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Abstract

A mechnism of transfer learning is analysed, where samptasrdfrom different learning tasks
of an environment are used to improve the learners perfazenan a new task. We give a gen-
eral method to prove generalisation error bounds for suda+agorithms. The method can be
applied to the bias learning model of J. Baxter and to derixeehgeneralisation bounds for meta-
algorithms searching spaces of uniformly stable algorithriVe also present an application to
regularized least squares regression.
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1. Introduction

We formally study the phenomenon wansfer, where novel tasks and concepts are learned more
quickly and reliably through the application of past experience. Traisfendamental to human
learning (see Robins, 1998, for an overview of the psychological fitexaand offers a way to
partially escape the implications of th® Free Lunch TheoreifNFLT).

The NFLT states that no algorithm is superior to another when averagfdmly across all
learning tasks. In a real environment, however, not all learning taskg @qually likely. They are
distributed according to some environmental distributibrwhich is far from uniform. By gather-
ing information on this distribution of tasks, a learner can possibly find arritigoto outperform
other algorithms, but, of course, only on average over the distribtion

This mechanism ofmeta-learninghas been analysed by Jonathan Baxter (1998, 2000) and
there have been several successful experiments in practical maehinaxg contexts (see Caruana,
1998; Thrun, 1996, 1998) and Section 6). In this paper we extendtudts in Baxter (2000) and
offer a general method to control the generalization error of meta-lgprifile begin by reviewing
some notions of learning theory.

Generalization error bounds. Statistical learning theory deals wittata and hypothesesA
data poinz may be an input-output pair= (X, y) and a hypothesismay be some functiox— c(x),
but for many theoretical results data and hypotheses can be arbitjaotssbandc, related only
through a nonnegatiiess function [c,z) which measures how poorly the hypothesipplies to
the data poinz. The familiar square losis(c, (x,y)) = (c(x) —y)? is an example where= (x,y)
withy € Randc: x— c(x) € R.

A learning taskis modelled by a probability distributiod on the set of data pointb),(z) being
interpreted as the probability that the data paimiill be encountered under the conditions of the
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taskD. For a given hypothesistherisk
R(c,D) = Ezwp |l (c,2)] (1)

measures how poorly the hypothesis expected to perform oD.

A learning algorithm Atakes ssample S= (z, ..., zn) of data, drawn iid from the distributioD
defining the learning task, and computes a hypoth&6&. The returned hypothesis should work
well on the same learning tagk so we want the risR(A(S),D) to be small. The quantity

Eswom[R(A(S),D)] ()

would be a natural measure for the performance of a given algorthwith respect to a given
learning tasliD.

Unfortunately the distributioD itself is generally unknown, so that we cannot compute or
bound (2) directly. We do, however, know the samighich was drawn fronD, and we may give
a performance guarantee fArconditioned orfS, but for arbitraryD. Such ageneralization error
boundis typically given by specifying a two argument functiBid, S), whered > 0 is a confidence
parameter, and the requirement that

vD,D™{S:R(A(S),D) <B(5,9)} > 1-3. ©)

The bound above states that with high probability-@) in Sthe learning-resulf (S) will have risk
bounded byB. Section 3 will give examples of generalization error bounds.

Meta-Learning. This paper describes a mechanism by which a sequBad&y, ..., S,) of
samples, drawn from different learning tadRs, ...,D,,, can be used to improve and predict the
performance of a learner on anknown future taskVe will give bounds analogous to (3) and also
present a practical algorithm.

The crucial idea, due to J. Baxter (1998, 2000), is that the learning @askriginate from
an environmentof tasks, which is a probability distributio on the set of learning tasks. The
encounter with a new learning task is thus modelled as a random event, dra® of a task
D. Subsequent to the draw 6f a sampleS= (z,...,z,) may be generated by a sequencerof
independendraws fromD. Let D« (S) be the overall probability for am-sampleSto arise in this
way,

Dz (S) = Ep~z [D™(9)].

The accumulation of experience is then modellednbindependentraws of sample§ ~ D¢,
resulting in the sample-sequenceroeta-sample&s= (S, ..., S,) (also called 'support sets’ by S.
Thrun, 1998, on,m)-samples by J. Baxter, 2000). The probability io arise in this manner is
(D£)" (S) and depends completely on the environm&ntVe generally usento denote the size of
the ordinary samples amdfor the size of the meta samples. We also use bold leRefS |, etc
to distinguish objects of meta-learning from the corresponding objectslofary learningD, S, I,
etc.

A learners behaviour is formally described by a learning algorithnilo say that the meta-
sampleSis used to determine the behaviour of the learner on future learning taskisesafore be
expressed in the equation

A=A(S)
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whereA is a function which returns a learning algorithm for every meta-sar8pl€he objectA
will be called ameta-algorithm SinceA (S) is an algorithm we can train it with a sam8¢o obtain
a hypothesi&\(S) (S).

An example of a meta-algorithm is feature-learning wheselects a feature map to preprocess
the input of a fixed algorithm. Another example is given in Section 6. In génany method that
adjusts the parameters of an algorithm on the basis of the experience madeheitlearning tasks
can be regarded as a meta-algorithm.

To state generalization error bounds for meta-algorithms, we need to defitagistical mea-
sure of the performance of an algoritthwith respect to an environmet, analogous to the risk
R(c,D) of a hypothesis with respect to a tasB. The risk (1) measures the expected loss of a
hypothesis for future data drawn from the task distribufigrso the analogous quantity for an algo-
rithm should measure the expected loss of the hypothesis returned bydhiéhafgfor future tasks
drawn from the environmental distributigh. A corresponding experiment involves the random
draw of a taskD from ‘Z, training the algorithm with a samp&drawn randomly and independently
from D, and applying the resulting hypothesis to data randomly drawn Boformally

R(A, E) = Ep~z [Eswom [R(A(S), D)]] = Ep~z [Esvom [Ezvp [ (A(S), 2)]]] - (4)

Thetransfer riskR (A, £) measures how well the algorithAnis adapted to the environmefit If
£ is non-uniform the NFLT doesn’t apply, and we may hope to optirfiZA, ) in A.

If the environment was known, we could in principle selésb as to minimize (4), but the only
available information is the past experience or meta-safiplde situation is analogous to ordinary
learning. Now suppose thatis a meta algorithm. The idea is to bouRdA (S), E) in terms ofS
with high probability inS, asSis drawn from the environmerf for every environmeng. GivenS
we can then reason that, regardles€othe bound is true with high probability. Formally we seek
a functionB such that, given a confidence parameéter

VE,(Dg)"{S:R(A(S),E) <B(3,9)} > 1-3. (5)

The principal contribution of this paper is a general method to prove tsahthis type for
different classes of meta-algorithms.

The Method. Given an algorithmA, let| (A, S) be anestimatorfor the risk ofA(S) given the
sampleS= (z, ...,Zn). For example sdt= lempWwith the empirical estimator

enolA.9) = 3 1(A(9).2)

We then write, usings-p, [f (S)] = Ep~z [Es<om [f (9],

R(A(S), )
= Eswp, [1(A(S),9)] +Ep~z [Eswon [R(A(S) (S),D) 1 (A(S),9)]]
< Es-p, [I(A(S). 9] +sup[Es.on [R(A (S) (5),D) ~1 (A(S) . 9)] . (6)
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To control the first term in the last line it suffices to prove a bound of the typ
VD € My (Z™),D"{S:Eswp [ (A(S),9)] <N (3,9} >1-3, (7)

whereD € M1 (Z™) refers to any probability distribution on the s&t of m-samples. Notice that
(7) has exactly the same structure as an ordinary generalization etnod i§8) whereD has been
repaced wittD, Swith S, Awith A, | with |, andB with . We therefore propose to use established
results of learning theory to obtain the statement (7). Because it conttote fealues of the esti-
mator, a two-argument functidn satisfying (7) will be called aestimator prediction bountbr A
with respect to the estimator

The simplest case, where a nontrivial estimator prediction bound carubd,foccurs whei
searches only a finite set of algorithms, but there are many other possipgitiee are listed in
Section 3.

Suppose that we have established (7). To obtain (5) it will be sufficiebbtmd the second
term in the last line of (6).
Methods for deriving ordinary generalization error bounds oftenamstermediate bound on
the estimation error
IR(A(S),D) - 1(A )],

valid for all distributions with high probability its, for example by bounding the complexity of a
hypothesis space searchedAySuch bounds lead to a general method to control the second term
in (6) and to prove (5). Theorem 5 states a corresponding result, vghégiplied in Section 5.2 to
improve on the results in (Baxter, 2000).

A second method to bound the estimation error in (6) involves the noti@hgofithmic sta-
bility. This method is less general but more elegant and often gives tightedfioBousquet and
Elisseeff (2002) have shown how generalization error bounds fonifgaalgorithms can be ob-
tained in an easy, elegant and direct way. Instead of measuring thefdtze gpace which the
algorithm searches, they concentrate directly on continuity properties alglorithm in its depen-
dence on the training sample. A learning algorithrangormly 3-stableif the omission of a single
example doesn’t change the loss of the returned hypothesis by mor,tf@rany data point and
training sample possible. Many algorithms are stable and stable algorithmsitngle lsounds on
their estimation error. Corresponding theorems can be found in (Boydgjisseeff, 2002). The
requirement of stability has been weakened and the results have beedeskby Kutin and Nyogi
(2002).

If for some and allSthe algorithmA (S) is uniformly B-stable, then the estimation term in (6)
can be bounded in a particularly simple way, namely By stated in Theorem 6.

Results. Algorithmic stability is also useful at a different level to prove that a metardtyo
A has an estimator prediction bound. This can be done by appealing to Th&arim (Bousquet,
Elisseeff, 2002) (stated as Theorem 2 in Section 3). The following is an imateezbnsequence of
this theorem in combination with our Theorem 6:

Theorem 1 Suppose the meta-algoritténsatisfies the following two conditions:
1. For every meta samplg= (S, ...,S,), let S\l be the same aS except that one of thg Bas
been deleted. Then for eve®)S\ and every ordinary sample S we have

lemp(A (S),S) — |emp(A (s\i) s)‘ <B.
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2. For every ordinary sample S (zi,...,zy), let S' is the same as S except that one of the z
has been deleted. Then for every meta sarSgled every S and'\Swe have

1 (A(S)(S),2) | (A (S) (s\i) z)‘ <B.

Then for every environmeri we have, with probability greater thah— & in the meta-sample
S=(Sy,...,S) drawn from(D)", the inequality

R(A(S),E) < %ilemp(A (S),S)+2p + (4np'+ M) % +2B. (8)

The left hand side of the last inequality measures the expected perfamatiee algorithm
A (S) for all, and potentially yet unknown, tasks of the environmenfThe right side is composed
of an empirical estimate and terms depending on the samplers@a$m, the stability parameters
B’ andB and the confidence parameterlf B’ ~ 1/n? andf ~ 1/mP, with a > 1/2 andb > 0, the
bound of the theorem becomes non-trivial.

We apply these results to a practical meta-algorithm for least squaresseqgr. This meta-
algorithm is related to th€horus of Prototypemtroduced by Edelman (1995), so we calOP-
RegressionCP-Regression takes the meta-sangpd Sy, ..., S,) and uses a primitive algorithiy
to compute a set of corresponding regression functigns., h,. For any new input object the
feature vector ok is then mixed with (or even replaced by) the vedtor(x),...,hn (X)). Finally
A (S) is defined to be regularized least squares regression with this modifietdr@grasentation.
We show that Theorem 1 applies to this meta-algorithm, Wity 1/n andp =~ 1/mas required.

CP-Regression can be implemented in practice and preliminary experimemscéaaicate
that meta-learning gives a practical advantage over ordinary regedddast squares regression.

Outline of the Paper. In Section 2 we give a summary of the definitions and notation used
in the paper. This section is intended as a reference for the readeectini®3 we show how to
obtain estimator prediction bounds from standard results in learning tHad8gction 4 we derive
transfer risk bounds for meta-algorithms. In Section 5 we attempt a comparismur bounds to
ordinary generalization error bounds and compare our method anisrasthe approach taken
by J. Baxter (2000). In Section 6 we discuss regularized least squegesssion, introduce CP-
regression, analyse its properties and present some preliminary expiinesults.

2. Definitions and Notation

This section is intended as a reference for the notation and definitionsrutbedpaper.

Measurability. Any subset which we explicitely define on a measurable space will be adsume
measurable, as will be any function. Thus for exampl€'R’ is shorthand for the statemeft T R
andF is Lebesgue-measurableé¥l; (X) will always denote the space of probability measures on a
measurable spacé. We supplyM; (X) with any o-algebra containing the-algebra generated by
the set of functions

M€ M1 (X) — Exwp[f]
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for all bounded measurable functiohgnd all singleton set§u} for pe M1 (X). In this wayM; (X)
becomes itself a measurable space and it makes sense to talkvaliddi (X)).

Learning and Algorithms. ThroughoutZ will be a measurable space déta-points =z Z,C a
space ohypothesesr concepts & C andl : C x Z — [0,M] aloss function Samplesre polytuples
Se Umo1Z™, andlearning algorithmsare symmetric functions

A |Jz"—cC.

m=1

Symmetry, which will be essential for our use of stability, means that for amgnptationtt on
{1,...,m} and anyS < Z™ we haveA(1i(S)) = A(S) wherer(S) refers to the permuted sample

(21, Zm) = (Zn1), s Zm) ) -

The set of such algorithms depends onlyGandZ and will be denoted byi (C,Z). The hypothesis
A(S) is what results wheA is trained withS.

Learning Tasks and Risk. A learning taskis specified by a probability measubec M; (Z).
Given such a task and a hypothesis € C and a loss functiohwe use

R(c,D) = Ezp |l (c,2)]
to denote theisk (=expected loss) of the hypothesis taskD w.r.t. the loss functiomh.

Generalization Error Bounds. A functionB: (0,1] x Um_1Z™ — [0,M] is ageneralization
error boundfor the algorithmA € 4 (C, Z) with respect to the loss functidriff

VD € My (Z),¥8 > 0,D™{S: R(A(S),D) <B(3,9)} > 1.

Estimators and Algorithmic Stability. The leave-one-out estimatory) and theempirical
estimator tmpare the functions (the notation is from Bousquet, Elisseeff, 2002)

li0o; lemp: A(C,Z) x (Zm) — [0, M]
defined forA € 4 (C,Z) andS= (z,...,zm) € Z™ by
lioo (A, S) = le < <S\i>7zi>a

whereS\ generally denotes the sam8avith thei-th element deleted, and

lemp(A, S) = ZI

For > 0 an algorithmA € 4 (C, Z) is calleduniformly B-stable w.r.t. the loss functionfl
1AS.2 -1 (A(s') 2) | <B,
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for everym, for everySe Z™ ze Z andi € {1,...,m}.

Environments and Induced Distributions. A meta-learning task is specified by anviron-
ment
£ €M1 (M1(2))

which models the drawing of learning tadRs~ ‘£. The environmenf defines arinduced distri-
butionDz € M1 (Z™), by

D¢ (F) = Ep~z [D™(F)] for F C Z™ measurable. 9)
The corresponding expectation for a measurable fundtionZ™ is then
Es~p, [f] = Ep~z [Es~on [f ()]

The induced distributio+ models the probabilityp+ (S) for anm-sampleSto arise when a task

D is drawn from the environmert, followed bym independent draws of examples from the same
distributionD. D£ is not a product measure, but a mixture of symmetric product measuiks, an
therefore itself symmetric. Repeated, independent draws Bengive rise tometa-samplegsee
below).

Transfer Risk. Given an environment € M1 (M1 (Z)), an algorithmA € 4 (C,Z) and a loss
functionl : C x Z — [0,M] thetransfer riskof A in the environment w.r.t. the loss function is
given by

R (Av Z) =Ep~g [ESND”” [R(A(S) ) D)H :

It gives the expected risk of the hypothesitS) for a taskD randomly drawn from the environment
and the sampl&randomly drawn from this task. It measures how poorly the algori#himsuited
to the environment.

Meta-Samples and Meta-Algorithms. We use the letteS to denote ameta-sampleS =
(St,...,Sh) € (Z™M". Such can be generated by a sequenceindependent draws from some distri-
butionDeM; (Z™), typically the distributiorD induced by an environmert, that isS~ (D)".

A(A4(C,Z),Z™) is the set ofmeta algorithms That is forA € 4(4(C,Z),Z™) and S €
Un_1 (Z™M™ the objectA (S) is the algorithmA = A (S) € 4(C,Z) which results from training
with the meta-sampl8. Given anm-sampleS, the objectA (S) (S) is the hypothesis returned by the
algorithmA (S), when trained with an ordinary same

Estimator Prediction Bounds. A function N : (0,1] x Up_; (Z™" — [0,M] is an estima-
tor prediction boundfor the meta-algorithmA € 4(4(C,Z),Z™) with respect to the estimator
:4(C,Z) x (Z™) — [0,M] iff

VD € M1 (2™),¥8>0,D"{S: Eswp [l (A(S),9] <M (3,9} >1-3. (10)

An estimator prediction bound is formally equivalent to an ordinary geneataiz bound under the
identificationsZ — ZM,C— 4(C,Z) ,| <, A— A,B<Tl.

Meta-Estimators. Given an estimatdr: 4 (C,Z) x (Z™) — [0,M] theempirical meta-estimator
lempis the function
lemp: 4(A(C,2),Z™) x (Z™" — [0,M]
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defined forA € 4(4(C,Z),Z™) andS= (S, ...,S) € (ZM" by

lemp(A, S) = le

The meta-estimatdyy, is defined analogously. These definitions depend on the choice of the esti-
matorl itself. For example if=l|o, then

(lloo emp leloo

Ordinary learning Meta learning

Data zeZ S=(z,....,.2m) € Z™

Samples S=(z,....,Zm) € ZM S=(S,..,S) € (ZM"

Hypotheses | ceC Ac 4(C,2)

Algorithms AcA4(C,2) AcAa(4(Cz),Z™)

Loss function | | :CxZ — [0,M] |:4(C,Z2) xZ™ — [0,M],
wherel = lempOor ljoo

Learning Task| D € M1 (Z) D € M1 (Z™M), typically

D = Dz whereD¢ is
induced by an environmerj
€ My (M, (2)) (see(9))

—

estimator =1sMI(A(9),2) =1sn 1(A(S),S)
Risk R(c,D) =Ezp|l (c,2)] | Eswp [l (A, S)]
Bound Generalization error | Estimator prediction

Table 1: This table relates the descriptions of ordinary and meta-learnky tas

An important object which isiot mapped is the transfer rigR (A, E). Correspondingly an
estimator prediction bound i@t a generalization error bound for the transfer risk.

Covering Numbers. These definitions are taken from (Anthony, Bartlett, 1999). X bk a set,
Xo C X. Fore > 0 and a metrid on X the covering numberd( (g, Xo,d) are defined by

N (€,%p,d) = min{N eN:I(xg, ... %) € XN, ¥x e Xo,3i,d (x,x) < s}.

For a clasgF of real functions orX andS= (xi, ...,X,) € X" define¥ [sC R" by

Fls={(f(x1),.... T (Xa)): f € F},

and define, foe > 0 and any givem,

A (g, F,n) = sUpAL(g, F|s,d1),
Sexn
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whered; is the metric orR" defined by

n

1
di(xy) = H_Zl|xl Vil -
i=

Loss Function Classes.Let # C C. Theloss function clasgf (#,1) is the family of real
functions
FHN)={zeZ—1(c,Z):ce H}.

For ¥ (#,l) we use the topology of pointwise convergence which it inherits as a sub@al\/l]z.
A set H C C is calledclosedif ¥ (#,]) is closed in this topology (and therefore also com-
pact by Tychonoffs theorem). H{ is closed then any finite linear combination of functians
H — ¥;ail (c,z) attains minima and maxima t#.
ForH C 4 (C,Z) and a given estimatdr 4 (C,Z) x Z™ — [0,M] we define an analogous (meta-)
loss function class
FH,)={SeZ™"—I1(AS:AcH}.

3. Estimator Prediction Bounds

In this section we give examples of estimator prediction bounds obtainedestablished results
of statistical learning theory.

Selection from a Finite Set.Set the bound on the loss functitvhto be equal to 1 for simplicity
and suppose that there idimite set of hypothese®/ ={cs,...,ck } C C. Define the algorithr\ for
asamples= (z,...,zn) € ZMby

A(S) =ar mln— I (c,z)
( gce}[ Z !

A well known application of Hoeffdings inequality and a union bound (sge Anthony, Bartlett,
1999) give, for any > 0,

vD,D™M<¢ S: sup
ceH

In(K/3)
T} >1-8, (11)

1 m
R(c,D) — alel (c,zj)| <
which gives the following generalization error bound for
vD € M1 (Z),¥8 > 0,D™{S: R(A(S),D) <B(8,9} >1-8

with
InK+1n(1/8)
2m '

Note that this bound also holds for every algorithm searching a finite bgpotheses of cardinality
at mostK, that is for every algorithm witi\(S) € 4/ for all Sand some set/ with | 7| <K.

We now use the table at the end of the previous section. Substi#itifigr Z, 4 (C,Z) for C,
| = lempoOr | = lioo for | and a finite set of algorithmfA, ..., A} for {cy,...,ck }, we arrive at the
following statement:

B(3,S) = lemp(A,S) +

975



MAURER

Every meta algorithn\ that suchA (S) € {Aq,...,Ac} for all S=(S;,...,S,) has the estimator
prediction bound

VD € M1 (2™),¥8>0,D"{S: Eswp [l (A(S),9] <M (5,9} >1-3

with
INnK+1n(1/d)

M(3,S) =lemp(A,S) + —on (12)

Selection from a Set of Bounded ComplexityAgain withM = 1 consider a subsét C C. It
follows from the analysis in chapter 17 in (Anthony, Bartlett, 1999) ancbfdra 21.1 of the same
reference, that the following holds for everyCe < 1 and every distributiod on Z:

2

>1-496 (5,7 (o1]),2m) e 5. (13)

3

Exnll(c,2)] - 1(c,z))

Dm{SeZm:vCe}[,
1

3l

J

which implies the following generalization error bound, valid for every atbor A searching only
the hypothesis spac¥:

B(5,5) = lemp(A,S) +inf {t 406 (é,f (9£.1),2m) %" < 6} | (14)

Suppose now thatl C 4 (C,Z) is a space of algorithms and fix an estimdterljoo Or | = lemp
SubstitutingZ™ for Z, 4(C,Z) for C, | for | andH for #, and ¥ (H,I) for & (#{,1) in the above,
we obtain analogous to (13):

<o}

For every O< € < 1 and every distributio® onZ™:
D™ {Se (Z™":VAEH,
Every meta-algorithm suchA (S) € H for all S has thus the estimator prediction bound

Eswo [l (A )] - % il (A'S)
‘

21—49\@(2,7(H,|),2n)e%?‘.

M(s,S) = Iemp(A,S)+inf{t LA (té,f(H,I) 2n) e < 5}. (15)

Uniformly Stable Algorithms. Now letM > 0 be arbitrary. Bousquet and Elisseeff (2002)
prove that uniformlyB-stable algorithms have a generalization error bound with sample-indegende
bound on the estimation error:
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Theorem 2 Let A€ 4(C,Z) be uniformly3-stable. Then for any learning task®M; (Z) and any
positive integer m, with probability greatdr— & in a sample S drawn from™

1
In8

I (A(S),D) <lioo (A, S+ B+ (4mB+ M) om

and
1

| (A(S),D) < lemp(A,S) + 2B+ (4mB+ M) ';—nf]

These bounds are good if we can show unif@stability with 3 ~ 1/m?, witha > 1/2. The
notion of uniform stability easily transfers to meta-algorithms to give estimataligiren bounds.
Fix an estimatot = ljoo Or | = lemp and suppose that the meta-algorithm satisfies the following
condition:

For every meta samplg=(S;,...,S,), if S is the same aS except that one of th§ has been
deleted, and for every ordinary sam@deve have

I(A(S),9—1(A(S),9)| <B.

Theorem 2 then gives the estimator prediction bounds

1
Mioo(8.5) = oo (A,9) + B-+ (4nf-+ M) | 22 (16)
and
1
Memp(8,S) = lemp(A,S) + 2B+ (4nB+ M) Ig—r?. a7)

4. Transfer Risk Bounds for Meta Algorithms

To derive the results in this section we need the following simple lemma, whichlsabe found
in (Bousquet, Elisseeff, 2002).

Lemma 3 Let Ac A4(C,Z). Then for any learning task B M1 (Z)
1. We have E.pm [lioo (A, S)] = Eg..pm-1 [R(A(S),D)].
2. If A is uniformlyB-stable ther|Espm [lemp(A, S)] — Es~om [lioo (A, S)]| < B.

Proof Using the permutation symmetry éfand of the measui@™ we get

Es-onllioo(AS)] = —EE&Dm[( (s').2)]
- ZESNDm [Exn [|(A(S).2)]]

— Eg.on1[R(A(S).D)].
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Also

|Es<pm [lemp(A,S) —li0o (A, S)] |
01 (4(5) )|
Il =B.

[Es[B

m
S,
m&
1m
“md,
mi:
|

Suppose now that we have an estimator prediction bdurfdr the meta-algorithnA with
respect to the estimatgrso that, for ald > 0,

VD € My (Z™),D"{S: Es-p[I (A(S),9)] <M (5,9)} > 135, (18)

where the estimatdr. 4 (C,Z) x Z™ — [0, M] refers to eithefempor lioo. We have outlined several
ways to obtain such bounds in Section 3.

Whenl = i the bound (18) is already powerful by itself. By the definitiorDaf and the first
conclusion of Lemma 3 we have

Eswp; (oo (A(S),5)] = Ep~z[Esvor{lioo (A(S),9)]]
= Ep~z [Egpm1[R(A(S)(S),D)]].

SubstitutingD« for D in (18) we conclude

Theorem 4 If the meta-algorithmA satisfies the estimator prediction bound (18) with |4, then
for every environmen, with probability greater thari — & in the meta sample drawn frofD)"
we have

Ep~z [Esupm1[R(A(S)(S),D)]] <M (3,9). (19)

The left side of (19) is not quite equal to the transfer RIA, £). Here is a first application of
this bound: LefAq, ..., A« } be a finite collection of algorithms. For any meta sangpte (S, ..., Sh)
defineA (S) to be

1 n
A(S)=ar min =% lieo(AS).
() gAe{Al,,..,AK} n i; 00 (A S)
The meta-algorithm\ selects the algorithm with the lowest leave-one-out error on averagéhave
meta-sample. Applying the estimator prediction bound (12) for this type ofittigoin combina-
tion with (19) above then gives, for arfy and with probability greater than-1d in the meta sample
drawn from(D¢)",

Eomr [Eauom 1 R(A(S)(9.D)] < £ 3 oA (8). )+ 222 @0

A similar result should hold ifjo is replaced by any other, nearly unbiased estimator. A popular
procedure, for example, is dividing the samges Sinto training- and test-samples to estimate the
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generalization performance of an algorithm. If we chose from a finitef setrmlidates the algorithm
A (S) which performs best on average over the test dag when trained with the training data in
S, then we are implementing a version of the above meta-algorithm, and a cordésg version
of (20) gives a probable performance guaranteeAf¢®) on future learning tasks drawn from the
same environment &

For more sophisticated meta-algorithms we need to consider thel eakg,, In this case
an estimator prediction bound only bounds the expected empirical leglA (S),S) of A(S)
for a samplesdrawn fromD¢, but it does not give any generalization guarantee for the hypothesis
A (S) (S). For examplé (S) could be some single-nearest-neighbour algorithm for which we would
havelemp(A (S),S) = 0 for almost allS, butA (S) would have poor generalization performance.
Recall the decomposition of the transfer risk (6) in the introduction:

R(A(S),E)
< Esw, [I(A(S).9)] +sup[Es-on [R(A(S) D) ~1(A(S).9)]|.

The estimator prediction bound controls the first term above, so it remainsutadithe second
term which is independent & We need to bound the expected estimation error of the estihator
uniformly for all distributionsD and all algorithm4 (S) for all meta-sampleS.

Theorem 5 Suppose the meta-algorithinhas an estimator prediction bouitiwith respect to the
estimatorl = lemp, and that for every) > O there is a number B) such that for every distribution
D € M1 (Z), and every meta-samp&we have

D™{S: [R(A(S)(S),D) ~ lemp(A(S), ) <B(n)} > 1-n. (21)

Lete = inf, (B(n)+Mn). Then for every environmett , with probability greater thari —8in S
as drawn from(D)" we have
R(A(S),E) <N (5,9) +¢

Proof For anyD, Sand arbitraryn we have

Eswom [R(A(S)(S),D)]
< Es<om [lemp(A (S),S)] +Eswom [|[R(A(S) (S),D) —lemp(A (S),9)|]
< Eswpm[lemp(A(S),9]+B(n) +Mn,

where (21) was used in the last inequality. Taking the expect&tient gives

R(A(S),E) Ep~z [Eson [R(A(S)(S),D)]]

Ep~z [ESVD [Iemp( ( ) S)H +&

Esp. [lemp( (S).9)]+¢

Mne,s) +

where the last inequality holds with probability greater thand.in the meta-sampl& as drawn
from (Dz)" by virtue of the estimator prediction bound (18) applied vidth in place ofD. [ |

IN

IN
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The condition (21) is often satisfied, typically wi{3) decreasing as Ifi/3) in dand agn~%/2
in m, so we should get a boureddecreasing about as quickly @éin (m) /m. Using the results in
Section 3, now on the level of ordinary learning, we see that the abogeetinecan be applied

o if every A (S) selects a hypothesis from a finite 9¢t(S) of choices with| 7/ (S)| < K for all
S. This follows from (11) The# (S) may of course be different for differeft.

e ifeveryA (S) selects a hypothesis from a $t S) C C with uniformly bounded complexities.
Here we use (13). An application is given in Section 5.2.

o if every A (S) is uniformly 3-stable with =~ 1/m. This follows from Theorem 2.

In the last case we can give a much better bound, where the additiomateame is often of
order I/m:

Theorem 6 Suppose the meta-algorith& has an estimator prediction bourid with respect to
the estimatolt = lemp, and that for som¢ the algorithmsA (S) are uniformlyp-stable for every
meta-samplé&. Then for any environmert andd > 0O, with probability greater tharl — d in Sas

drawn from(Dg)"

R(A(S),E) <N (5,S)+2p.

Proof We have

IN

Es<on [R(A(S)(S),D)] Es~pm1[R(A(S)(S).D)] +B
= Es.pm [||00 (A (S) ,S)] -+ B

< Eson [lemp(A(S),S)] +28,

where the first inequality follows directly from uniform stability and the nexedirfollow from
Lemma 3. Taking the expectati@h~ £ and using the estimator prediction bound (18) vith in
place ofD gives the result in just as in the proof of the previous theorem. |

Theorem 1 now follows immediately from Theorem 6 and from the estimatoiqgi@d bound
(17) in Section 3. In Section 6 an application of this theorem to a practical leatiaing algorithm
is discussed.

The estimator prediction bourid (5, S) will typically depend on the size of the meta-sample
S=(S,...,S), and not on the size of the constituting samples. One may therefore wonder, how
we can have am-dependence of the estimation error §§&ften order ¥m), while in Theorem 2

(Bousquet, Elisseeff, 2002) it i32- O (\/1/m>. The reason for this difference is that to bound

the transfer-risk in the above proof we only need to bound the expectatiSrof the random
variableR(A (S) (S),D), whereas the proof of Theorem 2 in (Bousquet, Elisseeff, 2002)ante
use McDiarmid’s concentration inequality to bound this random variable itsélfhigh probability

in S, which is where th®© («/1/m) term comes from.
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5. Comparison to Other Results

In this section we relate our results to others, beginning with a comparisodit@aoy generaliza-
tion bounds. Then we compare our method to the approach taken by Jr B2@@) where the
generalization of meta-algorithms is also studied.

5.1 Comparison to Ordinary Generalization Error Bounds

Are our results better or worse than ordinary generalization errordsquiThis question is at the
same time very important and very imprecise, because the two kinds of resfeltda different
objects and situations.

The ordinary generalization error bound (examples in Section 3) appleesitoation where a
sampleShas already been drawn from an unknown tsknd the estimatdemp(A, S) already has
a definite value. It typically has the structure

VD,D™{S: R(A(S),D) < lemp(A,S) + €0} > 1—3

wheregg is a bound on the estimation error. Oftey= /1/m.
Our bounds on the other hand apply to a situation where only the meta-s&msgtaown, and
typically have the structure

VE,(Dz)"{S:R(A(S),E) <M (5, +¢} >1-3

wherel1(3,S) is the estimator prediction bound agjlis again a bound on the estimation error,
uniformly valid for all algorithmsA = A (S) for anyS.

To gete;, our method always requires some condition (uniform bounds on estimatimns g+
stability) on the algorithm# (S), which is also sufficient to prove an ordinary generalization error
bound for such algorithmA (S). The corresponding estimation errors are about the same in our
bounds and in the ordinary generalization error bounds. In caseeawrém 5 ourey is slightly
worse than that of the ordinary bound (i,dn (m) /mvs/1/m), in case of Theorem 6 it is actually

better (Bvs B+ 0O (\/1/m>). Let's ignore these differences and pyt= ;. Comparing the two

bounds therefore involves a comparison of the estimator prediction Hdyadd) to a 'generic’
value of the estimatdemp(A, S).

Our bound (3, S) has the disadvantage that it contains an additional error of meta-estimation.
But as the siza of the meta-sampl8 becomes large, corresponding to an experienced meta-learner,
this additional term tends to zero, afndd, S) is likely to win over the 'genericlemp(A, S), because
A (S) is likely to outperform the 'generic’ algorithrA on the meta-sampl®. To make this precise
we have to give more meaning to the word 'generic’.

While it is easy to define a generic value®fsimply takingS~ D¢ if some environmenE is
given), it is not so clear how we should pick a generic algorithinfror simplicity consider a finite
set of algorithms{Ay, ...,Ax}. We should selech uniformly at random from this set to obtain a
generic algorithm. The generic valuelghp(A,S) is then

I = Eswp,

1 K
szllemp(Aka )]-
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The meta algorithm to consider for comparison is

1
A(S) = in =Y lemn(AS
(S argAe{AT.l.r}AK}n%emp( )

with the estimator prediction bound

ESNDQ[Iemp(A(S)’S)] < rli %Sgslemp(Ak S!) w
= M(dwm,S), (22)

wheredy, is the confidence parameter associated with the draw of the meta-saniibey let

K
23 3 (e ~min’ 3 a9

A(S) will be positive unless all algorithms behave the same on the meta-sample, in vesietit
is zero and meta-learning is indeed pointless (essentially an empirical instamtativze NFLT).
With the boundM on the loss function equal to 1, an application of Hoeffding’s inequalitegiv
with probability greater than 4 8y in a meta sampl& drawn from(D#)",

7<||—‘
3|I—‘

1X In(1/3yv)
_zRZempAkS<r+ T,

so with probability greater than-12dy in the meta-sampl& we have

VIN(@/8w) + /INK+1n (1/8y)
N :

in addition to validitiy of our bound (22). So for large meta-sam@esir bounds will very probably
be true and better than the generic value of ordinary generalization bbyradmargin of roughly
A(S).

For a practical perspective consider image recognition, when the taflessnpport off share
a certain invariance property (say image rotation), and there is only oosthig in {Aq,...,Ac}
having this invariance property. We can then expect the wrong algorithhasstofairly large losses
for a given meta sampl8, so thatA (S) will have order~ 1

F—T(0u,S) = A(S) -

(23)

5.2 Comparison to the Bias Learning Model

The approach taken in Baxter (2000) can be partially reformulated inraorefvork. We will
consider only ERM-algorithms i (C,Z) which have the form

Ay (S) =arg mln— z I (c,z) (24)

ceH M =)

for some closed setf C C (the assumption of closure ensures existence of the minimum). Actually
Baxter (2000) allows any algorithm searching the &gtsuch as regularized algorithms, but the
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analysis in (Baxter, 2000) does not exploit the advantages of retlarisand we stick to ERM for
definiteness and motivation.

The traditional method to give generalization error bounds for suchitigws is described in
(Anthony, Bartlett, 1999) or (Vapnik, 1995) and involves the study otthraplexity of the function
spacef, = {zH l(c,z):ce }[} in terms of covering numbers or related quantities, and proceeds
to prove a uniform bound on the estimation error, such as (13) in Sectioali8,for all c € #,
and with high probability in the sampt& This leads to corresponding generalization error bounds.
We have sketched a version of this approach which can be applied bottitany and to meta
algorithms in Section 3.

The choice of thénypothesis spac#/ completely defines the algorithm (24). A collection of
such algorithms can therefore be viewed as a fatilgf closed subseté/ C C which define the
algorithmsA,, by virtue of formula (24). A corresponding meta-algorithm takes a metaisamp
S, sampled from an environmeri as usual, and returns an algoritti(S) = A, for some
hypothesis spacé{ (S) € H. The meta-algorithm can thus be equivalently considered as a map
S—H(S)or

H:J(Z™" - H.
n=1
Such a meta-algorithm effectivelgarns the hypothesis spadé (S), and in (Baxter, 2000) it is
called abias learner For the remainder of this section taketo be fixed and leA be any meta-

algorithm defined by the ERM formula (S) = Ay for some mapS+— 7 (S) € H. We also
assume the bour on the loss function to be equal to 1.

In our framework it is natural to study covering numbers for the spaedgoiithms
Hu={Ay 1 H €H}

and use them to derive an estimator prediction bound (15) as outlined in rs8ctidmposing
a uniform bound on the complexities of the hypothesis spacés then allows the application
of Theorem 5. Putting together the estimator prediction bound (15), theromidiound on the
estimation error (13) and Theorem 5, we arrive at

Corollary 7 Let
go = inf {y+4 SUpA; (Y, F (}[,I),Zm) e‘VZm/32}
y>0 8

HeH
and, ford > 0,
. t —t2n
g1 =inf {t L ANg (—,f(H,I),Zn) e < 6}.
8
Then for any environmer#, with probability at leastl — & in the draw of a meta-sampl® from
(D£)", we have

R (A}[(S)af) < %SZSIemp(A}[(SyS) + €1+E€o.
<

For convenience of comparison we give implicit bounds on the sample comtigdexhich are
easily derived usingo = €1 = £/2 andy = €/4:
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Corollary 8 Forany0O<e<1,0>0,if

4 i H, lem ,2
nzgln<9\&(l (6H> D ”)) (25)
and
>5€_12| (4su9{eH9\&(3—:J(ﬂ,l)72m)>7 (26)

then for any environmerit , with probability greater thard in the draw of a meta-samplefrom
(D£)", we have

R (AH(S),Z> < igslemp@ms),s) te.
€

J. Baxter (2000) also defines capacitiesliiptbut aims at giving a bound on

sup
HeH

1
Ep~z | iInf R(c,D)| —= $ | Ay,
D z[ce% ( )] nsgsemp( 5{5)'
valid with high probability inS as drawn from(D4)" for any . A corresponding bound on

erz (#H(S)) ;= Ep~ inf R(c,D 27
2 ((9) i~ Eoer | inf_R(@D)] @)
(which in Baxter, 2000, is called thgeneralization error of the bias learngrresults. This is
Theorem 2 in (Baxter, 2000). The expression (27) is the expectedfrible optimal hypothesis in
H (S) asD is drawn from the environment.

The inequality

erc(H(S)) = Ep~z {ESVDm Lelp[f R(c,D) ”

< ED~Z|:ES~ [R(A}[()( ,D H
- R(AH(S),f) (28)

shows that our bounds on the transfer risk also provide bounds dnNa#% however that a bound
on (27) does not itself guarantee generalization, because we may eohdiroptimal hypothesis
from a finite future sample. This is similar to the estimator prediction bounds inpgpuroach and
contrary to our bounds on the transfer risk.

In Theorem 3 of Baxter (2000) the capacity of a givéns used to formulate a uniform bound
on the estimation error of the hypothesesHnsimilar to (13). If corresponding capacity bounds
held forall hypothesis spaced € H, a bound on the transfer riﬁ(Aﬂ(s),f) would result from

the bound on (27) in a way parallel to our approach (in Baxter, 200Quadon the transfer risk
comparable to our bounds is never stated). In this case the results becomparable and the
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bounds on the sample complexities look similar. This is not surprising since kaitfations of
bounds are rooted in the same classical method (see e.g. Vapnik, 1995).

The sample complexity bounds on thresample depending on the uniform capacity bound are
then essentially the same in Baxter (2000) as in (26) (if we disregard thxa¢i32000, imposes
additional conditions om in Theorem 2). For a comparison we therefore focus on the sample
complexity bounds on the sizeof the meta-sample. In Baxter (2000) Theorem 2, to get

1
ery (#(S) < = 3 lemp(Aus) S ) +¢
S€eS

with probability at least - din S, it is required that

256, 8C (%, H)

n> =2 In 5 ) (29)

and there is an additional condition on

To compare (29) with our bound (25), we disregard the constants (wanéchetter in (25)) and
concentrate on a comparison of the complexity meastifesH*) andA (g, F (Hu, lemp) , N).

In (Baxter, 2000) the capacity(e, H*) is defined as follows: Fat{ € H define a real function
H* onMq(Z) by

H* (D)= JQLR(C’ D).

In (Baxter, 2000) there are assumptions to guaranteeAtias measurable oM; (Z), and since it
is obviously bounded we hav®™ € L1 (M1 (Z),Q) for any probability measur® €Mi (M1 (2)).
Usedg to denote the metric ihy (M1 (Z),Q) and denote

H* = {#H":H cH}.
Then

C(e,H")= sup AL(g,H",dg).
QeM1(My(2))

It turns out that our complexity measures are bounded by those in Bag@0)(2

Proposition 9 For all €, n
M (87 .{]: (HHa Iemp) 9 n) é C(SaH*) .

Proof For a sampl&S= (z,...,zn) € Z™ useDs to denote the empirical distributidbs € M; (Z)
induced bys.
l m
Ds==¥% &,
> mi; “
whered, is the unit mass concentratedzat Z. Note that forH € H we have

* NP
H (DS) = (;IQ:I[EII;I (C,Z|) - |emp(A5_[,S) :

Forameta-sampi®=(S,,...,S)) € (ZM)" useQs to denote the empirical distributi@scM; (M1 (Z))
induced bysS:

1 n
QS: - 6D y
”i; K
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wheredp is the unit mass concentratediaE M1 (2).
Now take any meta-samp®&= (S, ...,S) € (Z™" and letN = A (¢, H*,dg,). Then there is a
set of functiong W1, ..., Wn} C L1 (M1 (2)) such that for every{ € H there is somé such that

£ > dQS(}[*,Wi)

1 n
= 2,1 (bs) - i(Ds)|
= 13, Jems(An. ) (05) (30)

On the other hand we have

F (Ha,lemp) Is = { (lemp(As, S1) 5 s lemp(Asr, S)) - H € HY,

so, setting € R" with (x); = Wi (Ds,), we see from (30) that every member®fHg, lemp) |s is
within d;-distancee of somey;. It follows that

N(E,.‘T (HH,lemp) ‘57d1) < N(‘SvH*?dQs)?

whence

A1 (e, F (Hulemp,n) = sup N(g, F (Hu,lemp) |s,01)

Se(zm"

sup A (g,H",dgs)
Se(zm"

sup  AL(g,H",dg)
QEM]_(M]_(Z))
= C (87 H*)

IN

IN

We can conclude that our bounds are normally applicable when thosexte(B2000) are. It
may however happen, that our covering numbers increase polynomiallyrinvhich case we still
get tight bounds, but the capacities in (Baxter, 2000) are infinite.

6. A Meta-Algorithm for Regression

In this section we present a meta-learning algorithm for function estimatianalblorithm is based
on regularized least-squares regressjar ridge regressionas in Bousquet, Elisseeff, 2002, or
Christianini, Shawe-Taylor, 2000) and preliminary experiments appeariping.

To implicitly also define a 'kernelized’ version of the algorithm, we describeats$etting where
theinput spaces a subseX of the unit ball{||x|| < 1} in a separable, possibly infinite dimensional
Hilbert spaceH, with an appropriately defined inner product.

Theoutput space) is the interval0, 1], the data spacg is given byZ = X x 9" C{||x|| < 1} x
[0,1] and a learning task is given by a distributibne M1 (X x 9"). ThenD (x,y) is interpreted as
the probability of finding the input valueassociated with the output valyan the context of the
taskD.
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As a hypothesis or concept space we consider the bounded linetiohaish on H which can
be identified with membeiis € H via the action of the inner produbtx) = (h,x) in H.
As a loss function we ude H x Z — R, given by

I (h7 (X7y)) = (<h7 X> _y)z'
This loss function is unbounded contrary to what is generally requiredsipéper. It will however

turn out that the effective hypothesis space searched by the algorithtiis isection is the ball
{|In] < A=Y2} where) is the regularization parameter introduced below.

6.1 Regularized least squares Regression

A standard algorithrh € A(H, Z) for this type of problem is defined as follows: L8 (z1,...,Zm) =
((X1,¥1) 5 ---, Xm, Ym)) € Z™ be a sample. We write, fdre H,

m

L = 5 (0x) —30)° +AlI?

and define
A(S) =arg mi_InL (h). (31)
c

Note thath [[A(S)||> < L (A(S)) < L(0) < 1 so||A(S)|| < A~Y/2. The effective hypothesis space is
then {||h|| < A~%/2}, as claimed above. Thyéh,x)| < A~¥/2 and the loss function is bounded by
AL

Any component oh perpendicular to all the; will only increasel, so we may assume that
A(S) is in the subspace generated{y, ...,Xm}, in other words

m

A(S) = _Zlomq (32)

for some (possibly non-unique) vectarc R™. To find a we substitute (32) il. and equate the
gradient to zero. The result of this well known computation is the formula

(G+m\a=y (33)

whereGjj; = (x,X;) is the Gramian matrix here considered as an operatorR®i, | = §; is the
identity, andy = (y1,...,ym) the set of target values in the sample, here considered as a vector
y € R™. Equation (33) can be efficiently solved farusing the Cholesky decomposition method.
The formula for the empirical loss @f(S) is, using (32) and (33)

lemp(A,S) = Z
= i ((G+mAl)a yi—mAai)z
) Z
= mz_;af. (34)

It follows from example 3 in (Bousquet, Elisseeff, 2002) that the algorithiso defined is
B-stable withp = 2/ (Am).
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6.2 A Meta-Algorithm

Consider now a meta same= (S, ..., S,), drawn from(D)" for some environmeri, and sup-
pose that we have used some 'primer’ algoritAg(for example the regression algorithm above
for an appropriate value of = Ag) to train corresponding regression functidps= A (&) € H.
The sequence of vectofdo (S1),...,A0(Sh)) = (h1,...,hy) in some way contains our experiences
with the environmentE. The idea of the meta-algorithm is now to use tieasadditional fea-
turesto describe a given new data-poixit We do this by combining the-dimensional vector
(h1(x),...,hn (X)) with the existing descriptior € H.

The intuitive motivation is that we expect tiheto already describe relevant properties (sym-
metries, elimination of irrelevant features) of the environment, that we relyngoarticular if the
sample-sizes are rather small. Imagine the classification (by thresholdirrggfession functions)
of character-images of a new character set, say the greek charatterfiaving learnt other char-
acter sets (roman, gothic etc). We could attempt to describe the image of theteha by saying
that 'it looks a little bit like anx anda lot like an a, but ratherunlikeanl!’. On the basis of this
description a person might recognize the charaxtavithout any previousisualtraining data for
a.

The termsa little bit like, a lot like and unlike are quantifications given by previously learnt
regression functions fox, a andl, which may already have a certain robustness relative to defor-
mations, changes in scaling or variations in line thickness. If the samplaersizdarge we can
derive such robustness more directly and reliably from the training dataitself, but for a very
small sample-size we expect the new features to be helpful. The whole &tearigly related to the
Chorus of Prototypemtroduced by Edelman (1995), so we will call our algorit@R-Regression

To formally define the algorithm, consider a’primer’ algorithge 4 (H, Z) such that|Ag (S)|| <
K for all Se€ Z™. For example we could take fdy the regularized least squares regression, as de-
fined above, with a regularization parameigr in which case we would have = )\51/2. Fix a
mixture parameten € [0, 1] which will be used to interpolate between the old and the new features

and a regularization paramefer- 0.

Now let the meta-sampl8 = (S, ...,S,) be given. We have to define an algoritth(S) €
A (H,Z). On the vectorspadd we define a new inner produgt .)s by

bt = (1) ba) + b 3 (Ro(S).3) Ao(S0.0) (35)
=1

which is positive definite for & p < 1 (in the caser = 1 we can use a quotient construction to
replaceH, which then becomes'-dimensional with’ < n). We will use||.||5 to denote the norm
corresponding td.,.).

Let Se Z" be any sampleS= (z,...,Zm) = ((X1,Y¥1) ,---, Xm,Ym)) With x; € H, ||x]| < 1,y; €
[0,1]. We define

m

A(S)(9) =argmin. 5 ((hx)s ) Al

and the corresponding regression function
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Note that

- N2+ 3 (Ao (50,07

2
KN &

2
Ixlls

IN

i n
=W+ a0 3 K2 I =,

soX C {||x||s < 1}. ThereforeA (S) is ordinary regularized least squares regression with the mod-
ified inner product_,.)s. It follows from the analysis in (Bousquet, Elisseeff, 2002) that the-algo
rithmsA (S) are uniformlyp-stable with = 2/ (mA), for every meta-sampl8, with respect to the
square loss function we use.

The implementation oA is straightforward: Givers = (S,...,S,) one computes the vectors
hx = Ao (S). Now for any newm-sampleSthe Gramian

M

K2n <hk7xl> <hk7X2>

NM s

(Gs)ij = (Xi»Xj)g = (1= 1) (X, X)) +

k=1

is determined, and the equatiéBs+ mAl)a =y is solved fora using Cholesky decomposition.
We then get the regression function

X = _iai <Xi7X>S:
— -y i (%, S yih ;
(1-p ;G (% X>+uk;vk< K X)

with .
1
Yk = @i;m (i, %) .

In a nonlinear case, when the inner productiins defined by a complicated kernel, this regres-
sion function may be cumbersome to compute since all the computatighg rf will each again
involve m computations of the kernel. Also the entire meta-san$leas then to be present in
memory. In a linear case, when the vectorspace operatiodsdan be performed explicitly, the
computational burden is significantly reduced to the computation of a singlepno@uct(h, x) of

X with the vector -

n
h=(1-p Z(Xm —HJ.kZ Y
= =1

which is determined once during training.

6.3 Analysis of CP-Regression

As already noted the algorithn#s(S) are uniformly-stable with3 = 2/ (mA), for every meta-
sampleS, with respect to square loss. This gives condition 2 for the applicatiomebiem 1.

The first condition, essential for the estimator prediction bound, is satisfiedrtue of the
following proposition which is proven in the next subsection:
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Corollary 10 The algorithmA is uniformlyp’-stable w.r.t. ¢mpinthe sense that, 8= (S, ., S, .., S)
is a meta sample an=(S;,., S-1,S+1.-, ) is the same aS, with only some Sdeleted, then

[lemp(A (S),S) —lemp(A (S) )| < B

for every sample 8 Z™, with

Substitution in Theorem 1 gives, for every environméniwith probability at least -8 in a
meta-samplé& drawn from(Dz)",

1
R(A(S),E) < Haéslemp(A(S%S)"'

8l
+)\(n—1)+()\(n—1) iy

+—. (36)

16un 1 In(1/5) 4
) 2n mA

The bound gives a performance guarantee of the algorithm applied te tatks on the basis

of the empirical term
1

(lemplemp(A:S) = = > lemp(A(S).S). (37)
SeS

If =0, corresponding to no meta-learning at all, the bound (36) becomes tiractige to look
at, but we expect the empirical term to be larger. For smatlis better to take small, while
for very large values ofi the value ofy which results in the smallest empirical term is best. It is
tempting to minimize the bound with respecitoUnfortunately (36) applies only if the parameters
of A have been fixed in advance, it does not justify the selection of the panahgteor the choice
of the primer algorithn®g which enters the bound only indirectly through the term (37)). Although
this problem can be partially eliminated (see the method of sieves as used imjni999), it
remains a major weakness of our algorithm. A more principled approach woaulle the direct
minimization of

%Sgslemp(A,S)JrN(A)

whereN (A) would be some meta-regularizer. Our algorithm attempts to decrease the q(&ifjtity
only indirectly by the passage to (presumably) more reliable features.

6.4 Stability of CP-Regression

In this subsection we prove Proposition 10. For a bounded opératara real Hilbert space we

use||T||., to denote its operator norm

Tl = sup[TX|= sup [(Txy)|
IxI<1 Iyl

and useTt, Ker(T) andRan(T) to denote its transpose, nullspace and range respectively. A sym-
metric operator satisfied x y) = (x, Ty) for all x andy (i.e. T = T!), and a positive operator is a
symmetric operator also satisfyiri@ x,x) > 0 for all x.
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Lemma 11 Let G; and G be positive operators andl > 0. Then
1. G + Al isinvertible,

2.H(Gi +)\I)’1Hm <1/\ and
3. we have
H(Gl+>\|)—1— (GZ—H\I)_le < )\—12 1G1— Gal.,.

4. Let x and % satisfy(G; +Al)x; =y. Then
[Ixall? = [xel”| < 202Gy — Gall Iy

Proof 1. If (Gi+Al)x=0 then—A||x|| = (Gix,x) > 0 sox=0. ThusG; + Al is 1-1, and since
Ran(G; +Al) = Ran((G +Al)") = Ker (G +Al)*" = {0} " itis also onto.
2. SUpposéG; +Al)x=y. Then

NIXIE = [ly—GxlI* = IylI* —2(Gix.y) + || Gix||*
= [IVI? = 2(Gix, Gix+Ax) +[|GixX||?
= IVIP = IGXII* = 22 (x.Gix) < [lyl|*,

which proves the second conclusion.
3. We have

((Gl+)\l)’1— (GZ+A|)*1) (Go+Al)

= (GL+ M) (G4 A +Go—Gp) — (G +Al) " H(Gy+Al)
= (G1+A) (G2 —Gy),

S0, using the second conclusion,

H(Gl+)\l)’1— (GﬁAl)*lH

[ee]

o0

= [[G1+A) (G2 -Gy (G2 + M)
<||[@+a)7 2 Gall |[(Ga+ A1)
<A?|G1— Gyl -

Finally, using the first three conclusionsxif= (G; + Al )*ly, then

| (X1 + X2, X1 — X2) |

(xall +- Il ) [0 =%l
(227 Hyl) (A 211G~ Gellu lIyI) -

2 2
a2 = Il

IN A
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Proof of Proposition 10. Suppoe= (S, ., S, -, Sh) is a meta sample and tht= (S, ., S¢,-1, S 15 Sh)
is the same aS, with only someS,, deleted. We have to show that

4
A(n—1)

“emp(A (5,9 - Iemp(A (S’) ,S)} <

for every sampl&S= (z,...,Zm) = (X1, Y1) , -, Xm, Ym)) € Z™.
Let G andG’ be the gramian matrices arising from the vectgrand the inner products, .)
and(.,.)g respectively, that is
Gjj = <Xi,Xj>S andGi’j = <Xi,Xj>S,.

We regardG andG’ as operators o®™ and us€|. ||, and (., .), for the canonical norm and inner
product inR™ respectively
We have, using (35) and denotihg= Ao (&),

—M U
G” _Gllj = mk;a <hk,xl> <hkaxj>+ﬁ <hk0’x|> <hk0’XJ>

so, ifn andy are any two unit vectors iR™, we have, withv = ; nix; andw = 3", yjx;,

H 2 u 5
L
< = 3 M I+ 22 Il v
2u
<
< g IvIHiwi

Now using the triangle and Cauchy Schwarz inequalities

m m m 1/2
(| < 3 il %l < il | 3 %07 < m*2
&7 =5 &

Iwl| < m/2,

so that|((G—G')n,y),,| < (2um) / (n—1). Sincen andy were arbitrary unit vectors we have

VIl =

and similarly

2um

/
jo-c, < 2

(38)

Now if a anda’ are vectors ifR™ which are solutions ofG— mAl)a =yand(G' —mAl)a’ =y
respectively, ang € R™ is a vector with|y;| < 1, then, using the last conclusion of Lemma 11
together with (38),

2(m\) |G~ G|, Iyl

4m 2\ 3ully|l3,/ (n—1)
am A 3p/ (n—1).

[

ININ A
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Using the formula (34) for the empirical error in regularised least sguagression then gives

lemp(A(S).9) ~lemp(A (S) )| = A2 a3~ |a’|2]

4
< .
- A(n=-1

7. Conclusion

We have employed established analytical tools of statistical learning thearglya transfer learn-
ing. The notion of uniform algorithmic stability has proven to be particularlyuls&any interest-
ing problems remain, of which we mention only two:

1. The unnatural requirement, that all sample-sizes be equal to the meter|s&ould be elim-
inated.

2. CP-Regression could be implemented and systematically tested with a nokénselr
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