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Abstract

We study the problem of finding an optimal kernel from a prigsat convex set of kernel& for
learning a real-valued function by regularization. We lelésa for a wide variety of regularization
functionals that this leads to a convex optimization probénd, for square loss regularization, we
characterize the solution of this problem. We show thatcaighX may be an uncountable set, the
optimal kernel is always obtained as a convex combinatiat ofostm+ 2 basic kernels, whema

is the number of data examples. In particular, our resulidyap learning the optimal radial kernel
or the optimal dot product kernel.

1. Introduction

A widely used approach to estimate a function from empirical data consists in mimgn@izegu-
larization functional in a Hilbert spac#® of real-valued functions$ : X — R, whereX is a set.
Specifically, regularization estimatésas aminimizerof the functional

Q(Ix(f)) +1Q(f)

wherep is a positive parametely(f) = (f(xj) : j € Nm) is thevectorof values off on theset
x={X;:j€Nm}and Nn={1,...,m}. This functional trades o#mpirical error, measured by the
functionQ : R™ — R, with smoothnesef the solution, measured by the functio®al # — R,..
The empirical error depends upon a finite §4,y;) : j € Nm} C X x R of input-output examples
and the functiorQ depends oty but we suppress it in our notation since it is fixed throughout our
discussion. In particular, one often considers the cas&}imtefined, fov = (vj : j € Nym) € R™,
asQ(V) = Y jen, V(vj,yj) whereV : R x R — R is a prescribedbss function

In this paper we assume thaf is areproducing kernel Hilbert spaclRKHS) #Hy with kernel
K and choos®(f) = (f, f), where(,-) is the inner product irt, although some of the ideas we
develop may be relevant in other circumstances. This leads us to studyititewal problem

Qu(K) :=inf {QIx(F)) +u(f, f): f € 7). (1)
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We recall that an RKHS is a Hilbert space of real-valued functions ewesge defined otk such
that, for everyx € X, the point evaluation functional defined, fore #, by Ly(f) := f(x) is con-
tinuous on# (Aronszajn, 1950). This implies th& admits a reproducing kernkl: X x X — R
such that, for everyx € X, K(x,-) € # and f(x) = (f,K(x,-)). In particular, forx,t € X, K(x,t) =
(K(x,-),K(t,-)) implying that them x m matrix Ky := (K(x;,X;) : i, j € Nm) is symmetric and posi-
tive semi-definite foanyset of inputsx C X.

Often RKHS’s are introduced through the notionfeature map® : X — W, where W is a
Hilbert space with inner product denoted @y:). A feature map gives rise to the linear space of all
functionsf : X — R which are a linear combination of features whose norm is taken to be the no
of its coefficients. That s, fow € W, f = (w,®) and(f, f) = (w,w). This space is an RKHS with
kernelK defined, forx,t € X, asK(x,t) = (®(x),®(t)). Using these equations, the regularization
functional in (1) can be rewritten as a functionaheof

Regularization in an RKHS has a number of attractive features, includingviditability of
effective error bounds and stability analysis relative to perturbatiotiseofiata (see, for example,
Bousquet and Elisseeff, 2002; Cucker and Smale, 2002; Mukhetrjak, én press; Scovel and
Steinwart, 2004; Smale and Zhou, 2003; Vapnik, 1998; Ying and ZHa¥4;2Zhang, 2004; Zhou,
2002). Moreover, one can show thaffifs a minimizer of the above functional it has the form

f(x) = CiK(xj,x), xe X (2)
je%m in X

for some real vector = (c; : j € Npy) of coefficients (see, for example, De Vito et al., 2005; Girosi,
1998; Kimeldorf and Wahba, 1971; Micchelli and Pontil, 2005;&kbpf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004). This result is known in Machine Learninthagepresenter theorem
Although it is simple to prove, this result is remarkable as it makes the variatiwoblem (1)
amenable for computations.

If Q is convex, the unique minimizer of problem (1) can be found by replatibyg the right
hand side of equation (2) in equation (1) and then optimizing with respect teettterc. For
example, wheQ is the square error defined for= (vj : j € Nm) € R™asQ(V) = ¥ jen,, (Vi —¥j)?
the functional in the right hand side of (1) is a quadratic in the vextord its minimizer is obtained
by solving a linear system of equations.

Because of their simplicity and generality, kernels and associated RKk§'sip increasingly
important role in Machine Learning, Pattern Recognition and their applicatidns was initiated
with the introduction of support vector machines (see, for example, Vapai8), and continued
with the development of many other kernel-based learning algorithms @esxdmple, Sabikopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004, and refergheesin). As kernels can
be defined on any input space, kernel-based methods have beessullg applied to learning
functions defined on complex data structures, ranging from images aextspeech data, biological
data, among others.

Despite this great success, there still remain important problems to be sefii@ncerning
kernel methods in Machine Learning. When the kernel is fixed, an immediatem with problem
(1) is thechoice of the regularization parameter |Ihis is typically solved by means of cross
validation or generalized cross validation (see, for example, Hastie,ifidbshnd Friedman, 2002;
Wahba, 1990) or by means of regularization path methods (see, for &addgeh, Thibaux and
Jordan, 2004; Hastie et al., 2004; Pontil and Verri, 1998). But, howeikénnel chosen? Indeed,
a challenging and central problem is tbleoice of the kerneiself. As we said before, whef
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is constructed as linear combinations of features associated to the Ketthely can provide some
guideline for the choice of the kernel. Thus, the choice of the kernel isttidbde problem of
choosing a representation of the input. This choice can make a signififfargigice in practice. For
example, techniques such as radial basis functions can perform jfdbdyparameter of the radial
kernel is not tuned to the given data. A similar circumstance occurs falation invariant kernels
modeled by Gaussian mixtures. When the number of parameters is larggalidason encounters
severe computational limitations. To overcome this problem, easily computabiexapations to
the leave-one-out error have been derived (Chapelle et al., 20a12)&V1990). Nonetheless, these
methods are usually non-convex and may lead to undesirable local minima.

In this paper, we propose a method for finding a kernel function whidbngs to acompact
andconvexset K. Our method is based on the minimization of the functional in equation (1), that
is, we consider the variational problem

inf{Qu(K) : K € K}. 3)

This problem shares some similarities with recent progress in the contegtraflkbased methods
(Bach, Lanckriet and Jordan, 2004; Bousquet and Herrmani8; ZD@stianini et al., 2002; Grae-
pel, 2002; Lanckriet et al., 2002, 2004; Lee et al., 2004; Lin and Zha0@3; Herbster, 2001;
Ong, Smola and Williamson, 2003; Wu, Ying and Zhou, 2004; Zhang, Yamagkwok, 2004). In
particular, the third and fifth papers motivated our work. In contrast tgtiet of view of these
papers, our setting applies to convex combinations of kernels parameteyizecompact set, a cir-
cumstance which is relevant for applications. We also wish to emphasizdttimtgh we focus on
learning methods based on the minimization of the functional (1), the ideas wkighesent here
may prove useful for learning kernels or feature representationg dgferent forms of regulariza-
tion such as entropy regularization (Jaakkola, Meila and Jebara, , 1898l density estimation
(see, for example, Vapnik, 1998), or one-class SVM (Tax and D@@9)las well as in other Ma-
chine Learning frameworks such as those arising in Bayesian learniegp\atkernel is seen as the
covariance of a Gaussian process, (see, for example, Wahba \WBgdms and Rasmussen, 1996)
or in online learning, (see, for example, Herbster, 2001).

In Section 2 we establish the existence of a solution to problem (3), shoththhmnctionalQ,,
isconvexn K, and observe that, althoudli may be an uncountable set, the optimal kernel is always
obtained as a convex combination of at most 2 basic kernels (see below), whenes the number
of training data. The simplest case of our setup is a set of convex combisatidinitely many
kernels{K; : j € Nn}. For example eacK; could be a Gaussian, a polynomial kernel, or simply
a kernel consisting of only one feature. In all of these cases our methbdgeak the optimal
convex combination of these kernels. Another example included in our fvarkes learning the
optimal radial kernel or the optimal polynomial kernel in which case theesfads the convex
hull of a prescribed set of kernels parameterized lhycally compactset. In Section 3 we study
square loss regularization and provide improvements and simplifications oéghks in Section
2. In particular, we discuss the connection to minimal norm interpolation aablesh necessary
and sufficient conditions for a kernel to be optimal. Finally, in Section 4 wengent on previous
work, present some numerical simulations based on our analysis andsiésrue extensions of our
framework.
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2. Optimal Convex Combination of Kernels

Let X be a set. By &ernelwe mean a symmetric functidf: X x X — R such that for every finite
set of inputsx = {X; : j € Ny} € X and everyme N, themx mmatrixKy := (K(x;,X;j) :i,j € Nm)

is positive semi-definite. We lef (R™) be the set ofn x m positive semi-definite matrices and
L, (R™M) the subset of positive definite ones. Also, we ) for the set of all kernels on the
setX and A4, (X) for the subset of kernel§ such that, for each inpwt, Ky € £, (R™). We also
occasionally refer to the set afl symmetricm x m matrices and us¢(R™) to denote them.

According to Aronszajn and Moore (see Aronszajn, 1950), evenyekdnas associated to it an
(essentiallyuniqueHilbert spacef with inner product-,-) such thaK is its reproducing kernel.
This means that for everly e Hx andx € X, (f,Ky) = f(X), whereKy is the functionK(x, -).

Let D := {(x,Yj) : ] € Nm} C X x R be prescribed data arydthe vector(y; : j € Nn,). For
eachf € #x, we introduce thenformation operator,|(f) := (f(x;j) : j € Ny) of values off on
the setx := {Xx; : j € Nm}. We prescribe a nonnegative functiQt R™ — R, and introduce the
regularization functional

Qu(f,K) == QUIx()) +Hf I (4)

where||f||Z := (f, f), uis a positive constant an@ depends ory but we suppress it in our no-
tation as it is fixed throughout our discussion. A noteworthy special cB& is thesquare loss
regularizationfunctional given by

Su(F,K) 1= [ly = e (F) 12+ 1l Tl (5)

where|| - | is the standard Euclidean norm o"RThere are many other choices of the functional
Qu which are important for applications, see the work of Vapnik (1998) fdisaussion.
Associated with the function&), and the kerneK is the variational problem

Qu(K) :==inf{Qu(f,K) : f € i} (6)

which defines a functio®, : 4(X) — R,. We remark, in passing, that all of what we say about
problem (6) applies to function® which are bounded from below on"Ras we can merely adjust
the expression (4) by a constant independent ahdK. Let us first point out that the infimum in
(6) is achieved, at least whépis continuous.

Lemmal If Q : R™ — R, is continuous and u is a positive number then the infimum in (6) is
achieved for a function itt. Moreover, when Q is convex this function is unique.

PrRoOOF The proof of this fact is straightforward and usesak compactness the unit ball in
Hg. The uniqueness of the solution relies on the fact that wiés convexQ,, is strictly convex
becauseuis positive. O

The point of view of this paper is that the functional (6) can be useddesegn criterion to
select the kernel KTo this end, we specify an arbitrary convex subigedf 4(.X') and focus on the
problem

Qu(K) =inf{Qu(K) :K e K}. @)

Recall that the solution of (6) is given in the forfn= 3 ;. CjKx, for some vectoc:=(c;: j €
Np), (see, for example, De Vito et al., 2005; Girosi, 1998; Kimeldorf and \@atb71; Micchelli
and Pontil, 2005; Sditkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). Suchdifan
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representation for learning the functidnis central for many diverse applications of kernel-based
algorithms in Machine Learning. Moreover, the coefficient vects found as the solution of the
finite dimensionaVariational problem

Qu(K) := min{Q(Kxc) + p(c,Kyc) : c€ R™}

where(-, ) is the standard inner product ori'R

Before we address basic questions concerning the variational prd@lewe describe some
terminology that allows for a precise description of our observationsrybmput setx and set of
basic kernelsj on X x X determines a set ehatricesin L(R™), namely

G(x):={Gx:Ge G}.

Obviously, it is the set of matriceg (x) that affects the variational problem (7). Note thaix)
being a subset of (R™) is identifiable as a set of vectors iMRwhereN := w As suchg(x)
inherits the standard topology from™R That is, convergence of a sequence of matrice§ (ix)
means that the respective elements of the matrices converge. For this, asses (the closure

of G) to mean the set of all kerneks on X x X with the property that for eack C X, the matrix

K« € G(x), the closure ofG(x) relative to R'. We say a set of kernel§ is closed provided that

G = G. Also, we saygG is a compact convex set of kernels whenever for eachX, G(x) is a
compact convex set of matricesJitR™). Our next result establishes the existence of the solution

to problem (7).

Lemma 2 If X is a compact and convex subsetdf(X) and Q: R™ — R is continuous then the
minimum of (7) exists.

PROOF  Fixx C X, choose a minimizing sequence of kerngfs': ne N }, that is, linh—., Qu(K") =
Qu(X) and a sequence of vectofs' : n € N} such that

Qu(K™) = Q(Kyc") +u(c”, Kic").
Since X is compact there is a subsequereé(®) : ¢ € N} such that lim .« KM — K., for some
kernelK € %. We claim that{c" : n € N} is bounded. Indeed, there is a positive conspastich
that (c",Ki'c") < p. Seta" = ﬁ so that(a",K7a") < W and choose a convergent subsequence
{a"@ : qe N} such that ling_.. a""¥ = a and||al| = 1 for some vectoa € R™. If the sequence
{c": ne N} is not bounded we conclude thi, Kya) = 0 contradicting our hypothesis thite
A, (X). Hence there is a subsequeqc&‘® : g € N} such that liny_.., c"“® = c, for somec € R™.

Therefore, we conclude that

Qu(%) = Q(Kxc) +H(c,Kxc) = Qu(K)
from which it follows thatQ,(X) = Qu(K). O

The proof of this lemma requires that all kernelsXhare in 4, (.X). If we wish to use kernelk
only in 4(X) we may always modify them by addirany positive multiple of thedelta function
kernelA defined, forx,t € X, as

1, x=t

A(xt) = { 5 (8)
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that is, replac& by K + aA wherea is a positive constant.

There are two useful cases of a ggtof kernels which are compact and convex. The first is
formed by the convex hull of finite number of kernels itA (X). The second example extends this
to a compact Hausdorff spa€k (see, for example, Royden, 1988), and a mapgin® — 4, (X).

For eachw € Q, the value of the kerndb(w) at x,t € X is denoted byG(w)(x,t) and we assume
that the function ofo — G(w)(x,t) is continuous o2 for eachx,t € X. When this is the case we
sayG is continuous We let (Q) be the set of alprobability measuresn Q and observe that

%(G) = { | Glwydpo):pe M(Q)} ©)

is a compact and convex set of kernelslin(.X'). The compactness of the s&{(G) is a consequence
of weak-compactness of the unit ball of the dual spac&C), the set of all continuous real-
valued functiongy on Q with norm ||g||q := max{|g(w)| : w € Q} (Royden, 1988). For example,
we chooseQ = [a, b], wherea > 0 andG(w)(x,t) = e @*tI* xt € RY, w e Q, to obtainradial
kernels or G(w)(x,t) = e**Y, x;t € RY to obtaindot product kernelsNote that the choic® = N,
corresponds to our first example.

In preparation for the next theorem we need to express th& 88} in an alternate form. We
have in mind the following basic fact.

Lemma 3 If Q is a compact Hausdorff space,:@ — 4, (.X) a continuous map as defined above
and G = {G(w) : w € Q} then X (G) = cog.

PROOF.  First, we shall show thatoG C X(G). To this end, we leK € coG andx C X. By
the definition of convex hull, we obtain, for some sequence of probabilitysorea{p, : ¢ € N},
thatKy = lim/—.« /o Gx(w)d pr(w) where eactp, is afinite sum of point measures. Since for each
teN, [oGx(w)dp(w) € K(G) and X (G) is closed it follows thaky C X (G), that is, we have
established thatoG C X(G).

On the other hand, if there is a kerrtele % (G) which does not belong tooG then there is
an input sex such thatky ¢ coG(x) while Ky = [ Gx(w)dp(w) for somep € M (Q). Hence,
there exists a hyperplane which separates the miéfrixom the set of matricesoG(x) (Royden,
1988). This means that there is a linear functidnah S(R™) andc € R such thatL(Kx) > ¢ but
L(Gx(w)) < cfor all w € Q. We integrate the last inequality overc Q relative to the measuip
and conclude by the linearity afthatL (Ky) < c, a contradiction. This concludes the proof. [

Observe that the s&l = {G(w) : w € Q} in the above lemma is compact sinBés continuous
andQ compact. In general, we wish to point out a useful fact about the leeimeoG whenever
G is acompactset of kernels. To this end, we recall a theorem of Caratheodoryftseexample,
Rockafellar, 1970, Ch. 17).

Theorem 4 If A is a subset oR" then every & CcOA is a convex combination of at most-i
elements of A.

An immediate consequence of the above theorem is the following fact whichalkeuse later.

Lemma 5 If A is a compact subset #&&" thencoA is compact and every element in it is a convex
combination of at most# 1 elements of A.
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In particular, we have the following corollary.

Corollary 6 If G is a compact set of kernels oki x X thencogG is a compact set of kernels.

Moreover, for each input seta matrix Ce coG(x) if and only if there exists a kernel T which is a

convex combination it mostm +1kernelsinGg and § =C.

Our next result shows whenevé is the closed convex hull of a compact set of kerrglshat
the optimal kernel lies in a the convex hull of sofiméte subset ofG.

Theorem 7 If G C 4, (X) is a compact set of basic kernef&,= coG, Q: R™ — R, is continuous
and u is a positive nu[nber then there exiSts. G containing at most m- 2 basic kernels such that
Qu admit a minimizeK € co7Z and Q(7) = Qu(X).

PROOF Let (€, K) e R™x X be a minimizer ofQ, that is, we have that
Qu(%) = Min{Q(Ry0) + H(c, Rec) : ¢ € R™} = Q(Re6) + H(E,RyC).

We define the set of vectord := {(KxC, (€,K«€)) : K € X} ¢ R™, Note that?l = co?’ where
V ={(GxE, (€,Gx€)) : G e G} and ¥ is compact sinces is compact. By Lemma 5 the vector
(Kx€, (€,K«€)) can be written as a convex combination of at nmst 2 vectors in?/, that is

(K€, (6,Kx€)) = (Kx€, (€,Kx€))
whereK is the convex combination of at mast+ 2 kernels inG. Consequently, we have that

Qu(K) = QRx€)+H(E Ky, E)

> min{Q(Kxc) + p(c,Kyc) : c € R™}

= Qu(K) > Qu(X)

implying thatQ,(K) = Qu(K). O

Note that Theorem 7 asserts #dstencef aqwhich isat most m- 2, that is, an optimal kernel
is expressed by a convex combination of at most 2 kernels.

Note that in the definition () we minimize first overf € #x and then oveK € K. There
arises the question of what would happen if we interchange these minimaddiesa this issue
in the case thatX is the convex hull of a finite set of kernels. To this end, we use the notation
@jeNn}lkj for the direct sum of the Hilbert spac®i; : j € Nn}.

Lemma 8 If %, = {Kj: j € Np} is a family of kernels otk x X and f € @, H; then

inf{|| f||k : K eco%}:min{ [ fillk; = f = % fi, foe H, L€ Nn}. (10)
j€Nn

jeNp
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As the result is not needed in our subsequent analysis we postponedts@ithe appendix (for
related results, see also, Herbster, 2004; Lin and Zhang, 2003) oi#/¢hat the expression on the
right hand side of equation (10) is atermediatenorm for@®;, #H; (see Bennett and Sharpley,
1988, p. 97) for a discussion. This lemma suggests a reformulation ofktren&l problem (7)
for kernels of the form (9) wher& is expressed in terms of a feature map. Although this fact is
interesting, it is not central to our point of view in this paper and, so, gerilee it in the appendix.
Next, we establish that the variational problem (7) isoavex optimization problemSpecif-
ically, we shall show that if the function mappin@: R™ — R is convex then the functional
Qu:AL(X) — Ry is a convex as well. It is curious that this does not seem to follow directly
from thedefinitionof Q. We take a sojourn through the notionazfnjugate functionRecall that
the conjugate function d denoted byQ* : R™ — R is defined, for every € R™, as

Q"(v) = sup{(c.v) —Q(c) :c € R™}
and it follows, for everyc € R™, that
Q(c) = sup{(c,v) —Q"(v) :vE R™}

(see, for example, Rockafellar, 1970; Borwein and Lewis, 2000)icA recent application of the
conjugate function to linear statistical models appears in (Zhang, 2002).

The proof we present below for the convexity @f, : 4, (X) — R, is based upon the von
Neumann minimax theorem which we record in the appendix. We begin by imirggéor each
r > 0 afunctiong : Ry — R, defined, foit € Ry, as

1 , 1
@ (t) = u(ZH\/t' %~ 2t
where(z); := max0,z). Note that
. 1
m e () = -2t

pointwise fort > 0. Also, for each fixed > 0, @ (t) is a non-increasing function ofand, for each
r > 0, ¢ is continuously differentiable, decreasing and convex an R

Lemma9 If K € 4(X), x a set of m distinct points of such thatk € £, (R™) and Q: R™" — R
a convex function, then there exisgs¥ 0 such that for all r> rg there holds the formula

Qu(K) = sup{@ ((v.Kxv)) —Q"(v) :ve R™}. (11)

PROOF. By the definition ofQ, we have that
Qu(K) = min{sup{(Kxc,v) — Q*(v) + p(c,Kxc) : ve R™} :ce R™}.

According to Lemma 2 the minimum above exists. Therefore, thereris>a0 such that for all
r > ro we have that

Qu(K) = min{sup{(Kxc,V) — Q*(v) + (¢, Kxc) : vE R™ : c € R™, (c,KyC) < r?}.
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By the minimax theorem, see Theorem 22 in the appendix, we conclude that
Qu(K) = sup{min{(Kyc,v) — Q*(v) + p(c,KyC) : c € R™, (c,KcC) < r?} :ve R™}.

For eachv € R™, we shall now explicitly compute the minimum of the above expression. To this
end, we leK, := B2 whereB is am x m positive definite matrix, that i€ is the square root dfy,
and observe that

min{(c, KxV) + L(C, KxC) : (¢, KxC) < r?} = min{p||Bc+ %BVHZ— %1||Bv||2 2 ||Bc|| <r}.

If the vectorcy := —iv has the property thagtBo|| <, that is, ||Bv|| < 2ur then the minimum
above is—%HBvHZ, otherwise||Bv|| > 2ur and the triangle inequality says that

1 1 1
Bc+ —Bv|| > —||Bv|| — ||Bc|| > —||BV|| —r.
[Be+ 5BV = 2BV~ [[Be] = o7 BV

Since, for the vectot = —ﬁ, we have that

L1 1
|IBE+ Z_HBVH = ZlHBVH —r
this inequality is sharp. Therefore, we get that

1 1
Qu(K) = sup{ i [Bvl| -2 - ollBvI? - Q () sve RY

and the result follows by the definition gf. O

Let us specialize this lemma to the example of the squareSdséined, fow € R™, asS(w) =
ly —w]||2. In this case, the conjugate function is given explicitly¥ax R™ as

S'(v) = max{(wv) — [lw—y|?:we R"} = %IIVIIZ+ (¥;V)-

We shall show later in Lemma 14 bydirect computatiorwithoutthe use of the conjugate function
thatS, = p(y, (Kx+ul)~ty). Alternatively, if we formally letr = e in the right hand side of equation
(11) we get

sup{—%l(v, (Kx+HhVv) = (y,v) :ve Rm}

which by a direct computation equalsy, (Ky + pl)~ty). This suggests that Lemma 9 may even
hold whenr = « and without the hypothesis thi € £, (R™). We shall confirm this with another
version of the von Neumann minimax theorem.

Lemma 10 If K € 4(X), x a set of m distinct points of such that ik € £, (R™) and Q: R™ — R
a convex function, then there holds the formula

Qu(K) = SUp{i(v, KxV) —Q*(V):ve Rm} .
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PROOF Theorem 23 applies sind§ € £, (R™). Indeed, we letf(c,v) = (Kxc,v) — Q* (V) +

u(c,Kxc), 4 =B = RMandvp = 0 then the sefc: c € R™, f(c,vo) < A} is compact and all the

hypotheses of Theorem 23 hold. Hence, we may proceed as in thegfroemma 9 withr = co.
O

To interpret Lemma 9, we say that=< B wheneverA,B € L(R™), if B— A is positive semi-
definite. We also say, fdf,J € 4(X), thatK < Jif Ky < Jy for everyx C X.

Definition 11 A function@: B — R is said non—decreasing 0B C A4(X) if, for every AB € B
with A=< B it follows thatg(A) < @(B). If the reverse inequality holds we s@ys non—increasing.

Definition 12 A function@: B — R is said convex oB C 4 (X) if, for every AB € B andA € [0, 1]
there holds the inequality

OAA+ (1—-A)B) <AQA)+ (1—N)@(B). (12)
If the reverse of inequality (12) holds we say thatqhis concave.

Proposition 13 If Q : R™ — R is convex then for every ¢ 0 the function Q: 4, (X) — Ry is
convex and non-increasing.

PrROOF The proof of the proposition follows from Lemma 9. Specifically, equatidr) éxpresses
Qu as the supremum of a family of functions which are convex and non-isiogan.A4(X).
O

We note that the convexity of the functi€, was already proven by Lanckriet et al. (2004)
for the hinge loss and stated in (Ong, Smola and Williamson, 2003) for difiat#e convex loss
functions.

3. Square Regularization

In this section we exclusively study the case of the square loss regtitamiaanctionalS, in equa-
tion (5) and provide improvements and simplifications of our previous restsbegin by deter-
mining theexplicit expression for this functional which we briefly mentioned earlier after thefp
of Lemma 9.

Lemma 14 For any kernel K, inputx := {X; : j € N}, samples y= (y; : j € Nm) and positive
constant 4 we have that
Su(K) = (Y, (K1 +Ke) 1Y) (13)

where | is the mx m identity matrix.

PROOF We have thag,(K) = min{R(c) : c € R™} where for eaclt € R™ we setR(c) := ||y —
Kxc||? + p(c, Kyc). We define the vectom := (ul + Ky) 1y, observe thaR(w) = (y, p(pl + Ky)~1y)
and for every vectoc € R, we have that

R(C) = R(W) + [[Kx(W—€)[|* + p(c — W Ky (c— w)).

With this formula the result follows. O
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From this lemma we conclude, when the maktixds in £, (R™) then lim, ot~ 1S,(K) = y(Kx),
where for everyA € £, (R™) we sety(A) := (y,A~ly). The functiony: £, (R™) — R, has the
alternate form

Wi\) :=min{(c,Ac):ce R",(c,y) =1}, Ac L, (R™) (14)

and the unique vector which achieves this minimum is given by
A-ly

c(A) = m (15)

A proof of these facts follow directly from the Cauchy-Schwarz inequdbitythe inner product
(u,Av), u,v € R™. Moreover, this alternate form foi{A) connects the functiog to the minimal
norm interpolantin # to the dateD. Let us explain this connection next.

Recall, for every kerneK on X x X, that the minimal norm interpolation to the dddais the
solution to the variational problem

p(K) :=min{||f||Z : f € #H«, f(X)) =Y, ] € Nm}. (16)
The following result is well-known (for a proof see, for example, Midttsnd Pontil, 2005).

Proposition 15 If K € 4(X) andx is an input set inX such that the matrix Kis in £, (R™) then
the solution of the minimal norm interpolation problem (16) is unique and is\diye

f= CjK(va')
2

where the coefficient vector (c; : j € Ny) solves the linear system of equationg k- y and we
have that

p(K) = ¥(Ky) = (. K¢ 1Y) (17)

The functiony: £, (R™) — R is continuous. We record additional facts about this function in
the next two lemmas.

Lemma 16 The functioryis non—increasing and wheneverB\e £, (R™), y(A) = y(B) if and only
if A=ty =B"1y.

PROOF.  If A=< B then for everyc € R™, (c,Ac) < (c,Bc) and it follows thatﬁ) < W}B)' Clearly
A-ly = B~ly implies thaty(A) = y(B). On the other hand if(A) = y(B), the inequalitie% <
(c(B),Ac(B)) < (c(B),Bc(B)) = WlB) imply thatc(A) = c(B) and the result follows. O

Lemma 17 The functiony is convex and the functiop® concave. Moreover, for every, B €
L (R™M), A €0,1], we have that

1 1
oA v TNy (18)

if and only if dA) = ¢(B) = c(AA+ (1—A)B).
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PROOF  For every\ € [0,1] we define the matri, = AA+ (1—A)B and for allc € R™ for which
(c,y) = 1 note that

1
y(B)

Consequently, we have th@%) > )\WlA) +(1— )‘)Wls)' showing thay ! is concave. Alternatively,

equation (14) expressgsi(A) as the minimum of a family of functions which are linear in the
matrix A and hencg ! is concave. Similarly, using this equation we have that

(c,Dyc) =A(c,Ac)+ (1—A)(c,Bc) > A L

m%—(l—)\)

(19)

y(A) =max{(c,Ac) t:ce R™ (c,y) =1}

thereby expressingas a maximum of a family of convex functions.
If (18) holds, we choose = ¢, := ¢(D,) in (19) and conclude by the uniqueness of the vector
c(A) in equation (15) that) = c(A) = c(B). Conversely, when this conclusion holds we have that

V(éx) = Ay, Ac)+ (1-A)(cy,Bag,)
= A(c(A),Ac(A))+ (1—A)(c(B),Bc(B))
1 1
= )\@—F(l—)\)@
which concludes the proof. d

Lemma 16 and 17 established that the functpor, (R™) — R defined, for some € R™ and
allAc £, (R™), as@(A) = (d,A"1d) is non-increasing and convex (see also the work of Marshall
and Olkin, 1979).

Proposition 15 and Lemma 14 connects minimal norm interpolation to squaresfpdaniza-
tion. This connection allows us in this section to turn our attention to the funptiot(X) — R
and consider the variational problem

P(X) =inf{p(K) :K € K} (20)

where X is a prescribed set of kernels. The approach of Lemma 2 applies direetyablish the
following lemma.

Lemma 18 If X is a compact and convex set of kernelsgin(.X') then the minimum of (20) exists.

Our next result describes the solution of the problem of determipii#j) for the case that
K = coXy wherek, = {K; : £ € Np} is a prescribed finite subset df, (X). In its presentation we
use the notiorkKy ; for the matrix(Ky)x.

Theorem 19 If %, = {K; : j € Np} C 4, (X) there exists a kernél = Y jcaAjKj € cofk,, where
J C Ny, card(J) < min(m+ 1,n) with ¥ jeaj = Lsuch that, for every ¢ J,Aj >0,

(€, Ky j€) = max{(€,Kx(€) : £ € Np}, €=c(Ky),

p(K) = p(K) = (v,K, 1Y)
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and for every = R™ with (c,y) = 1 and every Ke co%k;

(Q KXC) S (67 KXC> S (C7 KXC)' (21)

Inequality (21) expresses the fact that the péiK) is asaddle poinfor the minimax problem

Pt =min{max{(c,Kyc) : K € coky} : c€ R™ (c,y) = 1}.
The existence ofc, K) above implies that the minimum and maximum can be interchanged, that is,

max{min{(c,Kxc) :ce R™ (c,y) =1} : K € co%y} (22)

= min{max{(c,Kxc) : K € co%p} :ce R™ (c,y) = 1}. (23)

Moreover,anyéandK with the properties described in Theorem 19 is a saddle point of this minimax
problem. Indeed, the upper bound in (21) follows from the definition of&wtorc’and the function

y defined earlier, see equations (14) and (15). The lower bound foflowsthe fact that for any

K € coX, we have thafé, Ky€) < max{(€,Ky(€) : ¢ € Np}.

Let us now turn to the existence Kf Note that by equation (14) and Proposition 15 the expres-
sion in (22) is ¥p(X), the reciprocal of the quantity of interest to us. It is the quantity in equation
(23) which we examine in the proof of Theorem 19 and it has been debypi@gd'. A consequence
of Theorem 19 is thgd = p(X). Certainly, by their definitions it is clear that< p(X).

We now present the proof of Theorem 19.

PrROOF Let¢be a solution to problem (23). We define the set

the convex functio : R™ — R by setting for eacle € R™, ¢(c) := max{(c,Ky jC) : j € Ny} and
note that by Lemma 24 the directional derivative¢ofilong the “directiond € R™, denoted by
¢’ (c;d), is given by

¢’ (c;d) =2max(d,Ky jc): j € J(c)}.

Sincec’s a minimum for (14) we have that
max{(d,Ky ;€):jeJ*} >0

for everyd € R™ such thai(d,y) = 0. Let M be the convex hull of the set of vectal§ := {Ky ;€

j €J*} C R™ SinceM C R™, by the Caratheodory theorem (see, for example, Rockafellar, 1970,
Ch. 17) every vector ifM can be expressed as a convex combination of at mpostmin(m+
1,13*|) < min(m+1,n) elements ofA. We will show that intersects the line spanned by the
vectory. Indeed, if these two sets did not intersect then there exists a hypefplane R™, (w, c) +

a =0}, wherea € R, w € R™, which strictly separates them, that is,

(wty)+a>0, teR

and
(W, Ky j€)+0a <0, jeJ, (24)
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(see, for example, Royden, 1988).
The first condition, fot = 0, implies thath > 0 and since can take any real value we also have
that(w,y) = 0. Consequently, from equation (24) we get that

max{(w,Ky €): je€J} <0

which contradicts our hypothesis thais™a minimum. Thus, it must be the case thgte M for
sometp € R, that is,

toy =) YjKx,;C (25)
J; i,

for some subset of J* of cardinality at most] and positive constantg with 3 ;-;y; = 1. Taking
the inner product of both sides of equation (25) wathafid recalling the fact tha€,y) = 1 we

obtain thaty = p~*. Setting A
K:= % YK
2

we have from (25) that = p—1K, 1y, andp = (y,K; ly). Therefore, by Proposition 15 we conclude
thatp = p(K) andc’= € wherec’is defined in the theorem. In particular, we obtair p(X) and so
by our previous remarks just before the beginning of the proof, welada thap = p(X). O

Recall, that earlier we introduced the cla&$G) induced by a continuous mappi@: Q —
A4, (X) whereQ is a compact Hausdorff space. Theorem 15 extends to this generaligsdeatial
difference occur in the proof. However, the conclusion is striking. &fdy do we characterize the
optimal kerneK e K (G) but we show that it comes fromdiscreteprobability measurg & 4 (Q)
with at most mt- 1 atoms that is,K = [, G(w)dp(w).

Theorem 20 If Qs a compact Hausdorff topological space and@— 4 (X) is continuous then
there exists a kernél = [, G(w)dp(w) € K (G) such thatp is a discrete probability measure in
M (Q) with at most m- 1 atoms. Moreover, for any atom € Q of p, we have that

(6,Gx(6)€) = max{ (€, Gx(w)E) : we Q}, &=c(Ky),
P(K) = p(K) = (v, K1)
and for every &= R™ with (c,y) = 1 and every Ke X (G)
(€. Kx€) < (€,Kx€) < (c,KyC).
PROOF Let€be a solution to problem (23) wheteXk, is replaced byX (G) and define the set
Q" =Q(€) :={1:1€Q,(€,Gx(1)€) = max{(€,Cx(w)€) :we Q}}.

where we denoted the matrG(w))x by Gx(w). We define the convex functiop : R™ — R
by setting for eactt € R™, ¢(c) := max{(c,Gy(w)c) : w € Q} and note that by Lemma 24 the
directional derivative o along the “directiond € R™, denoted by, (c;d), is given by

¢’ (c;d) = 2max{(d,Gx(w)c) : we Q*}.
Sincec’is a minimum for (14) we have that

max{(d,Gx(w)€) : we Q(c)} >0
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for everyd € R™such tha(d,y) = 0. LetM be the convex hull of the set of vectok§: = { Gx(w)E:

we Q*} ¢ R™ SinceM C R™, by the Caratheodory theorem every vectofiincan be expressed

as a convex combination of at mast- 1 elements ofA\l. We will show thatM intersects the line
spanned by the vectgr Indeed, if these two sets did not intersect then there exist a hyperplane
(w,c)+a =0, aeR,we R™ which strictly separates them, that is,

(wty)+a>0, teR

and
(W, Gx(w)€) +a <0, we Q, (26)

(see Royden, 1988).
The first condition, fot = 0, implies thatr > 0 and sincé can take any real value we also have
that(w,y) = 0. Consequently, from equation (26) we get that

max{ (W, Gx(w)€) : we Q*} < 0.

which contradicts our hypothesis thats™a minimum. Thus, it must be the case ttgte M for
sometp € R, that is,

toy = /Q G(@)EdP(w) 27)

wherep'e M (Q) is a discrete probability measure with at mast- 1 atoms. Taking the inner
product of both sides of equation (27) withdhd recalling the fact thg€,y) = 1 we obtain that
to =P~ 1. Setting

K= /QGx(w)df)(co)

we have from (27) that = p~1K 1y, andp = (y,K~1y). Therefore, by Proposition 15 we conclude
thatp = p(K) andc’= € wherec’is defined in the theorem. In particular, we obtgir p( %) and
so by our previous remarks we conclude that p(X). O

This theorem applies to the Gaussian kernel.
Corollary 21 Ifa>0and N: [a,b] — 4. (X) is defined as
N(w)(xt) =e @t xte Ry weR,

then there exists a kernil = [, N(w)dp(w) € K (N) such thatp is a discrete probability measure
in M (Q) with at most m- 1 atoms. Moreover, for any atota € Q of p, we have that

(€, Ny(@)€) = max{ (&, Nx(w)€) : we Q}, é=c(Ky),

P(X(N)) = p(K) = (v,Kc 1)
and for every = R™and Ke % (N) we have that

(6,Ky€) < (&,Kx€) < (c,KxC).
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We note that, in view of equations (13) and (17), Theorem 19 and Thed@eapply directly, up to
an unimportant constapt to the square loss functional by merely adding the kguAdb the class
of kernels considered in these theorems. That is, we minimize the quantitydtieq(L7) over the
compact convex set of kernels

K={K:K=K+pA, Ke K}

where the kerne is defined in equation (8).

An important example of the above construction is to chddse¢o be polynomials on R
namelyK;(x,t) = (x,t)J, x,t € RY. From a practical point of view we should limit the range of the
index j and therefore Theorem 19 adequately covers this case. On the gohivardecide to use,
as it is done often, Gaussians, there arises not only how many Gauss@rmse but also which
ones to choose. This raises the question of looking aihele class of radial basis functions
and trying to choose the best kernel amongst this class. To this endcaleadeautiful result
of Schoenberg (1938). Létbe a real-valued function defined on Rvhich we normalize so that
¢(0) = 1. We form a kerneK on R® by setting for each,t € RY K(x,t) = ¢(||x—t||?). Schoenberg
showed thakK is positive definite formany dif and only if there is a probability measupeon R,
such that

K(x,t) = /R e otPdp(a), xte R
+

Note that the set R is not compact and the kern®(0) is not in 4, (RY). Therefore, on both
accounts Theorem 20 does not apply in this circumstance unless, gecoug impose a positive
lower bound and a finite upper bound on the variance of the Gaussiasl&di(w). We may
overcome this difficulty by a limiting process which can handle kernel mapsaaily compact
Hausdorff spaces. This will lead us to an extension of Theorem 20exhas locally compact.
However, we only describe our approach in detail for the Gaussianara2 = R... An important
ingredient in this discussion presented below is M@b) = A.

For every/ ¢ N we consider the Gaussian kernel map on the inte@val= [¢~1,/] and appeal
to Theorem 20 to produce a sequence of keriels Ja, N(w)d pr(w) with the properties described
there. In particularpy is a discrete probability measure with at most 1 atoms, a numbende-
pendenbf ¢. Let us examine that may happen/aends towards infinity. Each of the atomsmf
as well their corresponding weights have subsequences which gengwme atoms may converge
to zero while others to infinity. In either case, the Gaussian kernelappmaches a limitThere-
fore, we can extract a convergent subsequemge: ¢ € N} of probability measures and kernels
{Kn, 1 £ € N} such that lim .., pn, = P, lim/ . Kn, =K, andK = [ N(w) p(w) with the provision
that p may have atoms at either zero of infinity. In either case, we replace thesi@alyy its limit,
namelyN(0), the identically one kernel, d¥(), the delta kernel, in the integral which defirés
All of the properties described in Theorem 20 and remarks following it hol& foecause of the
simplicity of the objective function for the minimax problem studied there. Hetde the best
radial kernel

4. Discussion

In this final section we comment on two recent papers related to ourgnpresme numerical
simulations and outline possible extensions of the ideas presented above.
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4.1 Related Works

Lanckriet et al. (2004) address learning kernels in the context cfdrastive learning, that is, learn-
ing the value of a function at a finite set of test points. In this case the lkeroemputed only on
the training and test sets and, so, it is regarded as a matrix. The autbposemdifferent criteria
to find a positive semi-definite kernel matrix and discuss how these carstel@s positive semi-
definite programming problems. For example, they maximizerthgyinof a binary support vector
machine (SVM) trained with the kernkl, which is the square root of the reciprocal of the quantity
defined by the equation

Prara(K) = min {||f[[ :y; f(x;) > 1,j € Nm}. (28)

wherey; € {—1,1} are class labels, (see, for example, Vapnik, 1998). The margin is the maximum
distance of the closed point, relative to a set of labeled points, amongstpaltaging functions

in the RKHS. These functions are hyperplanes in the space spanned f@atbres associated to

a Mercer expansion of the kern€l When the optimal separating hyperplane does not exist, the
standard approach is to relax the separation constraints in problem @&gia the so-called soft
margin SVM,

Psoft(K) ::min{ % Ej+quHﬁ:yjf(xj)zl—Ej,Ejzo,jeNm, fe}&}. (29)
jeNm

These two problems are related. Indeed, if problem (28) admits a solutairistithe constraints
are feasible, problem (29) gives the same solution provided the pargwigtemall enough.

Lanckriet et al. (2004) consider the minimization problem (29) whgéns a set of positive
semi-definite matrices which are linear combinations of some prescribed magiiges Nj. In
particular, ifK; are positive semi-definité& could be the set of convex combination of such matri-
ces. They show thgiset(K) is convex inK € K. Our observations in Section 2 confirm that the
margin and the soft margin are convex functions of the kernel. Indeelllgm (29) is equivalent
to the variational problem (1) whe@ is thehinge error functiordefined on R' by

QW)= ¥ (1Y) Wi= (W} € Noy
JENR

wheret, := max0,t), t € R, (see, for example, Evgeniou, Pontil and Poggio, 2000).

Ong, Smola and Williamson (2003) consider learning a kernel functionrrétiaa a kernel
matrix. They choose a seX in the space of kernels which are in a Hilbert space of functions
generated by a so-called hyper-kernel. This is a kefhelx? x X? — R, whereXx? = X x X,
with the property that, for evergx,t) € X2, H((x,t),(-,-)) is a kernel onX x X. This construction
includes convex combinations of a possibly infinite number or kernels prdvitey argointwise
nonnegative For example Gaussian kernels or polynomial kernels with even degtisty shis
assumption although those with odd degree, such as linear kernels oraattatkernels do not.

4.2 Numerical Simulations

In this section we discuss two numerical simulations we carried out to compotevexccombina-
tion of a finite set of kernel§K, : £ € N} which minimizes the square loss regularization functional
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[ [ 10% [ 10° [ 107 | 01 | 1 [ 10 |
Method 1 || 2.41 (1.04)] 1.69 (0.68)] 0.60 (0.11)] 0.27 (0.08)] 0.26 (0.05)| 3.20 (0.48)
Method 2 || 1.54 (0.58)| 0.91 (0.22)| 0.47 (0.08)| 0.40 (0.07)| 0.61 (0.11)| 3.80 (0.58)
Method 3 || 4.65 (7.81)| 0.95 (1.24)| 0.21 (0.06)| 0.10 (0.05)| 0.12 (0.08)| 2.40 (0.60)

Table 1: Experiment 1: Average mean square error with its standaritien (in parenthesis) for methods
1 to 3 for different values of the regularization paramgtésee text for the description). The unit
measure for the errors 19-3.

S, in equation (5). For this purpose, we use an interior point method, thaeisiefine, for every
A= (Ar: £ €Ny € R", the penalized function

Fv()\) = Sl (6% )\gKf) —V InA, (30)

145\

wherev is a positive parameter and solve the variational problem

iN{FA)IAERY, S Ay=1%. 31
mln{ A):Ae é;\ln/ } (31)

Clearly, whenv is small the solution to this problem is close to a minimizeiSgf although the
penalty term in (30) forces this solution to be interior to the{3ety ,cy, A =1, Ay >0, £ € Ny}.

In order to reach such a minimizer we choose an iteration nuleeN and iteratively compute
the solution to problem (31) for a decreasing sequence of values oathmpter. Specifically we
set, forr € Ng, v, = VA1 whereV is the initial value ofv andA € (0,1) is some prescribed pa-
rameter. The optimality conditions for problem (31) (see, for example, &eltkr, 1970; Borwein
and Lewis, 2000) are given by the systemrmoh-linearequations

OR—-ne = 0
—(eN)+1 = 0

wheree is the vector in R all of whose components are one and R is the Lagrange multiplier
associated to the equality constraint in that problem. We solve these equmstiadewton method
(see, for example, Mangasarian, 1994) which consists in iterativelyngotlie system ofinear
equations

~

0%FR, (M)A —Ane = Ae—OR,(A)
—(e,A;\) =0

to obtain the vectah, € R™andA, € R, where\ andn are the previous values dfandn. We then
update the parameters &As- A +ad, andn = A +ad,, where, in order to insure thate [0,1]",
we have setr := min(1,0.5maxa >0 A taby, € [0,1]}). In our experiments below we choose
R=5,v=10andA=0.5.

In both experiments we tried to learn a target functiofi0, 21 — R from a set of its samples. In
the first experiment we fixefl(x) = & (x+ 2(e 8™ X* _-83%” _e-837™%%)) x ¢ [0, 211, and,
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Figure 1: Experiment 1: function learned by method 1 (left), methodeéhfer) and method 3 (right). Regu-

larization parameter j$= 0.1, the number of training points 0. Solid line is the target function,
crosses are the sampled points and the dotted line is theothesied. The vertical scale has been

reduce

| H

107

103

102

01

1

|

10

Method 1

3.46 (1.39)

3.46( 1.39)

3.45 (1.38)

3.35 (1.35)

2.64 (1.10)

14.1 (10.3)

Method 2

4.46 (1.82)

4.46 (1.79)

3.85 (1.18)

3.78 (1.03)

4.00 (1.02)

62.6 (5.11)

Method 3

0.52 (0.56)

0.51 (0.56)

0.51 (0.55)

0.51 (0.57)

0.53 (0.63)

3.51 (1.47)

Table 2: Experiment 2: Average mean square error with its standarigtien (in parenthesis) for methods
1 to 3 for different values of the regularization parametésee text for the description). The unit
measure for the errors 19-3.

for everyx,t € [0, 271, we seK,(x,t) = (xt)!Lif £ € {1,2,3} andK,(x,t) = e >V if /€ {4,5,6}
wherewy, = 28754 We generated a training set of fifty poirftéj,y;) : j € Nso} C [0,21] x R
obtained by sampling with noise. Specifically, we choosg uniformly distributed in the interval
[0,2r] andy; = f(X;) + € with € also uniformly sampled in the interva-0.02,0.02]. We then
computed on a test set of 100 samples the mean square error betweegdhtutationf and the
function learned from the training set for different values of the patame We compare three
methodsMethod 1is our proposed approacmethod 2s the average of the kernels, that is we use
the kerneK = %Z K, andmethod 3s the kerneK = K5 + Ks, the “ideal” kernel, that is, the kernel
used to generate the target function. The results are shown in Tableute Eighows the function
learned by each method.

In our second experiment we fixégx) = sin(x) + %sin(Sx), x € [0, 2r] andK,(x,t) = sin(¢x) sin(¢t),
x,t € [0,211, £ € N,. The set up is similar to that in Experiment Method 1is our proposed ap-
proach,method 2s the average of the kernels amgtthod 3s the ideal kernel given bi{(x,t) =
%sin(x) sin(t) + %sin(3x) sin(3t). The noise is now uniformly sampled in the intervé0.2,0.2].
The results are reported in Table 2. Figure 2 shows the function leayneach method.

4.3 Extensions

We discuss some extensions of the problems studied in this paper. Thedtstad comes to mind
is obtained by taking the expectation of the functional (4) with respect tolzapility measurd
on R™ that s,

Q)= [ QuKYPHIIY Ke X (32)
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Figure 2: Experiment 2: function learned by method 1 (left), methodeéhfer) and method 3 (right). Regu-
larization parameter j$= 0.1, the number of training points 0. Solid line is the target function,
crosses are the sampled points and the dotted line is theotheged.

where we indicated the dependency@f(K) ony by writing Q,(K,y). SinceQu(K,y) is convex
in K for eachy € R™ so0 isQ{(K). We then minimizeQZ'(K) overK € K. For the square loss
regularization we obtain that

SV(K) = ptrace(Kx + ul) %) (33)

whereX is the correlation matrix oP. Minimizing the quantity (33) over a convex clags may
be valuable in image reconstruction and compression where we are mrovitlea collection of
images and we wish to find a good average representation for them. Inskisheainpuk = {x; :
i € Nm} represents the locations of the image pixels. For gray level images we sameshat
y € [0,1]™ and therefore we should chooBeo have support ofd,1]™. Thus, if {y’: £ € Ny} is a
sample of such images with< m andZ is the rankn empirical correlation matrix our goal is to
find a kernel which well-represents this collection on the average.

Another approach is provided by replacing the average in equationv{82ihe maximum over
all y with bounded norm, that is, we minimize the functional

Qr¥(K) :=max{Qu(K,y): lyll <1}, KeX.

Again, this function is convex iK. In particular, for square loss regularization and the Euclidean
norm on R" we obtain

max{Sy(K,y) Iy < 1) = max{uy, () )¢ Iyl < 1 = 3

whereAmin(Kx) is the smallest eigenvalue of the matkix. Consequently, we have that

H

min{max{Su(K.y) IV = 1K € K = () K € K] T

It is well-known thatAymin(Ky) is a concave function dfy, (see, for example, Marshall and OIkin,
1979, p. 475). Therefore, our results provide an alternate prabiofact.

We also remark that instead of learning a functfoinom function values the information oper-
atorl can be of the formh(f) = ((gj, f) : j € Nm), f € #, where{g; : j € N} is a set of prescribed
functions in a Hilbert space, see the work of Micchelli and Pontil (2004 afdiscussion. In this
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case, the matriKy becomes the Gram matrix of these functions. The previous sections amaside
the choiceg; = K(x;, -) and the Gram matrix iKy. This extension has wide applications in inverse
problems, for example for computing the solution of first order integrahgguos.

Lemma 17 indicates th&, : 4, (X) — R is, generally, not strictly convex. We may modify
the functionalQ, with a penalty term which depends on the kernel méfgixo enforce uniqueness
of the optimal kernel ink. Therefore, we consider the variational problem

min{Qu(K) + R(Kx)} (34)

whereR is a strictly convex function oL (R™). In this case, the method of proof of Theorem 7
shows that the optimal kernel can be found as a convex combination ofsa%m(er 1) kernels.
For example, we may choo&¥A) = trace(A?), Ac L(R™).

The variational problem (34) may be a preferred approach for ahgas optimal kernel. In-
deed, ifQ vanishes at some point in"Rand there is a kern& € K such that for alt > 0,tK € K
then it follows thaQ,(X) = 0. This fact follows since lim.. Q,(tK) = 0, by elementary properties
of the norm in%x. However, if the kernels itk have the property that spp; supex K(X,X) < e,
that is, they are uniformly bounded, the above circumstance cannat dé¢gs observation suggests
that our criterion may be free from overfitting. Preliminary experiments withsSian kernels con-
firm that overfitting does not occur (Argyriou, Micchelli and Pontil, 2R0%/e leave for a future
occasion a detailed investigation of this important issue.

As a final comment, let us point out that a kernel map can also be pararedtbgiznatrices.
For example, to each € £(RY) we define the linear kernéla(x,t) = (x,At), x,t € R% and so our
results apply to any convex compact subsetrz0RY) for this kernel map. Another example are
Gaussians parameterized by covariartess(RY), that is,

N(Z)(x,t) = ;e*(“’z*l(xft)), xteRY.
det(z) (29

For compact convex sets of covariances our results say that Gaosgiane models give optimal
kernels.

5. Conclusion

The intent of this paper is to enlarge the theoretical understanding of ttie stwptimal kernels
via the minimization of a regularization functional. Our analysis of this probleid$upon and
extends the work of Lanckriet et al. (2004) and Lin and Zhang (2003)contrast to the point
of view of these papers, our setting applies to convex combinations oélkgrarameterized by a
compact set. Our analysis establishes that the regularization funa@gnsiconvex inK and that
any optimizing kernel can be expressed as the convex combination of atrmo2 basic kernels.
We have also provided a detailed characterization of the resulting minimabeprdor square loss
regularization. We have only marginally addressed at this stage implementadi@garithms for
the search of optimal kernels. Since the proofs provided in Theoremsdl2aare constructive it
should be possible to make use of them to derive practical algorithms fairigaan optimal kernel
such as a mixture of Gaussians, see (Argyriou, Micchelli and Pontil,)Z005ome recent results
in this direction. Finally, an important direction which has not been exploredsrptper is that of
deriving error bounds, see (Micchelli et al., 2005) for some vergmeprogress on this.
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Appendix A

The first result we record here is a useful version of the classicaNeumann minimax theorem.

Theorem 22 Let f: 4 x B — R where4 is a compact convex subset of a Hausdorff topological
vector spaceX and B is a convex subset of a vector spaxelf the function x— f(x,y) is convex
and lower semi-continuous for evergyB and y— f(x,y) is concave for every & 4 then we have
that

min{sup{f(x,y) :y € B} :xe 4} =sup{inf{f(x,y) : xe 4} :y e B} (35)

Theorem 23 Let f: 4 x B — R where 4 is a closed convex subset of a Hausdorff topological
vector spaceX and B is a convex subset of a vector spagelf the function x— f(x,y) is convex
and lower semi-continuous for everygyB, y+— f(X,y) is concave for every & 4 and there exists

a Yo € B such that for allA € R the set

{x:xe A4, f(x,yo) <A}
is compact then there is ap x 4 such that
sup{f(xo,y) :y € B} =sup(inf{f(x,y) :xe 4} :y € B}
in particular, (35) holds

Theorem 22 is subsumed by Theorem 23 whose proof can be foundibin(AL982, Ch. 7). The
hypothesis of lower semi-continuity means, foraf R andy € B, that the se{x: x € 4, f(x,y) <
A} is a closed subset df.

The next result concerns differentiation of a “max” function. The iegrsve use comes from
(Micchelli, 1969). LetX be a topological vector space.dfis a continuous real-valued function on
X, we define its right derivative atc X in the directiony € X by the formula

d, (x,y) = lim g(x+ey) —9(x)

e—0t €

whenever it exists.
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Lemma 24 Let T a compact set and (& x) a real-valued function off” x X such that, for every
X € X G(-,x) is continuous orZ" and, for every t= 7, G(t,-) is convex onX. We define the real-
valued convex function g ok by the formula

g(x) :=max{G(t,x):te T}, xe X

and the set
M(x) :={t:te7T,G(t,x) =9g(X)}.

Then the right derivative of g in the directioreyX is given by

g, (x,y) =maxG, (t,xy) :t e M(x)}
where G_(t,x,y) is the right derivative of G with respect to its second argument in the diregtion
PROOF We first observe, for evetyc M(x) andA > 0, that

g(x+Ay) —g(x) S G(t,x+Ay) — G(t,X)
A - A

which, lettingh — 0™, implies thaty, (x,y) > G/, (t,x,y) and, so,

g, (x,y) > sup{G/ (t,x.y) : t € M(x)}.

To prove the reverse inequality we use the fact th&ti$f convex or0, «) andf (0) = 0 thenf (A) /A
is a nondecreasing function dt> 0. In particular, this is true for the function dfdefined, for every
X,y € X, as

g(x+Ay) —g(x)
X .
Consequently, we obtain, for eveky> 0 that

WAMZI) » 4. (xy).

Now, we define
G(t,x+Ay) —g(x)
A
and observe that, for eatl T, it is a nondecreasing function afoecause
G(t,X+)\y)*G(t,X) g(X)*G(t,X)

h(At) = 5 -=

Therefore, the se®, := {t € 7 : h(A,t) > d/, (x,y)} are nonempty, closed and nestedXor 0 and,
so, the compactness Gf implies that there existsta € (,.oA\, that is,

h(At) == L A>0

G(to,x+Ay) > Ad’, (x.y) +9(X), A>0.
Thus,to € M(x) andd’, (x,y) < G/, (to,X,Y). O

We now present the proof of Lemma 8 in an extended form. To this end, wedstny positive
number and let

coriKn::{K:K: %MK,—,)\ZZO,EGN”, )\5:1},
jE n Je n
Note thatco; K, = coky where K, = {Kj : j € Np}.
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Lemma 25 If &, = {Kj: j € Npn} is a family of kernels oiX x X and fe @jc, Hk;, and s= ri—rl

then
1
inf{fK:Kecq%}min{< |fj||s> f= % fj,fge}&,,feNn}.
j€Nnp j€Nn

PrROOF The first step is to appeal to a result of Aronszajn, (see Aronsz@§i), p. 352-3), which
states that for any < @jeNn}&j we have foK = ¥ jcn, AjKj, with A, > 0, £ € Nj, that

: I£i11%
Ik = min St = Y f fre M LeNg b
j;n Aj j;n 1

Thus, the lemma follows from the following fact.

Lemma 26 Ifr >0, p:=1+%,and{a;: j € N} C Rthen

ajg)% , 5
min — | A >0,/€ Ny, AN<1) = ERE
JEZln)\J jeNp J J;n

and the equality occurs fd¥ e, [aj| > O at

jay |71

Aj = — (36)
(ZjeNn ’aj|”_l)

PROOF.  This fact follows from Hblder inequality. To this end, we let=r +1 so that% +% =1
and, so, we have that

2r

ENE

2
}% ‘aj]q = :; T
j€NR jen)\j‘

r
q
)\J

INA
Y T
oM
> | o
2B aly
\/
ol
—
™M
>
N——
Q-

b\ 2\
<J-§Nnrj) (%f") S(%ﬁ) '

For the choice (36) equality holds above, thereby completing the proof. O

The proof of Lemma 25 is completed. O
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