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Abstract

Planning problems that involve learning a policy from a fntgaining set of finite horizon tra-
jectories arise in both social science and medical fields. c@vesider Q-learning with function
approximation for this setting and derive an upper boundhengeneralization error. This upper
bound is in terms of quantities minimized by a Q-learningéltym, the complexity of the approx-
imation space and an approximation term due to the mismatohelen Q-learning and the goal of
learning a policy that maximizes the value function.
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1. Introduction

In many areas of the medical and social sciences the following plannitdepnarises. A training
set or batch of trajectories ofl + 1-decision epochs is available for estimating a policy. A decision
epoch attimé,t=0,1,...,T, is composed of information observed at titn&;, an action taken at
timet, A, and a rewardR;. For example there are currently a number of ongoing large clinical trials
for chronic disorders in which, each time an individual relapses, theithdil is re-randomized

to one of several further treatments (Schneider et al., 2001; Fava 20@8; Thall et al., 2000).
These are finite horizon problems withgenerally quite smalll = 2— 4, with known exploration
policy. Scientists want to estimate the best “strategies,” i.e. policies, for nman#we disorder.
Alternately the training set of n trajectories may be historical; for example dathich clinicians
and their patients are followed with i! nformation about disease proceasyieat burden and treat-
ment decisions recorded through time. Again the goal is to estimate the bestfpolinanaging
the disease. Alternately, consider either catalog merchandizing or chastllitation; informa-
tion about the client, and whether or not a solicitation is made and/or the fothe dolicitation

is recorded through time (Simester, Peng and Tsitsiklis, 2003). The goakisitnate the best
policy for deciding which clients should receive a mailing and the form of théimgaThese latter
planning problems can be viewed as infinite horizon problems butdigcision epochs per client
are recorded. IT is large, the rewards are bounded and the dynamics are stationaryidarkoen
this finite horizon problem provides an approximation to the discounted infioiiedn problem
(Kearns, Mansour and Ng, 2000).

These planning problems are characterized by unknown system dyreamdi¢sus can also be
viewed as learning problems as well. Note there is no access to a generatieé nor an online
simulation model nor the ability to conduct offline simulation. All that is available isnthea-
jectories of T 41 decision epochs. One approach to learning a policy in this setting is Qrgarn
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(Watkins, 1989) since the actions in the training set are chosen accoodingnon-optimal) explo-

ration policy; Q-learning is an off-policy method (Sutton and Barto, 1998)en the observables
are vectors of continuous variables or are otherwise of high dimensibearQing must be com-
bined with function approximation.

The contributions of this paper are as follows. First a version of Q-ilegnwith function ap-
proximation, suitable for learning a policy with one training set of finite horizajectories and a
large observation space, is introduced; this “batch”version of Q-leguprocesses the entire train-
ing set of trajectories prior to updating the approximations to the Q-functiédmsincremental
implementation of batch Q-learning results in one-step Q-learning with funcpprogimation.
Second performance guarantees for this version of Q-learning avedpd. These performance
guarantees do not assume assume that the system dynamics are Markbgiperformance guar-
antees are upper bounds on the average difference in value furamtimase specifically the average
generalization error. Here the generalization error for batch Q-legisidefined analogous to the
generalization error in supervised learning (Schapire et al., 1998)theiaverage diffe! rence in
value when using the optimal policy as compared to using the greedy poliey @-learning) in
generating a separate test set. The performance guarantees ageasigdqerformance guarantees
available in supervised learning (Anthony and Bartlett, 1999).

The upper bounds on the average generalization error permit an addgantribution. These
upper bounds illuminate the mismatch between Q-learning with function approxieati the
goal of finding a policy maximizing the value function (see the remark followiegnma 2 and
the third remark following Theorem 2). This mismatch occurs because tharQidg algorithm
with function approximation does not directly maximize the value function buérattis algorithm
approximates the optimal Q-function within the constraints of the approximatiacesp a least
squares sense; this point is discussed as some length in section 3 of Tsitwiklian Roy (1997).

In the process of providing an upper bound on the average genémlizaror, finite sample
bounds on the difference in average values resulting from differ@itigs are derived. There are
three terms in the upper bounds. The first term is a function of the optimizaitenian used in
batch Q-learning, the second term is due to the complexity of the approximateoe sand the last
term is an approximation error due to the above mentioned mismatch. The thirdviecm is a
function of the complexity of the approximation space is similar in form to genetaliz error
bounds derived for supervised learning with neural networks as thoky and Bartlett (1999).
From the work of Kearns, Mansour, and Ng (1999, 2000) and Pesrid Shelton (2002), we
expect and find as well here that the number of trajectories needed antem a specified error
level is exponential in the horizon tim&, The upper bound does not depend on the dimension
of the observable®;’s. This is in contrast to the results of Fiechter (1994, 1997) in which the
upper bound on the average generalization error depends on the mohplossible values for the
observables.

A further contribution is that the upper bound on the average generatizatior provides a
mechanism for generalizing ideas from supervised learning to reimf@etlearning. For example
if the optimal Q-function belongs to the approximation space, then the uppeidbamply that
batch Q-learning is a PAC reinforcement learning algorithm as in Feich®®4(11997); see the
first remark following Theorem 1. And second the upper bounds peoaidtarting point in using
structural risk minimization for model selection (see the second remark dfeerém 1).

In Section 2, we review the definition of the value function and Q-functiomfpossibly non-
stationary, non-Markovian) finite horizon decision process. Nexteveew batch Q-learning with
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function approximation when the learning algorithm must use a training setrajectories. In
Section 5 we provide the two main results, both of which provide the numbeajettories needed
to achieve a given error level with a specified level of certainty.

2. Preliminaries

In the following we use upper case letters, sucl®amndA, to denote random variables and lower
case letters, such asanda, to denote instantiates or values of the random variables. Each of
the n trajectories is composed of the sequef@®, Ao, O1, ..., Ar, Or;1} whereT is a finite
constant. Defin®; = {Oy,...,0} and similarly forA;. Each actionA; takes values in finite,
discrete action spacd and O; takes values in the observation spage The observation space
may be multidimensional and continuous. The arguments below will not requrMénkovian
assumption with the value @ equal to the state at tinte The rewards ar& = r;(Ot,At, Or+1)
for r; a reward function and for each<0t < T (if the Markov assumption holds then replade
with O¢ and A; with A;). We assume that the rewards are bounded, taking values in the interval
[0,1].

We assume the trajectories are sampled at random according to a fixedid@stritenoted by
P. Thus the trajectories are generated by one fixed distribution. This digtribis composed of
the unknown distribution of ead®; conditional on(O;_1,A;_1) (call these unknown conditional
densities{ fo, ... fr}) and an exploration policy for generating the actions. Denote the exploratio
policy by pr = {po, ..., pr} where the probability that acticais taken given historyf O, A¢_1}
is pt(a|O¢,At—1) (if the Markov assumption holds then, as before, repl@agavith O; and A;_1
with A._1.) We assume that(ajoi,a-1) > O for each actiora € 4 and for each possible value
(or,&-1); thatis, at each time all actions are possible. Then the likelihood (i)dgthe trajectory,

{OOa aOa Ola o 7aT7 0‘|’+1} iS

;
fo(00) po(2@0|00) |'! fi(ot|or—1,a—1)pr(a|or, a—1) frya(orialor,ar). (1)
=

Denote expectations with respect to the distribudoy anE.

Define a deterministic, but possibly non-stationary and non-Markovi@itypTt, as a sequence
of decision rules{m, ..., & }, where the output of the tintedecision rulerg (o, &-1), is an action.
Let the distributiorP,; denote the distribution of a trajectory whereby the potity used to generate
the actions. Then the likelihood (und®y) of the trajectory{ oo, ao, 01, ...,ar,0111} IS

.
f0(00) Lag=ro(00) |_|1 fj(0j]0j—1,2j-1)Lay=m(0;.a;_1) Fr+1(OT+1]OT, @T) (2)
J:

where for a predicaté/, 1y is 1 if W is true and is 0 otherwise. Denote expectations with respect
to the distributiorP,; by ank;.

Note that since (1) and (2) differ only in regard to the policy for genegadictions, an expec-
tation with respect to eithd? or P;; that does not involve integration over the policy results in the
same quantity. For examplE[R;|O¢, At] = Ex[R|O¢, A¢], for any policytt

Let I be the collection of all policies. In a finite horizon planning problem (permittiog-n
stationary, non-Markovian policies) the goal is to estimate a policy that maxirIE,l;{g%:l R;j|Oo=
0o] overme M. If the system dynamics are Markovian and eadloj,a;j,0j11) = Y!'r(0;,a;,0j+1)
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for r a bounded reward function anyd= (0,1) a discount factor, then this finite horizon problem
provides an approximation to the discounted infinite horizon problem (lseldlansour and Ng,
2000) forT large.

Given a policy,t, the value function for an observatiam, is

;
Vin(00) = En !Z Ry
=1

i
Thet-value function for policyrtis the value of the rewards summed from titren and is

-
2R
=t
If the Markovian assumption holds thém, &_1) in the definition oy is replaced byy. Note that
the time 0 value function is simply the value functiafy = Vi;). For convenience, s& 141 =0.
Then the value functions satisfy the following relationship:

Vit (0, 8-1) = En[Re +Vrt4+1(Ot41,At)|Or = 0, At—1 = & 1]
fort =0,...,T. The timet Q-function for policyrtis

Qnt(0r, &) = E[R +Vrt+1(Ot+1,Ar)|Or = 0, At = &.

(The subscriptit, can be omitted as this expectation is with respect to the distributi®n,gfgiven
(Ot,At), fi11; this conditional distribution does not depend on the policy.) In Section 4xweegs
the difference in value functions for polidyand policyttin terms of the advantages (as defined in
Baird, 1993). The timé advantage is

l'lTl;t(obat) = QT[,t(O[7at) _Vr[7t<0[,at71).

The advantage can be interpreted as the gain in performance obtairabiwng actiona; at time
t and thereafter policytas compared to following polici from timet on.
The optimal value functiok'* (o) for an observatiow is

V7(0) = maxVn(0)

O = Oo] .

Vrt(0,8-1) = En Or=0,At1=a-1]-

and the optimal-value function for historyor,a;_1) is
Vi (0, 8-1) = MaXVit (0, 8-1).
|
As is well-known, the optimal value functions satisfy the Bellman equations (Be|ld@b7)
Vi (o, a-1) = Q?%E[R‘ +Vi11(0t41,At) |0 = 01, Ar = &].
Optimal, deterministic, timédecision rules must satisfy
TE (O, 8-1) € argartrgE[Rt +Vii1(Ot+1,At) [Or = 0, Ar = &
The optimal time Q-function is

Qi (0r,a) = E[R +V1(Ot41,A)[Or = 0, At = &),
and thus the optimal timeadvantage, which is given by

(o, a) = Qf(or,a) —Vi" (o, &-1),
is always nonpositive and furthermore it is maximizedimta; = 1% (0, 8-1).
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3. Batch Q-Learning

We consider a version of Q-learning for use in learning a non-statipnary-Markovian policy
with one training set of finite horizon trajectories. The term “batch”Q-liggyis used to emphasize
that learning occurs only after the collection of the training set. The Qtifums are estimated
using an approximator (i.e. neural networks, decision-trees etc.) éBagsand Tsitsiklis, 1996;
Tsitsiklis and van Roy, 1997) and then the estimated decision rules are thexaof the estimated
Q functions. LetQ be the approximation space for tttd Q-function, e.g.@ = {Q:(0t,&:;0) :

6 € ©}; 0 is a vector of parameters taking values in a parameter gpaghich is a subset of a
Euclidean space. For convenience @gt ; equal to zero and writg, f for the expectation of an
arbitrary function,f, of a trajectory with respect to the probability obtained by choosing a trajecto
uniformly from the training set ofi trajectories (for exampleg, [f(O;)] = 1/n¥ [, f(Oy) for O

the tth observation in théth trajectory). In batch Q-learning using dynamic programming and
function approximation solve the following backwards through timeéT, T —1,...,1 to obtain

2
6 € argmiren [Rt + r;{]alXQHl(OHlaAta ai+1;6t11) — Qi (O, Aps 9)] : 3)

Suppose that Q-functions are approximated by linear combinatignfeatures ¢ = {8" ¢ (01, &) :
0 € RP}) then to achieve (3) solve backwards through titme, T, T —1,...,0,

0=En [(R[ + rQﬁXQt—&-l(ot—i-laAhat—&—l; Btr1) — (O, Ay, 9t)> CIt(OtaAt)T} (4)

for 6.

An incremental implementation with updates between trajectories of (3) andgdlls in one-
step Q-learning (Sutton and Barto, 1998, pg. 148,\yp4tl, assume the Markov property and no
need for function approximation). This is not surprising as Q-learnimgbeaviewed as approxi-
mating least squares value iteration (Tsitsiklis and van Roy, 1996). To se®timection consider
the following generic derivation of an incremental update. Denotétlthexample in a training set
by X;. Defined" to be a solution of ', f(X,0) =0 for f a givenp dimensional vector of functions
and each integer. Using a Taylor series, expargd™.L f(X;,8"1) in 8™ aboutd™ to obtain a
between-example update@6":

~ -1
N . 1 of (X, 0" N
I+ g ¢ e (En+1 (—%) > f(Xns2,0%).

~n -1
Replacer% (EnH (— afgé,ne ))) by a step-size, (0, — 0 asn — o) to obtain a general formula

for the incremental implementation. Now consider an incremental implementatid fafr(each
t=0,...,T. Then for each, X = (Ot;+1,At), 6 =6; and

f(X.6) = (a +maxQua(Ores A a8 ) —Qt<ot,At;et>> (0. A)T

is a vector of dimensiop. The incremental update is

g™y — 8" +an (Rt + rgaiXQtH(Owl,At, at+1;§t(ﬂl)) - Q[(Ot,At;ﬁt(”))> % (O, A1)
N
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fort =0,...,T. This is the one-step update of Sutton and Barto (1998, pg. 148)ywithh and
generalized to permit function approximation and nonstationary Q-funcéindss analogous to
the TD(0) update of Tsitsiklis and van Roy (1997) permitting non-Markqui@mstationary value
functions.

Denote the estimator of the optimal Q-functions based on the training déafbyt =0,...,T
(for simplicity, 8 is omitted). The estimated policy, satisfiesk (or,a 1) € argmadx, @t(ot, a) for
eacht. Note that members of the approximation spgeeed not be “Q-functions” for any policy.
For example the Q-functions corresponding to the use of a pol{Qft, t =0,...,T) must satisfy

E[R + Vit +1(Ot41,At)|Ot, At] = Qnt (Ot, At)

whereVr11(Ot41,At) = Qnt+1(Ots1,At, & 1) With a1 set equal tag1(Ory1,Ar). Q-learning
does not impose this restriction q@[,t =0,...,T}; indeed it may be that no member of the
approximation space can satisfy this restriction. None-the-less we refiee @'S as estimated
Q-functions. Note also that the approximation for the Q-functions combinigdtie definition
of the estimated decision rules as the argmax of the estimated Q functions pladiest mep
strictions on the set of policies that will be considered. In effect the espdidnteresting po-
lices is no longef but ratherMq = {1,0 € ©} whereTy = {Tup,...,Tre} and where each

T (0, &-1) € argmax, Q(or, a; 6) for someQ; € Q.

4. Generalization Error

Define the generalization error of a polimat an observationg as the average difference between
the optimal value function and the value function resulting from the use ofypulic generating a
separate test set. The generalization error of patiay observatiomg can be written as

T
V*(Oo) _VT[(OO) = —E; [%p{‘(ot,At)’OO = Oo] (5)

whereEy denotes the expectation using the likelihood (2). So the generalizationcardre ex-
pressed in terms of the optimal advantages evaluated at actions determpaitpyr, that is when
eachA, = 1%(O¢,At_1). Thus the closer each optimal advantagéQO:, A;) for A, = 1% (O, Ai_1) is
to zero, the smaller the generalization error. Recall that the optimal adeapt&@:,A:), is zero
whenA; = 14 (O¢,At—1). The display in (5) follows from Kakade’s (ch. 5, 2003) expressimrtlie
difference between the value functions for two policies.
Lemmal

Given policiesitandr,

.
Vi(00) — Va(00) = ~En [ 3 Hit(OA) |00 = 00] .
t=

Setft= 1T* to obtain (5). An alternate to Kakade’s (2003) proof is as follows.
Proof. First note

Vi(0o) = En [ia)oo - 00] —En [En [ia\oT,AT
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And Ex [ZITZORI‘OT,AT} is the expectation with respect to the distributiorGaf, ;1 given the his-

tory (Ot1,AT); this is the densityfr_ 1 from Section 2 andt1 is independent of the policy used
to choose the actions. Thus we may subsdiply eitherrt or ftwithout changing the expectation;

En [LT:ORI OT,AT} = Ex [Ztho R ‘OT,AT} =51 &R +Qx1(O7,AT). The conditional expecta-
tion can be written in a telescoping sum as

.
= ;Qﬁt(otaAt) — Vit (Or, At-1)
=

En :tiRt\oT,AT

.
+ 21 R—1+ Vit (Or, At—1) — Qst—1(Ot—1,Ar-1)
=

+Vf—;o(Oo)

The first sum is the sum of the advantages. The second sum is a sum ofé¢dlifference errors;
integrating the temporal-difference error with respect to the conditionailison of O; given
(Ot-1,Ai—1), denoted byf; in Section 2, we obtain zero,

E [R—1+ V5t (Or,At—1)|Ot—1,At—1] = Qst—1(0t—1,At-1)

(as beforeE denotes expectation with respect to (1); recall that expectations thaitdotegrate
over the policy can be written either with &or anEy). Substitute the telescoping sum into (6)
and note tha¥s o(0p) = Vx(0p) to obtain the resul@ll

In the following Lemma the difference between value functions corregpgrid two policies,
ftandm, is expressed in terms of both the andL, distances between the optimal Q-functions
andany functions{Qo, Q1, ..., Qr } satisfyingTg(o,a-1) € argmax, Q (o, &), t =0,...,T and
any functions{Qo, Q1,...,Qr} satisfyingTg(or,a_1) € argmax, Q(o, &), t =0,...,T. We as-
sume that there exists a positive constarfor which p;(a|oy,a_1) > L~ for eacht and all pairs
(or,&-1); if the stochastic decision rulgy, were uniform therL would be the size of the action
space.
Lemma 2
For all functions Q; satisfyingrg(o,&-1) € argmax, Q (o, &), t=0,...,T, and all function<;
satisfyingT (o, a—1) € argmax, @[(q,a), t=0,...,T we have,

)
Vilon) ~Vifon)| < 3 2L [|Q (O A) — G(O1AI[O = )
t=

+tith+lE “Qt(ot,At) - Qﬁt(ot,At)“Oo _ o]

and

:
Vi(00) —V(00)| < t;zL<t+1>/2\/E[(Q[(ot,At>Q(ot,At))Z\oozoo}

+tiz|_(t+l>/2\/|5 [(Q(ot,At) — Qﬁt(ot,At))2 ‘oo = o] ,

whereE denotes expectation with respect to the distribution generating the trainindes@mp
Remark:
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1. Note that in general arg m@Qﬁ,t(o[,aQ may not beft thus we can not choos@ = Qrt.

However if ft= 1t then we can choosg; = Qf (= Q- by definition) and the second term
in both upper bounds is equal to zero.

2. This result can be used to emphasize one aspect of the mismatch betvimatirg the opti-
mal Q function and the goal of learning a policy that maximizes the value functiopp&e
Q: = Q;, ft=T1t". The generalization error is

V*(00) ~ Vn(00) < ngu”“/ﬁ E [(QUOLAY) — Qi (O1.A))2|00 = oo
t=

for Q¢ any function satisfyingg(or,a—1) € argmax, Qi(or,a;). Absent restrictions on the
Qs, this inequality cannot be improved in the sense that choosing@aelQ; andtg = 1%
yields 0 on both sides of the inequality. However an inequality in the opposketiin

is not possible, since as was seen in Lemm&"10g) — Vn(0p) involves theQ functions
only through the advantages (see also (7) below With 1t). Thus for the difference in
value functions to be small, the average difference betw@én, a;) — maxg, Q:(or,a) and

Qi (o, &) —maxg, Qf (or, &) must be small; this does not require that the average difference
betweenQ; (or,a) and Q; (o, &) is small. The mismatch is not unexpected. For example,
Baxter and Bartlett (2001) provide an example in which the approximatiocesfma the
value function includes a value function for which the greedy policy is optipedlthe greedy
policy found by temporal difference learning (TD(1! )) function penfig very poorly.

Proof. Definep(or,a) = Qc(0r,a) — maxg Qi(or, &) for eacht; note thaty (o, &) evaluated at
a = Tg(0r,a_1) is zero. Start with the result of Lemma 1. Then note the difference between th
value functions can be expressed as

Vi(0o) —~ Vi(00) = iEﬂ (O, AL) — it (O1, A) O = 0o (7)

sincePy putsa; = Tx (0, &-1) andyk (o, a ) = O for this value of. When itis clear from the context
Mt (prt) is used as abbreviation fay(O¢, At) (prt (O, At)) in the following. AlsoQyt(Or,At—1,a)
with & replaced byt (O, At—1) is written asQs (Or, At—1, Tk ). Consider the absolute value of the
tth integrand in (7):

e — Mt |
= |Q(Or,Ar) — mataXQt(ohAtfla ar) — Qst (Or, At) + Qsit (Or, Ar—1, Tt |
< |Q(Or,At) — Qrt (Or, Ar)| + | mataXQt(OtaAtflaat) — Qrt (O, At—1, 1)

Since may, Q(Ot,At,l,a{) = Q(Ot,At,l,ﬁt) and for any functionsh and b, |max, h(a;) —
maxg, N (a;)| < maxg, [h(a) —h'(a)

mataXQ[ (Ot ) At,]_, a{) - Qﬁt (Ot ; At,]_, f&)
< ma{aX‘Qt(Otht—lyat) — QO A1, &)

+ |©t(ot7At—17ﬁt) — Qrt(Or, Ar-1,T%)| -
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We obtain|p; — P |
< ZFT;taX\Qt(Ot,Athat)*Qt(ot,Atfl,atN
+2 maaX!@(Ot,Atfl,at) — Qrt (O, At—1,&)| (8)
< 2Ly |Q(On A 1a) — QO A1, 8) | Pr (@O, Ar1)

ey
+2Ly |Qt(Or, At—1,8) — Qst (O, Ar—1,8) | pr (& Ot At—1).
n

Insert the above into (7) and use Lemma Al to obpeiog) — Vir(0o)|
< 2 %En [ |Q(Or, At—1,a) — Q(Ot,At_l,at)!pt(at\Ot,At_l))Oo = 00]

+En

Z|QI(Ot7At 1,8) — Qs (Or, At—1,a) | pt(a|Or, At—1 ’00—001

1Az =Ty
J_Lpé (Ar|Or,Ap-1)

1Az T
(J_L Pe(Ar|Or, Ap-1) ) O~ Qra

Oo = 0p| +2 Lt+1E[”— ;
o 00] t; |Qt — Qrie |

= ZLZ)E

OO = 00]

IN

T
2 Lt+1E |: A
5ol

Oo = 00:|

(Qt, Qs is used as abbreviation fQ (O, At), respectivelyQs (Or,At)). This completes the proof
of the first result.
Start from (8) and use &lder’s inequality to obtainVs(0g) — Vi(0o)|

i
< 23 En|maxQ (0 Av.2) - GOu ALzl |00 — oo
=

+En |:matax|ét(ot7Atla a) — Qmt (Or, At—1, at)|‘00 = 00}

IN

:
2;\/5[ ma QO Ar-1,) - GO A1,2) 7|0 = )
t=

+ \/En [ma{ax|©t(otaAtl,at) - Qﬁ,t(OhAtfl,at)‘z‘OO = 00]

IN

;
2;4 LEr [Z|Qt Ot At-1,a )—@(Ot,At_l,at)lzpt(at\ot,At_l)‘Oo—00]
t= &

;
+2%J (S [ |Q (O, Ar-1, & )_Qﬁt(OhAt—laat)lzpt(atlotaAt—l)‘OO = 00] :
=
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Now use Lemma Al and the lower bound on fhis to obtain the result,
t—1 1A1 - ~ .2
LE — Op=0
Z) J_Lpi (Ar|Og,Ar-1) (Q-Q) ‘ om0
e J_L 1n—n (O~ Qu)?|O0 = 0g
Pe(Ac|O¢, Ap-1) ’

2|_(t+l)/2t; \/E [(Qt 6?2 ‘Oo _ 00}
+ \/E [(Qt —Qﬁ,t)z ‘Oo = 00} :

[Vii(00) —Vin(00)|

IN

IN

5. Finite Sample Upper Bounds on the Average Generalization Error

Traditionally the performance of a poliay is evaluated in terms of maximum generalization er-
ror: max[V*(0) — Vr(0)] (Bertsekas and Tsitsiklis, 1996). However here we consider angavera
generalization error as in Kakade (2003) (see also Fiechter, 19@rn&evansour and Ng, 2000;
Peshkin and Shelton, 2002); that figV*(0) — Vr(0)]dF(0) for a specified distributior on the
observation space. The choicefofwith density f = fg (fg is the density 00 in likelihoods (1)
and (2)) is particularly appealing in the development of a policy in many mealchsocial science
applications. In these casdg,represents the distribution of initial observations corresponding to a
particular population of subjects. The goal is to produce a good policthiepopulation of sub-
jects. In general as in Kakade (20@3)nay be chosen to incorporate domain knowledge concerning
the steady state dis! tribution of a good policy. If only a training set of trajexstas available for
learning and we are unwilling to assume that the system dynamics are Markthea the choice
of F is constrained by the following consideration. If the distributiorOgfin the training set {y)
assigns mass zero to an observatignthen the training data will not be able to tell us anything
aboutVy(0'). Similarly if fy assigns a very small positive massdathen only an exceptionally
large training set will permit an accurate estimaté/gfo’). Of course this will not be a problem
for the average generalization error, as longradso assigns very low massb Consequently in
our construction of the finite sample error bounds foraheragegeneralization error, we will only
consider distribution& for which the density of, sayf, satisfies sqq 700) | < M for some finite
constani. In this case the average generalization error is bounded above by

/ v ( 0)dF(0) < ME[V*(Op) —Vr(Oo)]

]
i (00 AY |
t; t t

The second line is a consequence of (5) and the fact that the distribditiogie the same under
likelihoods (1) and (2).

In the following theorem a non-asymptotic upper bound on the averagaaiation error is
provided; this upper bound depends on the number of trajectories in thmgraet (), the per-

— _MET[
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formance of the approximation on the training set, the complexity of the approgimspace and
of course on the confidencd)(and accuracyg demanded. The batch Q-learning algorithm min-
imizes quadratic forms (see (3)); thus we represent the performarigeations{Qo, Q1,...,Qr}

on the training set by these quadratic forms,

2
Ermng,(Q) = En | R+ maxQ1(Ori1, Ar, 81) — Qe(Or Ar)
+

for eachj (recallQy. 1 is set to zero and, represents the expectation with respect to the probability
obtained by choosing a trajectory uniformly from the training set).

The complexity of eachy space can be represented by it's covering humber (Anthony and
Bartlett, 1999, pg 148). Suppoge is a class of functions from a space, to R. For a sequence
X= (X1,...,%) € X", define 7 to be a subset at" given by 7, = {(f(x1),...,f(xn)) : f € F}.
Define the metrid, onR" by dp(z)y) = (1/n3 L1 |z —yi\p)l/p for p a positive integer (fop = o,
defined.(z,y) = maxy ; |z —yi[). ThenA((g, Fx,dp) is defined as the minimum cardinality of an
g-covering of 7 x with respect to the metrid,. Next givene > 0, positive integen, metricd, and
function class/, the covering number fof is defined as

Np(g, F,n) = max{ (g, Fx,dp) : x € X"}

In the following theoremF = {max,,, Qt+1(0t+1,8) — Qt(0r, &) : Q € Q,t=0,...,T} and
(x)™ isxif x> 0 and zero otherwise.
Theorem 1
Assume that the functionsi@,t €0,..., T are uniformly bounded. Suppose that there exists a pos-
itive constant, sal, for which p;(a;|o, &) > L1 forall (or,a) pairs, 0<t < T. Then fore > 0 and
with probability at least 1 3, over the random choice of the training set, every choice of functions,
Qj € Q, j=0,...,T with associated policyt defined bym;(0j,aj-1) = argmax; Q;(0;,a;) and
every choice of function®; € Q;, j =0,..., T with associated policyt defined by (0j,aj-1) =
argma, Qi (0j,a;) the following bound is satisfied,

J Vx(0) —Vn(0)|dF (o)

1/2

T T . . ~
< omity [ 5 (16 L (Emn..(Q)~Erfaa (@)
t= 1=
+12MLY %

T T
6MLY/2 16)00/21/2, JE[Q (01, Ai) — Qi (O, A2
HOMLIZ S 5 (19 VE[B(O1,Ai) — Qxi (01, A)

for n satisfying

€2 en
AT+1HANq <W,7,2n> eXp{_32(M’)2(16L)2(T+2) } <o 9)

and whereM’ is a uniform upper bound on the absolute valud ef F andE represents the expec-
tation with respect to the distribution (1) generating the training set.
Remarks:
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1. Suppose tha®; € @ for eacht. Select®; = Q andQI = argminyeq Errth 1(Q[), t=

T,T—1,...,0 (recallQr.1, QT+1 are identically zero). Then with probability greater than
1— 9, we obtain,

/ V*(0) —Vx(0)dF(0) < 12MLY%¢ (10)

for all n satisfying (9). Thus, as long as the covering numbers for €aand thus forF
do not grow too fast, estimating ea€h by minimizing ErrnQH(Qt) yields a policy that
consistently achieves the optimal value. Suppose the approximation spades O,..., T
are feed-forward neural networks as in remark 4 below. In this cas&dming set size
sufficient for (10) to hold need only be polynomial (fh/5,1/€) and batch Q-learning is a
probably approximate correct (PAC) reinforcement learning algorithitedined by Fiechter
(1997). As shown by Fiechter (1997) this algorithm can be converted &df@ient on-line
reinforcement learning algorithm (here the word on-line implies updatingaheyetween
trajectories).

2. Even wherQ; does not belong t@} we can add the optima&) function at each timet, to
the approximation space&} with a cost of no more than an increase of 1 to the covering

numbera; (m, F, 2n> If we do this the result continues to hold when weTsé&t
an optimal policyr® and set); = Q; for eacht; the generalization error is

/V*(o)—Vn(o)dF(o) < 6ML1/2T I:i(lG)itLiErrnQ- (Qi) v

1=t
+ 12MLY%¢

for all n satisfying (9). This upper bound is consistent with the practice of usingieygt
for which T (or,a 1) € argma, Q(q a) anth € argminyeq Errth (Q). Given that
the covering numbers for the approximation space can be expressedff'rciaamly simple
form (as in remark 4 below), this upper bound can be used to carry odélnselection
using structural risk minimization (Vapnik, 1982). That is, one might comsadeariety of
approximation spaces and use structural risk minimization to use the trainintbadtaose
which approximation space is best. The resulting upper bound on thegavgeaeralization
error can be found by using the above result and Lemma 15.5 of AnthmehBartlett (1999).

3. The restriction om in (9) is due to the complexity associated with the approximation space
(e.g. the@'’s). The restriction is crude; to see this, note that if there were only a finiteer
of functions in¥ thenn need only satisfy

4
2(T+1)|T|exp{— il }:6

(3M’) (16|_)2(T+2)

(use Hoeffding’s inequality; see Anthony and Bartlett, pg 361, 1998€l)thas for a given
(€,0) we may set the number of trajectories in the trainingnsedqual to

(3M)2(16L)2T+2 7 2(T +1)| F|
2ed In < 5 ) .
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This complexity term appears similar to that achieved by learning algorithms geegAn-
thony and Bartlett, 1999, pg. 21) or in reinforcement learning (e.g. Ktesimd Shelton,
2002) however note thatis of the orde = rather than the usuat?. Thee* term (instead
of £72) is attributable to the fact th&rrqg,, (Q) is not only a function of); but also ofQ; 1.
However further assumptions on the approximation space permit an impreselil. See
Theorem 2 below for one possible refinement. Note the needed trainisizeatdepends
exponentially on the horizon time but not on the dimension of the observation space. Thi!
s is not unexpected as the upper bounds on the generalization errothoKéarns, Man-
sour and Ng (2000) and Peshkin and Shelton’s (2002) policy searittodse(the latter using
a training set and importance sampling weights) also depend exponentiallg ¢trorizon
time.

4. When¥ is infinite, we use covering numbers for the approximation sgaeand then appeal
to Lemma A2 in the appendix to derive a covering numberffothis results in

Aa(e, F,m) < (T+1) max g <—
One possible approximation space is based on feed-forward netarke. From Anthony
and Bartlett (1999) we have that if eac} is the class of functions computed by a feed-
forward network withV weights anck computation units arranged inlayers and each com-
putation unit has a fixed piecewise-polynomial activation function witlieces and degree

\d
no more thart, thenAj (g, @,n) < e(d+1) (@) whered = 2(W + 1) (L + 1) log,(4(W +

1)(L+1)q(k+1)/In2)4+2(W +1)(L +1)?log,(¢ + 1) +2(L +1). To see this combine An-
thony and Bartlett's Theorems 8.8, 14.1 and 18.4. They provide coveuimdpers for func-
tions computed by other types of neural networks as well. A particularly singeal net-
work is an affine combination of a given set pinput features; i.e.f (x) = wo + Zip:_llmxi
for (1,x) a vector ofp real valued features and eache R. Suppose eacly is a class of
functions computed by this network. Then Theorems 11.6 and 18.4 of AntowhBartlett

imply thatAq (e, @, n) < e(p+1) (28?'\") ", In this case

n>

32(M)4(16L)27+2 ([ 4(T +1)%€*(p+ 1)? (128014 (M")?(16L)T+2)*P
e log Oe4p .

This number will be large for any reasonable accuraand confidence).

Proof of Theorem 1. An upper bound on the average difference in value functions cantaamet
from Lemma 2 by using Jensen’s inequality and the assumption that the thity déis(f) satisfies
sum%| < M for some finite constariil:

2

/|Vﬁ(0) —Vr(0)|dF(0) < M iZL“*”/z\/E [Q(01,A) — Q& (O, A)]
t=
+M iZL(t“)/z E [& —Qni]® (11)
t=
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whereQ, Qs is used as abbreviation f@k (O, At ), respectivelyQz: (O, Ar). In the following an
upper bound on eadg [Q — Q] %is constructed.
The performance of the approximation on an infinite training set can besepied by

2
Errq..(Q)=E [Rt +maxQu1(Otr1, A 1) — Q
+

for eacht (recallQr1 =0, also we abbreviat@; (O, A;) by Q: whenever no confusion may arise).
The errorsErr’s, can be used to provide an upper bound orLtheorms on the Q-functions by the

following argument. Considétrrg,,(Qt) — Errg,.,(Q) for eacht. Within each of these quadratic
forms add and subtract

Qftt+1(Ot41,At, Th1) — Qe — E [rgaiXQHl(OHl»At, ary1) — Qrt+1(Ots1,At, Thy1) |Ot,At} -
+

In the abovest+1(Ot11,At, Tky1) is defined aQ¥t11(Ot 11, At, & 1) with & 1 replaced by, 1(Or.1,
At). Expand each quadratic form and use the factE{& + Qst+1(Ot+1,At, Te+1)|Ot, At] = Qs
Cancelling common terms yields

2
E [Qﬁ,t -Q+E [anlXQtH(OHLAt?atH) — Qrit+1(Ot41,At, Tey1) ‘Otht:| }
+

2
—-E [Qfm -Q+E [rgalXQtH(OtH,At, ar+1) — Qfet+1(Ot+1,At, Thy1) !Ot,At] ] -
+

Add and subtracf); in the first quadratic form and expand. This yields

Eert+1(Qt) - EerHl(@t) =
E[Q Q) +2E[G Q] [& — Qn
+2E {(Qt - Q) <fQiXQ+1(Ot+1,At7&+1) - fQiXQtH(OtH,At, at+1)>]

+2E [((jt - Q) (rgf‘lxéwl(otJrl,At,atH) —Qﬁ,t+1(ot+1,AtafE+1)>] . (12)

Using the arguments similar to those used around Equation (8) and usingthiaiex + y)? <
2x% + 2y? we obtain,

ErQ.,(Q) ~Erq.,(Q) > E [ -G
—4 (E[QI - Qt]z (E [Qt - Qﬁt] ? +LE [QH—l - Qu—l] ? +LE [Qu—l - Qﬁ,t+l] 2))

1/2

Using this inequality we can now derive an upper bound on Ea{@t — Q] %in terms of theErr’s
and theE [Qc+1 — Qft+1]'s. Define

m =L~ TVE[G - Qw]” andb = LT VE[Q - Q]

and
a=L"T"Y(Erg,(Q)—Erg.,(Q)
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fort <T andbr,.1 =mr,1 =er 1 =0. We obtain

& > by —4y/be (M +brsg +mga).

Completing the square, reordering terms, squaring once again and usimgduality(x + y)? <
2x% 4-2y? yieldsby < 16(by, 1+ m +m1) +2g fort < T. We obtain

t _ t _
br¢ < 2_%(16)'9T—t+i + _21(16)' (164 1)mr ;i + 16my_¢.

Inserting the definitions dfy ¢, er_¢,; and reordering, yields

T . ~
E[q-&]° < 22(1&)'*(Errqm@i)—Errqﬂ@i))
+ i (16) ' (16+ 1)L 'm + LT 'm. (13)
i=t+1

As an aside we can start from (12) and derive the upper bound,
Eert+1(Qt) - EerH—l((jt) <E [Qt - @]2
+4LT- t)\/ JE[Q— Qt] <mt+|- (T-DE [Qup1— Qi1 +mt+1)-

This combined with (13) implies that minimizing ea€lrqg,,, (Qt) — Errg,.,(Q) in Q is equivalent
to minimizing eactt [Qt — Qt] %in Q: modulo the approximation ternmg fort =0,...,T.
Returning to the proof next note that

Eert+1(Q[) - Eert+1(Qt) < ‘EertH(Qt)h’_ Errn1Q+1(Qt)h’}
+ }EerHl(Qt) - ErrnaQHl(Qt)‘

+ (Erfng, (Q) —Erng, (Q) "

where(x)* is equal taxif x> 0 and is equal to 0 otherwise. Note that if e@tminimizesErr, g, ,
as in (3) then the third term is zero. Substituting into (13), we obtain

T

E[Q-G)° < 22{(1&_ < [Errg,1(Q) —Erfng..(Q)]
+ }EeriH(éi) - Errn,QiH(Qi)‘

+(Ermng..(Q) — Errn,Qi+1(éi))+>

.
+ Z (16) (164 1)L E[G — Qri]2+E[Q — Qrr]2
i=t+

Combine this inequality with (11); simplify the sums and use the fact that foboth nonneg-
ative \/x+y < /x+ ,/y to obtain [ |Vi(0) — Vr(0)|dF(0)
1/2

TrT o .
< 6M Ll/zt;) {2(16)'1' (Ermng,.(Q) —Ermg4(Q))

1=t
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+ 12M|_1/2(16L)(T+2)/2\/mtathsg[p [Errg.,(Q) —Errng., (Q)|
sWt+1

T T . . ~
+ 6MLY/2 Z)Z(lG)("t)/zL'/z EQ — Qxil%
t=01=t

All that remains is to provide an upper bound on

T
P [U {for someyeq,t-o....7 |Erq..(Q) —Errng,. (Q))] > s’}] )

i=0

This probability is in turn bounded above by

Anthony and Bartlett (1999, pg. 241) use Hoeffding's inequality aloith the classical techniques
of symmetrization and permutation to provide the upper bound (see also vgaateand Wellner,
1996),

P for someyeq,t-o...7 |ErQ.,(Q) —Erfng.,(Q)] > €]

oy n)onf -}

3eey

Pute = (16L)(T+2/2\/¢’ to obtain the results of the theorem.
Suppose the Q functions are approximated by linear combinatiopdastures; for each=
0,...,T, denote the feature vector loy(or, & ). The approximation space is then,

Q= {Q(o,a) =0"cx(or,a) : 6 € O}

where® is a subset oRP. In this case, the batch Q-learning algorithm may be based on (4); we
represent the performance of the functig@, ..., Q;} on the training set by

ErMng..(Qt) =En [(Rt + rQiXQHl(OHl,AtaaHl) - Qt(otaAt)) Ch(ot,At)]

fort =0,...,T (recall E, represents the expectation with respect to the probability obtained by
choosing a trajectory uniformly from the training set). In this theorem

p T
F=UU { (rt +MaxQi1 (01, 84; B —Qt(ot,at;et)> Oki (Or, @) : B, 61 € @} :

i=1t=1

Define the function§Qo, ..., Qr}, and the policy7t, as follows. First defin€@r (Or,AT) to be the
projection ofE [Rr|O,Ar] on the space spanned@y. Then seftr (or,ar_1) € argmax, Qr(or,ar).
Nextfort =T —1,...,0, setQ;(O,A¢) as the projection o [R[ + Qt+1(Ot+1,At, Th 1) ]Ot,At] on
the space spanned loy (recall Qi 1(Ot1,At, Th11) is defined ad;1(O¢11,At,a41) With a1
replaced by 1(Ot11,At)). And setri(or,a-1) € argmax, Qi(or,a ). These projections are with
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respect td?, the distribution which generated the trajectories in the training set (the likelilsdo
(1))

Theorem 2

Suppose that there exists a positive constantl.séyr which p;(a oy, a_1) > L~ for all (o, a_1),

0 <t < T. Suppose that for eathx € RP, X" Eqg{ x > n||x||> wheren > 0 (|| -|| is the Euclidean
norm). Also assume th@ is a closed subset dix € RP: ||x|| < Mg} and for all (t,i), theith
component in the vectay, is pointwise boundedyyi| < Mg for Mg a constant. Then fag > 0,
with probability at least 1 8, over the random choice of the training set, every choice of functions,
@ € @ and functionsQ;, t = 0,..., T with associated policies defined bywith T¢(o, a1 €
argmax, Q: (o, a) andftwith Tg(or,a_1) € argmax, Qt(ot,at) respectively, the following bounds
are satisfied,

T
LPM HErrnQHl(QJ)H

—!

T _ T
§L<‘+1>E|Qt(ot,At>—Qt<ot,At>| < \mMQ/n%L“H
t= t=

+ 4e.

J

fort =0,...,T, whereE represents the expectation with respect to the distribution (1) generating
the training set and
1) < Crr
| V(o) ~ V(o) dF(0) < 2My/BMg/n EOL“ 3 (LoMy/) " |ETTng (@
+ 8Me

T — ~
+2M %L(t“)E |Q (O, AY) — Q& (O, AY)|
t=

T
+2M ZjL(”l)E |Qt(Or, At) — Qst (Or, Ay) |

for nlarger than

)3

whereC = 4\/§M’pT+1/2M2QT+1n‘(T+1) LT+1, M’ is a uniform upper bound on the absolute value

onall f € ¥ andB = 8—2p46p+3p2T p+p+3(T + 1)Ze2p+2(M/)4p|/{Z”ngT-‘rl)an—Zp(T—l—l) L2p(T+1)
Remarks:

1. Deflnth as a zero oErr (Q) t=T,T—1,...,0 (recall tha@nl is identically zero).

Suppose tha®; € @ for eacht in this casth Qt for allt (we ignore sets of measure zero
in this discussion). Then with probability greater than d andft= 1", §; = Q; we obtain

/V*(o) —V4(0)dF(0) < 8Me

for all n satisfying (14). Thus estimating eaGh by solvingErrn o ,(Q) =0,t =T,...,0,
yields a policy that consistently achieves the optimal value.
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2. Again defineQ; as a zero oErr nGL. 1(Q[) t=T,T—1,...,0. Given twoT + 1 vectors of
functionsQ' = {Qp,..., Q7 } andQ={Qq,...,Qr} deflne

(Q,Q) = ZjLHlE]Q{(Ot,At) — Qi (O, A
t=

Then the first result of Theorem 2 implies ttﬁﬁ, 6) converges in probability to zero.

From Lemma 2 we have thgt|Vi(0) — Vir(0)|dF(0) < 2M{(Q,Q) +2M{(Qr, Q) and thus

[ IVa(0) —Vx(0)|dF(0) is with high probability bounded above biZ(Q, Q) +2M/(Qz, Q).

Consequently the presence of the third and fourth terms in Theorem 2 ssimpotsing. It is

unclear whether the “go-betwee}y’is necessary.

3. Recall the space of policies implied by the approximation spaces for then@idns is
given by Mg = {16,0 € ©} wherety = {Tp,...,Trg} and where eachm g(0,a-1) €
argmax, Q(o,a;0) for someQ € Q. Suppose that maxn,, [ Va(0) dF (o) is achieved by
some member dfl o andfte argmaxen, [ Vr(0)dF(0). Ideally Q-learning would provide a
policy that achieves the highest value as compared to other polidiég {i@as is the case with
7M. This is not necessarily the case. As discussed in the above remankbé&earning yields
estimated Q-functions for whick{(Q, 6) converges to zero. The poligymay not produce a
maximal value; that ig Vx(0) — Vi(0) dF(0) need not be zero (see also the remark following
Lemma 2). Recall from Lemma 2 thaMZ(Q, Q) + ZME(Q, Q) is an upper bound on this
difference. It is not hard to see th&t@, Qr) is zero if and only ifftis the optimal policy;
indeed the optimal Q-function would belong to the approximation space. Tlear@ing al-
gorithm does not directly maximize the value function. As remarked in Tsitsikiisyan Roy
(1997) the goal of the Q-learning algorithm is to construct an approximétidime optimal
Q-function within the constraints imposed by the app! roximation space; thiexéppation
is a projection when the approximation space is linear. Approximating the Qidunrnyields
an optimal policy if the approximating class is sufficiently rich. Ormoneit and (3602)
consider a sequence of approximation spaces (kernel based spdecesd by a bandwidth)
and make assumptions on the optimal value function which guarantee thatghense of
approximations spaces is sufficient rich (as the bandwidth decreasesevéhsing training
set size) so as to approximate the optimal value function to any desirededegre

4. Again defineQ; as a zero oErr nGu1 (&), t=T,T—1,...,0. Since/(Q, 6) converges in
probability to zero, one might think thgt|Vi(0) — Vi(0)|dF(0) should be small as well.
Referring to Lemma 1, we have that the difference in value functfd\v{ﬁ( ) —V4(0)|dF(0)
can be expressed as the sum dwafithe expectation 0 (Or, Ai—1,Tk) — Qrit (Or, At—1,Tk).
HoweverE(Q Q) small does not |mply thatt and 1t will be close nor does it imply that
Qfit (Or,At—1,Tk) — Qrt(Or, At—1,Tk ) will be small. To see the former consider an action
space with 10 actions, 1.,10 anth(o_t,at) =1fora=1,...,9, @(ot, 10)=1+1/2¢ and
Qi(o,&)=1-1/2efora=2,...,10,Q(0;,1) = 1. SoQ and@ are uniformly less than
apart yet the argument of their maxima are 1 and 10.

Proof of Theorem 2. Fix Q; = 8/, 8c O fort =0,...,T. Define an infinite training sample
version ofErr, as

Errg.,(Q) = E|:<Rt+r2?lXQt+l(Ot+laAtaat+l)_QI>ql}
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= E [(d + giXQtH(OtH,At, A1) — 6t+1(ot+17At7 T_Ft+1) - Qt) Clt]

whereQ is an abbreviation fo€; (O, At). To derive the last equality recall th@_g(ot,At) is the
prOJectlon of

[Rt +Qt+1(0t+1,At,Tr¢+1)\Ot,At] on the space spanned by SlnceQ is a projection we can
write Q; = etht for somebBr; € ©. Also we can writeQ; = 8/ q: for someB; € ©. The Err's

provide a pointwise upper bound on the differen¢@,— Q|, as follows. Rearrange the terms in
Errq,, Using the fact thaEqq/ is invertible to obtain

(6ni—8) = (Eqq) 'Errg.,(Q)
- (EQQtT)_lE [(rgalXQt+1(Ot+17At7&+1) _Q_t+1(ot+17At7ﬁi+1)> Qt} .
Denote the Euclidean norm offadimensional vectox by ||x||. Then
(B —8) | < (1/n)||Errqu.(Q)]||llall+

(1/n)E H r;]aleHl(otJrlaAt, a11) — Qui1(Otr1,Ar, Thy1)
+

ol 1l

(4/m) ||Erraa(Q)]| okl + (1/mLE[|Ques — Queal llel] Ikl
< (1/n)y/PMa ||ETrou (Q)]| +(1/mLPME [|Qua — Q]

fort <T. To summarize

IN

E[Q-Q| < (1/n)yPMq|[Err..(Q)]|+(1/n)LPMZE[|Quir— Quial]

whereQ;, Q is an abbreviation o€ (O, Ay), respectivelyQ: (Or, Ay), for eacht.
As in the proof of Theorem 1, these inequalities can be solved for e@h—ﬂ}\ to yield

E|Q-Q

IA

(VBMa/n) 3. (LoM/m)1 - [Eir, (@)

IN

(VBMa/n) 3 (LPVE /)i~ [EFfng, 1(Q)) ~ Eito,a(@)

=t

T . —_—
+H(VPMa/m) 3 LM/ (B, 1(Q) |
J:

Simplifying terms we obtain

T - T 0 .

EDL““E!Qt—QtI < \ﬁ)Mq/HEDL“”Z LpM3 /)~ |[Erfng,,. Q)

t= t= J

4 4pT+1/2MéT+1T]_(T+1)LTHmtaX"Er/rn,qﬂ( —Errg., (O H
(15)
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Consider each component of each of the 1, p dimensional vector€&rrn g, ., (Qi)) —Errg,., (Qi)
for ang’ > O:

T p
P [U U {fOI‘ SOM&, 6,,,€0,6€Q.G1+1€Q 11 Errn,Qm(Qi)j - EeriJrl(Qi))j‘ > 8/}
i—0j=1

This probability is in turn bounded above by

T p
Z} ZP [for SOM, 6, ,€0,G€Q.0i11€Q 1
i=0)=

Errng,.(Q)j— gr/er(Qi))j‘ > e’} .

InLemmas 17.2, 17.3, 17.5, Anthony and Bartlett (1999) provide an uyperd on the probability
P [ for somef € ¥ has|En(¢t) —E(¢5)| > €]

wherels (x,y) = (y— f(x))2. These same lemmas (based on the classical arguments of symmetriza-
tion, permutation and reduction to a finite set) can be used forf’ since the functions inf’ are
uniformly bounded. Hence foreagh=1,...,pandt =0,..., T

P[ for some6,6t11 € ©,0t € Q. G+1 € Qi1 haS)ngn,q+l(Q) | —Ermg,,(Q) j‘ > 8’]

< 49 (168':” , 7’,2n> exp{—3(2€(/,3,|2,r;2 } .

Sete = p' "1/2MZ i ~(T+ULT+1e’. Thus forn satisfying

€ /
4p(T +1)7a (16M/pT+1/2MéT+1n(T+1) LT+’ 7 ,2n>

2
exps — en 5 ¢ <9, (16)

32(M")2 (pT+1/2MéT+1nf(T+l) |_T+1>

the first result of the theorem holds.
To simplify the constraint on, we derive a covering number fgf’ from covering numbers for
the @'s. Apply Lemma A2 part 1, to obtain

€

(e, ra,n) < 26 (@

7Q+17 ”q|n>

for V41 = {maxg,, Q+1(0+1,a41) 1 Q1 € Q11}. Next apply Lemma A2, parts 2 and 3, to
obtain

/ T-1 ¢ ¢
2(e. 70 < 5 % (g Qen ) %6 (7 @un)
M (e @)
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Theorems 11.6 and 18.4 of Anthony and Bartlett imply thate, Q.n) < e(p+1) (%) P for each
t. Combining this upper bound with (16) and simplifying the algebra yields (14).
Next Lemma 2 implies:

[ Mo~V aF(0) < M3 At TE[Q-Q
t=

T T
AMS2LHVEIQ -G +M Y 2LHVE |G, — Q5
t; Q- Qf IZD |Qt — Qne

This combined with the first result of the theorem implies the second r&@ult.

6. Discussion

Planning problems involving a single training set of trajectories are nouahasd can be expected
to increase due to the widespread use of policies in the social and beltéwatical sciences (see,
for example, Rush et al., 2003; Altfeld and Walker, 2001; Brooner,Kiddrf, 2002); at this time
these policies are formulated using expert opinion, clinical experiend®ratheoretical models.
However there is growing interest in formulating these policies using empatadies (training
sets). These training sets are collected under fixed exploration polidethas while they allow
exploration they do not allow exploitation, that is, online choice of the actidhsubjects are
recruited into the study at a much slower rate than the calendar duration lobitizen, then it is
possible to permit some exploitation; some of this occurs in the field of carsmangh (Thall, Sung
and Estey, 2002).

This paper considers the use of Q-learning with dynamic programming antidn approxima-
tion for this planning purpose. However the mismatch between Q-learninthargpbal of learning
a policy that maximizes the value function has serious consequences ahasrag the need to use
all available science in choosing the approximation space. Often the avéi&ideiorial or psycho-
social theories provide qualitative information concerning the importandéfefent observations.
In addition these theories are often represented graphically via diremtelitagraphs. However in-
formation at the level of the form of the conditional distributions connectiegqittdes in the graphs
is mostly unavailable. Also due to the complexity of the problems there are wflemownmiss-
ing common causes of different nodes in the graphs. See http://neuramreanseumich.edu/dtr for
more information and references. Methods that can use this qualitativenation to minimize t!
he mismatch are needed.
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Appendix A.

Recall that the distribution$} and Py differ only with regards to the policy (see (1) and (2)). Thus
the following result is unsurprising. LétOr.1,AT) be a (measurable) nonnegative function; then
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Exf can be expressed in terms of an expectation with respect to the distriBufiore assume that
pr(aor, &—1) > O for each(or, &) pair and each. The presence of thg;s in denominator below
represent the price we pay because we only have access to trainiogpiegwith distributiorP;
we do not have access to trajectories from distribuBgn

Lemma Al Assume thaPy{po(Ao|S) > 0] = 1 andPy[p:(A¢|Ot,At—1) >0 =1fort=1,...,T.
For any (measurable) nonnegative functiom@:;, At ), the P-probability that

1a
O, A T O, A
En[9(Ot, At)|S] = [(Hpﬁ (AlOn AL 1)>9( t,At)
isonefort =0,...,T

Proof: We need only prove that

S

S

lA; -
(J_L Pe(Ar|Op, A 1)) 9(Or,Ar) ]

for any (measurable) nonnegative functidn, Consider the two likelihoods ((1) and (2)) for a
trajectory up to time. Denote the dominating measure for the two likelihoods for the trajectory up
to timet asA;. By assumption,

/ h(so)g(or, &) (J‘L orl ajﬁ;éf; 3 ) fo(so) Po(@o|o)

fi(sjloj-1,aj-1)pj(ajloj,a;_1) dA¢(0r, &)

E ["(S)En[9(Or, At) S]] = E [

—

-T

—/h g(or, &) fo(S0) Lag=ro(sy) I_ij(sj\01717aj—l)laj:nj(oj,aj_l)d’\t(ot,at)-
J:

By definition the left hand side i& [h(so)g(ot,At) (ngzom)]m the right hand side
is En[h(S)g(Or,Ar)]. Expressing both sides as the expectation of a conditional expectation, we

obtain,
9(O¢, Ar) La=n ’so .
’ J_!)pf (Ar|Og,Ap-1)

Note that the distribution 0%, is the same regardless of how the actions are chosen, that is the
distribution ofS is the same under bothandP;;.. Thus

1a
g(O, Ay) =T ‘ .
o <J_Lpe (AdALA- 1> S°”
|

LemmaA2Forp,q,r,s, N positive integers anl -, Mg, Mo positive reals, define the following
classes of real valued functions,

H C {h(xa):xerP ae{l,...,N}}
F {f(X)ZXERq, sup]f(X)\SMf}

En[h(S)Erl9(Or, At)|S]] = E [h(so

E[h(S)En[9(0r,Ay)|S]] = E [h(So

N

G C {g(x,y):XERq,yeRr,suplg(x,y)ISMg}
Xy
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and
ecC {BGRS:_max |6i] gM@}.
i=1,...,s
The following hold.
1. If ¥V ={maxh(x,a) :he #} thenAa(e, ¥,n) < Aa(e/N, H,Nn).
2. Forla| <1,|b|<1,if ¥={af(x)+bgx,y): feF,ge G}
theni(e,V.n) < Aa(e/2, F,n)Na(e/2, G, n).
3. If V=7FuUgGthenAi(g, V,n) < Ai(g, F,n) + Ai(g, G,n).
4. f VYV ={01f1(X)+...+6sf5(x) : fi € };, (01,...,6s) € G)S}
thenAi (g, V,n) < e(s+1) (%) Neo <ﬁ,?,n> .

Proof. We prove 1. and 4.; the proofs of 2. and 3. are straightforward andraitted. Consider 1.
Given(xy,...,X), thee-covering number for the class of pointsif™,
{(h(x,a):i=1,...,n,a=1,...N);he A} is bounded above by\i (¢, 7,Nn). Note that for
(Za,i=1,....,n;a=1...)N),

n
1/n max h(x.,a)— max gz
/ i; a=1,. N (x.3) a:l,.‘.,NZ|a

n
< L =
< Un;ﬁ?ﬁ’h(x“a) Za
n N
< 1/n |h(xi,a) — zal -

Thus thee-covering number for the class of pointsaf, { (max} ; h(x,a):i=1,...,n);he #H}is
bounded above b§\; (€, #,Nn). Using the definition of covering numbers for classes of functions
we obtaina (g, V,n) < Aq (&, #,Nn).

Next consider 4. Put= (xy,...,%,) (eachx € RY) andf(x) = (f1(x),..., fs(x))T. Then there
exists{z,...,zy}, (N = Neo(€/(4sMo), F ,n); z; € R") that form the centers of aay (4sMe)-cover
for 7. To eachz; we can associate ahe 7, say f" so that{f],..., f;‘\C} form the centers of an
€/(2sMp)-cover for . Then given{fs,..., fs} € F there existg* € {1,...,A} for j =1,...,s,
so that max<j<smaxi<i<n| fj(x) — f: (X)[ < &/(2sMg). Then

(/n) zi

Define ¥’ = {2?219,- fi:9)¢€ G)}. Theorems 11.6 and 18.4 of Anthony and Bartlett (1996) imply
S
thatAi(e/2, F',n) < e(s+1) (%) These two combine to yield the resull.

<g/2.

S
> 6 fj(x) —6;ff(x)
=1
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