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Abstract

Bayesian networks have become one of the major models used for statistical inference. We study
the question whether the decisions computed by a Bayesian network can be represented within a
low-dimensional inner product space. We focus on two-labelclassification tasks over the Boolean
domain. As main results we establish upper and lower bounds on the dimension of the inner prod-
uct space for Bayesian networks with an explicitly given (full or reduced) parameter collection. In
particular, these bounds are tight up to a factor of 2. For some nontrivial cases of Bayesian networks
we even determine the exact values of this dimension. We further consider logistic autoregressive
Bayesian networks and show that every sufficiently expressive inner product space must have di-
mension at leastΩ(n2), wheren is the number of network nodes. We also derive the bound 2Ω(n) for
an artificial variant of this network, thereby demonstrating the limits of our approach and raising an
interesting open question. As a major technical contribution, this work reveals combinatorial and
algebraic structures within Bayesian networks such that known methods for the derivation of lower
bounds on the dimension of inner product spaces can be brought into play.

Keywords: Bayesian network, inner product space, embedding, linear arrangement, Euclidean
dimension

1. Introduction

During the last decade, there has been remarkable interest in learning systems based on hypotheses
that can be written as inner products in an appropriate feature space andlearned by algorithms that
perform a kind of empirical or structural risk minimization. Often in such systems the inner product
operation is not carried out explicitly, but reduced to the evaluation of a so-called kernel function
that operates on instances of the original data space. A major advantage of this technique is that
it allows to handle high-dimensional feature spaces efficiently. The learning strategy proposed by
Boser et al. (1992) in connection with the so-called support vector machine is a theoretically well
founded and very powerful method that, in the years since its introduction,has already outperformed
most other systems in a wide variety of applications (see also Vapnik, 1998).
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Bayesian networks have a long history in statistics. In the first half of the 1980s they were
introduced to the field of expert systems through work by Pearl (1982) and Spiegelhalter and Knill-
Jones (1984). Bayesian networks are much different from kernel-based learning systems and offer
some complementary advantages. They graphically model conditional independence relationships
between random variables. Like other probabilistic models, Bayesian networks can be used to
represent inhomogeneous data with possibly overlapping features and missing values in a uniform
manner. Quite elaborate methods dealing with Bayesian networks have been developed for solving
problems in pattern classification.

One of the motivations for the work this article is about was that recently several research groups
considered the possibility of combining the key advantages of probabilistic models and kernel-based
learning systems. Various kernels were suggested and extensively studied, for instance, by Jaakkola
and Haussler (1999a,b), Oliver et al. (2000), Saunders et al. (2003), Tsuda and Kawanabe (2002),
and Tsuda et al. (2002, 2004). Altun et al. (2003) proposed a kernel for the Hidden Markov Model,
which is a special case of a Bayesian network. Another approach for combining kernel methods and
probabilistic models has been made by Taskar et al. (2004).

In this article, we consider Bayesian networks as computational models that perform two-label
classification tasks over the Boolean domain. We aim at finding the simplest inner product space
that is able to express the concept class, that is, the class of decision functions, induced by a given
Bayesian network. Hereby, “simplest” refers to a space which has as few dimensions as possible.
We focus on Euclidean spaces equipped with the standard dot product. For the finite-dimensional
case, this is no loss of generality since any finite-dimensional reproducingkernel Hilbert space is
isometric withR

d for somed. Furthermore, we use the Euclidean dimension of the space as the
measure of complexity. This is well motivated by the fact that most generalization error bounds for
linear classifiers are given in terms of either the Euclidean dimension or in termsof the geomet-
rical margin between the data points and the separating hyperplanes. Applying random projection
techniques from Johnson and Lindenstrauss (1984), Frankl and Maehara (1988), or Arriaga and
Vempala (1999), it can be shown that any arrangement with a large margin can be converted into
a low-dimensional arrangement. A recent result of Balcan et al. (2004)in this direction even takes
into account low-dimensional arrangements that allow a certain amount of error. Thus, a large
lower bound on the smallest possible dimension rules out the possibility that a classifier with a large
margin exists. Given a Bayesian networkN , we introduce Edim(N ) for denoting the smallest di-
mensiond such that the decisions represented byN can be implemented as inner products in the
d-dimensional Euclidean space. Our results are provided as upper and lower bounds for Edim(N ).

We first consider Bayesian networks with an explicitly given parameter collection. The param-
eters can be arbitrary, where we speak of an unconstrained network,or they may be required to
satisfy certain restrictions, in which case we have a network with a reducedparameter collection.
For both network types, we show that the “natural” inner product space, which can obtained from the
probabilistic model by straightforward algebraic manipulations, has a dimension that is the smallest
possible up to a factor of 2, and even up to an additive term of 1 in some cases. Furthermore, we
determine the exact values of Edim(N ) for some nontrivial instances of these networks. The lower
bounds in all these cases are obtained by analyzing the Vapnik-Chervonenkis (VC) dimension of the
concept class associated with the Bayesian network. Interestingly, the VCdimension plays also a
major role when estimating the sample complexity of a learning system. In particular,it can be used
to derive bounds on the number of training examples that are required forselecting hypotheses that
generalize well on new data. Thus, the tight bounds on Edim(N ) reveal that the smallest possible
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Euclidean dimension for a Bayesian network with an explicitly given parametercollection is closely
tied to its sample complexity.

As a second topic, we investigate a class of probabilistic models known as logistic autoregres-
sive Bayesian networks or sigmoid belief networks. These networks were originally proposed by
McCullagh and Nelder (1983) and studied systematically, for instance, by Neal (1992), and Saul
et al. (1996). (See also Frey, 1998). Using the VC dimension, we show that Edim(N ) for theses
networks must grow at least asΩ(n2), wheren is the number of nodes.

Finally, we get interested in the question whether it is possible to establish an exponential lower
bound on Edim(N ) for the logistic autoregressive Bayesian network. This investigation is motivated
by the fact we also derive here that these networks have their VC dimension bounded byO(n6).
Consequently, VC dimension considerations are not sufficient to yield an exponential lower bound
for Edim(N ). We succeed in giving a positive answer for an unnatural variant of this network that
we introduce and call the modified logistic autoregressive Bayesian network. This variant is also
shown to have VC dimensionO(n6). We obtain that for a network withn+2 nodes, Edim(N ) is at
least as large as 2n/4. The proof for this lower bound is based on the idea of embedding one concept
class into another. In particular, we show that a certain class of Boolean parity functions can be
embedded into such a network.

While, as mentioned above, the connection between probabilistic models and inner product
spaces has already been investigated, this work seems to be the first one that explicitly addresses the
question of finding a smallest-dimensional sufficiently expressive inner product space. In addition,
there has been related research considering the question of representing a given concept class by
a system of halfspaces, but not concerned with probabilistic models (see, e.g., Ben-David et al.,
2002; Forster et al., 2001; Forster, 2002; Forster and Simon, 2002; Forster et al., 2003; Kiltz, 2003;
Kiltz and Simon, 2003; Srebro and Shraibman, 2005; Warmuth and Vishwanathan, 2005). A further
contribution of our work can be seen in the uncovering of combinatorial and algebraic structures
within Bayesian networks such that techniques known from this literature can be brought into play.

We start by introducing the basic concepts in Section 2. The upper boundsare presented in
Section 3. Section 4 deals with lower bounds that are obtained using the VC dimension as the core
tool. The exponential lower bound for the modified logistic autoregressivenetwork is derived in
Section 5. In Section 6 we draw the major conclusions and mention some open problems.

Bibliographic Note. Results in this article have been presented at the 17th Annual Conferenceon
Learning Theory, COLT 2004, in Banff, Canada (Nakamura et al., 2004).

2. Preliminaries

In the following, we give formal definitions for the basic notions in this article.Section 2.1 in-
troduces terminology from learning theory. In Section 2.2, we define Bayesian networks and the
distributions and concept classes they induce. The idea of a linear arrangement for a concept class
is presented in Section 2.3.

2.1 Concept Classes, VC Dimension, and Embeddings

A concept classC over domainX is a family of functions of the formf : X →{−1,1}. Eachf ∈ C

is called aconcept. A finite setS= {s1, . . . ,sm} ⊆ X is said to beshatteredby C if for every binary
vectorb ∈ {−1,1}m there exists some conceptf ∈ C such thatf (si) = bi for i = 1, . . . ,m. The
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Vapnik-Chervonenkis (VC) dimensionof C is given by

VCdim(C ) = sup{m | there is someS⊆ X shattered byC and|S| = m}.

For everyz∈ R, let sign(z) = 1 if z≥ 0, and sign(z) = −1 otherwise. We use the sign function for
mapping a real-valued functiong to a±1-valued concept sign◦g.

Given a concept classC over domainX and a concept classC ′ over domainX ′, we writeC ≤ C ′

if there exist mappings

C 3 f 7→ f ′ ∈ C ′ and X 3 x 7→ x′ ∈ X ′

satisfying
f (x) = f ′(x′) for every f ∈ C andx∈ X .

These mappings are said to provide anembeddingof C into C ′. Obviously, if S⊆ X is an m-
element set that is shattered byC thenS′ = {s′ | s∈ S} ⊆ X ′ is anm-element set that is shattered by
C ′. Consequently,C ≤ C ′ implies VCdim(C ) ≤ VCdim(C ′).

2.2 Bayesian Networks

Definition 1 A Bayesian networkN has the following components:

1. A directed acyclic graph G= (V,E), where V is a finite set of nodes and E⊆V ×V a set of
edges,

2. a collection(pi,α)i∈V,α∈{0,1}mi of programmable parameters with values in the open interval
]0,1[, where mi denotes the number of predecessors of node i, that is, mi = |{ j ∈V | ( j, i) ∈
E}|,

3. constraints that describe which assignments of values from]0,1[ to the parameters of the
collection are allowed.

If the constraints are empty, we speak of anunconstrainednetwork. Otherwise, the network is
constrained.

We identify then = |V| nodes ofN with the numbers 1, . . . ,n and assume that every edge
( j, i)∈ E satisfiesj < i, that is,E induces a topological ordering on{1, . . . ,n}. Given( j, i)∈ E, j is
called a parent ofi. We usePi to denote the set of parents of nodei, and letmi = |Pi | be the number
of parents. A networkN is said to befully connectedif Pi = {1, . . . , i−1} holds for every nodei.

Example 1 (kth-order Markov chain) For k ≥ 0, let Nk denote the unconstrained Bayesian net-
work with Pi = {i − 1, . . . , i − k} for i = 1, . . . ,n (with the convention that numbers smaller than
1 are ignored such that mi = |Pi | = min{i − 1,k}). The total number of parameters is equal to
2k(n−k)+2k−1 + · · ·+2+1 = 2k(n−k+1)−1.

We associate with every nodei a Boolean variablexi with values in{0,1}. We sayx j is a
parent-variable ofxi if j is a parent ofi. Eachα ∈ {0,1}mi is called a possible bit-pattern for the
parent-variables ofxi . We useMi,α to denote the polynomial

Mi,α(x) = ∏
j∈Pi

x
α j
j , wherex0

j = 1−x j andx1
j = x j ,
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that is,Mi,α(x) is 1 if the parent variables ofxi exhibit bit-patternα, otherwise it is 0.
Bayesian networks are graphical models of conditional independence relationships. This gen-

eral idea is made concrete by the following notion.

Definition 2 Let N be a Bayesian network with nodes1, . . . ,n. The class of distributions induced
by N , denoted asDN , consists of all distributions on{0,1}n of the form

P(x) =
n

∏
i=1

∏
α∈{0,1}mi

p
xiMi,α(x)
i,α (1− pi,α)(1−xi)Mi,α(x). (1)

Thus, for every assignment of values from]0,1[ to the parameters ofN , we obtain a specific
distribution fromDN . Recall that not every possible assignment is allowed ifN is constrained.

The polynomial representation of log(P(x)) resulting from equation (1) is known as “Chow
expansion” in the pattern classification literature (see, e.g., Duda and Hart,1973). The parameter
pi,α represents the conditional probability for the eventxi = 1 given that the parent variables ofxi

exhibit bit-patternα. Equation (1) is a chain expansion forP(x) that expressesP(x) as a product of
conditional probabilities.

An unconstrained network that is highly connected may have a number of parameters that grows
exponentially in the number of nodes. The idea of a constrained network is tokeep the number of
parameters reasonably small even in case of a dense topology. We consider two types of constraints
giving rise to the definitions of networks with a reduced parameter collection and logistic autore-
gressive networks.

Definition 3 A Bayesian network with a reduced parameter collectionis a Bayesian network with
the following constraints: For every i∈ {1, . . . ,n} there exists a surjective function Ri : {0,1}mi →
{1, . . . ,di} such that the parameters ofN satisfy

∀i = 1, . . . ,n,∀α,α′ ∈ {0,1}mi : Ri(α) = Ri(α′) =⇒ pi,α = pi,α′ .

We denote the network asN R for R= (R1, . . . ,Rn). Obviously,N R is completely described by the
reduced parameter collection(pi,c)1≤i≤n,1≤c≤di .

A special case of these networks uses decision trees or graphs to represent the parameters.

Example 2 Chickering et al. (1997) proposed Bayesian networks “with local structure”. These
networks contain a decision tree Ti (or, alternatively, a decision graph Gi) over the parent-variables
of xi for every node i. The conditional probability for xi = 1, given the bit-pattern of the variables
from Pi , is attached to the corresponding leaf in Ti (or sink in Gi , respectively). This fits nicely into
our framework of networks with a reduced parameter collection. Here, di denotes the number of
leaves in Ti (or sinks of Gi , respectively), and Ri(α) is equal to c∈ {1, . . . ,di} if α is routed to leaf
c in Ti (or to sink c in Gi , respectively).

For a Bayesian network with reduced parameter collection, the distributionP(x) from Defini-
tion 2 can be written in a simpler way. LetRi,c(x) denote the{0,1}-valued function that indicates
for everyx∈ {0,1}n whether the projection ofx to the parent-variables ofxi is mapped byRi to the
valuec. Then, we have

P(x) =
n

∏
i=1

di

∏
c=1

p
xiRi,c(x)
i,c (1− pi,c)

(1−xi)Ri,c(x). (2)
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We finally introduce the so-called logistic autoregressive Bayesian networks, originally pro-
posed by McCullagh and Nelder (1983), that have been shown to perform surprisingly well on
certain problems (see also Neal, 1992, Saul et al., 1996, and Frey, 1998).

Definition 4 Thelogistic autoregressive Bayesian networkNσ is the fully connected Bayesian net-
work with constraints on the parameter collection given as

∀i = 1, . . . ,n,∃(wi, j)1≤ j≤i−1 ∈ R
i−1,∀α ∈ {0,1}i−1 : pi,α = σ

(
i−1

∑
j=1

wi, jα j

)

,

whereσ(y) = 1/(1+e−y) is the standard sigmoid function. Obviously,Nσ is completely described
by the parameter collection(wi, j)1≤i≤n,1≤ j≤i−1.

In a two-label classification task, functionsP(x),Q(x)∈ DN are used as discriminant functions,
whereP(x) andQ(x) represent the distributions ofx conditioned to label 1 and−1, respectively.
The corresponding decision function assigns label 1 tox if P(x) ≥ Q(x), and−1 otherwise. The
obvious connection to concept classes in learning theory is made explicit in the following definition.

Definition 5 Let N be a Bayesian network with nodes1, . . . ,n and letDN be the corresponding
class of distributions. The class of concepts induced byN , denoted asCN , consists of all±1-valued
functions on{0,1}n of the formsign(log(P(x)/Q(x))) for P,Q∈ DN .

Note that the function sign(log(P(x)/Q(x))) attains the value 1 ifP(x) ≥ Q(x), and the value
−1 otherwise. We use VCdim(N ) to denote the VC dimension ofCN .

2.3 Linear Arrangements in Inner Product Spaces

We are interested in embedding concept classes into finite-dimensional Euclidean spaces equipped
with the standard dot productu>v = ∑d

i=1uivi , whereu> denotes the transpose ofu. Such an em-
bedding is provided by a linear arrangement. Given a concept classC , we aim at determining the
smallest Euclidean dimension, denoted Edim(C ), that such a space can have.

Definition 6 A d-dimensional linear arrangementfor a concept classC over domainX is given by
collections(uf ) f∈C and(vx)x∈X of vectors inRd such that

∀ f ∈ C ,x∈ X : f (x) = sign(u>f vx).

The smallest d such that there exists a d-dimensional linear arrangement for C is denoted as
Edim(C ). If there is no finite-dimensional linear arrangement forC , Edim(C ) is defined to be
infinite.

If CN is the concept class induced by a Bayesian networkN , we write Edim(N ) instead of
Edim(CN ). It is evident that Edim(C ) ≤ Edim(C ′) if C ≤ C ′.

It is easy to see that Edim(C ) ≤ min{|C |, |X |} for finite concept classes. Nontrivial upper
bounds on Edim(C ) are usually obtained constructively by presenting an appropriate arrangement.
As for lower bounds, the following result is immediate from a result by Dudley(1978) which states
that VCdim({sign◦ f | f ∈ F }) = d for everyd-dimensional vector spaceF consisting of real-
valued functions (see also Anthony and Bartlett, 1999, Theorem 3.5).
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Lemma 7 Every concept classC satisfiesEdim(C ) ≥ VCdim(C ).

Let PARITYn be the concept class{ha | a∈ {0,1}n} of parity functions on the Boolean domain
given byha(x) = (−1)a>x, that is,ha(x) is the parity of thosexi whereai = 1. The following lower
bound, which will be useful in Section 5, is due to Forster (2002).

Corollary 8 Edim(PARITYn) ≥ 2n/2.

3. Upper Bounds on the Dimension of Inner Product Spaces for Bayesian Networks

This section is concerned with the derivation of upper bounds on Edim(N ). We obtain bounds for
unconstrained networks and for networks with a reduced parameter collection by providing concrete
linear arrangements. Given a setM, let 2M denote its power set.

Theorem 9 Every unconstrained Bayesian networkN satisfies

Edim(N ) ≤

∣
∣
∣
∣
∣

n
[

i=1

2Pi∪{i}

∣
∣
∣
∣
∣
≤ 2·

n

∑
i=1

2mi .

Proof From the expansion ofP in equation (1) and the corresponding expansion ofQ (with param-
etersqi,α in the role ofpi,α), we obtain

log
P(x)
Q(x)

=
n

∑
i=1

∑
α∈{0,1}mi

(

xiMi,α(x) log
pi,α

qi,α
+(1−xi)Mi,α(x) log

1− pi,α

1−qi,α

)

. (3)

On the right-hand side of equation (3), we find the polynomialsMi,α(x) andxiMi,α(x). Note that
| ∪n

i=1 2Pi∪{i}| equals the number of monomials that occur when we express these polynomialsas
sums of monomials by successive applications of the distributive law. A linear arrangement of the
claimed dimensionality is now obtained in the obvious fashion by introducing one coordinate per
monomial.

This result immediately yields an upper bound for Markov chains of orderk.

Corollary 10 Let Nk be the kth-order Markov chain given in Example 1. Then,

Edim(Nk) ≤ (n−k+1)2k.

Proof Apply Theorem 9 and observe that

n
[

i=1

2Pi∪{i} =
n

[

i=k+1

{Ji ∪{i} | Ji ⊆ {i−1, . . . , i−k}}∪{J | J ⊆ {1, . . . ,k}}.

Similar techniques as used in the proof of Theorem 9 lead to an upper boundfor networks with
a reduced parameter collection.
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Theorem 11 Let N R denote the Bayesian network that has a reduced parameter collection

(pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. Then,

Edim(N R) ≤ 2·
n

∑
i=1

di .

Proof Recall that the distributions fromDN R can be written as in equation (2). We make use of the
obvious relationship

log
P(x)
Q(x)

=
n

∑
i=1

di

∑
c=1

(

xiRi,c(x) log
pi,c

qi,c
+(1−xi)Ri,c(x) log

1− pi,c

1−qi,c

)

. (4)

A linear arrangement of the appropriate dimension is now obtained by introducing two coordinates
per pair(i,c): If x is mapped tovx in this arrangement, then the projection ofvx to the two coor-
dinates corresponding to(i,c) is (Ri,c(x),xiRi,c(x)); the appropriate mapping(P,Q) 7→ uP,Q in this
arrangement is easily derived from (4).

In Section 4 we shall show that the bounds established by Theorem 9 and Theorem 11 are tight
up to a factor of 2 and, in some cases, even up to an additive constant of 1.

The linear arrangements for unconstrained Bayesian networks or for Bayesian networks with
a reduced parameter collection were easy to find. This is no accident as thisholds for every class
of distributions (or densities) from the so-called exponential family because (as pointed out, for
instance, in Devroye et al., 1996) the corresponding Bayes rule takes aform known as generalized
linear rule. From this representation a linear arrangement is evident. Note,however, that the bound
given in Theorem 9 is slightly stronger than the bound obtained from the general approach for
members of the exponential family.

4. Lower Bounds Based on VC Dimension Considerations

In this section, we derive lower bounds on Edim(N ) that come close to the upper bounds obtained
in the previous section. Before presenting the main results in Section 4.2 as Corollaries 18, 21, and
Theorem 22, we focus on some specific Bayesian networks for which wedetermine the exact values
of Edim(N ).

4.1 Optimal Bounds for Specific Networks

In the following we calculate exact values of Edim(N ) by establishing lower bounds of VCdim(N )
and applying Lemma 7. This gives us also the exact value of the VC dimension for the respective
networks. We recall thatNk is thekth-order Markov chain defined in Example 1. The concept class
arising from networkN0, which we consider first, is the well-known Naı̈ve Bayes classifier.

Theorem 12

Edim(N0) =

{
n+1 if n ≥ 2,
1 if n = 1.
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The proof of this theorem relies on the following result.

Lemma 13 For every p,q∈]0,1[ there exist w∈ R and b∈]0,1[ such that

∀x∈ R : xlog
p
q

+(1−x) log
1− p
1−q

= w(x−b) (5)

holds. Conversely, for every w∈ R and b∈]0,1[ there exist p,q∈]0,1[ such that (5) is satisfied.

Proof Rewriting the left-hand side of the equation asxlogw′ + logc′, where

w′ =
p(1−q)

q(1− p)
and c′ =

1− p
1−q

,

it follows thatp= q is equivalent tow′ = c′ = 1. By definition ofc′, p< q is equivalent toc′ > 1 and,
asw′c′ = p/q, this is also equivalent toc′ < 1/w′. Analogously, it follows thatp > q is equivalent
to 0< 1/w′ < c′ < 1. By definingw = logw′ andc = logc′ and taking logarithms in the equalities
and inequalities, we conclude thatp,q∈]0,1[ is equivalent tow∈ R andc = −bwwith b∈]0,1[.

Proof (Theorem 12) Clearly, the theorem holds forn= 1. Suppose, therefore, thatn≥ 2. According
to Corollary 10, Edim(N0)≤ n+1. Thus, by Lemma 7 it suffices to show that VCdim(N0)≥ n+1.
Let ei denote the vector with a one in theith position and zeros elsewhere. Further, let1̄ be the
vector with a 1 in each position. We show that the set ofn+ 1 vectorse1, . . . ,en, 1̄ is shattered by
the classCN0

of concepts induced byN0, consisting of the functions of the form

sign

(

log
P(x)
Q(x)

)

= sign

(
n

∑
i=1

xi log
pi

qi
+(1−xi) log

1− pi

1−qi

)

,

wherepi ,qi ∈]0,1[, for i ∈ {1, . . . ,n}. By Lemma 13, the functions inCN0
can be written as

sign(w>(x−b)),

wherew∈ R
n andb∈]0,1[n.

It is not difficult to see that homogeneous halfspaces, that is, whereb = (0, . . . ,0), can di-
chotomize the set{e1, . . . ,en, 1̄} in all possible ways, except for the two cases to separate1̄ from
e1, . . . ,en. To accomplish these two dichotomies we defineb = (3/4) · 1̄ andw = ±1̄. Then, by the
assumption thatn≥ 2, we have fori = 1, . . . ,n,

w>(ei −b) = ±(1−3n/4) ≶ 0 and w>(1̄−b) = ±(n−3n/4) ≷ 0.

A further type of Bayesian network for which we derive the exact dimension has some kind of
bipartite graph underlying where one set of nodes serves as the set ofparents for all nodes in the
other set.
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Theorem 14 For k ≥ 0, let N ′
k denote the unconstrained network with Pi = /0 for i = 1, . . . ,k and

Pi = {1, . . . ,k} for i = k+1, . . . ,n. Then,

Edim(N ′
k ) = 2k(n−k+1).

Proof For the upper bound, we apply Lemma 1 and Theorem 1 using the fact that

n
[

i=1

2Pi∪{xi} =
n

[

i=k+1

{Ji ∪{i} | Ji ⊆ {1, . . . ,k}}∪{J | J ⊆ {1, . . . ,k}}.

To obtain the lower bound, letM ⊆ {0,1}n−k denote the set from the proof of Theorem 12 for the
corresponding networkN0 with n− k nodes. We show that the setS= {0,1}k ×M ⊆ {0,1}n is
shattered byN ′

k . Note thatShas the claimed cardinality since|M| = n−k+1.
Let (S−,S+) be a dichotomy ofS(that is, whereS−∪S+ = SandS−∩S+ = /0). Given a natural

numberj ∈ {0, . . . ,2k−1}, we use bin( j) to denote the binary representation ofj usingk bits. Then,
let (M−

j ,M+
j ) be the dichotomy ofM defined by

M+
j = {v∈ M | bin( j)v∈ S+}.

Here, bin( j)v refers to the concatenation of thek bits of bin( j) and then−k bits ofv. According to
Theorem 12, for each dichotomy(M−

j ,M+
j ) there exist parameter valuesp j

i ,q
j
i , where 1≤ i ≤ n−k,

such thatN0 with these parameter settings induces this dichotomy onM. In the networkN ′
k , we

specify the parameters as follows. Fori = 1, . . . ,k, let

pi = qi = 1/2,

and fori = k+1, . . . ,n and eachj ∈ {0, . . . ,2k−1} define

pi,bin( j) = p j
i−k,

qi,bin( j) = q j
i−k.

Obviously, the concept thus defined byN ′
k outputs−1 for elements ofS− and 1 for elements ofS+.

Since every dichotomy ofScan be implemented in this way,S is shattered byN ′
k .

4.2 General Lower Bounds

In Section 4.2.1 we shall establish lower bounds on Edim(N ) for unconstrained Bayesian networks
and in Section 4.2.2 for networks with a reduced parameter collection. Theseresults are obtained
by providing embeddings of concept classes, as introduced in Section 2.1, into these networks.
Since VCdim(C )≤ VCdim(C ′) if C ≤ C ′, a lower bound on VCdim(C ′) follows immediately from
classes satisfyingC ≤ C ′ if the VC dimension ofC is known or easy to determine. We first define
concept classes that will suit this purpose.

Definition 15 Let N be an arbitrary Bayesian network. For every i∈ {1, . . . ,n}, let Fi be a family
of±1-valued functions on the domain{0,1}mi and letF = F1×·· ·×Fn. ThenCN ,F is the concept
class over the domain{0,1}n\{(0, . . . ,0)} consisting of all functions of the form

LN , f = [(xn, fn), . . . ,(x1, f1)],
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where f= ( f1, . . . , fn) ∈ F . The right-hand side of this equation is to be understood as a decision
list, where LN , f (x) for x 6= (0, . . . ,0) is determined as follows:

1. Find the largest i such that xi = 1.

2. Apply fi to the projection of x to the parent-variables of xi and output the result.

The VC dimension ofCN ,F can be directly obtained from the VC dimensions of the classesFi .

Lemma 16 Let N be an arbitrary Bayesian network. Then,

VCdim(CN ,F ) =
n

∑
i=1

VCdim(Fi).

Proof We show that VCdim(CN ,F ) ≥ ∑n
i=1VCdim(Fi); the proof for the other direction is similar.

For everyi, we embed the vectors from{0,1}mi into {0,1}n according toτi(a) = (a′,1,0, . . . ,0),
wherea′ ∈ {0,1}i−1 is chosen such that its projection to the parent-variables ofxi is equal toa and
the remaining components are set to 0. Note thatτi(a) is absorbed by item(xi , fi) of the decision
list LN , f . It is easy to see that the following holds: If, fori = 1, . . . ,n, Si is a set that is shattered by
Fi , then∪n

i=1τi(Si) is shattered byCN ,F . Thus, VCdim(CN ,F ) ≥ ∑n
i=1VCdim(Fi).

The preceding definition and lemma are valid for unconstrained as well as constrained networks
as they make use only of the graph underlying the network and do not refer to the values of the
parameters. This will be important in the applications that follow.

4.2.1 LOWER BOUNDS FORUNCONSTRAINEDBAYESIAN NETWORKS

The next theorem is the main step in deriving for an arbitrary unconstrained networkN a lower
bound on Edim(N ). It is based on the idea of embedding one of the concept classesCN ,F defined
above intoCN .

Theorem 17 Let N be an unconstrained Bayesian network and letF ∗
i denote the set of all±1-

valued functions on domain{0,1}mi . Further, letF ∗ = F ∗
1 ×·· ·×F ∗

n . Then,CN ,F ∗ ≤ CN .

Proof We have to show that, for everyf = ( f1, . . . , fn), we can find a pair(P,Q) of distributions
from DN such that, for everyx∈ {0,1}n, LN , f (x) = sign(log(P(x)/Q(x))). To this end, we define
the parameters for the distributionsP andQ as

pi,α =

{

2−2i−1n/2 if fi(α) = −1,
1/2 if fi(α) = +1,

and qi,α =

{
1/2 if fi(α) = −1,

2−2i−1n/2 if fi(α) = +1.

An easy calculation now shows that

log

(
pi,α

qi,α

)

= fi(α)2i−1n and

∣
∣
∣
∣
log

1− pi,α

1−qi,α

∣
∣
∣
∣
< 1. (6)

Fix some arbitraryx ∈ {0,1}n \ {(0, . . . ,0)}. Choosei∗ maximal such thatxi∗ = 1 and letα∗ de-
note the projection ofx to the parent-variables ofxi∗ . Then,LN , f (x) = fi∗(α∗). Thus,LN , f (x) =
sign(log(P(x)/Q(x))) would follow immediately from

sign

(

log
P(x)
Q(x)

)

= sign

(

log
pi∗,α∗

qi∗,α∗

)

= fi∗(α∗). (7)
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The second equation in (7) is evident from the equality established in (6). As for the first equation
in (7), we argue as follows. By the choice ofi∗, we havexi = 0 for everyi > i∗. ExpandingP andQ
as given in (3), we obtain

log
P(x)
Q(x)

= log
pi∗,α∗

qi∗,α∗

+
i∗−1

∑
i=1

(

∑
α∈{0,1}mi

xiMi,α(x) log
pi,α

qi,α

)

+∑
i∈I

(

∑
α∈{0,1}mi

(1−xi)Mi,α(x) log
1− pi,α

1−qi,α

)

,

whereI = {1, . . . ,n}\{i∗}. Employing the inequality from (6), it follows that the sign of the right-
hand side of this equation is determined by log(pi∗,α∗/qi∗,α∗) since this term is of absolute value
2i∗−1n and

2i∗−1n−
i∗−1

∑
j=1

(2 j−1n)− (n−1) ≥ 1. (8)

This concludes the proof.

Using the lower bound obtained from Theorem 17 combined with Lemma 16 and the upper
bound provided by Theorem 9, we have a result that is tight up to a factorof 2.

Corollary 18 Every unconstrained Bayesian networkN satisfies

n

∑
i=1

2mi ≤ Edim(N ) ≤

∣
∣
∣
∣
∣

n
[

i=1

2Pi∪{i}

∣
∣
∣
∣
∣
≤ 2·

n

∑
i=1

2mi .

Bounds for thekth-order Markov chain that are optimal up to an additive constant of 1 emerge
from the lower bound due to Theorem 17 with Lemma 16 and the upper bound stated in Corol-
lary 10.

Corollary 19 Let Nk denote the Bayesian network from Example 1. Then,

(n−k+1)2k−1 ≤ Edim(Nk) ≤ (n−k+1)2k.

4.2.2 LOWER BOUNDS FORBAYESIAN NETWORKS WITH A REDUCED PARAMETER

COLLECTION

We now show how to obtain bounds for networks with a reduced parameter collection. Similarly
as in Section 4.2.1, the major step consists in providing embeddings into these networks. The main
result is based on techniques developed for Theorem 17.

Theorem 20 Let N R denote the Bayesian network that has a reduced parameter collection

(pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. LetF Ri
i denote the set of all±1-valued functions on the domain

{0,1}mi that depend onα ∈ {0,1}mi only through Ri(α). In other words, f∈ F Ri
i holds if and only

if there exists a±1-valued function g on domain{1, . . . ,di} such that f(α) = g(Ri(α)) for every
α ∈ {0,1}mi . Finally, let F R = F R1

1 ×·· ·×F Rn
n . Then,CN R,F R ≤ CN R.
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Proof We focus on the differences to the proof of Theorem 17. First, the decision list LN R, f uses a
function f = ( f1, . . . , fn) of the form fi(x) = gi(Ri(x)) for some functiongi : {1, . . . ,di}→ {−1,1}.
Second, the distributionsP,Q that satisfyLN , f (x) = sign(log(P(x)/Q(x))) for every x ∈ {0,1}n

have to be defined over the reduced parameter collection as given in equation (4). An appropriate
choice is

pi,c =

{

2−2i−1n/2 if gi(c) = −1,
1/2 if gi(c) = 1,

and qi,c =

{
1/2 if gi(c) = −1,

2−2i−1n/2 if gi(c) = 1.

The rest of the proof is completely analogous to the proof of Theorem 17.

Theorem 17 can be viewed as a special case of Theorem 20 since every unconstrained network
can be considered as a network with a reduced parameter collection wherethe functionsRi are 1-1.
However, there are differences arising from the notation of the networkparameters that have been
taken into account by the above proof.

Applying the lower bound of Theorem 20 in combination with Lemma 16 and the upper bound
of Theorem 11, we once more have bounds that are optimal up to the factor2.

Corollary 21 Let N R denote the Bayesian network that has a reduced parameter collection

(pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. Then,

n

∑
i=1

di ≤ Edim(N R) ≤ 2·
n

∑
i=1

di .

4.2.3 LOWER BOUNDS FORLOGISTIC AUTOREGRESSIVENETWORKS

The following result is not obtained by embedding a concept class into a logistic autoregressive
Bayesian network. However, we apply a similar technique as developed in Sections 4.2.1 and 4.2.2
to derive a bound using the VC dimension by directly showing that these networks can shatter sets
of the claimed size.

Theorem 22 Let Nσ denote the logistic autoregressive Bayesian network from Definition 4. Then,

Edim(Nσ) ≥ n(n−1)/2.

Proof We show that the following setS is shattered by the concept classCNσ . Then the statement
follows from Lemma 7.

For i = 2, . . . ,n andc= 1, . . . , i−1, letαi,c ∈ {0,1}i−1 be the pattern with bit 1 in positionc and
zeros elsewhere. Then, for every pair(i,c), wherei ∈ {2, . . . ,n} andc ∈ {1, . . . , i −1}, let s(i,c) ∈
{0,1}n be the vector that has bit 1 in coordinatei, bit-patternαi,c in the coordinates 1, . . . , i−1, and
zeros in the remaining positions. The set

S = {s(i,c) | i = 2, . . . ,n andc = 1, . . . , i−1}

hasn(n−1)/2 elements.
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To show thatS is shattered, let(S−,S+) be some arbitrary dichotomy ofS. We claim that there
exists a pair(P,Q) of distributions fromDNσ such that for everys(i,c), sign(log(P(s(i,c))/Q(s(i,c))))=

1 if and only if s(i,c) ∈ S+. Assume that the parameterspi,α andqi,α for the distributionsP andQ,
respectively, satisfy

pi,α =

{
1/2 if α = αi,c ands(i,c) ∈ S+,

2−2i−1n/2 otherwise,

and

qi,α =

{

2−2i−1n/2 if α = αi,c ands(i,c) ∈ S+,
1/2 otherwise.

Similarly as in the proof of Theorem 17, we have
∣
∣
∣
∣
log

(
pi,α

qi,α

)∣
∣
∣
∣
= 2i−1n and

∣
∣
∣
∣
log

1− pi,α

1−qi,α

∣
∣
∣
∣
< 1. (9)

The expansion ofP andQ yields for everys(i,c) ∈ S,

log
P(s(i,c))

Q(s(i,c))
= log

pi,αi,c

qi,αi,c

+
i−1

∑
j=1

(

∑
α∈{0,1} j−1

s(i,c)
j M j,α(s(i,c)) log

p j,α

q j,α

)

+∑
j∈I

(

∑
α∈{0,1} j−1

(1−s(i,c)
j )M j,α(s(i,c)) log

1− p j,α

1−q j,α

)

,

where I = {1, . . . ,n} \ {i}. In analogy to inequality (8) in the proof of Theorem 17, it follows
from (9) that the sign of log(P(s(i,c))/Q(s(i,c))) is equal to the sign of log(pi,αi,c/qi,αi,c). By the
definition of pi,αi,c andqi,αi,c, the sign of log(pi,αi,c/qi,αi,c) is positive if and only ifs(i,c) ∈ S+.

It remains to show that the parameters of the distributionsP andQ can be given as required by
Definition 4, that is, in the formpi,α = σ(∑i−1

j=1wi, jα j) with wi, j ∈ R, and similarly forqi,α. This
now immediately follows from the fact thatσ(R) =]0,1[.

5. Lower Bounds via Embeddings of Parity Functions

The lower bounds obtained in Section 4 rely on arguments based on the VC dimension of the respec-
tive concept class. In particular, a quadratic lower bound for the logisticautoregressive network has
been established. In the following, we introduce a different technique leading to the lower bound
2Ω(n) for a variant of this network. For the time being, it seems possible to obtain an exponential
bound for these slightly modified networks only, which are given by the following definition.

Definition 23 The modified logistic autoregressive Bayesian networkN ′
σ is the fully connected

Bayesian network with nodes0,1, . . . ,n+1 and the constraints on the parameter collection defined
as

∀i = 0, . . . ,n,∃(wi, j)0≤ j≤i−1 ∈ R
i ,∀α ∈ {0,1}i : pi,α = σ

(
i−1

∑
j=0

wi, jα j

)
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and

∃(wi)0≤i≤n,∀α ∈ {0,1}n+1 : pn+1,α = σ

(
n

∑
i=0

wiσ

(
i−1

∑
j=0

wi, jα j

))

.

Obviously,N ′
σ is completely described by the parameter collections(wi, j)0≤i≤n,0≤ j≤i−1 and(wi)0≤i≤n.

The crucial difference betweenN ′
σ andNσ is the noden+1 whose sigmoidal function receives

the outputs of the other sigmoidal functions as input. Roughly speaking,Nσ is a single-layer net-
work whereasN ′

σ has an extra node at a second layer.
To obtain the bound, we provide an embedding of the concept class of parity functions. The

following theorem motivates this construction by showing that it is impossible to obtain an expo-
nential lower bound for Edim(Nσ) nor for Edim(N ′

σ) using the VC dimension argument, as these
networks have VC dimensions that are polynomial inn.

Theorem 24 The logistic autoregressive Bayesian networkNσ from Definition 4 and the modi-
fied logistic autoregressive Bayesian networkN ′

σ from Definition 23 have a VC dimension that is
bounded by O(n6).

Proof Consider first the logistic autoregressive Bayesian network. We show that the concept class
induced byNσ can be computed by a specific type of feedforward neural network. Then, we apply
a known bound on the VC dimension of these networks.

The neural networks for the concepts inCNσ consist of sigmoidal units, product units, and units
computing second-order polynomials. A sigmoidal unit computes functions ofthe formσ(w>x−t),
wherex∈R

k is the input vector andw∈R
k, t ∈R are parameters. A product unit computesΠk

i=1xwi
i .

The value ofpi,α can be calculated by a sigmoidal unit aspi,α = σ(∑i−1
j=1wi, jα j) with α as input

and parameterswi,1, . . . ,wi,i−1. Regarding the factorspxi
i,α(1− pi,α)(1−xi), we observe that

pxi
i,α(1− pi,α)(1−xi) = pi,αxi +(1− pi,α)(1−xi)

= 2pi,αxi −xi − pi,α +1,

where the first equation is valid becausexi ∈ {0,1}. Thus, the value ofpxi
i,α(1− pi,α)(1−xi) is given

by a second-order polynomial. Similarly, the value ofqxi
i,α(1− qi,α)(1−xi) can also be determined

using sigmoidal units and polynomial units of order 2. Finally, the output value of the network is
obtained by comparingP(x)/Q(x) with the constant threshold 1. We calculateP(x)/Q(x) using a
product unit

y1 · · ·ynz−1
1 · · ·z−1

n ,

with input variablesyi andzi that receive the value ofpxi
i,α(1− pi,α)(1−xi) andqxi

i,α(1− qi,α)(1−xi)

computed by the second-order units, respectively.
This network hasO(n2) parameters andO(n) computation nodes, each of which is a sigmoidal

unit, a second-order unit, or a product unit. Theorem 2 of Schmitt (2002)shows that every such
network withW parameters andk computation nodes, which are sigmoidal and product units, has
VC dimensionO(W2k2). A close inspection of the proof of this result reveals that it also includes
polynomials of degree 2 as computational units (see also Lemma 4 in Schmitt, 2002). Thus, we
obtain the claimed boundO(n6) for the logistic autoregressive Bayesian networkNσ.

For the modified logistic autoregressive network we have only to take one additional sigmoidal
unit into account. Thus, the bound for this network follows now immediately.
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In the previous result we were interested in the asymptotic behavior of the VCdimension, show-
ing that it is not exponential. Using the techniques provided in Schmitt (2002)mentioned in the
above proof, it is also possible to obtain constant factors for these bounds.

We now provide the main result of this section. Its proof employs the conceptclass PARITYn

defined in Section 2.3.

Theorem 25 LetN ′
σ denote the modified logistic autoregressive Bayesian network with n+2 nodes

and assume that n is a multiple of4. Then,PARITYn/2 ≤ N ′
σ.

Proof The mapping

{0,1}n/2 3 x = (x1, . . . ,xn/2) 7→ (

α
︷ ︸︸ ︷

1,x1, . . . ,xn/2,1, . . . ,1,1) = x′ ∈ {0,1}n+2 (10)

assigns to every element of{0,1}n/2 uniquely some element in{0,1}n+2. Note thatα, as indicated
in (10), equals the bit-pattern of the parent-variables ofx′n+2 (which are actually all other variables).
We claim that the following holds. For everya∈ {0,1}n/2, there exists a pair(P,Q) of distributions
from DN ′

σ
such that for everyx∈ {0,1}n/2,

(−1)a>x = sign

(

log
P(x′)
Q(x′)

)

. (11)

Clearly, the theorem follows once the claim is settled. The proof of the claim makes use of the
following facts:

Fact 1 For everya∈ {0,1}n/2, function(−1)a>x can be computed by a two-layer threshold circuit
with n/2 threshold units at the first layer and one threshold unit as output node at the second
layer.

Fact 2 Each two-layer threshold circuitC can be simulated by a two-layer sigmoidal circuitC′ with
the same number of units and the following output convention:C(x) = 1 =⇒ C′(x) ≥ 2/3
andC(x) = 0 =⇒ C′(x) ≤ 1/3.

Fact 3 Network N ′
σ contains as a sub-network a two-layer sigmoidal circuitC′ with n/2 input

nodes,n/2 sigmoidal units at the first layer, and one sigmoidal unit at the second layer.

The parity function is a symmetric Boolean function, that is, a functionf : {0,1}k →{0,1} that
is described by a setM ⊆ {0, . . . ,k} such thatf (x) = 1 if and only if ∑k

i=1xi ∈ M. Thus, Fact 1
is implied by Proposition 2.1 of Hajnal et al. (1993) which shows that every symmetric Boolean
function can be computed by a circuit of this kind.

Fact 2 follows from the capability of the sigmoidal functionσ to approximate any Boolean
threshold function arbitrarily close. This can be done by multiplying all weightsand the threshold
with a sufficiently large number.

To establish Fact 3, we refer to Definition 23 and proceed as follows: We would like the term
pn+1,α to satisfypn+1,α =C′(α1, . . . ,αn/2), whereC′ denotes an arbitrary two-layer sigmoidal circuit
as described in Fact 3. To this end, we setwi, j = 0 if 1 ≤ i ≤ n/2 or if i, j ≥ n/2+1. Further, we
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let wi = 0 if 1 ≤ i ≤ n/2. The parameters that have been set to zero are referred to as “redundant”
parameters in what follows. Recall from (10) thatα0 = αn/2+1 = · · · = αn = 1. From these settings
and fromσ(0) = 1/2, we obtain

pn+1,α = σ

(

1
2

w0 +
n

∑
i=n/2+1

wiσ

(

wi,0 +
n/2

∑
j=1

wi, jα j

))

.

Indeed, this is the output of a two-layer sigmoidal circuitC′ on the input(α1, . . . ,αn/2).
We are now in the position to describe the choice of distributionsP and Q. Let C′ be the

sigmoidal circuit that computes(−1)a>x for some fixeda ∈ {0,1}n/2 according to Facts 1 and
2. Let P be the distribution obtained by setting the redundant parameters to zero (as described
above) and the remaining parameters as inC′. Thus, pn+1,α = C′(α1, . . . ,αn/2). Let Q be the
distribution with the same parameters asP except for replacingwi by −wi . Thus, by symmetry of
σ, qn+1,α = 1−C′(α1, . . . ,αn/2). Sincex′n+1 = 1 and since all but one factor inP(x′)/Q(x′) cancel
each other, we arrive at

P(x′)
Q(x′)

=
pn+1,α

qn+1,α
=

C′(α1, . . . ,αn/2)

1−C′(α1, . . . ,αn/2)
.

AsC′ computes(−1)a>x, the output convention from Fact 2 yields thatP(x′)/Q(x′)≥ 2 if (−1)a>x =
1, andP(x′)/Q(x′) ≤ 1/2 otherwise. This implies claim (11) and concludes the proof.

Combining Theorem 25 with Corollary 8, we obtain the exponential lower bound for the modi-
fied logistic autoregressive Bayesian network.

Corollary 26 Let N ′
σ denote the modified logistic autoregressive Bayesian network. Then,

Edim(N ′
σ) ≥ 2n/4.

By a more detailed analysis it can be shown that Theorem 25 holds even if werestrict the
values in the parameter collection ofN ′

σ to integers that can be represented usingO(logn) bits. We
mentioned in the introduction that a large lower bound on Edim(C ) rules out the possibility of a large
margin classifier. Forster and Simon (2002) have shown that every lineararrangement for PARITYn
has an average geometric margin of at most 2−n/2. Thus there can be no linear arrangement with
an average margin exceeding 2−n/4 for CN ′

σ
even if we restrict the weight parameters inN ′

σ to
logarithmically bounded integers.

6. Conclusions and Open Problems

Bayesian networks have become one of the heavily studied and widely usedprobabilistic techniques
for pattern recognition and statistical inference. One line of inquiry into Bayesian networks pursues
the idea of combining them with kernel methods so that one can take advantageof both. Kernel
methods employ the principle of mapping the input vectors to some higher-dimensional space where
then inner product operations are performed implicitly. The major motivation for our work was to
reveal more about such inner product spaces. In particular, we asked whether Bayesian networks
can be considered as linear classifiers and, thus, whether kernel operations can be implemented as
standard dot products. With this work we have gained insight into the natureof the inner product
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space in terms of bounds on its dimensionality. As the main results, we have established tight bounds
on the Euclidean dimension of spaces in which two-label classifications of Bayesian networks with
binary nodes can be implemented.

We have employed the VC dimension as one of the tools for deriving lower bounds. Bounds
on the VC dimension of concept classes abound. Exact values are known only for a few classes.
Surprisingly, our investigation of the dimensionality of embeddings lead to some exact values of
the VC dimension for nontrivial Bayesian networks. The VC dimension can be employed to obtain
tight bounds on the complexity of model selection, that is, on the amount of information required for
choosing a Bayesian network that performs well on unseen data. In frameworks where this amount
can be expressed in terms of the VC dimension, the tight bounds for the embeddings of Bayesian
networks established here show that the sizes of the training samples required for learning can
also be estimated using the Euclidean dimension. Another consequence of thisclose relationship
between VC dimension and Euclidean dimension is that these networks can be replaced by linear
classifiers without a significant increase in the required sample sizes. Whether these conclusions
can be drawn also for the logistic autoregressive network is an open issue. It remains to be shown
if the VC dimension is also useful in tightly bounding the Euclidean dimension of these networks.
For the modified version of this model, our results suggest that different approaches might be more
successful.

The results raise some further open questions. First, since we considered only networks with
binary nodes, analogous questions regarding Bayesian networks with multiple-valued nodes or even
continuous-valued nodes are certainly of interest. Another generalization of Bayesian networks are
those with hidden variables which have also been out of the scope of this work. Further, with regard
to logistic autoregressive Bayesian networks, we were able to obtain an exponential lower bound
only for a variant of them. For the unmodified network such a bound has yet to be found. Finally,
the questions we studied here are certainly relevant not only for Bayesian networks but also for
other popular classes of distributions or densities. Those from the exponential family look like a
good thing to start with.
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