwe&nand the training latent function values. Even if
f. has now direct access to each of the trainfngthese still need to go throughto
talk to each other if they fall in conditionally independent blocks. We haveiafidure
decided to recycle the graph for PITC from Figure 3 to show that allamations we
have presented can be augmented, irrespective of what the approxifioatioe training
conditional is.

There are several different possible motivations for transductiotrah¥duction is somehow
easier than induction (Vapnik, 1995), 2) the test inputs may reveal imponfanmation, which
should be used during training. This motivation drives models in semi-siggdriearning (studied
mostly in the context of classification) and 3) for approximate algorithms oneb@aple to limit
the discrepancies of the approximation at the test points.

For exact GP models it seems that the first reason doesn't really appbu imake predictions
at the test points that are consistent with a GP, then it is trivial inside thedafefvork to extend
these to any other input points, and in effect we have done induction.

The second reason seems more interesting. However, in a standardti@¢, #es a conse-
guence of the consistency property, see Remark 2, that predictione &gi input are independent
of the location of any other test inputs. Therefore transduction canenotasried with exact GPs:

Remark 10 Transduction can not occur in exact Gaussian process models.

Whereas this holds for the usual setting of GPs, it could be different stemdard situations
where e.g. the covariance function depends on the empirical input densitie

Transduction can occur in the sparse approximation to GPs, by making tive cdfiéenducing
variables depend on the test inputs. The BCM from the previous sectlmrew, = X, (where
X, are the test inputs) is an example of this. Since the inducing variables areated to all other
nodes (see Figure 3) we would expect the approximation to be gaod &t, which is what we care
about for predictions, relating to reason 3) above. While this reasongmyi®d, it is not necessarily
a sufficient consideration for getting a good model. The model has to babimultaneously
explain the training targets as well and if the choicauahakes this difficult, the posterior at the
points of interest may be distorted. Thus, the choice stiould be governed by the ability to model
the conditional of the latents given the inputs, and not solely by the dendite dfest) inputs.

The main drawback of transduction is that by its nature it doesn’t provigledictive model
in the way inductive models do. In the usual GP model one can do the bulle afottmputation
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involved in the predictive distributions (e.g. matrix inversiteforeseeing the test cases, enabling
fast computation of test predictions.

It is interesting that whereas other methods spend much effort trying to opttimzinducing
variables, the BCM simply uses the test set. The quality of the BCM approxingipends then
on the particular location of the test inputs, upon which one usually dodsanetany control. We
now see that there may be a better method, eliminating the drawback of traosdnamely use
the PITC approximation, but choose tlne carefully (see Section 9), don't just use the test set.

8.1 Augmentation

An idea closely related to transduction, but not covered by our definiSaagmentation, which
in contrast to transduction is done individually for each test case. Siniteiprevious sections,
we haven't assumed anything abaitwe can simply augment the set of inducing variabled.by
(i.e. have one additional inducing variable equal to the current test latand)see what happens
in the predictive distributions for the different methods. Let's first invedtighe consequences
for the test conditional from (9b). Note, the interpretation of the covadamatrixK, , — Q. .
was “the prior covariance minus the information whichprovides abouf,”. It is clear that the
augmenteds (with f,) provides all possible information abo@it, and consequentl®, . = K, ..
An equivalent view on augmentation is that the assumption of conditional émdiemce between
f. andf is dropped. This is seen trivially by adding edges betwgeand thef; in the graphical
model, Figure 4.

Augmentation was originally proposed by Rasmussen (2002), and appliledaiih to the SoR
with RBF covariance by Qtéionero-Candela (2004). Because the SoR is a finite linear model, and
the basis functions are local (Gaussian bumps), the predictive distrisut@anbe very misleading.
For example, when making predictions far away from the center of ang hasction, all basis
functions have insignificant magnitudes, and the prediction (averagadttoe posterior) will be
close to zero, with very small error-bars; this is the opposite of the delsekdviour, where we
would expect the error-bars gyow as we move away from the training cases. Here augmentation
makes a particularly big difference turning the nonsensical predictiveldison into a reasonable
one, by ensuring that there is always a basis function centered on tloases Compare the non-
augmented to the augmented SoR in Figure 5. An analogous Gaussiarsgrased finite linear
model that has recently been healed by augmentation is the relevancenaactuine (Rasmussen
and Quiionero-Candela, 2005).

Although augmentation was initially proposed for a narrow set of circumesaritis easily
applied to any of the approximations discussed. Of course, augmentaien'dmake any sense
for an exact, non-degenerate Gaussian process model (a GP withréaoce function that has a
feature-space which is infinite dimensional, i.e. with basis functimesywhere

Remark 11 A full non-degenerate Gaussian process cannot be augmented,

since the correspondirfg would already be connected to all other variables in the graphical model.
But augmentationloesmake sense for sparse approximations to GPs.

The more general process view on augmentation has several adsaovagéhe basis function
view. It is not completely clear from the basis function view, which basistion should be used
for augmentation. For example, Rasmussen ané@hgro-Candela (2005) successfully apply aug-
mentation using basis functions that have a zero contribution at the test iddattbe process view
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however, it seems clear that one would chose the additional inducindphatiebef,, to minimize
the effects of the approximations.

Let us compute the effective prior for tlegmentedsoR. Given thaf, is in the inducing set,
the test conditional is not an approximation and we can rewrite the integdihtgto the effective
prior:

qASOR(f*’f) = /qSOR(ﬂ f*a U) p( f*vu)du . (28)

It is interesting to notice that this is also the effective prior that would resuth faugmenting the
DTC approximation, sinceg,g(f| f.,u) = gpc(f| fs, u).

Remark 12 Augmented SoR (ASoR) is equivalent to augmented DTC (ADTC).

Augmented DTC only differs from DTC in the additional presencd.cdmong the inducing vari-
ables in the training conditional. We can only expect augmented DTC to be aacmreate approx-
imation than DTC, since adding an additional inducing variable can only helpireainformation
fromy. Therefore

Remark 13 DTC is a less accurate (but cheaper) approximation than augmented SoR

We saw previously in Section 5 that the DTC approximation does not suifier the nonsensi-
cal predictive variances of the SoR. The equivalence between tmeestigd SoR and augmented
DTC is another way of seeing how augmentation reverses the misbehai/®oiRoThe predictive
distribution of the augmented SoR is obtained by adding u in (20).

Prediction with an augmented sparse model comes at a higher computatistnalroge nowf,
directly interacts with all of and not just withu. For each new test case, updating the augmented
in the predictive equation (for example (20b) for DTC) implies computing tlstovenatrix product
K. ¢Ksu with complexity O(nm). This is clearly higher than the(m) for the mean, and(n?) for
the predictive distribution of all the non-augmented methods we have destuss

Augmentation seems to be only really necessary for methods that make a appeoxima-
tion to the test conditional, like the SoR. For methods that make little or no approximatihe
test conditional, it is difficult to predict the degree to which augmentation woeld. However,
one can see by givind. access to all of the training latent function valued,ione would expect
augmentation to give less under-confident predictive distributions nedraiming data. Figure 5
clearly shows that augmented DTC (equivalent to augmented SoR) has@ospredictive dis-
tribution (both mean and variance) than standard DTC. Note however thia¢ ifigure we have
purposely chosen a too short lengthscale to enhance visualizationtit@tixaely, this superiority
was experimentally assessed by friero-Candela (2004, Table 3.1). Augmentation hasn’t been
compared to the more advanced approximations FITC and PITC, and the figuld change in
the more realistic scenario where the inducing inputs and hyperparamegdesiant (Snelson and
Ghahramani, 2006).

Transductive methods like the BCM can be seen as joint augmentation, @aodwd potentially
use it for any of the methods presented. It seems that the good perferoaithe BCM could
essentially stem from augmentation, the presence obtinver test inputs in the inducing set being
probably of little benefit. Joint augmentation might bring some computationahgaye, but won’t
change the scaling: note that augmentingimes at a cost oD(nm) apiece implies the same
O(nn?) total cost as the jointly augmented BCM.

1951



151

0.51

QUINONERO-CANDELA AND RASMUSSEN

-10 -5 0 5 10 15 "-15 -10 -5 0 5 10 15
DTC ASOR/ADTC

Figure 5: Toy example with identical covariance function and hyperpaeameThe squared ex-

ponential covariance function is used, and a slightly too short lengthiscal®sen on
purpose to emphasize the different behaviour of the predictive unté&ta The dots
are the training points, the crosses are the targets corresponding to dlegqahputs,
randomly selected from the training set. The solid line is the mean of the predictiv
distribution, and the dotted lines show the 95% confidence interval of thiicioms.
Augmented DTC (ADTC) is equivalent to augmented SoR (ASoR), see Refrfar
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9. On the Choice of the Inducing Variables

We have until now assumed that the inducing inpqtsvere given. Traditionally, sparse models
have very often been built upon a carefully chosen subset of the tgaiimjruts. This concept is
probably best exemplified in the popular support vector machine (Cantt&/apnik, 1995). In
sparse Gaussian processes it has also been suggested to seleatdimg iimputsX, from among
the training inputs. Since this involves a prohibitive combinatorial optimizaticeedy optimiza-
tion approaches have been suggested using various selection criteaalifieelearning (Csatand
Opper, 2002), greedy posterior maximization (Smola and Bartlett, 2001)ymaaxinformation
gain (Seeger et al., 2003), matching pursuit (Keerthi and Chu, 2866)probably more. As dis-
cussed in the previous section, selecting the inducing inputs from amongsthiapets has also
been considered in transductive settings. Recently, Snelson anda@taiin2006) have proposed
to relax the constraint that the inducing variables must be a subset of tyd@sincases, turning the
discrete selection problem into one of continuous optimization. One may hapintfiag a good
solution is easier in the continuous than the discrete case, although findigtpka optimum is
intractable in both cases. And perhaps the less restrictive choice cato lbatler performance in
very sparse models.

Which optimality criterion should be used to set the inducing inputs? Departomg & fully
Bayesian treatment which would involve defining priorsXn one could maximize the marginal
likelihood (also called the evidence) with respecktg an approach also followed by Snelson and
Ghahramani (2006). Each of the approximate methods proposed ineodliffsrent effective prior,
and hence its own patrticular effective marginal likelihood conditioned omthecing inputs

a(yX) = /[ Pyl attiu) pruiXe)dudt = [ piyif)afiXe 29)

which of course is independent of the test conditional. We have in thesadpyation explicitly
conditioned on the inducing inpulg,. Using Gaussian identities, the effective marginal likelihood
is very easily obtained by adding a ridgﬁoisel (from the likelihood) to the covariance of effective
prior onf. Using the appropriate definitions Af the log marginal likelihood becomes

loga(y|Xu) = —3109|Qs+Al -3y (Qrr +A) 'y — Slog(2m) , (30)
where Agor = Aptc = O-ﬁoiSLJ’ Nerte = diag[Kf; — Qf‘ﬂ + 0'2 el’ and Apjtc = bIockdiaQKf,f —

nois
Qr1] + 02.;sd - The computational cost of the marginal likelihooddgnn?) for all methods, that of
its gradient with respect to one elementqfis O(nm). This of course implies that the complexity
of computing the gradient wrt. to the wholeX{ is O(dnn?), whered is the dimension of the input
space.

It has been proposed to maximize the effective posterior instead of datiedf marginal likeli-
hood (Smola and Bartlett, 2001). However this is potentially dangerousaanigad to overfitting.
Maximizing the whole evidence instead is sound and comes at an identical tiiopal cost (for
a deeper analysis see @ahero-Candela, 2004, Sect. 3.3.5 and Fig. 3.2).

The marginal likelihood has traditionally been used to learn the hyperpananoét@Ps in the
non fully Bayesian treatment (see for example Williams and Rasmussen,. 1B86the sparse
approximations presented here, once you are leairigis straightforward to allow for learning
hyperparameters (of the covariance function) during the same optimizatidrthere is no need
to interleave optimization ofi with learning of the hyperparameters as it has been proposed for
example by Seeger et al. (2003).
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10. Other Methods

In this section we briefly mention two approximations which don't fit in our uniyscheme,
since one doesn'’t correspond to a proper probabilistic model, and the aiik uses a particular
construction for the covariance function, rather than allowing any génevariance function.

10.1 The Nystbm Approximation

The Nystbm Approximation for speeding up GP regression was originally propbga#filliams
and Seeger (2001), and then questioned by Williams et al. (2002). LiRaB8d DTC, the Nystim
Approximation for GP regression approximates the prior covarianédépiQ; ;. However, unlike
these methods, the Ny&tn Approximation isnot based on a generative probabilistic model. The
prior covariance betweef) andf is taken to be exact, whichiisconsistentvith the prior covariance
onf:

at.t) = 2o, [} " ]). @

As a result we cannot derive this method from our unifying framewodt, represent it with a
graphical model. Worse, the resulting prior covariance matrix is not ewaragteed to be positive
definite, allowing the predictive variances to be negative. Notice thataiegl&s . by Qs . in (31)
is enough to make the prior covariance positive definite, and one obtaiBS tB@pproximation.

Remark 14 The Nystom Approximation does not correspond to a well-formed probabilistic inode

Ignoring any quibbles about positive definiteness, the predictive disitsib of the Nystém Ap-
proximation is given by:

p(fly) = ALK, [Qrs+ Ohisd | Y, Kiw — Kil [Qrf + Ofoisd ] 1K) (32)

but the predictive variance is not guaranteed to be positive. The cotigmatiecost isO(nn?).

10.2 The Relevance Vector Machine

The relevance vector machine, introduced by Tipping (2001), is a finitarlimedel with an in-
dependent Gaussian prior imposed on the weights. For any igptiie corresponding function
output is given by:

f. = ¢.w, with pw|A) = A(0,A), (33)

whereg, = [@1(X),...,0On(X)] is the (row) vector of responses of thebasis functions, ané =
diaglas,...,0m) is the diagonal matrix of joint prior precisions (inverse variances) of teights.
Thea; are learnt by maximizing the RVM evidence (obtained by also assuming Gawzski#ive
iid. noise, see (1)), and for the typical case of rich enough sets @ bhasctions many of the
precisions go to infinity effectively pruning out the corresponding wisigfor a very interesting
analysis see Wipf et al., 2004). The RVM is thus a sparse method and thxdrsybasis functions
are calledelevance vectors

Note that since the RVM is a finite linear model with Gaussian priors on the weight be
seen as a Gaussian process:

Remark 15 The RVM is equivalent to a degenerate Gaussian process with covarfiancton
Kewna (%i: X)) = A0 = TR o H(xi) ().
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Method q(f.|u) q(fju) joint prior covariance GP?
GP exact exact E:c E: Vv
SoR determ. determ. [8; gij vV
DTC exact determ. 8: S:

FITC  (exact) fully indep. [vaf—dig?f7f—Kf,f] Sf} W)
PITC exact partially indep. [Qf’f_bIOk(g*aquf,f—Kf,f} CKDf}

Table 1. Summary of the way approximations are built. All these methods are détette previ-
ous sections. The initial cost and that of the mean and variance persestrearespectively
n?, nandn? for the exact GP, and?, mandn? for all other methods. The “GP?” column
indicates whether the approximation is equivalent to a GP. For FITC seerR&ma

as was also pointed out by Tipping (2001, eq. (59)). Whereas albs@gproximations we have
presented until now are totally independent of the choice of covarianugién, for the RVM
this choice is restricted to covariance functions that can be expres$@itasxpansions in terms
of some basis functions. Being degenerate GPs in exactly the same way $8Rh@resented
in Section 4), the RVM does also suffer from unreasonable prediciviances. Rasmussen and
Quifionero-Candela (2005) show that the predictive distributions of RVafisadso be healed by
augmentation, see Section 8. Oncedh&ave been learnt, denoting bythe number of surviving
relevance vectors, the complexity of computing the predictive distributioneoR¥M is O(m) for
mean andD(m?) for the variance.

RVMs are often used with radial basis functions centered on the trainingsin@ne potentially
interesting extension to the RVM would beléarnthe locations of the centers of the basis functions,
in the same way as proposed by Snelson and Ghahramani (2006) fdiftbepproximation, see
Section 6. This is a curious reminiscence of learning the centers in RBF Nestwo

11. Conclusions

We have provided a unifying framework for sparse approximations te&ai processes for regres-
sion. Our approach consists of two steps, first 1) we recast thexapyation in terms of approx-
imations to the prior, and second 2) we introduce inducing variabkesd the idea of conditional
independence givem We recover all existing sparse methods by making further simplifications of
the covariances of the training and test conditionals, see Table 1 for a symma

Previous methods were presented based on different approximatedigras (e.g. likelihood
approximations, projection methods, matrix approximations, minimization of Kulthadier di-
vergence, etc), making direct comparison difficult. Under our unifyilegvwe deconstruct meth-
ods, making it clear which building blocks they are based upon. For exathpl8GPP by Snelson
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and Ghahramani (2006) contains two ideas, 1) a likelihood approximatib®)ahe idea of varying
the inducing inputs continuously; these two ideas could easily be used imtkiy, and incorpo-
rated in other methods. Similarly, the BCM by Tresp (2000) contains two imalepe ideas 1) a
block diagonal assumption, and 2) the (transductive) idea of choosinigshinputs as the induc-
ing variables. Finally we note that although all three ideas of 1) transdlycte#tingu = f., 2)
augmentation and 3) continuous optimizatiorXgthave been proposed in very specific settings, in
fact they are completely general ideas, which can be applied to any opphexdmation schemes
considered.

We have ranked the approximation according to how close they are to tresponding full
GP. However, the performance in practical situations may not always\tiiis theoretical ranking
since the approximations might exhibit properties (not present in the fylvizh may be par-
ticularly suitable for specific datasets. This may make the interpretation of eaigiamparisons
challenging. A further complication arises when adding the necessarnistiesifor turning the
theoretical constructs into practical algorithms. We have not descrilieddarithms in this paper,
but are currently working on a detailed empirical study (in preparatiomat® Rasmussen and
Williams, 2006, chapter 8).

We note that the order of the computational complexity is identical for all the rdstbonsid-
ered,0(nn?). This highlights that there is no computational excuse for using grosexipgations,
such as assuming deterministic relationships, in particular one should prabial twice before
using SoR or even DTC. Although augmentation has attractive predictoegres, it is com-
putationally expensive. It remains unclear whether augmentation coul@rnefitial on a fixed
computational budget.

We have only considered the simpler case of regression in this papspdyaeness is also com-
monly sought in classification settings. It should not be difficult to cadigdvdistic approximation
methods such as Expectation Propagation (EP) or the Laplace methodt@mparison, see Kuss
and Rasmussen, 2005) into our unifying framework.

Our analysis suggests that a new interesting approximation would comedrobiring the best
possible approximation (PITC) with the most powerful selection method fomithécing inputs.
This would correspond to a non-transductive version of the BCM. Wadwevade the necessity of
knowing the test set before doing the bulk of the computation, and we copkltbsupersede the
superior performance reported by Snelson and Ghahramani (200&rfy sparse approximations.
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Appendix A. Gaussian and Matrix ldentities

In this appendix we provide identities used to manipulate matrices and Gaussiabutions
throughout the paper. Letandy be jointly Gaussian

HEE(FREEI) o

then the marginal and the conditional are given by
X ~ N(H’M A) ) and X|y ~ N(Hx“‘c B_l(y_liy% A_CB_:LCT) (35)

Also, the product of a Gaussianxwith a Gaussian in a linear projecti®x is again a Gaussian,
although unnormalized

N(X’avA) N(PX|b,B) = ZCN(X‘QC)a (36)

where

C= (AP B, c=cC(Atat+P'B ).

The normalizing constat is gaussian in the meaasandb of the two Gaussians:
z = (2m)"2|B+PAP'| 2 exp( —1(b—Pa)" (B+PAP") “(b— Pa)) . (37)

The matrix inversion lemma, also known as the Woodbury, Sherman & Morfigonula states
that:
(z+uwvh)t =zt _zlywlyvizlu)yvizt, (38)

assuming the relevant inverses all exist. H&rie n x n, W is mx mandU andV are both of size
nx m; consequently iZz~1 is known, and a low rank (ien < n) perturbation are made @ as in
left hand side of eq. (38), considerable speedup can be achieved.
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