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Abstract

Bayesian networks have become one of the major models ussthféstical inference. We study

the question whether the decisions computed by a Bayestamorecan be represented within a
low-dimensional inner product space. We focus on two-laksdsification tasks over the Boolean
domain. As main results we establish upper and lower boundsendimension of the inner prod-

uct space for Bayesian networks with an explicitly givenl @ reduced) parameter collection. In

particular, these bounds are tight up to a factor of 2. Foresoomtrivial cases of Bayesian networks
we even determine the exact values of this dimension. Waduronsider logistic autoregressive
Bayesian networks and show that every sufficiently expressiner product space must have di-
mension at leag®(n?), wheren is the number of network nodes. We also derive the boSd for

an artificial variant of this network, thereby demonstratine limits of our approach and raising an
interesting open question. As a major technical contrimytthis work reveals combinatorial and
algebraic structures within Bayesian networks such thatdknmethods for the derivation of lower

bounds on the dimension of inner product spaces can be briigliplay.

Keywords: Bayesian network, inner product space, embedding, lineangement, Euclidean
dimension

1. Introduction

During the last decade, there has been remarkable interest in learstegisybased on hypotheses
that can be written as inner products in an appropriate feature spatesaned by algorithms that
perform a kind of empirical or structural risk minimization. Often in such systthe inner product
operation is not carried out explicitly, but reduced to the evaluation of@aBed kernel function
that operates on instances of the original data space. A major advaifttue technigue is that

it allows to handle high-dimensional feature spaces efficiently. The leastiategy proposed by
Boser et al. (1992) in connection with the so-called support vector madhia theoretically well
founded and very powerful method that, in the years since its introdutig@already outperformed
most other systems in a wide variety of applications (see also Vapnik, 1998).
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Bayesian networks have a long history in statistics. In the first half of ti8®<d ey were
introduced to the field of expert systems through work by Pearl (19825piegelhalter and Knill-
Jones (1984). Bayesian networks are much different from keamsseblearning systems and offer
some complementary advantages. They graphically model conditional imdispee relationships
between random variables. Like other probabilistic models, Bayesian rietwwan be used to
represent inhomogeneous data with possibly overlapping features asidgrialues in a uniform
manner. Quite elaborate methods dealing with Bayesian networks havedasopdd for solving
problems in pattern classification.

One of the motivations for the work this article is about was that recentlyaaesearch groups
considered the possibility of combining the key advantages of probabilistielsadd kernel-based
learning systems. Various kernels were suggested and extensivagdstiod instance, by Jaakkola
and Haussler (1999a,b), Oliver et al. (2000), Saunders et al3]208uda and Kawanabe (2002),
and Tsuda et al. (2002, 2004). Altun et al. (2003) proposed a kiemthe Hidden Markov Model,
which is a special case of a Bayesian network. Another approacbtiabiaing kernel methods and
probabilistic models has been made by Taskar et al. (2004).

In this article, we consider Bayesian networks as computational modelsettiatm two-label
classification tasks over the Boolean domain. We aim at finding the simplestgroduct space
that is able to express the concept class, that is, the class of decisaiofisninduced by a given
Bayesian network. Hereby, “simplest” refers to a space which hasiadifeensions as possible.
We focus on Euclidean spaces equipped with the standard dot produdaheHinite-dimensional
case, this is no loss of generality since any finite-dimensional reprodikemg| Hilbert space is
isometric withRY for somed. Furthermore, we use the Euclidean dimension of the space as the
measure of complexity. This is well motivated by the fact that most generalizatior bounds for
linear classifiers are given in terms of either the Euclidean dimension or in tdrthe geomet-
rical margin between the data points and the separating hyperplanes.ilfgpipndom projection
techniques from Johnson and Lindenstrauss (1984), Frankl amthdvia (1988), or Arriaga and
Vempala (1999), it can be shown that any arrangement with a large mangibecconverted into
a low-dimensional arrangement. A recent result of Balcan et al. (2604)s direction even takes
into account low-dimensional arrangements that allow a certain amountasf eFhus, a large
lower bound on the smallest possible dimension rules out the possibility thasifielawith a large
margin exists. Given a Bayesian netwdkk we introduce Edirt\() for denoting the smallest di-
mensiond such that the decisions representedigycan be implemented as inner products in the
d-dimensional Euclidean space. Our results are provided as uppenesddounds for Edirfft\).

We first consider Bayesian networks with an explicitly given parameteratmte The param-
eters can be arbitrary, where we speak of an unconstrained netaradthey may be required to
satisfy certain restrictions, in which case we have a network with a recharegneter collection.
For both network types, we show that the “natural” inner product spatieh can obtained from the
probabilistic model by straightforward algebraic manipulations, has a dimetigbis the smallest
possible up to a factor of 2, and even up to an additive term of 1 in soms.cBaghermore, we
determine the exact values of Edifif) for some nontrivial instances of these networks. The lower
bounds in all these cases are obtained by analyzing the Vapnik-CleakierfVVC) dimension of the
concept class associated with the Bayesian network. Interestingly, thdinv&hsion plays also a
major role when estimating the sample complexity of a learning system. In particakan,be used
to derive bounds on the number of training examples that are requirsdléating hypotheses that
generalize well on new data. Thus, the tight bounds on Ediinreveal that the smallest possible
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Euclidean dimension for a Bayesian network with an explicitly given parametiection is closely
tied to its sample complexity.

As a second topic, we investigate a class of probabilistic models known asd@yitoregres-
sive Bayesian networks or sigmoid belief networks. These networks @riginally proposed by
McCullagh and Nelder (1983) and studied systematically, for instance,gay (4992), and Saul
et al. (1996). (See also Frey, 1998). Using the VC dimension, we stetvEthim(4\) for theses
networks must grow at least &n?), wheren is the number of nodes.

Finally, we get interested in the question whether it is possible to establistpanextial lower
bound on Edini\() for the logistic autoregressive Bayesian network. This investigation is atetv
by the fact we also derive here that these networks have their VC dinmebsimded byO(n®).
Consequently, VC dimension considerations are not sufficient to yiela@mmential lower bound
for Edim(A(). We succeed in giving a positive answer for an unnatural varianti®httwork that
we introduce and call the modified logistic autoregressive Bayesian retwais variant is also
shown to have VC dimensid@(n®). We obtain that for a network with+ 2 nodes, Edirtt\() is at
least as large ad'?. The proof for this lower bound is based on the idea of embedding oreepon
class into another. In particular, we show that a certain class of Booksdty functions can be
embedded into such a network.

While, as mentioned above, the connection between probabilistic models agrdpimauct
spaces has already been investigated, this work seems to be the firsttogtititly addresses the
question of finding a smallest-dimensional sufficiently expressive inmelyst space. In addition,
there has been related research considering the question of rémgsegiven concept class by
a system of halfspaces, but not concerned with probabilistic models€speBen-David et al.,
2002; Forster et al., 2001, Forster, 2002; Forster and Simon, 200&eF et al., 2003; Kiltz, 2003;
Kiltz and Simon, 2003; Srebro and Shraibman, 2005; Warmuth and Visliaam£005). A further
contribution of our work can be seen in the uncovering of combinatoricladgebraic structures
within Bayesian networks such that techniques known from this literaturée®rought into play.

We start by introducing the basic concepts in Section 2. The upper b@uadsesented in
Section 3. Section 4 deals with lower bounds that are obtained using the V@giimes the core
tool. The exponential lower bound for the modified logistic autoregressteork is derived in
Section 5. In Section 6 we draw the major conclusions and mention some a#ems.

Bibliographic Note. Results in this article have been presented at the 17th Annual Confenence
Learning Theory, COLT 2004, in Banff, Canada (Nakamura et al.4200

2. Preliminaries

In the following, we give formal definitions for the basic notions in this artickection 2.1 in-
troduces terminology from learning theory. In Section 2.2, we define Sayenetworks and the
distributions and concept classes they induce. The idea of a lineagamant for a concept class
is presented in Section 2.3.

2.1 Concept Classes, VC Dimension, and Embeddings

A concept clasg” over domainX is a family of functions of the fornf : X — {—1,1}. Eachf € C
is called aconcept A finite setS= {sy,...,Sn} C X is said to beshatteredby ( if for every binary
vectorb € {—1,1}™ there exists some concepte C such thatf(s) =b; fori =1,...,m. The
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Vapnik-Chervonenkis (VC) dimensioh( is given by
VCdim(C) = sup{m]|thereis som&C X shattered by” and|S = m}.

For everyz € R, let signz) = 1 if z> 0, and sigiiz) = —1 otherwise. We use the sign function for
mapping a real-valued functianto a+1-valued concept signg.

Given a concept clags over domainX and a concept clags over domainX’, we write C < '
if there exist mappings

Co>ff el and Xo>x—xecX
satisfying
f(x) = f'(X) for everyf € C andx € X.

These mappings are said to provide embeddingof C into ¢/. Obviously, if SC X is anm+
element set that is shattered byhenS = {s' | s€ S} C X’ is anmrelement set that is shattered by
C'. ConsequentlyC < " implies VCdim(C) < VCdim(().

2.2 Bayesian Networks

Definition 1 A Bayesian network\ has the following components:

1. A directed acyclic graph & (V,E), where V is a finite set of nodes and’EV x V a set of
edges,

2. acollection(pia)icv,ac{o,ym Of programmable parameters with values in the open interval
10,1], where mdenotes the number of predecessors of node i, thatjis; fij € V | (],i) €
E},

3. constraints that describe which assignments of values bt to the parameters of the
collection are allowed.

If the constraints are empty, we speak of @mconstrainedhetwork. Otherwise, the network is
constrained

We identify then = |V| nodes ofA\ with the numbers 1..,n and assume that every edge
(j,1) € E satisfiesj < i, that is,E induces a topological ordering dd, ...,n}. Given(j,i) €E, jis
called a parent of We useR to denote the set of parents of nadand letm; = |R| be the number
of parents. A networl\( is said to bdully connectedf P, = {1,...,i — 1} holds for every node

Example 1 kth-order Markov chain) For k > 0, let Ak denote the unconstrained Bayesian net-
work with R = {i—1,...,i —k} for i = 1,...,n (with the convention that numbers smaller than
1 are ignored such that m= |R| = min{i — 1,k}). The total number of parameters is equal to
Xn—K) +2¢14...4241=2Xn-k+1) -1

We associate with every nodea Boolean variable; with values in{0,1}. We sayx; is a
parent-variable of; if j is a parent of. Eacha € {0,1}™ is called a possible bit-pattern for the
parent-variables of,. We useM; 4 to denote the polynomial

o
Mia(X) = rlxjj, wherex? = 1—x; andx} = x;,
jer
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that is,M; «(x) is 1 if the parent variables of exhibit bit-patterrn, otherwise it is 0.
Bayesian networks are graphical models of conditional independefat@®nships. This gen-
eral idea is made concrete by the following notion.

Definition 2 Let A’ be a Bayesian network with nodés .., n. The class of distributions induced
by A/, denoted a®D,,, consists of all distributions 0f0,1}" of the form

I—l ﬂ plx|(|xv|| o 1 piﬂ)(l*Xi)Mi.u (X) (1)
ae{0,1}m

Thus, for every assignment of values frd@1] to the parameters ok, we obtain a specific
distribution from?,,. Recall that not every possible assignment is alloweid is constrained.

The polynomial representation of I@@(x)) resulting from equation (1) is known as “Chow
expansion” in the pattern classification literature (see, e.g., Duda and19@8). The parameter
pi.a represents the conditional probability for the event 1 given that the parent variables xf
exhibit bit-patterra. Equation (1) is a chain expansion #fx) that expresseB(x) as a product of
conditional probabilities.

An unconstrained network that is highly connected may have a numberasfpters that grows
exponentially in the number of nodes. The idea of a constrained networlkéetothe number of
parameters reasonably small even in case of a dense topology. Westdnsidypes of constraints
giving rise to the definitions of networks with a reduced parameter collectidriagistic autore-
gressive networks.

Definition 3 A Bayesian network with a reduced parameter collecicam Bayesian network with
the following constraints: For everyd {1,...,n} there exists a surjective function R0,1}™ —
{1,...,di} such that the parameters 6f satisfy

Vi= 17"'7n7va7a/ S {O, l}m : Rl(a> = Ri(a/) = Pia = Pia-

We denote the network &R for R= (Ry,...,R,). Obviously,A'R is completely described by the
reduced parameter collectiaip; ¢)1<i<ni<c<d-

A special case of these networks uses decision trees or graphsdeaspthe parameters.

Example 2 Chickering et al. (1997) proposed Bayesian networks “with local stm&. These
networks contain a decision treg(or, alternatively, a decision graph;§zover the parent-variables
of x for every node i. The conditional probability for x 1, given the bit-pattern of the variables
from R, is attached to the corresponding leaf in(@r sink in G, respectively). This fits nicely into
our framework of networks with a reduced parameter collection. Hgrdedotes the number of
leaves in T(or sinks of G, respectively), andiRx) is equal to o= {1,...,d;} if a is routed to leaf
cin T (or to sink c in G, respectively).

For a Bayesian network with reduced parameter collection, the distribBfionfrom Defini-
tion 2 can be written in a simpler way. LBf¢(x) denote the{0, 1}-valued function that indicates
for everyx € {0,1}" whether the projection ofto the parent-variables of is mapped byR to the

valuec. Then, we have
I'[ |_L R (1 o) IR, @
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We finally introduce the so-called logistic autoregressive Bayesian rlegyoriginally pro-
posed by McCullagh and Nelder (1983), that have been shown torpesorprisingly well on
certain problems (see also Neal, 1992, Saul et al., 1996, and Fre3), 199

Definition 4 Thelogistic autoregressive Bayesian netwdy is the fully connected Bayesian net-
work with constraints on the parameter collection given as

. . i—1
Vi=1,...,n3(W)icj<i-1 € R'*l,vq € {0, 1}'712 Pia=0 (Z Wi!’j(Xj> ,
=1

wherea(y) = 1/(1+e7Y) is the standard sigmoid function. Obvioush is completely described
by the parameter collectiofw; j)1<i<n1<j<i—1.

In a two-label classification task, functioR¢x), Q(x) € D, are used as discriminant functions,
whereP(x) and Q(x) represent the distributions @fconditioned to label 1 and-1, respectively.
The corresponding decision function assigns label % ifoP(x) > Q(x), and—1 otherwise. The
obvious connection to concept classes in learning theory is made explictfolkbwing definition.

Definition 5 Let A be a Bayesian network with nodés ..,n and let?D, be the corresponding
class of distributions. The class of concepts induce@ihyglenoted ag’,, consists of ali-1-valued
functions on{0, 1}" of the formsign(log(P(x)/Q(x))) for P,Q € Dj,.

Note that the function sigfog(P(x)/Q(x))) attains the value 1 iP(x) > Q(x), and the value
—1 otherwise. We use VCdift\) to denote the VC dimension af,,.

2.3 Linear Arrangements in Inner Product Spaces

We are interested in embedding concept classes into finite-dimensionaldaucigaces equipped
with the standard dot produat' v = Zid:1 uiVvi, whereu' denotes the transpose af Such an em-
bedding is provided by a linear arrangement. Given a concept €lase aim at determining the
smallest Euclidean dimension, denoted Eily that such a space can have.

Definition 6 A d-dimensional linear arrangemeiot a concept clasg” over domainX is given by
collections(us ) < and (Vy)xex of vectors inRY such that

Vi e C,xe X f(x) = signuf ).

The smallest d such that there exists a d-dimensional linear arrandgefoeit” is denoted as
Edim(C). If there is no finite-dimensional linear arrangement 6y Edim(C) is defined to be
infinite.

If Cy is the concept class induced by a Bayesian netvwgrkwe write Edin{A\() instead of
Edim(Cy). Itis evident that EdiriC) < Edim(C) if € < C'.

It is easy to see that Edifd) < min{|C|,|X|} for finite concept classes. Nontrivial upper
bounds on EdirtC) are usually obtained constructively by presenting an appropriategamaent.
As for lower bounds, the following result is immediate from a result by Du¢ll®y8) which states
that VCdim({signo f | f € #}) = d for everyd-dimensional vector spacg consisting of real-
valued functions (see also Anthony and Bartlett, 1999, Theorem 3.5).
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Lemma 7 Every concept clasg satisfiesEdim(C) > VCdim(C).

Let PARITY,, be the concept clagd, | a € {0,1}"} of parity functions on the Boolean domain
given byh,(x) = (—1)aTX, that is,ha(X) is the parity of those; wherea; = 1. The following lower
bound, which will be useful in Section 5, is due to Forster (2002).

Corollary 8 Edim(PARITY,,) > 2"/2,

3. Upper Bounds on the Dimension of Inner Product Spaces for Basian Networks

This section is concerned with the derivation of upper bounds on &dimWe obtain bounds for
unconstrained networks and for networks with a reduced parametertamiley providing concrete
linear arrangements. Given a $&tlet 2¥ denote its power set.

Theorem 9 Every unconstrained Bayesian netwoxksatisfies

n n
RUlit < 2. ¥ oM,
Y 2,

Proof From the expansion d? in equation (1) and the corresponding expansio® @ivith param-
etersg; o in the role ofp; o), we obtain

Edim(A[) <

P X) l— pi7a

P ( 0100PE (1M )
IOgQ(x) i;ae(oz,l}mi X.M.,a(X)Iogqm%—(l x.)M.ﬂ(x)Iogl_qLOl , 3)

On the right-hand side of equation (3), we find the polynomilg(x) andxM; «(x). Note that
S ZP'U{i}] equals the number of monomials that occur when we express these polynamials
sums of monomials by successive applications of the distributive law. A limesmgement of the
claimed dimensionality is now obtained in the obvious fashion by introducing coalinate per
monomial. [ |

This result immediately yields an upper bound for Markov chains of deder
Corollary 10 Let Ak be the kth-order Markov chain given in Example 1. Then,
Edim(ag) < (n—k+1)2<.

Proof Apply Theorem 9 and observe that

n

U220 = Ui} 3 S -1 i—KHU]IC (L k)
i=1

i=k+1

Similar techniques as used in the proof of Theorem 9 lead to an upper Emumetworks with
a reduced parameter collection.
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Theorem 11 Let AR denote the Bayesian network that has a reduced parameter collection

(Pi.c)1<i<ni<c<d;

in the sense of Definition 3. Then,
n
EdimaR) < 2.5 d.
2,

Proof Recall that the distributions from, can be written as in equation (2). We make use of the
obvious relationship

09 g Zi(x ¥log 1+ (1- %R c(x)log 1 g) (4)

A linear arrangement of the appropriate dimension is now obtained by imlirggitwo coordinates
per pair(i,c): If x is mapped toy in this arrangement, then the projectionwfto the two coor-
dinates corresponding 10,c) is (Ri¢(X),XRi c(X)); the appropriate mappind, Q) — upgq in this
arrangement is easily derived from (4). |

In Section 4 we shall show that the bounds established by Theorem Shaedem 11 are tight
up to a factor of 2 and, in some cases, even up to an additive constant of 1

The linear arrangements for unconstrained Bayesian networks orafgesiBan networks with
a reduced parameter collection were easy to find. This is no accident élthisfor every class
of distributions (or densities) from the so-called exponential family bexéas pointed out, for
instance, in Devroye et al., 1996) the corresponding Bayes rule tdhesm&nown as generalized
linear rule. From this representation a linear arrangement is evident. INoteyer, that the bound
given in Theorem 9 is slightly stronger than the bound obtained from thergeapproach for
members of the exponential family.

4. Lower Bounds Based on VC Dimension Considerations

In this section, we derive lower bounds on Edif)) that come close to the upper bounds obtained
in the previous section. Before presenting the main results in Section 4.2ealta@es 18, 21, and
Theorem 22, we focus on some specific Bayesian networks for whicteteemine the exact values
of Edim(\).

4.1 Optimal Bounds for Specific Networks

In the following we calculate exact values of Ediid) by establishing lower bounds of VCd{\)

and applying Lemma 7. This gives us also the exact value of the VC dimermidimef respective
networks. We recall thak is thekth-order Markov chain defined in Example 1. The concept class
arising from networkAp, which we consider first, is the well-known Na Bayes classifier.

Theorem 12

Edim(ag) — {n+l ifn> 2,

1 ifn=1.
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The proof of this theorem relies on the following result.

Lemma 13 For every pq €]0, 1] there exist we R and be]0, 1] such that

VXER:xlogg+(1—x)logi;pzw(x—b) (5)

holds. Conversely, for every&R and be]0, 1] there exist pg €]0, 1] such that (5) is satisfied.

Proof Rewriting the left-hand side of the equationdsgw -+ logc/, where

—p
and d=>—,
q(1-p) —q

it follows thatp = qis equivalent tav = ¢’ = 1. By definition ofc/, p < qis equivalent t@’ > 1 and,
asw'c = p/q, this is also equivalent td < 1/w. Analogously, it follows thap > q is equivalent
to 0< 1/w < ¢ < 1. By definingw = logw’ andc = logc’ and taking logarithms in the equalities
and inequalities, we conclude thatg €]0, 1 is equivalent tov € R andc = —bwwith b €]0,1]. ®

=
Il
=2
[EEN
=
[EEY

Proof (Theorem 12) Clearly, the theorem holdsfee 1. Suppose, therefore, that 2. According
to Corollary 10, Eding\p) < n+ 1. Thus, by Lemma 7 it suffices to show that VCding) > n+ 1.
Let & denote the vector with a one in thh position and zeros elsewhere. Further,lidie the
vector with a 1 in each position. We show that the set #f1 vectorsey, ..., ey, 1 is shattered by
the class’y, of concepts induced b, consisting of the functions of the form

sign<|og%> = sign(iixilog%+(lXa)logiig:>,

wherep;, g €]0,1[, fori € {1,...,n}. By Lemma 13, the functions id,, can be written as

sign(w” (x—b)),

wherew € R" andb €]0, 1]".

It is not difficult to see that homogeneous halfspaces, that is, wherg0,...,0), can di-
chotomize the sefey,...,en, 1} in all possible ways, except for the two cases to sepdrdtem
el,...,e. To accomplish these two dichotomies we define (3/4) -1 andw = +1. Then, by the
assumption that > 2, we have foi = 1,...,n,

w'(g—b) = +(1—3n/4) < 0 and w'(1—b) = +(n—3n/4) = 0.

A further type of Bayesian network for which we derive the exact dirnmgnkas some kind of
bipartite graph underlying where one set of nodes serves as the pateoits for all nodes in the
other set.
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Theorem 14 For k > 0, let ] denote the unconstrained network with=P0 for i = 1,... k and
R={1,...,k} fori=k+1,...,n. Then,

Edim(af) = 2¢(n—k+1).

Proof For the upper bound, we apply Lemma 1 and Theorem 1 using the fact that

n

LngF’Iu{Xi} = Y P@ufit|ac{. .. ku{d|Ic{L... .k}
i=1

i=k+1

To obtain the lower bound, lél C {0,1}" denote the set from the proof of Theorem 12 for the
corresponding networRp with n— k nodes. We show that the sBt= {0,1}* x M C {0,1}" is
shattered by\|,. Note thatShas the claimed cardinality singél| = n—k+ 1.

Let (S™,S") be a dichotomy o8 (that is, whereS- US" = SandS  NS" = 0). Given a natural
numberj € {0,...,2— 1}, we use bilij) to denote the binary representationj afsingk bits. Then,
let (M, Mj+) be the dichotomy oM defined by

M = {veM|bin(jve S}

Here, bir{j)v refers to the concatenation of théits of bin(j) and then — k bits of v. According to
Theorem 12, for each dichoton(le*, MJ-J’) there exist parameter valup$ qu, where 1I<i <n-Kk,
such thatAp with these parameter settings induces this dichotomivorin the networkAy, we
specify the parameters as follows. ket 1,... Kk, let

pi=a = 1/2,
and fori=k+1,...,nand eachj € {0,...,2¢— 1} define

Pibin() = pij,w

Gibin(j) = qu_k_
Obviously, the concept thus defined i/ outputs—1 for elements o6~ and 1 for elements &' .
Since every dichotomy d8 can be implemented in this wa§js shattered by\;/. [ |

4.2 General Lower Bounds

In Section 4.2.1 we shall establish lower bounds on Edjfhfor unconstrained Bayesian networks
and in Section 4.2.2 for networks with a reduced parameter collection. Tessks are obtained
by providing embeddings of concept classes, as introduced in Sectipimthihese networks.
Since VCdin{C) < VCdim((') if ¢ </, alower bound on VCdit’) follows immediately from
classes satisfying < (' if the VC dimension of¢C is known or easy to determine. We first define
concept classes that will suit this purpose.

Definition 15 Let A( be an arbitrary Bayesian network. For everg i{1,...,n}, let % be a family
of +1-valued functions on the domaf0, 1}™ and let# = #1 x --- x Fn. ThenCy, ¢ is the concept
class over the domaif0,1}"\ {(0,...,0)} consisting of all functions of the form

Lst = [(Xn, fn),...,(Xl, fl)],
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where f= (fy,...,f,) € F. The right hand side of this equation is to be understood as a decision
list, where Ly ¢ (x) for x# (0, ...,0) is determined as follows:

1. Find the largest i such that x 1.
2. Apply f to the projection of x to the parent-variables @faxd output the result.
The VC dimension of’, 5 can be directly obtained from the VC dimensions of the clagses

Lemma 16 Let A’ be an arbitrary Bayesian network. Then,

VCdim(Ca.#) ZVCdlm

Proof We show that VCdiriCy ) > 3iL; VCdim(); the proof for the other direction is similar.
For everyi, we embed the vectors frof0,1}™ into {0,1}" according tari(a) = (&,1,0,...,0),
wherea’ € {0,1}'~1 is chosen such that its projection to the parent-variablesisfequal toa and
the remaining components are set to 0. Note th@) is absorbed by itenx, f;) of the decision
list Ly ¢. Itis easy to see that the following holds: If, fo=1,...,n, § is a set that is shattered by
%, thenUL 1 T(S) is shattered by’ 5. Thus, VCAIN{Cy ) > 3L VCAim(F). [ |

The preceding definition and lemma are valid for unconstrained as welhagramed networks
as they make use only of the graph underlying the network and do nottoefee values of the
parameters. This will be important in the applications that follow.

4.2.1 LOWERBOUNDS FORUNCONSTRAINED BAYESIAN NETWORKS

The next theorem is the main step in deriving for an arbitrary unconsttraiesvork A\’ a lower
bound on Edini?\(). Itis based on the idea of embedding one of the concept clagggsdefined
above intoCy.

Theorem 17 Let AU be an unconstrained Bayesian network andgtdenote the set of at:1-
valued functions on domaif0,1}™. Further, let¥* = 7" x --- x . Then,Cop g+ < Cy-

Proof We have to show that, for everfy= (fq,..., fy), we can find a paifP, Q) of distributions
from D, such that, for every € {0,1}", Ly ¢ (x) = sign(log(P(x)/Q(x))). To this end, we define
the parameters for the distributioRsaandQ as

27?2 i fi(a) = -1, (12 if fi(a) = -1,
Pra = { 1/2 it fila)=+1, 29 ST 2 it (o) = 41
An easy calculation now shows that
Iog<p' “) = fi(a)2'n and Iog L (6)
Ui,a —0ia
Fix some arbitrary € {0,1}"\ {(0,...,0)}. Choose. maximal such thax;, = 1 and leta., de-

note the projection ok to the parent varlables of . Then,Ly ¢(X) = fi,(a.). Thus,La ¢(X) =
sign(log(P(x)/Q(x))) would follow immediately from

sign(log%) = S|gn(log 2:2) = fi.(a,). 7)
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The second equation in (7) is evident from the equality established in &forAhe first equation
in (7), we argue as follows. By the choiceigf we haveq = 0 for everyi > i,. Expanding® andQ
as given in (3), we obtain

P(X) Pi. a. 1 Pi.a
log—~% = log—= 4+ XiMi o (X)log —=
99K g Go. i; ue%l}mi i.a(X) gqm

1—p
+ < (Z (1—x)Mi «(x)log 1 p_"“) ,
1€l \ae{0,1}m —Uia

wherel = {1,...,n}\ {i.}. Employing the inequality from (6), it follows that the sign of the right-
hand side of this equation is determined by(lagq, /. «.) Since this term is of absolute value
2-"Inand

i—1

2+t ¥ (2t~ (n-1) > 1L 8
n le( n—(n-1 > (8)

This concludes the proof. |

Using the lower bound obtained from Theorem 17 combined with Lemma 16 andpiber
bound provided by Theorem 9, we have a result that is tight up to a fatfr

Corollary 18 Every unconstrained Bayesian netwoiksatisfies

& Iy
<2y 2n

Bounds for thekth-order Markov chain that are optimal up to an additive constant of 1gemer
from the lower bound due to Theorem 17 with Lemma 16 and the upper badatsd sn Corol-
lary 10.

n

le”‘ < Edim(«) <

n
UZP.u{i}
i=1

Corollary 19 Let Ak denote the Bayesian network from Example 1. Then,
(n—k+1)2¥—1 < Edim(Ag) < (n—k+1)2%.
4.2.2 LOWERBOUNDS FORBAYESIAN NETWORKS WITH A REDUCED PARAMETER
COLLECTION

We now show how to obtain bounds for networks with a reduced paranatectoon. Similarly
as in Section 4.2.1, the major step consists in providing embeddings into theseksetWhe main
result is based on techniques developed for Theorem 17.

Theorem 20 Let AR denote the Bayesian network that has a reduced parameter collection

(Pic)i<i<ni<c<d

in the sense of Definition 3. Let™ denote the set of alt-1-valued functions on the domain
{0,1}™ that depend om € {0,1}™ only through R(a). In other words, fe %~ holds if and only
if there exists at1-valued function g on domaifi,...,d;} such that fa) = g(Ri(a)) for every
a € {0,1}™. Finally, let FR = F x .- x FR. Then,Cyr gr < Gy
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Proof We focus on the differences to the proof of Theorem 17. First, theidadist L~ ¢ uses a
functionf = (fq,..., fy) of the form fj(x) = gi(R(x)) for some functiorg; : {1,...,d;} — {—1,1}.
Second, the distributionB Q that satisfyL,, (x) = sign(log(P(x)/Q(x))) for everyx € {0,1}"
have to be defined over the reduced parameter collection as given itioeg{4d. An appropriate
choice is

[ 2722 ifgi(c) = -1, - [1)2 if gi(c) = -1,
p'C_{ 1/2 itgi(o) =1,  nd q'=°_{ 2272 if gi(c) = 1.

The rest of the proof is completely analogous to the proof of Theorem 17. |

Theorem 17 can be viewed as a special case of Theorem 20 singaiagenstrained network
can be considered as a network with a reduced parameter collectiontivbdomctionsR; are 1-1.
However, there are differences arising from the notation of the netpar&meters that have been
taken into account by the above proof.

Applying the lower bound of Theorem 20 in combination with Lemma 16 and therupgund
of Theorem 11, we once more have bounds that are optimal up to the 2actor

Corollary 21 Let A'R denote the Bayesian network that has a reduced parameter collection

(Pi,c)1<i<ni<c<d

in the sense of Definition 3. Then,
n R n
d < Edm(AY) < 2-Y di.
2,¢ 2,

4.2.3 LOWERBOUNDS FORLOGISTIC AUTOREGRESSIVENETWORKS

The following result is not obtained by embedding a concept class into aitogigoregressive
Bayesian network. However, we apply a similar technigue as developestiings 4.2.1 and 4.2.2
to derive a bound using the VC dimension by directly showing that these rietwan shatter sets
of the claimed size.

Theorem 22 Let A; denote the logistic autoregressive Bayesian network from Definition 4., Then
Edim(A;) > n(n—1)/2

Proof We show that the following se&dis shattered by the concept clasg . Then the statement
follows from Lemma 7.

Fori=2,....,nandc=1,...,i—1, leta;. € {0,1}~* be the pattern with bit 1 in positionand
zeros elsewhere. Then, for every péirc), wherei € {2,...,n} andc e {1,...,i — 1}, lets(9 ¢
{0,1}" be the vector that has bit 1 in coordinatéit-patterna; ¢ in the coordinates,1..,i —1, and
zeros in the remaining positions. The set

S = {"9]i=2...,nandc=1,...,i—1}

hasn(n—1)/2 elements.
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To show thaSis shattered, letS~, S") be some arbitrary dichotomy & We claim that there
exists a paifP, Q) of distributions fromD,, such that for everg'®), sign(log(P(s"9) /Q(s9)))) =
1if and only ifsi® € St. Assume that the parametgrs, andg; o for the distributions® andQ,
respectively, satisfy

- 1/2 if o = 0t c ands® € S,
Pla = 2-27/2  otherwise

and

[ 2?2 ifa=aqcandsiO e S,
Ga = 12 otherwise

Similarly as in the proof of Theorem 17, we have

log <&> ' =2"1n and

Gia

1- Pia
log 1

<1 9

Uia

The expansion dP andQ yields for everys© € S,

P(s™©) Piac ' (i.0) i Pj.a
log —— = log——< + s"M; q(s19)log =22
Q(S("C)) Qi,on‘c JZl Ge{(%.}i—l J ha Qj,a

i i 1-Pja
+ (1-8/")Mja(s")log T—22 |,
J; (ae{gl}il J . 1-0ja

wherel = {1,...,n}\ {i}. In analogy to inequality (8) in the proof of Theorem 17, it follows
from (9) that the sign of logP(s9))/Q(s%))) is equal to the sign of lo@iq./Giq;.)- By the
definition of pi g, , andg; g, the sign of logpi q, . /di.a;.) is positive if and only ifsi®) € S+

It remains to show that the parameters of the distribut®asdQ can be given as required by
Definition 4, that is, in the fornp; o = G(Zij_:llWiJaj) with w; ; € R, and similarly forg o. This
now immediately follows from the fact that{R) =]0, 1]. [

5. Lower Bounds via Embeddings of Parity Functions

The lower bounds obtained in Section 4 rely on arguments based on the V@sitbmef the respec-
tive concept class. In particular, a quadratic lower bound for the logistimregressive network has
been established. In the following, we introduce a different techniquingao the lower bound
290 for a variant of this network. For the time being, it seems possible to obtaix@mential
bound for these slightly modified networks only, which are given by thevatig definition.

Definition 23 The modified logistic autoregressive Bayesian netwd(k is the fully connected
Bayesian network with nodésl, ..., n+ 1 and the constraints on the parameter collection defined
as

) ) i—1
Vi=0,...,n,3(Wij)o<j<i-1 € R',Va € {0,1} : pja =0 <%Wi’jaj>
J:
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and

n i—1
I(Wi)o<i<n, Vo € {0,213 pri1g =0 WO wija; | |
i)0<i<n n+1,a i; i J; LM

ObviouslyAg is completely described by the parameter collectiong )o<i<n,o<j<i—1 and(wi)o<i<n.

The crucial difference betweel andAg is the noden+ 1 whose sigmoidal function receives
the outputs of the other sigmoidal functions as input. Roughly speafjnds a single-layer net-
work whereas\; has an extra node at a second layer.

To obtain the bound, we provide an embedding of the concept classitf fuarctions. The
following theorem motivates this construction by showing that it is impossible tairobn expo-
nential lower bound for Ediiif\;) nor for Edim(AjJ) using the VC dimension argument, as these
networks have VC dimensions that are polynomiat.in

Theorem 24 The logistic autoregressive Bayesian netwag from Definition 4 and the modi-
fied logistic autoregressive Bayesian netwak from Definition 23 have a VC dimension that is
bounded by @°).

Proof Consider first the logistic autoregressive Bayesian network. We shaivwhiia concept class
induced byAg can be computed by a specific type of feedforward neural networsn, e apply
a known bound on the VC dimension of these networks.

The neural networks for the conceptsdg, consist of sigmoidal units, product units, and units
computing second-order polynomials. A sigmoidal unit computes functiothedbrmao(w’x —t),
wherex € R¥is the input vector and € R¥,t € R are parameters. A product unit compLEé‘;l)qu .

The value ofp;  can be calculated by a sigmoidal unit@g = o(zij;llwucxj) with a as input
and parametens; 1,...,w; j—1. Regarding the factorpffa(l— pm)(l‘m, we observe that

1-x)

Pi.aX + (1— pia)(l—X)
= 2PiaX—X —Pia+1,

Pl (1— Pia)’

where the first equation is valid becauge {0,1}. Thus, the value of{’, (1 — pi «)2~%) is given
by a second-order polynomial. Similarly, the valuecpf, (1 — qiva)(lfxi) can also be determined
using sigmoidal units and polynomial units of order 2. Finally, the output vaiuleeonetwork is
obtained by comparing(x)/Q(x) with the constant threshold 1. We calcul&t)/Q(x) using a

product unit

Y1"'YnZIl"'Z;1,

with input variablesy; andz that receive the value afi' (1 — piq)* ) and g, (1 — o)™
computed by the second-order units, respectively. '

This network ha®©(n?) parameters an@(n) computation nodes, each of which is a sigmoidal
unit, a second-order unit, or a product unit. Theorem 2 of Schmitt (280&ys that every such
network withW parameters ankl computation nodes, which are sigmoidal and product units, has
VC dimensionO(W?k?). A close inspection of the proof of this result reveals that it also includes
polynomials of degree 2 as computational units (see also Lemma 4 in Schmitt, 208, we
obtain the claimed boun@(n®) for the logistic autoregressive Bayesian netwgk

For the modified logistic autoregressive network we have only to take atigcadhl sigmoidal
unit into account. Thus, the bound for this network follows now immediately. [ |
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In the previous result we were interested in the asymptotic behavior of trdirk€nsion, show-
ing that it is not exponential. Using the techniques provided in Schmitt (28@2tioned in the
above proof, it is also possible to obtain constant factors for thesedsoun

We now provide the main result of this section. Its proof employs the comtagsd PARITY,
defined in Section 2.3.

Theorem 25 Let A\ denote the modified logistic autoregressive Bayesian network withrmodes
and assume that n is a multiple 4f Then,PARITY,/» < Aj.
Proof The mapping

a

{0,1}"2 5 x= (X,....X2) = (LX1, ... X2, L,...,1,1) =X € {0,1}"2 (10)

assigns to every element £, 1}"/2 uniquely some element if0, 1}"+2. Note thata, as indicated
in (10), equals the bit-pattern of the parent-variableg,of (which are actually all other variables).
We claim that the following holds. For eveayc {0,1}"/?, there exists a paifP, Q) of distributions
from D, such that for every € {0,1}"2,

. P(X)
12X = s n<|o ) : 11
(=1) an{ 109553 (11)
Clearly, the theorem follows once the claim is settled. The proof of the claimesnake of the
following facts:

Fact 1 For everya € {0,1}"2, function(—1)2'* can be computed by a two-layer threshold circuit
with n/2 threshold units at the first layer and one threshold unit as output ndlde second
layer.

Fact 2 Each two-layer threshold circuit can be simulated by a two-layer sigmoidal circZitwvith
the same number of units and the following output conventidix) = 1 — C/(x) > 2/3
andC(x) =0 = C'(x) < 1/3.

Fact 3 Network A contains as a sub-network a two-layer sigmoidal cir@litvith n/2 input
nodesn/2 sigmoidal units at the first layer, and one sigmoidal unit at the second laye

The parity function is a symmetric Boolean function, that is, a funcfiof0, 1} — {0, 1} that
is described by a séil C {0,...,k} such thatf(x) = 1 if and only if YK ;% € M. Thus, Fact 1
is implied by Proposition 2.1 of Hajnal et al. (1993) which shows that evemynsetric Boolean
function can be computed by a circuit of this kind.

Fact 2 follows from the capability of the sigmoidal functionto approximate any Boolean
threshold function arbitrarily close. This can be done by multiplying all weightsthe threshold
with a sufficiently large number.

To establish Fact 3, we refer to Definition 23 and proceed as follows: @ddnike the term
Pni1,q to satisfypn, 14 =C'(ay,...,an/2), whereC’ denotes an arbitrary two-layer sigmoidal circuit
as described in Fact 3. To this end, wewet=0if 1 <i <n/2orifi,j > n/2+1. Further, we
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letw; = 0if 1 <i<n/2. The parameters that have been set to zero are referred to asdeadu
parameters in what follows. Recall from (10) that= o,,>,1 = --- = dy = 1. From these settings
and fromo(0) = 1/2, we obtain

1 n n/2
Pn+1,0 =0 EWO—F 1o} Wi.D"’ZWi,jaj .
=1

i=n/2+1

Indeed, this is the output of a two-layer sigmoidal cir@@iibn the input(ay, ..., dn/2).

We are now in the position to describe the choice of distributirend Q. Let C' be the
sigmoidal circuit that computes-1)2 * for some fixeda € {0,1}"/2 according to Facts 1 and
2. Let P be the distribution obtained by setting the redundant parameters to zeregeibdd
above) and the remaining parameters a€'in Thus, pni14 = C'(0y,...,0,/2). Let Q be the
distribution with the same parametersiRaexcept for replacingv; by —w;. Thus, by symmetry of
0, Ontra = 1—-C'(ay,...,ap2). Sincex,,; = 1 and since all but one factor P(x’) /Q(x') cancel
each other, we arrive at

PX)  Prnita C'(ag,...,0n/2)
QX)  Onia  1-Cl(ag,...,0n2)

AsC' computeg—1)2'%, the output convention from Fact 2 yields tRgk') /Q(x') > 2 if (—1)2 * =
1, andP(X)/Q(X) < 1/2 otherwise. This implies claim (11) and concludes the proof. [ |

Combining Theorem 25 with Corollary 8, we obtain the exponential lower thdointhe modi-
fied logistic autoregressive Bayesian network.

Corollary 26 Let4 denote the modified logistic autoregressive Bayesian network. Then,
Edim(Ag) > 2V4

By a more detailed analysis it can be shown that Theorem 25 holds evenréstrect the
values in the parameter collection @f; to integers that can be represented ushipgn) bits. We
mentioned in the introduction that a large lower bound on Edipmules out the possibility of a large
margin classifier. Forster and Simon (2002) have shown that every ineenrgement for PARITY
has an average geometric margin of at mogt2 Thus there can be no linear arrangement with
an average margin exceeding™? for Ca even if we restrict the weight parametersAg to
logarithmically bounded integers.

6. Conclusions and Open Problems

Bayesian networks have become one of the heavily studied and widelprazabilistic techniques
for pattern recognition and statistical inference. One line of inquiry intceBey networks pursues
the idea of combining them with kernel methods so that one can take advaritagt. Kernel
methods employ the principle of mapping the input vectors to some higher-dimahspace where
then inner product operations are performed implicitly. The major motivationdowork was to
reveal more about such inner product spaces. In particular, vesl aglkether Bayesian networks
can be considered as linear classifiers and, thus, whether kermatiope can be implemented as
standard dot products. With this work we have gained insight into the natuhe inner product
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space in terms of bounds on its dimensionality. As the main results, we havisbstdight bounds
on the Euclidean dimension of spaces in which two-label classificationsyefsian networks with
binary nodes can be implemented.

We have employed the VC dimension as one of the tools for deriving lowerdsouBounds
on the VC dimension of concept classes abound. Exact values arenlordwfor a few classes.
Surprisingly, our investigation of the dimensionality of embeddings lead to saaw ealues of
the VC dimension for nontrivial Bayesian networks. The VC dimension eaenliployed to obtain
tight bounds on the complexity of model selection, that is, on the amount efiatoon required for
choosing a Bayesian network that performs well on unseen data.nefvarks where this amount
can be expressed in terms of the VC dimension, the tight bounds for the dimpedf Bayesian
networks established here show that the sizes of the training samplesdeéprirlearning can
also be estimated using the Euclidean dimension. Another consequence abseiselationship
between VC dimension and Euclidean dimension is that these networks capladesd by linear
classifiers without a significant increase in the required sample sizesth@/lthese conclusions
can be drawn also for the logistic autoregressive network is an open iksemains to be shown
if the VC dimension is also useful in tightly bounding the Euclidean dimension stthetworks.
For the modified version of this model, our results suggest that diffepgmbaches might be more
successful.

The results raise some further open questions. First, since we comksaidyenetworks with
binary nodes, analogous questions regarding Bayesian networks withleaualued nodes or even
continuous-valued nodes are certainly of interest. Another generatiziti®ayesian networks are
those with hidden variables which have also been out of the scope of this Murther, with regard
to logistic autoregressive Bayesian networks, we were able to obtainpamential lower bound
only for a variant of them. For the unmodified network such a bound hat® yee found. Finally,
the questions we studied here are certainly relevant not only for Bayastavorks but also for
other popular classes of distributions or densities. Those from the erpahfamily look like a
good thing to start with.
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