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Abstract

We present a learning algorithm for decision lists whiclwa features that are constructed from
the data and allows a trade-off between accuracy and coipl&¥e provide bounds on the gen-

eralization error of this learning algorithm in terms of thember of errors and the size of the
classifier it finds on the training data. We also compare itfopmance on some natural data sets
with the set covering machine and the support vector machimathermore, we show that the

proposed bounds on the generalization error provide @féegtiides for model selection.

Keywords: decision list machines, set covering machines, sparsitg-dependent features, sam-
ple compression, model selection, learning theory

1. Introduction

The set covering machine (SCM) has recently been proposed by Mateimd Shawe-Taylor (2001,
2002) as an alternative to the support vector machine (SVM) when thetivkjés to obtain a sparse
classifier with good generalization. Given a feature space, the SCM attémiitsl the smallest
conjunction (or disjunction) of features that gives a small training errarcdntrast, the SVM
attempts to find the maximum soft-margin separating hyperplane on all the fedtlamce, the two
learning machines are fundamentally different in what they are aiming tovachiethe training
data.

To investigate if it is worthwhile to consider larger classes of functions thetritje conjunctions
and disjunctions that are used in the SCM, we focus here on the classisibddists (Rivest, 1987)
because this class strictly includes both conjunctions and disjunctions whibp iectly included
in the class of linear threshold functions (Ehrenfeucht and Haus$188; Blum and Singh, 1990;
Marchand and Golea, 1993).

From a theoretical point of view, the class of decision lists has been @&xgnstudied (Rivest,
1987; Dhagat and Hellerstein, 1994; Eiter et al., 2002; Anthony, 28@da few learning algorithms
have been proposed. The first learning algorithm, due to Rivest [1B8L learns the class of
decision lists (also known as 1-decision lists) over the input attributes butethay a classifier that
depends on all the input attributes even when the numloérelevant attributes is much smaller
than the total numbaer of attributes. Dhagat and Hellerstein (1994) and Kivinen et al. (1982¢ h
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proposed an attribute efficient algorithm that outputs a decision li§(dflog*m) attributes for

a training set ofm examples wheré& denotes the number @iternationsof the target decision
list (see the definition in Section 2). However, both of these algorithms atractive for the

practitioner because they do not provide an accuracy-complexity ffadiedeed, real-world data
are often noisy and, therefore, simpler functions that make some trainiogs enight be better
than more complex functions that make no training errors. Since the amonaoisefis problem-

specific, a learning algorithm should provide to the user a means to corgrtiattieoff between
accuracy and the complexity of a classifier. Ideally, the user shouldlbéabhoose from a wide
range of functions that includes very simple functions (like constantg)atheost always underfit
the data, and very complex functions that often overfit the data. But this tatjeirement for

decision lists can be generally achieved only if the set of features us#itefdecision list is data-
dependent. It is only with a data-dependent set of features that mtexbtrlass of functions like
decision lists can almost always overfit any training data set (that dbesmi@in too many pairs of
identical examples with opposite classification labels). Hence, in this papegresent a learning
algorithm for decision lists which can be used with any set of features,dimguhose that are
defined with respect to the training data, and that provides some “modetigelparameters” (also
called learning parameters) for allowing the user to choose the propeoffdmktween accuracy
and complexity.

We denote bydecision list machingdDLM) any classifier which computes a decision list of
Boolean-valued features, including features that are possibly cotedirfrom the data. In this
paper, we use the set of features known as data-dependent balichéivid and Shawe-Taylor,
2001; Sokolova et al., 2003) and the set of features known as datandient half-spaces (Marchand
et al., 2003). We show, on some natural data sets, that the DLM can eroetter generalization
than the SCM with the same set of features.

We will see that the proposed learning algorithm for the DLM with data-dégeinfeatures
is effectively compressing the training data into a small subset of examplies vghcalled the
compression setHence, we will show that the DLM with data-dependent features is amgea
of a sample-compression algorithm and we will thus propose a generdlaisid that depends on
the number of examples that are used in the final classifier and the sizeiofdireation message
needed to identify the final classifier from the compression set. The gedpmound will apply
to any compression set-dependent distribution of messages (see thtodeiinSection 4) and
allows for the message set to be of variable size (in contrast with the sampf@ession bound
of Littlestone and Warmuth (1986) that requires fixed size). We will applygéigeral risk bound
to DLMs by making appropriate choices for a compression set-depedidmibution of messages
and we will show, on natural data sets, that these specialized risk batsdsnerally slightly more
effective than K-fold cross validation for selecting a good DLM model.

This paper extends the previous preliminary results of Sokolova et &3)J20

2. The Decision List Machine

Let x denote an arbitrarg-dimensional vector of the input spagewhich is an arbitrary subset of
R". We consider binary classification problems for which the trainingSsetP UN consists of a
setP of positive training examples and a $¢bf negative training examples. We definéeature
as an arbitrary Boolean-valued function that mapsnto {0,1}. Given any setd = {hj(x) !ﬂ
of featuresh;(x) and any training se$, the learning algorithm returns a small sub&etc A of
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features. Given that subs®&t, and an arbitrary input vector, the outputf (x) of the decision list
machine (DLM) is given by the following rule

If (h1(x)) thenby
Else If (h(x)) thenby

Else If (hy(x)) thenb,
Elseb, 1,

where eacl; € {0,1} defines the output off(x) if and only if by is the first feature to be satisfied on
X (i.e.the smallest for which hj(x) = 1). The constartt, .1 (wherer = | |) is known as thelefault
value Note thatf computes a disjunction of thes wheneveb; =1 fori =1...r andb;;1 =0. To
compute a conjunction dfis, we simply place irf the negation of eadh withbj =0fori=1...r
andb;;1 = 1. Note, however, that a DLM that contains one or marsglternations(i.e. a pair
(bi, bi+1) for which b; # by 1 for i < r) cannot be represented as a (pure) conjunction or disjunction
of hjs (and their negations). Hence, the class of decision lists strictly includgsnobions and
disjunctions.

We can also easily verify that decision lists are a proper subset of lineshtbld functions in
the following way. Given a DLM witlr features as above, we assign a weight valum® eachh; in
the DLM in order to satisfy

r
|wg | > Z lwj| Vie{l,...,r}.
j=1+1
Let us satisfy these constraints wjthh| = 2"~ fori € {1,...,r}. Then, for each, we set; = +|wj|
if b = 1, otherwise we set; = —|w;| if bj = 0. For the threshol® we used = —-1/2if b 1 =1
and® = +1/2if by.1 = 0. With this prescription, given any examplewe always have that

sgn(ilwihi (x) — 9> = 2bc—1,

wherek is the smallest integer for whichy(x) = 1 in the DLM ork=r+ 1 if hj(x) =0 Vi €
{1,...,r}. Hence, with this prescription, the output of the linear threshold functioreiséime as
the output of the DLM for all inpuk. Finally, to show that the subset is proper we simply point out
that a majority vote of three features is a particular case of a linear threhmition that cannot
be represented as a decision list since the output of the majority vote ¢endetermined from the
value of a single feature.

From our definition of the DLM, it seems natural to use the following greddgrahm for
building a DLM from a training set. For a given s8t= P’ UN’ of examples (wher® C P and
N’ C N) and a given set{ of features, consider only the features # which either havé(x) =0
for all x € P’ or hj(x) = 0 for all x € N'. Let Q; be the subset of examples on whigh= 1 (our
constraint on the choice ¢f implies thatQ; contains only examples having the same class label).
We say thaty is covering Q. The greedy algorithm starts with = Sand an empty DLM. Then
it finds ah; with the largestQ;| and appendsh;,b) to the DLM (whereb is the class label of the
examples inQ;). It then removes); from S and repeats to find thig with the largestQy| until
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eitherP’ or N" is empty. It finally assignb; ;1 to the class label of the remaining non-empty set of
examples.

Following Rivest (1987), this greedy algorithm is assured to build a DLMrtiekes no training
errors whenevethere existea DLM on a setE C A of features that makes zero training errors.
However, this constraint is not really required in practice since we da tegmermit the user of a
learning algorithm to control the tradeoff between the accuracy achmvele training data and
the complexity (here the size) of the classifier. Indeed, a small DLM whichemakfew errors
on the training set might give better generalization than a larger DLM (with rfieateires) which
makes zero training errors. One way to include this flexibility is to early-stogtbedy algorithm
when there remains a few more training examples to be covered. But arfigthestion in the size
of the DLM can be accomplished by considering featurethat cover examples of both classes.
Indeed, ifQ; denotes the subset 8fon whichh; = 1 (as before), e, denote the subset &f that
belongs toQ; and letN; be the subset dfl’ that belongs t®; (thusQ; = P UN;). In the previous
greedy algorithm, we were considering only featungfor which eitherP, or N; was empty. Now
we are willing to consider features for which neitti®mnor N; is empty whenever ma&® |, |N;|) is
substantially larger than before. In other words, we want now to confddtures that may err on a
few examples whenever they can cover many more examples. We thatefire theusefulness |J
of featureh; by

def
Ui = max{|R| — pnNi|, [Ni| — pp|P[},

where p, denotes thgenaltyof making an error on a negative example wherpgsienotes the
penalty of making an error on a positive example. Indeed, wheneveddvtoa DLM a featurdy,
for which B andN; are both non empty, the outpijtassociated witt; will be 1 if |R| — pn|N;| >
INi| — pp|PR| or 0 otherwise. Hence, the DLM will necessarily incorrectly classify thegxes in
N; if bj = 1 or the examples iR, if bj = 0.

Hence, to include this flexibility in choosing the proper tradeoff between texitp and accu-
racy, each greedy step will be modified as follows. For a given training seP’ UN’, we will select
a featureh; with the largest value df; and appendh;, 1) to the DLM if |B| — pn|Ni| > [Ni| — pp|PR|,
otherwise, we appenth;,0) to the DLM. If (h;,1) was appended, we will then remove frdgn
every example i (since they are correctly classified by the current DLavd we will also re-
move fromS every example ilN; (since a DLM with this feature is already misclassifyiNg and,
consequently, the training error of the DLM will not increase if later fezgwgrr on the examples
in N;). Similarly if (hj,0) was appended, we will then remove fr@rthe examples iQ; = N, UR.
Hence, we recover the simple greedy algorithm wpge= pn = .

The formal description of our learning algorithm is presented in Figureate khat we always
setby, 1 = —b; since, otherwise, we could remove thh feature without changing the classifier’s
outputf for any inputx.

The penalty parameters, and p, and the early stopping poistof BuildDLM are the model-
selection parameters that give the user the ability to control the propeotiragéveen the training
accuracy and the size of the DLM. Their values could be determined eihesibg K-fold cross-
validation, or by computing the risk bounds proposed below. It therefeneralizes the learning
algorithm of Rivest (1987) by providing this complexity-accuracy trddand by permitting the
use of any kind of Boolean-valued features, including those that argtruzted from the training
data.
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Algorithm BuildDLM (S, pp, pn, S, H)

Input: A setS of examples, the penalty valugs, and p,, a stopping points, and a set
H ={h (x)}i‘i[l‘ of Boolean-valued features.

Output: A decision listf consisting of an ordered st = {(h;,b;)}{_, of featuresh; with their
corresponding output valudg and a default valub; 1.

Initialization: . =0, r =0, S = S, by = —a (wherea is the label of the majority class).

1. For eacth; € A, let Q; = B UN; be the subset d8 for which hj = 1 (whereP, consists of
positive examples anid; consists of negative examples). For eachomputelJ;, where:

def
Ui = max{|R| - pn|Ni|, INi| — pplP[}

2. Lethy be a feature with the largest value df. If Qx = 0 then go to step 6 (no progress
possible).

If (|P| — pn|Nk| > |Nk| — Pp|Pk|) then appendhy, 1) to R.. Else appendh,0) to X..

LetS=S —-Qcandletr =r+1.

If (r < sandS contains examples of both classes) then go to step 1

o o &~ W

Setby 1 = —b;. Returnf.

Figure 1: The learning algorithm for the decision list machine

The time complexity oBuildDL M is trivially bounded as follows. Assuming a time of at most
t for evaluating one feature on one example, it takes a time of at [®Qstt to find the first feature
of the DLM for a training set om examples. For the data-dependent set of features presented in
Section 3.1, it is (almost) always possible to find a feature that coverssatdea example. In that
case, it takes a time @(|H|mst) to find s features. Note that the algorithm must stop if, at some
greedy step, there does not exists a feature that covers at leashionggtexample.

Generally, we can further reduce the size of the DLM by observing tafeatureh; with
b, = b,,1 can be deleted from the DLM if there does not exist a training exampléth label
y = b1 and another featurie; with j > i andb; # b for which h;(x) = h;(x) = 1 (since, in that
case, featur; can be moved to the end of the DLM without changing the output for anyctiyr
classified training example). The algorititnuneDL M of Figure 2 deletes all such nodes from the
DLM.

We typically use both algorithms in the following way. Given a training set, werfirsBuild-
DLM without early stoppingi(e., with parametes set to infinity) to generate what we caltem-
plate DLM. Then we consider all the possible DLMs that can be obtained by ating this tem-
plate. More precisely, if the template DLM containgeatures, we build + 1 possible DLMs: the
DLM that contains zero features (a constant function), the DLM thatawos the first feature only,
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Algorithm PruneDLM (S, f)

Input: A setS of examples, a decision list consisting of an ordered s& = {(hi,b;)}{_; of
featuredh; with their corresponding output valubs and a default valub; ; ;.

Output: The same decision litwith, possibly, some features removed.
Initialization: | =r

1. Let(hg,bx) € R be the pair with the largest value lbtuch thaby = b, 1 andk < I.

2. If (B(hj,bj) € R : j >k, bj # by, hj(x) = hg(x) for some(x,y) € Swith y = br,1) then
delete(hy, by) from ..

3. 1=k

4. If (I > 1) then go to step 1; else stop.
Figure 2: The pruning algorithm for the decision list machine

the DLM that contains the first two features, and so on, up to the DLM thagats allr features.
Then we rurPruneDLM on all these DLMs to try to reduce them further. Finally all these DLMs
are tested on a provided testing set.

It is quite easy to build artificial data sets for whiehuneDL M decreases substantially the size
of the DLM. However, for the natural data sets used in SectidirineDL M almost never deleted
any node from the DLM returned BuildDLM.

3. Data-Dependent Features

The set ofdata-dependent ballfMarchand and Shawe-Taylor, 2001) adata-dependent half-
spacegMarchand et al., 2003) were introduced for their usage with the SCMn&Veneed to
adapt their definitions for using them with the DLM.

3.1 Ballsand Holes

Letd: X2 — R be a metric for our input spacé. Leth, be a feature identified by@enterc and a
radiusp. Featureh;, is said to be @all iff hep(x) = 1Vx: d(x,c) < p and 0 otherwise. Similarly,
featurehc is said to be doleiff hep(x) = 1 Vx: d(x,c) > p and 0 otherwise. Hence, a ball is a
feature that covers the examples that are located inside the ball; whérelascavers the examples
that are located outside. In general, both types of features will be usled DLM.

Partly to avoid computational difficulties, we are going to restrict the cenfdralls and holes
to belong to the training sete., each centec must be chosen amorg; : (xi,Yi) € S} for a given
training setS. Moreover, given a centes the set of relevant radius values are given by the positions
of the other training examplesg., the relevant radius values belong {d(c,x;) : (i,yi) € S}.
Hence, each ball and hole is identified by only two training examples: a ceatsd aborder b
that identifies the radius witd(c,b). Therefore, a DLM made of these two-example features is
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effectively compressing the training data into the smaller set of examplesarsesifeatures. This
is the other reason why we have constrained the centers and radii tovillees. Hence, given
a training setS of m examples, the se#/ of features used by the DLM will contai®(n?) balls
and holes. This is a data-dependent set of features since the femteidefined with respect to the
training dateS.

Whenever a ball (or hold)., is chosen to be appended to the DLM, we must also provide an
output valueb which will be the output of the DLM on examplewhenhc, is the first feature of
the DLM that hashc,(x) = 1. In this paper we always choobéo be the class label afif hc, is
aball. Ifhe, is a hole, then we always chools¢o be the negation of the class labeloofWe have
not explored the possibility of using balls and holes with an outptigiven by the class label of its
center because, as we will see later, this would have required an additifamenation bit in order
to reconstruct the ball (or hole) from its center and border and, qoesgly, would have given a
looser generalization error bound without providing additional discrimiagiower {.e., power to
fit the data) that seemed “natural”.

To avoid having examples directly on the decision surface of the DLM, tfiasp of a ball of
centerc will always be given by = d(c,b) — € for some training examplle chosen for the border
and some fixed and very small positive vakie Similarly, the radius of a hole of centerwill
always be given by = d(c,b) + €. We have not chosen to assign the radius values “in between”
two training example since this would have required three examples per baficde and would
have decreased substantially the tightness of our generalization etnod othout providing a
significant increase of discriminative power.

With these choices for centers and radii, it is straightforward to see tmatnjopenalty values
pp and py,, the set of balls having the largest usefulndsalways contains a ball with a center and
border of opposite class labels whereas the set of holes having thet lasgéulness always contains
a hole having a center and border of the same class label. Hence, welwitlomsider such balls
and holes in the set of features for the DLM. For a training sehgfositive examples anah,
negative examples we have exactiygn, such balls an(n‘nfJ +m¢ such holes. We thus provide to
BuildDLM a set# of at most(m, + my,)? features.

Finally, note that this set of features has the property that there alwists a DLM of these
features that correctly classifies all the training Segirovided thatS does not contain a pair of
contradictory examples.e., (x,y) and(x’,y) such thatx = X’ andy # Y. Therefore, this feature
set gives to the user the ability to choose the proper tradeoff between ¢grattnracy and function
size.

3.2 Half-Spaces

With the use of kernels, each input vectors implicitly mapped into a high-dimensional vector
@(x) such thatp(x) - @(x") = k(x,x’) (the kernel trick). We consider the case where each feature is
a half-space constructed from a set of 3 poi¥s, @,,®.} where eachy is the image of an input
examplex, taken from the training s& We consider the case whetgandx, have opposite class

labels and the class label xf is the same as the class labelxgf The weight vectow of such a

half-spacehS , is defined byw d:efcpa — @, and its threshold by t d:efw-(chr € whereeg is a small

positive real number. We use> 0 to avoid having examples directly on the decision surface of the

DLM. Hence

Co(x) = sgnw-@(x) —t} = sgn{k(xa,X) — K(Xp,X) —t},
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where
t = K(Xa, Xc) — K(Xp, Xc) + €.

Whenever a half-spadg;, is chosen to be appended to the DLM, we must also provide an
output valueb which will be the output of the DLM on examplewhen hg ,, is the first feature of
the DLM havingh ,(x) = 1. From our definition above, we chools¢o be the class label af,.
Hence, a DLM made of these three-example features is effectively cegipgethe training set into
the smaller set of examples used for its features.

Given a training se® of m= m, +m, examples, the sek of features considered by the DLM
will contain at mosm- m, - my, half-spaces. However, in contrast with the set of balls and holes, we
are not guaranteed to always be able to cover all the trainingwith these half-spaces.

Finally, note that this set of features (in the linear kernel dggex’) = x - x’) was already
proposed by Hinton and Revow (1996) for decision tree learning bdiomoal analysis of their
learning method has been given.

4. A Sample Compression Risk Bound

Since our learning algorithm tries to build a DLM with the smallest number of dataerdkent fea-
tures, and since each feature is described in terms of small number of grakamples (two for
balls and holes and three for half-spaces), we can thus think of onilgalgorithm as compress-
ing the training set into a small subset of examples that we catldh®gression set

Hence, in this section, we provide a general risk bound that deperttis onmber of examples
that are used in the final classifier and the size of the information messadedht® identify the
final classifier from the compression set. Such a risk bound was fitsineld by Littlestone and
Warmuth (1986). The bound provided here allows the message set tovhaaifle size (whereas
previous bounds require fixed size). In the next section, we will coenés bound with other well
known bounds. Later, we apply this general risk bound to DLMs by ma&pmropriate choices
for a compression set-dependent distribution of messages. Finally, wehwill, on natural data
sets, that these specialized risk bounds provide an effective guidadosing the model-selection
parameters dBuildDLM.

Recall that we consider binary classification problems where the inpaespaonsists of an

arbitrary subset oR" and the output spac® = {0,1}. An examplez def (x,y) is an input-output

pair wherex € X andy € 9. We are interested in learning algorithms that have the following prop-
erty. Given a training se8= {zy,...,zn} of mexamples, the classifié(S) returned by algorithm
A is described entirely by twoomplementary sources of informatiom subset; of S called the
compression seand amessage string which represents the additional information needed to ob-
tain a classifier from the compression getThis implies that there existsraconstruction function
R, associated t@, that outputs a classifieR (o, z) when given an arbitrary compression geand
message string chosen from the set/(z) of all distinct messages that can be supplie®twith
the compression set. It is only when such ai exists that the classifier returned AgS) is always
identified by a compression sgtand a message strirg

Given a training se§, the compression setis defined by a vectdrof indices such that

i L (iig,. i) (1)
with i€ {1,....m}Vj
and 1 ip<ix<...<liy,
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whereli| denotes the number of indices present in

The classical perceptron learning rule and support vector machieesxamples of learning
algorithms where the final classifier can be reconstructed solely froormaression set (Graepel
et al., 2000, 2001). In contrast, we will see in the next section that tlemséeiction function for
DLMs needs both a compression set and a message string.

We seek a tight risk bound for arbitrary reconstruction functions thitsheniformly for all
compression sets and message strings. For this, we adopt the PAC settiegeabh exampleis
drawn according to a fixed, but unknown, probability distributidon X x 9. The riskR(f) of
any classifierf is defined as the probability that it misclassifies an example drawn accordihg to

def
R(f) = Priyn (F(X) #Y) = Exypenl (F(X) #Y),
wherel (a) = 1 if predicatea is true and O otherwise. Given a training $et {z,...,zn} of m
examples, thempirical risk R(f) on S, of any classifielf, is defined according to

"eflgll (%) # Y1) LT E ey nsl (F(X) £ Y):

Let Z™ denote the collection afn random variables whose instantiation gives a training sample
S=27z"={z,...,zn}. Let us denote Bmn.pm(-) by Pzm(-). The basic method to find a bound on
the true risk of a learning algorithi, is to bound®’ where

P L pn(RAZ™) >¢). )

Our goal is to find the smallest value fosuch thaf’ < & since, in that case, we have
Pzm (R(A(Zm>) < 8) >1-90.

Recall that classifieA(z™) is described entirely in terms of a compressionzet z" and a
message string € M (z;). Let I be the set of all 2 vectors of indices as defined by Equation 1.
Let M (z) be the set of all messageshat can be attached to compressionzseWe assume that
the empty message is always presenfMiiz;) so that we always haveM (z)| > 1. Since any
i € I ando € M (z) coulda priori be reached by classifiéqz™), we boundP by the following
probability

PP < Pmm(diel:3oeM(Z): RR(0,Z))>¢€) = def P

whereZ; are the random variables whose instantiation g'wesmd wheree depends orZ;,o and
the amount of training errors. In the sequel, we denoté twe vector of indices made of all the
indices not present in SincePzn(-) = Ez,Pz,z (), we have (by the union bound)

=4 < Z EZ Pz z; (E'O' S M( ) (K(G7ZI)) > 8)

i€l
< YEz Y P (RR(©.2))>e). ©
i€l oeM (Z;)

We will now stratify Pz z,(R(R.(0,Zi)) > €) in terms of the errors thak (o,Z;) can make on
thetraining examples that are not used for the compressionlsst]; denote the set of vectors of
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indices where each index is not present.iiGiven a training samplg™ and a compression sat
we denote byRz (f) the vector of indices pointing to the examplegjmvhich are misclassified by
f. We have

Pzi,‘zi (R(K(O' Z Z Pz \Z )) > €, RZT(K(O,Zi)) :]) . (4)

€4

But now, since the classifi®} (0, Z;) is fixed when(o, Z;) is fixed, and since eadh is independent
and identically distributed according to the same (but unknown) distriblltiome have

P21z, (R(R(0,Zi)) > &, Rz,(R(0,Zi)) =]) < (1—g)™ =0, (5)
Hence, by using Equations 3, 4, and 5, we have

P < YSE [1-¢(0,Z;,j)™ I, )

i€ljel oeM(Z))

where we have now shown explicitly the dependenceai Z;, g, and;.
Given any compression sat let us now use any functidy, (o) which has the property that

> Pag(0)<1 (7)
oeM (z;)

and can, therefore, be interpreted as compression set-dependehttiis of messages when it
sums to one. Let us then choassuch that

[ :
() (")) i stozaib 4 = Py 0)-2 -2 - ®
where, for any non-negative integerwe define
6
(@)= @+ (©)
In that case, we have indeed tHRt< & sinces;> ,i~2 = 12/6. Any choice for{(a) is allowed as

long as it is a non negative function who's sum is bounded by 1.
The solution to Equation 8 is given by

oz - s-ss{gig () () 0 )
( ¢(li Dl(IJ) )D (10)

Theorem 1 For any d € (0,1] and for any sample compression learning algorithm with a recon-
struction function® that maps arbitrary subsets of a training set and information messages to
classifiers, we have

We have therefore shown the following theorem:

Pz {Vi € I,6 € M(Zi): R(R(0,Zi)) <£(0,Z;,]j|,8)} > 1—5.
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Although the risk bound given by Theorem 1 (and Equation 10) incseagte the amountj|
of training errors made on the examples that do not belong to the comprsssigrit is interesting
to note that it isindependenbf the amount of errors made on the compression set. However,
a reconstruction function will generally need less additional informationnwhés constrained
to produce a classifier making no errors with the compression set. Hemcabdve risk bound
will generally be smaller for sample-compression learning algorithms thayalweturn a classifier
making no errors on the compression set. But this constraint might, in tuae fbe learner to
produce classifiers with larger compression sets.

Finally note that the risk bound is small for classifiers making a small nufbefrtraining er-
rors, having a small compression set dizeand having a message striagvith large prior “proba-
bility” Pas(z,)(0). This “probability” is usually larger for short message strings since fargessage
strings are usually much more numerous at sharing the same “piece”¢tofeof probability.

5. Comparison with Other Risk Bounds

Although the risk bound of Theorem 1 is basically a sample compression hpurevertheless,
applies to a much broader class of learning algorithms than just sample cemopriesarning al-
gorithms. Indeed the risk bound depends on two complementary soura&@ermfation used to
identify the classifier: the sample compressionzeind the message strimy In fact, the bound
still holds when the sample compression set vanishes and when the cléwssifiefo) is described
entirely in terms of a message string It is therefore worthwhile to compare the risk bound of
Theorem 1 to other well-known bounds.

5.1 Comparison with Data-Independent Bounds

The risk bound of Theorem 1 can be qualified as “data-dependenti tleelearning algorithm is
searching among a class of functions (classifiers) described in termsutifsatz; of the training
set. Nevertheless, the bound still holds when the class of functions isifapendent” and when
individual functions of this class are identified only in terms of a (data-iaddpnt) message In
that limit, |i| = 0 and the risk bouné depends only o and the numbelj| = k of training errors:

€(0,k,d) = 1—exp<m_—_1k [In <T> +1In (%) +1In (Z(%S)D : (11)

Since here each classifibris given by (o) for someo € M, we can considef! as defining a
data-independent set of classifiers. This set may contain infinitely massifeas but it must be
countable. Indeed all that is required is

Z P(o)<1
geM

for any fixed priorP over M . If we further restrict the learning algorithm to produce a classifier that
always make no training errork £ 0) and if we choos®(o) = 1/|M| Vo € M for some finite
setM, we obtain the famous Occam’s razor bound (Blumer et al., 1987)

s () A() e
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where we have used-1exp(—x) < x. Hence the bound of Equation 11 is a generalization of the
Occam’s razor bound to the case of an arbitrary (but fixed) g*{ar) over a countably infinite
setM of classifiers which are possibly making some training errors. Constguttre bound of
Theorem 1 is a generalization of the Occam’s razor bound to the case Wieeclassifiers are
identified by two complementary sources of information: the message stang the compression
setz;.

The proposed bound is obtained by using a union bound over the possibfgression subsets
of the training set and over the possible messagesM (z;). This bound therefore fails when we
consider a continuous set of classifiers. In view of the fact that thef $8tMs of data-dependent
features is a subset of the same class of functions but with featuresehadtaconstrained to be
identified by pairs or triples of training examples, why not use the well-kriigapmik-Chervonenkis
(VC) bounds (Vapnik, 1998) or Rademacher bounds (Mendelsd@®)20 characterize the learn-
ing algorithms discussed in this paper? The reason is that the proposeithaigoare indeed
constrained to use a data-dependent set of features identified byapditsples of training exam-
ples. The risk bound of Theorem 1 therefore reflects more the setssilpe classifiers that can
be produced by the proposed algorithms than the VC or Rademachershebiah are suited for
algorithms that can produce any classifier of a continuous set.

5.2 Comparison with Other Sample Compression Risk Bounds

The risk bound of Theorem 1 can be reduced to the sample compressiondsbof Littlestone and
Warmuth (1986) if we perform the following changes and specializations:

e We restrict the sed/ of possible messages to be a finite set which is the same for all possible
compression setg.

e For the distribution of messages, we tise
Pac(0) 1 Voe M
Mm(0) = = :
| M|

e Theorem 1 is valid for any functiog that satisfies " ,{(i) < 1. Here we will usg(a) =
1/(m+1) Vae {0,...,m}. This choice increases the bound sincefa+1)2 > 1/(m+

1) fora< /6(m+1)/m—1.

e We use the approximation-1exp(—x) < x to obtain a looser (but somewhat easier to under-
stand) bound.

With these restrictions and changes we obtain the following boundg fer0 and|j| > 0:

&(i,5) < ﬁ [ln <m) +in (@) +in(m+ 1)] for |j| = 0, (13)
< o )en(e )
In <%> +2In(m+ l)} for |j| > 0. (14)

1. The case ofM| = 1 (no message strings used) is also treated by Floyd and Warmuth (1995)
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Apart from the Ifm+ 1) terms, these bounds are the same as the sample compression bounds of Lit-
tlestone and Warmuth (1986). The(in+ 1) terms are absent from the Littlestone and Warmuth
compression bounds because their bounds hold uniformly for all cosipnesets of dixed size

li| and for all configurations of training error points of a fixed amojjpt A In(m-+ 1) term oc-

curs in the bound of Equation 13 from the extra requirement to hold unifdionlgll compression

set sizes. Still an extra (m+ 1) term occurs in Equation 14 from the extra requirement to hold
uniformly for all amountdjj| of training errors. The bound of Theorem 1 holds uniformly for all
compression sets of arbitrary sizes and for all configurations of traerirg points of an arbitrary
amount. But instead of usinf(a) =1/(m+1) Vaec {0,...,m} we have used the tighter form
given by Equation 9.

Itis also interesting to compare the bounds of Equations 13 and 14 with théeseonpression
bounds given by Theorems 5.17 and 5.18 of Herbrich (2002). ThedwiEquation 13 is the same
as the bound of Theorem 5.17 of Herbrich (2002) wh&f = 1 (no messages used). When the
classifier is allowed to make training errors, the bound of Equation 14 is tigier the lossy
compression bound of Theorem 5.18 of Herbrich (2002) wheg msince the latter have used the
Hoeffding inequality which becomes tight only whghis close tom/2.

Consequently, the bound of Theorem 1 is tighter than the above-mentiamgdescompression
bounds for three reasons. First, the approximatierekp(—x) < x was not performed. Second, the
function{(a) of Equation 9 was used instead of the looser factor/gfri+- 1). Third, in contrast
with the other sample compression bounds, the bound of Theorem 1 is vadidyfa priori defined
sample compression-dependent distribution of messages (o).

This last characteristic may be the most important contribution of Theoremdéed, we feel
that it is important to allow the set of possible messages and the messagesdet digpend on
the sample compressiansince the class labels of the compression set examples give information
about the set of possible data-dependent features that can beuctetstiromz. Indeed, it is
conceivable that for soma, very little extra information may be needed to identify the classifier
whereas for some othex, more information may be needed. Consider, for example, the case
where the compression set consists of two examples that are used bgdhstrection function
R to obtain a single-ball classifier. For the reconstruction function of the®etring machine
(described in the next section), a ball border must be a positive exargleas both positive and
negative examples are allowed for ball centers. In that case, if the @vop&s in the compression
set have a positive label, the reconstruction function needs a mesdageostit least one bit that
indicates which example is the ball center. If the two examples have opposisdaleels, then the
negative example is necessarily the ball center and no message at alilésiiegeconstruct the
classifier. More generally, the set of messages that we use for all oyi¥sMs proposed in this
paper depends on some propertieg;dike its numbem(z) of negative examples. Without such a
dependency om;, the set of possible messag&&could be unnecessarily too large and would then
loosen the risk bound.

5.3 Comparison with the Set Covering Machine Risk Bound

The risk bound for the set covering machine (SCM) (Marchand and/&flaylor, 2001, 2002) is
not a general-purposed sample compression risk bound as the omdepdrby Theorem 1. It does
exploit the fact that the final classifier is partly identified by a small sulds&edraining examples
(the compression set) but, instead of using messages to provide the additiomation needed
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to obtain a classifier, it partitions the compression set into three disjoint setsceHwe cannot
compare directly the bound of Theorem 1 with the SCM risk bound since the igtteuch more
specialized than the former. Instead we will show how we can apply thergemsk bound of
Theorem 1 to the case of the SCM just by choosing an appropriate sanpbeession-dependent
distribution of messageRy,(,,)(0).

Recall that the task of the SCM is to construct the smallest possible conjuntt{@oolean-
valued) features. We discuss here only the conjunction case. Thedfisjucase is treated similarly
just by exchanging the role of the positive with the negative examples.

For the case of data-dependent balls and holes, each feature is iddntifigraining example
called acenter(xc,Yc), and another training example calletb@rder (xp,Y,). Given any metrid,
the outputh(x) on any input examplg of such a feature is given by

h(x) — { Ye o if d(X.xc) <d(X,xp)
-y, otherwise

In this case, given a compression ggtwe need to specify the examplesznthat are used for a
border point without being used as a center. As explained by Marciresh&hawe-Taylor (2001),

no additional amount of information is required to pair each center with itsgoquoint whenever

the reconstruction functio®f is constrained to produce a classifier that always correctly classifies
the compression set. Furthermore, as argued by Marchand and $agwe{2001), we can limit
ourselves to the case where each border point is a positive exampleat lcae, each message

0 € M (z) just needs to specify the positive examples that are a border point withimgt a center.
Letn(z) andp(z) be, respectively, the number of negative and the number of positive éagimp
compression s&. Letb(o) be the number of border point examples specified in message let

((a) be defined by Equation 9. We can then use

-1
Paczy (@) =2(060) - (o (15)

since, in that case, we have for any compressiog;set
p(zi) AN\ 1
p(z)
Paria) (@) = 3 2(b) ( ) <1
Z ) z o:b(Zc):b b(G)

oM (z) b=0

With this distributionP,(,,, the risk bound of Theorem 1 specializes to

£(0,Z,lj,8) = 1—exp<#’1_m [In (?)Hn (m“f\i’)ﬂn <EE<Z;)))+

1
In . . . (16)
(Z(III)Z(IJ I)Z(b(c))5>D
In contrast, the SCM risk bound of Marchand and Shawe-Taylor (2Z8Gqual to

£(0,2,,i],8) = 1—exp(m [In<m)+ln<m|;|!i|)+

In (Cp(z‘) + () *b(zi)> +In <@>D , (17)

cp(zi)
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wherecp(z) andcn(z) denote, respectively, the number of positive centers and the number of
negative centers i and whereb(z) denotes the the number of bordergiin

Hence, we observe only two differences between these two bounds tiér (larger) ltn?|i| /3)
term of Marchand and Shawe-Taylor (2001) has been replaced tgrtfadler) I(1/Z(|i|)¢(]j|){(b(0))d)

term. Second, the coefficient
(cp(zi) +cn(z) + b(zi)>
Cp(zi)
has been replaced by the smaller coefficient

p(zi)
b(o) )
We can verify that this last coefficient is indeed smaller since

(EE;)) _ (Cp(Zib)(JZri)b(Zi)) _ (Cp(Zi)+b(Zi)> < (Cp(Zi)Jr;]((ZZii)Hb(Zi))_

Consequently, the risk bound of Theorem 1, applied to the SCM with the distiibgiven by
Equation 15, is smaller than the SCM risk bound of Marchand and ShayerTa001).

6. Risks Boundsfor Decision List Machines

To apply the risk bound of Theorem 1, we need to define a distribution cﬁageString%PM(zi) (0)
for each type of DLM that we will consider. Once that distribution is knowa,only need to insert
it in Equation 10 to obtain the risk bound. Note that the risk bound does peindeon how we
actually codeo (for some receiver, in a communication setting). It only depends o twgori
probabilities assigned to each possible realization. of

6.1 DLMs Containing Only Balls

Even in this simplest case, the compressionzsetione does not contain enough information to
identify a DLM classifier (the hypothesis). To identify unambiguously theoltlygsis we need to
provide also a message striag

Recall that, in this case; contains ball centers and border points. By construction, each center
is always correctly classified by the hypothesis. Moreover, eachroearienly be the center of one
ball since the center is removed from the data when a ball is added to the B\ center can
be the border of a previous ball in the DLM and a border can be the bofdarore than one ball
(since the border of a ball is not removed from the data when that bakiesktd the DLM). Hence,
0 needs to specify the border pointsarthat are a border without being the center of another ball.
Let 01 be the part of the message striodhat will specify that information and I (o) be the
probabilities that we assign to each possible realizatioa;of Since we expect that most of the
compression sets will contain roughly the same number of centers and$osdeassign, to each
example ofz;, an equah priori probability to be a center or a border. Hence we use

1

Pi(01) = =

1(01) = o

2. We will refer 0Py @s the “distribution” of messages even though its summation over the [@ossilizations of
o might be less than one (as specified by Equation 7).

Voi.

441



MARCHAND AND SOKOLOVA

Onceo; is specified, the centers and borderg;oére identified. But to identify each ball we
need to pair each center with a border point (which could possibly be titerogf another ball).
For this operation, recall that the border and the center of each ballhawustopposite class labels.
Let 0, be the part of the message strioghat specifies that pairing information and Bto»|o1)
be the probabilities that we assign to each possible realizatiop oficeo; is given. Letn(z) and
p(z) be, respectively, the number of negative and the number of positivep@ea in compression
setz;. Consider now a positive center examglef z. Since a border point can be used for more
that one ball and a center can also be used as a border, we assigmahpregability of I/n(z)
to each negative example gf to be paired withx. Similarly, we assign an equal probability of
1/p(z) to each positive example to be paired with a negative centey. dfet cp(z) andcs(z)
be, respectively, the number of positive centers and negative cémizgr@his is known onces; is
specified). For an arbitrary compression getve thus assign the following priori probability to
each possible pairing information striog:

1 Cp(zi) 1 cn(zi)
P(02|01) = | —= — Va2 | n(z) # 0 andp(z 0.
2( 2| 1) <n(Zi)> <p(zl)) 2‘ ( I)?é p( I);’é
This probability is, indeed, correctly defined only under the conditionrtfij # 0 and p(z) # 0.
However, since the border and center of each ball must have oppdsats, lthis condition is the
same asi| # 0. Whenl|i| = 0, we can just assign 1 ®(02|01). By using the indicator function
I (a) defined previously, we can thus wriB(o,|01) more generally as

Cp(zi) Cn(zi)
Podo) = (n57) (g)  M(H1#0) +1011=0) ven

Onceo; ando; are known, each ball of the DLM is known. However, to place these balls in

the DLM, we need to specify their order. Lgiz;) d:efcp(zi) + ¢n(z) be the number of balls in the
DLM (this is known onceo; ando, are specified). Letz be the part of the message strionghat
specifies this ordering information and Rf(03|02,01) be the probabilities that we assign to each
possible realization ofi; onceo; anda, are given. For an arbitrary compression zetve assign
an equah priori probability to each possible ball ordering by using

P3(03]02,01) =

VO’3.

1
r(zi)!

The distribution of messages is then givenRyo1)P.(02|01)Ps(03|02,01). Hence

1 1 \®@ g N\« . 1
Pm)(o):z—i-[(—) (5a5)  M#0 +1(1=0] 25 vo.  aB)

n(z) (z; r(z)!

6.2 DLMs Containing Ballsand Holes

The use of holes in addition to balls introduces a few more difficulties thatleea tato account by
sending a few more bits of information to the reconstruction function. The mostrieng change
is that the center of a hole can be used more than once since the coveneplex are outside the
hole. Hence, the number of features can now exceed the number ofsceaté is always smaller
than]i|2. Indeed, in the worst case, each pair of (distinct) examples taken frerodtimpression
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setz; could be used for two holes: giving a total @f(|i| — 1) features. The first par; of the
(complete) message strimwill specify the number (z) of features present in compression zet
Since we always hawgz) < |i|? for |i| > 0, we could give equa priori probability for each value
of r € {0,...,]i|*}. However since we want to give a slight preference to smaller DLMs hoese
to assign a probability equal tdr) (defined by Equation 9) for all possible valuesoHence

Pi(01) ={(r(z)) Voi.

The second par; of o specifies, for each feature, if the feature is a ball or a hole. For this, we
give equal probability to each of thi€z) features to be a ball or a hole. Hence

Pz(O'z’O'l) = 2—r(zi) Vaoo.

Finally, the third part; of o specifies, sequentially for each feature, the center and border point.
For this, we give an equal probability of/[l| to each example iz; of being chosen (whenever
li| # 0). Consequently

Ps(03]02,01) = i 2@ I(|i| £0)+1(]i| =0) Vos.

The distribution of messages is then givenRyo1)P.(02|01)P5(03|02,01). Hence
Par(z) (0) = &(r(@)) - 2@ [li @1 (il £0)+1(i| = 0)]  vo. (19)

6.3 Constrained DL Ms Containing Only Balls

A constrainedDLM is a DLM that has the property of correctly classifying each examplisof
compression set with the exception of the compression set examples who's output is determined
by the default value. This implies thBuildDL M must be modified to ensure that this constraint is
satisfied. This is achieved by considering, at each greedy step, orfigaheesh; with an output

bi and covering se®); that satisfy the following property. Every training examgtey) € Q; that is
either a border point of a previous feature (ball or hole) in the DLM oerter of a previous hole

in the DLM must havey = b; and thus be correctly classified hy

We will see that this constraint will enable us to provide less information to twnstruction
function (to identify a classifier) and will thus yield tighter risk bounds. Hesvethis constraint
might, in turn, forceBuildDLM to produce classifiers containing more features. Hence, we do not
know a priori which version will produce classifiers having a smaller risk.

Let us first describe the simpler case where only balls are permitted.

As before, we use a stringy, with the same probability;(o1) = 271l vo, to specify if each
example of the compression gets a center or a border point. This gives us the set of centers which
coincides with the set of balls since each center can only be used ortbésftype of DLM.

Next we use a string», to specify the ordering of each center (or ball) in the DLM. As before
we assign equad priori probability to each possible ordering. Herego,|o1) = 1/r(z)! Vo2
wherer (z;) denotes the number of balls far(an information given byy).

But now, since each feature was constrained to correctly classify #mep&s of; that it covers
(and which were not covered by the features above), we do notargeddditional information to
specify the border for each center. Indeed, for this task we use Hogvilog algorithm. Given
a compression set, let P andN denote, respectively, the set of positive and the set of negative
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examples irg;. We start withP’ = PN’ = N and do the following, sequentially, from the first center
(or ball) to the last. If centet is positive, then its borddy is given by argmig.,,d(c,x) and we
remove fromP’ (to find the border of the other balls) the centeand all other positive examples
covered by that feature and used by the previous features. If aeist@egative, then its bordér
is given by argmip_p.d(c,x) and we remove fronN’ the centerc and all other negative examples
covered by that feature and used by the previous features.

The distribution of messages is then given by

P @) = 371577 V- (20)

6.4 Constrained DLMs Containing Ballsand Holes

As for the case of Section 6.2, we use a stingo specify the number(z) of features present in
compression sat;. We also use a string, to specify, for each feature, if the feature is a ball or
a hole. The probabilitie®; (01) andP,(02|01) used are the same as those defined in Section 6.2.
Here, however, we only need to specify the center of each featuoe, sis we will see below, no
additional information is needed to find the border of each feature whdblthkis constrained to
classify correctly each example in Consequently

Par(a)(0) = {(r(2))-27"@) - il @1 (fi| £0) +1(i| =0)]  vo. (21)

To specify the border of each feature, we use the following algorithmersa&scompression
setz;, let P andN denote, respectively, the set of positive and the set of negative éssing;.
We start withP’ = P,N’ = N and do the following, sequentially, from the first feature to the last. If
the feature is a ball with a positive centgrthen its border is given by argmin.d(c,x) and we
remove fromP’ the centerc and all other positive examples covered by that feature and used by
the previous features. If the feature is a hole with a positive centéren its border is given by
argmaxp_ {c}d(c, x) and we remove froril’ all the negative examples covered by that feature and
used by the previous features. If the feature is a ball with a negatitercethen its border is given
by argminpd(c,x) and we remove fronlN’ the centecc and all other negative examples covered
by that feature and used by the previous features. If the feature ile avith a negative centa,
then its border is given by argmax,_d(c,x) and we remove fron®’ all the positive examples
covered by that feature and used by the previous features.

6.5 Constrained DLMswith Half-Spaces

Recall that each half-space is specified by weight vest@nd a threshold value The weight
vector is identified by a paifxa,Xp) of examples having opposite class labels and the threshold is
specified by a third example of the same class label as examyple

The first part of the message will be a striagthat specifies the numbefz;) of half-spaces
used in the compression sat As before, letp(z;) andn(z) denote, respectively, the number
of positive examples and the number of negative examples in the comprestmn Let P(z)
andN(z) denote, respectively, the set of positive examples and the set of veegaimples in
the compression sef. From these definitions, each pdit,Xp) € P(z) x N(z) UN(z) x P(z)
can provide one weight vector. Moreover, since a half-space magaver any point used for its
construction, each weight vector may be used for several half-spad¢ee DLM. But half-spaces
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having the same weight vectarmust have a different threshold since, otherwise, they would cover
the same set of examples. Hence the total number of half-spaces in the REMadsti| p(z)n(z).
Therefore, for the string; that specifies the numbe(z) of half-spaces used in the compression set
z;, we could assign the same probability to each number between zefg@zdn(z;). However,
as before, we want to give preference to DLMs having a smaller nuniliedfespaces. Hence we
choose to assign a probability equallo) (defined by Equation 9) for all possible valuesrof
Therefore
Pi(o1) =C(r(z)) Voi.

Next, the second pad; of o specifies, sequentially for each half-space, the pairxy) €
P(z) x N(z) UN(z) x P(z) used for its weight vectow. For this we assign an equal probability
of 1/2p(z)n(z;) for each possiblev of each half-space. Hence

1 r(zi)
P2(02|01) = (m) Vo2 [ n(z) # 0 andp(z) # 0.

The condition thah(z) # 0 andp(z;) # 0 is equivalent tdi| # 0 since, for any half-spacg, and
Xp must have opposite labels. Hence, more generally, we have

r(z)
%mﬂm:(ﬁa%aﬁ (i £0) + 1(i[=0) voy.

Finally, as for the other constrained DLMs, we do not need any additnaessage string to identify
the threshold point. € z; for eachw of the DLM. Indeed, for this task we can perform the following
algorithm. LetP andN denote, respectively, the set of positive and the set of negative ¢emimp .

We start withP’ = PN’ = N and do the following, sequentially, from the first half-space to the last.
Letw =@(Xa) —@(Xp) be the weight vector of the current half-spacex,lE P then, for the threshold

pointx., we choose. = argmaxw - x and we remove fror® the positive examples covered by this
xeN’
half-space and used by the previous half-spaces. ElgedfN then, for the threshold poinxt, we

choosex. = argmaxw - x and we remove fron\’ the negative examples covered by this half-space
xeP’
and used by the previous half-spaces.

Consequently, the distribution of message strings is given by

1 @ .
W) (il £0) + 1(i| =0)| Vo, (22)

Parz)(0) = (r(z))- [<2p(2i)

6.6 Unconstrained DL Mswith Half-Spaces

As for the case of Section 6.5, we use a stingdo specify the numbaer(z;) of half-spaces present
in compression sat;. We also use a string to specify, sequentially for each half-space, the pair
(Xa,Xp) € P(z)) x N(z)) UN(z) x P(z) used for its weight vector. Hence, the probabilitie; (o1 )
andP,(02|01) used are the same as those defined in Section 6.5. But here, in additioeetvéon
specify the threshold point; for eachw. For this, we give an equal probability of [1 to each
example inz; of being chosen (whefi| # 0). Consequently, the distribution of messages is given

by

1 r(z) @ .
%mwmzwvm-<5aﬁaﬁ @I £0) £ 1(i[=0)| Yo  (23)
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7. Empirical Resultson Natural Data

We have tested the DLM on several “natural” data sets which were obt&ioedthe machine
learning repository at UCI. For each data set, we have removed all éamthpt contained attributes
with unknown values and we have removed examples with contradictory ibisl®ccurred only
for a few examples in the Haberman data set). The remaining number of exdiopdach data set
is reported in Table 3. No other preprocessing of the data (such asgaaéis performed. For all
these data sets, we have used the 10-fold cross-validation error asraate of the generalization
error. The values reported are expressed as the total number i&f @gdhe sum of errors over all
testing sets). We have ensured that each training set and each testimggedédt) the 10-fold cross
validation process, was the same for each learning mach@edch machine was trained on the
same training sets and tested on the same testing sets).

Table 1 and Table 2 show the DLM sizesind penalty values that gave the smallest 10-fold
cross-validation error separately for the following types of DLMs thahawe studied in Section 6:

DLMy: unconstrained DLMs with balls (only).
DLMy: constrained DLMs with balls (only).
DLMyph: unconstrained DLMs with balls and holes.
DLM{,,: constrained DLMs with balls and holes.
DLMhpsp unconstrained DLMs with half-spaces.

DLMjg, constrained DLMs with half-spaces.

For each of these DLMs, the learning algorithm used addDL M. We have observed that
PruneDLM had no effect on all these data sets, except for Credit where it wastsnes able to
remove one feature.

In Table 3, we have compared the performance of the DLM with the setriogvenachine
(SCM) using the same sets of data-dependent features, and the tsuggior machine (SVM)
equipped with a radial basis function kernel of varian¢ednd a soft-margin parameter

We have used thie, metric for the data-dependent features for both DLMs and SCMs to obtain
a fair comparison with SVMs. Indeed, the argument of the radial basddi@umkernel is given by
the L, metric between two input vectors. For the SVM, the valuesrefer to the average number
of support vectors obtained from the 10 different training sets ofold-dross-validation. For the
SCM, the value ofl indicates the type of features it used and whether the SCM was a conjunction
(c) or adisjunction (d). The values pfandsfor the SCM refer to the penalty value and the number
of features that gave the smallest 10-fold cross-validation error. Waasige that, for all learning
machines, the values of the learning parameters reported in Tables 1,2aenthe ones that gave
the smallest 10-fold cross-validation error when chosen among a vggylisr of values. Although
this overestimates the performance of every learning algorithm, it was eseddrcompare equally
fairly (or equally unfairly) every learning machine. We will report below tlsults for DLMs when
the testing sets are not used to determine the best values of the learnimg{essa

In addition to our estimate of the generalization error, we have also reporfadlle 3, a (rough)
estimate of the standard deviation of the error. This estimate was obtained aiolerfg way. We
first compute the standard deviation of the generalization error (per éxpover the 10 different
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Data Set DLMy DLM;; DLMyh DLM;
{Pp,Pn.s} err {Pp,Pn.s} err {Pp.Pn.s} err {Pp,Pn.s} err
BreastW 0.7,2.1,6 | 18 0.7,0,1 18 2,1,2 13 16,1,2 13
Bupa 15,3.7,14| 104 || 2.5,1.5,21| 107 || 2,2.1,4 110 || 2.5,1.5,17| 107
Credit 1.7,2.1,6 | 188 || 0.7,0.3,42| 195 2.1,1.4,11| 187 || 1.3,%, 33 195
Glass 2.5,0, 8 33 25,35,8 | 32 4,45,7 29 0, 3.7, 7 29
Haberman 0, 45,23 74 05,4,3 70 3.7,3.4,12| 64 1.7,3.7,6 | 65
Heart 1.7,2.7,17| 94 1.6,2.3,8 | 89 1.5,2.6,10| 95 2,2,9 101
Pima 15,22,5 | 184 || 25,2.6,74| 184 | 1,15,2 190 || 1,1.5,6 189
\otes 25,156 | 34 2,0, 14 36 45,00, 14 35 1.8,00, 23 37

Table 1: Optimal 10-fold cross-validation results for DLMs with balls (ankk&p

Data Set DLMhsp DLMy{sp
(Po.PnS) | e || (Poipns) | err
BreastW 1, 0, 1 18 1.7,00, 1 20
Bupa 2.7,1.5,15| 107 || 0.9,2,6 102
Credit 3.5,2.526| 141 || 1.9,15,7 | 151
Glass 21,074 | 35 2,134 37
Haberman 1.8,3,5 66 15112 | 70
Heart 08,11 85 0.8,0.5,3 | 83
Pima 1.7,1,4 169 || 1.9,2,8 183
Votes 4.4,00,13 | 24 3.3,0,13 | 33

Table 2: Optimal 10-fold cross-validation results for DLMs with half-sgace

testing sets and then divide hy10 (since the variance of the averagendfd random variables,
each with variance?, is 62/n). Finally we multiply this estimate by the number of examples in the
data set.

In terms of generalization error, there is no substantial difference amdbtige types of DLMs
presented in Tables 1 and 2 for most of the data sets—except for CreglieMiDLMs with half-
spaces have a significantly lower error rate.

From the results in Tables 1 and 2, we notice that the effect of constrdireriglLM to correctly
classify the compression Segenerally increases the size of the DLM. The increase is substantial
for the Credit and Pima data sets (except for half-spaces where thsitgopehavior is observed).
Itis surprising that a DLNJ with 74 balls has the same error rate as a Rlwith 5 balls on the Pima
data set. In contrast, constraining an SCM to correctly classify the cosipneset had virtually no
effect on the size of the classifier (for these data sets).

The most striking feature in all the results is the level of sparsity achieveldeb$CM and the
DLM in comparison with the SVM. This difference is always huge. The otfmgortant feature is
that DLMs often produce slightly better generalization than SCMs and S\Hsice, DLMs can
provide a good alternative to SCMs and SVMs.

Recall that the results reported in Tables 1, 2, and 3 are, in fact, theld@+bss validation
estimate of the generalization error that is achieved by the model selectiteggtthat correctly
guesses the best values fiy, pn ands. This model-selection strategy is, in that sense, optimal (but
not realizable). Hence, we refer to the scores obtained in theses Babteese obtained by the

3. Recall from Section 6 that this was done to obtain a tighter risk bound.

447



MARCHAND AND SOKOLOVA

Data Set SVM SCM DLM

Name exs || {V.Cs} err || T {ps} | errto T { Pp.Pn,S} | er+o
Breastw | 683 || 0.005, 2, 58 19 b*,c 18,2 | 15+3.9 bh* 16,1,2 13+34
Bupa 345 || 0.002,0.2,266| 107 || hspf,c | 1.4,1 | 103+6.2 || hsp | 0.9,2,6 102 +7.8
Credit 653 || 0.0006, 32,423 190 || hsp',d | 1.2,3 | 148+10.2 || hsp | 3.5,2.5,26 | 141+13.5
Glass 214 || 0.8,1.2,130 34 b*,d o, 3 36+6.3 bh* ©,3.7,7 29+6.7
Haberman | 294 || 0.01, 0.6, 146 71 hsp,d 0.7,1 68+ 5.9 bh 3.7,3.4,12| 6443.9
Heart 207 || 0.001, 2, 204 87 hsp,d | 1.3,1 87+7.1 hsp® | 0.8,0.5,3 83+6.9
Pima 768 || 0.002, 1, 526 203 || hsp',c | 1.5,3 | 175+4.9 b 1.714 169+5
Votes 435 || 0.2,1.7,125 22 hsp', d | »,13 34+5.8 hsp | 4.4%,,13 24+5.2

Table 3: Optimal 10-fold cross-validation results for SVMs, SCMs, and/BL

“optimal” model-selection strategy. To investigate the extent to which a boumgexdiorm model
selection, we use the proposed risk bound to select a DLM among thogeeabfiar a list of at least
1000 pairs of penalty values (which always included the optimal pair ddlpewmalues) and for all
possible sizes. We have compared these results with the K-fold cross-validation modetisale
method. This latter method, widely used in practice, consists of using K-folsseralidation to
find the best stopping poistand the best penalty valugg and p, (among the same list of values
used for the previous model selection method) on a given training set andsle these best values
on the full training set to find the best DLM. Both model selection methods wstedevith K-fold
cross-validation. The results are reported in Tables 4, 5 and 6 for alyples of DLMs that we
have considered in Section 6. In these tables, “MSfromCV” stands fodéfrselection from cross-
validation” and “MSfromBound” stands for “model selection from bounidr all these results we
have useK = 10, except for DLM, where we have useid = 5. Except for a few cases, we see
that model selection by using the bounds of Section 6 is generally slightly rfiective than using
K-fold cross validation (and takes substantially less computation time).

Data Set DLMy, DLM}

MSfromCV MSfromBound MSfromCV MSfromBound

S err+o S err+-o S err+o S err+o

BreastW 1.8 18+5.01 2 18+4.4 1 20+4.9 10 20+6.4
Bupa 15.3 | 123+8.5 15.3 | 112+:5.6 15.3 | 115+7.6 27 117+7.3
Credit 25.7 | 2314+12.3 || 20.2 | 1944+5.6 3.5 | 203+13.2 || 6.8 | 215+20.2
Glass 7.2 | 44+ 4.1 15.9 | 36+6.5 8.1 | 44179 14.1 | 34+6.1
Haberman 6.3 | 80+9.8 37 89+15.1 3.8 | 89+13.9 13.4 | 104+7.8
Heart 8.7 104+8.5 20.6 | 97+6 10.8 | 103+8.5 30.6 | 95+8.7
Pima 25.5| 213+10.5 || 13.7 | 198+10.2 || 28.2 | 230+10.4 || 50 192+9.3
Votes 13.4 | 48+6.3 7.2 | 38+8.6 13.4 | 48+6.3 16.5 | 40+7.3

Table 4: Model selection results for DLMs with balls (only).

8. Conclusion and Open Problems

We have introduced a new learning algorithm for decision lists and havensthat it can provide a
favorable alternative to the SCM on some “natural” data sets. Compared Wits,She proposed
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Data Set DLMph DLM},
MSfromCV MSfromBound MSfromCV MSfromBound

s err+o S err+o s err+o S err+o
Breastw 1.8 | 1543.7 2.2 14+4.1 1.8 18+4.9 2.3 16+4.9
Bupa 8.6 | 124+7.9 12.9 | 119+7.7 15.2 | 123+8.4 23.7 | 118+8.2
Credit 6.3 | 209+14.7 || 17.6 | 206+11.5 || 25.7 | 231+12.1 || 40.9 | 208+9.5
Glass 7.4 | 37+8.4 13.4 | 35+6.4 7.2 | 44+4.6 21.7 | 30+6
Haberman 6 7443 23.6 | 68+4.4 6.3 | 80+9.6 20.1 | 65+6.1
Heart 9.1 | 112+£8.2 14.9 | 104+-6.6 10.9 | 103+10.5 || 24.1 | 105+6.4
Pima 2.8 | 204+8.9 4 21249.5 7.8 | 212+8.7 11.1 | 203+11.2
Votes 13.5 | 44+6.8 19.5 | 35+4.8 11.8 | 484+5.4 145 | 40+7.4

Table 5: Model selection results for DLMs with balls and holes.

Data Set DLMhsp DLM ;Sp

MSfromCV MSfromBound MSfromCV MSfromBound

S err+o S err+o S err+o S err+o

BreastW 1.6 | 22+4.6 7 1846 8.2 | 20+2.6 9 18+ 6.9
Bupa 3.1 117+2.9 11.8 | 117+6.2 3.2 110+£3.7 || 5.2 1174+9.3
Credit 17.7 | 152+13.9 || 28.3 | 152+17.8 || 6.4 165+9.2 || 7.6 163+ 10
Glass 2.2 | 3946 2.9 | 34+6.3 2.8 | 384+4.7 34 | 34+£59
Haberman 5.8 | 78+5.8 11.2 | 68+8.9 24 | 69+2.3 4 68+ 3.4
Heart 1.6 | 87+8 3.6 | 89+8.2 1.6 | 99+3.5 3 120+ 2.2
Pima 2.7 178+11.2 || 4.3 182+12.5|| 10.5| 187+6.7 || 15.8 | 175+ 12.7
Votes 95 | 32454 16.3 | 26+5.4 5.6 | 38+3.3 13.8 | 33+4.3

Table 6: Model selection results for DLMs with half-spaces.

learning algorithm for DLMs produces substantially sparser classifiehsoomparable, and often
better, generalization.

We have proposed a general risk bound that depends on the nunebanaples that are used in
the final classifier and the size of the information message needed to ideatifiyahclassifier from
the compression set. The proposed bound is significantly tighter than tipeawiged by Littlestone
and Warmuth (1986) and Floyd and Warmuth (1995) and applies to any esegipn set-dependent
distribution of messages. We have applied this general risk bound to DiMeaking appropriate
choices for the compression set-dependent distribution of messagdmamdhown, on natural
data sets, that these specialized risk bounds are generally slightly mectvefthan K-fold cross
validation for selecting a good DLM model.

The next important step is to find risk bounds that hold for asymmetrical lmssidns. Indeed,
this is the type of loss function which is most appropriate for many naturalsgéteand we cannot
use, in these circumstances, the risk bounds proposed here sincesthaiichonly for the symmet-
ric loss case. Other important issues are the investigation of other metricstemndiata-dependent
sets of features.

This paper shows that it is sometimes worthwhile to use a decision list of daéandient fea-
tures instead of a conjunction or a disjunction of the same set of featuresceHwe may ask
if it is worthwhile to consider the larger class of linear threshold functiongh \data-dependent
features, we want to use (or adapt) algorithms that are efficient whalaviant features abound.
In these cases, the winnow (Littlestone, 1988) and the multi-layered windewo(and El-Yaniv,
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2002) algorithms are obvious candidates. However, these algorithmg deturm a sparse solution
since many features will be assigned a non-negligible weight value. Mereour (preliminary)
numerical experiments with the winnow algorithm indicate that this algorithm is simplgltav to

be used witrO(mz) features fom > 700. More generally, we think that this research direction is
not attractive in view of the fact that it is (generally) very hard to find admeareshold function
with few non-zero weight values.
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