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Abstract
We present a learning algorithm for decision lists which allows features that are constructed from
the data and allows a trade-off between accuracy and complexity. We provide bounds on the gen-
eralization error of this learning algorithm in terms of thenumber of errors and the size of the
classifier it finds on the training data. We also compare its performance on some natural data sets
with the set covering machine and the support vector machine. Furthermore, we show that the
proposed bounds on the generalization error provide effective guides for model selection.

Keywords: decision list machines, set covering machines, sparsity, data-dependent features, sam-
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1. Introduction

The set covering machine (SCM) has recently been proposed by Marchand and Shawe-Taylor (2001,
2002) as an alternative to the support vector machine (SVM) when the objective is to obtain a sparse
classifier with good generalization. Given a feature space, the SCM attemptsto find the smallest
conjunction (or disjunction) of features that gives a small training error. In contrast, the SVM
attempts to find the maximum soft-margin separating hyperplane on all the features. Hence, the two
learning machines are fundamentally different in what they are aiming to achieve on the training
data.

To investigate if it is worthwhile to consider larger classes of functions than just the conjunctions
and disjunctions that are used in the SCM, we focus here on the class of decision lists (Rivest, 1987)
because this class strictly includes both conjunctions and disjunctions while being strictly included
in the class of linear threshold functions (Ehrenfeucht and Haussler, 1989; Blum and Singh, 1990;
Marchand and Golea, 1993).

From a theoretical point of view, the class of decision lists has been extensively studied (Rivest,
1987; Dhagat and Hellerstein, 1994; Eiter et al., 2002; Anthony, 2004)and a few learning algorithms
have been proposed. The first learning algorithm, due to Rivest (1987), PAC learns the class of
decision lists (also known as 1-decision lists) over the input attributes but mayreturn a classifier that
depends on all the input attributes even when the numberr of relevant attributes is much smaller
than the total numbern of attributes. Dhagat and Hellerstein (1994) and Kivinen et al. (1992) have
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proposed an attribute efficient algorithm that outputs a decision list ofO(rk logk m) attributes for
a training set ofm examples wherek denotes the number ofalternationsof the target decision
list (see the definition in Section 2). However, both of these algorithms are unattractive for the
practitioner because they do not provide an accuracy-complexity tradeoff. Indeed, real-world data
are often noisy and, therefore, simpler functions that make some training errors might be better
than more complex functions that make no training errors. Since the amount ofnoise is problem-
specific, a learning algorithm should provide to the user a means to control the tradeoff between
accuracy and the complexity of a classifier. Ideally, the user should be able to choose from a wide
range of functions that includes very simple functions (like constants), that almost always underfit
the data, and very complex functions that often overfit the data. But this latter requirement for
decision lists can be generally achieved only if the set of features used for the decision list is data-
dependent. It is only with a data-dependent set of features that a restricted class of functions like
decision lists can almost always overfit any training data set (that does not contain too many pairs of
identical examples with opposite classification labels). Hence, in this paper, we present a learning
algorithm for decision lists which can be used with any set of features, including those that are
defined with respect to the training data, and that provides some “model selection parameters” (also
called learning parameters) for allowing the user to choose the proper tradeoff between accuracy
and complexity.

We denote bydecision list machine(DLM) any classifier which computes a decision list of
Boolean-valued features, including features that are possibly constructed from the data. In this
paper, we use the set of features known as data-dependent balls (Marchand and Shawe-Taylor,
2001; Sokolova et al., 2003) and the set of features known as data-dependent half-spaces (Marchand
et al., 2003). We show, on some natural data sets, that the DLM can provide better generalization
than the SCM with the same set of features.

We will see that the proposed learning algorithm for the DLM with data-dependent features
is effectively compressing the training data into a small subset of examples which is called the
compression set. Hence, we will show that the DLM with data-dependent features is an example
of a sample-compression algorithm and we will thus propose a general riskbound that depends on
the number of examples that are used in the final classifier and the size of theinformation message
needed to identify the final classifier from the compression set. The proposed bound will apply
to any compression set-dependent distribution of messages (see the definition in Section 4) and
allows for the message set to be of variable size (in contrast with the sample compression bound
of Littlestone and Warmuth (1986) that requires fixed size). We will apply thisgeneral risk bound
to DLMs by making appropriate choices for a compression set-dependentdistribution of messages
and we will show, on natural data sets, that these specialized risk boundsare generally slightly more
effective than K-fold cross validation for selecting a good DLM model.

This paper extends the previous preliminary results of Sokolova et al. (2003).

2. The Decision List Machine

Let x denote an arbitraryn-dimensional vector of the input spaceX which is an arbitrary subset of
Rn. We consider binary classification problems for which the training setS= P∪N consists of a
setP of positive training examples and a setN of negative training examples. We define afeature

as an arbitrary Boolean-valued function that mapsX onto {0,1}. Given any setH = {hi(x)}|H |
i=1

of featureshi(x) and any training setS, the learning algorithm returns a small subsetR ⊂ H of
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features. Given that subsetR , and an arbitrary input vectorx, the outputf (x) of the decision list
machine (DLM) is given by the following rule

If (h1(x)) thenb1

Else If (h2(x)) thenb2

. . .

Else If (hr(x)) thenbr

Elsebr+1,

where eachbi ∈ {0,1} defines the output off (x) if and only if hi is the first feature to be satisfied on
x (i.e. the smallesti for whichhi(x) = 1). The constantbr+1 (wherer = |R |) is known as thedefault
value. Note thatf computes a disjunction of thehis wheneverbi = 1 for i = 1. . . r andbr+1 = 0. To
compute a conjunction ofhis, we simply place inf the negation of eachhi with bi = 0 for i = 1. . . r
andbr+1 = 1. Note, however, that a DLMf that contains one or manyalternations(i.e. a pair
(bi ,bi+1) for whichbi 6= bi+1 for i < r) cannot be represented as a (pure) conjunction or disjunction
of his (and their negations). Hence, the class of decision lists strictly includes conjunctions and
disjunctions.

We can also easily verify that decision lists are a proper subset of linear threshold functions in
the following way. Given a DLM withr features as above, we assign a weight valuewi to eachhi in
the DLM in order to satisfy

|wi | >
r

∑
j=i+1

|w j | ∀i ∈ {1, . . . , r}.

Let us satisfy these constraints with|wi |= 2r−i for i ∈ {1, . . . , r}. Then, for eachi, we setwi = +|wi |
if bi = 1, otherwise we setwi = −|wi | if bi = 0. For the thresholdθ we useθ = −1/2 if br+1 = 1
andθ = +1/2 if br+1 = 0. With this prescription, given any examplex, we always have that

sgn

(

r

∑
i=1

wihi(x)−θ

)

= 2bk−1,

wherek is the smallest integer for whichhk(x) = 1 in the DLM or k = r + 1 if hi(x) = 0 ∀i ∈
{1, . . . , r}. Hence, with this prescription, the output of the linear threshold function is the same as
the output of the DLM for all inputx. Finally, to show that the subset is proper we simply point out
that a majority vote of three features is a particular case of a linear thresholdfunction that cannot
be represented as a decision list since the output of the majority vote cannotbe determined from the
value of a single feature.

From our definition of the DLM, it seems natural to use the following greedy algorithm for
building a DLM from a training set. For a given setS′ = P′ ∪N′ of examples (whereP′ ⊆ P and
N′ ⊆N) and a given setH of features, consider only the featureshi ∈ H which either havehi(x) = 0
for all x ∈ P′ or hi(x) = 0 for all x ∈ N′. Let Qi be the subset of examples on whichhi = 1 (our
constraint on the choice ofhi implies thatQi contains only examples having the same class label).
We say thathi is covering Qi . The greedy algorithm starts withS′ = S and an empty DLM. Then
it finds ahi with the largest|Qi | and appends(hi ,b) to the DLM (whereb is the class label of the
examples inQi). It then removesQi from S′ and repeats to find thehk with the largest|Qk| until
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eitherP′ or N′ is empty. It finally assignsbr+1 to the class label of the remaining non-empty set of
examples.

Following Rivest (1987), this greedy algorithm is assured to build a DLM that makes no training
errors wheneverthere existsa DLM on a setE ⊆ H of features that makes zero training errors.
However, this constraint is not really required in practice since we do want to permit the user of a
learning algorithm to control the tradeoff between the accuracy achievedon the training data and
the complexity (here the size) of the classifier. Indeed, a small DLM which makes a few errors
on the training set might give better generalization than a larger DLM (with morefeatures) which
makes zero training errors. One way to include this flexibility is to early-stop thegreedy algorithm
when there remains a few more training examples to be covered. But a further reduction in the size
of the DLM can be accomplished by considering featureshi that cover examples of both classes.
Indeed, ifQi denotes the subset ofS′ on whichhi = 1 (as before), letPi denote the subset ofP′ that
belongs toQi and letNi be the subset ofN′ that belongs toQi (thusQi = Pi ∪Ni). In the previous
greedy algorithm, we were considering only featureshi for which eitherPi or Ni was empty. Now
we are willing to consider features for which neitherPi nor Ni is empty whenever max(|Pi |, |Ni |) is
substantially larger than before. In other words, we want now to consider features that may err on a
few examples whenever they can cover many more examples. We thereforedefine theusefulness Ui
of featurehi by

Ui
def
= max{|Pi |− pn|Ni |, |Ni |− pp|Pi |} ,

wherepn denotes thepenaltyof making an error on a negative example whereaspp denotes the
penalty of making an error on a positive example. Indeed, whenever we add to a DLM a featurehi

for which Pi andNi are both non empty, the outputbi associated withhi will be 1 if |Pi |− pn|Ni | ≥
|Ni |− pp|Pi | or 0 otherwise. Hence, the DLM will necessarily incorrectly classify the examples in
Ni if bi = 1 or the examples inPi if bi = 0.

Hence, to include this flexibility in choosing the proper tradeoff between complexity and accu-
racy, each greedy step will be modified as follows. For a given training set S′ = P′∪N′, we will select
a featurehi with the largest value ofUi and append(hi ,1) to the DLM if |Pi |− pn|Ni | ≥ |Ni |− pp|Pi |,
otherwise, we append(hi ,0) to the DLM. If (hi ,1) was appended, we will then remove fromS′

every example inPi (since they are correctly classified by the current DLM)and we will also re-
move fromS′ every example inNi (since a DLM with this feature is already misclassifyingNi , and,
consequently, the training error of the DLM will not increase if later features err on the examples
in Ni). Similarly if (hi ,0) was appended, we will then remove fromS′ the examples inQi = Ni ∪Pi .
Hence, we recover the simple greedy algorithm whenpp = pn = ∞.

The formal description of our learning algorithm is presented in Figure 1. Note that we always
setbr+1 = ¬br since, otherwise, we could remove therth feature without changing the classifier’s
output f for any inputx.

The penalty parameterspp andpn and the early stopping points of BuildDLM are the model-
selection parameters that give the user the ability to control the proper tradeoff between the training
accuracy and the size of the DLM. Their values could be determined either by using K-fold cross-
validation, or by computing the risk bounds proposed below. It thereforegeneralizes the learning
algorithm of Rivest (1987) by providing this complexity-accuracy tradeoff and by permitting the
use of any kind of Boolean-valued features, including those that are constructed from the training
data.
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Algorithm BuildDLM(S, pp, pn,s,H )

Input: A set S of examples, the penalty valuespp and pn, a stopping points, and a set

H = {hi(x)}|H |
i=1 of Boolean-valued features.

Output: A decision listf consisting of an ordered setR = {(hi ,bi)}r
i=1 of featureshi with their

corresponding output valuesbi , and a default valuebr+1.

Initialization: R = /0, r = 0, S′ = S, b0 = ¬a (wherea is the label of the majority class).

1. For eachhi ∈ H , let Qi = Pi ∪Ni be the subset ofS′ for which hi = 1 (wherePi consists of
positive examples andNi consists of negative examples). For eachhi computeUi , where:

Ui
def
= max{|Pi |− pn|Ni |, |Ni |− pp|Pi |}

2. Let hk be a feature with the largest value ofUk. If Qk = /0 then go to step 6 (no progress
possible).

3. If (|Pk|− pn|Nk| ≥ |Nk|− pp|Pk|) then append(hk,1) to R . Else append(hk,0) to R .

4. LetS′ = S′−Qk and letr = r +1.

5. If (r < s andS′ contains examples of both classes) then go to step 1

6. Setbr+1 = ¬br . Return f .

Figure 1: The learning algorithm for the decision list machine

The time complexity ofBuildDLM is trivially bounded as follows. Assuming a time of at most
t for evaluating one feature on one example, it takes a time of at most|H |mt to find the first feature
of the DLM for a training set ofm examples. For the data-dependent set of features presented in
Section 3.1, it is (almost) always possible to find a feature that covers at least one example. In that
case, it takes a time ofO(|H |mst) to find s features. Note that the algorithm must stop if, at some
greedy step, there does not exists a feature that covers at least one training example.

Generally, we can further reduce the size of the DLM by observing that any featurehi with
bi = br+1 can be deleted from the DLM if there does not exist a training examplex with label
y = br+1 and another featureh j with j > i andb j 6= bi for which hi(x) = h j(x) = 1 (since, in that
case, featurehi can be moved to the end of the DLM without changing the output for any correctly
classified training example). The algorithmPruneDLM of Figure 2 deletes all such nodes from the
DLM.

We typically use both algorithms in the following way. Given a training set, we first run Build-
DLM without early stopping (i.e., with parameters set to infinity) to generate what we call atem-
plateDLM. Then we consider all the possible DLMs that can be obtained by truncating this tem-
plate. More precisely, if the template DLM containsr features, we buildr +1 possible DLMs: the
DLM that contains zero features (a constant function), the DLM that contains the first feature only,
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Algorithm PruneDLM(S, f )

Input: A setS of examples, a decision listf consisting of an ordered setR = {(hi ,bi)}r
i=1 of

featureshi with their corresponding output valuesbi , and a default valuebr+1.

Output: The same decision listf with, possibly, some features removed.

Initialization: l = r

1. Let(hk,bk) ∈ R be the pair with the largest value ofk such thatbk = br+1 andk < l .

2. If (@(h j ,b j) ∈ R : j > k, b j 6= bk, h j(x) = hk(x) for some(x,y) ∈ S with y = br+1) then
delete(hk,bk) from R .

3. l = k.

4. If (l > 1) then go to step 1; else stop.

Figure 2: The pruning algorithm for the decision list machine

the DLM that contains the first two features, and so on, up to the DLM that contains allr features.
Then we runPruneDLM on all these DLMs to try to reduce them further. Finally all these DLMs
are tested on a provided testing set.

It is quite easy to build artificial data sets for whichPruneDLM decreases substantially the size
of the DLM. However, for the natural data sets used in Section 7,PruneDLM almost never deleted
any node from the DLM returned byBuildDLM.

3. Data-Dependent Features

The set ofdata-dependent balls(Marchand and Shawe-Taylor, 2001) anddata-dependent half-
spaces(Marchand et al., 2003) were introduced for their usage with the SCM. Wenow need to
adapt their definitions for using them with the DLM.

3.1 Balls and Holes

Let d : X 2 → R be a metric for our input spaceX . Let hc,ρ be a feature identified by acenterc and a
radiusρ. Featurehc,ρ is said to be aball iff hc,ρ(x) = 1 ∀x : d(x,c) ≤ ρ and 0 otherwise. Similarly,
featurehc,ρ is said to be ahole iff hc,ρ(x) = 1 ∀x : d(x,c) > ρ and 0 otherwise. Hence, a ball is a
feature that covers the examples that are located inside the ball; whereas ahole covers the examples
that are located outside. In general, both types of features will be used inthe DLM.

Partly to avoid computational difficulties, we are going to restrict the centers of balls and holes
to belong to the training set,i.e., each centerc must be chosen among{xi : (xi ,yi) ∈ S} for a given
training setS. Moreover, given a centerc, the set of relevant radius values are given by the positions
of the other training examples,i.e., the relevant radius values belong to{d(c,xi) : (xi ,yi) ∈ S}.
Hence, each ball and hole is identified by only two training examples: a centerc and aborder b
that identifies the radius withd(c,b). Therefore, a DLM made of these two-example features is
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effectively compressing the training data into the smaller set of examples usedfor its features. This
is the other reason why we have constrained the centers and radii to thesevalues. Hence, given
a training setS of m examples, the setH of features used by the DLM will containO(m2) balls
and holes. This is a data-dependent set of features since the featuresare defined with respect to the
training dataS.

Whenever a ball (or hole)hc,ρ is chosen to be appended to the DLM, we must also provide an
output valueb which will be the output of the DLM on examplex whenhc,ρ is the first feature of
the DLM that hashc,ρ(x) = 1. In this paper we always chooseb to be the class label ofc if hc,ρ is
a ball. If hc,ρ is a hole, then we always chooseb to be the negation of the class label ofc. We have
not explored the possibility of using balls and holes with an outputnotgiven by the class label of its
center because, as we will see later, this would have required an additional information bit in order
to reconstruct the ball (or hole) from its center and border and, consequently, would have given a
looser generalization error bound without providing additional discriminative power (i.e., power to
fit the data) that seemed “natural”.

To avoid having examples directly on the decision surface of the DLM, the radiusρ of a ball of
centerc will always be given byρ = d(c,b)− ε for some training exampleb chosen for the border
and some fixed and very small positive valueε. Similarly, the radius of a hole of centerc will
always be given byρ = d(c,b)+ ε. We have not chosen to assign the radius values “in between”
two training example since this would have required three examples per ball and hole and would
have decreased substantially the tightness of our generalization error bound without providing a
significant increase of discriminative power.

With these choices for centers and radii, it is straightforward to see that, for any penalty values
pp andpn, the set of balls having the largest usefulnessU always contains a ball with a center and
border of opposite class labels whereas the set of holes having the largest usefulness always contains
a hole having a center and border of the same class label. Hence, we will only consider such balls
and holes in the set of features for the DLM. For a training set ofmp positive examples andmn

negative examples we have exactly 2mpmn such balls andm2
p +m2

n such holes. We thus provide to
BuildDLM a setH of at most(mp +mn)

2 features.
Finally, note that this set of features has the property that there always exists a DLM of these

features that correctly classifies all the training setS provided thatS does not contain a pair of
contradictory examples,i.e., (x,y) and(x′,y′) such thatx = x′ andy 6= y′. Therefore, this feature
set gives to the user the ability to choose the proper tradeoff between training accuracy and function
size.

3.2 Half-Spaces

With the use of kernels, each input vectorx is implicitly mapped into a high-dimensional vector
φφφ(x) such thatφφφ(x) ·φφφ(x′) = k(x,x′) (the kernel trick). We consider the case where each feature is
a half-space constructed from a set of 3 points{φφφa,φφφb,φφφc} where eachφφφl is the image of an input
examplexl taken from the training setS. We consider the case wherexa andxb have opposite class
labels and the class label ofxc is the same as the class label ofxb. The weight vectorw of such a

half-spacehc
a,b is defined byw def

= φφφa−φφφb and its thresholdt by t
def
= w ·φφφc + ε whereε is a small

positive real number. We useε > 0 to avoid having examples directly on the decision surface of the
DLM. Hence

hc
a,b(x)

def
= sgn{w ·φφφ(x)− t} = sgn{k(xa,x)−k(xb,x)− t},
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where
t = k(xa,xc)−k(xb,xc)+ ε.

Whenever a half-spacehc
a,b is chosen to be appended to the DLM, we must also provide an

output valueb which will be the output of the DLM on examplex whenhc
a,b is the first feature of

the DLM havinghc
a,b(x) = 1. From our definition above, we chooseb to be the class label ofφφφa.

Hence, a DLM made of these three-example features is effectively compressing the training set into
the smaller set of examples used for its features.

Given a training setSof m= mp +mn examples, the setH of features considered by the DLM
will contain at mostm·mp ·mn half-spaces. However, in contrast with the set of balls and holes, we
are not guaranteed to always be able to cover all the training setSwith these half-spaces.

Finally, note that this set of features (in the linear kernel casek(x,x′) = x · x′) was already
proposed by Hinton and Revow (1996) for decision tree learning but noformal analysis of their
learning method has been given.

4. A Sample Compression Risk Bound

Since our learning algorithm tries to build a DLM with the smallest number of data-dependent fea-
tures, and since each feature is described in terms of small number of training examples (two for
balls and holes and three for half-spaces), we can thus think of our learning algorithm as compress-
ing the training set into a small subset of examples that we call thecompression set.

Hence, in this section, we provide a general risk bound that depends onthe number of examples
that are used in the final classifier and the size of the information message needed to identify the
final classifier from the compression set. Such a risk bound was first obtained by Littlestone and
Warmuth (1986). The bound provided here allows the message set to be ofvariable size (whereas
previous bounds require fixed size). In the next section, we will compare this bound with other well
known bounds. Later, we apply this general risk bound to DLMs by makingappropriate choices
for a compression set-dependent distribution of messages. Finally, we willshow, on natural data
sets, that these specialized risk bounds provide an effective guide forchoosing the model-selection
parameters ofBuildDLM.

Recall that we consider binary classification problems where the input space X consists of an

arbitrary subset ofRn and the output spaceY = {0,1}. An examplez def
= (x,y) is an input-output

pair wherex ∈ X andy∈ Y . We are interested in learning algorithms that have the following prop-
erty. Given a training setS= {z1, . . . ,zm} of m examples, the classifierA(S) returned by algorithm
A is described entirely by twocomplementary sources of information: a subsetzi of S, called the
compression set, and amessage stringσ which represents the additional information needed to ob-
tain a classifier from the compression setzi. This implies that there exists areconstruction function
R , associated toA, that outputs a classifierR (σ,zi) when given an arbitrary compression setzi and
message stringσ chosen from the setM (zi) of all distinct messages that can be supplied toR with
the compression setzi. It is only when such anR exists that the classifier returned byA(S) is always
identified by a compression setzi and a message stringσ.

Given a training setS, the compression setzi is defined by a vectori of indices such that

i def
= (i1, i2, . . . , i|i|) (1)

with : i j ∈ {1, . . . ,m} ∀ j

and : i1 < i2 < .. . < i|i|,
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where|i| denotes the number of indices present ini.
The classical perceptron learning rule and support vector machines are examples of learning

algorithms where the final classifier can be reconstructed solely from a compression set (Graepel
et al., 2000, 2001). In contrast, we will see in the next section that the reconstruction function for
DLMs needs both a compression set and a message string.

We seek a tight risk bound for arbitrary reconstruction functions that holds uniformly for all
compression sets and message strings. For this, we adopt the PAC setting where each examplez is
drawn according to a fixed, but unknown, probability distributionD on X ×Y . The riskR( f ) of
any classifierf is defined as the probability that it misclassifies an example drawn according toD:

R( f )
def
= Pr(x,y)∼D ( f (x) 6= y) = E(x,y)∼DI( f (x) 6= y),

whereI(a) = 1 if predicatea is true and 0 otherwise. Given a training setS= {z1, . . . ,zm} of m
examples, theempirical risk RS( f ) onS, of any classifierf , is defined according to

RS( f )
def
=

1
m

m

∑
i=1

I( f (xi) 6= yi)
def
= E(x,y)∼SI( f (x) 6= y).

Let Zm denote the collection ofm random variables whose instantiation gives a training sample
S= zm = {z1, . . . ,zm}. Let us denote PrZm∼Dm(·) by PZm(·). The basic method to find a bound on
the true risk of a learning algorithmA, is to boundP′ where

P′ def
= PZm (R(A(Zm)) > ε) . (2)

Our goal is to find the smallest value forε such thatP′ ≤ δ since, in that case, we have

PZm (R(A(Zm)) ≤ ε) ≥ 1−δ.

Recall that classifierA(zm) is described entirely in terms of a compression setzi ⊂ zm and a
message stringσ ∈ M (zi). Let I be the set of all 2m vectors of indicesi as defined by Equation 1.
Let M (zi) be the set of all messagesσ that can be attached to compression setzi. We assume that
the empty message is always present inM (zi) so that we always have|M (zi)| ≥ 1. Since any
i ∈ I andσ ∈ M (zi) coulda priori be reached by classifierA(zm), we boundP′ by the following
probability

P′ ≤ PZm (∃i ∈ I : ∃σ ∈ M (Zi) : R(R (σ,Zi)) > ε) def
= P′′,

whereZi are the random variables whose instantiation giveszi and whereε depends onZi,σ and
the amount of training errors. In the sequel, we denote byi the vector of indices made of all the
indices not present ini. SincePZm(·) = EZiPZi|Zi(·), we have (by the union bound)

P′′ ≤ ∑
i∈I

EZiPZi|Zi (∃σ ∈ M (Zi) : R(R (σ,Zi)) > ε)

≤ ∑
i∈I

EZi ∑
σ∈M (Zi)

PZi|Zi (R(R (σ,Zi)) > ε) . (3)

We will now stratifyPZi|Zi(R(R (σ,Zi)) > ε) in terms of the errors thatR (σ,Zi) can make on
the training examples that are not used for the compression set. Let Ii denote the set of vectors of
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indices where each index is not present ini. Given a training samplezm and a compression setzi,
we denote byRzi

( f ) the vector of indices pointing to the examples inzi which are misclassified by
f . We have

PZi|Zi (R(R (σ,Zi)) > ε)) = ∑
j∈Ii

PZi|Zi

(

R(R (σ,Zi)) > ε,RZi
(R (σ,Zi)) = j

)

. (4)

But now, since the classifierR (σ,Zi) is fixed when(σ,Zi) is fixed, and since eachZi is independent
and identically distributed according to the same (but unknown) distributionD, we have

PZi|Zi

(

R(R (σ,Zi)) > ε,RZi
(R (σ,Zi)) = j

)

≤ (1− ε)m−|i|−|j|. (5)

Hence, by using Equations 3, 4, and 5, we have

P′′ ≤ ∑
i∈I

∑
j∈Ii

EZi ∑
σ∈M (Zi)

[1− ε(σ,Zi, j)]
m−|i|−|j| , (6)

where we have now shown explicitly the dependence ofε on Zi, σ, andj.
Given any compression setzi, let us now use any functionPM (zi)(σ) which has the property that

∑
σ∈M (zi)

PM (zi)(σ) ≤ 1 (7)

and can, therefore, be interpreted as compression set-dependent distribution of messages when it
sums to one. Let us then chooseε such that

(

m
|i|

)(

m−|i|
|j|

)

[1− ε(σ,Zi, |j|)]m−|i|−|j| = PM (Zi)(σ) ·ζ(|i|) ·ζ(|j|) ·δ, (8)

where, for any non-negative integera, we define

ζ(a)
def
=

6
π2(a+1)−2. (9)

In that case, we have indeed thatP′ ≤ δ since∑∞
i=1 i−2 = π2/6. Any choice forζ(a) is allowed as

long as it is a non negative function who’s sum is bounded by 1.
The solution to Equation 8 is given by

ε(σ,Zi, |j|,δ) = 1−exp

(

−1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+ ln

(

1
PM (Zi)(σ)

)

+

ln

(

1
ζ(|i|)ζ(|j|)δ

)])

. (10)

We have therefore shown the following theorem:

Theorem 1 For any δ ∈ (0,1] and for any sample compression learning algorithm with a recon-
struction functionR that maps arbitrary subsets of a training set and information messages to
classifiers, we have

PZm
{

∀i ∈ I ,σ ∈ M (Zi) : R(R (σ,Zi)) ≤ ε(σ,Zi, |j|,δ)
}

≥ 1−δ.
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Although the risk bound given by Theorem 1 (and Equation 10) increases with the amount|j|
of training errors made on the examples that do not belong to the compressionsetzi, it is interesting
to note that it isindependentof the amount of errors made on the compression set. However,
a reconstruction function will generally need less additional information when it is constrained
to produce a classifier making no errors with the compression set. Hence, the above risk bound
will generally be smaller for sample-compression learning algorithms that always return a classifier
making no errors on the compression set. But this constraint might, in turn, force the learner to
produce classifiers with larger compression sets.

Finally note that the risk bound is small for classifiers making a small number|j| of training er-
rors, having a small compression set size|i|, and having a message stringσ with large prior “proba-
bility” PM (Zi)(σ). This “probability” is usually larger for short message strings since larger message
strings are usually much more numerous at sharing the same “piece” (or fraction) of probability.

5. Comparison with Other Risk Bounds

Although the risk bound of Theorem 1 is basically a sample compression boundit, nevertheless,
applies to a much broader class of learning algorithms than just sample compression learning al-
gorithms. Indeed the risk bound depends on two complementary sources ofinformation used to
identify the classifier: the sample compression setzi and the message stringσ. In fact, the bound
still holds when the sample compression set vanishes and when the classifierh= R (σ) is described
entirely in terms of a message stringσ. It is therefore worthwhile to compare the risk bound of
Theorem 1 to other well-known bounds.

5.1 Comparison with Data-Independent Bounds

The risk bound of Theorem 1 can be qualified as “data-dependent” when the learning algorithm is
searching among a class of functions (classifiers) described in terms of asubsetzi of the training
set. Nevertheless, the bound still holds when the class of functions is “data-independent” and when
individual functions of this class are identified only in terms of a (data-independent) messageσ. In
that limit, |i| = 0 and the risk boundε depends only onσ and the number|j| = k of training errors:

ε(σ,k,δ) = 1−exp

( −1
m−k

[

ln

(

m
k

)

+ ln

(

1
PM (σ)

)

+ ln

(

1
ζ(k)δ

)])

. (11)

Since here each classifierh is given byR (σ) for someσ ∈ M , we can considerM as defining a
data-independent set of classifiers. This set may contain infinitely many classifiers but it must be
countable. Indeed all that is required is

∑
σ∈M

P(σ) ≤ 1

for any fixed priorP overM . If we further restrict the learning algorithm to produce a classifier that
always make no training errors (k = 0) and if we chooseP(σ) = 1/|M | ∀σ ∈ M for some finite
setM , we obtain the famous Occam’s razor bound (Blumer et al., 1987)

ε(δ) = 1−exp

(−1
m

[

ln

( |M |
δ

)])

≤ 1
m

[

ln

( |M |
δ

)]

, (12)
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where we have used 1−exp(−x) ≤ x. Hence the bound of Equation 11 is a generalization of the
Occam’s razor bound to the case of an arbitrary (but fixed) priorP(σ) over a countably infinite
setM of classifiers which are possibly making some training errors. Consequently, the bound of
Theorem 1 is a generalization of the Occam’s razor bound to the case where the classifiers are
identified by two complementary sources of information: the message stringσ and the compression
setzi.

The proposed bound is obtained by using a union bound over the possiblecompression subsets
of the training set and over the possible messagesσ ∈ M (zi). This bound therefore fails when we
consider a continuous set of classifiers. In view of the fact that the setof DLMs of data-dependent
features is a subset of the same class of functions but with features that are not constrained to be
identified by pairs or triples of training examples, why not use the well-knownVapnik-Chervonenkis
(VC) bounds (Vapnik, 1998) or Rademacher bounds (Mendelson, 2002) to characterize the learn-
ing algorithms discussed in this paper? The reason is that the proposed algorithms are indeed
constrained to use a data-dependent set of features identified by pairsand triples of training exam-
ples. The risk bound of Theorem 1 therefore reflects more the set of possible classifiers that can
be produced by the proposed algorithms than the VC or Rademacher bounds which are suited for
algorithms that can produce any classifier of a continuous set.

5.2 Comparison with Other Sample Compression Risk Bounds

The risk bound of Theorem 1 can be reduced to the sample compression bounds of Littlestone and
Warmuth (1986) if we perform the following changes and specializations:

• We restrict the setM of possible messages to be a finite set which is the same for all possible
compression setszi.

• For the distribution of messages, we use1

PM (σ) =
1

|M | ∀σ ∈ M .

• Theorem 1 is valid for any functionζ that satisfies∑m
i=0 ζ(i) ≤ 1. Here we will useζ(a) =

1/(m+1) ∀a∈ {0, . . . ,m}. This choice increases the bound since 6π−2(a+1)−2 > 1/(m+
1) for a <

√

6(m+1)/π−1.

• We use the approximation 1−exp(−x) ≤ x to obtain a looser (but somewhat easier to under-
stand) bound.

With these restrictions and changes we obtain the following bounds for|j| = 0 and|j| ≥ 0:

ε(|i|,δ) ≤ 1
m−|i|

[

ln

(

m
|i|

)

+ ln

( |M |
δ

)

+ ln(m+1)

]

for |j| = 0, (13)

ε(|i|, |j|,δ) ≤ 1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+

ln

( |M |
δ

)

+2ln(m+1)

]

for |j| ≥ 0. (14)

1. The case of|M | = 1 (no message strings used) is also treated by Floyd and Warmuth (1995).

438



DECISION L ISTS OFDATA -DEPENDENTFEATURES

Apart from the ln(m+1) terms, these bounds are the same as the sample compression bounds of Lit-
tlestone and Warmuth (1986). The ln(m+ 1) terms are absent from the Littlestone and Warmuth
compression bounds because their bounds hold uniformly for all compression sets of afixed size
|i| and for all configurations of training error points of a fixed amount|j|. A ln(m+ 1) term oc-
curs in the bound of Equation 13 from the extra requirement to hold uniformlyfor all compression
set sizes. Still an extra ln(m+ 1) term occurs in Equation 14 from the extra requirement to hold
uniformly for all amounts|j| of training errors. The bound of Theorem 1 holds uniformly for all
compression sets of arbitrary sizes and for all configurations of trainingerror points of an arbitrary
amount. But instead of usingζ(a) = 1/(m+ 1) ∀a ∈ {0, . . . ,m} we have used the tighter form
given by Equation 9.

It is also interesting to compare the bounds of Equations 13 and 14 with the sample compression
bounds given by Theorems 5.17 and 5.18 of Herbrich (2002). The bound of Equation 13 is the same
as the bound of Theorem 5.17 of Herbrich (2002) when|M | = 1 (no messages used). When the
classifier is allowed to make training errors, the bound of Equation 14 is tighterthan the lossy
compression bound of Theorem 5.18 of Herbrich (2002) when|j| � msince the latter have used the
Hoeffding inequality which becomes tight only when|j| is close tom/2.

Consequently, the bound of Theorem 1 is tighter than the above-mentioned sample compression
bounds for three reasons. First, the approximation 1−exp(−x)≤ x was not performed. Second, the
functionζ(a) of Equation 9 was used instead of the looser factor of 1/(m+ 1). Third, in contrast
with the other sample compression bounds, the bound of Theorem 1 is valid for anya priori defined
sample compression-dependent distribution of messagesPM (zi)(σ).

This last characteristic may be the most important contribution of Theorem 1. Indeed, we feel
that it is important to allow the set of possible messages and the message set size to depend on
the sample compressionzi since the class labels of the compression set examples give information
about the set of possible data-dependent features that can be constructed fromzi. Indeed, it is
conceivable that for somezi, very little extra information may be needed to identify the classifier
whereas for some otherzi, more information may be needed. Consider, for example, the case
where the compression set consists of two examples that are used by the reconstruction function
R to obtain a single-ball classifier. For the reconstruction function of the setcovering machine
(described in the next section), a ball border must be a positive example whereas both positive and
negative examples are allowed for ball centers. In that case, if the two examples in the compression
set have a positive label, the reconstruction function needs a message string of at least one bit that
indicates which example is the ball center. If the two examples have opposite class labels, then the
negative example is necessarily the ball center and no message at all is needed to reconstruct the
classifier. More generally, the set of messages that we use for all typesof DLMs proposed in this
paper depends on some properties ofzi like its numbern(zi) of negative examples. Without such a
dependency onzi, the set of possible messagesM could be unnecessarily too large and would then
loosen the risk bound.

5.3 Comparison with the Set Covering Machine Risk Bound

The risk bound for the set covering machine (SCM) (Marchand and Shawe-Taylor, 2001, 2002) is
not a general-purposed sample compression risk bound as the one provided by Theorem 1. It does
exploit the fact that the final classifier is partly identified by a small subset of the training examples
(the compression set) but, instead of using messages to provide the additional information needed
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to obtain a classifier, it partitions the compression set into three disjoint sets. Hence, we cannot
compare directly the bound of Theorem 1 with the SCM risk bound since the latter is much more
specialized than the former. Instead we will show how we can apply the general risk bound of
Theorem 1 to the case of the SCM just by choosing an appropriate sample compression-dependent
distribution of messagesPM (zi)(σ).

Recall that the task of the SCM is to construct the smallest possible conjunctionof (Boolean-
valued) features. We discuss here only the conjunction case. The disjunction case is treated similarly
just by exchanging the role of the positive with the negative examples.

For the case of data-dependent balls and holes, each feature is identified by a training example
called acenter(xc,yc), and another training example called aborder (xb,yb). Given any metricd,
the outputh(x) on any input examplex of such a feature is given by

h(x) =

{

yc if d(x,xc) ≤ d(x,xb)
¬yc otherwise.

In this case, given a compression setzi, we need to specify the examples inzi that are used for a
border point without being used as a center. As explained by Marchandand Shawe-Taylor (2001),
no additional amount of information is required to pair each center with its border point whenever
the reconstruction functionR is constrained to produce a classifier that always correctly classifies
the compression set. Furthermore, as argued by Marchand and Shawe-Taylor (2001), we can limit
ourselves to the case where each border point is a positive example. In that case, each message
σ ∈ M (zi) just needs to specify the positive examples that are a border point withoutbeing a center.
Let n(zi) andp(zi) be, respectively, the number of negative and the number of positive examples in
compression setzi. Let b(σ) be the number of border point examples specified in messageσ and let
ζ(a) be defined by Equation 9. We can then use

PM (Zi)(σ) = ζ(b(σ)) ·
(

p(zi)

b(σ)

)−1

(15)

since, in that case, we have for any compression setzi:

∑
σ∈M (zi)

PM (zi)(σ) =
p(zi)

∑
b=0

ζ(b) ∑
σ:b(σ)=b

(

p(zi)

b(σ)

)−1

≤ 1.

With this distributionPM (zi), the risk bound of Theorem 1 specializes to

ε(σ,Zi, |j|,δ) = 1−exp

( −1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+ ln

(

p(zi)

b(σ)

)

+

ln

(

1
ζ(|i|)ζ(|j|)ζ(b(σ))δ

)])

. (16)

In contrast, the SCM risk bound of Marchand and Shawe-Taylor (2001) is equal to

ε′(σ,Zi, |j|,δ) = 1−exp

( −1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+

ln

(

cp(zi)+cn(zi)+b(zi)

cp(zi)

)

+ ln

(

m2|i|
δ

)])

, (17)
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wherecp(zi) and cn(zi) denote, respectively, the number of positive centers and the number of
negative centers inzi and whereb(zi) denotes the the number of borders inzi.

Hence, we observe only two differences between these two bounds. First, the (larger) ln(m2|i|/δ)
term of Marchand and Shawe-Taylor (2001) has been replaced by the(smaller) ln(1/ζ(|i|)ζ(|j|)ζ(b(σ))δ)
term. Second, the coefficient

(

cp(zi)+cn(zi)+b(zi)

cp(zi)

)

has been replaced by the smaller coefficient
(

p(zi)

b(σ)

)

.

We can verify that this last coefficient is indeed smaller since
(

p(zi)

b(σ)

)

=

(

cp(zi)+b(zi)

b(zi)

)

=

(

cp(zi)+b(zi)

cp(zi)

)

≤
(

cp(zi)+cn(zi)+b(zi)

cp(zi)

)

.

Consequently, the risk bound of Theorem 1, applied to the SCM with the distribution given by
Equation 15, is smaller than the SCM risk bound of Marchand and Shawe-Taylor (2001).

6. Risks Bounds for Decision List Machines

To apply the risk bound of Theorem 1, we need to define a distribution of message strings2 PM (zi)(σ)
for each type of DLM that we will consider. Once that distribution is known,we only need to insert
it in Equation 10 to obtain the risk bound. Note that the risk bound does not depend on how we
actually codeσ (for some receiver, in a communication setting). It only depends on thea priori
probabilities assigned to each possible realization ofσ.

6.1 DLMs Containing Only Balls

Even in this simplest case, the compression setzi alone does not contain enough information to
identify a DLM classifier (the hypothesis). To identify unambiguously the hypothesis we need to
provide also a message stringσ.

Recall that, in this case,zi contains ball centers and border points. By construction, each center
is always correctly classified by the hypothesis. Moreover, each center can only be the center of one
ball since the center is removed from the data when a ball is added to the DLM.But a center can
be the border of a previous ball in the DLM and a border can be the border of more than one ball
(since the border of a ball is not removed from the data when that ball is added to the DLM). Hence,
σ needs to specify the border points inzi that are a border without being the center of another ball.
Let σ1 be the part of the message stringσ that will specify that information and letP1(σ1) be the
probabilities that we assign to each possible realization ofσ1. Since we expect that most of the
compression sets will contain roughly the same number of centers and borders, we assign, to each
example ofzi, an equala priori probability to be a center or a border. Hence we use

P1(σ1) =
1

2|i|
∀σ1.

2. We will refer toPM (zi)
as the “distribution” of messages even though its summation over the possible realizations of

σ might be less than one (as specified by Equation 7).
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Onceσ1 is specified, the centers and borders ofzi are identified. But to identify each ball we
need to pair each center with a border point (which could possibly be the center of another ball).
For this operation, recall that the border and the center of each ball musthave opposite class labels.
Let σ2 be the part of the message stringσ that specifies that pairing information and letP2(σ2|σ1)
be the probabilities that we assign to each possible realization ofσ2 onceσ1 is given. Letn(zi) and
p(zi) be, respectively, the number of negative and the number of positive examples in compression
setzi. Consider now a positive center examplex of zi. Since a border point can be used for more
that one ball and a center can also be used as a border, we assign an equal probability of 1/n(zi)
to each negative example ofzi to be paired withx. Similarly, we assign an equal probability of
1/p(zi) to each positive example to be paired with a negative center ofzi. Let cp(zi) andcn(zi)
be, respectively, the number of positive centers and negative centersin zi (this is known onceσ1 is
specified). For an arbitrary compression setzi, we thus assign the followinga priori probability to
each possible pairing information stringσ2:

P2(σ2|σ1) =

(

1
n(zi)

)cp(zi)( 1
p(zi)

)cn(zi)

∀σ2 | n(zi) 6= 0 andp(zi) 6= 0.

This probability is, indeed, correctly defined only under the condition thatn(zi) 6= 0 and p(zi) 6= 0.
However, since the border and center of each ball must have opposite labels, this condition is the
same as|i| 6= 0. When|i| = 0, we can just assign 1 toP2(σ2|σ1). By using the indicator function
I(a) defined previously, we can thus writeP2(σ2|σ1) more generally as

P2(σ2|σ1) =

(

1
n(zi)

)cp(zi)( 1
p(zi)

)cn(zi)

I(|i| 6= 0) + I(|i| = 0) ∀σ2.

Onceσ1 andσ2 are known, each ball of the DLM is known. However, to place these balls in

the DLM, we need to specify their order. Letr(zi)
def
= cp(zi)+ cn(zi) be the number of balls in the

DLM (this is known onceσ1 andσ2 are specified). Letσ3 be the part of the message stringσ that
specifies this ordering information and letP3(σ3|σ2,σ1) be the probabilities that we assign to each
possible realization ofσ3 onceσ1 andσ2 are given. For an arbitrary compression setzi, we assign
an equala priori probability to each possible ball ordering by using

P3(σ3|σ2,σ1) =
1

r(zi)!
∀σ3.

The distribution of messages is then given byP1(σ1)P2(σ2|σ1)P3(σ3|σ2,σ1). Hence

PM (zi)(σ) =
1

2|i|
·
[

(

1
n(zi)

)cp(zi)( 1
p(zi)

)cn(zi)

I(|i| 6= 0) + I(|i| = 0)

]

· 1
r(zi)!

∀σ. (18)

6.2 DLMs Containing Balls and Holes

The use of holes in addition to balls introduces a few more difficulties that are taken into account by
sending a few more bits of information to the reconstruction function. The most important change
is that the center of a hole can be used more than once since the covered examples are outside the
hole. Hence, the number of features can now exceed the number of centers but it is always smaller
than |i|2. Indeed, in the worst case, each pair of (distinct) examples taken from the compression
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setzi could be used for two holes: giving a total of|i|(|i| − 1) features. The first partσ1 of the
(complete) message stringσ will specify the numberr(zi) of features present in compression setzi.
Since we always haver(zi) < |i|2 for |i|> 0, we could give equala priori probability for each value
of r ∈ {0, . . . , |i|2}. However since we want to give a slight preference to smaller DLMs, we choose
to assign a probability equal toζ(r) (defined by Equation 9) for all possible values ofr. Hence

P1(σ1) = ζ(r(zi)) ∀σ1.

The second partσ2 of σ specifies, for each feature, if the feature is a ball or a hole. For this, we
give equal probability to each of ther(zi) features to be a ball or a hole. Hence

P2(σ2|σ1) = 2−r(zi) ∀σ2.

Finally, the third partσ3 of σ specifies, sequentially for each feature, the center and border point.
For this, we give an equal probability of 1/|i| to each example inzi of being chosen (whenever
|i| 6= 0). Consequently

P3(σ3|σ2,σ1) = |i|−2r(zi)I(|i| 6= 0)+ I(|i| = 0) ∀σ3.

The distribution of messages is then given byP1(σ1)P2(σ2|σ1)P3(σ3|σ2,σ1). Hence

PM (zi)(σ) = ζ(r(zi)) ·2−r(zi) ·
[

|i|−2r(zi)I(|i| 6= 0)+ I(|i| = 0)
]

∀σ. (19)

6.3 Constrained DLMs Containing Only Balls

A constrainedDLM is a DLM that has the property of correctly classifying each example ofits
compression setzi with the exception of the compression set examples who’s output is determined
by the default value. This implies thatBuildDLM must be modified to ensure that this constraint is
satisfied. This is achieved by considering, at each greedy step, only thefeatureshi with an output
bi and covering setQi that satisfy the following property. Every training example(x,y) ∈ Qi that is
either a border point of a previous feature (ball or hole) in the DLM or a center of a previous hole
in the DLM must havey = bi and thus be correctly classified byhi .

We will see that this constraint will enable us to provide less information to the reconstruction
function (to identify a classifier) and will thus yield tighter risk bounds. However, this constraint
might, in turn, forceBuildDLM to produce classifiers containing more features. Hence, we do not
knowa priori which version will produce classifiers having a smaller risk.

Let us first describe the simpler case where only balls are permitted.
As before, we use a stringσ1, with the same probabilityP1(σ1) = 2−|i| ∀σ1 to specify if each

example of the compression setzi is a center or a border point. This gives us the set of centers which
coincides with the set of balls since each center can only be used once forthis type of DLM.

Next we use a stringσ2 to specify the ordering of each center (or ball) in the DLM. As before
we assign equala priori probability to each possible ordering. HenceP2(σ2|σ1) = 1/r(zi)! ∀σ2

wherer(zi) denotes the number of balls forzi (an information given byσ1).
But now, since each feature was constrained to correctly classify the examples ofzi that it covers

(and which were not covered by the features above), we do not needany additional information to
specify the border for each center. Indeed, for this task we use the following algorithm. Given
a compression setzi, let P andN denote, respectively, the set of positive and the set of negative
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examples inzi. We start withP′ = P,N′ = N and do the following, sequentially, from the first center
(or ball) to the last. If centerc is positive, then its borderb is given by argminx∈N′d(c,x) and we
remove fromP′ (to find the border of the other balls) the centerc and all other positive examples
covered by that feature and used by the previous features. If centerc is negative, then its borderb
is given by argminx∈P′d(c,x) and we remove fromN′ the centerc and all other negative examples
covered by that feature and used by the previous features.

The distribution of messages is then given by

PM (zi)(σ) =
1

2|i|
· 1
r(zi)!

∀σ. (20)

6.4 Constrained DLMs Containing Balls and Holes

As for the case of Section 6.2, we use a stringσ1 to specify the numberr(zi) of features present in
compression setzi. We also use a stringσ2 to specify, for each feature, if the feature is a ball or
a hole. The probabilitiesP1(σ1) andP2(σ2|σ1) used are the same as those defined in Section 6.2.
Here, however, we only need to specify the center of each feature, since, as we will see below, no
additional information is needed to find the border of each feature when theDLM is constrained to
classify correctly each example inzi. Consequently

PM (zi)(σ) = ζ(r(zi)) ·2−r(zi) ·
[

|i|−r(zi)I(|i| 6= 0)+ I(|i| = 0)
]

∀σ. (21)

To specify the border of each feature, we use the following algorithm. Given a compression
setzi, let P andN denote, respectively, the set of positive and the set of negative examples in zi.
We start withP′ = P,N′ = N and do the following, sequentially, from the first feature to the last. If
the feature is a ball with a positive centerc, then its border is given by argminx∈N′d(c,x) and we
remove fromP′ the centerc and all other positive examples covered by that feature and used by
the previous features. If the feature is a hole with a positive centerc, then its border is given by
argmaxx∈P′−{c}d(c,x) and we remove fromN′ all the negative examples covered by that feature and
used by the previous features. If the feature is a ball with a negative centerc, then its border is given
by argminx∈P′d(c,x) and we remove fromN′ the centerc and all other negative examples covered
by that feature and used by the previous features. If the feature is a hole with a negative centerc,
then its border is given by argmaxx∈N′−{c}d(c,x) and we remove fromP′ all the positive examples
covered by that feature and used by the previous features.

6.5 Constrained DLMs with Half-Spaces

Recall that each half-space is specified by weight vectorw and a threshold valuet. The weight
vector is identified by a pair(xa,xb) of examples having opposite class labels and the threshold is
specified by a third examplexc of the same class label as examplexa.

The first part of the message will be a stringσ1 that specifies the numberr(zi) of half-spaces
used in the compression setzi. As before, letp(zi) and n(zi) denote, respectively, the number
of positive examples and the number of negative examples in the compressionset zi. Let P(zi)
and N(zi) denote, respectively, the set of positive examples and the set of negative examples in
the compression setzi. From these definitions, each pair(xa,xb) ∈ P(zi)×N(zi)∪N(zi)×P(zi)
can provide one weight vector. Moreover, since a half-space may notcover any point used for its
construction, each weight vector may be used for several half-spaces in the DLM. But half-spaces
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having the same weight vectorw must have a different threshold since, otherwise, they would cover
the same set of examples. Hence the total number of half-spaces in the DLM isat most|i|p(zi)n(zi).
Therefore, for the stringσ1 that specifies the numberr(zi) of half-spaces used in the compression set
zi, we could assign the same probability to each number between zero and|i|p(zi)n(zi). However,
as before, we want to give preference to DLMs having a smaller number of half-spaces. Hence we
choose to assign a probability equal toζ(r) (defined by Equation 9) for all possible values ofr.
Therefore

P1(σ1) = ζ(r(zi)) ∀σ1.

Next, the second partσ2 of σ specifies, sequentially for each half-space, the pair(xa,xb) ∈
P(zi)×N(zi)∪N(zi)×P(zi) used for its weight vectorw. For this we assign an equal probability
of 1/2p(zi)n(zi) for each possiblew of each half-space. Hence

P2(σ2|σ1) =

(

1
2p(zi)n(zi)

)r(zi)

∀σ2 | n(zi) 6= 0 andp(zi) 6= 0.

The condition thatn(zi) 6= 0 andp(zi) 6= 0 is equivalent to|i| 6= 0 since, for any half-space,xa and
xb must have opposite labels. Hence, more generally, we have

P2(σ2|σ1) =

(

1
2p(zi)n(zi)

)r(zi)

I(|i| 6= 0) + I(|i| = 0) ∀σ2.

Finally, as for the other constrained DLMs, we do not need any additionalmessage string to identify
the threshold pointxc ∈ zi for eachw of the DLM. Indeed, for this task we can perform the following
algorithm. LetP andN denote, respectively, the set of positive and the set of negative examples inzi.
We start withP′ = P,N′ = N and do the following, sequentially, from the first half-space to the last.
Let w =φφφ(xa)−φφφ(xb) be the weight vector of the current half-space. Ifxa ∈P then, for the threshold
pointxc, we choosexc = argmax

x∈N′
w ·x and we remove fromP′ the positive examples covered by this

half-space and used by the previous half-spaces. Else ifxa ∈ N then, for the threshold pointxc, we
choosexc = argmax

x∈P′
w ·x and we remove fromN′ the negative examples covered by this half-space

and used by the previous half-spaces.
Consequently, the distribution of message strings is given by

PM (zi)(σ) = ζ(r(zi)) ·
[

(

1
2p(zi)n(zi)

)r(zi)

I(|i| 6= 0) + I(|i| = 0)

]

∀σ. (22)

6.6 Unconstrained DLMs with Half-Spaces

As for the case of Section 6.5, we use a stringσ1 to specify the numberr(zi) of half-spaces present
in compression setzi. We also use a stringσ2 to specify, sequentially for each half-space, the pair
(xa,xb)∈P(zi)×N(zi)∪N(zi)×P(zi) used for its weight vectorw. Hence, the probabilitiesP1(σ1)
andP2(σ2|σ1) used are the same as those defined in Section 6.5. But here, in addition, we need to
specify the threshold pointxc for eachw. For this, we give an equal probability of 1/|i| to each
example inzi of being chosen (when|i| 6= 0). Consequently, the distribution of messages is given
by

PM (zi)(σ) = ζ(r(zi)) ·
[

(

1
2p(zi)n(zi)

)r(zi)

|i|−r(zi)I(|i| 6= 0) + I(|i| = 0)

]

∀σ. (23)
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7. Empirical Results on Natural Data

We have tested the DLM on several “natural” data sets which were obtainedfrom the machine
learning repository at UCI. For each data set, we have removed all examples that contained attributes
with unknown values and we have removed examples with contradictory labels(this occurred only
for a few examples in the Haberman data set). The remaining number of examples for each data set
is reported in Table 3. No other preprocessing of the data (such as scaling) was performed. For all
these data sets, we have used the 10-fold cross-validation error as an estimate of the generalization
error. The values reported are expressed as the total number of errors (i.e. the sum of errors over all
testing sets). We have ensured that each training set and each testing set,used in the 10-fold cross
validation process, was the same for each learning machine (i.e. each machine was trained on the
same training sets and tested on the same testing sets).

Table 1 and Table 2 show the DLM sizess and penalty values that gave the smallest 10-fold
cross-validation error separately for the following types of DLMs that wehave studied in Section 6:

DLMb: unconstrained DLMs with balls (only).

DLM∗
b: constrained DLMs with balls (only).

DLMbh: unconstrained DLMs with balls and holes.

DLM∗
bh: constrained DLMs with balls and holes.

DLMhsp: unconstrained DLMs with half-spaces.

DLM∗
hsp: constrained DLMs with half-spaces.

For each of these DLMs, the learning algorithm used wasBuildDLM. We have observed that
PruneDLM had no effect on all these data sets, except for Credit where it was sometimes able to
remove one feature.

In Table 3, we have compared the performance of the DLM with the set covering machine
(SCM) using the same sets of data-dependent features, and the support vector machine (SVM)
equipped with a radial basis function kernel of variance 1/γ and a soft-margin parameterC.

We have used theL2 metric for the data-dependent features for both DLMs and SCMs to obtain
a fair comparison with SVMs. Indeed, the argument of the radial basis function kernel is given by
theL2 metric between two input vectors. For the SVM, the values ofs refer to the average number
of support vectors obtained from the 10 different training sets of 10-fold cross-validation. For the
SCM, the value ofT indicates the type of features it used and whether the SCM was a conjunction
(c) or a disjunction (d). The values ofp ands for the SCM refer to the penalty value and the number
of features that gave the smallest 10-fold cross-validation error. We emphasize that, for all learning
machines, the values of the learning parameters reported in Tables 1, 2, and3 are the ones that gave
the smallest 10-fold cross-validation error when chosen among a very large list of values. Although
this overestimates the performance of every learning algorithm, it was used here to compare equally
fairly (or equally unfairly) every learning machine. We will report below the results for DLMs when
the testing sets are not used to determine the best values of the learning parameters.

In addition to our estimate of the generalization error, we have also reportedin Table 3, a (rough)
estimate of the standard deviation of the error. This estimate was obtained in the following way. We
first compute the standard deviation of the generalization error (per example) over the 10 different
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Data Set DLMb DLM∗
b DLMbh DLM∗

bh
{pp,pn,s} err {pp,pn,s} err {pp,pn,s} err {pp,pn,s} err

BreastW 0.7, 2.1, 6 18 0.7, 0, 1 18 2, 1, 2 13 1.6, 1, 2 13
Bupa 1.5, 3.7, 14 104 2.5, 1.5, 21 107 2, 2.1, 4 110 2.5, 1.5, 17 107
Credit 1.7, 2.1, 6 188 0.7, 0.3, 42 195 2.1, 1.4, 11 187 1.3,∞, 33 195
Glass 2.5,∞, 8 33 2.5, 3.5, 8 32 4, 4.5, 7 29 ∞, 3.7, 7 29
Haberman ∞, 4.5, 23 74 0.5, 4, 3 70 3.7, 3.4, 12 64 1.7, 3.7, 6 65
Heart 1.7, 2.7, 17 94 1.6, 2.3, 8 89 1.5, 2.6, 10 95 2, 2, 9 101
Pima 1.5, 2.2, 5 184 2.5, 2.6, 74 184 1, 1.5, 2 190 1, 1.5, 6 189
Votes 2.5, 1.5, 6 34 2, ∞, 14 36 4.5,∞, 14 35 1.8,∞, 23 37

Table 1: Optimal 10-fold cross-validation results for DLMs with balls (and holes).

Data Set DLMhsp DLM∗
hsp

{pp,pn,s} err {pp,pn,s} err
BreastW 1, ∞, 1 18 1.7,∞, 1 20
Bupa 2.7,1.5,15 107 0.9,2,6 102
Credit 3.5,2.5,26 141 1.9,1.5,7 151
Glass 2.1,0.7,4 35 2,1.3,4 37
Haberman 1.8,3,5 66 1.5,1.1,2 70
Heart 0.8,1,1 85 0.8,0.5,3 83
Pima 1.7,1, 4 169 1.9,2,8 183
Votes 4.4,∞, 13 24 3.3,∞, 13 33

Table 2: Optimal 10-fold cross-validation results for DLMs with half-spaces.

testing sets and then divide by
√

10 (since the variance of the average ofn iid random variables,
each with varianceσ2, is σ2/n). Finally we multiply this estimate by the number of examples in the
data set.

In terms of generalization error, there is no substantial difference amongall the types of DLMs
presented in Tables 1 and 2 for most of the data sets—except for Credit where DLMs with half-
spaces have a significantly lower error rate.

From the results in Tables 1 and 2, we notice that the effect of constrainingthe DLM to correctly
classify the compression set3 generally increases the size of the DLM. The increase is substantial
for the Credit and Pima data sets (except for half-spaces where the opposite behavior is observed).
It is surprising that a DLM∗b with 74 balls has the same error rate as a DLMb with 5 balls on the Pima
data set. In contrast, constraining an SCM to correctly classify the compression set had virtually no
effect on the size of the classifier (for these data sets).

The most striking feature in all the results is the level of sparsity achieved bythe SCM and the
DLM in comparison with the SVM. This difference is always huge. The otherimportant feature is
that DLMs often produce slightly better generalization than SCMs and SVMs.Hence, DLMs can
provide a good alternative to SCMs and SVMs.

Recall that the results reported in Tables 1, 2, and 3 are, in fact, the 10-fold cross validation
estimate of the generalization error that is achieved by the model selection strategy that correctly
guesses the best values forpp, pn ands. This model-selection strategy is, in that sense, optimal (but
not realizable). Hence, we refer to the scores obtained in theses Tablesas those obtained by the

3. Recall from Section 6 that this was done to obtain a tighter risk bound.
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Data Set SVM SCM DLM
Name exs { γ,C,s} err T { p,s} err±σ T { pp,pn,s} err±σ
BreastW 683 0.005, 2, 58 19 b∗,c 1.8, 2 15±3.9 bh∗ 1.6, 1, 2 13±3.4
Bupa 345 0.002, 0.2, 266 107 hsp∗,c 1.4,1 103± 6.2 hsp∗ 0.9,2,6 102 ±7.8
Credit 653 0.0006, 32, 423 190 hsp∗,d 1.2, 3 148±10.2 hsp 3.5,2.5,26 141±13.5
Glass 214 0.8, 1.2, 130 34 b∗,d ∞, 3 36±6.3 bh∗ ∞, 3.7, 7 29±6.7
Haberman 294 0.01, 0.6, 146 71 hsp∗,d 0.7,1 68± 5.9 bh 3.7, 3.4, 12 64±3.9
Heart 297 0.001, 2, 204 87 hsp∗,d 1.3,1 87±7.1 hsp∗ 0.8,0.5,3 83±6.9
Pima 768 0.002, 1, 526 203 hsp∗,c 1.5, 3 175±4.9 b 1.7,1,4 169±5
Votes 435 0.2, 1.7, 125 22 hsp∗, d ∞,13 34±5.8 hsp 4.4,∞,13 24±5.2

Table 3: Optimal 10-fold cross-validation results for SVMs, SCMs, and DLMs.

“optimal” model-selection strategy. To investigate the extent to which a bound can perform model
selection, we use the proposed risk bound to select a DLM among those obtained for a list of at least
1000 pairs of penalty values (which always included the optimal pair of penalty values) and for all
possible sizess. We have compared these results with the K-fold cross-validation model selection
method. This latter method, widely used in practice, consists of using K-fold cross-validation to
find the best stopping points and the best penalty valuespp andpn (among the same list of values
used for the previous model selection method) on a given training set and then use these best values
on the full training set to find the best DLM. Both model selection methods were tested with K-fold
cross-validation. The results are reported in Tables 4, 5 and 6 for all thetypes of DLMs that we
have considered in Section 6. In these tables, “MSfromCV” stands for “model selection from cross-
validation” and “MSfromBound” stands for “model selection from bound”. For all these results we
have usedK = 10, except for DLM∗hsp where we have usedK = 5. Except for a few cases, we see
that model selection by using the bounds of Section 6 is generally slightly more effective than using
K-fold cross validation (and takes substantially less computation time).

Data Set DLMb DLM∗
b

MSfromCV MSfromBound MSfromCV MSfromBound
s err±σ s err±σ s err±σ s err±σ

BreastW 1.8 18±5.01 2 18±4.4 1 20±4.9 10 20±6.4
Bupa 15.3 123±8.5 15.3 112±5.6 15.3 115±7.6 27 117±7.3
Credit 25.7 231± 12.3 20.2 194±5.6 3.5 203±13.2 6.8 215±20.2
Glass 7.2 44± 4.1 15.9 36±6.5 8.1 44±7.9 14.1 34±6.1
Haberman 6.3 80±9.8 37 89±15.1 3.8 89±13.9 13.4 104±7.8
Heart 8.7 104±8.5 20.6 97±6 10.8 103±8.5 30.6 95±8.7
Pima 25.5 213±10.5 13.7 198±10.2 28.2 230±10.4 50 192±9.3
Votes 13.4 48±6.3 7.2 38±8.6 13.4 48±6.3 16.5 40±7.3

Table 4: Model selection results for DLMs with balls (only).

8. Conclusion and Open Problems

We have introduced a new learning algorithm for decision lists and have shown that it can provide a
favorable alternative to the SCM on some “natural” data sets. Compared with SVMs, the proposed
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Data Set DLMbh DLM∗
bh

MSfromCV MSfromBound MSfromCV MSfromBound
s err±σ s err±σ s err±σ s err±σ

BreastW 1.8 15±3.7 2.2 14±4.1 1.8 18±4.9 2.3 16±4.9
Bupa 8.6 124±7.9 12.9 119±7.7 15.2 123±8.4 23.7 118±8.2
Credit 6.3 209±14.7 17.6 206±11.5 25.7 231±12.1 40.9 208±9.5
Glass 7.4 37±8.4 13.4 35±6.4 7.2 44±4.6 21.7 30±6
Haberman 6 74±3 23.6 68±4.4 6.3 80±9.6 20.1 65±6.1
Heart 9.1 112±8.2 14.9 104±6.6 10.9 103±10.5 24.1 105±6.4
Pima 2.8 204±8.9 4 212±9.5 7.8 212±8.7 11.1 203±11.2
Votes 13.5 44±6.8 19.5 35±4.8 11.8 48±5.4 14.5 40±7.4

Table 5: Model selection results for DLMs with balls and holes.

Data Set DLMhsp DLM∗
hsp

MSfromCV MSfromBound MSfromCV MSfromBound
s err±σ s err±σ s err±σ s err±σ

BreastW 1.6 22±4.6 7 18±6 8.2 20±2.6 9 18± 6.9
Bupa 3.1 117±2.9 11.8 117±6.2 3.2 110±3.7 5.2 117± 9.3
Credit 17.7 152±13.9 28.3 152±17.8 6.4 165±9.2 7.6 163± 10
Glass 2.2 39±6 2.9 34±6.3 2.8 38±4.7 3.4 34± 5.9
Haberman 5.8 78±5.8 11.2 68±8.9 2.4 69±2.3 4 68± 3.4
Heart 1.6 87± 8 3.6 89±8.2 1.6 99±3.5 3 120± 2.2
Pima 2.7 178±11.2 4.3 182±12.5 10.5 187±6.7 15.8 175± 12.7
Votes 9.5 32±5.4 16.3 26±5.4 5.6 38±3.3 13.8 33± 4.3

Table 6: Model selection results for DLMs with half-spaces.

learning algorithm for DLMs produces substantially sparser classifiers with comparable, and often
better, generalization.

We have proposed a general risk bound that depends on the number ofexamples that are used in
the final classifier and the size of the information message needed to identify the final classifier from
the compression set. The proposed bound is significantly tighter than the oneprovided by Littlestone
and Warmuth (1986) and Floyd and Warmuth (1995) and applies to any compression set-dependent
distribution of messages. We have applied this general risk bound to DLMs by making appropriate
choices for the compression set-dependent distribution of messages andhave shown, on natural
data sets, that these specialized risk bounds are generally slightly more effective than K-fold cross
validation for selecting a good DLM model.

The next important step is to find risk bounds that hold for asymmetrical loss functions. Indeed,
this is the type of loss function which is most appropriate for many natural datasets and we cannot
use, in these circumstances, the risk bounds proposed here since they are valid only for the symmet-
ric loss case. Other important issues are the investigation of other metrics andother data-dependent
sets of features.

This paper shows that it is sometimes worthwhile to use a decision list of data-dependent fea-
tures instead of a conjunction or a disjunction of the same set of features. Hence, we may ask
if it is worthwhile to consider the larger class of linear threshold functions. With data-dependent
features, we want to use (or adapt) algorithms that are efficient when irrelevant features abound.
In these cases, the winnow (Littlestone, 1988) and the multi-layered winnow (Nevo and El-Yaniv,
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2002) algorithms are obvious candidates. However, these algorithms do not return a sparse solution
since many features will be assigned a non-negligible weight value. Moreover, our (preliminary)
numerical experiments with the winnow algorithm indicate that this algorithm is simply too slow to
be used withO(m2) features form≥ 700. More generally, we think that this research direction is
not attractive in view of the fact that it is (generally) very hard to find a linear threshold function
with few non-zero weight values.
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