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Abstract

This paper addresses the problem of choosing a kernel kuit@abestimation with a support
vector machine, hence further automating machine learnifigs goal is achieved by defining
a reproducing kernel Hilbert space on the space of kerngddf.it Such a formulation leads to a
statistical estimation problem similar to the problem ohimiizing a regularized risk functional.

We state the equivalent representer theorem for the chblamels and present a semidefinite
programming formulation of the resulting optimization plem. Several recipes for constructing
hyperkernels are provided, as well as the details of commachime learning problems. Experi-
mental results for classification, regression and novedtgction on UCI data show the feasibility
of our approach.

Keywords: learning the kernel, capacity control, kernel methodspeupvector machines, repre-
senter theorem, semidefinite programming

1. Introduction

Kernel methods have been highly successful in solving various probitemachine learning. The
algorithms work by implicitly mapping the inputs into a feature space, and findingtabte hy-
pothesis in this new space. In the case of the support vector machine)(®v#lsolution is the
hyperplane which maximizes the margin in the feature space. The featuréngappuestion is
defined by a kernel function, which allows us to compute dot productsatuife space using only
objects in the input space. For an introduction to SVMs and kernel meth@dssdber is referred
to numerous tutorials such as Burges (1998) and books such ak&uhand Smola (2002).

Choosing a suitable kernel function, and therefore a feature mappimgpésative to the suc-
cess of this inference process. This paper provides an inferearoerork for learning the kernel
from training data using an approach akin to the regularized quality furadtion

x. This work was done when the author was at the Australian National tsitiye
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1.1 Motivation

As motivation for the need for methods to learn the kernel, consider Figuvhid¢h shows the sep-
arating hyperplane, the margin and the training data for a synthetic datagate E(a) shows the
classification function for a support vector machine using a Gaussi#i kabis function (RBF)
kernel. The data has been generated using two Gaussian distributiondamidarsl deviation 1
in one dimension and 1000 in the other. This difference in scale creatblem® for the Gaus-
sian RBF kernel, since it is unable to find a kernel width suitable for botlctiires. Hence, the
classification function is dominated by the dimension with large variance. dsicig the value of
the regularization parameteZ, and hence decreasing the smoothness of the function results in a
hyperplane which is more complex, and equally unsatisfactory (Figup®. IThe traditional way
to handle such data is to normalize each dimension independently.

Instead of normalising the input data, we make the kernel adaptive to all@péndent scales
for each dimension. This allows the kernel to handle unnormalised dataeugowthe resulting
kernel would be difficult to hand-tune as there may be numerous frégbles. In this case, we
have a free parameter for each dimension of the input. We ‘learn’ thiekieyrdefining a quantity
analogous to the risk functional, called the quality functional, which measueebadness’ of the
kernel function. The classification function for the above mentioned dataosn in Figure 1(c).
Observe that it captures the scale of each dimension independentlydrage¢he solution does not
consist of only a single kernel but a linear combination of them.
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Figure 1: For data with highly non-isotropic variance, choosing one $oakdl dimensions leads
to unsatisfactory results. Plot of synthetic data, showing the separatpeggigne and
the margins given for a uniformly chosen length scale (left and middle) madi@matic
width selection (right).

1.2 Related Work

We analyze some recent approaches to learning the kernel by lookimg abjective function that
is being optimized and the class of kernels being considered. We will se¢3ateion 2) that this
objective function is related to our definition of a quality functional. Crodislaion has been used
to select the parameters of the kernels and SVMs (Duan et al., 2003y Btegle 2003), with vary-
ing degrees of success. The objective function is the cross validatigrand the class of kernels
is a finite subset of the possible parameter settings. Duan et al. (2008)hapelle et al. (2002)
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test various simple approximations which bound the leave one out errsonoe measure of the
capacity of the SVM. The notion of Kernel Target Alignment (Cristianiralet2002) uses the ob-
jective functiontr (Kyy' ) wherey are the training labels, aritlis from the class of kernels spanned
by the eigenvectors of the kernel matrix of the combined training and test @agasemidefinite
programming (SDP) approach (Lanckriet et al., 2004) uses a moreajetass of kernels, namely

a linear combination of positive semidefinite matrices. They minimize the margin oésiodting
SVM using a SDP for kernel matrices with constant trace. Similar to this, Bmismd Herrmann
(2002) further restricts the class of kernels to the convex hull of thegkenatrices normalized by
their trace. This restriction, along with minimization of the complexity class of thedkeallows
them to perform gradient descent to find the optimum kernel. Using the fdezosting, Crammer

et al. (2002) optimiz& BK¢, wherep; are the weights used in the boosting algorithm. The class
of base kernel§K;} is obtained from the normalized solution of the generalized eigenvector prob
lem. In principle, one can learn the kernel using Bayesian methods byrdgéirsuitable prior, and
learning the hyperparameters by optimizing the marginal likelihood (Williams ambleBal998,
Williams and Rasmussen, 1996). As an example of this, when other informatamailable, an
auxiliary matrix can be used with the EM algorithm for learning the kernel daset al., 2003).
Table 1 summarizes these approaches. The notKtisn0 means thaK is positive semidefinite,
that is for allac R",a’Ka > 0.

Approach Objective Kernel class &)

Cross Validation CV Risk Finite set of kernels

Alignment y Ky {sM.Biviv{' such that; are eigenvectors df }

SDP margin {3, BiKi such thaK; > 0,trK; = c}
Complexity Bound margin {31 BiKi such thaK; > 0,trK; = ¢, 3; > 0}
Boosting Exp/LogLoss | Base kernels from generalized eigenvector problem
Bayesian neg. log-post. dependent on prior

EM Algorithm KL Divergence linear combination of auxiliary matrix

Table 1: Summary of recent approaches to kernel learning.

1.3 Outline of the Paper

The contribution of this paper is a theoretical framework for learning tiegteUsing this frame-
work, we analyze the regularized risk functional. Motivated by the idé&sistianini et al. (2003),
we show (Section 2) that for most kernel-based learning methods thste &%unctional, thgual-

ity functional which plays a similar role to the empirical risk functional. We introduce a kerne
on the space of kernels itself,hyperkernel(Section 3), and its regularization on the associated
hyper reproducing kernel Hilbert space (Hyper-RKHS). This ldadssystematic way of parame-
terizing kernel classes while managing overfitting (Ong et al., 2002). Wesgiveral examples of
hyperkernels and recipes to construct others (Section 4). Using tiesajéramework, we consider
the specific example of using the regularized risk functional in the restegbaiper. The positive
definiteness of the kernel function is ensured using the positive defsienf the kernel matrix
(Section 5), and the resulting optimization problem is a semidefinite program.sérhilefinite
programming approach follows that of Lanckriet et al. (2004), with aedsffit constraint due to a
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difference in regularization (Ong and Smola, 2003). Details of the spexgifimization problems
associated with th€-SVM, v-SVM, Lagrangian SVMy-SVR and one class SVM are defined in
Section 6. Experimental results for classification, regression and naletgtion (Section 7) are
shown. Finally some issues and open problems are discussed (Section 8).

2. Kernel Quality Functionals

We denote byx the space of input data andthe space of labels (if we have a supervised learning
problem). Denote b¥ain := {X1,...,Xm} the training data and withain := {y1,...,Yym} @ set of
corresponding labels, jointly drawn independently and identically from guoieability distribu-
tion Pr(x,y) on x x 9. We shall, by convenient abuse of notation, generally de¥igig by the
vectory, when writing equations in matrix notation. We denotekoyhe kernel matrix given by
Kij := k(xi,X;) wherex;,X; € Xuain andk is a positive semidefinite kernel function. We also use tr
to mean the trace of the matrix afi€l| to mean the determinant.

We begin by introducing a new class of function@®n data which we will calbuality func-
tionals Note that by quality we actually medadnessor lack of quality, as we would like to
minimize this quantity. Their purpose is to indicate, given a keknahd the training data, how
suitable the kernel is for explaining the training data, or in other wordsjuhéty of the kernel for
the estimation problem at hand. Such quality functionals may be the KermggtTalignment, the
negative log posterior, the minimum of the regularized risk functional, ofwskmness function for
kernel methods. We will discuss those functionals after a formal definifitmeayuality functional
itself.

2.1 Empirical and Expected Quality

Definition 1 (Empirical Quality Functional) Given akernelk, and data, X , we define @np(k, X,Y)
to be anempirical quality functionalf it depends on k only via(k,x;) where x,x; € X for
1<i;j<m,

By this definition,Qempis a function which tells us how well match&ds to a specific data sét, Y.
Typically such a quantity is used to addpin such a manner th&emp is optimal (for example,
optimal Kernel Target Alignment, greatest luckiness, smallest negativedstgrior), based on this
onesingledata seX,Y. Provided a sufficiently rich class of kernetsit is in general possible to
find a kernek* € x that attains the minimum of any suemp regardless of the data. However,
it is very unlikely thatQemp(k*,X,Y) would be similarly small for otheK,Y, for such ak*. To
measure the overall quality &we therefore introduce the following definition:

Definition 2 (Expected Quality Functional) Denote by Qmp(k,X,Y) an empirical quality func-
tional, then

Q(K) := Ex.y [Qemp(k, X, Y)]

is defined to be the expected quality functional. Here the expectation is tageX &/, where all
Xi,Yi are drawn fromPr(x,y).

Observe the similarity between the empirical quality functiof@p(k, X,Y), and the empirical
risk of an estimatorRemp( f, X,Y) = 5™, 1(x.yi, f(%)) (wherel is a suitable loss function); in
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both cases we compute the value of a functional which depends on somke 3a¥grawn from
Pr(x,y) and a function and in both cases we have

Q(K) = Exy [Qemp(k,X,Y)] andR(f) = Exy [Remp(f,X,Y)].

Here R(f) denotes the expected risk. However, while in the case of the empirical Bs&aw
interpretRemp as the empirical estimate of the expected IB§§) = Ey [l (x,y, f(X))], due to the
general form ofQemp. NO such analogy is available for quality functionals. Finding a general-
purpose bound of the expected error in termQg) is difficult, since the definition of depends
heavily on the algorithm under consideration. Nonetheless, it provideserg framework within
which such bounds can be derived.

To obtain a generalization error bound, it is sufficient tQaf,, is concentrated around its
expected value. Furthermore, one would require the deviation of the ealpisk to be upper
bounded byQemp and possibly other terms. In other words, we assume a) we have givercanc
tration inequality on quality functionals, such as

Pr{|Qemp(k, X,Y) = Q(K)| > o} < 8o,

and b) we have a bound on the deviation of the empirical risk in terms of thigyguactional

Pr{|Remp(f,X,Y) = R()| > er} < 8(Qemp)-

Then we can chain both inequalities together to obtain the following bound
Pr{|Remg(f,X,Y) = R(f)| > er} < 80+ d(Q+&q).

This means that the bound now becomes independent of the particularofdahees quality func-
tional obtainednthe data, rather than the expected value of the quality functional. Bourds of
type have been derived for Kernel Target Alignment (Cristianini e28i03, Theorem 9) and the
Algorithmic Luckiness framework (Herbrich and Williamson, 2002, Theofi&hn

2.2 Examples 0fQemp

Before we continue with the derivations of a regularized quality functianal introduce a cor-
responding reproducing kernel Hilbert space, we give some exarmplgsality functionals and
present their exact minimizers, whenever possible. This demonstratgivigrag rich enough fea-
ture space, we can arbitrarily minimize the empirical quality functi@al, The difference here
from traditional kernel methods is the fact that we allow the kernel to ahahlis extra degree of
freedom allows us to overfit the training data. In many of the examples bet@show that given a
feature mapping which can model the labels of the training data preciselyitiivg occurs. That
is, if we use the training labels as the kernel matrix, we arbitrarily minimize the qdafittional.
The reader who is convinced that one can arbitrarily mininQggp, by optimizing over a suitably
large class of kernels, may skip the following examples.

Example 1 (Regularized Risk Functional) These are commonly used in SVMs and related kernel
methods (see Wahba (1990), Vapnik (1995)p&cipf and Smola (2002)). They take on the general
form

1m A
Rreg(faxtrainaYtrain) = ﬁzll(xi’yi’ f(Xi))"‘E”st{ (1)
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where| |2, is the RKHS norm of f and | is a loss function such that fog )= yi, | (X, yi, yi) = 0.
By virtue of the representer theorem (see Section 3) we know that theip@naoh(1) can be written
as a kernel expansion. This leads to the following definition of a quality furadtitor a particular
loss functional I

i 1 A
Qé?%’[,'s'((k, Xirain, Yirain) \= argg?n [mizll (%, yi, [Kali) + EGTKG . (2)

The minimizer of (2) is somewhat difficult to find, since we have to catrg double minimization
over K anda. However, we know that@§s™is bounded from below by, Hence, it is sufficient if

we can find a (possibly) suboptimal péir, k) for which G595 < & for anye > 0:
e Note that for K= Byy’ anda = Bsz we have & = y anda'Ka = B~1. This leads to
1(%, i, (%)) = 0 and therefore &30 (k, Xain, Yirain) = B For sufficiently largel we can
make Qeg”s" (K, Xirain, Yirain) arbitrarily close to0.

e Even if we disallow setting K arbitrarily cIose to zero by settiri= 1, finding the minimum
of (2) can be achieved as follows: letK ‘zzz where ze R™, anda =z. Then ki =z

and we obtain

[

1n A n A
ﬁi;I(thia [KG]I) + EGTKG = I;I(thlazi) + E”ZH% (3)

Choosing each;z= argmin, | (x;, i, {(X)) + QZZ where( are the possible hypothesis functions
obtained from the training data, yields the minimum with respect to z. Sincen® te zero
and the regularized risk is lower bounded by zero, we can still arbitrarilyimize o5~
This is not surprising since the set of allowable K is huge.

Example 2 (Cross Validation) Cross validation is a widely used method for estimating the gener-
alization error of a particular learning algorithm. Specifically, the leavesayut cross validation is

an almost unbiased estimate of the generalization error (Luntz and Bskiyp\L969). The quality
functional for classification using kernel methods is given by:

A I L ,
ngr(r)wp(k, Xirain, Yirain) := quIIR% [mi;—y' 5|gn([Ka']i)] 7

which is optimized in Duan et al. (2003), Meyer et al. (2003).

Choosing K=yy" anda' = Wy‘, wherea' and y are the vectorst and y with the ith element
set to zero, we haved = y'. Hence we can match the training data perfectly. For a validation set of
larger size, i.e. k-fold cross validation, the same result can be achigvddfining a corresponding
a.

Example 3 (Kernel Target Alignment) This quality functional was introduced by Cristianini et al.
(2002) to assess the alignment of a kernel with training labels. It is debge

tr(Kyy")

| _
QR X o) =1 ).

(4)

1048



HYPERKERNELS

Here ||y||> denotes thé, norm of the vector of observations afi||e is the Frobenius norm, i.e.,
IK||2 :==tr(KKT) = 3; i (Kij)2. This quality functional was optimized in Lanckriet et al. (2004). By
decomposing K into its eigensystem one can see that (4) is minimizeg, y§K, in which case

- tr(y"yy'y) lylI3
Qallgnmem(k*jxt ) ;Yt . ): -2 77 7 17 __Q.
emP e T IyI5llyy" lIF III3]lylI3

We cannot expect that3gs™"(k*, X,Y) = 0 for data other than that chosen to determirte i
other words, a restriction of the class of kernels is required. This wasaliserved in Cristianini
et al. (2003).

The above examples illustrate how existing methods for assessing the quaditikenhel fit
within the quality functional framework. We also saw that given a rich ehaulgss of kernelsg,
optimization ofQempover x would result in a kernel that would be useless for prediction purposes,
in the sense that they can be made to look arbitrarily good in terr@ggf but with the result that
the generalization performance will be poor. This is yet another examghe dfinger of optimizing
too much and overfitting — there is (still) no free lunch.

3. Hyper Reproducing Kernel Hilbert Spaces

We now propose a conceptually simple method to optimize quality functionals iasses of ker-
nels by introducing a reproducing kernel Hilbert spacethe kernel k itselfso to say, a Hyper-
RKHS. We first review the definition of a RKHS (Aronszajn, 1950).

Definition 3 (Reproducing Kernel Hilbert Space) Let x be a nonempty set (the index set) and
denote by# a Hilbert space of functions fx — R. # is called a reproducing kernel Hilbert
space endowed with the dot prodyet) (and the norm| f|| := /(f, f)) if there exists a function
k: x x x — R with the following properties.

1. k has the reproducing property
(f,k(x,-))=f(x)forall f € # ,xe€ x;

in particular, (k(x,-),k(xX,-)) =k(x,x) forall x,x € x.

2. kspansi, i.e.# = spark(x,-)|x € x } whereX is the completion of the set X.

In the rest of the paper, we use the notatiolo represent the kernel function and to represent
the RKHS. In essencey is a Hilbert space of functions, which has the special property of being
generated by the kernel functién

The advantage of optimization in an RKHS is that under certain conditions timeadjgolutions
can be found as the linear combination of a finite humber of basis functiegardiess of the
dimensionality of the spac#& the optimization is carried out in. The theorem below formalizes this
notion (see Kimeldorf and Wahba (1971), Cox and O’Sullivan (1990)).

Theorem 4 (Representer Theorem)Denote byQ : [0,0) — R a strictly monotonic increasing
function, byx a set, and by | (x x R?)™ — R U {e} an arbitrary loss function. Then each mini-
mizer fe # of the general regularized risk

F(Oxa,y1, £ (%)) 55 s Y, f () +Q ([ F1)
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admits a representation of the form

F) =Y aik(4,X), (5)
i; | |
wherea; e Rforall 1 <i<m.

3.1 Regularized Quality Functional

To learn the kernel, we need to define a function space of kernels, a nietheglilarize them and
a practical optimization procedure. We will address each of these issthesfimilowing. We define
an RKHS on kernelk: x x x — R, simply by introducing the compounded index set= x x x
and by treating as a functiork: x — R:

Definition 5 (Hyper Reproducing Kernel Hilbert Space) Let x be a nonempty set. and denote
by x := x x x the compounded index set. The Hilbert spacef functions k x — R, endowed
with a dot product-,-) (and the norm|k|| = 1/(k,k)) is called a hyper reproducing kernel Hilbert
space if there exists a hyperkernelk x x — R with the following properties:

1. khas the reproducing propertk, k(x, -)) = k(x) for all k € #; in particular, (k(x,-),k(X,-)) =
K(x,X).

2. kspans# , i.e.# =spark(x,-)|x€ x }.
3. kxy,st) =K(y,x,s.t) forall x,y,s;t € x.

This is a RKHS with the additional requirement of symmetry in its first two arguni@ntact,
we can have a recursive definition of an RKHS of an RKHS ad infinitum, wittakle restric-
tions on the elements). We define the corresponding notations for elememislds and RKHS by
underlining it. What distinguisheg” from a normal RKHS is the particular form of its index set
(x = x?) and the additional condition dato be symmetric in its first two arguments, and therefore
in its second two arguments as well.

This approach of defining a RKHS on the space of symmetric functions ofdaviables leads us
to a natural regularization method. By analogy with the definition of the ragatarisk functional
(1), we proceed to define the regularized quality functional.

Definition 6 (Regularized Quality Functional) Let X,Y be the combined training and test set of
examples and labels respectively. For a positive semidefinite kernel riatmixX , theregularized
quality functionalis defined as

A
Queg(k, X, Y) 1= Qemplk, X, Y) + 2 IKII%. (6)
whereAq > Ois a regularization constant an|¢k|]§{ denotes the RKHS norm i .

Note that although we have possibly non positive kernelg inve define the regularized quality
functional only on positive semidefinite kernel matrices. This is a slightly eea&ndition than
requiring a positive semidefinite kerriglsince we only require positivity on the data. Sirf@gnp
depends ork only via the data, this is sufficient for the above definition. MinimizatiorQgd; is
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less prone to overfitting than minimizir@emp, Since the regularization ter&f”k”f{ effectively
controls the complexity of the class of kernels under consideration. Betiagd Herrmann (2002)
provide a generalization error bound by estimating the Rademacher compligtkieskernel classes

in the transduction setting. Regularizers other tﬁllﬂhi are possible, such &g penalties. In this
paper, we restrict ourselves to thenorm (6). The advantage of (6) is that its minimizer satisfies
the representer theorem.

Lemma 7 (Representer Theorem for Hyper-RKHS) Let.x be a set, Qnpan arbitrary empirical
quality functional, and XY the combined training and test set, then each minimizerk of the
regularized quality functional Qy(k, X,Y) admits a representation of the form

KX) = 3 Bik((x%)), (x.X)) for all x X € X, @)
1]

wherefjj € R, for eachl <i,j <m.

Proof All we need to do is rewrite (6) so that it satisfies the conditions of Theoretredy;; :=
(Xi,%;j). ThenQemp(k, X,Y) has the properties of a loss function, as it only depends/mits values
atx;. Note too that the kernel matrix also only depends okvia its values ak;;. Furthermore,

%QHkH?i is an RKHS regularizer, so the representer theorem applies and (Zy$ollo |

Lemma 7 implies that the solution of the regularized quality functional is a linear ioatin of
hyperkernels on the input data. This shows that even though the optimitakies place over an
entire Hilbert space of kernels, one can find the optimal solution by chgpasiong a finite number.

Note that the minimizer (7) is not necessarily positive semidefinite. In prattisds not what
we want, since we require a positive semidefinite kernel but we do n& &ay guarantees for
examples in the test set. Therefore we need to impose additional constfaimestygpeK > 0 or
k is a Mercer Kernel. While the latter is almost impossible to enforce directly, tinesfocould be
verified directly, hence imposing a constraint only on the values of theekeratrixk(x;, ;) rather
than on the kernel functiok itself. This means that the conditions of the Representer Theorem
apply and (7) applies (with suitable constraints on the coefficigpls

Another option is to be somewhat more restrictive and require that all siqganoefficients
Bi,; = 0 and all the functions be positive semidefinite kernels. This latter requiteraarbe for-
mally stated as follows: For any fixede x the hyperkerndtis a kernel in its second argument; that
is for any fixedx € x, the functionk(x,X) := k(x, (x,X)), with x,X' € x, is a positive semidefinite
kernel.

Proposition 8 Given a hyperkernel, kith elements such that for any fixedexx, the function
K(Xp, Xq) := K(X, (Xp,Xq)), With Xp, Xq € X, is a positive semidefinite kernel, aigl > Ofor all i, j =
1,...,m, then the kernel

K(Xp,Xq) := > BijK(Xi, X}, Xp, Xq)

i,]=1
is positive semidefinite.

Proof The result is obtained by observing that positive combinations of poseivedefinite ker-
nels are positive semidefinite. |
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While this may prevent us from obtaining the minimizer of the objective functioyigltls a
much more amenable optimization problem in practice, in particular if the resultimg gjpans a
large enough space (as happens with increasingn the subsequent derivations of optimization
problems, we choose this restriction as it provides a more tractable probpeaciice. In Section 4,
we give examples and recipes for constructing hyperkernels. Btifatewe relate our framework
defined above to Bayesian inference.

3.2 A Bayesian Perspective

A generative Bayesian approach to inference encodes all knoweglgaght have about the prob-
lem setting into a prior distribution. Hence, the choice of the prior distributiderdenes the
behaviour of the inference, as once we have the data, we condition prighdistribution we have
chosen to obtain the posterior, and then marginalize to obtain the label thes iméesested in. One
popular choice of prior is the normal distribution, resulting in a Gaussiacegs(GP). All prior
knowledge we have about the problem is then encoded in the covarifitiee GP. There exists a
GP analog to the support vector machine (for example Opper and Win®@d)(Seeger (1999)),
which is essentially obtained (ignoring normalizing terms) by exponentiatingetindarized risk
functional used in SVMs.

In this section, we derive the prior and hyperprior implied by our framk&wdhyperkernels.
This is obtained by exponentiatif@eg, again ignoring normalization terms. Given the regularized
quality functional (Equation 6), with th@em Set to the SVM with squared loss, we obtain the
following equation.

m

1 A Ao
Quegks X¥) 1= 11 5 (6= 106))%+ Sl I + Iy
Exponentiating the negative of the above equation gives,

exp(—Qreg(k, X,Y)) =
exp(—;_zlm - f(xi>>2> exp 5112 ) exp( -2k, ). ©

We compare Equation (8) to Gaussian process estimation. The generaiesihknown in
Bayesian estimation as hyperpriors (Bishop, 1995, Chapter 10), whktehrine the distribution of
the priors (here the GP with covariaride Figure 2 describes the model of an ordinary GP, wtiere
is drawn from a Gaussian distribution with covariance matriandy is conditionally independent
given f. For hyperprior estimation, we draw the pridrfrom a distribution instead of setting it.

Gaussian Process @ k chosen by user® ®*>@

Figure 2: Generative model for Gaussian process estimation
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To determine the distribution from which we draw the prior, we compute therhyipe explic-
itly. For given dataZ = {X,Y} and applying Bayes’ Rule, the posterior is given by

P(Z[f, k) p(f[k)p(K)
pklz)p(z)
We have the directed graphical model shown in Figure 3 for a Hypeek&R, where we as-

sume that the covariance matrix of the Gaussian prokessdrawn according to a distribution

before performing further steps of dependency calculation. We sballexplicitly compute the

terms in the numerator of Equation (9).

p(f|Z,k) = 9)

p(Klko, K) pP(flk) p(y|f,x)
Hyperkernel GP @ @ @ >@

Figure 3: Generative model for Gaussian process estimation usingahnigpsonk defined byk.

In the following derivations, we assume that we are dealing with finite dimealsadojects, to
simplify the calculations of the normalizing constants in the expressions fordtiddtions. Given
that we have additive Gaussian noise, thatisa( (0, ) then,

p(YIf,%) O exp(—ﬁw— f00)2).

Therefore, for the whole data set (assumed to be i.i.d.),

m

p(Y[f,X) = rlpylle. ( )?exr)<—\§;(yi—f<xi))2>~

We assume a Gaussian prior on the funcfipwith covariance functiok. The positive semidefinite
function,k, defines an inner produ¢t, -) ,, in the RKHS denoted byk. Then,

E

p(110 = (27) “exp(~Y(1.1).,)

whereF is the dimension of andys is a constant.

We assume a Wishart distribution (Lauritzen, 1996, Appendix C), wittegrees of freedom
and covariancéy, for the prior distribution of the covariance functiknthat isk ~ wmn(p,ko). This
is a hyperprior used in the Gaussian process literature:

|k| exp(—ftr(kko))

Fm(p)Ik|?

wherel n(p) denotes the Gamma distributiofy(p) = 27 T 7

tails of the Wishart distribution, the reader is referred to Lauritzen (1996)
Observe that tkky) is an inner product between two matrices. We can define a general inner
product between two matrices, as the inner product defined in the RKhtSatkby# :

K2 exp(—fik ko))
m(p) {2

P(klko) =

. For more de-

p(klko, k) =
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We can interpret the above equation as measuring the similarity between drenoe matrix
that we obtain from data and the expected covariance matrix (given byserg urhis similarity
is measured by a dot product definedkbySubstituting the expressions fp(Y|X, f), p(f|k) and
p(k|ko, k) into the posterior (Equation 9), we get Equation (10) which is of the sanme ésrthe
exponentiated negative quality (Equation 8):

m

exp(—‘;;(yi - f(xi>>2> exp(~ 13 (1. 1) xp 5l ) (10)

In a nutshell, we assume that the covariance function of thé& @Pdistributed according to a
Wishart distribution. In other words, we have two nested processeauss@n and a Wishart pro-
cess, to model the data generation scheme. Hence we are studying a nfidaressian processes.
Note that the maximum likelihood (ML-II) estimator (MacKay, 1994, Williams andk@a, 1998,
Williams and Rasmussen, 1996) in Bayesian estimation leads to the same optimizalti@msras
those arising from minimizing the regularized quality functional.

4. Hyperkernels

Having introduced the theoretical basis of the Hyper-RKHS, it is naturaskovhether hyperker-
nels,k, exist which satisfy the conditions of Definition 5. We address this quesyigiving a set
of general recipes for building such kernels.

4.1 Power Series Construction

Supposek is a kernel such thet(x,x’) > 0 for all x,x' € x, and supposg: R — R is a function
with positive Taylor expansion coefficients, thagi€) = 52 ci&' for basis functiong, ¢; > 0 for
alli=0,...,o, and convergence radi&s Then for pointwise positivi(x, X') < VR,

k(x,X) == g(k(x)k(x)) = Zoci(k(x)k(X))i (11)

is a hyperkernel. Fok to be a hyperkernel, we need to check that fiksg a kernel, and second,
for any fixed pair of elements of the input data,the functionk(x, (x,X)) is a kernel, and third
that is satisfies the symmetry condition. Here, the symmetry condition followstirereymmetry
of k. To see this, observe that for any fixedk(x, (x,X)) is a sum of kernel functions, hence it
is a kernel itself (sinc&P(x,x) is a kernel ifk is, for p € N). To show thatk is a kernel, note
thatk(x,x') = (®(x), P(X)), where®(x) := (,/Co, \/C1k}(X), /E2k*(X),...). Note that we require
pointwise positivity, so that the coefficients of the sum in Equation (11) laraya positive. The
Gaussian RBF kernel satisfies this condition, but polynomial kernelsatiedree are not always
pointwise positive. In the following example, we use the Gaussian kernehiirict a hyperkernel.

Example 4 (Harmonic Hyperkernel) Suppose k is a kernel with rang 1], (RBF kernels satisfy
this property), and set,c= (1—An)A,, i € N, for some0 < A < 1. Then we have

8

KOX) = (1-2n) 3 (Ank(X)k(X))' = 1—Alhi<i>hk<x>

(12)
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For k(x,x') = exp(—a?||x— x'||?) this construction leads to

1-An
1—Anexp(—o?([[x—X|[2+ X" —x"||2))

k((6X), (X", x")) = (13)

As one can see, fof, — 1, k converges t@y v, and thusHkaL[ converges to the Frobenius norm of
k on Xx X. o

It is straightforward to find other hyperkernels of this sort, simply by atimgy tables on power
series of functions. Table 2 contains a short list of suitable expansions.

9(&) Power series expansion Radius of Convergencg
expe 1+ 58+ 382+ 38+ + 38"+ o
sinhg 18+ 38+ 58+ e | o
coste L+ 38+ 78+ + o 4 o
E 23 5 E2n+1 1
arctanig itz tst+tamat
E EZ 3 En
—In(1-8) | 3+5+5+..+5+... 1

Table 2: Hyperkernels by Power Series Construction.

However, if we want the kernel to adapt automatically to different widthe&xh dimension,
we need to perform the summation that led to (12) for each dimension in its anggisepa-
rately. Such a hyperkernel corresponds to ideas developed in autarlatiance determination
(ARD) (MacKay, 1994, Neal, 1996).

Example 5 (Hyperkernel for ARD) Letks(x,X') = exp(—ds(x, X)), where @ (x,X) = (Xx—x) " Z(x—

X'), andX is a diagonal covariance matrix. Take sums over each diagonal enteyZ;; separately
to obtain

d o
K((x,X), (X, X")) = (1—Ap) Z Z) (Anks (% X )k (X", X"))’

d —A
- L (14)

j=11—Ap exp( i((x _X/j)2_|_ (X/j/—X’j”)Z)) .

Eg. (14) holds since(k) factorizes into its coordinates. A similar definition also allows us to use a
distance metric ¢, x') which is a generalized radial distance as defined by Haussler (1999).

4.2 Hyperkernels Invariant to Translation

Another approach to constructing hyperkernels is via an extensionexudt due to Smola et al.
(1998) concerning the Fourier transform of translation invariantedsrn

Theorem 9 (Translation Invariant Hyperkernel) Supposei(x1—X;), (X2—X5)) is a function which
depends on its arguments only via-xx; and % —X,. Let F1k(w, (x2 —Xx,)) denote the Fourier
transform with respect tox; — X} ).
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The function ks a hyperkernel if kt,T') is a kernel int, T and #1k(w, (X" —x")) > 0 for all (X" —
X") andw.

Proof From (Smola et al., 1998) we know that flrto be a kernel in one of its arguments, its
Fourier transform has to be nonnegative. This yields the second conditiext, we need to show
thatk is a kernel in its own right. Mercer’s condition requires that for arbitrbithe following is
positive:

S (x0,%0) (2, X )K( (%1 — X0, (X2 — X)) cxy X, cxpcl
= J (T +X, %)) F(T2+ %5, X5)dx 2k(T1, T2)dT1dT2
= J9(t1)9(12)k(T1, T2)dT1d12,

wheret; = x1 —X; andtz = X2 — X,. Hereg is obtained by integration oves andx; respectively.
The latter is exactly Mercer’s condition émwhen viewed as a function of two variables onlyll

This means that we can check whether a radial basis function (for ex@apksian RBF, exponen-
tial RBF, damped harmonic oscillator, generaliBadpline), can be used to construct a hyperkernel
by checking whether its Fourier transform is positive.

4.3 Explicit Expansion

If we have a finite set of kernels that we want to choose from, we cagrgena hyperkernel which
is a finite sum of possible kernel functions. This setting is similar to that of kréeteet al. (2004).
Supposé;(x,X) is a kernel for each=1,...,n (for example the RBF kernel or the polynomial

kernel), then
n

k(x,x) 1= Zlciki(l()ki(l(/)aki(l() > 0,Vx (15)
i=
is a hyperkernel, as can be seen by an argument similar to that of sectiokid.& kernel since

K(x,X) = (@(x), B(X)), where®(x) := (/Ciki(X), \/C2ka(X), -, \/Cnkn(X))-

Example 6 (Polynomial and RBF combination) Let k (x,X) = ({x,x') + b)?P for some choice of
bec R* and pe N, and k(x,x) = exp(—a?||x—x||?). Then,

K((x1,%1), (%2, %)) = Ca((xa, X)) +0)?P((x2,X5) + )P

16
1 cpexp(— 0¥y — %, %) exp(— 07|z — %) (16)

is a hyperkernel.

5. Optimization Problems for Regularized Risk based Qualiy Functionals

We will now consider the optimization of the quality functionals utilizing hyperkésnWe choose
the regularized risk functional as the empirical quality functional; that is ¥&@gmp(k, X,Y) :=
Rreg(f,X,Y). Itis possible to utilize other quality functionals, such as the Kernel Taxijgnment
(Example 12). We focus our attention on the regularized risk functionathald commonly used
in SVMs. Furthermore, we will only consider positive semidefinite kernets. aFparticular loss
functionl (x;,yi, f(x)), we obtain the regularized quality functional.

1 m A A
minmin = $ 1(X, Vi, f(X; MR QK2 17
kEifeﬂkmi; (Xlayla (Xl))+ 2” ||5‘[k+ 2 H ||ﬁ ( )
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By the representer theorem (Theorem 4 and Corollary 7) we can writeethdarizers as
gquadratic terms. Using the soft margin loss, we obtain

m

mBinrrLin;Zmax(O, 1—yif(x))+ %GTKG + %BTKB subject top > 0 (18)
1=

wherea € R™ are the coefficients of the kernel expansion (5), ﬁr@R”‘z are the coefficients of

the hyperkernel expansion (7).

For fixedk, the problem can be formulated as a constrained minimization problemand
subsequently expressed in terms of the Lagrange multipdietdowever, this minimum depends
onk, and for efficient minimization we would like to compute the derivatives witheesfok. The
following lemma tells us how (it is an extension of a result in Chapelle et al. (2002

Lemma 10 Let xe R™and denote by (f,0), ¢ : R™ — R convex functions, where f is parameter-
ized byB. Let R0) be the minimum of the following optimization problem (and denotg ®yits
minimizer):

minimize f (x,0) subject to gx) <Oforall 1 <i <n.
XcRM

ThenaéR(e) = Déf (x(8),8), where je N and D, denotes the derivative with respect to the second
argument of f.

Proof At optimality we have a saddlepoint in the Lagrangian
n
OxL (X, 0) = 0xf(x,0) + Zlaiaxci (x) =0. (19)
i=

Furthermore, for alb the Kuhn-Tucker conditions have to hold, and in particular &i&q a;ideci(x(6)) =
0, since for alla; > 0 the conditiorc;(x) = 0 and therefore alséyci(x(6)) = 0 has to be satisfied.
Taking higher order derivatives with respecttgields

ozag[

Here the last equality follows from (19). Next we use

iuiaxci (x(@))Z’e‘] —0) {—axf (X, e)gg} . (20)

o4 (x,8) = a) [sz (X,0) + Oy f (X, e)gg] — 0D f(x,0).

Repeated application then proves the claim. |

Instead of directly minimizing Equation (18), we derive the dual formulatiosing the ap-
proach in Lanckriet et al. (2004), the corresponding optimization pnablean be expressed as a
SDP. In general, solving a SDP would be take longer than solving a diggiagram (a traditional
SVM is a quadratic program). This reflects the added cost incurredptonizing over a class of
kernels.

Semidefinite programming (Vandenberghe and Boyd, 1996) is the optimizdtehnzar ob-
jective function subject to constraints which are linear matrix inequalities fing aqualities.
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Definition 11 (Semidefinite Program) A semidefinite program (SDP) is a problem of the form:

min c'x
X

q
subjectto g+ ZlXiF. = 0and Ax=b
i=

where xe RP are the decision variables, ARP*9, b e RP, ce RY, and k€ R"*" are given.

In general, linear constraingsx+a > 0 can be expressed as a semidefinite constigagt Ax+a) >
0, and a convex quadratic constrajA+ b) " (Ax+b) —c"x—d < 0 can be written as

I Ax+b
[ (Ax+b)T cTx+d } =0.

Whent € R, we can write the quadratic constramtAa <t asHA%aH < t. In practice, linear and
guadratic constraints are simpler and faster to implement in a convex solver.

We derive the corresponding SDP for Equation (17). The following@sdion allows us to
derive a SDP from a class of general convex programs. It followsypipeoach in Lanckriet et al.
(2004), with some care taken with Schur complements of positive semidefiniteesafAlbert,
1969), and its proof is omitted for brevity.

Proposition 12 (Quadratic Minimax) Let mn,M € N, H : R" — R™M ¢: R" — R™, be linear
maps. Let Ac RM*M and ac RM. Also, let d: R" — R and G&) be a function and the further
constraints org. Then the optimization problem

minimizemaximize —%XTH (&)x—c(&) Tx+d(&)

EeRN XeRM
subject to HE) =0 1)
Ax+a=0
G =0
can be rewritten as
miniimize it+a'y+d(E)
tEy
diaglyy O 0 0
. G(¥) 0 0 (22)
subject to =0
) 0 0 H(E) (ATy—c(¥)) | =
0 0 (ATy—c(@)’ t

in the sense that thewhich solves (22) also solves (21).

Specifically, when we have the regularized quality functiod@) is quadratic, and hence we obtain
an optimization problem which has a mix of linear, quadratic and semidefinitéraons.

Corollary 13 Let H,c,A and a be as in Proposition 12, arikl>= 0. Then the solutiog* to the
optimization problem

miniamizemax)i(mize —IXTH(&)x—c(&) Tx+ 2ET5¢

subject to HE) =0 (23)
Ax+a=0
€20
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can be found by solving the semidefinite programming problem

minimize it+3t'+a'y

[RURAY
subjectto y>0
£€20 (24)
|Z28|* < t’
HE  (ATy—c®) ],
(Ay—c(&))" t .

Proof By applying proposition 12, and introducing an auxiliary variabl@hich upper bounds the
guadratic term o€, the claim is proved. |

Comparing the objective function in (21) with (18), we observe Hhg) andc(§) are linear in
. Let&’ =¢€&. As we varye the constraints are still satisfied, but the objective function scales with
€. Sinceg is the coeffient in the hyperkernel expansion, this implies that we havedd gessible
kernels which are just scalar multiples of each other. To avoid this, weraddditional constraint
on& which is17€ = ¢, wherec is a constant. This breaks the scaling freedom of the kernel matrix.
As a side-effect, the numerical stability of the SDP problems improves caabigle We chose a
linear constraint so that it does not add too much overhead to the optimizatibleim We make
one additional simplification of the optimization problem, which is to replace therupmend of
the squared norn1|E%EH2 < t') with and upper bound on the norrME(%EH <t).

In our setting, the regularizer for controlling the complexity of the kernel kertao be the
squared norm of the kernel in the Hyper-RKHS. By looking at the caimd of Equation (24), this
is expressed as a bound on the noﬂﬁ%@u < t'). Comparing this result to the SDP obtained in
Lanckriet et al. (2004, Theorem 16), we see that the correspomedgdarizer in their setting is
tr(K) = ¢, wherec is a constant. Hence the main difference between the two SDPs is the choice
of the regularizer for the kernel. However, the motivations of the two metlaoel different. This
paper sets out an induction framework for learning the kernel, and artacular choice 0Qemp,
namely the regularized risk functional, we obtain an SDP which has similarities &piproach of
Lanckriet et al. (2004). On the other hand, they start out with a trantissuproblem and derive the
optimization problem directly. It is unclear at this point which is the better agaro

From the general framework above (Corollary 13, we derive skgraanples of machine learn-
ing problems, specifically binary classification, regression, and singds ¢so known as novelty
detection) problems. The following examples illustrate our method for simultaheoptimizing
over the class of kernels induced by the hyperkernel, as well as tlehHeagis class of the machine
learning problem. We consider machine learning problems based on kesttedds which are de-
rived from (17). The derivation is essentially by application of CorolE8ywith the two additional
conditions above.

6. Examples of Hyperkernel Optimization Problems

In this section, we define the following notation. Famg,r € R",n e N letr = poq be defined
as element by element multiplication,= p; x g; (the Hadamard product, or the operation in
Matlab). The pseudo-inverse (also known as the Moore-Penrossé)\a& a matrixk is denoted
K'. Let K be them? by 1 vector formed by concatenating the columns ofnaby m matrix.
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We define the hyperkernel Gram matkxby putting togethen? of these vectors, that is we set
K= [qu]ngl. Other notations include: the kernel matkix= reshapé& ) (reshaping ar? by 1
vector,Kf3, to am by mmatrix),Y = diag(y) (a matrix withy on the diagonal and zero everywhere
else),G(B) = YKY (the dependence dhis made explicit)] the identity matrix,1 a vector of ones
and 1,,.m a matrix of ones. Lew be the weight vector anlbysiset the bias term in feature space,
that is the hypothesis function in feature space is defingas= w' @(x) + bofisetWhereq(-) is the
feature mapping defined by the kernel function

The number of training examples is assumed tarbéhat isXiain = {X1, ..., Xm} andYiain =
y={v1,...,Ym}. Where appropriatey andx are Lagrange multipliers, whilg and¢ are vectors
of Lagrange multipliers from the derivation of the Wolfe dual for the SPBye the hyperkernel
coefficientst; andt, are the auxiliary variables. Whene R™, we definen > 0 to mean that each
ni=0fori=1....m

We derive the corresponding SDP for the case Wghyis aC-SVM (Example 7). Derivations
of the other examples follow the same reasoning, and are omitted.

Example 7 (Linear SVM (C-parameterization)) A commonly used support vector classifier, the
C-SVM (Bennett and Mangasarian, 1992, Cortes and Vapnik, 13@5)ar/; soft margin, [x,y;, f(X)) =
max(0,1—y;f(x)), which allows errors on the training set. The parameter C is given by the use
Setting the quality functional Qg(k, X,Y) = mingc,, S5 1(x, i, (%)) + 3[|w||%,,

. cQh 122  AQup2
min min ai;ZiJréHfHﬂkJr?Hng

kel fery
subjectto  yf(x) > 1—;
(i=>0

(25)

Recall the dual form of the C-SVM,

M g _15M qaivvikix X
(I;Q]]%é ZI:]_GI ZZI:lalaJYIYJk(thl)

subject to Shiaiyi=0
o<ai< cforalli=1,....m

By considering the optimization problem dependent on f in (25), we carthesderivation of
the dual problem of the standard C-SVM. Observe that we can re%kj& = BTKB due to the

representer theorem for hyperkernels. Substituting the dual C-SVMepmointo (25), we get the
following matrix equation,

. A
minmax  1a - 30 "G(B)a+ 2BTKP

subjectto a'y=0 (26)
o<a<é
B>0

This is of the quadratic form of Corollary 13 where=xa, 6 = 3, H(8) = G(B), ¢(8) = —1,
T =CMgK, the constraints are A= [y -y | —I ]T anda=[0 0 0 &1 ]T. Applying
Corollary 13, we obtain the corresponding SDP.
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The proof of Proposition 12 uses the Lagrange method. As an illustrafitrow this proof
proceeds, we derive it for this special case of the C-SVM. The Lagnaagsociated with (26) is

€
m

o(0.By.8) = 1o~ 2o G(B)+ 22BTKB+y a N o~ (o 1)

2

wheref3 > 0,n > 0,& > 0. The minimum is achieved at

a=GP) (y+1+n-2),

and the corresponding dual optimization problem is

minimize=z' G()'z+ —=¢ ' 1+ —B Kp,
Byng 2 (B) m 2 P KB

where z= yy+ 1+ n — &. From this point, we replace the quadratic terms with auxiliary variables
t1 alnd b, and applylthe Schur complement lemma (Albert, 1969). The resultiRga8€r replacing
|K2B||? <tz by [|[K2B|| < tp, and introducing the scale breaking constrairit = 1is

—_ A
minimize 3t;+ SET1+ 0ty

subjectto n >0, >0, >0

IK2B| <tp,1TB=1 (27)
[ GZ(TB) tzl ] ~ 0.

Note that the value of the support vector coefficientswhich optimizes the corresponding La-
grange function is @)'z, and the classification function,=f sign(K (o oy) — bftsed), is given by

f = signKG(B)  (yo2) ).

Example 8 (Linear SVM (v-parameterization)) An alternative parameterization of thg soft
margin was introduced by Satkopf et al. (2000), where the user defined parameter|0, 1] con-
trols the fraction of margin errors and support vectors. Usin§VM as Qmp, that is, for a given
V, Qemp(k, X,Y) = min¢.,, & 5™, Zi + 5[|w[|2, — vp subject to yf(x) > p— ¢ and; > 0 for all
i=1,...,m, the corresponding SDP is given by

minimize t; —xv+ &7 L 4 29
Bynéx 27 X mt 2
subjectto x >0,n>0,£>0,>0

IKZB| <t2,17B=1
EHE

z 11

(28)

where z=yy+x1+n—¢.
The value ofx which optimizes the corresponding Lagrange function (i8){, and the classi-
fication function, f= sign(K(a oy) — bofsed, is given by f=signKG(B)T(yoz) —y).

1061



ONG, SMOLA AND WILLIAMSON

Example 9 (Quadratic SVM or Lagrangian SVM) Instead of using ai; loss class, Mangasar-
ian and Musicant (2001) use &a loss class,

[0 ifyif(x)>1
I(Xi,yi,f(Xi))—{(1_yif(xi))2 otherwise

and regularized the weight vector as well as the bias term. The empitiedity functional derived

from this is Qmp(k,X,Y) = min.,, 2 5M, 22+ 3(||w||2, + bZsee) Subject to yf (x) > 1—¢; and

¢ > 0foralli =1,...,m. The resulting dual SVM problem has fewer constraints, as is evidenced
by the smaller number of Lagrange multipliers needed in the correspor&iP below.

mlnﬁlmlze T+ LQtz

subjectto n>0,>0
IK2B| <t,1TB=1 (29)

HB) (n+1)
meyT 4 | =0

where HP) =Y (K 4+ 1mxm+Aml)Y, and z=yl+n —&.
The value ofx which optimizes the corresponding Lagrange function ﬁﬂ (n+1), and the
classification function, f= sign(K (o o) — beftsed, is given by f= signKH(B)T((n + 1) oy) +

y (H(B)'(n+1))).

Example 10 (Single class SVM or Novelty Detection}or unsupervised learning, the single class
SVM computes a function which captures regions in input space whererdbahility density

is in some sense large (Sikopf et al., 2001). A suitable quality functionak&yk,X,Y) =
MiNg .,y ﬁz{‘llli +%HWH§[ —psubjectto fx) > p—¢j, and¢; > 0foralli =1,...,m, andp > 0.
The corresponding SDP for this problem is

mlnlmlze I +E& L — y+2v

87
subject ton=0&>0B>0
IKEB] <t (30)
K z
—
Z—r 11 =0

where z=y1+n —§, andv € [0,1] is a user selected parameter controlling the proportion of the
data to be classified as novel.

The score to be used for novelty detection is given byKa — bosrses Which reduces to £
n — &, by substitutingx = KT(y1+n — &), bosrset= y1 and K = reshapéKp).

Example 11 ¢-Regression)We derive the SDP forv regression (Sdbikopf et al., 2000), which
automatically selects the insensitive tube for regression. As in theSVM case in Example 8,
the user defined parametercontrols the fraction of errors and support vectors. Using #e
insensitive loss(k;,y;, f(x)) =max0, |y; — f(x;)| —€), and thev-parameterized quality functional,
Qemp(K, X,Y) =min¢.,, C(ve+ 1 5™, (% +;)) subjectto fx) —yi <e—G, yi— f(x) <e—{f,

1062



HYPERKERNELS

Zi(*) >0foralli =1,...,mande > 0, the corresponding SDP is
imimi 1 XV T1 , A
minimize st +4*+&' = 4+ 33
Byniy 2 ) m 2
subjectto X >0,n>0,£>0,>0
IK3B|| < t2, 17 B = stddex¥irain) ° (31)
FB) z
—
|: z' 12 :| =0

where z= [ _yy]—y{ _11]+n—2—x[ i ] and F(B) = [ _KK _KK ]

The Lagrange function is minimized far= F (B)'z, and substituting into # Ka — bogise; We
obtain the regression function=f [ —K K ]F(B)'z—v.

Example 12 (Kernel Target Alignment) For the Kernel Target Alignment approach (Cristianini
et al., 2002), Qmp = tr(Kyy") = y'Ky, we directly minimize the regularized quality functional,
obtaining the following optimization problem (Lanckriet et al., 2002),

minimize  1t, + %Qtz
B

subjectto >0

K3 <tp,17B=1 (32)
K y
[ 5l ] 0.

Note that for the case of Kernel Target Alignmengndoes not provide a direct formulation for
the hypothesis function, but instead, it determines a kernel matrix K. €hgkmatrix, K, can be
utilized in a traditional SVM, to obtain a classification function.

7. Experiments

In the following experiments, we use data from the UCI repository. Wherel#tta attributes are
numerical, wedid not perform any preprocessingf the data. Boolean attributes are converted
to {—1,1}, and categorical attributes are arbitrarily assigned an order, and nednfie?2,...}.
The optimization problems in Section 6 were solved with an approximate hypefkaatrix as de-
scribed in Section 7.1. The SDPs were solved using SeDuMi (Sturm, J289YALMIP (Lofberg,
2002) was used to convert the equations into standard form. We useghthkérnel for automatic
relevance determination defined by (14) for the hyperkernel optimizatiolblgms. The scaling
freedom that (14) provides for each dimension means we do not havaralize data to some
arbitrary distribution.

For the classification and regression experiments, the datasets werdsflitOrrandom permu-
tations of 60% training data and 40% test data. We deliberately did not attempetpasameters
and instead made the following choices uniformly for all datasets in classificaggression and
novelty detection:

e The kernel widtho;, for each dimension, was set to 50 times the 90% quantile of the value
of |x; — X;| over the training data. This ensures sufficient coverage without havingide a
kernel. This value was estimated from a 20% random sampling of the trainiag da
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A was adjusted so th«';;;i};1 = 100 (that isC = 100 in the Vapnik-style parameterization of

SVMs). This has commonly been reported to yield good results.

e v = 0.3 for classification and regression. While this is clearly suboptimal for matgséts,
we decided to choose it beforehand to avoid having to changgarameter. Clearly we
could use previous reports on generalization performance to gethis value for better
performance. For novelty detection= 0.1 (see Section 7.6 for details).

e Ay for the Harmonic Hyperkernel was chosen to & @iving adequate coverage over various
kernel widths in (12) (small, emphasizes wide kernels almost exclusivBfyclose to 1 will
treat all widths equally).

e The hyperkernel regularization constant was seide= 1.

e For the scale breaking constralhtp = ¢, ¢ was set to 1 for classification as the hypothesis

class only involves the sign of the trained function, and therefore is sczde However,

for regressiong := stdde\Yiain) (the standard deviation of the training labels) so that the
hyperkernel coefficients are of the same scale as the output (the roofst bosset takes
care of the mean).

In the following experiments, the hypothesis function is computed using thables of the
SDP. In certain cases, humerical problems in the SDP optimizer or in theg@sagise may pre-
vent this hypothesis from optimizing the regularized risk for the particulandtematrix. In this
case, one can use the kernel makitrom the SDP and obtain the hypothesis function via a stan-
dard SVM.

7.1 Low Rank Approximation

Although the optimization of (17) has reduced the problem of optimizing overpwasibly infi-
nite dimensional Hilbert spaces to a finite problem, it is still formidable in practdbere aren’
coefficients for3. For an explicit expansion of type (15) one can optimize in the expansiein co
ficientsk; (x)ki(x') directly, which leads to a quality functional with @ penalty on the expansion
coefficients. Such an approach is appropriate if there are few termS)in (1

In the general case (or if the explicit expansion has many terms), oneseanlow-rank approx-
imation, as described by Fine and Scheinberg (2001) and Zhang (ZD@i%)entails picking from
{k((x,%j),)|1<i,j <P} a small fraction of termsp (wheren? >> p), which approximaté on
Xirain X Xirain SUfficiently well. In particular, we choose amx p truncated lower triangular matri®
such that|PKP" — GG’ || < 8, whereP is the permutation matrix which sorts the eigenvaluds of
into decreasing order, ar@ds the level of approximation needed. The nofim||g is the Frobenius
norm. In the following experiments, the hyperkernel matrix was approximatéd= 10-® using
the incomplete Cholesky factorization method (Bach and Jordan, 2002).

7.2 Classification Experiments

Several binary classification datasetioom the UCI repository were used for the experiments. A
set of synthetic data (labeled syndata in the results) sampled from twoi@@susgs created to
illustrate the scaling freedom between dimensions. The first dimension Haddasl deviation
of 1000 whereas the second dimension had a standard deviation of mgéesasult is shown in
Figure 1). The results of the experiments are shown in Table 3.

1. We classified window vs. non-window for glass data, the other datasetd| binary.
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From Table 3, we observe that our method achieves state of the art fesultsthe datasets,
except the “heart” dataset. We also achieve results much better thanysigvieported for the
“credit” dataset. Comparing the results 4SVM and Tuned SVM, we observe that our method is
always equally good, or better thail€eSVM tuned using 10-fold cross validation.

Data C-SVM v-SVM | Lag-SVM | Best other| CV Tuned SVM ()
syndata| 2.8+2.4| 1.9+19| 2.4+2.2 NA 5.9+5.4 (1)
pima | 23.5-2.0 | 27.742.1 | 23.6+1.9 235 24.1+£2.1 (1¢H)
ionosph| 6.6+£1.8| 6.7+1.8| 6.4+1.9 5.8 6.1+1.8 (16)
wdbc | 3.3+1.2| 3.8+1.2| 3.0+1.1 3.2 5.2+1.4 (1)
heart | 19.743.3 | 19.3+2.4 | 20.1+2.8 16.0 23.2£3.7 (10H)
thyroid | 7.2+3.2| 10.14+4.0 | 6.2£3.1 4.4 5.2+2.2 (15)
sonar | 14.8+3.7 | 15.3+3.7 | 14.7£3.6 15.4 15.3+4.1 (16)
credit | 14.6-1.8 | 13.741.5| 14.7+1.8 22.8 15.3+2.0 (16)
glass | 6.0+42.4| 8.9+2.6| 6.0£2.2 NA 7.242.7 (16)

Table 3: Hyperkernel classification: Test error and standard dewimtipercent. The second, third
and fourth columns show the results of the hyperkernel optimizatio@s®¥M (Exam-
ple 7),v-SVM (Example 8) and Lagrangian SVM (Example 9) respectively. Tkealte
in the fifth column shows the best results from (Freund and Schapiré, Bésch et al.,
2001, Meyer et al., 2003). The rightmost column shoWsaVM tuned in the traditional
way. A Gaussian RBF kernel was tuned using 10-fold cross validatidineotnaining data,
with the best value of shown in brackets. A grid search was performed©o). The
values ofC tested werg1072,1071,...,10°}. The values of the kernel widtts, tested
were between 10% and 90% quantile of the distance between a pair of sdmppiets in
the data. These quantiles were estimated by a random sample of 20% of time toaita.

7.3 Effect ofAg and A on Classification Error

In order to investigate the effect of varying the hyperkernel regutidn constantg, and the
Harmonic Hyperkernel parameteYy, we performed experiments using t68eSVM hyperkernel
optimization (Example 7). We performed two sets of experiments with each ehosen datasets.
The results shown in Table 4.

From Table 4, we observe that the variation in classification accuraaytiogewvhole range
of the hyperkernel regularization constakg, is less than the standard deviation of the classifica-
tion accuracies of the various datasets (compare with Table 3). This deateaghat our method
iS quite insensitive to the regularization parameter over the range of vakted fer the various
datasets.

The method shows a higher sensitivity to the harmonic hyperkernel pararatee this pa-
rameter effectively selects the scale of the problem, by selecting the “wiflthiedkernel, it is to
be expected that each dataset would have a different ideal valg df is to be noted that the
generalization accuracy &f = 0.6 is within one standard deviation (see Table 3 and 4) of the best
accuracy achieved over the whole range tested.
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Data Error | Deviation Error | Deviation
syndata| 3.0+1.1 2.2 2.8+0.0 2.2
pima | 25.7+2.6 1.9 24.5+-0.1 1.5
ionosph| 6.6t£1.0 1.7 7.2£0.1 1.9
wdbc 2.9+0.4 0.9 2.7+0.2 0.8
heart | 19.74-2.0 3.0 19.4+0.9 2.8
thyroid | 6.5+2.8 3.0 6.7+0.3 3.7
sonar | 15.741.6 3.4 15.1+0.2 3.3
credit | 16.0:1.8 1.6 14.7+0.4 1.6
glass 5.9+1.0 2.3 5.24+0.3 2.3

Table 4: Effect of varying\n, andAq on classification error. In the left experiment, we fixeg=
1, andAn, was varied with the valuek, = {0.1,0.2,...,0.9,0.92,0.94,0.96,0.98}.In the
right, we sef\, = 0.6 and varied\g = {10-4,1073, ..., 10°}. The error columns (columns
2 and 4) report the average error on the test set and the standaatiateof the error
over the different parameter settings. The deviation columns (columns B)aadort the
average standard deviation over 10 random 60%/40% splits.

7.4 Computational Time

One of the concerns of an SDP optimization problem is the computational cdtypléxstead
of performing worst case analysis of computational complexity, we parimm empirical test to
investigate the scaling behaviour of the proposed method. The total compuitawédior the first 10
splits of the data was measured, and the average time taken for each spliim@sted and plotted
on a log scale plot in Figure 4. The slope of the graph demonstrates thaweeh approximately
cubic scaling in computational time.

7.5 Regression Experiments

In order to demonstrate that we can solve problems other than binary clatssifiusing the same
framework, we performed some experiments using regression and ndegdigtion datasets. The
results of the regression experiments are shown in Table 5. Wehssdme parameter settings
in the previous section.

Comparing the second and fourth columns, we observe that the hypelrkgtimization prob-
lem performs better than&aSVR tuned using cross validation for all the datasets except the servo
dataset. Meyer et al. (2003) used a 90% % split of the data for their experiments, while we used
a 60%/40% split, which may account for the better performance in the cpu and datasets. The
reason for the much better rate on the “auto imports” dataset remains a mystery

7.6 Novelty Detection

We applied the single class support vector machine to detect outliers in the 4:3& The test set
of the default split in the USPS database was used in the following experimiérggparametev
was set to 0.1 for these experiments, hence selecting up to 10% of the datieas.
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Figure 4: Alog scale plot of computational time (in seconds), measured M&iigAB’s cputime,

against the number of examples in the respective datasets. The slopdeasihequares
fit through the points are 3.13, 3.05 and 3.03@8VM (Example 7)v-SVM (Exam-
ple 8) and Lag-SVM (Example 9) respectively, demonstrating that theitige have
approximately cubic scaling.

Data v-SVR | Best other| CV Tunede-SVR
auto-mpg 7.83+0.96 7.11 9.47+1.55
boston 12.961+-3.38 9.60 15.78+4.30

auto imports10°) | 5.914+2.41 0.25 7.514+5.33
cpu(x10°) 4.414-3.64 3.16 12.02+20.73
servo 0.74+0.26 0.25 0.62+0.25

Table 5: Hyperkernel regression: Mean Squared Error. Thensemamlumn shows the results from

the hyperkernel optimization of theregression (Example (11)). The results in the third
column shows the best results from (Meyer et al., 2003). The rightmashooshows a
€-SVR with a gaussian kernel tuned using 10-fold cross validation on thengadata.
Similar to the classification setting, grid search was performeoa). The values o€
tested Were{10‘2, 1071, 109}. The values of the kernel widtls, tested were between
the 10% and 90% quantiles of the distance between a pair of sample of poirnesdatth
These quantiles were estimated by a random 20% sample of the training data.
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Figure 5: Top rows: Images of digits ‘1’ and ‘2’, considered novelyorithm; Bottom: typical
images of digits ‘1’ and ‘2’.

Since there is no quantitative method for measuring the performance dfyndeeection, we
cannot directly compare our results with the traditional single class SVM.aWeuly subjectively
conclude, by visually inspecting a sample of the digits, that our approadts\fiar novelty detection
of USPS digits. Figure 5 shows a sample of the digits. We can see that théhaetgatentifies
‘novel’ digits, such as in the top two rows of Figure 5. The bottom two rowswsha sample of
digits which have been deemed to be ‘common’.

8. Summary and Outlook

The regularized quality functional allows the systematic solution of problestceded with the
choice of a kernel. Quality criteria that can be used include Kernel Talggnment, regularized
risk and the log posterior. The regularization implicit in our approach alloesdmtrol of overfit-
ting that occurs if one optimizes over a too large a choice of kernels.

We have shown that when the empirical quality functional is the regulariz&dunctional,
the resulting optimization problem is convex, and in fact is a SDP. This SDEhvdarns the best
kernel given the data, has a Bayesian interpretation in terms of a hie@r@aussian process. We
define more general kernels which may have many free parametertmize over them without
overfitting. The experimental results on classification demonstrate that ss#gp@to achieve state
of the art performance using our approach with no manual tuning. Fortre, the same framework
and parameter settings work for various data sets as well as regresdion\alty detection.

This approach makes support vector based estimation approaches rtoonatad. Parameter
adjustment is less critical compared to when the kernel is fixed, or hand.tBo&ure work will fo-
cus on deriving improved statistical guarantees for estimates derivegpggdernels which match
the good empirical performance.
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