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Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations
for Gaussian process regression. Our approach relies on expressing theeffective priorwhich the
methods are using. This allows new insights to be gained, andhighlights the relationship between
existing methods. It also allows for a clear theoretically justified ranking of the closeness of the
known approximations to the corresponding full GPs. Finally we point directly to designs of new
better sparse approximations, combining the best of the existing strategies, within attractive com-
putational constraints.
Keywords: Gaussian process, probabilistic regression, sparse approximation, Bayesian committee
machine

Regression models based on Gaussian processes (GPs) are simple to implement, flexible, fully
probabilistic models, and thus a powerful tool in many areas of application. Their main limitation
is that memory requirements and computational demands grow as the square and cube respectively,
of the number of training casesn, effectively limiting a direct implementation to problems with
at most a few thousand cases. To overcome the computational limitations numerous authors have
recently suggested a wealth ofsparseapproximations. Common to all these approximation schemes
is that only a subset of the latent variables are treated exactly, and the remaining variables are given
some approximate, but computationally cheaper treatment. However, the published algorithms have
widely different motivations, emphasis and exposition, so it is difficult to getan overview (see
Rasmussen and Williams, 2006, chapter 8) of how they relate to each other, and which can be
expected to give rise to the best algorithms.

In this paper we provide a unifying view of sparse approximations for GP regression. Our
approach is simple, but powerful: for each algorithm we analyze the posterior, and compute the
effective priorwhich it is using. Thus, we reinterpret the algorithms as “exact inferencewith an
approximated prior”, rather than the existing (ubiquitous) interpretation “approximate inference
with the exact prior”. This approach has the advantage of directly expressing the approximations in
terms of prior assumptions about the function, which makes the consequences of the approximations
much easier to understand. While our view of the approximations is not the onlyone possible, it has
the advantage of putting all existing probabilistic sparse approximations under one umbrella, thus
enabling direct comparison and revealing the relation between them.

In Section 1 we briefly introduce GP models for regression. In Section 2 wepresent our uni-
fying framework and write out the key equations in preparation for the unifying analysis of sparse
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algorithms in Sections 4-7. The relation of transduction and augmentation to oursparse framework
is covered in Section 8. All our approximations are written in terms of a new setof inducing vari-
ables. The choice of these variables is itself a challenging problem, and is discussed in Section
9. We comment on a few special approximations outside our general schemein Section 10 and
conclusions are drawn at the end.

1. Gaussian Processes for Regression

Probabilistic regression is usually formulated as follows: given a training setD = {(xi ,yi), i =
1, . . . ,n} of n pairs of (vectorial) inputsxi and noisy (real, scalar) outputsyi , compute the predictive
distribution of the function valuesf∗ (or noisyy∗) at test locationsx∗. In the simplest case (which
we deal with here) we assume that the noise is additive, independent and Gaussian, such that the
relationship between the (latent) functionf (x) and the observed noisy targetsy are given by

yi = f (xi)+ εi , where εi ∼ N (0, σ2
noise) , (1)

whereσ2
noise is the variance of the noise.

Definition 1 A Gaussian process (GP) is a collection of random variables, any finite number of
which have consistent1 joint Gaussian distributions.

Gaussian process (GP) regression is a Bayesian approach which assumes a GP prior2 over functions,
i.e. assumes a priori that function values behave according to

p(f|x1,x2, . . . ,xn) = N (0, K) , (2)

wheref = [ f1, f2, . . . , fn]> is a vector of latent function values,fi = f (xi) andK is a covariance ma-
trix, whose entries are given by thecovariance function, Ki j = k(xi ,x j). Note that the GP treats the
latent function valuesfi as random variables, indexed by the corresponding input. In the following,
for simplicity we will always neglect the explicit conditioning on the inputs; the GPmodel and all
expressions are always conditional on the corresponding inputs. TheGP model is concerned only
with the conditional of the outputs given the inputs; we do not model anything about the inputs
themselves.

Remark 2 Note, that to adhere to a strict Bayesian formalism, the GP covariancefunction,3 which
defines the prior, should not depend on the data (although it can dependon additional parameters).

As we will see in later sections, some approximations are strictly equivalent to GPs, while others
are not. That is, the implied prior may still be multivariate Gaussian, but the covariance function
may be different for training and test cases.

Definition 3 A Gaussian process is calleddegenerateiff the covariance function has a finite number
of non-zero eigenvalues.

1. By consistency is meant simply that the random variables obey the usual rules of marginalization, etc.
2. For notational simplicity we exclusively use zero-mean priors.
3. The covariancefunctionitself shouldn’t depend on the data, though its value at a specific pair of inputs of course will.
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Degenerate GPs (such as e.g. with polynomial covariance function) correspond tofinite linear
(-in-the-parameters) models, whereas non-degenerate GPs (such ase.g. with squared exponential
or RBF covariance function) do not. The prior for a finitem dimensional linear model only consid-
ers a universe of at mostm linearly independent functions; this may often be too restrictive when
n� m. Note however, that non-degeneracy on its own doesn’t guarantee the existence of the “right
kind” of flexibility for a given particular modelling task. For a more detailed background on GP
models, see for example that of Rasmussen and Williams (2006).

Inference in the GP model is simple: we put a joint GP prior on training and testlatent values,f
andf∗4, and combine it with the likelihood5 p(y|f) using Bayes rule, to obtain the joint posterior

p(f, f∗|y) =
p(f, f∗)p(y|f)

p(y)
. (3)

The final step needed to produce the desired posterior predictive distribution is to marginalize out
the unwanted training set latent variables:

p(f∗|y) =
Z

p(f, f∗|y)df =
1

p(y)

Z

p(y|f) p(f, f∗)df , (4)

or in words: the predictive distribution is the marginal of the renormalized jointprior times the
likelihood. The joint GP prior and the independent likelihood are both Gaussian

p(f, f∗) = N
(

0,
[ Kf,f K∗,f

Kf,∗ K∗,∗

])

, and p(y|f) = N (f, σ2
noiseI) , (5)

whereK is subscript by the variables between which the covariance is computed (and we use the
asterisk∗ as shorthand forf∗) and I is the identity matrix. Since both factors in the integral are
Gaussian, the integral can be evaluated in closed form to give the Gaussian predictive distribution

p(f∗|y) = N
(

K∗,f (Kf,f +σ2
noiseI)

−1y, K∗,∗−K∗,f (Kf,f +σ2
noiseI)

−1Kf,∗
)

, (6)

see the relevant Gaussian identity in appendix A. The problem with the aboveexpression is that it
requires inversion of a matrix of sizen×n which requiresO(n3) operations, wheren is the number
of training cases. Thus, the simple exact implementation can handle problems withat most a few
thousand training cases.

2. A New Unifying View

We now seek to modify the joint priorp(f∗, f) from (5) in ways which will reduce the computational
requirements from (6). Let us first rewrite that prior by introducing an additional set ofm latent
variablesu = [u1, . . . ,um]>, which we call theinducing variables. These latent variables are values
of the Gaussian process (as alsof andf∗), corresponding to a set of input locationsXu, which we
call the inducing inputs. Whereas the additional latent variablesu are always marginalized out in
the predictive distribution, the choice of inducing inputsdoesleave an imprint on the final solution.

4. We will mostly consider a vector of test casesf∗ (rather than a singlef∗).
5. You may have been expecting the likelihood written asp(y|f∗, f) but since the likelihood is conditionally independent

of everything else givenf, this makes no difference.
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QUIÑONERO-CANDELA AND RASMUSSEN

The inducing variables will turn out to be generalizations of variables whichother authors have re-
ferred to variously as “support points”, “active set” or “pseudo-inputs”. Particular sparse algorithms
choose the inducing variables in various different ways; some algorithms chose the inducing inputs
to be a subset of the training set, others not, as we will discuss in Section 9. For now consider any
arbitrary inducing variables.

Due to theconsistencyof Gaussian processes, we know that we can recoverp(f∗, f) by simply
integrating (marginalizing) outu from the joint GP priorp(f∗, f,u)

p(f∗, f) =
Z

p(f∗, f,u)du =
Z

p(f∗, f|u) p(u)du, where p(u) = N (0, Ku,u) . (7)

This is an exact expression. Now, we introduce the fundamental approximation which gives rise
to almost all sparse approximations. We approximate the joint prior by assumingthat f∗ andf are
conditionally independent givenu, see Figure 1, such that

p(f∗, f) ' q(f∗, f) =
Z

q(f∗|u)q(f|u) p(u)du . (8)

The nameinducingvariable is motivated by the fact thatf and f∗ can only communicate though
u, andu thereforeinducesthe dependencies between training and test cases. As we shall detail in
the following sections, the different computationally efficient algorithms proposed in the literature
correspond to differentadditional assumptionsabout the two approximateinducingconditionals
q(f|u), q(f∗|u) of the integral in (8). It will be useful for future reference to specifyhere the exact
expressions for the two conditionals

training conditional: p(f|u) = N (Kf,uK−1
u,uu, Kf,f −Qf,f) , (9a)

testconditional: p(f∗|u) = N (K∗,uK−1
u,uu, K∗,∗−Q∗,∗) , (9b)

where we have introduced the shorthand notation6 Qa,b , Ka,uK−1
u,uKu,b. We can readily identify the

expressions in (9) as special (noise free) cases of the standard predictive equation (6) withu playing
the role of (noise free) observations. Note that the (positive semi-definite) covariance matrices in (9)
have the formK−Q with the following interpretation: the prior covarianceK minus a (non-negative
definite) matrixQ quantifying how much informationu provides about the variables in question (f or
f∗). We emphasize that all the sparse methods discussed in the paper correspond simply to different
approximations to the conditionals in (9), and throughout we use the exact likelihood and inducing
prior

p(y|f) = N (f, σ2
noiseI) , and p(u) = N (0, Ku,u) . (10)

3. The Subset of Data (SoD) Approximation

Before we get started with the more sophisticated approximations, we mention asa baseline method
the simplest possible sparse approximation (which doesn’t fall inside our general scheme): use
only a subset of the data (SoD). The computational complexity is reduced toO(m3), wherem< n.
We would not generally expect SoD to be a competitive method, since it would seem impossible
(even with fairly redundant data and a good choice of the subset) to get arealistic picture of the

6. Note, thatQa,b depends onu although this is not explicit in the notation.
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Figure 1: Graphical model of the relation between the inducing variablesu, the training latent func-
tions valuesf = [ f1, . . . , fn]> and the test function valuef∗. The thick horizontal line rep-
resents a set of fully connected nodes. The observationsy1, . . . ,yn,y∗ (not shown) would
dangle individually from the corresponding latent values, by way of the exact (factored)
likelihood (5). Left graph: the fully connected graph corresponds to the case where
no approximation is made to the full joint Gaussian process distribution betweenthese
variables. The inducing variablesu are superfluous in this case, since all latent func-
tion values can communicate with all others.Right graph: assumption ofconditional
independencebetween training and test function values givenu. This gives rise to the
separation between training and test conditionals from (8). Notice that having cut the
communication path between training and test latent function values, informationfrom f
can only be transmitted tof∗ via the inducing variablesu.

uncertainties, when only a part of the training data is even considered. Weinclude it here mostly as
a baseline against which to compare better sparse approximations.

In Figure 5 top, left we see how the SoD method produces wide predictive distributions, when
training on a randomly selected subset of 10 cases. A fair comparison to other methods would
take into account that the computational complexity is independent ofn as opposed to other more
advanced methods. These extra computational resources could be spent in a number of ways,
e.g. largerm, or an active (rather than random) selection of them points. In this paper we will
concentrate on understanding the theoretical foundations of the variousapproximations rather than
investigating the necessary heuristics needed to turn the approximation schemes into actually prac-
tical algorithms.

4. The Subset of Regressors (SoR) Approximation

The Subset of Regressors (SoR) algorithm was given by Silverman (1985), and mentioned again by
Wahba et al. (1999). It was then adapted by Smola and Bartlett (2001) to propose a sparse greedy
approximation to Gaussian process regression. SoR models are finite linear-in-the-parameters mod-
els with a particular prior on the weights. For any inputx∗, the corresponding function valuef∗ is
given by:

f∗ = K∗,u wu , with p(wu) = N (0, K−1
u,u) , (11)

where there is one weight associated to each inducing input inXu. Note that the covariance matrix
for the prior on the weights is theinverseof that onu, such that we recover the exact GP prior onu,
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which is Gaussian with zero mean and covariance

u = Ku,u wu ⇒ 〈uu>〉 = Ku,u〈wu w>
u 〉Ku,u = Ku,u . (12)

Using the effective prior onu and the fact thatwu = K−1
u,u u we can redefine the SoR model in an

equivalent, more intuitive way:

f∗ = K∗,u K−1
u,u u , with u ∼ N (0, Ku,u) . (13)

We are now ready to integrate the SoR model in our unifying framework. Given that there is a
deterministicrelation between anyf∗ andu, the approximate conditional distributions in the integral
in eq. (8) are given by:

qSoR(f|u) = N (Kf,u K−1
u,u u, 0) , and qSoR(f∗|u) = N (K∗,u K−1

u,u u, 0) , (14)

with zero conditional covariance, compare to (9). The effective prior implied by the SoR approxi-
mation is easily obtained from (8), giving

qSoR(f, f∗) = N
(

0,
[ Qf,f Qf,∗

Q∗,f Q∗,∗

])

, (15)

where we recallQa,b , Ka,uK−1
u,uKu,b. A more descriptive name for this method, would be the

Deterministic Inducing Conditional (DIC) approximation. We see that this approximate prior is
degenerate. There are onlym degrees of freedom in the model, which implies that onlym linearly
independent functions can be drawn from the prior. Them+1-th one is a linear combination of the
previous. For example, in a very low noise regime, the posterior could be severely constrained by
only m training cases.

The degeneracy of the prior causes unreasonable predictive distributions. Indeed, the approx-
imate prior over functions is so restrictive, that given enough data only a very limited family of
functions will be plausible under the posterior, leading to overconfident predictive variances. This
is a general problem of finite linear models with small numbers of weights (for more details see
Rasmussen and Quiñonero-Candela, 2005). Figure 5, top, right panel, illustrates the unreasonable
predictive uncertainties of the SoR approximation on a toy dataset.7

The predictive distribution is obtained by using the SoR approximate prior (15) instead of the
true prior in (4). For each algorithm we give two forms of the predictive distribution, one which is
easy to interpret, and the other which is economical to compute with:

qSoR(f∗|y) = N
(

Q∗,f(Qf,f +σ2
noiseI)

−1y, Q∗,∗−Q∗,f(Qf,f +σ2
noiseI)

−1Qf,∗
)

, (16a)

= N
(

σ−2K∗,uΣKu,f y, K∗,uΣKu,∗
)

, (16b)

where we have definedΣ = (σ−2Ku,fKf,u + Ku,u)
−1. Equation (16a) is readily recognized as the

regular prediction equation (6), except that the covarianceK has everywhere been replaced byQ,
which was already suggested by (15). This corresponds to replacing the covariance functionk with
kSoR(xi ,x j) = k(xi ,u)K−1

u,uk(u,x j). The new covariance function has rank (at most)m. Thus we have
the following

7. Wary of this fact, Smola and Bartlett (2001) propose using the predictive variances of the SoD, or a more accurate
computationally costly alternative (more details are given by Quiñonero-Candela, 2004, Chapter 3).
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Remark 4 The SoR approximation is equivalent to exact inference in the degenerate Gaussian
process with covariance function kSoR(xi ,x j) = k(xi ,u)K−1

u,uk(u,x j).

The equivalent (16b) is computationally cheaper, and with (11) in mind,Σ is the covariance of the
posterior on the weightswu. Note that as opposed to the subset of data method, all training cases
are taken into account. The computational complexity isO(nm2) initially, andO(m) andO(m2) per
test case for the predictive mean and variance respectively.

5. The Deterministic Training Conditional (DTC) Approximati on

Taking up ideas already contained in the work of Csató and Opper (2002), Seeger et al. (2003)
recently proposed another sparse approximation to Gaussian process regression, which does not
suffer from the nonsensical predictive uncertainties of the SoR approximation, but that interestingly
leads to exactly the same predictive mean. Seeger et al. (2003), who calledthe method Projected
Latent Variables (PLV), presented the method as relying on alikelihood approximation, based on
the projectionf = Kf,u K−1

u,u u:

p(y|f) ' q(y|u) = N (Kf,u K−1
u,u u, σ2

noiseI) . (17)

The method has also been called the Projected Process Approximation (PPA)by Rasmussen and
Williams (2006, Chapter 8). One way of obtaining an equivalent model is to retain the usual likeli-
hood, but to impose a deterministic training conditional and the exact test conditional from eq. (9b)

qDTC(f|u) = N (Kf,u K−1
u,u u,0), and qDTC(f∗|u) = p(f∗|u) . (18)

This reformulation has the advantage of allowing us to stick to our view of exact inference (with
exact likelihood) with approximate priors. Indeed, under this model the conditional distribution
of f given u is identical to that of the SoR, given in the left of (14). A systematic name for this
approximation is the Deterministic Training Conditional (DTC).

The fundamental difference with SoR is that DTC uses the exact test conditional (9b) instead of
the deterministic relation betweenf∗ andu of SoR. The joint prior implied by DTC is given by:

qDTC(f, f∗) = N
(

0,
[ Qf,f Qf,∗

Q∗,f K∗,∗

])

, (19)

which is surprisingly similar to the effective prior implied by the SoR approximation(15). The
fundamental difference is that under the DTC approximationf∗ has a prior variance of its own,
given byK∗,∗. This prior variance reverses the behaviour of the predictive uncertainties, and turns
them into sensible ones, see Figure 5 for an illustration.

The predictive distribution is now given by:

qDTC(f∗|y) = N (Q∗,f(Qf,f +σ2
noiseI)

−1y, K∗,∗−Q∗,f(Qf,f +σ2
noiseI)

−1Qf,∗ (20a)

= N
(

σ−2K∗,uΣKu,f y, K∗,∗−Q∗,∗ +K∗,uΣK>
∗,u

)

, (20b)

where again we have definedΣ = (σ−2Ku,fKf,u + Ku,u)
−1 as in (16). The predictive mean for the

DTC is identical to that of the SoR approximation (16), but the predictive variance replaces theQ∗,∗
from SoR withK∗,∗ (which is larger, sinceK∗,∗−Q∗,∗ is positive definite). This added term is the
predictive variance of the posterior off∗ conditioned onu. It grows to the prior varianceK∗,∗ asx∗
moves far from the inducing inputs inXu.
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Figure 2: Graphical model for the FITC approximation. Compared to those inFigure 1, all edges
between latent function values have been removed: the latent function values are con-
ditionally fully independent given the inducing variablesu. Although strictly speaking
the SoR and DTC approximations could also be represented by this graph, note that both
further assume a deterministic relation betweenf andu.

Remark 5 The only difference between the predictive distribution of DTC and SoR is the variance.
The predictive variance of DTC is never smaller than that of SoR.

Note, that since the covariances for training cases and test cases are computed differently, see (19),
it follows that

Remark 6 The DTC approximation does not correspond exactly to a Gaussian process,

as the covariance between latent values depends on whether they are considered training or test
cases, violating consistency, see Definition 1. The computational complexity has the same order as
for SoR.

6. The Fully Independent Training Conditional (FITC) Approxi mation

Recently Snelson and Ghahramani (2006) proposed another likelihood approximation to speed up
Gaussian process regression, which they called Sparse Gaussian Processes using Pseudo-inputs
(SGPP). While the DTC is based on the likelihood approximation given by (17), the SGPP proposes
a more sophisticated likelihood approximation with a richer covariance

p(y|f) ' q(y|u) = N (Kf,u K−1
u,u u, diag[Kf,f −Qf,f ]+σ2

noiseI) , (21)

where diag[A] is a diagonal matrix whose elements match the diagonal ofA. As we did in (18)
for the DTC, we provide an alternative equivalent formulation called Fully Independent Training
Conditional (FITC) based on the inducing conditionals:

qFITC(f|u) =
n

∏
i=1

p( fi |u) = N
(

Kf,u K−1
u,u u, diag[Kf,f −Qf,f ]

)

, and qFITC( f∗|u) = p( f∗|u) . (22)

We see that as opposed to SoR and DTC, FITC does not impose a deterministicrelation betweenf
andu. Instead of ignoring the variance, FITC proposes an approximation to thetraining conditional
distribution off givenu as a further independence assumption. In addition, the exact test conditional
from (9b) is used in (22), although for reasons which will become clear towards the end of this
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section, we initially consider only a single test case,f∗. The corresponding graphical model is given
in Figure 2. The effective prior implied by the FITC is given by

qFITC(f, f∗) = N
(

0,
[ Qf,f −diag[Qf,f −Kf,f ] Qf,∗

Q∗,f K∗,∗

])

. (23)

Note, that the sole difference between the DTC and FITC is that in the top leftcorner of the implied
prior covariance, FITC replaces the approximate covariances of DTC by the exact ones on the
diagonal. The predictive distribution is

qFITC( f∗|y) = N
(

Q∗,f(Qf,f +Λ)−1y, K∗,∗−Q∗,f(Qf,f +Λ)−1Qf,∗
)

(24a)

= N
(

K∗,uΣKu,fΛ−1y, K∗,∗−Q∗,∗ +K∗,uΣKu,∗
)

, (24b)

where we have definedΣ = (Ku,u +Ku,fΛ−1Kf,u)
−1 andΛ = diag[Kf,f −Qf,f +σ2

noiseI ]. The compu-
tational complexity is identical to that of SoR and DTC.

So far we have only considered a single test case. There are two optionsfor joint predictions,
either 1) use the exact full test conditional from (9b), or 2) extend the additional factorizing as-
sumption to the test conditional. Although Snelson and Ghahramani (2006) don’t explicitly discuss
joint predictions, it would seem that they probably intend the second option.Whereas the addi-
tional independence assumption for the test cases is not really necessary for computational reasons,
it does affect the nature of the approximation. Under option 1) the training and test covariance are
computed differently, and thus this does not correspond to our strict definition of a GP model, but

Remark 7 Iff the assumption of full independence is extended to the test conditional, the FITC ap-
proximation is equivalent to exact inference in a non-degenerate Gaussian process with covariance
function kFIC(xi ,x j) = kSoR(xi ,x j)+δi, j [k(xi ,x j)−kSoR(xi ,x j)],

whereδi, j is Kronecker’s delta. A logical name for the method where the conditionals (training and
test) are always forced to be fully independent would be the Fully Independent Conditional (FIC)
approximation. The effective prior implied by FIC is:

qFIC(f, f∗) = N
(

0,
[ Qf,f −diag[Qf,f −Kf,f ] Qf,∗

Q∗,f Q∗,∗−diag[Q∗,∗−K∗,∗]

])

. (25)

7. The Partially Independent Training Conditional (PITC) App roximation

In the previous section we saw how to improve the DTC approximation by approximating the train-
ing conditional with an independent distribution, i.e. one with a diagonal covariance matrix. In this
section we will further improve the approximation (while remaining computationally attractive) by
extending the training conditional to have a block diagonal covariance:

qPITC(f|u) = N
(

Kf,u K−1
u,u u, blockdiag[Kf,f −Qf,f ]

)

, and qPITC(f∗|u) = p(f∗|u) . (26)

where blockdiag[A] is a block diagonal matrix (where the blocking structure is not explicitly stated).
We represent graphically the PITC approximation in Figure 3. Developing this analogously to the
FITC approximation from the previous section, we get the joint prior

qPITC(f, f∗) = N
(

0,
[ Qf,f −blockdiag[Qf,f −Kf,f ] Qf,∗

Q∗,f K∗,∗

])

, (27)
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Figure 3: Graphical representation of the PITC approximation. The set of latent function valuesfIi
indexed by the the set of indicesIi is fully connected. The PITC differs from FITC (see
graph in Fig. 2) in that conditional independence is now between thek groupsof training
latent function values. This corresponds to the block diagonal approximation to the true
training conditional given in (26).

and the predictive distribution is identical to (24), except for the alternative definition of Λ =
blockdiag[Kf,f −Qf,f + σ2

noiseI ]. An identical expression was obtained by Schwaighofer and Tresp
(2003, Sect. 3), developing from the original Bayesian committee machine (BCM) by Tresp (2000).
The relationship to the FITC was pointed out by Lehel Csató. The BCM was originally proposed as
a transductive learner (i.e. where thetestinputs have to be known before training), and the inducing
inputsXu were chosen to be the test inputs. We discuss transduction in detail in the next section.

It is important to realize that the BCM proposes two orthogonal ideas: first,the block diagonal
structure of the partially independent training conditional, and second setting the inducing inputs to
be the test inputs. These two ideas can be used independently and in Section8 we propose using
the first without the second.

The computational complexity of the PITC approximation depends on the blocking structure
imposed in (26). A reasonable choice, also recommended by Tresp (2000) may be to choose
k = n/m blocks, each of sizem×m. The computational complexity remainsO(nm2). Since in
the PITC model the covariance is computed differently for training and test cases

Remark 8 The PITC approximation does not correspond exactly to a Gaussian process.

This is because computing covariances requires knowing whether points are from the training- or
test-set, (27). One can obtain a Gaussian process from the PITC by extending the partial conditional
independence assumption to the test conditional, as we did in Remark 7 for the FITC.

8. Transduction and Augmentation

The idea of transduction is that one should restrict the goal of learning to prediction on a pre-
specified set of test cases, rather than trying to learn an entire function (induction) and then evaluate
it at the test inputs. There may be no universally agreed upon definition oftransduction. In this
paper we use

Definition 9 Transduction occurs only if the predictive distribution depends on other test inputs.

This operational definition excludes models for which there exist an equivalent inductive counter-
part. According to this definition, it is irrelevant when the bulk of the computation takes place.
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Figure 4: Two views on Augmentation. One view is to see that the test latent function value f∗
is now part of the inducing variablesu and therefore has access to the training latent
function values. An equivalent view is to consider that we have droppedthe assumption
of conditional independence betweenf∗ and the training latent function values. Even if
f∗ has now direct access to each of the trainingfi , these still need to go throughu to
talk to each other if they fall in conditionally independent blocks. We have in this figure
decided to recycle the graph for PITC from Figure 3 to show that all approximations we
have presented can be augmented, irrespective of what the approximation for the training
conditional is.

There are several different possible motivations for transduction: 1)transduction is somehow
easier than induction (Vapnik, 1995), 2) the test inputs may reveal important information, which
should be used during training. This motivation drives models in semi-supervised learning (studied
mostly in the context of classification) and 3) for approximate algorithms one maybe able to limit
the discrepancies of the approximation at the test points.

For exact GP models it seems that the first reason doesn’t really apply. If you make predictions
at the test points that are consistent with a GP, then it is trivial inside the GP framework to extend
these to any other input points, and in effect we have done induction.

The second reason seems more interesting. However, in a standard GP setting, it is a conse-
quence of the consistency property, see Remark 2, that predictions at one test input are independent
of the location of any other test inputs. Therefore transduction can not be married with exact GPs:

Remark 10 Transduction can not occur in exact Gaussian process models.

Whereas this holds for the usual setting of GPs, it could be different in non-standard situations
where e.g. the covariance function depends on the empirical input densities.

Transduction can occur in the sparse approximation to GPs, by making the choice of inducing
variables depend on the test inputs. The BCM from the previous section, whereXu = X∗ (where
X∗ are the test inputs) is an example of this. Since the inducing variables are connected to all other
nodes (see Figure 3) we would expect the approximation to be good atu = f∗, which is what we care
about for predictions, relating to reason 3) above. While this reasoning issound, it is not necessarily
a sufficient consideration for getting a good model. The model has to be ableto simultaneously
explain the training targets as well and if the choice ofu makes this difficult, the posterior at the
points of interest may be distorted. Thus, the choice ofu should be governed by the ability to model
the conditional of the latents given the inputs, and not solely by the density ofthe (test) inputs.

The main drawback of transduction is that by its nature it doesn’t provide apredictive model
in the way inductive models do. In the usual GP model one can do the bulk of the computation
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involved in the predictive distributions (e.g. matrix inversion)beforeseeing the test cases, enabling
fast computation of test predictions.

It is interesting that whereas other methods spend much effort trying to optimize the inducing
variables, the BCM simply uses the test set. The quality of the BCM approximationdepends then
on the particular location of the test inputs, upon which one usually does nothave any control. We
now see that there may be a better method, eliminating the drawback of transduction, namely use
the PITC approximation, but choose theu’s carefully (see Section 9), don’t just use the test set.

8.1 Augmentation

An idea closely related to transduction, but not covered by our definition,is augmentation, which
in contrast to transduction is done individually for each test case. Since inthe previous sections,
we haven’t assumed anything aboutu, we can simply augment the set of inducing variables byf∗
(i.e. have one additional inducing variable equal to the current test latent), and see what happens
in the predictive distributions for the different methods. Let’s first investigate the consequences
for the test conditional from (9b). Note, the interpretation of the covariance matrixK∗,∗ −Q∗,∗
was “the prior covariance minus the information whichu provides aboutf∗”. It is clear that the
augmentedu (with f∗) provides all possible information aboutf∗, and consequentlyQ∗,∗ = K∗,∗.
An equivalent view on augmentation is that the assumption of conditional independence between
f∗ and f is dropped. This is seen trivially by adding edges betweenf∗ and thefi in the graphical
model, Figure 4.

Augmentation was originally proposed by Rasmussen (2002), and applied indetail to the SoR
with RBF covariance by Quiñonero-Candela (2004). Because the SoR is a finite linear model, and
the basis functions are local (Gaussian bumps), the predictive distributions can be very misleading.
For example, when making predictions far away from the center of any basis function, all basis
functions have insignificant magnitudes, and the prediction (averaged over the posterior) will be
close to zero, with very small error-bars; this is the opposite of the desiredbehaviour, where we
would expect the error-bars togrow as we move away from the training cases. Here augmentation
makes a particularly big difference turning the nonsensical predictive distribution into a reasonable
one, by ensuring that there is always a basis function centered on the test case. Compare the non-
augmented to the augmented SoR in Figure 5. An analogous Gaussian process based finite linear
model that has recently been healed by augmentation is the relevance vectormachine (Rasmussen
and Quĩnonero-Candela, 2005).

Although augmentation was initially proposed for a narrow set of circumstances, it is easily
applied to any of the approximations discussed. Of course, augmentation doesn’t make any sense
for an exact, non-degenerate Gaussian process model (a GP with a covariance function that has a
feature-space which is infinite dimensional, i.e. with basis functionseverywhere).

Remark 11 A full non-degenerate Gaussian process cannot be augmented,

since the correspondingf∗ would already be connected to all other variables in the graphical model.
But augmentationdoesmake sense for sparse approximations to GPs.

The more general process view on augmentation has several advantages over the basis function
view. It is not completely clear from the basis function view, which basis function should be used
for augmentation. For example, Rasmussen and Quiñonero-Candela (2005) successfully apply aug-
mentation using basis functions that have a zero contribution at the test location! In the process view
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however, it seems clear that one would chose the additional inducing variable to bef∗, to minimize
the effects of the approximations.

Let us compute the effective prior for theaugmentedSoR. Given thatf∗ is in the inducing set,
the test conditional is not an approximation and we can rewrite the integral leading to the effective
prior:

qASoR(f∗, f) =
Z

qSoR(f| f∗,u) p( f∗,u)du . (28)

It is interesting to notice that this is also the effective prior that would result from augmenting the
DTC approximation, sinceqSoR(f| f∗,u) = qDTC(f| f∗,u).

Remark 12 Augmented SoR (ASoR) is equivalent to augmented DTC (ADTC).

Augmented DTC only differs from DTC in the additional presence off∗ among the inducing vari-
ables in the training conditional. We can only expect augmented DTC to be a moreaccurate approx-
imation than DTC, since adding an additional inducing variable can only help capture information
from y. Therefore

Remark 13 DTC is a less accurate (but cheaper) approximation than augmented SoR.

We saw previously in Section 5 that the DTC approximation does not suffer from the nonsensi-
cal predictive variances of the SoR. The equivalence between the augmented SoR and augmented
DTC is another way of seeing how augmentation reverses the misbehaviour of SoR. The predictive
distribution of the augmented SoR is obtained by addingf∗ to u in (20).

Prediction with an augmented sparse model comes at a higher computational cost, since nowf∗
directly interacts with all off and not just withu. For each new test case, updating the augmentedΣ
in the predictive equation (for example (20b) for DTC) implies computing the vector matrix product
K∗,fKf,u with complexityO(nm). This is clearly higher than theO(m) for the mean, andO(m2) for
the predictive distribution of all the non-augmented methods we have discussed.

Augmentation seems to be only really necessary for methods that make a severe approxima-
tion to the test conditional, like the SoR. For methods that make little or no approximation to the
test conditional, it is difficult to predict the degree to which augmentation wouldhelp. However,
one can see by givingf∗ access to all of the training latent function values inf, one would expect
augmentation to give less under-confident predictive distributions near the training data. Figure 5
clearly shows that augmented DTC (equivalent to augmented SoR) has a superior predictive dis-
tribution (both mean and variance) than standard DTC. Note however that inthe figure we have
purposely chosen a too short lengthscale to enhance visualization. Quantitatively, this superiority
was experimentally assessed by Quiñonero-Candela (2004, Table 3.1). Augmentation hasn’t been
compared to the more advanced approximations FITC and PITC, and the figure would change in
the more realistic scenario where the inducing inputs and hyperparameters are learnt (Snelson and
Ghahramani, 2006).

Transductive methods like the BCM can be seen as joint augmentation, and one could potentially
use it for any of the methods presented. It seems that the good performance of the BCM could
essentially stem from augmentation, the presence of theother test inputs in the inducing set being
probably of little benefit. Joint augmentation might bring some computational advantage, but won’t
change the scaling: note that augmentingm times at a cost ofO(nm) apiece implies the same
O(nm2) total cost as the jointly augmented BCM.
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Figure 5: Toy example with identical covariance function and hyperparameters. The squared ex-
ponential covariance function is used, and a slightly too short lengthscaleis chosen on
purpose to emphasize the different behaviour of the predictive uncertainties. The dots
are the training points, the crosses are the targets corresponding to the inducing inputs,
randomly selected from the training set. The solid line is the mean of the predictive
distribution, and the dotted lines show the 95% confidence interval of the predictions.
Augmented DTC (ADTC) is equivalent to augmented SoR (ASoR), see Remark 12.
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9. On the Choice of the Inducing Variables

We have until now assumed that the inducing inputsXu were given. Traditionally, sparse models
have very often been built upon a carefully chosen subset of the training inputs. This concept is
probably best exemplified in the popular support vector machine (Cortes and Vapnik, 1995). In
sparse Gaussian processes it has also been suggested to select the inducing inputsXu from among
the training inputs. Since this involves a prohibitive combinatorial optimization, greedy optimiza-
tion approaches have been suggested using various selection criteria likeonline learning (Csató and
Opper, 2002), greedy posterior maximization (Smola and Bartlett, 2001), maximum information
gain (Seeger et al., 2003), matching pursuit (Keerthi and Chu, 2006),and probably more. As dis-
cussed in the previous section, selecting the inducing inputs from among the test inputs has also
been considered in transductive settings. Recently, Snelson and Ghahramani (2006) have proposed
to relax the constraint that the inducing variables must be a subset of training/test cases, turning the
discrete selection problem into one of continuous optimization. One may hope that finding a good
solution is easier in the continuous than the discrete case, although finding theglobal optimum is
intractable in both cases. And perhaps the less restrictive choice can leadto better performance in
very sparse models.

Which optimality criterion should be used to set the inducing inputs? Departing from a fully
Bayesian treatment which would involve defining priors onXu, one could maximize the marginal
likelihood (also called the evidence) with respect toXu, an approach also followed by Snelson and
Ghahramani (2006). Each of the approximate methods proposed involvesa different effective prior,
and hence its own particular effective marginal likelihood conditioned on theinducing inputs

q(y|Xu) =
ZZ

p(y|f)q(f|u) p(u|Xu)dudf =
Z

p(y|f)q(f|Xu)df , (29)

which of course is independent of the test conditional. We have in the above equation explicitly
conditioned on the inducing inputsXu. Using Gaussian identities, the effective marginal likelihood
is very easily obtained by adding a ridgeσ2

noiseI (from the likelihood) to the covariance of effective
prior onf. Using the appropriate definitions ofΛ, the log marginal likelihood becomes

logq(y|Xu) = −1
2 log|Qf,f +Λ|− 1

2y>(Qf,f +Λ)−1y− n
2 log(2π) , (30)

whereΛSoR = ΛDTC = σ2
noiseI , ΛFITC = diag[Kf,f −Qf,f ] + σ2

noiseI , and ΛPITC = blockdiag[Kf,f −
Qf,f ]+σ2

noiseI . The computational cost of the marginal likelihood isO(nm2) for all methods, that of
its gradient with respect to one element ofXu is O(nm). This of course implies that the complexity
of computing the gradient wrt. to the whole ofXu is O(dnm2), whered is the dimension of the input
space.

It has been proposed to maximize the effective posterior instead of the effective marginal likeli-
hood (Smola and Bartlett, 2001). However this is potentially dangerous and can lead to overfitting.
Maximizing the whole evidence instead is sound and comes at an identical computational cost (for
a deeper analysis see Quiñonero-Candela, 2004, Sect. 3.3.5 and Fig. 3.2).

The marginal likelihood has traditionally been used to learn the hyperparameters of GPs in the
non fully Bayesian treatment (see for example Williams and Rasmussen, 1996). For the sparse
approximations presented here, once you are learningXu it is straightforward to allow for learning
hyperparameters (of the covariance function) during the same optimization,and there is no need
to interleave optimization ofu with learning of the hyperparameters as it has been proposed for
example by Seeger et al. (2003).
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10. Other Methods

In this section we briefly mention two approximations which don’t fit in our unifying scheme,
since one doesn’t correspond to a proper probabilistic model, and the other one uses a particular
construction for the covariance function, rather than allowing any general covariance function.

10.1 The Nystr̈om Approximation

The Nystr̈om Approximation for speeding up GP regression was originally proposedby Williams
and Seeger (2001), and then questioned by Williams et al. (2002). Like SoR and DTC, the Nystr̈om
Approximation for GP regression approximates the prior covariance off by Qf,f . However, unlike
these methods, the Nyström Approximation isnot based on a generative probabilistic model. The
prior covariance betweenf∗ andf is taken to be exact, which isinconsistentwith the prior covariance
on f:

q(f, f∗) = N
(

0,
[ Qf,f Kf,∗

K∗,f K∗,∗

])

. (31)

As a result we cannot derive this method from our unifying framework, nor represent it with a
graphical model. Worse, the resulting prior covariance matrix is not even guaranteed to be positive
definite, allowing the predictive variances to be negative. Notice that replacing Kf,∗ by Qf,∗ in (31)
is enough to make the prior covariance positive definite, and one obtains theDTC approximation.

Remark 14 The Nystr̈om Approximation does not correspond to a well-formed probabilistic model.

Ignoring any quibbles about positive definiteness, the predictive distribution of the Nystr̈om Ap-
proximation is given by:

p( f∗|y) = N
(

K>
f,∗[Qf,f +σ2

noiseI ]
−1y, K∗,∗−K>

f,∗[Qf,f +σ2
noiseI ]

−1Kf,∗
)

, (32)

but the predictive variance is not guaranteed to be positive. The computational cost isO(nm2).

10.2 The Relevance Vector Machine

The relevance vector machine, introduced by Tipping (2001), is a finite linear model with an in-
dependent Gaussian prior imposed on the weights. For any inputx∗, the corresponding function
output is given by:

f∗ = φ∗w , with p(w|A) = N (0,A) , (33)

whereφ∗ = [φ1(x), . . . ,φm(x)] is the (row) vector of responses of them basis functions, andA =
diag(α1, . . . ,αm) is the diagonal matrix of joint prior precisions (inverse variances) of the weights.
Theαi are learnt by maximizing the RVM evidence (obtained by also assuming Gaussian additive
iid. noise, see (1)), and for the typical case of rich enough sets of basis functions many of the
precisions go to infinity effectively pruning out the corresponding weights (for a very interesting
analysis see Wipf et al., 2004). The RVM is thus a sparse method and the surviving basis functions
are calledrelevance vectors.

Note that since the RVM is a finite linear model with Gaussian priors on the weights, it can be
seen as a Gaussian process:

Remark 15 The RVM is equivalent to a degenerate Gaussian process with covariancefunction
kRVM(xi ,x j) = φi A−1φ>

j = ∑m
k=1 α−1

k φk(xi)φk(x j),
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Method q(f∗|u) q(f|u) joint prior covariance GP?

GP exact exact

[

Kf,f Kf,∗
K∗,f K∗,∗

] √

SoR determ. determ.

[

Qf,f Qf,∗
Q∗,f Q∗,∗

] √

DTC exact determ.

[

Qf,f Qf,∗
Q∗,f K∗,∗

]

FITC (exact) fully indep.

[

Qf,f −diag[Qf,f −Kf,f ] Qf,∗
Q∗,f K∗,∗

]

(
√

)

PITC exact partially indep.

[

Qf,f −blokdiag[Qf,f −Kf,f ] Qf,∗
Q∗,f K∗,∗

]

Table 1: Summary of the way approximations are built. All these methods are detailed in the previ-
ous sections. The initial cost and that of the mean and variance per test case are respectively
n2, n andn2 for the exact GP, andnm2, mandm2 for all other methods. The “GP?” column
indicates whether the approximation is equivalent to a GP. For FITC see Remark 7.

as was also pointed out by Tipping (2001, eq. (59)). Whereas all sparse approximations we have
presented until now are totally independent of the choice of covariance function, for the RVM
this choice is restricted to covariance functions that can be expressed asfinite expansions in terms
of some basis functions. Being degenerate GPs in exactly the same way as theSoR (presented
in Section 4), the RVM does also suffer from unreasonable predictive variances. Rasmussen and
Quiñonero-Candela (2005) show that the predictive distributions of RVMs can also be healed by
augmentation, see Section 8. Once theαi have been learnt, denoting bym the number of surviving
relevance vectors, the complexity of computing the predictive distribution of the RVM is O(m) for
mean andO(m2) for the variance.

RVMs are often used with radial basis functions centered on the training inputs. One potentially
interesting extension to the RVM would be tolearnthe locations of the centers of the basis functions,
in the same way as proposed by Snelson and Ghahramani (2006) for the FITC approximation, see
Section 6. This is a curious reminiscence of learning the centers in RBF Networks.

11. Conclusions

We have provided a unifying framework for sparse approximations to Gaussian processes for regres-
sion. Our approach consists of two steps, first 1) we recast the approximation in terms of approx-
imations to the prior, and second 2) we introduce inducing variablesu and the idea of conditional
independence givenu. We recover all existing sparse methods by making further simplifications of
the covariances of the training and test conditionals, see Table 1 for a summary.

Previous methods were presented based on different approximation paradigms (e.g. likelihood
approximations, projection methods, matrix approximations, minimization of Kullback-Leibler di-
vergence, etc), making direct comparison difficult. Under our unifying view we deconstruct meth-
ods, making it clear which building blocks they are based upon. For example, the SGPP by Snelson
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and Ghahramani (2006) contains two ideas, 1) a likelihood approximation and 2) the idea of varying
the inducing inputs continuously; these two ideas could easily be used independently, and incorpo-
rated in other methods. Similarly, the BCM by Tresp (2000) contains two independent ideas 1) a
block diagonal assumption, and 2) the (transductive) idea of choosing the test inputs as the induc-
ing variables. Finally we note that although all three ideas of 1) transductively settingu = f∗, 2)
augmentation and 3) continuous optimization ofXu have been proposed in very specific settings, in
fact they are completely general ideas, which can be applied to any of the approximation schemes
considered.

We have ranked the approximation according to how close they are to the corresponding full
GP. However, the performance in practical situations may not always follow this theoretical ranking
since the approximations might exhibit properties (not present in the full GP) which may be par-
ticularly suitable for specific datasets. This may make the interpretation of empirical comparisons
challenging. A further complication arises when adding the necessary heuristics for turning the
theoretical constructs into practical algorithms. We have not described full algorithms in this paper,
but are currently working on a detailed empirical study (in preparation, see also Rasmussen and
Williams, 2006, chapter 8).

We note that the order of the computational complexity is identical for all the methods consid-
ered,O(nm2). This highlights that there is no computational excuse for using gross approximations,
such as assuming deterministic relationships, in particular one should probably think twice before
using SoR or even DTC. Although augmentation has attractive predictive properties, it is com-
putationally expensive. It remains unclear whether augmentation could be beneficial on a fixed
computational budget.

We have only considered the simpler case of regression in this paper, butsparseness is also com-
monly sought in classification settings. It should not be difficult to cast probabilistic approximation
methods such as Expectation Propagation (EP) or the Laplace method (for acomparison, see Kuss
and Rasmussen, 2005) into our unifying framework.

Our analysis suggests that a new interesting approximation would come from combining the best
possible approximation (PITC) with the most powerful selection method for theinducing inputs.
This would correspond to a non-transductive version of the BCM. We would evade the necessity of
knowing the test set before doing the bulk of the computation, and we could hope to supersede the
superior performance reported by Snelson and Ghahramani (2006) for very sparse approximations.
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Appendix A. Gaussian and Matrix Identities

In this appendix we provide identities used to manipulate matrices and Gaussian distributions
throughout the paper. Letx andy be jointly Gaussian

[

x
y

]

∼ N

([

µx

µy

]

,

[

A C
C> B

])

, (34)

then the marginal and the conditional are given by

x ∼ N (µx, A) , and x|y ∼ N
(

µx +CB−1(y−µy), A−CB−1C>)

(35)

Also, the product of a Gaussian inx with a Gaussian in a linear projectionPx is again a Gaussian,
although unnormalized

N (x|a,A)N (Px|b,B) = zc N (x|c,C) , (36)

where
C =

(

A−1 +P>B−1P
)−1

, c = C
(

A−1a+P>B−1b
)

.

The normalizing constantzc is gaussian in the meansa andb of the two Gaussians:

zc = (2π)−
m
2 |B+PAP>|− 1

2 exp
(

− 1
2(b−Pa)>

(

B+PAP>
)−1

(b−Pa)
)

. (37)

The matrix inversion lemma, also known as the Woodbury, Sherman & Morrisonformula states
that:

(Z+UWV>)−1 = Z−1−Z−1U(W−1 +V>Z−1U)−1V>Z−1 , (38)

assuming the relevant inverses all exist. HereZ is n×n, W is m×m andU andV are both of size
n×m; consequently ifZ−1 is known, and a low rank (ie.m< n) perturbation are made toZ as in
left hand side of eq. (38), considerable speedup can be achieved.
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