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Abstract
We study the problem of finding an optimal kernel from a prescribed convex set of kernelsK for
learning a real-valued function by regularization. We establish for a wide variety of regularization
functionals that this leads to a convex optimization problem and, for square loss regularization, we
characterize the solution of this problem. We show that, althoughK may be an uncountable set, the
optimal kernel is always obtained as a convex combination ofat mostm+2 basic kernels, wherem
is the number of data examples. In particular, our results apply to learning the optimal radial kernel
or the optimal dot product kernel.

1. Introduction

A widely used approach to estimate a function from empirical data consists in minimizing a regu-
larization functional in a Hilbert spaceH of real–valued functionsf : X → IR, whereX is a set.
Specifically, regularization estimatesf as aminimizerof the functional

Q(Ix( f ))+µΩ( f )

whereµ is a positive parameter,Ix( f ) = ( f (x j) : j ∈ INm) is thevectorof values of f on theset
x = {x j : j ∈ INm} and INm = {1, . . . ,m}. This functional trades offempirical error, measured by the
functionQ : IRm → IR+, with smoothnessof the solution, measured by the functionalΩ : H → IR+.
The empirical error depends upon a finite set{(x j ,y j) : j ∈ INm} ⊂ X × IR of input-output examples
and the functionQ depends ony but we suppress it in our notation since it is fixed throughout our
discussion. In particular, one often considers the case thatQ is defined, forv = (v j : j ∈ INm) ∈ IRm,
asQ(v) = ∑ j∈INm

V(v j ,y j) whereV : IR× IR → IR+ is a prescribedloss function.
In this paper we assume thatH is a reproducing kernel Hilbert space(RKHS) HK with kernel

K and chooseΩ( f ) = 〈 f , f 〉, where〈·, ·〉 is the inner product inHK , although some of the ideas we
develop may be relevant in other circumstances. This leads us to study the variational problem

Qµ(K) := inf
{

Q(Ix( f ))+µ〈 f , f 〉 : f ∈ HK
}

. (1)
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We recall that an RKHS is a Hilbert space of real-valued functions everywhere defined onX such
that, for everyx∈ X , the point evaluation functional defined, forf ∈ H , by Lx( f ) := f (x) is con-
tinuous onH (Aronszajn, 1950). This implies thatH admits a reproducing kernelK : X ×X → IR
such that, for everyx∈ X , K(x, ·) ∈ H and f (x) = 〈 f ,K(x, ·)〉. In particular, forx, t ∈ X , K(x, t) =
〈K(x, ·),K(t, ·)〉 implying that them×mmatrixKx := (K(xi ,x j) : i, j ∈ INm) is symmetric and posi-
tive semi-definite foranyset of inputsx ⊆ X .

Often RKHS’s are introduced through the notion offeature mapΦ : X → W , whereW is a
Hilbert space with inner product denoted by(·, ·). A feature map gives rise to the linear space of all
functions f : X → IR which are a linear combination of features whose norm is taken to be the norm
of its coefficients. That is, forw∈ W , f = (w,Φ) and〈 f , f 〉 = (w,w). This space is an RKHS with
kernelK defined, forx, t ∈ X , asK(x, t) = (Φ(x),Φ(t)). Using these equations, the regularization
functional in (1) can be rewritten as a functional ofw.

Regularization in an RKHS has a number of attractive features, including theavailability of
effective error bounds and stability analysis relative to perturbations ofthe data (see, for example,
Bousquet and Elisseeff, 2002; Cucker and Smale, 2002; Mukherjee et al., in press; Scovel and
Steinwart, 2004; Smale and Zhou, 2003; Vapnik, 1998; Ying and Zhou, 2004; Zhang, 2004; Zhou,
2002). Moreover, one can show that iff is a minimizer of the above functional it has the form

f (x) = ∑
j∈INm

c jK(x j ,x), x∈ X (2)

for some real vectorc= (c j : j ∈ INm) of coefficients (see, for example, De Vito et al., 2005; Girosi,
1998; Kimeldorf and Wahba, 1971; Micchelli and Pontil, 2005; Schölkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004). This result is known in Machine Learning astherepresenter theorem.
Although it is simple to prove, this result is remarkable as it makes the variationalproblem (1)
amenable for computations.

If Q is convex, the unique minimizer of problem (1) can be found by replacingf by the right
hand side of equation (2) in equation (1) and then optimizing with respect to thevector c. For
example, whenQ is the square error defined forv = (v j : j ∈ INm) ∈ IRm asQ(v) = ∑ j∈INm

(v j −y j)
2

the functional in the right hand side of (1) is a quadratic in the vectorc and its minimizer is obtained
by solving a linear system of equations.

Because of their simplicity and generality, kernels and associated RKHS’s play an increasingly
important role in Machine Learning, Pattern Recognition and their applications. This was initiated
with the introduction of support vector machines (see, for example, Vapnik, 1998), and continued
with the development of many other kernel-based learning algorithms (see, for example, Scḧolkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004, and referencestherein). As kernels can
be defined on any input space, kernel-based methods have been successfully applied to learning
functions defined on complex data structures, ranging from images, text data, speech data, biological
data, among others.

Despite this great success, there still remain important problems to be addressed concerning
kernel methods in Machine Learning. When the kernel is fixed, an immediate concern with problem
(1) is thechoice of the regularization parameter µ. This is typically solved by means of cross
validation or generalized cross validation (see, for example, Hastie, Tibshirani and Friedman, 2002;
Wahba, 1990) or by means of regularization path methods (see, for example, Bach, Thibaux and
Jordan, 2004; Hastie et al., 2004; Pontil and Verri, 1998). But, how is the kernel chosen? Indeed,
a challenging and central problem is thechoice of the kernelitself. As we said before, whenH
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is constructed as linear combinations of features associated to the kernelK, they can provide some
guideline for the choice of the kernel. Thus, the choice of the kernel is tiedto the problem of
choosing a representation of the input. This choice can make a significant difference in practice. For
example, techniques such as radial basis functions can perform poorlyif the parameter of the radial
kernel is not tuned to the given data. A similar circumstance occurs for translation invariant kernels
modeled by Gaussian mixtures. When the number of parameters is large crossvalidation encounters
severe computational limitations. To overcome this problem, easily computable approximations to
the leave-one-out error have been derived (Chapelle et al., 2002; Wahba, 1990). Nonetheless, these
methods are usually non-convex and may lead to undesirable local minima.

In this paper, we propose a method for finding a kernel function which belongs to acompact
andconvexsetK . Our method is based on the minimization of the functional in equation (1), that
is, we consider the variational problem

inf{Qµ(K) : K ∈ K }. (3)

This problem shares some similarities with recent progress in the context of kernel–based methods
(Bach, Lanckriet and Jordan, 2004; Bousquet and Herrmann, 2003; Cristianini et al., 2002; Grae-
pel, 2002; Lanckriet et al., 2002, 2004; Lee et al., 2004; Lin and Zhang, 2003; Herbster, 2001;
Ong, Smola and Williamson, 2003; Wu, Ying and Zhou, 2004; Zhang, Yeungand Kwok, 2004). In
particular, the third and fifth papers motivated our work. In contrast to thepoint of view of these
papers, our setting applies to convex combinations of kernels parameterized by a compact set, a cir-
cumstance which is relevant for applications. We also wish to emphasize that although we focus on
learning methods based on the minimization of the functional (1), the ideas whichwe present here
may prove useful for learning kernels or feature representations using different forms of regulariza-
tion such as entropy regularization (Jaakkola, Meila and Jebara, 1999), kernel density estimation
(see, for example, Vapnik, 1998), or one-class SVM (Tax and Duin, 1999) as well as in other Ma-
chine Learning frameworks such as those arising in Bayesian learning where a kernel is seen as the
covariance of a Gaussian process, (see, for example, Wahba, 1990; Williams and Rasmussen, 1996)
or in online learning, (see, for example, Herbster, 2001).

In Section 2 we establish the existence of a solution to problem (3), show thatthe functionalQµ

is convexin K, and observe that, althoughK may be an uncountable set, the optimal kernel is always
obtained as a convex combination of at mostm+2 basic kernels (see below), wherem is the number
of training data. The simplest case of our setup is a set of convex combinations of finitely many
kernels{K j : j ∈ INn}. For example eachK j could be a Gaussian, a polynomial kernel, or simply
a kernel consisting of only one feature. In all of these cases our method will seek the optimal
convex combination of these kernels. Another example included in our framework is learning the
optimal radial kernel or the optimal polynomial kernel in which case the space K is the convex
hull of a prescribed set of kernels parameterized by alocally compactset. In Section 3 we study
square loss regularization and provide improvements and simplifications of theresults in Section
2. In particular, we discuss the connection to minimal norm interpolation and establish necessary
and sufficient conditions for a kernel to be optimal. Finally, in Section 4 we comment on previous
work, present some numerical simulations based on our analysis and discuss some extensions of our
framework.
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2. Optimal Convex Combination of Kernels

Let X be a set. By akernelwe mean a symmetric functionK : X ×X → IR such that for every finite
set of inputsx = {x j : j ∈ INm} ⊆ X and everym∈ IN, them×mmatrixKx := (K(xi ,x j) : i, j ∈ INm)
is positive semi-definite. We letL(IRm) be the set ofm×m positive semi-definite matrices and
L+(IRm) the subset of positive definite ones. Also, we useA(X ) for the set of all kernels on the
setX andA+(X ) for the subset of kernelsK such that, for each inputx, Kx ∈ L+(IRm). We also
occasionally refer to the set ofall symmetricm×mmatrices and useS(IRm) to denote them.

According to Aronszajn and Moore (see Aronszajn, 1950), every kernel has associated to it an
(essentially)uniqueHilbert spaceHK with inner product〈·, ·〉 such thatK is its reproducing kernel.
This means that for everyf ∈ HK andx∈ X , 〈 f ,Kx〉 = f (x), whereKx is the functionK(x, ·).

Let D := {(x j ,y j) : j ∈ INm} ⊂ X × IR be prescribed data andy the vector(y j : j ∈ INm). For
each f ∈ HK , we introduce theinformation operator Ix( f ) := ( f (x j) : j ∈ INm) of values of f on
the setx := {x j : j ∈ INm}. We prescribe a nonnegative functionQ : IRm → IR+ and introduce the
regularization functional

Qµ( f ,K) := Q(Ix( f ))+µ‖ f‖2
K (4)

where‖ f‖2
K := 〈 f , f 〉, µ is a positive constant andQ depends ony but we suppress it in our no-

tation as it is fixed throughout our discussion. A noteworthy special caseof Qµ is thesquare loss
regularizationfunctional given by

Sµ( f ,K) := ‖y− Ix( f )‖2 +µ‖ f‖2
K (5)

where‖ · ‖ is the standard Euclidean norm on IRm. There are many other choices of the functional
Qµ which are important for applications, see the work of Vapnik (1998) for adiscussion.

Associated with the functionalQµ and the kernelK is the variational problem

Qµ(K) := inf{Qµ( f ,K) : f ∈ HK} (6)

which defines a functionQµ : A(X ) → IR+. We remark, in passing, that all of what we say about
problem (6) applies to functionsQ which are bounded from below on IRm as we can merely adjust
the expression (4) by a constant independent off andK. Let us first point out that the infimum in
(6) is achieved, at least whenQ is continuous.

Lemma 1 If Q : IRm → IR+ is continuous and µ is a positive number then the infimum in (6) is
achieved for a function inHK . Moreover, when Q is convex this function is unique.

PROOF. The proof of this fact is straightforward and usesweak compactnessof the unit ball in
HK . The uniqueness of the solution relies on the fact that whenQ is convexQµ is strictly convex
becauseµ is positive. �

The point of view of this paper is that the functional (6) can be used as adesign criterion to
select the kernel K. To this end, we specify an arbitrary convex subsetK of A(X ) and focus on the
problem

Qµ(K ) = inf{Qµ(K) : K ∈ K }. (7)

Recall that the solution of (6) is given in the formf = ∑ j∈INm
c jKx j for some vectorc := (c j : j ∈

INm), (see, for example, De Vito et al., 2005; Girosi, 1998; Kimeldorf and Wahba, 1971; Micchelli
and Pontil, 2005; Scḧolkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). Such a function
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representation for learning the functionf is central for many diverse applications of kernel-based
algorithms in Machine Learning. Moreover, the coefficient vectorc is found as the solution of the
finite dimensionalvariational problem

Qµ(K) := min{Q(Kxc)+µ(c,Kxc) : c∈ IRm}

where(·, ·) is the standard inner product on IRm.
Before we address basic questions concerning the variational problem(7) we describe some

terminology that allows for a precise description of our observations. Every input setx and set of
basic kernelsG on X ×X determines a set ofmatricesin L(IRm), namely

G(x) := {Gx : G∈ G}.

Obviously, it is the set of matricesK (x) that affects the variational problem (7). Note thatG(x)

being a subset ofS(IRm) is identifiable as a set of vectors in IRN, whereN := m(m+1)
2 . As suchG(x)

inherits the standard topology from IRN. That is, convergence of a sequence of matrices inG(x)
means that the respective elements of the matrices converge. For this reason, we useG (the closure
of G ) to mean the set of all kernelsK on X ×X with the property that for eachx ⊆ X , the matrix
Kx ∈ G(x), the closure ofG(x) relative to IRN. We say a set of kernelsG is closed provided that
G = G . Also, we sayG is a compact convex set of kernels whenever for eachx ⊆ X , G(x) is a
compact convex set of matrices inS(IRm). Our next result establishes the existence of the solution
to problem (7).

Lemma 2 If K is a compact and convex subset ofA+(X ) and Q: IRm → IR is continuous then the
minimum of (7) exists.

PROOF. Fix x⊆X , choose a minimizing sequence of kernels{Kn : n∈ IN}, that is, limn→∞ Qµ(Kn)=
Qµ(K ) and a sequence of vectors{cn : n∈ IN} such that

Qµ(K
n) = Q(Kn

x cn)+µ(cn,Kn
x cn).

SinceK is compact there is a subsequence{Kn(`) : ` ∈ IN} such that lim̀→∞ Kn(`)
x = K̃x, for some

kernelK̃ ∈ K . We claim that{cn : n∈ IN} is bounded. Indeed, there is a positive constantρ such
that(cn,Kn

x cn) ≤ ρ. Setan = cn

‖cn‖ so that(an,Kn
x an) ≤ ρ

‖cn‖2 and choose a convergent subsequence

{an(`(q)) : q∈ IN} such that limq→∞ an(`(q)) = a and‖a‖ = 1 for some vectora∈ IRm. If the sequence
{cn : n ∈ IN} is not bounded we conclude that(a, K̃xa) = 0 contradicting our hypothesis thatK̃ ∈
A+(X ). Hence there is a subsequence{cn(`(q)) : q∈ IN} such that limq→∞ cn(`(q)) = c, for somec∈ IRm.
Therefore, we conclude that

Qµ(K ) = Q(K̃xc)+µ(c, K̃xc) ≥ Qµ(K̃)

from which it follows thatQµ(K ) = Qµ(K̃). �

The proof of this lemma requires that all kernels inK are inA+(X ). If we wish to use kernelsK
only in A(X ) we may always modify them by addingany positive multiple of thedelta function
kernel∆ defined, forx, t ∈ X , as

∆(x, t) =

{

1, x = t
0, x 6= t

(8)
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that is, replaceK by K +a∆ wherea is a positive constant.
There are two useful cases of a setK of kernels which are compact and convex. The first is

formed by the convex hull of afinitenumber of kernels inA+(X ). The second example extends this
to a compact Hausdorff spaceΩ, (see, for example, Royden, 1988), and a mappingG : Ω → A+(X ).
For eachω ∈ Ω, the value of the kernelG(ω) at x, t ∈ X is denoted byG(ω)(x, t) and we assume
that the function ofω 7→ G(ω)(x, t) is continuous onΩ for eachx, t ∈ X . When this is the case we
sayG is continuous. We letM (Ω) be the set of allprobability measureson Ω and observe that

K (G) :=

{

Z

Ω
G(ω)dp(ω) : p∈ M (Ω)

}

(9)

is a compact and convex set of kernels inA+(X ). The compactness of the setK (G) is a consequence
of weak∗-compactness of the unit ball of the dual space ofC(Ω), the set of all continuous real-
valued functionsg on Ω with norm‖g‖Ω := max{|g(ω)| : ω ∈ Ω} (Royden, 1988). For example,
we chooseΩ = [a,b], wherea > 0 andG(ω)(x, t) = e−ω‖x−t‖2

, x, t ∈ IRd, ω ∈ Ω, to obtainradial
kernels, or G(ω)(x, t) = eω(x,t), x, t ∈ IRd to obtaindot product kernels. Note that the choiceΩ = INn

corresponds to our first example.
In preparation for the next theorem we need to express the setK (G) in an alternate form. We

have in mind the following basic fact.

Lemma 3 If Ω is a compact Hausdorff space, G: Ω → A+(X ) a continuous map as defined above
andG := {G(ω) : ω ∈ Ω} thenK (G) = coG .

PROOF. First, we shall show thatcoG ⊆ K (G). To this end, we letK ∈ coG andx ⊆ X . By
the definition of convex hull, we obtain, for some sequence of probability measures{p` : ` ∈ IN},
thatKx = lim`→∞

R

Ω Gx(ω)d p̀ (ω) where eachp` is afinite sum of point measures. Since for each
` ∈ IN,

R

Ω Gx(ω)d p̀ (ω) ∈ K (G) andK (G) is closed it follows thatKx ⊆ K (G), that is, we have
established thatcoG ⊆ K (G).

On the other hand, if there is a kernelK ∈ K (G) which does not belong tocoG then there is
an input setx such thatKx /∈ coG(x) while Kx =

R

Ω Gx(ω)dp(ω) for somep ∈ M (Ω). Hence,
there exists a hyperplane which separates the matrixKx from the set of matricescoG(x) (Royden,
1988). This means that there is a linear functionalL on S(IRm) andc∈ IR such thatL(Kx) > c but
L(Gx(ω)) < c for all ω ∈ Ω. We integrate the last inequality overω ∈ Ω relative to the measuredp
and conclude by the linearity ofL thatL(Kx) < c, a contradiction. This concludes the proof. �

Observe that the setG = {G(ω) : ω ∈ Ω} in the above lemma is compact sinceG is continuous
andΩ compact. In general, we wish to point out a useful fact about the kernels in coG whenever
G is acompactset of kernels. To this end, we recall a theorem of Caratheodory (see, for example,
Rockafellar, 1970, Ch. 17).

Theorem 4 If A is a subset ofIRn then every a∈ coA is a convex combination of at most n+ 1
elements of A.

An immediate consequence of the above theorem is the following fact which weshall use later.

Lemma 5 If A is a compact subset ofIRn thencoA is compact and every element in it is a convex
combination of at most n+1 elements of A.
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In particular, we have the following corollary.

Corollary 6 If G is a compact set of kernels onX × X then coG is a compact set of kernels.
Moreover, for each input setx a matrix C∈ coG(x) if and only if there exists a kernel T which is a

convex combination ofat mostm(m+1)
2 +1 kernels inG and Tx = C.

Our next result shows wheneverK is the closed convex hull of a compact set of kernelsG that
the optimal kernel lies in a the convex hull of somefinitesubset ofG .

Theorem 7 If G ⊆ A+(X ) is a compact set of basic kernels,K = coG , Q : IRm→ IR+ is continuous
and µ is a positive number then there existsT ⊆ G containing at most m+2 basic kernels such that
Qµ admit a minimizerK̃ ∈ coT and Qµ(T ) = Qµ(K ).

PROOF. Let (ĉ, K̂) ∈ IRm×K be a minimizer ofQµ, that is, we have that

Qµ(K ) = min{Q(K̂xc)+µ(c, K̂xc) : c∈ IRm} = Q(K̂xĉ)+µ(ĉ, K̂xĉ).

We define the set of vectorsU := {(Kxĉ,(ĉ,Kxĉ)) : K ∈ K } ⊂ IRm+1. Note thatU = coV where
V = {(Gxĉ,(ĉ,Gxĉ)) : G ∈ G} andV is compact sinceG is compact. By Lemma 5 the vector
(K̂xĉ,(ĉ,Kxĉ)) can be written as a convex combination of at mostm+2 vectors inV , that is

(K̂xĉ,(ĉ, K̂xĉ)) = (K̃xĉ,(ĉ, K̃xĉ))

whereK̃ is the convex combination of at mostm+2 kernels inG . Consequently, we have that

Qµ(K ) = Q(K̃xĉ)+µ(ĉ, K̃x, ĉ)

≥ min{Q(K̃xc)+µ(c, K̃xc) : c∈ IRm}

= Qµ(K̃) ≥ Qµ(K )

implying thatQµ(K̂) = Qµ(K̃). �

Note that Theorem 7 asserts theexistenceof aq which isat most m+2, that is, an optimal kernel
is expressed by a convex combination of at mostm+2 kernels.

Note that in the definition ofQµ(K ) we minimize first overf ∈ HK and then overK ∈ K . There
arises the question of what would happen if we interchange these minima. We address this issue
in the case thatK is the convex hull of a finite set of kernels. To this end, we use the notation
L

j∈INn
HK j for the direct sum of the Hilbert spaces{HK j : j ∈ INn}.

Lemma 8 If Kn = {K j : j ∈ INn} is a family of kernels onX ×X and f ∈ L

j∈INn
HK j then

inf{‖ f‖K : K ∈ coKn} = min

{

∑
j∈INn

‖ f j‖K j : f = ∑
j∈INn

f j , f` ∈ HK` , ` ∈ INn

}

. (10)
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As the result is not needed in our subsequent analysis we postpone its proof to the appendix (for
related results, see also, Herbster, 2004; Lin and Zhang, 2003). We note that the expression on the
right hand side of equation (10) is anintermediatenorm for

L

j∈INn
HK j (see Bennett and Sharpley,

1988, p. 97) for a discussion. This lemma suggests a reformulation of our extremal problem (7)
for kernels of the form (9) whereG is expressed in terms of a feature map. Although this fact is
interesting, it is not central to our point of view in this paper and, so, we describe it in the appendix.

Next, we establish that the variational problem (7) is aconvex optimization problem. Specif-
ically, we shall show that if the function mappingQ : IRm → IR is convex then the functional
Qµ : A+(K ) → IR+ is a convex as well. It is curious that this does not seem to follow directly
from thedefinitionof Qµ. We take a sojourn through the notion ofconjugate function. Recall that
the conjugate function ofQ denoted byQ∗ : IRm → IR is defined, for everyv∈ IRm, as

Q∗(v) = sup{(c,v)−Q(c) : c∈ IRm}

and it follows, for everyc∈ IRm, that

Q(c) = sup{(c,v)−Q∗(v) : v∈ IRm}

(see, for example, Rockafellar, 1970; Borwein and Lewis, 2000). A nice recent application of the
conjugate function to linear statistical models appears in (Zhang, 2002).

The proof we present below for the convexity ofQµ : A+(X ) → IR+ is based upon the von
Neumann minimax theorem which we record in the appendix. We begin by introducing for each
r > 0 a functionφr : IR+ → IR+ defined, fort ∈ IR+, as

φr(t) := µ(
1
2µ

√
t − r)2

+− 1
4µ

t

where(z)+ := max(0,z). Note that

lim
r→∞

φr(t) = − 1
4µ

t

pointwise fort > 0. Also, for each fixedt > 0, φr(t) is a non-increasing function ofr and, for each
r > 0, φr is continuously differentiable, decreasing and convex on IR+.

Lemma 9 If K ∈ A(X ), x a set of m distinct points ofX such that Kx ∈ L+(IRm) and Q: IRm → IR
a convex function, then there exists r0 > 0 such that for all r> r0 there holds the formula

Qµ(K) = sup{φr((v,Kxv))−Q∗(v) : v∈ IRm} . (11)

PROOF. By the definition ofQµ we have that

Qµ(K) = min{sup{(Kxc,v)−Q∗(v)+µ(c,Kxc) : v∈ IRm} : c∈ IRm}.

According to Lemma 2 the minimum above exists. Therefore, there is ar0 > 0 such that for all
r > r0 we have that

Qµ(K) = min{sup{(Kxc,v)−Q∗(v)+µ(c,Kxc) : v∈ IRm} : c∈ IRm,(c,Kxc) ≤ r2}.
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By the minimax theorem, see Theorem 22 in the appendix, we conclude that

Qµ(K) = sup{min{(Kxc,v)−Q∗(v)+µ(c,Kxc) : c∈ IRm,(c,Kxc) ≤ r2} : v∈ IRm}.

For eachv∈ IRm, we shall now explicitly compute the minimum of the above expression. To this
end, we letKx := B2 whereB is am×m positive definite matrix, that is,B is the square root ofKx,
and observe that

min{(c,Kxv)+µ(c,Kxc) : (c,Kxc) ≤ r2} = min{µ‖Bc+
1
2µ

Bv‖2− 1
4µ

‖Bv‖2 : ‖Bc‖ ≤ r}.

If the vectorc0 := − 1
2µv has the property that‖Bc0‖ ≤ r, that is,‖Bv‖ ≤ 2µr then the minimum

above is− 1
4µ‖Bv‖2, otherwise‖Bv‖ > 2µr and the triangle inequality says that

‖Bc+
1
2µ

Bv‖ ≥ 1
2µ

‖Bv‖−‖Bc‖ ≥ 1
2µ

‖Bv‖− r.

Since, for the vector ˆc := − vr
‖Bv‖ , we have that

‖Bĉ+
1
2µ

Bv‖ =
1
2µ

‖Bv‖− r

this inequality is sharp. Therefore, we get that

Qµ(K) = sup

{

µ(
1
2µ

‖Bv‖− r)2
+− 1

4µ
‖Bv‖2−Q∗(v) : v∈ IRm

}

and the result follows by the definition ofφr . �

Let us specialize this lemma to the example of the square lossSdefined, forw∈ IRm, asS(w) =
‖y−w‖2. In this case, the conjugate function is given explicitly forv∈ IRm as

S∗(v) = max{(w,v)−‖w−y‖2 : w∈ IRm} =
1
4
‖v‖2 +(y,v).

We shall show later in Lemma 14 by adirectcomputationwithoutthe use of the conjugate function
thatSµ = µ(y,(Kx +µI)−1y). Alternatively, if we formally letr = ∞ in the right hand side of equation
(11) we get

sup

{

− 1
4µ

(v,(Kx +µI)v)− (y,v) : v∈ IRm
}

which by a direct computation equalsµ(y,(Kx + µI)−1y). This suggests that Lemma 9 may even
hold whenr = ∞ and without the hypothesis thatKx ∈ L+(IRm). We shall confirm this with another
version of the von Neumann minimax theorem.

Lemma 10 If K ∈ A(X ), x a set of m distinct points ofX such that Kx ∈ L+(IRm) and Q: IRm→ IR
a convex function, then there holds the formula

Qµ(K) = sup

{

− 1
4µ

(v,Kxv)−Q∗(v) : v∈ IRm
}

.
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PROOF. Theorem 23 applies sinceKx ∈ L+(IRm). Indeed, we letf (c,v) = (Kxc,v)−Q∗(v) +
µ(c,Kxc), A = B = IRm andv0 = 0 then the set{c : c ∈ IRm, f (c,v0) ≤ λ} is compact and all the
hypotheses of Theorem 23 hold. Hence, we may proceed as in the proofof Lemma 9 withr = ∞.

�

To interpret Lemma 9, we say thatA � B wheneverA,B ∈ L(IRm), if B−A is positive semi-
definite. We also say, forK,J ∈ A(X ), thatK � J if Kx � Jx for everyx ⊆ X .

Definition 11 A functionφ : B → IR is said non–decreasing onB ⊆ A(X ) if, for every A,B ∈ B
with A� B it follows thatφ(A) ≤ φ(B). If the reverse inequality holds we sayφ is non–increasing.

Definition 12 A functionφ : B → IR is said convex onB ⊆A(X ) if, for every A,B∈B andλ∈ [0,1]
there holds the inequality

φ(λA+(1−λ)B) ≤ λφ(A)+(1−λ)φ(B). (12)

If the reverse of inequality (12) holds we say that theφ is concave.

Proposition 13 If Q : IRm → IR+ is convex then for every µ> 0 the function Qµ : A+(X ) → IR+ is
convex and non-increasing.

PROOF. The proof of the proposition follows from Lemma 9. Specifically, equation (11) expresses
Qµ as the supremum of a family of functions which are convex and non-increasing onA(X ).

�

We note that the convexity of the functionQµ was already proven by Lanckriet et al. (2004)
for the hinge loss and stated in (Ong, Smola and Williamson, 2003) for differentiable convex loss
functions.

3. Square Regularization

In this section we exclusively study the case of the square loss regularization functionalSµ in equa-
tion (5) and provide improvements and simplifications of our previous results.We begin by deter-
mining theexplicitexpression for this functional which we briefly mentioned earlier after the proof
of Lemma 9.

Lemma 14 For any kernel K, inputsx := {x j : j ∈ INm}, samples y= (y j : j ∈ INm) and positive
constant µ we have that

Sµ(K) = µ(y,(µI +Kx)
−1y) (13)

where I is the m×m identity matrix.

PROOF. We have thatSµ(K) = min{R(c) : c∈ IRm} where for eachc∈ IRm we setR(c) := ‖y−
Kxc‖2 +µ(c,Kxc). We define the vectorw := (µI +Kx)

−1y, observe thatR(w) = (y,µ(µI +Kx)
−1y)

and for every vectorc∈ IRm we have that

R(c) = R(w)+‖Kx(w−c)‖2 +µ(c−w,Kx(c−w)).

With this formula the result follows. �
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From this lemma we conclude, when the matrixKx is in L+(IRm) then limµ→0µ−1Sµ(K) = γ(Kx),
where for everyA ∈ L+(IRm) we setγ(A) := (y,A−1y). The functionγ : L+(IRm) → IR+ has the
alternate form

1
γ(A)

:= min{(c,Ac) : c∈ IRm,(c,y) = 1}, A∈ L+(IRm) (14)

and the unique vector which achieves this minimum is given by

c(A) :=
A−1y

(y,A−1y)
. (15)

A proof of these facts follow directly from the Cauchy-Schwarz inequalityfor the inner product
(u,Av), u,v ∈ IRm. Moreover, this alternate form forγ(A) connects the functionγ to theminimal
norm interpolantin HK to the dataD. Let us explain this connection next.

Recall, for every kernelK on X ×X , that the minimal norm interpolation to the dataD is the
solution to the variational problem

ρ(K) := min{‖ f‖2
K : f ∈ HK , f (x j) = y j , j ∈ INm}. (16)

The following result is well-known (for a proof see, for example, Micchelli and Pontil, 2005).

Proposition 15 If K ∈ A(X ) andx is an input set inX such that the matrix Kx is in L+(IRm) then
the solution of the minimal norm interpolation problem (16) is unique and is given by

f = ∑
j∈INm

c jK(x j , ·)

where the coefficient vector c= (c j : j ∈ INm) solves the linear system of equations Kxc = y and we
have that

ρ(K) = γ(Kx) = (y,K−1
x y). (17)

The functionγ : L+(IRm) → IR+ is continuous. We record additional facts about this function in
the next two lemmas.

Lemma 16 The functionγ is non–increasing and whenever A,B∈ L+(IRm), γ(A) = γ(B) if and only
if A−1y = B−1y.

PROOF. If A� B then for everyc∈ IRm, (c,Ac) ≤ (c,Bc) and it follows that 1
γ(A) ≤

1
γ(B) . Clearly

A−1y = B−1y implies thatγ(A) = γ(B). On the other hand ifγ(A) = γ(B), the inequalities 1
γ(A) ≤

(c(B),Ac(B)) ≤ (c(B),Bc(B)) = 1
γ(B) imply thatc(A) = c(B) and the result follows. �

Lemma 17 The functionγ is convex and the functionγ−1 concave. Moreover, for every A,B ∈
L+(IRm), λ ∈ [0,1], we have that

1
γ(λA+(1−λ)B)

= λ
1

γ(A)
+(1−λ)

1
γ(B)

(18)

if and only if c(A) = c(B) = c(λA+(1−λ)B).
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PROOF. For everyλ ∈ [0,1] we define the matrixDλ = λA+(1−λ)B and for allc∈ IRm for which
(c,y) = 1 note that

(c,Dλc) = λ(c,Ac)+(1−λ)(c,Bc) ≥ λ
1

γ(A)
+(1−λ)

1
γ(B)

. (19)

Consequently, we have that1γ(Dλ) ≥ λ 1
γ(A) +(1−λ) 1

γ(B) , showing thatγ−1 is concave. Alternatively,

equation (14) expressesγ−1(A) as the minimum of a family of functions which are linear in the
matrixA and henceγ−1 is concave. Similarly, using this equation we have that

γ(A) = max
{

(c,Ac)−1 : c∈ IRm,(c,y) = 1
}

thereby expressingγ as a maximum of a family of convex functions.
If (18) holds, we choosec = cλ := c(Dλ) in (19) and conclude by the uniqueness of the vector

c(A) in equation (15) thatcλ = c(A) = c(B). Conversely, when this conclusion holds we have that

1
γ(Dλ)

= λ(cλ,Acλ)+(1−λ)(cλ,Bcλ)

= λ(c(A),Ac(A))+(1−λ)(c(B),Bc(B))

= λ
1

γ(A)
+(1−λ)

1
γ(B)

which concludes the proof. �

Lemma 16 and 17 established that the functionφ : L+(IRm) → IR defined, for somed ∈ IRm and
all A∈ L+(IRm), asφ(A) = (d,A−1d) is non-increasing and convex (see also the work of Marshall
and Olkin, 1979).

Proposition 15 and Lemma 14 connects minimal norm interpolation to square loss regulariza-
tion. This connection allows us in this section to turn our attention to the functionρ : A(X ) → IR+

and consider the variational problem

ρ(K ) := inf{ρ(K) : K ∈ K } (20)

whereK is a prescribed set of kernels. The approach of Lemma 2 applies directly toestablish the
following lemma.

Lemma 18 If K is a compact and convex set of kernels inA+(X ) then the minimum of (20) exists.

Our next result describes the solution of the problem of determiningρ(K ) for the case that
K = coKn whereKn = {K` : ` ∈ INn} is a prescribed finite subset ofA+(X ). In its presentation we
use the notionKx,` for the matrix(K`)x.

Theorem 19 If Kn = {K j : j ∈ INn} ⊂ A+(X ) there exists a kernel̂K = ∑ j∈J λ jK j ∈ coKn, where
J ⊆ INn, card(J) ≤ min(m+1,n) with ∑ j∈J λ j = 1 such that, for every j∈ J, λ j > 0,

(ĉ,Kx, j ĉ) = max{(ĉ,Kx,`ĉ) : ` ∈ INn}, ĉ = c(K̂x),

ρ(K ) = ρ(K̂) = (y, K̂−1
x y)
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and for every c∈ IRm with (c,y) = 1 and every K∈ coKn

(ĉ,Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc). (21)

Inequality (21) expresses the fact that the pair(ĉ, K̂) is asaddle pointfor the minimax problem

ρ̃−1 = min{max{(c,Kxc) : K ∈ coKn} : c∈ IRm,(c,y) = 1} .

The existence of(ĉ, K̂) above implies that the minimum and maximum can be interchanged, that is,

max{min{(c,Kxc) : c∈ IRm,(c,y) = 1} : K ∈ coKn} (22)

= min{max{(c,Kxc) : K ∈ coKn} : c∈ IRm,(c,y) = 1} . (23)

Moreover,anyĉ andK̂ with the properties described in Theorem 19 is a saddle point of this minimax
problem. Indeed, the upper bound in (21) follows from the definition of thevectorĉ and the function
γ defined earlier, see equations (14) and (15). The lower bound followsfrom the fact that for any
K ∈ coKn we have that(ĉ,Kxĉ) ≤ max{(ĉ,Kx,`ĉ) : ` ∈ INn}.

Let us now turn to the existence ofK̂. Note that by equation (14) and Proposition 15 the expres-
sion in (22) is 1/ρ(K ), the reciprocal of the quantity of interest to us. It is the quantity in equation
(23) which we examine in the proof of Theorem 19 and it has been denotedby ρ̃−1. A consequence
of Theorem 19 is that̃ρ = ρ(K ). Certainly, by their definitions it is clear thatρ̃ ≤ ρ(K ).

We now present the proof of Theorem 19.

PROOF. Let c̃ be a solution to problem (23). We define the set

J∗ ≡ J(c̃) :=
{

j : j ∈ INn,(c̃,Kx, j c̃) = max{(c̃,Kx,i c̃) : i ∈ INn}
}

the convex functionϕ : IRm → IR by setting for eachc∈ IRm, ϕ(c) := max{(c,Kx, jc) : j ∈ INn} and
note that by Lemma 24 the directional derivative ofϕ along the “direction”d ∈ IRm, denoted by
ϕ′

+(c;d), is given by
ϕ′

+(c;d) = 2max{(d,Kx, jc) : j ∈ J(c)}.
Sincec̃ is a minimum for (14) we have that

max{(d,Kx, j c̃) : j ∈ J∗} ≥ 0

for everyd ∈ IRm such that(d,y) = 0. LetM be the convex hull of the set of vectorsN := {Kx, j c̃ :
j ∈ J∗} ⊂ IRm. SinceM ⊆ IRm, by the Caratheodory theorem (see, for example, Rockafellar, 1970,
Ch. 17) every vector inM can be expressed as a convex combination of at mostq := min(m+
1, |J∗|) ≤ min(m+ 1,n) elements ofN . We will show thatM intersects the line spanned by the
vectory. Indeed, if these two sets did not intersect then there exists a hyperplane{c : c∈ IRm,(w,c)+
α = 0}, whereα ∈ IR, w∈ IRm, which strictly separates them, that is,

(w, ty)+α > 0, t ∈ IR

and
(w,Kx, j c̃)+α < 0, j ∈ J∗, (24)
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(see, for example, Royden, 1988).
The first condition, fort = 0, implies thatα > 0 and sincet can take any real value we also have

that(w,y) = 0. Consequently, from equation (24) we get that

max{(w,Kx, j c̃) : j ∈ J∗} < 0

which contradicts our hypothesis that ˜c is a minimum. Thus, it must be the case thatt0y∈ M for
somet0 ∈ IR, that is,

t0y = ∑
j∈J

γ jKx, j c̃ (25)

for some subsetJ of J∗ of cardinality at mostq and positive constantsγ j with ∑ j∈J γ j = 1. Taking
the inner product of both sides of equation (25) with ˜c, and recalling the fact that(c̃,y) = 1 we
obtain thatt0 = ρ̃−1. Setting

K̂ := ∑
j∈J

γ jK j

we have from (25) that ˜c = ρ̃−1K̂−1
x y, andρ̃ = (y, K̂−1

x y). Therefore, by Proposition 15 we conclude
thatρ̃ = ρ(K̂) andc̃= ĉ whereĉ is defined in the theorem. In particular, we obtainρ̃ ≥ ρ(K ) and so
by our previous remarks just before the beginning of the proof, we conclude that̃ρ = ρ(K ). �

Recall, that earlier we introduced the classK (G) induced by a continuous mappingG : Ω →
A+(X ) whereΩ is a compact Hausdorff space. Theorem 15 extends to this generality. Noessential
difference occur in the proof. However, the conclusion is striking. Notonly do we characterize the
optimal kernelK̂ ∈ K (G) but we show that it comes from adiscreteprobability measure ˆp∈ M (Ω)
with at most m+1 atoms, that is,K̂ =

R

Ω G(ω)dp̂(ω).

Theorem 20 If Ω is a compact Hausdorff topological space and G: Ω→A+(X ) is continuous then
there exists a kernel̂K =

R

Ω G(ω)dp̂(ω) ∈ K (G) such thatp̂ is a discrete probability measure in
M (Ω) with at most m+1 atoms. Moreover, for any atom̂ω ∈ Ω of p̂, we have that

(ĉ,Gx(ω̂)ĉ) = max{(ĉ,Gx(ω)ĉ) : ω ∈ Ω}, ĉ = c(K̂x),

ρ(K ) = ρ(K̂) = (y, K̂−1
x y)

and for every c∈ IRm with (c,y) = 1 and every K∈ K (G)

(ĉ,Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc).

PROOF. Let c̃ be a solution to problem (23) wherecoKn is replaced byK (G) and define the set

Ω∗ ≡ Ω(c̃) := {τ : τ ∈ Ω,(c̃,Gx(τ)c̃) = max{(c̃,Gx(ω)c̃) : ω ∈ Ω}} .

where we denoted the matrix(G(ω))x by Gx(ω). We define the convex functionϕ : IRm → IR
by setting for eachc ∈ IRm, ϕ(c) := max{(c,Gx(ω)c) : ω ∈ Ω} and note that by Lemma 24 the
directional derivative ofϕ along the “direction”d ∈ IRm, denoted byϕ′

+(c;d), is given by

ϕ′
+(c;d) = 2max{(d,Gx(ω)c) : ω ∈ Ω∗}.

Sincec̃ is a minimum for (14) we have that

max{(d,Gx(ω)c̃) : ω ∈ Ω(c)} ≥ 0
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for everyd∈ IRm such that(d,y) = 0. LetM be the convex hull of the set of vectorsN := {Gx(ω)c̃ :
ω ∈ Ω∗} ⊂ IRm. SinceM ⊆ IRm, by the Caratheodory theorem every vector inM can be expressed
as a convex combination of at mostm+1 elements ofN . We will show thatM intersects the line
spanned by the vectory. Indeed, if these two sets did not intersect then there exist a hyperplane
(w,c)+α = 0, α ∈ IR, w∈ IRm, which strictly separates them, that is,

(w, ty)+α > 0, t ∈ IR

and
(w,Gx(ω)c̃)+α < 0, ω ∈ Ω∗, (26)

(see Royden, 1988).
The first condition, fort = 0, implies thatα > 0 and sincet can take any real value we also have

that(w,y) = 0. Consequently, from equation (26) we get that

max{(w,Gx(ω)c̃) : ω ∈ Ω∗} < 0.

which contradicts our hypothesis that ˜c is a minimum. Thus, it must be the case thatt0y∈ M for
somet0 ∈ IR, that is,

t0y =
Z

Ω
Gx(ω)c̃dp̂(ω) (27)

where p̂ ∈ M (Ω) is a discrete probability measure with at mostm+ 1 atoms. Taking the inner
product of both sides of equation (27) with ˜c, and recalling the fact that(c̃,y) = 1 we obtain that
t0 = ρ̃−1. Setting

K̂ :=
Z

Ω
Gx(ω)dp̂(ω)

we have from (27) that ˜c = ρ̃−1K̂−1y, andρ̃ = (y, K̂−1y). Therefore, by Proposition 15 we conclude
that ρ̃ = ρ(K̂) andc̃ = ĉ whereĉ is defined in the theorem. In particular, we obtainρ̃ ≥ ρ(K ) and
so by our previous remarks we conclude thatρ̃0 = ρ(K ). �

This theorem applies to the Gaussian kernel.

Corollary 21 If a > 0 and N: [a,b] → A+(X ) is defined as

N(ω)(x, t) = e−ω‖x−t‖2
, x, t ∈ IRd, ω ∈ IR+

then there exists a kernelK̂ =
R

Ω N(ω)dp̂(ω) ∈ K (N) such thatp̂ is a discrete probability measure
in M (Ω) with at most m+1 atoms. Moreover, for any atom̂ω ∈ Ω of p̂, we have that

(ĉ,Nx(ω̂)ĉ) = max{(ĉ,Nx(ω)ĉ) : ω ∈ Ω}, ĉ = c(K̂x),

ρ(K (N)) = ρ(K̂) = (y, K̂−1
x y)

and for every c∈ IRm and K∈ K (N) we have that

(ĉ,Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc).
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We note that, in view of equations (13) and (17), Theorem 19 and Theorem 20 apply directly, up to
an unimportant constantµ, to the square loss functional by merely adding the kernelµ∆ to the class
of kernels considered in these theorems. That is, we minimize the quantity in equation (17) over the
compact convex set of kernels

K̃ = {K̃ : K̃ = K +µ∆, K ∈ K }

where the kernel∆ is defined in equation (8).
An important example of the above construction is to chooseK j to be polynomials on IRd,

namelyK j(x, t) = (x, t) j , x, t ∈ IRd. From a practical point of view we should limit the range of the
index j and therefore Theorem 19 adequately covers this case. On the contrary if we decide to use,
as it is done often, Gaussians, there arises not only how many Gaussiansto choose but also which
ones to choose. This raises the question of looking at thewhole class of radial basis functions
and trying to choose the best kernel amongst this class. To this end, we recall a beautiful result
of Schoenberg (1938). Letϕ be a real–valued function defined on IR+ which we normalize so that
ϕ(0) = 1. We form a kernelK on IRd by setting for eachx, t ∈ IRd K(x, t) = ϕ(‖x−t‖2). Schoenberg
showed thatK is positive definite forany d if and only if there is a probability measurep on IR+

such that

K(x, t) =
Z

IR+

e−σ‖x−t‖2
dp(σ), x, t ∈ IRd.

Note that the set IR+ is not compact and the kernelN(0) is not in A+(IRd). Therefore, on both
accounts Theorem 20 does not apply in this circumstance unless, of course, we impose a positive
lower bound and a finite upper bound on the variance of the Gaussian kernels N(ω). We may
overcome this difficulty by a limiting process which can handle kernel maps onlocally compact
Hausdorff spaces. This will lead us to an extension of Theorem 20 where Ω is locally compact.
However, we only describe our approach in detail for the Gaussian case andΩ = IR+. An important
ingredient in this discussion presented below is thatN(∞) = ∆.

For every` ∈ IN we consider the Gaussian kernel map on the intervalΩ` := [`−1, `] and appeal
to Theorem 20 to produce a sequence of kernelsK̂` =

R

Ω`
N(ω)d p̀ (ω) with the properties described

there. In particular,p` is a discrete probability measure with at mostm+1 atoms, a numberinde-
pendentof `. Let us examine that may happen as` tends towards infinity. Each of the atoms ofp`

as well their corresponding weights have subsequences which converge. Some atoms may converge
to zero while others to infinity. In either case, the Gaussian kernel mapapproaches a limit. There-
fore, we can extract a convergent subsequence{pn` : ` ∈ IN} of probability measures and kernels
{Kn` : `∈ IN} such that lim̀→∞ pn` = p̂, lim`→∞ Kn` = K̂, andK̂ =

R

IR+
N(ω)p̂(ω) with the provision

that p̂ may have atoms at either zero of infinity. In either case, we replace the Gaussian by its limit,
namelyN(0), the identically one kernel, orN(∞), the delta kernel, in the integral which definesK̂.
All of the properties described in Theorem 20 and remarks following it hold for K̂ because of the
simplicity of the objective function for the minimax problem studied there. HenceK̂ is thebest
radial kernel.

4. Discussion

In this final section we comment on two recent papers related to ours, present some numerical
simulations and outline possible extensions of the ideas presented above.
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4.1 Related Works

Lanckriet et al. (2004) address learning kernels in the context of transductive learning, that is, learn-
ing the value of a function at a finite set of test points. In this case the kernel is computed only on
the training and test sets and, so, it is regarded as a matrix. The authors propose different criteria
to find a positive semi-definite kernel matrix and discuss how these can be casted as positive semi-
definite programming problems. For example, they maximize themarginof a binary support vector
machine (SVM) trained with the kernelK, which is the square root of the reciprocal of the quantity
defined by the equation

ρhard(K) = min
{

‖ f‖2
K : y j f (x j) ≥ 1, j ∈ INm

}

. (28)

wherey j ∈ {−1,1} are class labels, (see, for example, Vapnik, 1998). The margin is the maximum
distance of the closed point, relative to a set of labeled points, amongst all separating functions
in the RKHS. These functions are hyperplanes in the space spanned by the features associated to
a Mercer expansion of the kernelK. When the optimal separating hyperplane does not exist, the
standard approach is to relax the separation constraints in problem (28) toobtain the so-called soft
margin SVM,

ρso f t(K) := min

{

∑
j∈INm

ξ j +µ‖ f‖2
K : y j f (x j) ≥ 1−ξ j , ξ j ≥ 0, j ∈ INm, f ∈ HK

}

. (29)

These two problems are related. Indeed, if problem (28) admits a solution, that is, the constraints
are feasible, problem (29) gives the same solution provided the parameterµ is small enough.

Lanckriet et al. (2004) consider the minimization problem (29) whenK is a set of positive
semi-definite matrices which are linear combinations of some prescribed matricesK j , j ∈ INn. In
particular, ifK j are positive semi-definiteK could be the set of convex combination of such matri-
ces. They show thatρso f t(K) is convex inK ∈ K . Our observations in Section 2 confirm that the
margin and the soft margin are convex functions of the kernel. Indeed, problem (29) is equivalent
to the variational problem (1) whenQ is thehinge error functiondefined on IRm by

Q(w) := ∑
j∈INn

(1−y jw j)+, w := (w j : j ∈ INm)

wheret+ := max(0, t), t ∈ IR, (see, for example, Evgeniou, Pontil and Poggio, 2000).
Ong, Smola and Williamson (2003) consider learning a kernel function rather than a kernel

matrix. They choose a setK in the space of kernels which are in a Hilbert space of functions
generated by a so-called hyper-kernel. This is a kernelH : X 2 ×X 2 → IR, whereX 2 = X ×X ,
with the property that, for every(x, t) ∈ X 2, H((x, t),(·, ·)) is a kernel onX ×X . This construction
includes convex combinations of a possibly infinite number or kernels provided they arepointwise
nonnegative. For example Gaussian kernels or polynomial kernels with even degree satisfy this
assumption although those with odd degree, such as linear kernels or otherradial kernels do not.

4.2 Numerical Simulations

In this section we discuss two numerical simulations we carried out to compute a convex combina-
tion of a finite set of kernels{K` : `∈ INn} which minimizes the square loss regularization functional
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µ 10−4 10−3 10−2 0.1 1 10

Method 1 2.41 (1.04) 1.69 (0.68) 0.60 (0.11) 0.27 (0.08) 0.26 (0.05) 3.20 (0.48)
Method 2 1.54 (0.58) 0.91 (0.22) 0.47 (0.08) 0.40 (0.07) 0.61 (0.11) 3.80 (0.58)
Method 3 4.65 (7.81) 0.95 (1.24) 0.21 (0.06) 0.10 (0.05) 0.12 (0.08) 2.40 (0.60)

Table 1: Experiment 1: Average mean square error with its standard deviation (in parenthesis) for methods
1 to 3 for different values of the regularization parameterµ (see text for the description). The unit
measure for the errors is10−3.

Sµ in equation (5). For this purpose, we use an interior point method, that is, we define, for every
λ = (λ` : ` ∈ INn) ∈ IRn, the penalized function

Fν(λ) := Sµ

(

∑
`∈INn

λ`K`

)

−ν ∑
`∈INn

lnλ` (30)

whereν is a positive parameter and solve the variational problem

min

{

Fν(λ) : λ ∈ IRn, ∑
`∈INn

λ` = 1

}

. (31)

Clearly, whenν is small the solution to this problem is close to a minimizer ofSµ, although the
penalty term in (30) forces this solution to be interior to the set{λ : ∑`∈INn

λ` = 1, λ` ≥ 0, ` ∈ INn}.
In order to reach such a minimizer we choose an iteration numberR∈ IN and iteratively compute
the solution to problem (31) for a decreasing sequence of values of the parameterν. Specifically we
set, forr ∈ INR, νr = νAr−1 whereν is the initial value ofν andA∈ (0,1) is some prescribed pa-
rameter. The optimality conditions for problem (31) (see, for example, Rockafellar, 1970; Borwein
and Lewis, 2000) are given by the system ofnon-linearequations

∇Fν −ηe = 0

−(e,λ)+1 = 0

wheree is the vector in IRn all of whose components are one andη ∈ IR is the Lagrange multiplier
associated to the equality constraint in that problem. We solve these equationsby a Newton method
(see, for example, Mangasarian, 1994) which consists in iteratively solving the system oflinear
equations

∇2Fν(λ̂)∆λ −∆ηe = η̂e−∇Fν(λ̂)

−(e,∆λ) = 0

to obtain the vector∆λ ∈ IRm and∆η ∈ IR, whereλ̂ andη̂ are the previous values ofλ andη. We then
update the parameters asλ = λ̂ + α∆λ andη = η̂ + α∆η, where, in order to insure thatλ ∈ [0,1]n,
we have setα := min(1,0.5max{α > 0 : λ̂ + α∆λ ∈ [0,1]}). In our experiments below we choose
R= 5, ν = 10 andA = 0.5.

In both experiments we tried to learn a target functionf : [0,2π]→ IR from a set of its samples. In
the first experiment we fixedf (x) = 1

10(x+2(e−8( 4
3π−x)2 −e−8( π

2−x)2 −e−8( 3
2π−x)2

)), x∈ [0,2π], and,
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Figure 1: Experiment 1: function learned by method 1 (left), method 2 (center) and method 3 (right). Regu-
larization parameter isµ= 0.1, the number of training points is50. Solid line is the target function,
crosses are the sampled points and the dotted line is the method used. The vertical scale has been
reduce

µ 10−4 10−3 10−2 0.1 1 10

Method 1 3.46 (1.39) 3.46( 1.39) 3.45 (1.38) 3.35 (1.35) 2.64 (1.10) 14.1 (10.3)
Method 2 4.46 (1.82) 4.46 (1.79) 3.85 (1.18) 3.78 (1.03) 4.00 (1.02) 62.6 (5.11)
Method 3 0.52 (0.56) 0.51 (0.56) 0.51 (0.55) 0.51 (0.57) 0.53 (0.63) 3.51 (1.47)

Table 2: Experiment 2: Average mean square error with its standard deviation (in parenthesis) for methods
1 to 3 for different values of the regularization parameterµ (see text for the description). The unit
measure for the errors is10−3.

for everyx, t ∈ [0,2π], we setK`(x, t) = (xt)`−1 if `∈{1,2,3} andK`(x, t) = e−ω`(x−t)2
if `∈{4,5,6}

whereω` = 28−5(`−4). We generated a training set of fifty points{(x j ,y j) : j ∈ IN50} ⊂ [0,2π]× IR
obtained by samplingf with noise. Specifically, we choosex j uniformly distributed in the interval
[0,2π] andy j = f (x j) + ε with ε also uniformly sampled in the interval[−0.02,0.02]. We then
computed on a test set of 100 samples the mean square error between the target functionf and the
function learned from the training set for different values of the parameter µ. We compare three
methods.Method 1is our proposed approach,method 2is the average of the kernels, that is we use
the kernelK = 1

n ∑K` andmethod 3is the kernelK = K2 +K5, the “ideal” kernel, that is, the kernel
used to generate the target function. The results are shown in Table 1. Figure 1 shows the function
learned by each method.

In our second experiment we fixedf (x)= sin(x)+ 1
2sin(3x), x∈ [0,2π] andK`(x, t)= sin(`x)sin(`t),

x, t ∈ [0,2π], ` ∈ INn. The set up is similar to that in Experiment 1.Method 1is our proposed ap-
proach,method 2is the average of the kernels andmethod 3is the ideal kernel given byK(x, t) =
2
3 sin(x)sin(t)+ 1

3 sin(3x)sin(3t). The noiseε is now uniformly sampled in the interval[−0.2,0.2].
The results are reported in Table 2. Figure 2 shows the function learned by each method.

4.3 Extensions

We discuss some extensions of the problems studied in this paper. The first one that comes to mind
is obtained by taking the expectation of the functional (4) with respect to a probability measureP
on IRm, that is,

Qav
µ (K) :=

Z

IRm
Qµ(K,y)P(y)dy, K ∈ K (32)
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Figure 2: Experiment 2: function learned by method 1 (left), method 2 (center) and method 3 (right). Regu-
larization parameter isµ= 0.1, the number of training points is50. Solid line is the target function,
crosses are the sampled points and the dotted line is the method used.

where we indicated the dependency ofQµ(K) on y by writing Qµ(K,y). SinceQµ(K,y) is convex
in K for eachy ∈ IRm so isQav

µ (K). We then minimizeQav
µ (K) over K ∈ K . For the square loss

regularization we obtain that

Sav
µ (K) = µ trace((Kx +µI)−1Σ) (33)

whereΣ is the correlation matrix ofP. Minimizing the quantity (33) over a convex classK may
be valuable in image reconstruction and compression where we are provided with a collection of
images and we wish to find a good average representation for them. In this case the inputx = {xi :
i ∈ INm} represents the locations of the image pixels. For gray level images we can assume that
y∈ [0,1]m and therefore we should chooseP to have support on[0,1]m. Thus, if{y` : ` ∈ INn} is a
sample of such images withn < m andΣ is the rankn empirical correlation matrix our goal is to
find a kernel which well-represents this collection on the average.

Another approach is provided by replacing the average in equation (32)with the maximum over
all y with bounded norm, that is, we minimize the functional

Qmax
µ (K) := max{Qµ(K,y) : ‖y‖ ≤ 1}, K ∈ K .

Again, this function is convex inK. In particular, for square loss regularization and the Euclidean
norm on IRm we obtain

max{Sµ(K,y) : ‖y‖ ≤ 1} = max{µ(y,(Kx +µI)−1y) : ‖y‖ ≤ 1} =
µ

λmin(Kx)+µ

whereλmin(Kx) is the smallest eigenvalue of the matrixKx. Consequently, we have that

min{max{Sµ(K,y) : ‖y| ≤ 1} : K ∈ K } =
µ

max{λmin(Kx) : K ∈ K }+µ
.

It is well-known thatλmin(Kx) is a concave function ofKx, (see, for example, Marshall and Olkin,
1979, p. 475). Therefore, our results provide an alternate proof ofthis fact.

We also remark that instead of learning a functionf from function values the information oper-
atorI can be of the formI( f ) = ((g j , f ) : j ∈ INm), f ∈ H , where{g j : j ∈ INm} is a set of prescribed
functions in a Hilbert space, see the work of Micchelli and Pontil (2004) for a discussion. In this
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case, the matrixKx becomes the Gram matrix of these functions. The previous sections considered
the choiceg j = K(x j , ·) and the Gram matrix isKx. This extension has wide applications in inverse
problems, for example for computing the solution of first order integral equations.

Lemma 17 indicates thatQµ : A+(X ) → IR+ is, generally, not strictly convex. We may modify
the functionalQµ with a penalty term which depends on the kernel matrixKx to enforce uniqueness
of the optimal kernel inK . Therefore, we consider the variational problem

min{Qµ(K)+R(Kx)} (34)

whereR is a strictly convex function onL(IRm). In this case, the method of proof of Theorem 7
shows that the optimal kernel can be found as a convex combination of at most 1

2m(m+1) kernels.
For example, we may chooseR(A) = trace(A2), A∈ L(IRm).

The variational problem (34) may be a preferred approach for choosing an optimal kernel. In-
deed, ifQ vanishes at some point in IRm and there is a kernelK ∈ K such that for allt > 0, tK ∈ K
then it follows thatQµ(K ) = 0. This fact follows since limt→∞ Qµ(tK) = 0, by elementary properties
of the norm inHtK . However, if the kernels inK have the property that supK∈G supx∈X K(x,x) < ∞,
that is, they are uniformly bounded, the above circumstance cannot occur. This observation suggests
that our criterion may be free from overfitting. Preliminary experiments with Gaussian kernels con-
firm that overfitting does not occur (Argyriou, Micchelli and Pontil, 2005). We leave for a future
occasion a detailed investigation of this important issue.

As a final comment, let us point out that a kernel map can also be parameterized by matrices.
For example, to eachA∈ L(IRd) we define the linear kernelKA(x, t) = (x,At), x, t ∈ IRd and so our
results apply to any convex compact subset ofL(IRd) for this kernel map. Another example are
Gaussians parameterized by covariancesΣ ∈ L(IRd), that is,

N(Σ)(x, t) =
1

√

det(Σ)(2π)d
e−(x−t,Σ−1(x−t)), x, t ∈ IRd.

For compact convex sets of covariances our results say that Gaussianmixture models give optimal
kernels.

5. Conclusion

The intent of this paper is to enlarge the theoretical understanding of the study of optimal kernels
via the minimization of a regularization functional. Our analysis of this problem builds upon and
extends the work of Lanckriet et al. (2004) and Lin and Zhang (2003). In contrast to the point
of view of these papers, our setting applies to convex combinations of kernels parameterized by a
compact set. Our analysis establishes that the regularization functionalQµ is convex inK and that
any optimizing kernel can be expressed as the convex combination of at most m+2 basic kernels.
We have also provided a detailed characterization of the resulting minimax problem for square loss
regularization. We have only marginally addressed at this stage implementation and algorithms for
the search of optimal kernels. Since the proofs provided in Theorems 19 and 20 are constructive it
should be possible to make use of them to derive practical algorithms for learning an optimal kernel
such as a mixture of Gaussians, see (Argyriou, Micchelli and Pontil, 2005) for some recent results
in this direction. Finally, an important direction which has not been explored in this paper is that of
deriving error bounds, see (Micchelli et al., 2005) for some very recent progress on this.
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Appendix A

The first result we record here is a useful version of the classical von Neumann minimax theorem.

Theorem 22 Let f : A ×B → IR whereA is a compact convex subset of a Hausdorff topological
vector spaceX andB is a convex subset of a vector spaceY . If the function x7→ f (x,y) is convex
and lower semi-continuous for every y∈ B and y7→ f (x,y) is concave for every x∈ A then we have
that

min{sup{ f (x,y) : y∈ B} : x∈ A} = sup{inf{ f (x,y) : x∈ A} : y∈ B} (35)

Theorem 23 Let f : A ×B → IR whereA is a closed convex subset of a Hausdorff topological
vector spaceX andB is a convex subset of a vector spaceY . If the function x7→ f (x,y) is convex
and lower semi-continuous for every y∈ B, y 7→ f (x,y) is concave for every x∈ A and there exists
a y0 ∈ B such that for allλ ∈ IR the set

{x : x∈ A , f (x,y0) ≤ λ}

is compact then there is an x0 ∈ A such that

sup{ f (x0,y) : y∈ B} = sup{inf{ f (x,y) : x∈ A} : y∈ B}

in particular, (35) holds

Theorem 22 is subsumed by Theorem 23 whose proof can be found in (Aubin, 1982, Ch. 7). The
hypothesis of lower semi-continuity means, for allλ ∈ IR andy∈ B, that the set{x : x∈ A , f (x,y)≤
λ} is a closed subset ofA .

The next result concerns differentiation of a “max” function. The version we use comes from
(Micchelli, 1969). LetX be a topological vector space. Ifg is a continuous real-valued function on
X , we define its right derivative atx∈ X in the directiony∈ X by the formula

g′+(x,y) = lim
ε→0+

g(x+ εy)−g(x)
ε

whenever it exists.
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Lemma 24 Let T a compact set and G(t,x) a real-valued function onT ×X such that, for every
x∈ X G(·,x) is continuous onT and, for every t∈ T , G(t, ·) is convex onX . We define the real-
valued convex function g onX by the formula

g(x) := max{G(t,x) : t ∈ T }, x∈ X

and the set
M(x) := {t : t ∈ T ,G(t,x) = g(x)}.

Then the right derivative of g in the direction y∈ X is given by

g′+(x,y) = max{G′
+(t,x,y) : t ∈ M(x)}

where G′+(t,x,y) is the right derivative of G with respect to its second argument in the directiony.

PROOF. We first observe, for everyt ∈ M(x) andλ > 0, that

g(x+λy)−g(x)
λ

≥ G(t,x+λy)−G(t,x)
λ

which, lettingλ → 0+, implies thatg′+(x,y) ≥ G′
+(t,x,y) and, so,

g′+(x,y) ≥ sup{G′
+(t,x,y) : t ∈ M(x)}.

To prove the reverse inequality we use the fact that iff is convex on[0,∞) and f (0) = 0 thenf (λ)/λ
is a nondecreasing function ofλ > 0. In particular, this is true for the function ofλ defined, for every
x,y∈ X , as

g(x+λy)−g(x)
λ

.

Consequently, we obtain, for everyλ > 0 that

g(x+λy)−g(x)
λ

≥ g+(x,y).

Now, we define

h(λ, t) :=
G(t,x+λy)−g(x)

λ
, λ > 0

and observe that, for eacht ∈ T , it is a nondecreasing function ofλ because

h(λ, t) =
G(t,x+λy)−G(t,x)

λ
− g(x)−G(t,x)

λ
.

Therefore, the setsAλ := {t ∈ T : h(λ, t)≥ g′+(x,y)} are nonempty, closed and nested forλ > 0 and,
so, the compactness ofT implies that there exists at0 ∈

T

λ>0Aλ, that is,

G(t0,x+λy) ≥ λg′+(x,y)+g(x), λ > 0.

Thus,t0 ∈ M(x) andg′+(x,y) ≤ G′
+(t0,x,y). �

We now present the proof of Lemma 8 in an extended form. To this end, we letr beanypositive
number and let

corKn :=

{

K : K = ∑
j∈INn

λ jK j , λ` ≥ 0, ` ∈ INn, ∑
j∈INn

λr
j = 1

}

.

Note thatco1Kn = coKn whereKn = {K j : j ∈ INn}.
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Lemma 25 If Kn = {K j : j ∈ INn} is a family of kernels onX ×X and f∈ L

j∈INn
HK j , and s:= 2r

r+1
then

inf{‖ f‖K : K ∈ corKn} = min







(

∑
j∈INn

‖ f j‖s

) 1
s

: f = ∑
j∈INn

f j , f` ∈ HK` , ` ∈ INn







.

PROOF. The first step is to appeal to a result of Aronszajn, (see Aronszajn, 1950, p. 352-3), which
states that for anyf ∈ L

j∈INn
HK j we have forK = ∑ j∈INn

λ jK j , with λ` > 0, ` ∈ INn that

‖ f‖2
K = min

{

∑
j∈INn

‖ f j‖2

λ j
: f = ∑

j∈INn

f j , f` ∈ HK` , ` ∈ INn

}

.

Thus, the lemma follows from the following fact.

Lemma 26 If r > 0, p := 1+ 1
r , and{a j : j ∈ INn} ⊂ IR then

min







(

∑
j∈INn

a2
j

λ j

) 1
2

: λ` ≥ 0, ` ∈ INn, ∑
j∈INn

λr
j ≤ 1







=

(

∑
j∈INn

|a j |
2
p

)
p
2

and the equality occurs for∑ j∈INn
|a j | > 0 at

λ̃ j :=
|a j |

2
r+1

(

∑ j∈INn
|a j |

2r
r+1

) 1
r

. (36)

PROOF. This fact follows from Ḧolder inequality. To this end, we letq = r +1 so that1p + 1
q = 1

and, so, we have that

∑
j∈INn

|a j |
2r
q = ∑

j∈INn

|a j |
2r
q

λ
r
q
j

λ
r
q
j

≤



 ∑
j∈INn

|a j |
2rp
q

λ
rp
q
j





1
p(

∑
j∈INn

λr
j

) 1
q

=

(

∑
j∈INn

a2
j

λ j

) 1
p
(

∑
j∈INn

λr
j

) 1
q

≤
(

∑
j∈INn

a2
j

λ j

) 1
p

.

For the choice (36) equality holds above, thereby completing the proof. �

The proof of Lemma 25 is completed. �
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