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Abstract

A mechnism of transfer learning is analysed, where samples drawn from different learning tasks
of an environment are used to improve the learners performance on a new task. We give a gen-
eral method to prove generalisation error bounds for such meta-algorithms. The method can be
applied to the bias learning model of J. Baxter and to derive novel generalisation bounds for meta-
algorithms searching spaces of uniformly stable algorithms. We also present an application to
regularized least squares regression.
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1. Introduction

We formally study the phenomenon oftransfer, where novel tasks and concepts are learned more
quickly and reliably through the application of past experience. Transfer is fundamental to human
learning (see Robins, 1998, for an overview of the psychological literature) and offers a way to
partially escape the implications of theNo Free Lunch Theorem(NFLT).

The NFLT states that no algorithm is superior to another when averaged uniformly across all
learning tasks. In a real environment, however, not all learning tasks occur equally likely. They are
distributed according to some environmental distributionE , which is far from uniform. By gather-
ing information on this distribution of tasks, a learner can possibly find an algorithm to outperform
other algorithms, but, of course, only on average over the distributionE .

This mechanism ofmeta-learninghas been analysed by Jonathan Baxter (1998, 2000) and
there have been several successful experiments in practical machine-learning contexts (see Caruana,
1998; Thrun, 1996, 1998) and Section 6). In this paper we extend the results in Baxter (2000) and
offer a general method to control the generalization error of meta-learning. We begin by reviewing
some notions of learning theory.

Generalization error bounds. Statistical learning theory deals withdata andhypotheses. A
data pointzmay be an input-output pairz= (x,y) and a hypothesiscmay be some functionx 7→ c(x),
but for many theoretical results data and hypotheses can be arbitrary objectsz andc, related only
through a nonnegativeloss function l(c,z) which measures how poorly the hypothesisc applies to
the data pointz. The familiar square lossl (c,(x,y)) = (c(x)−y)2 is an example wherez= (x,y)
with y∈ R andc : x 7→ c(x) ∈ R.

A learning taskis modelled by a probability distributionD on the set of data points,D(z) being
interpreted as the probability that the data pointz will be encountered under the conditions of the
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taskD. For a given hypothesisc therisk

R(c,D) = Ez∼D [l (c,z)] (1)

measures how poorly the hypothesisc is expected to perform onD.
A learning algorithm Atakes asample S= (z1, ...,zm) of data, drawn iid from the distributionD

defining the learning task, and computes a hypothesisA(S). The returned hypothesis should work
well on the same learning taskD, so we want the riskR(A(S) ,D) to be small. The quantity

ES∼Dm [R(A(S) ,D)] (2)

would be a natural measure for the performance of a given algorithmA with respect to a given
learning taskD.

Unfortunately the distributionD itself is generally unknown, so that we cannot compute or
bound (2) directly. We do, however, know the sampleSwhich was drawn fromD, and we may give
a performance guarantee forA conditioned onS, but for arbitraryD. Such ageneralization error
boundis typically given by specifying a two argument functionB(δ,S), whereδ > 0 is a confidence
parameter, and the requirement that

∀D,Dm{S: R(A(S) ,D) ≤ B(δ,S)} ≥ 1−δ. (3)

The bound above states that with high probability (1−δ) in Sthe learning-resultA(S) will have risk
bounded byB. Section 3 will give examples of generalization error bounds.

Meta-Learning. This paper describes a mechanism by which a sequenceS=(S1, ...,Sn) of
samples, drawn from different learning tasksD1, ...,Dn, can be used to improve and predict the
performance of a learner on anunknown future task. We will give bounds analogous to (3) and also
present a practical algorithm.

The crucial idea, due to J. Baxter (1998, 2000), is that the learning tasks Di originate from
an environmentof tasks, which is a probability distributionE on the set of learning tasks. The
encounter with a new learning task is thus modelled as a random event, a drawD ∼ E of a task
D. Subsequent to the draw ofD a sampleS= (z1, ...,zm) may be generated by a sequence ofm
independentdraws fromD. Let DE (S) be the overall probability for anm-sampleS to arise in this
way,

DE (S) = ED∼E [Dm(S)] .

The accumulation of experience is then modelled byn independentdraws of samplesSi ∼ DE ,
resulting in the sample-sequence ormeta-sampleS=(S1, ...,Sn) (also called ’support sets’ by S.
Thrun, 1998, or(n,m)-samples by J. Baxter, 2000). The probability forS to arise in this manner is
(DE )n(S) and depends completely on the environmentE . We generally usem to denote the size of
the ordinary samples andn for the size of the meta samples. We also use bold lettersD, S, l, etc
to distinguish objects of meta-learning from the corresponding objects of ordinary learningD, S, l ,
etc.

A learners behaviour is formally described by a learning algorithmA. To say that the meta-
sampleS is used to determine the behaviour of the learner on future learning tasks can therefore be
expressed in the equation

A = A (S)
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whereA is a function which returns a learning algorithm for every meta-sampleS. The objectA
will be called ameta-algorithm. SinceA (S) is an algorithm we can train it with a sampleSto obtain
a hypothesisA(S)(S).

An example of a meta-algorithm is feature-learning whereA selects a feature map to preprocess
the input of a fixed algorithm. Another example is given in Section 6. In general, any method that
adjusts the parameters of an algorithm on the basis of the experience made withother learning tasks
can be regarded as a meta-algorithm.

To state generalization error bounds for meta-algorithms, we need to definea statistical mea-
sure of the performance of an algorithmA with respect to an environmentE , analogous to the risk
R(c,D) of a hypothesisc with respect to a taskD. The risk (1) measures the expected loss of a
hypothesis for future data drawn from the task distributionD, so the analogous quantity for an algo-
rithm should measure the expected loss of the hypothesis returned by the algorithm for future tasks
drawn from the environmental distributionE . A corresponding experiment involves the random
draw of a taskD from E , training the algorithm with a sampleSdrawn randomly and independently
from D, and applying the resulting hypothesis to data randomly drawn fromD. Formally

R(A,E) = ED∼E [ES∼Dm [R(A(S) ,D)]] = ED∼E [ES∼Dm [Ez∼D [l (A(S) ,z)]]] . (4)

The transfer riskR(A,E) measures how well the algorithmA is adapted to the environmentE . If
E is non-uniform the NFLT doesn’t apply, and we may hope to optimizeR(A,E) in A.

If the environment was known, we could in principle selectA so as to minimize (4), but the only
available information is the past experience or meta-sampleS. The situation is analogous to ordinary
learning. Now suppose thatA is a meta algorithm. The idea is to boundR(A (S) ,E) in terms ofS
with high probability inS, asS is drawn from the environmentE for every environmentE . GivenS
we can then reason that, regardless ofE , the bound is true with high probability. Formally we seek
a functionB such that, given a confidence parameterδ,

∀E ,(DE )n{S : R(A (S) ,E) ≤ B(δ,S)} ≥ 1−δ. (5)

The principal contribution of this paper is a general method to prove bounds of this type for
different classes of meta-algorithms.

The Method. Given an algorithmA, let l (A,S) be anestimatorfor the risk ofA(S) given the
sampleS= (z1, ...,zm). For example setl = lempwith the empirical estimator

lemp(A,S) =
m

∑
i=1

l (A(S) ,zi) .

We then write, usingES∼DE
[ f (S)] = ED∼E [ES∼Dm [ f (S)]],

R(A (S) ,E)

= ES∼DE
[l (A (S) ,S)]+ED∼E [ES∼Dm [R(A (S)(S) ,D)− l (A (S) ,S)]]

≤ ES∼DE
[l (A (S) ,S)]+sup

D,S′

∣

∣ES∼Dm
[

R
(

A
(

S′)(S) ,D
)

− l
(

A
(

S′) ,S
)]∣

∣ . (6)
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To control the first term in the last line it suffices to prove a bound of the type

∀D ∈ M1(Zm) ,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ, (7)

whereD ∈ M1(Zm) refers to any probability distribution on the setZm of m-samples. Notice that
(7) has exactly the same structure as an ordinary generalization error bound (3) whereD has been
repaced withD, Swith S, A with A, l with l, andB with Π. We therefore propose to use established
results of learning theory to obtain the statement (7). Because it controls future values of the esti-
mator, a two-argument functionΠ satisfying (7) will be called anestimator prediction boundfor A
with respect to the estimatorl.

The simplest case, where a nontrivial estimator prediction bound can be found, occurs whenA
searches only a finite set of algorithms, but there are many other possibilities, some are listed in
Section 3.

Suppose that we have established (7). To obtain (5) it will be sufficient tobound the second
term in the last line of (6).

Methods for deriving ordinary generalization error bounds often usean intermediate bound on
the estimation error

|R(A(S) ,D)− l (A,S)| ,
valid for all distributions with high probability inS, for example by bounding the complexity of a
hypothesis space searched byA. Such bounds lead to a general method to control the second term
in (6) and to prove (5). Theorem 5 states a corresponding result, whichis applied in Section 5.2 to
improve on the results in (Baxter, 2000).

A second method to bound the estimation error in (6) involves the notion ofalgorithmic sta-
bility. This method is less general but more elegant and often gives tighter bounds. Bousquet and
Elisseeff (2002) have shown how generalization error bounds for learning algorithms can be ob-
tained in an easy, elegant and direct way. Instead of measuring the size of the space which the
algorithm searches, they concentrate directly on continuity properties of the algorithm in its depen-
dence on the training sample. A learning algorithm isuniformlyβ-stableif the omission of a single
example doesn’t change the loss of the returned hypothesis by more thanβ, for any data point and
training sample possible. Many algorithms are stable and stable algorithms have simple bounds on
their estimation error. Corresponding theorems can be found in (Bousquet, Elisseeff, 2002). The
requirement of stability has been weakened and the results have been extended by Kutin and Nyogi
(2002).

If for someβ and allS the algorithmA (S) is uniformlyβ-stable, then the estimation term in (6)
can be bounded in a particularly simple way, namely by 2β, as stated in Theorem 6.

Results. Algorithmic stability is also useful at a different level to prove that a meta-algorithm
A has an estimator prediction bound. This can be done by appealing to Theorem 12 in (Bousquet,
Elisseeff, 2002) (stated as Theorem 2 in Section 3). The following is an immediate consequence of
this theorem in combination with our Theorem 6:

Theorem 1 Suppose the meta-algorithmA satisfies the following two conditions:
1. For every meta sampleS=(S1, ...,Sn), let S\i be the same asS except that one of the Si has

been deleted. Then for everyS,S\i and every ordinary sample S we have
∣

∣

∣
lemp(A (S) ,S)− lemp

(

A
(

S\i
)

,S
)∣

∣

∣
≤ β′.
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2. For every ordinary sample S= (z1, ...,zm), let S\i is the same as S except that one of the zi

has been deleted. Then for every meta sampleS and every S and S\i we have

∣

∣

∣
l (A (S)(S) ,z)− l

(

A (S)
(

S\i
)

,z
)∣

∣

∣
≤ β.

Then for every environmentE we have, with probability greater than1−δ in the meta-sample
S=(S1, ...,Sn) drawn from(DE )n, the inequality

R(A (S) ,E) ≤ 1
n

n

∑
i=1

lemp(A (S) ,Si)+2β′ +
(

4nβ′ +M
)

√

ln(1/δ)

2n
+2β. (8)

The left hand side of the last inequality measures the expected performance of the algorithm
A (S) for all, and potentially yet unknown, tasks of the environmentE . The right side is composed
of an empirical estimate and terms depending on the sample sizesn andm, the stability parameters
β′ andβ and the confidence parameterδ. If β′

≈ 1/na andβ ≈ 1/mb, with a > 1/2 andb > 0, the
bound of the theorem becomes non-trivial.

We apply these results to a practical meta-algorithm for least squares regression. This meta-
algorithm is related to theChorus of Prototypesintroduced by Edelman (1995), so we call itCP-
Regression. CP-Regression takes the meta-sampleS=(S1, ...,Sn) and uses a primitive algorithmA0

to compute a set of corresponding regression functionsh1, ...,hn. For any new input objectx the
feature vector ofx is then mixed with (or even replaced by) the vector(h1(x) , ...,hn(x)). Finally
A (S) is defined to be regularized least squares regression with this modified input representation.
We show that Theorem 1 applies to this meta-algorithm, withβ′

≈ 1/n andβ ≈ 1/mas required.
CP-Regression can be implemented in practice and preliminary experiments seem to indicate

that meta-learning gives a practical advantage over ordinary regularized least squares regression.

Outline of the Paper. In Section 2 we give a summary of the definitions and notation used
in the paper. This section is intended as a reference for the reader. In Section 3 we show how to
obtain estimator prediction bounds from standard results in learning theory.In Section 4 we derive
transfer risk bounds for meta-algorithms. In Section 5 we attempt a comparison of our bounds to
ordinary generalization error bounds and compare our method and results to the approach taken
by J. Baxter (2000). In Section 6 we discuss regularized least squares regression, introduce CP-
regression, analyse its properties and present some preliminary experimental results.

2. Definitions and Notation

This section is intended as a reference for the notation and definitions usedin the paper.

Measurability. Any subset which we explicitely define on a measurable space will be assumed
measurable, as will be any function. Thus for example ’F ⊆R’ is shorthand for the statement ’F ⊆R

andF is Lebesgue-measurable’.M1(X) will always denote the space of probability measures on a
measurable spaceX. We supplyM1(X) with anyσ-algebra containing theσ-algebra generated by
the set of functions

µ∈ M1(X) 7→ Ex∼µ [ f ]

971



MAURER

for all bounded measurable functionsf and all singleton sets{µ} for µ∈M1(X). In this wayM1(X)
becomes itself a measurable space and it makes sense to talk aboutM1(M1(X)).

Learning and Algorithms. ThroughoutZ will be a measurable space ofdata-points z∈ Z, C a
space ofhypothesesor concepts c∈C andl : C×Z→ [0,M] a loss function. Samplesare polytuples
S∈ S∞

m=1Zm, andlearning algorithmsare symmetric functions

A :
∞

[

m=1

Zm →C.

Symmetry, which will be essential for our use of stability, means that for any permutationπ on
{1, ...,m} and anyS∈ Zm we haveA(π(S)) = A(S) whereπ(S) refers to the permuted sample

π(z1, ...,zm) =
(

zπ(1), ...,zπ(m)

)

.

The set of such algorithms depends only onC andZ and will be denoted byA (C,Z). The hypothesis
A(S) is what results whenA is trained withS.

Learning Tasks and Risk. A learning taskis specified by a probability measureD ∈ M1(Z).
Given such a taskD and a hypothesisc∈C and a loss functionl we use

R(c,D) = Ez∼D [l (c,z)]

to denote therisk (=expected loss) of the hypothesisc in taskD w.r.t. the loss functionl .

Generalization Error Bounds. A function B : (0,1]×S∞
m=1Zm → [0,M] is a generalization

error boundfor the algorithmA∈ A (C,Z) with respect to the loss functionl iff

∀D ∈ M1(Z) ,∀δ > 0,Dm{S: R(A(S) ,D) ≤ B(δ,S)} ≥ 1−δ.

Estimators and Algorithmic Stability. The leave-one-out estimator lloo and theempirical
estimator lempare the functions (the notation is from Bousquet, Elisseeff, 2002)

l loo, lemp: A (C,Z)× (Zm) → [0,M]

defined forA∈ A (C,Z) andS= (z1, ...,zm) ∈ Zm by

l loo(A,S) =
1
m

m

∑
i=1

l
(

A
(

S\i
)

,zi

)

,

whereS\i generally denotes the sampleSwith the i-th element deleted, and

lemp(A,S) =
1
m

m

∑
i=1

l (A(S) ,zi) .

For β > 0 an algorithmA∈ A (C,Z) is calleduniformlyβ-stable w.r.t. the loss function lif

|l (A(S) ,z)− l
(

A
(

S\i
)

,z
)

| < β,
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for everym, for everyS∈ Zm, z∈ Z andi ∈ {1, ...,m}.

Environments and Induced Distributions. A meta-learning task is specified by anenviron-
ment

E ∈ M1(M1(Z))

which models the drawing of learning tasksD ∼ E . The environmentE defines aninduced distri-
butionDE ∈ M1(Zm), by

DE (F) = ED∼E [Dm(F)] for F ⊆ Zm measurable. (9)

The corresponding expectation for a measurable functionf onZm is then

ES∼DE
[ f ] = ED∼E [ES∼Dm [ f (S)]] .

The induced distributionDE models the probabilityDE (S) for anm-sampleS to arise when a task
D is drawn from the environmentE , followed bym independent draws of examples from the same
distributionD. DE is not a product measure, but a mixture of symmetric product measures, and
therefore itself symmetric. Repeated, independent draws fromDE give rise tometa-samples(see
below).

Transfer Risk. Given an environmentE ∈ M1(M1(Z)), an algorithmA∈ A (C,Z) and a loss
function l : C×Z → [0,M] the transfer riskof A in the environmentE w.r.t. the loss functionl is
given by

R(A,E) = ED∼E [ES∼Dm [R(A(S) ,D)]] .

It gives the expected risk of the hypothesisA(S) for a taskD randomly drawn from the environment
and the sampleS randomly drawn from this task. It measures how poorly the algorithmA is suited
to the environmentE .

Meta-Samples and Meta-Algorithms. We use the letterS to denote ameta-sample, S =
(S1, ...,Sn) ∈ (Zm)n. Such can be generated by a sequence ofn independent draws from some distri-
butionD∈M1(Zm), typically the distributionDE induced by an environmentE , that isS∼ (DE )n.

A (A (C,Z) ,Zm) is the set ofmeta algorithms. That is for A ∈ A (A (C,Z) ,Zm) and S ∈
S∞

n=1(Zm)n the objectA (S) is the algorithmA = A (S) ∈ A (C,Z) which results from trainingA
with the meta-sampleS. Given anm-sampleS, the objectA (S)(S) is the hypothesis returned by the
algorithmA (S), when trained with an ordinary sampleS.

Estimator Prediction Bounds. A function Π : (0,1]× S∞
n=1(Zm)n → [0,M] is an estima-

tor prediction boundfor the meta-algorithmA ∈ A (A (C,Z) ,Zm) with respect to the estimator
l : A (C,Z)× (Zm) → [0,M] iff

∀D ∈ M1(Zm) ,∀δ > 0,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ. (10)

An estimator prediction bound is formally equivalent to an ordinary generalization bound under the
identificationsZ ↔ Zm, C↔ A (C,Z) , l ↔ l, A↔ A, B↔ Π.

Meta-Estimators. Given an estimatorl : A (C,Z)×(Zm)→ [0,M] theempirical meta-estimator
lemp is the function

lemp: A (A (C,Z) ,Zm)× (Zm)n → [0,M]
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defined forA ∈ A (A (C,Z) ,Zm) andS= (S1, ...,Sn) ∈ (Zm)n by

lemp(A,S) =
1
n

n

∑
i=1

l (A (S) ,Si) .

The meta-estimatorl loo is defined analogously. These definitions depend on the choice of the esti-
matorl itself. For example ifl=l loo then

(l loo)emp(A,S) =
1
n

n

∑
i=1

l loo(A (S) ,Si) .

Ordinary learning Meta learning
Data z∈ Z S= (z1, ...,zm) ∈ Zm

Samples S= (z1, ...,zm) ∈ Zm S= (S1, ...,Sn) ∈ (Zm)n

Hypotheses c∈C A∈ A (C,Z)

Algorithms A∈ A (C,Z) A ∈ A (A (C,Z) ,Zm)

Loss function l : C×Z → [0,M] l : A (C,Z)×Zm → [0,M] ,
wherel = lempor l loo

Learning Task D ∈ M1(Z) D ∈ M1(Zm), typically
D = DE whereDE is
induced by an environment
E ∈ M1(M1(Z)) (see(9))

Empirical lemp(A,S) = lemp(A,S) =

estimator = 1
m ∑m

i=1 l (A(S) ,zi) = 1
n ∑n

i=1 l (A (S) ,Si)

Risk R(c,D) = Ez∼D [l (c,z)] ES∼D [l (A,S)]

Bound Generalization error Estimator prediction

Table 1: This table relates the descriptions of ordinary and meta-learning tasks.

An important object which isnot mapped is the transfer riskR(A,E). Correspondingly an
estimator prediction bound isnot a generalization error bound for the transfer risk.

Covering Numbers.These definitions are taken from (Anthony, Bartlett, 1999). LetX be a set,
X0 ⊆ X. Forε > 0 and a metricd onX the covering numbersN (ε,X0,d) are defined by

N (ε,X0,d) = min
{

N ∈ N : ∃(x1, ...,xN) ∈ XN,∀x∈ X0,∃i,d(x,xi) ≤ ε
}

.

For a classF of real functions onX andS= (x1, ...,xn) ∈ Xn defineF �S⊆ R
n by

F |S = {( f (x1) , ..., f (xn)) : f ∈ F } ,

and define, forε > 0 and any givenn,

N1(ε,F ,n) = sup
S∈Xn

N (ε,F |S,d1) ,
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whered1 is the metric onRn defined by

d1(x,y) =
1
n

n

∑
i=1

|xi −yi | .

Loss Function Classes.Let H ⊆ C. The loss function classF (H , l) is the family of real
functions

F (H , l) =
{

z∈ Z 7→ l (c,Z) : c∈ H
}

.

For F (H , l) we use the topology of pointwise convergence which it inherits as a subsetof [0,M]Z.
A set H ⊆ C is called closed if F (H , l) is closed in this topology (and therefore also com-
pact by Tychonoffs theorem). IfH is closed then any finite linear combination of functionsc ∈
H 7→∑i αi l (c,zi) attains minima and maxima inH .

ForH ⊆A (C,Z) and a given estimatorl : A (C,Z)×Zm→ [0,M] we define an analogous (meta-)
loss function class

F (H, l) = {S∈ Zm 7→ l (A,S) : A∈ H} .

3. Estimator Prediction Bounds

In this section we give examples of estimator prediction bounds obtained fromestablished results
of statistical learning theory.

Selection from a Finite Set.Set the bound on the loss functionM to be equal to 1 for simplicity
and suppose that there is afiniteset of hypothesesH ={c1, ...,cK} ⊆C. Define the algorithmA for
a sampleS= (z1, ...,zm) ∈ Zm by

A(S) = argmin
c∈H

1
m

m

∑
j=1

l (c,zj) .

A well known application of Hoeffdings inequality and a union bound (see e.g. Anthony, Bartlett,
1999) give, for anyδ > 0,

∀D,Dm

{

S: sup
c∈H

∣

∣

∣

∣

∣

R(c,D)− 1
m

m

∑
j=1

l (c,zj)

∣

∣

∣

∣

∣

≤
√

ln(K/δ)

2m

}

≥ 1−δ, (11)

which gives the following generalization error bound forA:

∀D ∈ M1(Z) ,∀δ > 0,Dm{S: R(A(S) ,D) ≤ B(δ,S)} ≥ 1−δ

with

B(δ,S) = lemp(A,S)+

√

lnK + ln(1/δ)

2m
.

Note that this bound also holds for every algorithm searching a finite set ofhypotheses of cardinality
at mostK, that is for every algorithm withA(S) ∈ H for all Sand some setH with

∣

∣H
∣

∣≤K.
We now use the table at the end of the previous section. SubstitutingZm for Z, A (C,Z) for C,

l = lemp or l = l loo for l and a finite set of algorithms{A1, ...,AK} for {c1, ...,cK} , we arrive at the
following statement:
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Every meta algorithmA that suchA (S) ∈ {A1, ...,AK} for all S=(S1, ...,Sn) has the estimator
prediction bound

∀D ∈ M1(Zm) ,∀δ > 0,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ

with

Π(δ,S) = lemp(A,S)+

√

lnK + ln(1/δ)

2n
. (12)

Selection from a Set of Bounded Complexity.Again withM = 1 consider a subsetH ⊆C. It
follows from the analysis in chapter 17 in (Anthony, Bartlett, 1999) and Theorem 21.1 of the same
reference, that the following holds for every 0< ε < 1 and every distributionD onZ:

Dm

{

S∈ Zm : ∀c∈ H ,

∣

∣

∣

∣

∣

Ez∼D [l (c,z)]− 1
m

m

∑
j=1

l (c,zj)

∣

∣

∣

∣

∣

≤ ε

}

≥ 1−4N1

( ε
8
,F (H , l) ,2m

)

e
−ε2m

32 . (13)

which implies the following generalization error bound, valid for every algorithm A searching only
the hypothesis spaceH :

B(δ,S) = lemp(A,S)+ inf

{

t : 4N1

( t
8
,F (H , l) ,2m

)

e
−t2m

32 ≤ δ
}

. (14)

Suppose now thatH ⊆ A (C,Z) is a space of algorithms and fix an estimatorl = l loo or l = lemp.
SubstitutingZm for Z, A (C,Z) for C, l for l andH for H , andF (H, l) for F (H , l) in the above,
we obtain analogous to (13):

For every 0< ε < 1 and every distributionD onZm:

Dm

{

S∈(Zm)n : ∀A∈ H,

∣

∣

∣

∣

∣

ES∼D [l (A,S)]− 1
n

n

∑
j=1

l (A,Sj)

∣

∣

∣

∣

∣

≤ ε

}

≥ 1−4N1

( ε
8
,F (H, l) ,2n

)

e
−ε2n

32 .

Every meta-algorithmA suchA (S) ∈ H for all S has thus the estimator prediction bound

Π(δ,S) = lemp(A,S)+ inf

{

t : 4N1

( t
8
,F (H, l) ,2n

)

e
−t2n

32 ≤ δ
}

. (15)

Uniformly Stable Algorithms . Now let M > 0 be arbitrary. Bousquet and Elisseeff (2002)
prove that uniformlyβ-stable algorithms have a generalization error bound with sample-independent
bound on the estimation error:
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Theorem 2 Let A∈ A (C,Z) be uniformlyβ-stable. Then for any learning task D∈ M1(Z) and any
positive integer m, with probability greater1−δ in a sample S drawn from Dm

l (A(S) ,D) ≤ l loo(A,S)+β+(4mβ+M)

√

ln 1
δ

2m

and

l (A(S) ,D) ≤ lemp(A,S)+2β+(4mβ+M)

√

ln 1
δ

2m
.

These bounds are good if we can show uniformβ-stability with β ≈ 1/ma, with a > 1/2. The
notion of uniform stability easily transfers to meta-algorithms to give estimator prediction bounds.
Fix an estimatorl = l loo or l = lemp and suppose that the meta-algorithm satisfies the following
condition:

For every meta sampleS=(S1, ...,Sn), if S′ is the same asS except that one of theSi has been
deleted, and for every ordinary sampleSwe have

∣

∣l (A (S) ,S)− l
(

A
(

S′) ,S
)∣

∣≤ β.

Theorem 2 then gives the estimator prediction bounds

Πloo(δ,S) = l loo(A,S)+β+(4nβ+M)

√

ln 1
δ

2n
(16)

and

Πemp(δ,S) = lemp(A,S)+2β+(4nβ+M)

√

ln 1
δ

2n
. (17)

4. Transfer Risk Bounds for Meta Algorithms

To derive the results in this section we need the following simple lemma, which can also be found
in (Bousquet, Elisseeff, 2002).

Lemma 3 Let A∈ A (C,Z). Then for any learning task D∈ M1(Z)

1. We have ES∼Dm [l loo(A,S)] = ES′∼Dm−1 [R(A(S′) ,D)].
2. If A is uniformlyβ-stable then|ES∼Dm [lemp(A,S)]−ES∼Dm [l loo(A,S)] | ≤ β.

Proof Using the permutation symmetry ofA and of the measureDm we get

ES∼Dm [l loo(A,S)] =
1
m

m

∑
i=1

ES∼Dm

[

l
(

A
(

S\i
)

,zi

)]

=
1
m

m

∑
i=1

ES′∼Dm−1

[

Ez∼D
[

l
(

A
(

S′
)

,z
)]]

= ES′∼Dm−1

[

R
(

A
(

S′
)

,D
)]

.

977



MAURER

Also

|ES∼Dm [lemp(A,S)− l loo(A,S)] |

≤ 1
m

m

∑
i=1

∣

∣

∣
ES

[

l (A(S) ,zi)− l
(

A
(

S\i
)

,zi

)]∣

∣

∣

≤ 1
m

m

∑
i=1

|ES[β]| = β.

Suppose now that we have an estimator prediction boundΠ for the meta-algorithmA with
respect to the estimatorl, so that, for allδ > 0,

∀D ∈ M1(Zm) ,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ, (18)

where the estimatorl :A (C,Z)×Zm → [0,M] refers to eitherlempor l loo. We have outlined several
ways to obtain such bounds in Section 3.

Whenl = l loo the bound (18) is already powerful by itself. By the definition ofDE and the first
conclusion of Lemma 3 we have

ES∼DE
[l loo(A (S) ,S)] = ED∼E [ES∼Dm [l loo(A (S) ,S)]]

= ED∼E

[

ES′∼Dm−1

[

R
(

A (S)
(

S′
)

,D
)]]

.

SubstitutingDE for D in (18) we conclude

Theorem 4 If the meta-algorithmA satisfies the estimator prediction bound (18) withl = l loo then
for every environmentE , with probability greater than1−δ in the meta sample drawn from(DE )n

we have
ED∼E [ES∼Dm−1 [R(A (S)(S) ,D)]] ≤ Π(δ,S) . (19)

The left side of (19) is not quite equal to the transfer riskR(A,E). Here is a first application of
this bound: Let{A1, ...,AK} be a finite collection of algorithms. For any meta sampleS= (S1, ...,Sn)
defineA (S) to be

A (S) = arg min
A∈{A1,...,AK}

1
n

n

∑
i=1

l loo(A,Si) .

The meta-algorithmA selects the algorithm with the lowest leave-one-out error on average over the
meta-sample. Applying the estimator prediction bound (12) for this type of algorithm in combina-
tion with (19) above then gives, for anyE and with probability greater than 1−δ in the meta sample
drawn from(DE )n,

ED∼E [ES∼Dm−1 [R(A (S)(S) ,D)]] ≤ 1
n

n

∑
i=1

l loo(A (S) ,Si)+

√

ln(K/δ)

2n
. (20)

A similar result should hold ifl loo is replaced by any other, nearly unbiased estimator. A popular
procedure, for example, is dividing the samplesS∈ S into training- and test-samples to estimate the
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generalization performance of an algorithm. If we chose from a finite set of candidates the algorithm
A (S) which performs best on average over the test data inS, when trained with the training data in
S, then we are implementing a version of the above meta-algorithm, and a corresponding version
of (20) gives a probable performance guarantee forA (S) on future learning tasks drawn from the
same environment asS.

For more sophisticated meta-algorithms we need to consider the casel = lemp. In this case
an estimator prediction bound only bounds the expected empirical errorlemp(A (S) ,S) of A (S)
for a sampleSdrawn fromDE , but it does not give any generalization guarantee for the hypothesis
A (S)(S). For exampleA (S) could be some single-nearest-neighbour algorithm for which we would
havelemp(A (S) ,S) = 0 for almost allS, butA (S) would have poor generalization performance.

Recall the decomposition of the transfer risk (6) in the introduction:

R(A (S) ,E)

≤ ES∼DE
[l (A (S) ,S)]+sup

D,S′

∣

∣ES∼Dm
[

R
(

A
(

S′) ,D
)

− l
(

A
(

S′) ,S
)]∣

∣ .

The estimator prediction bound controls the first term above, so it remains to bound the second
term which is independent ofS. We need to bound the expected estimation error of the estimatorl
uniformly for all distributionsD and all algorithmsA (S) for all meta-samplesS.

Theorem 5 Suppose the meta-algorithmA has an estimator prediction boundΠ with respect to the
estimatorl = lemp , and that for everyη > 0 there is a number B(η) such that for every distribution
D ∈ M1(Z), and every meta-sampleS we have

Dm{S: |R(A (S)(S) ,D)− lemp(A (S) ,S)| ≤ B(η)} ≥ 1−η. (21)

Let ε = infη (B(η)+Mη). Then for every environmentE , with probability greater than1−δ in S
as drawn from(DE )n we have

R(A (S) ,E) ≤ Π(δ,S)+ ε.

Proof For anyD, S and arbitraryη we have

ES∼Dm [R(A (S)(S) ,D)]

≤ ES∼Dm [lemp(A (S) ,S)]+ES∼Dm [|R(A (S)(S) ,D)− lemp(A (S) ,S)|]
≤ ES∼Dm [lemp(A (S) ,S)]+B(η)+Mη,

where (21) was used in the last inequality. Taking the expectationD ∼ E gives

R(A (S) ,E) = ED∼E [ES∼Dm [R(A (S)(S) ,D)]]

≤ ED∼E [ES∼Dm [lemp(A (S) ,S)]]+ ε
= ES∼DE

[lemp(A (S) ,S)]+ ε
≤ Π(δ,S)+ ε,

where the last inequality holds with probability greater than 1− δ in the meta-sampleS as drawn
from (DE )n by virtue of the estimator prediction bound (18) applied withDE in place ofD.
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The condition (21) is often satisfied, typically withB(δ) decreasing as ln(1/δ) in δ and asm−1/2

in m, so we should get a boundε decreasing about as quickly as
√

ln(m)/m. Using the results in
Section 3, now on the level of ordinary learning, we see that the above theorem can be applied

• if everyA (S) selects a hypothesis from a finite setH (S) of choices with
∣

∣H (S)
∣

∣≤ K for all
S. This follows from (11) TheH (S) may of course be different for differentS..

• if everyA (S) selects a hypothesis from a setH (S)⊆C with uniformly bounded complexities.
Here we use (13). An application is given in Section 5.2.

• if everyA (S) is uniformly β-stable withβ ≈ 1/m. This follows from Theorem 2.

In the last case we can give a much better bound, where the additional error termε is often of
order 1/m:

Theorem 6 Suppose the meta-algorithmA has an estimator prediction boundΠ with respect to
the estimatorl = lemp , and that for someβ the algorithmsA (S) are uniformlyβ-stable for every
meta-sampleS. Then for any environmentE andδ > 0, with probability greater than1−δ in S as
drawn from(DE )n

R(A (S) ,E) ≤ Π(δ,S)+2β.

Proof We have

ES∼Dm [R(A (S)(S) ,D)] ≤ ES′∼Dm−1

[

R
(

A (S)
(

S′
)

,D
)]

+β
= ES∼Dm [l loo(A (S) ,S)]+β
≤ ES∼Dm [lemp(A (S) ,S)]+2β,

where the first inequality follows directly from uniform stability and the next lines follow from
Lemma 3. Taking the expectationD ∼ E and using the estimator prediction bound (18) withDE in
place ofD gives the result in just as in the proof of the previous theorem.

Theorem 1 now follows immediately from Theorem 6 and from the estimator prediction bound
(17) in Section 3. In Section 6 an application of this theorem to a practical meta-learning algorithm
is discussed.

The estimator prediction boundΠ(δ,S) will typically depend on the sizen of the meta-sample
S= (S1, ...,Sn), and not on the sizemof the constituting samplesSi . One may therefore wonder, how
we can have anm-dependence of the estimation error as 2β (often order 1/m), while in Theorem 2

(Bousquet, Elisseeff, 2002) it is 2β + O
(

√

1/m
)

. The reason for this difference is that to bound

the transfer-risk in the above proof we only need to bound the expectationin S of the random
variableR(A (S)(S) ,D), whereas the proof of Theorem 2 in (Bousquet, Elisseeff, 2002) needs to
use McDiarmid’s concentration inequality to bound this random variable itself with high probability

in S, which is where theO
(

√

1/m
)

term comes from.

980



STABILITY AND META-LEARNING

5. Comparison to Other Results

In this section we relate our results to others, beginning with a comparison to ordinary generaliza-
tion bounds. Then we compare our method to the approach taken by J. Baxter (2000) where the
generalization of meta-algorithms is also studied.

5.1 Comparison to Ordinary Generalization Error Bounds

Are our results better or worse than ordinary generalization error bounds? This question is at the
same time very important and very imprecise, because the two kinds of results refer to different
objects and situations.

The ordinary generalization error bound (examples in Section 3) applies toa situation where a
sampleShas already been drawn from an unknown taskD and the estimatorlemp(A,S) already has
a definite value. It typically has the structure

∀D,Dm{S: R(A(S) ,D) ≤ lemp(A,S)+ ε0} ≥ 1−δ

whereε0 is a bound on the estimation error. Oftenε0 ≈
√

1/m.
Our bounds on the other hand apply to a situation where only the meta-sampleS is known, and

typically have the structure

∀E ,(DE )n{S : R(A (S) ,E) ≤ Π(δ,S)+ ε′0
}

≥ 1−δ

whereΠ(δ,S) is the estimator prediction bound andε′0 is again a bound on the estimation error,
uniformly valid for all algorithmsA = A (S) for anyS.

To getε′0 our method always requires some condition (uniform bounds on estimation errors,β-
stability) on the algorithmsA (S), which is also sufficient to prove an ordinary generalization error
bound for such algorithmsA (S). The corresponding estimation errors are about the same in our
bounds and in the ordinary generalization error bounds. In case of Theorem 5 ourε′0 is slightly
worse than that of the ordinary bound (i.e.

√

ln(m)/mvs
√

1/m), in case of Theorem 6 it is actually

better (2β vs 2β+O
(

√

1/m
)

). Let’s ignore these differences and putε0 = ε′0. Comparing the two

bounds therefore involves a comparison of the estimator prediction boundΠ(δ,S) to a ’generic’
value of the estimatorlemp(A,S).

Our boundΠ(δ,S) has the disadvantage that it contains an additional error of meta-estimation.
But as the sizen of the meta-sampleSbecomes large, corresponding to an experienced meta-learner,
this additional term tends to zero, andΠ(δ,S) is likely to win over the ’generic’lemp(A,S), because
A (S) is likely to outperform the ’generic’ algorithmA on the meta-sampleS. To make this precise
we have to give more meaning to the word ’generic’.

While it is easy to define a generic value ofS (simply takingS∼ DE if some environmentE is
given), it is not so clear how we should pick a generic algorithmA. For simplicity consider a finite
set of algorithms{A1, ...,AK}. We should selectA uniformly at random from this set to obtain a
generic algorithm. The generic value oflemp(A,S) is then

Γ = ES∼DE

[

1
K

K

∑
k=1

lemp(Ak,S)

]

.
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The meta algorithm to consider for comparison is

A (S) = arg min
A∈{A1,...,AK}

1
n ∑

S∈S
lemp(A,S)

with the estimator prediction bound

ES∼DQ [lemp(A (S) ,S)] ≤
K

min
k=1

1
n ∑

Si∈S
lemp(Ak,Si)+

√

ln(K/δM)

2n

= Π(δM,S) , (22)

whereδM is the confidence parameter associated with the draw of the meta-sampleS. Now let

∆(S) =
1
K

K

∑
k=1

1
n ∑

S∈S
lemp(Ak,S)−

K
min
k=1

1
n ∑

S∈S
lemp(Ak,S) .

∆(S) will be positive unless all algorithms behave the same on the meta-sample, in whichcase it
is zero and meta-learning is indeed pointless (essentially an empirical instantiation of the NFLT).
With the boundM on the loss function equal to 1, an application of Hoeffding’s inequality gives,
with probability greater than 1−δM in a meta sampleSdrawn from(DE )n,

1
n ∑

S∈S

1
K

K

∑
k=1

lemp(Ak,S) ≤ Γ+

√

ln(1/δM)

2n
,

so with probability greater than 1−2δM in the meta-sampleS we have

Γ−Π(δM,S) ≥ ∆(S)−
√

ln(1/δM)+
√

lnK + ln(1/δM)√
2n

, (23)

in addition to validitiy of our bound (22). So for large meta-samplesSour bounds will very probably
be true and better than the generic value of ordinary generalization boundsby a margin of roughly
∆(S).

For a practical perspective consider image recognition, when the tasks inthe support ofE share
a certain invariance property (say image rotation), and there is only one algorithm in {A1, ...,AK}
having this invariance property. We can then expect the wrong algorithms tohave fairly large losses
for a given meta sampleS, so that∆(S) will have order≈ 1.

5.2 Comparison to the Bias Learning Model

The approach taken in Baxter (2000) can be partially reformulated in our framework. We will
consider only ERM-algorithms inA (C,Z) which have the form

AH (S) = argmin
c∈H

1
m ∑

zi∈S

l (c,zi) , (24)

for some closed setH ⊆C (the assumption of closure ensures existence of the minimum). Actually
Baxter (2000) allows any algorithm searching the setH , such as regularized algorithms, but the
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analysis in (Baxter, 2000) does not exploit the advantages of regularisation and we stick to ERM for
definiteness and motivation.

The traditional method to give generalization error bounds for such algorithms is described in
(Anthony, Bartlett, 1999) or (Vapnik, 1995) and involves the study of thecomplexity of the function
spaceFH =

{

z 7→ l (c,z) : c∈ H
}

in terms of covering numbers or related quantities, and proceeds
to prove a uniform bound on the estimation error, such as (13) in Section 3, valid for all c ∈ H ,
and with high probability in the sampleS. This leads to corresponding generalization error bounds.
We have sketched a version of this approach which can be applied both to ordinary and to meta
algorithms in Section 3.

The choice of thehypothesis spaceH completely defines the algorithm (24). A collection of
such algorithms can therefore be viewed as a familyH of closed subsetsH ⊆ C which define the
algorithmsAH by virtue of formula (24). A corresponding meta-algorithm takes a meta-sample
S, sampled from an environmentE as usual, and returns an algorithmA (S) = AH (S) for some
hypothesis spaceH (S) ∈ H. The meta-algorithm can thus be equivalently considered as a map
S→H (S) or

H :
∞

[

n=1

(Zm)n → H.

Such a meta-algorithm effectivelylearns the hypothesis spaceH (S), and in (Baxter, 2000) it is
called abias learner. For the remainder of this section takeH to be fixed and letA be any meta-
algorithm defined by the ERM formulaA (S) = AH (S) for some mapS 7→H (S) ∈ H. We also
assume the boundM on the loss function to be equal to 1.

In our framework it is natural to study covering numbers for the space ofalgorithms

HH=
{

AH : H ∈H
}

and use them to derive an estimator prediction bound (15) as outlined in Section 3. Imposing
a uniform bound on the complexities of the hypothesis spaces inH then allows the application
of Theorem 5. Putting together the estimator prediction bound (15), the uniform bound on the
estimation error (13) and Theorem 5, we arrive at

Corollary 7 Let

ε0 = inf
γ>0

{

γ+4 sup
H ∈H

N1

( γ
8
,F (H , l) ,2m

)

e−γ2m/32

}

and, forδ > 0,

ε1 = inf

{

t : 4N1

( t
8
,F (H, l) ,2n

)

e
−t2n

32 ≤ δ
}

.

Then for any environmentE , with probability at least1− δ in the draw of a meta-sampleS from
(DE )n, we have

R
(

AH (S),E
)

≤ 1
n ∑

Si∈S
lemp

(

AH (S),Si

)

+ ε1+ε0.

For convenience of comparison we give implicit bounds on the sample complexities, which are
easily derived usingε0 = ε1 = ε/2 andγ = ε/4:
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Corollary 8 For any0 < ε < 1, δ > 0, if

n≥ 128
ε2 ln

(

4N1
( ε

16,F (HH, lemp) ,2n
)

δ

)

(25)

and

m≥ 512
ε2 ln

(

4supH ∈H
N1
( ε

32,F (H , l) ,2m
)

ε

)

, (26)

then for any environmentE , with probability greater thanδ in the draw of a meta-sampleS from
(DE )n, we have

R
(

AH (S),E
)

≤ 1
n ∑

Si∈S
lemp

(

AH (S),Si

)

+ ε.

J. Baxter (2000) also defines capacities forH, but aims at giving a bound on

sup
H ∈H

∣

∣

∣

∣

∣

ED∼E

[

inf
c∈H

R(c,D)

]

− 1
n ∑

Si∈S
lemp(AH ,Si)

∣

∣

∣

∣

∣

valid with high probability inS as drawn from(DE )n for anyE . A corresponding bound on

erE (H (S)) := ED∼E

[

inf
c∈H (S)

R(c,D)

]

(27)

(which in Baxter, 2000, is called thegeneralization error of the bias learner), results. This is
Theorem 2 in (Baxter, 2000). The expression (27) is the expected riskof the optimal hypothesis in
H (S) asD is drawn from the environment.

The inequality

erE (H (S)) = ED∼E

[

ES∼Dm

[

inf
c∈H (S)

R(c,D)

]]

≤ ED∼E

[

ES∼Dm

[

R
(

AH (S) (S) ,D
)]]

= R
(

AH (S),E
)

(28)

shows that our bounds on the transfer risk also provide bounds on (27). Note however that a bound
on (27) does not itself guarantee generalization, because we may not find the optimal hypothesis
from a finite future sample. This is similar to the estimator prediction bounds in our approach and
contrary to our bounds on the transfer risk.

In Theorem 3 of Baxter (2000) the capacity of a givenH is used to formulate a uniform bound
on the estimation error of the hypotheses inH similar to (13). If corresponding capacity bounds

held forall hypothesis spacesH ∈ H, a bound on the transfer riskR
(

AH (S),E
)

would result from

the bound on (27) in a way parallel to our approach (in Baxter, 2000 a bound on the transfer risk
comparable to our bounds is never stated). In this case the results become comparable and the
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bounds on the sample complexities look similar. This is not surprising since both derivations of
bounds are rooted in the same classical method (see e.g. Vapnik, 1995).

The sample complexity bounds on them-sample depending on the uniform capacity bound are
then essentially the same in Baxter (2000) as in (26) (if we disregard that Baxter, 2000, imposes
additional conditions onm in Theorem 2). For a comparison we therefore focus on the sample
complexity bounds on the sizen of the meta-sample. In Baxter (2000) Theorem 2, to get

erE (H (S)) ≤ 1
n ∑

Si∈S
lemp

(

AH (S),Si

)

+ ε

with probability at least 1−δ in S, it is required that

n≥ 256
ε2 ln

8C
( ε

32,H
∗)

δ
, (29)

and there is an additional condition onm.
To compare (29) with our bound (25), we disregard the constants (whichare better in (25)) and

concentrate on a comparison of the complexity measuresC(ε,H∗) andN1(ε,F (HH, lemp) ,n).
In (Baxter, 2000) the capacityC(ε,H∗) is defined as follows: ForH ∈ H define a real function

H ∗ onM1(Z) by
H ∗ (D) = inf

c∈H
R(c,D) .

In (Baxter, 2000) there are assumptions to guarantee thatH ∗ is measurable onM1(Z), and since it
is obviously bounded we haveH ∗ ∈ L1(M1(Z) ,Q) for any probability measureQ ∈M1(M1(Z)).
UsedQ to denote the metric inL1(M1(Z) ,Q) and denote

H
∗ =

{

H ∗ : H ∈ H
}

.

Then
C(ε,H∗) = sup

Q∈M1(M1(Z))

N (ε,H∗,dQ) .

It turns out that our complexity measures are bounded by those in Baxter (2000).

Proposition 9 For all ε, n
N1(ε,F (HH, lemp) ,n) ≤C(ε,H∗) .

Proof For a sampleS= (z1, ...,zm) ∈ Zm useDS to denote the empirical distributionDS∈ M1(Z)
induced byS:

DS =
1
m

m

∑
i=1

δzi ,

whereδz is the unit mass concentrated atz∈ Z. Note that forH ∈ H we have

H ∗ (DS) = inf
c∈H

1
m

m

∑
i=1

l (c,zi) = lemp(AH ,S) .

For a meta-sampleS=(S1, ...,Sn)∈ (Zm)n useQS to denote the empirical distributionQS∈M1(M1(Z))
induced byS:

QS =
1
n

n

∑
i=1

δDSi
,
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whereδD is the unit mass concentrated atD ∈ M1(Z).
Now take any meta-sampleS=(S1, ...,Sn) ∈ (Zm)n and letN = N (ε,H∗,dQS). Then there is a

set of functions{Ψ1, ...,ΨN} ⊆ L1(M1(Z)) such that for everyH ∈ H there is somei such that

ε ≥ dQS (H ∗,Ψi)

=
1
n

n

∑
j=1

∣

∣H ∗ (DSj

)

−Ψi
(

DSj

)∣

∣

=
1
n

n

∑
j=1

∣

∣lemp(AH ,Sj)−Ψi
(

DSj

)∣

∣ . (30)

On the other hand we have

F (HH, lemp) |S =
{

(lemp(AH ,S1) , ..., lemp(AH ,Sn)) : H ∈ H
}

,

so, settingxi ∈ R
n with (xi) j = Ψi

(

DSj

)

, we see from (30) that every member ofF (HH, lemp) |S is
within d1-distanceε of somexi . It follows that

N (ε,F (HH, lemp) |S,d1) ≤ N (ε,H∗,dQS) ,

whence

N1(ε,F (HH, lemp) ,n) = sup
S∈(Zm)n

N (ε,F (HH, lemp) |S,d1)

≤ sup
S∈(Zm)n

N (ε,H∗,dQS)

≤ sup
Q∈M1(M1(Z))

N (ε,H∗,dQ)

= C (ε,H∗)

We can conclude that our bounds are normally applicable when those in (Baxter, 2000) are. It
may however happen, that our covering numbers increase polynomially inn, in which case we still
get tight bounds, but the capacities in (Baxter, 2000) are infinite.

6. A Meta-Algorithm for Regression

In this section we present a meta-learning algorithm for function estimation. The algorithm is based
on regularized least-squares regression, or ridge regression(as in Bousquet, Elisseeff, 2002, or
Christianini, Shawe-Taylor, 2000) and preliminary experiments appear promising.

To implicitly also define a ’kernelized’ version of the algorithm, we describe it ina setting where
the input spaceis a subsetX of the unit ball{‖x‖ ≤ 1} in a separable, possibly infinite dimensional
Hilbert spaceH, with an appropriately defined inner product.

Theoutput spaceY is the interval[0,1], the data spaceZ is given byZ = X ×Y ⊆{‖x‖ ≤ 1}×
[0,1] and a learning task is given by a distributionD ∈ M1(X ×Y ). ThenD(x,y) is interpreted as
the probability of finding the input valuex associated with the output valuey in the context of the
taskD.
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As a hypothesis or concept space we consider the bounded linear functionalsh onH which can
be identified with membersh∈ H via the action of the inner producth(x) = 〈h,x〉 in H.

As a loss function we usel : H ×Z → R+ given by

l (h,(x,y)) = (〈h,x〉−y)2 .

This loss function is unbounded contrary to what is generally required in this paper. It will however
turn out that the effective hypothesis space searched by the algorithms inthis section is the ball
{

‖h‖ ≤ λ−1/2
}

whereλ is the regularization parameter introduced below.

6.1 Regularized least squares Regression

A standard algorithmA∈A(H,Z) for this type of problem is defined as follows: LetS= (z1, ...,zm)=
((x1,y1) , ...,(xm,ym)) ∈ Zm be a sample. We write, forh∈ H,

L(h) =
1
m

m

∑
i=1

(〈h,xi〉−yi)
2 +λ‖h‖2

and define
A(S) = argmin

h∈H
L(h) . (31)

Note thatλ‖A(S)‖2 ≤ L(A(S)) ≤ L(0) ≤ 1 so‖A(S)‖ ≤ λ−1/2. The effective hypothesis space is
then

{

‖h‖ ≤ λ−1/2
}

, as claimed above. Thus|〈h,x〉| ≤ λ−1/2 and the loss function is bounded by
λ−1.

Any component ofh perpendicular to all thexi will only increaseL, so we may assume that
A(S) is in the subspace generated by{x1, ...,xm}, in other words

A(S) =
m

∑
i=1

αixi (32)

for some (possibly non-unique) vectorα ∈ R
m. To find α we substitute (32) inL and equate the

gradient to zero. The result of this well known computation is the formula

(G+mλI)α = y (33)

whereGi j =
〈

xi ,x j
〉

is theGramian matrix, here considered as an operator onR
m, I = δi j is the

identity, andy = (y1, ...,ym) the set of target values in the sample, here considered as a vector
y ∈ R

m. Equation (33) can be efficiently solved forα using the Cholesky decomposition method.
The formula for the empirical loss ofA(S) is, using (32) and (33)

lemp(A,S) =
1
m

m

∑
i=1

((Gα)i −yi)
2

=
1
m

m

∑
i=1

(((G+mλI)α)i −yi −mλαi)
2

=
1
m

m

∑
i=1

(−mλαi)
2

= mλ2
m

∑
i=1

α2
i . (34)

It follows from example 3 in (Bousquet, Elisseeff, 2002) that the algorithmA so defined is
β-stable withβ = 2/(λm).

987



MAURER

6.2 A Meta-Algorithm

Consider now a meta sampleS= (S1, ...,Sn), drawn from(DE )n for some environmentE , and sup-
pose that we have used some ’primer’ algorithmA0 (for example the regression algorithm above
for an appropriate value ofλ = λ0) to train corresponding regression functionshk = A0(Sk) ∈ H.
The sequence of vectors(A0(S1) , ...,A0(Sn)) = (h1, ...,hn) in some way contains our experiences
with the environmentE . The idea of the meta-algorithm is now to use thehk asadditional fea-
tures to describe a given new data-pointx. We do this by combining then-dimensional vector
(h1(x) , ...,hn(x)) with the existing descriptionx∈ H.

The intuitive motivation is that we expect thehi to already describe relevant properties (sym-
metries, elimination of irrelevant features) of the environment, that we rely on, in particular if the
sample-sizes are rather small. Imagine the classification (by thresholding of aregression functions)
of character-images of a new character set, say the greek characters, after having learnt other char-
acter sets (roman, gothic etc). We could attempt to describe the image of the characterα by saying
that ’it looks a little bit like an x anda lot like an a, but ratherunlike an l ’. On the basis of this
description a person might recognize the characterα, without any previousvisual training data for
α.

The termsa little bit like, a lot like andunlike are quantifications given by previously learnt
regression functions forx, a and l , which may already have a certain robustness relative to defor-
mations, changes in scaling or variations in line thickness. If the sample-sizem is large we can
derive such robustness more directly and reliably from the training data for α itself, but for a very
small sample-size we expect the new features to be helpful. The whole idea isstrongly related to the
Chorus of Prototypesintroduced by Edelman (1995), so we will call our algorithmCP-Regression.

To formally define the algorithm, consider a ’primer’ algorithmA0∈A (H,Z) such that‖A0(S)‖≤
κ for all S∈ Zm. For example we could take forA0 the regularized least squares regression, as de-
fined above, with a regularization parameterλ0, in which case we would haveκ = λ−1/2

0 . Fix a
mixture parameterµ∈ [0,1] which will be used to interpolate between the old and the new features
and a regularization parameterλ > 0.

Now let the meta-sampleS = (S1, ...,Sn) be given. We have to define an algorithmA (S) ∈
A (H,Z). On the vectorspaceH we define a new inner product〈., .〉S by

〈x1,x2〉S = (1−µ)〈x1,x2〉+
µ

κ2n

n

∑
k=1

〈A0(Sk) ,x1〉〈A0(Sk) ,x2〉 , (35)

which is positive definite for 0≤ µ < 1 ( in the caseµ = 1 we can use a quotient construction to
replaceH, which then becomesn′-dimensional withn′ ≤ n). We will use‖.‖S to denote the norm
corresponding to〈., .〉S.

Let S∈ Zn be any sample,S= (z1, ...,zm) = ((x1,y1) , ...,(xm,ym)) with xi ∈ H, ‖xi‖ ≤ 1, yi ∈
[0,1]. We define

A (S)(S) = argmin
h∈H

1
m

m

∑
i=1

(〈h,xi〉S−yi)
2 +λ‖h‖2

S

and the corresponding regression function

A (S)(S)(x) = 〈A (S)(S) ,x〉S.
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Note that

‖x‖2
S = (1−µ)‖x‖2 +

µ
κ2n

n

∑
k=1

〈A0(Sk) ,x〉2

≤ (1−µ)‖x‖2 +
µ

κ2n

n

∑
i=1

κ2‖x‖2 = ‖x‖2 ,

soX ⊆ {‖x‖S ≤ 1}. ThereforeA (S) is ordinary regularized least squares regression with the mod-
ified inner product〈., .〉S. It follows from the analysis in (Bousquet, Elisseeff, 2002) that the algo-
rithmsA (S) are uniformlyβ-stable withβ = 2/(mλ), for every meta-sampleS, with respect to the
square loss function we use.

The implementation ofA is straightforward: GivenS = (S1, ...,Sn) one computes the vectors
hk = A0(Sk). Now for any newm-sampleS the Gramian

(GS)i j =
〈

xi ,x j
〉

S = (1−µ)
〈

xi ,x j
〉

+
µ

κ2n

n

∑
k=1

〈hk,xi〉〈hk,x2〉

is determined, and the equation(GS+mλI)α = y is solved forα using Cholesky decomposition.
We then get the regression function

x 7→
m

∑
i=1

αi 〈xi ,x〉S =

= (1−µ)
m

∑
i=1

αi 〈xi ,x〉+µ
n

∑
k=1

γk 〈hk,x〉

with

γk =
1

κ2n

m

∑
i=1

αi 〈hk,xi〉 .

In a nonlinear case, when the inner product inH is defined by a complicated kernel, this regres-
sion function may be cumbersome to compute since all the computations of〈hk,x〉 will each again
involve m computations of the kernel. Also the entire meta-sampleS has then to be present in
memory. In a linear case, when the vectorspace operations inH can be performed explicitly, the
computational burden is significantly reduced to the computation of a single inner product〈h,x〉 of
x with the vector

h = (1−µ)
m

∑
i=1

αixi +µ
n

∑
k=1

γkhk

which is determined once during training.

6.3 Analysis of CP-Regression

As already noted the algorithmsA (S) are uniformlyβ-stable withβ = 2/(mλ), for every meta-
sampleS, with respect to square loss. This gives condition 2 for the application of Theorem 1.

The first condition, essential for the estimator prediction bound, is satisfiedby virtue of the
following proposition which is proven in the next subsection:
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Corollary 10 The algorithmA is uniformlyβ′-stable w.r.t. lempin the sense that, ifS=(S1, .,Sk, ..,Sn)
is a meta sample andS′=(S1, .,Sk−1,Sk+1..,Sn) is the same asS, with only some Sk deleted, then

∣

∣lemp(A (S) ,S)− lemp
(

A
(

S′) ,S
)∣

∣≤ β′

for every sample S∈ Zm, with

β′ =
4µ

λ(n−1)
.

Substitution in Theorem 1 gives, for every environmentE with probability at least 1− δ in a
meta-sampleS drawn from(DE )n,

R(A (S) ,E) ≤ 1
n ∑

Si∈S
lemp(A (S) ,Si)+

+
8µ

λ(n−1)
+

(

16µn
λ(n−1)

+
1
λ

)

√

ln(1/δ)

2n
+

4
mλ

. (36)

The bound gives a performance guarantee of the algorithm applied to future tasks on the basis
of the empirical term

(lemp)emp(A,S) =
1
n ∑

Si∈S
lemp(A (S) ,Si) . (37)

If µ = 0, corresponding to no meta-learning at all, the bound (36) becomes more attractive to look
at, but we expect the empirical term to be larger. For smalln it is better to take smallµ, while
for very large values ofn the value ofµ which results in the smallest empirical term is best. It is
tempting to minimize the bound with respect toµ. Unfortunately (36) applies only if the parameters
of A have been fixed in advance, it does not justify the selection of the parametersλ, µ or the choice
of the primer algorithmA0 which enters the bound only indirectly through the term (37)). Although
this problem can be partially eliminated (see the method of sieves as used in Anthony, 1999), it
remains a major weakness of our algorithm. A more principled approach wouldinvolve the direct
minimization of

1
n ∑

Si∈S
lemp(A,Si)+N(A)

whereN(A) would be some meta-regularizer. Our algorithm attempts to decrease the quantity(37)
only indirectly by the passage to (presumably) more reliable features.

6.4 Stability of CP-Regression

In this subsection we prove Proposition 10. For a bounded operatorT on a real Hilbert spaceH we
use‖T‖∞ to denote its operator norm

‖T‖∞ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖,‖y‖≤1

|〈Tx,y〉|

and useTt , Ker(T) andRan(T) to denote its transpose, nullspace and range respectively. A sym-
metric operator satisfies〈Tx,y〉 = 〈x,Ty〉 for all x andy (i.e. T = Tt), and a positive operator is a
symmetric operator also satisfying〈Tx,x〉 ≥ 0 for all x.
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Lemma 11 Let G1 and G2 be positive operators andλ > 0. Then
1. Gi +λI is invertible,

2.
∥

∥

∥
(Gi +λI)−1

∥

∥

∥

∞
≤ 1/λ and

3. we have
∥

∥

∥
(G1 +λI)−1− (G2 +λI)−1

∥

∥

∥

∞
≤ 1

λ2 ‖G1−G2‖∞ .

4. Let x1 and x2 satisfy(Gi +λI)xi = y. Then

∣

∣

∣
‖x1‖2−‖x2‖2

∣

∣

∣
≤ 2λ−3‖G1−G2‖∞ ‖y‖2 .

Proof 1. If (Gi +λI)x = 0 then−λ‖x‖ = 〈Gix,x〉 ≥ 0 sox = 0. ThusGi + λI is 1-1, and since
Ran(Gi +λI) = Ran

(

(Gi +λI)t)= Ker(Gi +λI)⊥ = {0}⊥ it is also onto.
2. Suppose(Gi +λI)x = y. Then

λ2‖x‖2 = ‖y−Gix‖2 = ‖y‖2−2〈Gix,y〉+‖Gix‖2

= ‖y‖2−2〈Gix,Gix+λx〉+‖Gix‖2

= ‖y‖2−‖Gix‖2−2λ〈x,Gix〉 ≤ ‖y‖2 ,

which proves the second conclusion.
3. We have

(

(G1 +λI)−1− (G2 +λI)−1
)

(G2 +λI)

= (G1 +λI)−1(G1 +λI +G2−G1)− (G2 +λI)−1(G2 +λI)

= (G1 +λI)−1(G2−G1) ,

so, using the second conclusion,

∥

∥

∥
(G1 +λI)−1− (G2 +λI)−1

∥

∥

∥

∞

=
∥

∥

∥
(G1 +λI)−1(G2−G1)(G2 +λI)−1

∥

∥

∥

∞

≤
∥

∥

∥
(G1 +λI)−1

∥

∥

∥

∞
‖G2−G1‖∞

∥

∥

∥
(G2 +λI)−1

∥

∥

∥

∞

≤ λ−2‖G1−G2‖∞ .

Finally, using the first three conclusions, ifxi = (Gi +λI)−1y, then

∣

∣

∣
‖x1‖2−‖x2‖2

∣

∣

∣
= |〈x1 +x2,x1−x2〉|
≤ (‖x1‖+‖x2‖)‖x1−x2‖
≤

(

2λ−1‖y‖
)(

λ−2‖G1−G2‖∞ ‖y‖
)

.
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Proof of Proposition 10. SupposeS=(S1, .,Sk0, ..,Sn) is a meta sample and thatS′=(S1, .,Sk0−1,Sk0+1..,Sn)
is the same asS, with only someSk0 deleted. We have to show that

∣

∣lemp(A (S) ,S)− lemp
(

A
(

S′) ,S
)∣

∣≤ 4µ
λ(n−1)

for every sampleS= (z1, ...,zm) = ((x1,y1) , ...,(xm,ym)) ∈ Zm.
Let G andG′ be the gramian matrices arising from the vectorsxi and the inner products〈., .〉S

and〈., .〉S′ respectively, that is

Gi j =
〈

xi ,x j
〉

S andG′
i j =

〈

xi ,x j
〉

S′ .

We regardG andG′ as operators onRm and use‖.‖m and〈., .〉m for the canonical norm and inner
product inR

m respectively.
We have, using (35) and denotinghk = A0(Sk),

Gi j −G′
i j =

−µ
κ2n(n−1) ∑

k6=k0

〈hk,xi〉
〈

hk,x j
〉

+
µ

κ2n
〈hk0,xi〉

〈

hk0,x j
〉

so, if η andγ are any two unit vectors inRm, we have, withv = ∑m
i=1 ηixi andw = ∑m

i=1 γ jx j ,

∣

∣

〈(

G−G′)η,γ
〉

m

∣

∣ =
−µ

κ2n(n−1) ∑
k6=k0

〈hk,v〉〈hk,w〉+
µ

κ2n
〈hk0,v〉〈hk0,w〉

≤ µ
κ2n(n−1) ∑

k6=k0

‖hk‖2‖v‖‖w‖+
µ

κ2n
‖hk0‖2‖v‖‖w‖

≤ 2µ
n−1

‖v‖‖w‖

Now using the triangle and Cauchy Schwarz inequalities

‖v‖ =

∥

∥

∥

∥

∥

m

∑
i=1

ηixi

∥

∥

∥

∥

∥

≤
m

∑
i=1

|ηi |‖xi‖ ≤ ‖η‖m

(

m

∑
i=1

‖xi‖2

)1/2

≤ m1/2

and similarly
‖w‖ ≤ m1/2,

so that|〈(G−G′)η,γ〉m| ≤ (2µm)/(n−1). Sinceη andγ were arbitrary unit vectors we have

∥

∥G−G′∥
∥

∞ ≤ 2µm
n−1

. (38)

Now if α andα′ are vectors inRm which are solutions of(G−mλI)α = y and(G′−mλI)α′ = y
respectively, andy ∈ R

m is a vector with|yi | ≤ 1, then, using the last conclusion of Lemma 11
together with (38),

∣

∣

∣
‖α‖2

m−
∥

∥α′∥
∥

2
m

∣

∣

∣
≤ 2(mλ)−3∥

∥G−G′∥
∥

∞ ‖y‖2
m

≤ 4m−2λ−3µ‖y‖2
m/(n−1)

≤ 4m−1λ−3µ/(n−1) .
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Using the formula (34) for the empirical error in regularised least squares regression then gives

∣

∣lemp(A (S) ,S)− lemp
(

A
(

S′) ,S
)∣

∣ = mλ2
∣

∣

∣
‖α‖2

m−
∥

∥α′∥
∥

2
m

∣

∣

∣

≤ 4µ
λ(n−1)

.

7. Conclusion

We have employed established analytical tools of statistical learning theory to analyze transfer learn-
ing. The notion of uniform algorithmic stability has proven to be particularly useful. Many interest-
ing problems remain, of which we mention only two:

1. The unnatural requirement, that all sample-sizes be equal to the meta-learner, should be elim-
inated.

2. CP-Regression could be implemented and systematically tested with a nonlinearkernel.
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