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Abstract

In this paper, we study a two-category classification pnobl&Ve indicate the categories by
labelsY = 1 andY = —1. We observe a covariate, or featuxec X  RY. Consider a collection
{ha} of classifiers indexed by a finite-dimensional paramatend the classifign,- that minimizes
the prediction error over this class. The paramatas estimated by the empirical risk minimizer
4, over the class, where the empirical risk is calculated omiaitrg sample of siza. We apply
the Kim Pollard Theorem to show that under certain diffdedility assumptionsa, converges to
a* with raten/3, and also present the asymptotic distribution of the readimad estimator.

For example, leY, denote the set of on which, givenX = x, the labelY = 1 is more likely
(than the labeY = —1). If X is one-dimensional, the s¥} is the union of disjoint intervals. The
problem is then to estimate the thresholds of the interwals.obtain the asymptotic distribution
of the empirical risk minimizer when the classifiers h#/¢hresholds, wher& is fixed. We fur-
thermore consider an extension to higher-dimensighassuming basically that has a smooth
boundary in some given parametric class.

We also discuss various rates of convergence when theatifiability conditions are possibly
violated. Here, we again restrict ourselves to one-dinueradX. We show that the rate is* in
certain cases, and then also obtain the asymptotic distibfor the empirical prediction error.
Keywords: asymptotic distribution, classification theory, estirnaterror, nonparametric models,
threshold-based classifiers

1. Introduction

In the theory of classification, the problem is to predict the unknown naftimefeature. The topic
plays a basic role in several fields, such as data mining, artificial intelligamd@eural networks.
In this paper we discuss the classification problem from a parametric-stdtfgtiat of view.

Let the training setXy, Y1), -+, (Xn, Yn) consist ofn independent copies of the coufl¥,Y)
with distribution P, whereX € X c RY is called a feature and € {—1,1} is the label ofX. A
classifierh is a functionh : X — {—1,1}, attaching the labdi(X) to the featureX. The error, or
risk, of a classifieh is defined as?(h(X) # Y). Following Vapnik (2000) and Vapnik (1998), we
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MOHAMMADI AND VAN DE GEER

consider the empirical counterpart of the risk which is the number of misiidmsexamples, i.e.,
1 n
Pa(hX) £ Y) = 15 1(R(X) #Y).
i=

Here, and throughout,(A) denotes the indicator function of a et We will study empirical risk
minimization over a model clasg of classifiersh. We take# to be parametric, in the sense that

with 4 a subset of finite-dimensional Euclidean space.
Let
Fo(X) :==P(Y =1]X =Xx) Q)

be the conditional probability of the lab¥l= 1 if the featureX has valuex. Given a new feature
X € X, we want to guess whether the labeYis- 1 orY = —1. A natural solution is to predidt =1
when the labeY = 1 is more likely than the lab&l = —1 (Bayes rule). Thus the set

Vo:={xe X :FRy(x)>1/2}, 2
plays a key role in classification. Bayes classifier is
ho=21{\p} — 1.

The collection# of classifiers is viewed as model class Fgr However, we will not require that
ho € H. If hg ¢ #H, the model is misspecified.

In the statistical theory of classification, rates of convergence of emipitacssifiers have been
studied by a number of researchers, see for example Lugosi ants&8@04), Lugosi and Nobel
(1999), Lugosi and Wegkamp (2004), Koltchinskii and Panchen®0Z}®, Boucheron et al. (2005),
Koltchinskii (2003a), Koltchinskii (2003b), Mohammadi (2004) and @akov and van de Geer
(2005). These papers generally consider a high-dimensional modslaa use regularization to
tackle the curse of dimensionality. Rates of convergence for the regdag&timators are obtained,
and also non-asymptotic bounds. In this paper, we consider a low-dimeahsimdel class. This
means that we place the subject in the context of classical parametric statistidsr regularity
assumptions, one can establish rates, as well as the asymptotic distributideesd,lour main aim
is to show that one can apply certain statistical results to the classificatioleipralth parametric
model class. In practice, one may not be willing to assume a simple parametrit ¢tasde as the
complexity of the problem is not known a priori. In this sense, our studyiisarily a theoretical
one.

In Section 2, we generalize the problem considered in Mohammadi andev@eer (2003). It
gives an application of the cube root asymptotics derived by Kim and Bq£90). We briefly
explain the main idea of the Kim Pollard Theorem. Its exact conditions ar@ giv&ection 4.
We study in Subsection 2.1 the case wh&rées one-dimensional. The s¥g C R is then a union
of disjoint intervals, and our aim is to estimate the boundaries of the intervalsseTboundaries
will be called thresholds. The situation thét is the union of intervals has also been considered
in Breiman et al. (1984). They explain how to use the training set to split ttarke space&’ and
construct trees. See also Kearns et al. (1997) for a comparisomiofisalgorithms in this case.

2028



ASYMPTOTICS INEMPIRICAL RISK MINIMIZATION

A simple case, with just one threshold, has been presented in Mohammadiradd Geer (2003).
We will establish the asymptotic behavior of estimators of the thresholds, usirsgtlof classifiers
with K thresholds as model class. Hetds fixed, and not bigger than, but not necessarily equal
to, the number of thresholds of Bayes classifier. We moreover assuntg tisadifferentiable. In
Subsection 2.2, we extend the situation to higher-dimensional feature, spaeeR?, d > 1. The
problem there is related to assuming a single index model for the regre$sfamd, i.e.,

Fo(x) = no(x"a"),

wherea* is an unknown vector parameter, ang is an unknown (monotone) function. We let
X = (U,V), with U € R4 andV € R and minimize the empirical classification error over the
classifiers

ha(u,v) := 21{ka(u) > v} —1,

wherea is anr-dimensional parameter arg : R91 — R is some given smooth function af
Under differentiability conditions, this will again lead to cube root asymptotics.

In Section 3, we study various other rates, and also the asymptotic distriloutios case of a
(1/n)-rate. We consider here only one-dimensiaiialThe Kim Pollard Theorem and the proofs of
the results in Section 2 are given in Section 4.

We note here that we will mainly concentrate on the estimation of the paragatetigat min-
imizes the prediction error over the clag One may argue that the most interesting and useful
subject is perhaps not the convergence of the estinagttr &*, but rather the convergence of the
prediction error of (the classifidr,, corresponding tog,. We remark however that our approach
to study the former is via the latter. For example, in Corollary 2 the asymptotic distribof the
prediction error follows as a corollary.

The conclusion is that by considering some assumptions on the distribution dath, we can
prove rates of convergence and asymptotic distributions. In computeirigaheory, usually no or
minimal distributional assumptions are made. The results of the presentgapenore insight in
the dependency of the asymptotic behavior on the underlying distribution.

We consider asymptotics as— o, regarding the sampley, Y1), ..., (Xn, Yn) as the firsh of an
infinite sequence of i.i.d. copies OX,Y). The distribution of the infinite sequené,, Y1), (X2,Y2), ...
is denoted by. The marginal distribution function of is denoted byG. In case that the density of
the distributionG of X with respect to Lebesgue measure exists, it is denotegl e Euclidean
norm is denoted by - ||.

2. Cube Root Asymptotics

We first examine in Subsection 2.1 the case where the feature &picihe unit interval inR so
that Bayes rule is the union of some subintervalfii]. As model class, we take the union of a,
possibly smaller, number of subintervals. Next, we consider in Subsecfahe situation where
X =R% with d > 1. Our model class is then the class of graphs of smooth parametric fundtions
both situations, the class of classifigffsis parametric, i.e. it is of the form

H ={hy: a€ 4},

with 4 a subset oR", where the dimensionis fixed (not depending on).
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Define the empirical risk

Ln(@) := Pa(ha(X) #Y), 3)

and the theoretical risk
L(a) := P(ha(X) #Y). (4)
Moreover, let
&, =argminLp(a)
aeq

be the empirical risk minimizer, and let

a“ =argminL(a)
acAa
be its theoretical counterpart. We assume #iaéxists and is unique. We also assume that the
estimatora, exists, but it need not be unique. In fact, in the situations that we consigee will
be many solutions faa,- Our results will hold for any choice &,
We will derive cube root asymptotics. Let us first sketch wherenttié-rate of convergence
comes from. One may write down the equality

L(&n) —L(a") = —[Vn(&n) — Vn(@)] /v/n+ [Ln(&n) — Ln(a")], (5)

with
vn(a) = vn[Ln(a) —L(a)], a€ 4,
being the empirical process indexed y SincelL,(&,) — Ln(a*) < 0, this equality implies

L(an) —L(a") < —[Vn(@) —vn(@)]/vn. (6)

Under regularity conditionk(a) — L(a*) behaves like the squared distarjee- a*||>. Moreover,
again under regularity conditions, the right hand side of (6) behave®bability like o(&,)/+/n,
wherea(a) is the standard deviation §,(a) — vn(a*)]. Due to the fact that we are dealing with
indicator functions, the standard deviation[ef(a) — vy(a*)] behaves like thesquare root||a—
a*||%/2 of the distance betweemanda®. Inserting this in (6) yields thata, — a*||? is bounded by a
term behaving in probability likéia, — a*||%/2/,/n. But this implies||&, — a*|| is of ordern—%/3 in
probability.

Let us continue with a rough sketch of the arguments used for establiskiragyimptotic dis-
tribution. We may write

a,=arg rr;in{ntla [Vn(@) —vn(a”)] + né [L(a)— L(a*)]] .
When we already have the'1/3-rate, it is convenient to renormalize to
ni (4, —a") = arg ngin[n% [Vn(a* + nst) — vn(a)] + ns L&+ n3t) — L(a*)]] .
Now, under differentiability assumptions,
ns[L(a*+n 3t)—L(a")] ~tT11/2,
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where?/ is the matrix of second derivativesofata*. Moreover, the process/®[v,(a* + n‘%t) —
vp(a@")] : t € R"} converges in distribution to some zero mean Gaussian procesd/.s#je then
apply the “Argmax” Theorem (“Argmin” Theorem in our case), see ean, der Vaart and Wellner
(1996). The result is that'/3(4, — a*) converges in distribution to the location of the minimum of
{W(t)+tT1t/2: t e R}

Kim and Pollard (1990) make these rough arguments precise. See Sefiotind exact con-
ditions.

2.1 One-Dimensional Feature Space

With a one-dimensional feature spacé~ [0,1], Bayes rule is described by the number, &gy
and the locations, saf = (af,...a% )T, where & — 1 changes sign. We call the locations of the
sign changeghresholdsWith a sign change we mean that the function has strictly opposite sign in
sufficiently small intervals to the left and right side of each threshold. Tuadary pointsag =0
anda&O+1 = 1 are thus not considered as locations of a sign change.

LetK € N andUk be the parameter space

Uk :={a=(ag,...,a) € [0, &y < ... < a}. (7)

Let fora e Uk
K+1

ha(X) := Z byl{ak-1 < x< &},
K=1

whereag =0, axy1 =1 and by = -1, by, = —by, k=2,...,K. Let H be the collection of
classifiers

H ={hy:aeUk}. (8)
Let
L(a) == P(ha(X) #Y), Ln(a) :=Pa(ha(X) #Y). ©)
The empirical risk minimizer is
an = argarg]dnLn(a). (20)

We emphasize that we take the number of threshidliis our model class fixed. Ideally, one
would like to choos& equal toKp, but the latter may be unknown. Kearns et al. (1997), investigate
an algorithm which calculates, Tor all values ofK, and a comparison of various regularization
algorithms for estimatind<o. With a consistent estimatdt in our model class, the asymptotics
presented in this paper generally still go through. However, Kearnk €&997) and also later
papers, e.g. Bartlett et al. (2002) show that the choicK @ very important in practice. Non-
asymptotic bounds for a related problem are in Bi($987).

The following theorem states thay onverges to the minimizea* of L(a) with raten—%/3
and also provides its asymptotic distribution after renormalization. We assunis thebrem that
K < Kp. If K =Kp, one can show that when the minimizgris unique, it is equal tay, i.e., then
hy+ is Bayes classifier. The cake< Kg is illustrated at the end of this subsection.

We use the notatiofi (u,v > 0) for 1(u> 0)1(v > 0), for scalarsu andv. Likewise, we write
1(u,v<0)for1(u<0)1(v<O0).
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1/2

1 a, a3 a,
Figure 1:Fy and the points at whichF3 — 1 changes sign.

Theorem 1 Suppose §0) < 1/2, that
= (8,8, 8) = arg minL (a), (11)

is the unique minimizer of (), that & is in the interior of Lk, and that L(a) is a continuous
function of a. Suppose thag Ras non-zero derivative, fn a neighborhood of g k=1,...,K. Let
g(a) >0, forallk =1,...,K, where g, the density of G, is continuous in a neighborhood of a
Then the process

(n?3 [Ln(a* Ftn Y3 —Ly(@)] : te R¥)

(where we defined(a) = 0 for a ¢ Ux), converges in distribution to a Gaussian procggst) : t €
RK} with continuous sample paths, and expected vEIg) =tT 1t/2, where

2fo(ay)a(ay) 0 e 0
W 0 —2fo(a5)9(a5) ... 0 7
0 0 oo (~DX12fe(ag)g(ak)
and covariance kernel B [H(s,t)], where
K
H(st) = z g(ag) [min(si, i) 1 (s, t > 0) — max(se, t) 1 (S, t < 0)].
K=1

Moreover,
(4 —a*) —»* argminZ(t).

The proof can be found in Section 4, where it is also noted that the dihglmments of the
matrix 4/ are all positive.
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Under the assumptions of Theorem 1
L(&n) —L(@") = (81— a") V(& —a") /2

for largen. The theorem therefore also provides us the nafé® for the convergence of the predic-
tion errorL(&,) of the classifiethy,, to the prediction error ofi;-, and the asymptotic distribution
of the prediction errot(&,) after renormalization. We present this asymptotic distribution in a
corollary.

Corollary 2 Suppose the conditions of Theorem 1 are met. Then
né[L(&n) — L(a)] = UT VU /2,

where U= argmin Z(t), and Z is defined in Theorem 1.

Recall that one of the conditions in the above theorem islthHas a unique minimizer in the
interior of Ux. This implies thatk should not be larger thaliy. Let us consider the situation
K = 1,Kg = 2 and discuss when there is a unique minimizer.

SupposK =1 and

<1/2 x¢[ad,a],
FO(X){ >1/2 xe(a%l’,azg), (12)

wheread andad are unknown and & a2 < a3 < 1. Note that

L(a) = P(Y = 1, ha(X) = —1) + P(Y = —1, hy(X) = 1)
a 1
- [ Rac+ [ (1-F)dc

_ /Oa(ZFo - 1)dG+/Ol(1— Fo)dG.

If [(2Fo— 1)dG > 0, thena’ = af is the unique minimizer of. If [;(2Fo — 1)dG < O, thenL
has a unique minimum at 1. The minimizer is not in the open intéfydl), and Theorem 1 indeed
fails. In this case, the convergence result is the same as Theorem 5(belbsy its assumptions).
If f(,ilg(ZFo —1)dG =0, thenL has two minima at 1 anef.

2.2 Higher-Dimensional Feature Space
In this subsection c RY with d > 1, and we write foiX € X,
X=(U,V),UecR¥1 VeR.

Consider given functions
ka: RIS R, ae 4,
and classifiers
ha == ZI].{Ca} - l, ac ﬂ,
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where
Ca:={(u,v):v<Kka(u)}, ac 4.

This kind of classifiers has been frequently considered and discusstaksification theory. We
study the case where the parameter space is finite-dimensionaff sai’. A famous example
is whenks is linear ina, see for instance Hastie et al. (2001). Tsybakov and van de G&@5)(20
consider this case for largedepending om. In contrast, we assume throughout thi fixed.
Let again
a'=arg n;inL(a),

be the minimizer of the theoretical ridKa), and
ar=arg n;inLn(a)

be the empirical risk minimizer. We would like to know the asymptotic distributioa,of ~

In this subsection, we suppose that the clgSs: ac R'} is VC, i.e., that{ka(u) : acR"}
is VC-subgraph. We also suppose tkatis a regular function of the parametere R', i.e., the
gradient

0 /
55 5a(U) = ka(u) (13)
of ka(u) exists for allu, and also its Hessian
0? ,,
SadaT Ka(u) = kg (u). (14)

We will need to exchange the order of differentiation and integration ¢diceiunctions. To be
able to do so, we require locally dominated integrability, which is defined asu¥®llo

Definition 3 Let{fy: a€ 4}, 4 C R', be a collection of functions on some measurable space
(U,p). Itis called locally dominated integrable with respect to the measure p aridblera if for
each a there is a neighborhood | of a and a nonnegative p-integrableidung; such that for all

ue Uandbel,

[ fo(u)] < ga(u).

The probability of misclassification using the classihgis

L(@) = P(ha(X) #Y) = [ (1-Fo)dG+ | FodG

- / (1-2F)dG+P(Y = 1).
Ca
Suppose that the densigyof G, with respect to Lebesgue measure, exists. We use the notation
m(x) := (1—2Fo(X))g(x). (15)

Assumption A: Assume existence of the derivatives (13) and (14) and also of

m (u,v) := aivm(u,v).
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Assume furthermore that the functiomgu, ka(u))kj(u )andagT[ (u,ka(u))k}(u)] are locally dom-
inated integrable with respect to Lebesgue measure and vadalbiso, assume that the func-
tion [k, (u)g(u,ka(u))duis uniformly bounded fom in a neighborhood o&*, and that for each,

m (u,ka(u)) andkj(u) are continuous in a neighborhoodast

Write
62
Va:i= mL(a).
Then
Vy— / % A (W)M(U, ka(U))du, (16)
where 1 (U ke(10)
! JT u, u 7
Za() = k(WK (W) SO k(v (17)

In the following theorem, we show that (&, — a*) converges to the location of the minimum
of some Gaussian process.

Theorem 4 Suppose that L has a unique minimum &taad that it is continuous at*a Assume
that for all u, the density @i, v) is continuous as a function of v atvky- (u). Let 7, be continuous
at a* and V' := V- be positive definite. Under Assumption A, we have

(4, —a*) —»* argminZ(t)
teR"

Wi

n

where{Z(t) : t € R'} is a Gaussian process wifiZ(t) =tT 7t/2, t € R", and with continuous
sample paths and covariance structure

Cov(Z(t) /g (U ka (U))a T (U,t, 9Ky (U)du, t,se R,

with

() (18)
(W)

The proof is given in Section 4.
As an example of Theorem 4, suppase d andk; is the linear function
Ka(u) :=auy +...+a—_1Ur—1+ 2.

It is interesting to compute the matrik (see (16) and (17)) in this case. Using our notations, we
have

Ka(u) =gt ... u—1 1]7.
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Let fo(u,v) := (%Fo(u,v) andd'(u,v) := a%g(u,v) exist. Then by (15), we have
m(uvv) = *Zfo(U,V)g(U,V) + (17 ZFO(U,V))g/(U,V)
and by (16) and (17)

V= [ ] 1 (~2T0(u. e (1)) kg (1) + (1. 2R g (1)) (L. g () )l ..t |,

where we define, := 1.

3. Other Rates of Convergence

In this section, we will investigate the rates that can occur if we do not astentifferentiability
conditions needed for the Kim Pollard Theorem. We will restrict ourselvekedaase of a one-
dimensional feature space, with= [0, 1].

We first assum& = 1, and that By — 1 has at most one sign change (kg&.< 1). Then, we
briefly discuss what happens for gendfalandK.

3.1 The Case of One Threshold and at Most One Sign Change

LetK =1 andKp < 1. Now, either &, — 1 changes sign &" € (0,1) or there are no sign changes
in (0,1), i.e.Kg = 0. In the first case, we assurfg(x) < 1/2 near 0. In the latter case, we assume
Fo(x) < 1/2 for all x € (0,1), and leta* = 1, or Fy(x) > 1/2 for all x € (0,1) and leta* = 0. One
easily verifies tha&* is the minimizer oflL(a) overa € [0,1]. However, ifF is not differentiable
ata*, Theorem 1 can not be applied. In this section, we imposendgin conditionof Tsybakov
(2004) (see also Mammen and Tsybakov (1999)). It can also be foupdpers concerned with
estimation of density level sets, see Polonik (1995) and Tsybakov (19879ur context, this
margin assumption is Assumption B below. Throughout, a neighborhoatl isfsome set of the
form (a* —,a* +8), d > 0, intersected witho, 1].

Assumption B: Let there exist > 0 ande > 0 such that
11— 2Ry (x)[g(x) > clx—a"[, (19)
for all x in a neighborhood od*.

In Section 2, we assumed differentiability Igf in a neighborhood of* € (0,1), with positive
derivative fg. This corresponds to the case= 1. We havee = 0 if iy has a jump a&*, and also
if a* € {0,1}. In general, Assumption B describes how waillis identified: large values of
correspond to less identifiability.

Recall now equality (6):

L(an) —L(a") < —[Vn(@n) —vn(@)] /vn. (20)

Let o(a) be the standard deviation pf,(a) — vy (a")]. Let

qJ(r):E< sup |vn(a)—v(a)\>, r>0. (21)

a o(a)<r
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It will follow from the proof of Theorem 5 below, thap(r) ~ r. Moreover, the standard deviation
o(a) behaves likéla— a*||*/2. Therefore. as we already stated in Section 2, the right hand side of
(20) behaves in probability likéa, — a*||*/2//n. From Assumption B, we see that the left hand

side behaves lik¢a, — a*||*¢. This leads to the rate iz

Theorem 5 Consider the clas${ defined in (8), with K= 1 and b = —1. Under Assumption B,

1t+e

180 —a"[| = Op(n"©%), L(&n) —L(a") = Op(n 1%),

Proof We use the inequality (20):
L(an) —L(a") < —[vn(&n) — va(a")]/v/, (22)
with vp(a) := v/N[Ln(a) — L(a)]. By Assumption B, we have the lower bound
L(&n) —L(a") > cfan —a||***

for the left hand side of of (22).
To find an upper bound for the right hand side of (20), we apply Térads.12 of van de Geer
(2000). Define

G :={9:oxy) :=1(ha(x) #Yy), ac [0,1]}
and forg* (x,y) = 1(ha(X) #y) andd > O,
G(®):={9—¢': e g la-a’| <&}

Let {Hg(u, G1(8),P),u > 0} be the entropy with bracketing, for the metric induced by ltheP)
norm, of the clasg;(d). It is easy to see that for some constentand for alld > 0,

Hs(u, G1(d),P) < 2Iogciu57 Yue (0,9).

Setd, = n"Y2. We may selecl, C, Cy andC; such that fora := C;T25, andR := TJ,, the
conditions of Theorem 5.11 of van de Geer (2000) hold. This theoremgives that for largd
and largen,

P( sup |vn(@) —vn(a)| > C1T26n> < Cexp(—T).
|

la—ar(|<&f

Now, by the peeling device, see for example van de Geer (2000), wehoanthat

lim IimsupP< sup Wn(@) —vn(@')| 2T> =0.

e onme s\ aass, la—a
So, A .
[Vn(&@n) — Vn(@")| (1) (23)

VA —a [ ve,

Combining this with (22) and Assumption B yields
clfén—a*[I"** < (v/]lan —a*[| +8n)Op(1)/v/n
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lie

or ||&, — a*|| = Op(n~¥(3+2)), Using (23) and (22), we can calculdtéa,) — L(a*) = Op(n~1%).
|

Theorem 5 can be refined to a non-asymptotic bound, for example in thevifodjavay. Lety
be the smallest concave majorantipfiefined in (21), and let/(-) be the smallest concave upper-
bound of

r— sup o(a).
L(a)—L(a*)<r?

(In our situationw(r) ~ rFls.) Letr, be the positive solution of

r2 = G(w(r))/ V.
Then, from Massart (2003), Koltchinskii (2003b), or Bartlett et 2004), we obtain that
P<L(én) —L(a") >r?+ wir;) %X) <e* x>0.

*

Whenkg has a jump a&*, we have the case= 0. Under the conditions of Theorem 5 witk= 0,
we derive the asymptotic distribution of the renormalized empirical risk, locallyrieighborhood
of order I/n of a*, the local empirical risk. The rescaled estimaitéi, — a*) remains bounded in
probability. However, since the local empirical risk has a limit law which hasmique minimum,
n(a, — a*) generally does not converge in distribution. Similar results can be desikeda* is one
of the boundary points 0 or 1. For simplicity we only consider the right haellsnit. We assume
thatFy andg are right continuous.

In Theorem 6 below, convergence in distribution is to be understood iretleegyiven e.g. in
Barbour et al. (1992).

Theorem 6 Consider the clas${ defined in (8), with K= 1 and b = —1. Assume thatac (0,1),
1/2 < R(a") < 1, g and kg are right continuous at'aand ga*) > 0. Let

M = Fo(@)g(@), Az:i= (1 Fo(a))g(a’).

Let Zn(t) = n[La(@" +t/n) — Ly(@*)], t > 0. The processz, converges in distribution to 12— Z,
where Z is a Poisson process with intensiy i = 1,2, and Z(t) and Z(s) are independent for all
st>0.

Proof We have fott > 0

Zn(t) :Zlﬂ(a* <X <a +t/n)— Z 1(a" <X <a +t/n).

Yi=—1
Define
In(t) ::; 1@ <X <a"+t/n), d(t):= Z 1(a <X <a +t/n). (24)
i=1 Yi=—1
The random variablg,(t) has a binomial distribution with parameterand p;, where
a+t/n
p1Li= P(Y:l,a*§X<a*+t/n):/ FodG. (25)
a*

2038



ASYMPTOTICS INEMPIRICAL RISK MINIMIZATION

For largen, p; is close toAsit/n. Similarly, for largen, J,(t) has binomial distribution with pa-

rametersn and pz := Azt/n. We know thatB(n,At/n), for largen and smallt, is approximately

PoissorfAt), i.e. the total variation distance between the two distributions goes to zere-as.
Note that for every G<t; <ty < 1,

a‘+t2/n
nP(Y:l,a*+t1/n§Xga*+t2/n):n/ FodG— A1(t2—t1)
a‘+ty/n
and
a‘+tp/n
NP(Y = —1,a" +t1/n< X <a +tp/n) — n/ (- F)dG— Dol —t)
a*+t1/n

asn — o, Now by Theorem 5.2.4, Remark 4 and Proposition A2.12 of Embrechts €t98l7),
we conclude that the whole procdggJ,) converges weakly to a Poisson process with intensity
(A2). (See also Barbour et al. (1992).) With the method of moment generatingidns we can
prove that the processgsandJ, are asymptotically independent, i.e., for apy..,tm, S1, ..., Sk,

E(exp(riln(ty) + ... + rmln(tm) +11In(s1) + ... + lkdn(s)))

converges to

E(exp(riZai(ty) + ... +rmZa(tm)))E(exp(l1Z2(s1) + ... + IkZ2(x)))-

Thus,l, — J, converges weakly to the difference of two independent Poisson gsesevith inten-
sitiesA1 andAo. [ |

3.2 Extension to Several Thresholds and Sign Changes

Recall thatKg is the number of sign changes df2- 1, and thaK is the number of thresholds in
the model clasg{ defined in (8). Below, whenever we mention the naté/3 or n—1, we mean the
rate can be obtained under some conditionsgendg (see Theorem 1 (wheee= 1), and Theorem
5 with € = 0). Recall that® denotes thé&,-vector of the locations of the sign changes B§ 2 1.

1. LetK < Kg anda* is an interior point olJk. In this casea, converges t@*. The rate is
-1/3
n .

2. LetK = Ko+ 1. Then,K, of the elements o, converge taa®, and eitherar, converges
to 0 orak n converges to 1. The rate of convergence to the interior poims’$ and the rate of
convergence to the boundary pointist.

3. LetK > Ko+ 1. In this caseKq of the elements o, converge taa® with raten/3. If
K —Kg is odd, one element @k, converges to one of the boundary points 0 or 1.

4. Proof of Theorem 1 and Theorem 4

We start out with presenting the Kim Pollard Theorem (Kim and Pollard ()99@ general context.
Let&q,&»,... be asequence of independent copies of a random vagali¢h values in some space
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S. Let@(-,a) : S — R be a collection of functions indexed by a parameter 4 C R". Define
Ln(a@) =311 9(&i,a)/nandL(a) = E@(E,a). Moreover, let

vn(a) = vn[Ln(a) —L(a)], a€ 4.

Define
GR:: {(p('7a>: ’ak_ang) kzla-"ar}? R>0. (26)
The envelopé&sr of this class is defined as

Gr(+) = sup|@(-)|.
P<GR
Theorem 1.1 in Kim and Pollard (1990) requires uniform manageability dadssaf functions.
The definition of uniform manageability can be found in Pollard (1989) avithil (1990). IfG
is VC-subgraph, then a sufficient condition for the clggsto be uniformly manageable is that its
envelope functiorg is uniformly square integrable f& near zero.

Theorem 7 ( Kim and Pollard (1990)) Lef&,} be a sequence of estimators for which
(i) Ln(&n) < infacqLn(@) +0p(n=2/3),

(i) &, converges in probability to the uniqué that minimizes (a),

(iif) a* is an interior point of4.

Letg(-,a*) = 0 and suppose

(iv) L(a) is twice differentiable with positive definite second derivative maittiat a",

(V) H(s,t) = lim;_ TEQ(E,a+s/T)@(§,a+1/1)) exists for each,$ in RY and

lim TEQ(E, " +/71)*1{|g(&,a" +s/7)| > n1}) =0

for eachn > 0and s inR',

(vi) E@(€,a) — ¢(&,b)| = O(]a— bl|) near a,

(vii) the classegjr in (26), for R near zero, are uniformly manageable for the envelopear@
satisfy §G2) = O(R) as R— 0, and for eactn > 0 there is a constant C such tha{ G&1{Gr >

C}) < nR for R near zero.

Then the procesgn?3[Ln(a* +tn~1/3) — Lp(a*)] :t € R"}, (where we take \(a) = 0if a ¢ 4}),
converges in distribution to a Gaussian procg&t) : t € R"} with continuous sample paths,
expected valuEZ(t) =tT 7t /2 and covariance kernel H. If Z has non-degenerate increments, then
n/3(&, — a*) converges in distribution to the (almost surely unique) random vectomtittnizes
{Z(t): teR"}.

Proof of Theorem 1 We apply the Kim Pollard Theorem to the function

o(x,y,a) := 1 (ha(x) #y) — L(ha: (X) #Y),

Condition (i) is met by the definition of,- To check Condition (ii), we note that, because
{@(-,a) : a€ Uk} is a uniformly bounded VC-subgraph class, we have the uniform law gélar
numbers

sup|Ln(a) —L(a)| — 0, as..

acUk
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Since we assume that € Uk is unique and. is continuous., this implies
a, — a’, as.

Condition (iii) is satisfied by assumption.
To check Condition (iv), for odd we have

0
- (ha(X) #Y) = (2F(a) — 1)g(a)
SO
02 i
e 2 )| = <[2f0<6“>9<6“>+<2F°<a*) ~le ("’“)D a=g
= —2fo(&)9(a)-
For eveni, these terms are symmetric. Thus (iv) is satisfied with
2fo(a)g(a]) 0 0
Vo 0 —2fo(a5)g(a3) .. 0
0 0 e (1)K 12fg(ag)g(ay)

Now, a* minimizesL (a) for ain the interior ofUx, so 2y — 1 changes sign from negative to positive
atay for oddk, and it changes sign from positive to negativeyafor evenk. Hencefp(ay) > 0 for
oddk and fo(a) < 0 for evenk and thereforel/ is positive definite.

Next, we study the existence of the covariance kekhetequired in Condition (v). Consider
t,se R and larger > 0 so that* +t/t,a* +s/1 € Uk. First we note that the product of the brackets
is the same fo¥ = 1 and forY = —1. Fora; < ap,b; < by, a; < a3, we have

[ﬂ(a’{ <x<ay)—1(ag <x< az)] []l(a’{ <x<a;)—1(b; <x< bg)]

= {Il(xz a1) —1(x>ap) —1(x>ay) +1(x> a’£>]

X []l(xz by) —1(x>bp) —1(x>a;) +1(x> 355)}

= A(X) — B(x) — C(x) + D(x),

where
A(X) = (L(x=a1) - L(x = ay))(L(x = b1) - L(x = ay))

= 1[min(az,a]),max(as,a;))1L[min(bs,a;),maxby,a;))
=1[a},min(a1,b1))1(a; < min(ai,b1)) + 1[maxas,b1),a;)1(a; > maxag,bs)),

D(X) = (1(x > 8) — 1(x>23))(L(x > bp) — 1(x > &3))

= 1[min(ay,a5),max(az,a;))1[min(by,a5),maxby,a3))

= 1[a5, min(ag,by))1(a; < min(ag,by)) + 1[maxay, b2),a5)1 (a5 > maxaz,by)),
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B(x) :== (L1(x>a1) —L(x>a1))(L(x > bp) —L(x > a3)),
and

C(x) = (1(x > 82) — (x> a3)) (L(x > by) — L(x > a})).
Assume thaty = a; + /T, 8 = a5+ S/T,b1 = & +11/1,by = & +1t2 /1. Whent tends to infinity,
we have/ BdG= [CdG= 0. Moreover,

/(A+ D)dG

a*
dG+]l(0>sl,t1)/ ' dG
aj+max(sy,ty) /T

aj+min(sy,ty) /1
= [11(0< sl,tl)/
a

as+min(sp,to) /T aj
dG+11(0>s2,t2)/ de}

as+max(s,t2) /T

+1(0< s, '[2)/a
= mln(S]_ tl)g( )]l(O <9, tl) — max(sl,tl) (a*)]l(O > Sl,tl)
+min(sz,t2)9(a5)1(0 < sp,t2) — Max(sz,t2)9(85) 1(0 > s, t2). (27)
Let mbe the integer part diK +1)/2. Now, we obtain

EqX.Y,a* +s/T)@X,Y,a" +t/1)
—E[L(X U o 1/135 4 sa/0) (K € Ul 123
X [n (X € UM y[as q+tai1/T,85 +1/T)) —1(X € ui”ll[aéi_l,aw)]
% [ 3. 8+ min(s. 1)) 1(0 < Sc.t)

—1(X € [ag + max(st), a))1(0 > sk,tk)] (28)

(for largeT). Finally, by (27) and (28), the limit ofE@(X,Y,a* +s/T)@(X,Y,a" +t/1) ast — o

becomes <

H(s0) = 3 [min(s.tgla)10< st
k=1
—max(sk, tk)g(ag)1(0 > sk,tk)} :

So, the first part of condition (v) is satisfied. As for the second pacbatlition (v), for anye and
T>1/g, andt € R, we have

E []lz(ha*ﬁ (X) #Y)1 (A (g 1 (X) #Y) > TS)} =0.

To show that Condition (vi) is satisfied, we note that for anly € U,

“]1 (ha(X) #Y) —1(hp } % [ (X € [min(ay, bx), max(ak, bx)))
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K
<3 Jac—bilg(E)
k=1

for somegy € [min(ax, bx), max(ax, bx)]. Hence

e ([1haX) # )~ 1(hu(X) £Y)]) = O(]a- bl

for aandb neara’.

Now we calculate an upper bound for the envelope function. (Kix) € X x {—1,1}. To
maximize the functiomp(x,y,a) = 1(ha(x) #y) — 1 (ha=(X) # y)|, note that fory = 1, this function
is increasing iray’s for evenk and decreasing iag's for oddk. To simplify, assum& is odd. Over
Gr, @(X,y,a) is maximized when

aa=a—R ax=a+R a3=a3—R ..., ak=a —R (29)
Fory= —1, itis maximized when
a=ai+R a=a,-R a3=a3+R ..., sk =a +R (30)

Similarly, 1(ha(X) #y) — 1(ha(X) # y) is maximized fory = 1, in case (30) and foy = —1, itis
maximized in case (29). So, the maximumefx,y,a))| is the maximum of

ﬂ(xe [ai—R,a’{]U[a*z‘,a§+R]u...u[a:‘<—R,a*K]>

and
]l(xe [a’{,a’{+R]U[aE—R,aE]U...U[aﬁ,a;JrR}).

So the envelop&r of Gr satisfies
Gr < qu

where

G’R:]l(xe UE_l[af;—R,an+R]>.

Now, note that
K

E(GR) < 5 P(ai—R<X <& +R)
k=1
and
Plagz—R<X<a+R) 2Rga)
R R

for someq; € (a — R a; + R), whenR s close to zero. We thus ha#G3) = O(R). SinceGk

is bounded by one, it is also easy to see tBgis uniformly square integrable fd® close to zero.
Finally, sinceG is VC-subgraph, we conclude thgk is uniformly manageable for the envelope
GRr. [

<R, IR" < =,

Proof of Theorem 4
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Checking the Conditions (i)-(vii) of the Kim Pollard Theorem is very similar to pineof of
Theorem 1. We consider agapi, y,a) = P(ha(X) #Y) — P(ha(X) #Y). Condition (i) is clearly
true. Because the clag€,; :a<€ R'} is VC andL is continuous af*, we know by the same
argument as in the proof of Theorem 1 tlegt—> a* almost surely. So, Condition (ii) is met.
Condition (iii) is met becaus®" is open. The functiorL is twice differentiable with positive
definite second derivative matri¥’ ata*. So, (iv) is satisfied. To show that (v) is satisfied, we
consider the covariance structure@X,Y,a). Now,

Cov(g(X,Y,a)],@(X,Y, &) =1 -1,
where
I :==E[@X,Y,a)@(X,Y,d)]

and
Il = [L(a) —L(a")] [L(&) — L(a*)] = O(1™%),

for ||a—a*|| = O(1/1) and||d—a*|| = O(1/1). As for |, write C = C,, € = Cs, andC, = Cg, then
| =P(Y =1,X e C°NC®) — P(Y = 1,X € C°NCY)
—P(Y =1,X e CSNE®) +P(Y = 1,X € CF)
+P(Y =-1,XeCnC)—-P(Y=-1,X€CNC,)
—P(Y =-1,XeGnC)+P(Y =-1,X€C,).

It is easy to see that

|=/U“ Fo(uv) - [ Fo(u,v)
v>Ka(u),v>ks(u) V>Ka(U),v>Kqx (U)

-/ RW+ [ Ry
V>Kax (U),v>Ks(U) V>Kqx (U)

(A-Fouv) - [ (1-Fo(uv))

v<ka(U) v<ky (U)

+
v<ka(u),v<ks(u)

. /V <ka*(u).,v<ké(u)(l_ Fo(u,v)) + v<ka*(u),<1_ Fo(u,v))]g(u,v)dudv

Kag (U) Kaee (U)
:/ / g(u,v)dvdu+/ / o(u,v)dvdu
Ka(u) <ka(u) <ka: (u) /ka(u) Ka(U) <ka(u) <kq+ (U) / ka(u)
Ka(u) Ka(u)
+/ / g(u,v)dvdu+/ / g(u,v)dvdu
Kae (U) <ka(u) <ka(u) k= (u) Kar () <ka(u) <ka(u) k- (u)

For eacts,t € R', and for sequences(t) } and{a(t)} with

lim a(t) = lim a(t) = a",

T—0 T—00

we have

limt

Ko (U)
/ / g(u,v)dvdu
T2 ke yoyr(U) <Karyt/7(U) <Ke (U) S Kepe y1/7 (W)
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=limt /
T ka*+s/r(U)Ska*ﬁ/r(u)ﬁka* (u)

(ka*w) —kamﬁ(u))g(u,ka—(r)(u»du

=limt

—tT /1 u)g(u, kgp) (u))du. 31
T—e /|(a*+s/r(u)§ka*+t/r(u)§ka*(U)( / )k/g(l')( )g( a(T)( )) ( )

Whent — o, the conditionsks, s/ (U) < Ka11/r(U) andky. y¢/r(U) < ka-(u) becomeg—s' +
tT)kl.(u) > 0 and—tTK.. (u) > 0, respectively. So the limitin (31) becomes

- tTk.. (U)g(u, kg (U))du.
/ o e WO ()

Hence, have shown that

lim Cov(@(X,Y,a* +5/1),@(X,Y,a" +1/1))

_ / a’ (u,t, S)K, (U)g(u, ke (U))dU,

wherea is defined in (18). The second part of Condition (V) is true becauseitigionsg(-, a) are
bounded. We conclude that Condition (V) is satisfied.
Conditions (vi) and (vii) are verified in the same way as in the proof of Témaat. |
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