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Abstract

Summarising a high dimensional data set with a low dimersiembedding is a standard approach
for exploring its structure. In this paper we provide an oi@r of some existing techniques for
discovering such embeddings. We then introduce a novelghibistic interpretation of principal
component analysis (PCA) that we term dual probabilisti@aROPPCA). The DPPCA model has
the additional advantage that the linear mappings from thbeelded space can easily be non-
linearised through Gaussian processes. We refer to thielhasdh Gaussian process latent variable
model (GP-LVM). Through analysis of the GP-LVM objectivenfition, we relate the model to
popular spectral techniques such as kernel PCA and mukitional scaling. We then review a
practical algorithm for GP-LVMs in the context of large daets and develop it to also handle
discrete valued data and missing attributes. We demoastraimodel on a range of real-world and
artificially generated data sets.

Keywords: Gaussian processes, latent variable models, principapopnent analysis, spectral
methods, unsupervised learning, visualisation

1. Introduction

Machine learning is often split into three categories: supervised leannimgre a data set is split
into inputs and outputs; reinforcement learning, where typically a rewassiaciated with achiev-

ing a set goal, and unsupervised learning where the objective is tostadieéthe structure of a data
set. One approach to unsupervised learning is to represent thé/dategsome lower dimensional
embedded spac&. In a probabilistic model the variables associated with such a space ame ofte
known as latent variables. In this paper our focus will be on methodsdpetsent the data in this
latent (or embedded, we shall use the terms interchangeably) space.

Our approach is inspired by probabilistic latent variable models. It hds io@reviously pro-
posed approaches such as density networks (MacKay, 1995) e/hauéti-layer perceptron (MLP)
is used to provide a mapping from the latent projectiofgp the observed datd,. A prior distri-
bution is placed over the latent-space and the latent-space’s posteritudiistr is approximated
by sampling. Density networks made use of the MLP to perform the mappingBit al. (1996)
replaced the MLP with a radial basis function (RBF) network with the aim ofetesing the training
time for the model. This model evolved (Bishop et al., 1998) into the genetatgraphic map-
ping (GTM) where the latent-space was now sampled on a uniform gridngrattance sampling
is reinterpreted as the fitting of a mixture model via the expectation-maximisatioh&krithm.
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This allows the points in the latent-space to be laid out on a unifornt gradher than sampled).
This grid layout is shared with the self organising map (SOM) (Kohone20ll&nd in Bishop et al.
(1997) it was argued that the GTM provides a principled alternative toafieiganising map.

The models outlined above are typically designed to embed a data set in two idinserisey
rely on either importance sampling, or a grid of points in the latent-space tovathie embedding,
this causes problems when the dimensionality of the latent-space increasastepresentations
of the latent-space are useful because they allow for non-linear medels:point is easy to propa-
gate through the non-linear mapping to the data-space. These non-linggingsgare designed to
address the weaknesses in visualising data sets that arise when usitagdstatistical tools that
rely on linear mappings, such as principal component analysis (PCApatat analysis (FA): with
a linear mapping it may not be possible to reflect the structure of the datgthadow dimensional
embedding.

Principal component analysis seeks a lower dimensional sub-spatmllyypepresented by its
orthonormal basis) in which the projected variance of the data is maximisadwly dimensional
sub-space is sought then the projections may be visualised; but it magégsaey to include more
latent dimensions to capture the variability (and therefore hopefully, bnblmgeans necessarily the
structure) in the data. Principal component analysis also has a laterilgarniadel representation
(Tipping and Bishop, 1999) which is strongly related to Factor Analysi9 (Bartholomew, 1987;
Basilevsky, 1994). Both are linear-Gaussian latent variable modelsAbaitows for a richer noise
model than PCA (for recent work on non-linear factor analysis sedkélarand Valpola, 2005).

Naturally statisticians have not constrained themselves to linear methods ishahsing data
and in the next section we shall briefly review multidimensional scaling antkdetachniques that
rely onproximity data

1.1 Multidimensional Scaling and Kernel PCA

We have already mentioned several visualisation techniques which relgrmmlg a mapping from

a latent-space (the embedded space) to the data-space. In this sectiibirbwefly review methods

that useproximity datato obtain a visualisation or embedding. Broadly speaking these methods
are all variants or enhancements of the technique known as multidimenstatiags(MDS). In
these methods, rather than observing data directly, information about theeatas summarised

in anN x N matrix of either similarities or dissimilarities. Examples include distance matrices (a
dissimilarity matrix) and kernel matrices (a similarity matrix). Each method we reviewiges
answers to at least one of two questions.

1. How is the proximity matrix compiled?
2. How is the embedding developed from the proximity matrix?

Most of the variants of multidimensional scaling (Mardia et al., 1979) apjgefarcus on the sec-
ond question. In classical MDS (Torgerson, 1952) an eigendecatigmosf the centred similarity
matrix? is performed. This is sometimes viewed as minimising a parti@tfass functiorwhere
distances in the visualised space are matched to those in the data space. Agtengrserve these
distances is known asetricMDS, in non-metricMDS only the ordering of distances is preserved.

1. When sampling techniques are used the latent points will be in randdtiopss
2. When the data is presented in the form of a distance or dissimilarity mairip#esconversion may be performed to
obtain a similarity matrix.
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There are strong connections between MDS and kernel PCA (Sclidkap., 1998), some
of which are formalised in Williams (2001). Kernel PCA also provides arwango the first
guestion—the suggestion is that the proximity data is provided by a positivedsdimite Mercer
kernel that is computed on the data, The use of this kernel implies the existence of a non-linear
mapping from the data-space to the latent-space (recall that the GTM and denisityrke per-
form the non-linear mapping in the opposite direction). The existence ofuthgdibn is important
as it allows data points which were not in the training set to be mapped to a pasitiom latent
space without re-solving the eigenvalue problem. However, for botiek&CA and MDS meth-
ods, it is not obvious how to project back from the latent-space to thesgaize (this is known as
the pre-image problem). Neither is it clear how to handle missind @astthe proximity data matrix
cannot normally be computed consistently if a particular attribute is not available

Sammon mappings (Sammon, 1969) also attempt to match the embedded distanees betw
points with the distances in the observed space (therefore they are afdiDS). They suffer
from the same weakness as MDS in that projection of data points which were the original
data set can be computationally demandirgy,despite their name they do not provide an explicit
mapping between the data and latent-space. The lack of a mapping weassaddrg the Neuroscale
algorithm of Lowe and Tipping (1996) a version of which was also sugge®r MDS (Tipping,
1996).

Other recent work of importance which has focussed on forming therpitgxmatrix includes
Isomap (Tenenbaum et al., 2000), where an approximation to geoddsicadiss used and spectral
clustering (see.g.Shi and Malik, 2000) where the proximity data is derived from a graph.

In Table 1 we have summarised some of the properties of these algorithms/mdéelsave
also included the model that is the subject of this paper, the Gaussiarsptatant variable model
(GP-LVM).

In the remainder of this paper we will introduce the GP-LVM from the lateniatde model
perspective. The GP-LVM belongs to the same class of methods as destsityks and the GTM,
however there are also connections to classical MDS and kernel PQAurticular, in the next sec-
tion, we show that the approaches share an objective function. In 8&ctie will cover some of
the algorithmic issues that arise with the model. The framework within which out\®fPis de-
veloped makes it straightforward to modify the approach for data for wani@aussian noise model
is not appropriate (such as binary or ordinal), this is discussed in Segtidtiandling of miss-
ing data attributes is also straightforward (Section 6). The algorithm’s cteaistics are explored
empirically in Section 7.

2. Gaussian Process Latent Variable Models

In this paper we present the Gaussian process latent variable modek stzall see, the model is
strongly related to many of the approaches that we have outlined abogee iBra point represen-
tation in the latent-space (as there was for the GTM and density networtsyemvill minimise

an objective function that can be related to classical MDS and kernel B&ASection 2.6). Our
starting point, however, will be a novel probabilistic interpretation of prialcg@mponent analysis

3. A good reference which introduces Mercer kernels is SchélkapfSanola (2001) Chapter 2.

4. Here, by missing data, we mean missing attributes which would normallgédxin computing the proximity data
matrix. For proximity data methods missing data can also mean elementsgriresinthe proximity matrix, we do
not discuss this case.
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Proximity | X — Y [ Y — X | Non-linear| Probabilistic| Convex

PCA I Y Y I Y

FA Y Y Y Y

Kernel PCA Y Y
MDS
Sammon mapping
Neuroscale
Spectral clustering
Density Networks

GTM

GP-LVM I

<| <] <|=<|=<

<
<| <] <|<| <] <|=<|=<

<| <] <
<|=<| =<

Table 1. Overview of the relationship between algorithms. A ‘Y’ indicates thersthm exhibits
that property, an ‘I’ indicates that there is an interpretation of the algorittrahexhibits
the associated property. The characteristics of the algorithnpeoeimity. is the method
based on proximity data® — Y. does the method lead to a mapping from the embedded
to the data-space¥ — X: does the method lead to a mapping from data to embedded
space?Non-linear. does the method allow for non-linear embeddings@babilistic is
the method probabilisticZonvex: algorithms that are considered convex have a unique
solution, for the others local optima can occur.

which we will refer to as dual probabilistic principal component analysBFDBA). Dual proba-
bilistic principal component analysis turns out to be a special case of the georeral class of
models we refer to as GP-LVMs.

2.1 Latent Variable Models

Typically we specify a latent variable model relating a set of latent variaklesON*9, to a set of
observed variable¥, € ON*P, through a set of parameters. The model is defined probabilistically,
the latent variables are then marginalised and the parameters are fouanghtmaximising the
likelihood.

Here we consider an alternative approach: rather than marginalisingtéme Variables and
optimising the parameters we marginalise the parameters and optimise the latdrniesakiée will
show how the two approaches can be equivalent: for a particular chibigaussian likelihood and
prior both approaches lead to a probabilistic formulation of principal compioemalysis (PCA). In
the next section we will review the standard derivation of probabilistic PGpp{ng and Bishop,
1999), then we will show how an alternative probabilistic formulation may beeal at (see also
Appendix A).

2.2 Probabilistic PCA

Probabilistic PCA (PPCA) is a latent variable model in which the maximum likelihabation
for the parameters is found through solving an eigenvalue problem orathis dovariance matrix
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(Tipping and Bishop, 1999). Let's assume that we are given a setnbfeckD-dimensional data
Y =[y1.. .yN]T. We denote thg-dimensional latent variable associated with each data poirt.by
The relationship between the latent variable and the data point is linear withamhied,

Yn = WXn+n,

where the matriyv € 0P*9 specifies the linear relationship between the latent-space and the data
space and the noise valuag, € 0>, are taken to be an independent sample from a spherical
Gaussian distributiohwith mean zero and covarianfe?l,

p(Ny) =N (Nal0,B7H).

The likelihood for a data point can then be written as

P (Yn[Xn, W, B) = N (Yn|Wxp, B_ll) . (1)

To obtain the marginal likelihood we integrate over the latent variables,

PYaIW.B) = [ P(Yalto, W, ) p(x0) I, @

which requires us to specify a prior distribution oxgr For probabilistic PCA the appropriate prior
iS a unit covariance, zero mean Gaussian distribution,

P (Xn) = N (Xn|0,1).

The marginal likelihood for each data point can then be found analyticallgytih the marginali-
sation in (2)) as
P(yn|W,B) =N (anO,WWT+ Bfll) .

Taking advantage of the independence of the data points, the likelihood ffltllata set is given
by

N
p(YW,B) =[] p(¥alW,B). (3)
n=1

The parameter§V can then be found through maximisation of (3). Tipping and Bishop (1999)
showed that there is an analytic solution to this maximisation. This solution is adhigwn the
matrix W spans the principal sub-space of the data. This model therefore lnate@metation as a
probabilisticversion of PCA.

Marginalising the latent variables and optimising the parameters via maximum likélisoo
a standard approach for fitting latent variable models. In the next secgowillvintroduce an
alternative approach. Instead of optimising parameters and marginalising\latéables we will
suggest the dual approach of marginalising parameirsand optimising with respect to latent
variables X. For a particular choice of prior distribution &N this probabilistic model will also
turn out to be equivalent to PCA.

5. We use the notatioN (z|y, X) to denote a Gaussian distribution ovewrith meanu and covariance.
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2.3 Probabilistic PCA through Latent Variable Optimisation

In the Bayesian framework parameters, suckasre viewed as random variables. The Bayesian
methodology requires a suitable choice of prior W8t and then proceeds to treat the parameters
as latent variables. A simple choice of prior that is conjugate to (1) woulddpherical Gaussian
distribution:

D
P(W) =[N (wi0.)

wherew; is theith row of the matrixW. Unfortunately marginalisation of botiWW and X =
[xl...xN]T is intractable. If we wish to proceed without turning to approximate methodsrave a
faced with a choice over what to marginalise. The natural choice seemstdonterginaliseX e
(N> as typically it will be of larger dimensidnthanW < 0P*4. In practice though, it turns out
that the two approaches are equivalent.

Marginalisation ofW is straightforward due to our choice of a conjugate prior. The resulting
marginalised likelihood takes the form

D
p(Y|XvB):J_I p(y,d|X7B)> (4)
=1
where we usg-: 4 to represent thdth column ofY and
P(Y-alX,B) =N (y.q|0,XXT+p7H). (5)

We now look to optimise with respect to the latent variables. As might be expiotadhe duality
of (3) and (4), this optimisation is very similar to that presented in Tipping aniddpi$1999). Our
objective function is the log-likelihood,

DN D 1, 1ot

where
K =XXT4+p1.
The gradients of (6) with respect ¥omay be found (Magnus and Neudecker, 1999) as,

oL —1yy T -1 -1
— =K™YY KX -DK™*X
0X ’

a fixed point where the gradients are zero is then given by

1
ZYYTKIX = X.
D

In Appendix B we show how the values fdrwhich maximise the likelihood are given by

X =ULVT

6. If it were possible to marginalise both the parameters and latent variahddytically we could use Bayes factors to
perform model selection (see, for example, Bishop, 1999).
7. The matrixX will be of larger dimension thaW/ unlessD > N, i.e. there are more features than data points.
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whereU is anN x g matrix whose columns are the figgeigenvectors of Y T, L is aq x g diagonal

_1
matrix whosejth element id; = ()\j - %) ’ whereA; is the eigenvalue associated with tfta

eigenvector oD~1YYT andV is an arbitraryq x g rotation matrix. Here, and in what follows, we
will assume that these eigenvalues are ordered according to magnitudeen#igist being placed
first. Note that the eigenvalue problem we have developed can easilyola $b be equivalent
to that solved in PCA (see Appendix C), indeed the formulation of PCA in thisnerais a key
step in the development of kernel PCA (Schdélkopf et al., 1998) wherm#igx of inner products
YY T is replaced with a kernel (see Tipping (2001) for a concise overvietisfderivation). Our
probabilistic PCA model shares an underlying structure with that of TippinigBashop (1999) but
differs in that where they optimise we marginalise and where they marginalisptiveise.

2.4 Gaussian Processes

Gaussian processes (O’Hagan, 1992; Williams, 1998) are a classlmdlplistic models which
specify distributions over function spaces. While a function is an infinite dsineal object, a dis-
tribution over the function space can be considered by focussing omgiats where the function is
instantiated. In Gaussian processes the distribution over these instantiatadkeniso be Gaussian.
Modelling with Gaussian processes consists of first specifying a Gaussiaess prior. Usually
a Gaussian distribution is parameterised by a mean and a covariance. &s¢hef&aussian pro-
cesses the mean and covariance must be functions of the space on wipobddss operates. Typi-
cally the mean function is taken to be zero, while the covariance function éssaly constrained
to produce positive definite matricés.

Consider a simple Gaussian process prior over the space of functigrexréhfundamentally
linear, but are corrupted by Gaussian noise of varigcé. The covariance function, or kernel, for
such a prior is given by

K(Xi,Xj) = X{ X} + B8, (7)

wherex; andx; are vectors from the space of inputs to the function@ni$ the Kronecker delta. If
these inputs were taken from our embedding ma¥ixand the covariance function was evaluated
at each of the\ points we would recover a covariance matrix of the form

K =XXT4+p1, (8)

where the element at théh row andjth column ofK is given by (7). This is recognised as the
covariance associated with each factor of the marginal likelihood for ghadlabilistic PCA (5).
The marginal likelihood for dual probabilistic PCA is therefore a prodéi€ mdependent Gaussian
processes. In principal component analysis we are optimising the paraaredénput positions of

a Gaussian process prior distribution where the (linear) covariancéidarfor each dimension is
given byK.

2.5 Gaussian Process Latent Variable Models

The dual interpretation of probabilistic PCA described above points to aless of models which
consist of Gaussian process mappings from a latent spade,an observed data-spadgé, Dual

8. The positive definite constraint implies that these covariance fundi@nalso valid Mercer kernels. It is therefore
common to refer to the covariance function as a kernel. In this papehalieuse the two terms interchangeably.
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probabilistic PCA is the special case where the output dimensiorgsmreri assumed to be linear,
independent and identically distributed. However, each of these assasp#n be infringed to ob-
tain newprobabilistic models. Independence can be broken, for example, byiradi@m arbitrary
rotation on the data matriX, the ‘identically distributed’ assumption can be broken by allowing
different covariance functions for each output dimensidn.this paper we focus on the third as-
sumption, linearity. By replacing the inner product kernel with a covaadnaction that allows
for non-linear functions we can obtain a non-linear latent variable modet.t®the close relation-
ship with the linear model, which has an interpretation as probabilistic PCA,asuubdel can be
interpreted as a non-linear probabilistic version of PCA.

2.6 Proximity Data and the GP-LVM

We indicated in the introduction that the GP-LVM has connections with proximity ldased meth-
ods such as kernel PCA and classical MDS. These connections atgltha unifying objective
function which embraces all three models. In the next section we brieflydunteothis objective
function.

2.6.1 A UNIFYING OBJECTIVE FUNCTION

Classical MDS and kernel PCA rely on proximity data, such as similarity matrie#s denote the
matrix of similarities for these methods By For the case of positive definltesimilarity measures
the matrixScan be interpreted as a covariance (or covariance function). The entropy between
this Gaussian and the Gaussian process whose marginal likelihood wasrgié) is

N 1 1
—/N(z|0,S)InN(z|O,K)dz: Sn2m+ SinjK|+ 5tr (K1), ©)

2
If we substituteS = D-1YYT we see, up to a scaling ofD, that (9) becomes identical to (6).
TakingK = XX T +B~1l and minimising (9) with respect t& leads to a solution (Appendix B) of
the form

X=ULVT.

Where the matrix) € ON*9 has columns which are the eigenvectorSSofFor the specific casé
whereS=D~1YYT the optimisation is identical to that of dual probabilistic PCA. However in the
more general case whess either a kernel function or simply a positive definite matrix of simi-
larities kernel PCA and classical MDS are recovered. We also note thanthopy ofN (z|0,S) is
constant inX, we therefore may subtract it from our objective function without aiifecthe opti-
misation with respect tX. The resulting objective function is then the Kullback-Leibler divergence
(Kullback and Leibler, 1951) between the two Gaussians,

N(Z0,S)[|N(z]0.K)) = /N 2/0,)In ((Z||%Ié))dz
. N
= éln]K\—éln|S|+§tr(SK l)_?

9. A very simple example of this idea would be to allow different noise digiohs on each output direction. The
probabilistic model underlying factor analysis allows this flexibility (seegi@mmple, Tipping and Bishop 1999).
10. The analysis that follows can be extended to positive semi-defibigeadding a diagonal terns?l to Sand consid-
ering the limit aso? — 0.
11. In the MDS literature this is also sometimes referred to as principatdinate analysis.
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With appropriate choice d andK this is a valid objective function for PCA, kernel PCA, classical
MDS and the GP-LVM. For kernel PCAis a ‘non-linear kernel’ an is the ‘linear kernel’. For
the GP-LVMSis the ‘linear kernel’ whereak is a ‘non-linear kernel’. In practice this means that
the GP-LVM is harder to optimise (solving an eigenvalue problem is no longécisent) but the
GP-LVM maintains a probabilistic interpretation that kernel PCA doesn’ehav

The methods overlap when bothandS are based on inner product matrices (as outlined for
DPPCA above).

Note that when the similarity measur®, is not of the form of the inner product kernel the
objective function no longer has an interpretation as a likelihood. Therefar approach isot a
probabilistic interpretation of multidimensional scaling: we refer the reader tsaand Zinnes
(1986) and Oh and Raftery (2001) for details of probabilistic MDS methods

2.6.2 A NOTE ONREVERSING THEKULLBACK -LEIBLER DIVERGENCE

The Kullback-Leibler divergence is an asymmetric measure of distributi@ngince so it is natural
to consider the effect of reversing the role of the distributions and takipgaations under the
distribution governed b¥ rather than that governed I8 For this special case, the reversed KL
divergence is very similar to the original, only all matridésand S are now replaced with their
inverses. So the new objective function is

N
2)
The minimum can again be found through an eigenvalue problem, but noettiead eigenvalues

from K are the smallest, rather than the largest. In this respect the model leadwtccomponent
analysis

1 1 1 1
:EIn\S\—EIn|K|+Etr(KS ) —

3. Fitting a Non-linear GP-LVM

We saw in the previous section how PCA can be interpreted as a Gausstaspthat maps latent-
space points to points in data-space. The positions of the points in the laseetesm be determined
by maximising the process likelihood with respecido It is natural, therefore, to consider alter-
native GP-LVMs by introducing covariance functions which allow for #ioear processes. The
resulting models will not, in general, be optimisable through an eigenvaluéepnob

3.1 Optimisation of the Non-linear Model

In the previous section we saw for the linear kernel that a closed folumicao could be obtained
up to an arbitrary rotation matrix. Typically, for non-linear kernels, theilelve no such closed
form solution and there are likely to be multiple local optima. There is a wide clodicen-linear
covariance functions, some of which will be reviewed in Section 7.1. Taysaticular kernel in
the GP-LVM we first note that gradients of (6) with respect to the latenttpaosmn be found through
first taking the gradient with respect to the kernel,

oL
oK

and then combining it wmaL through the chain rule. As computation of (10) is straightforward
and independent of the kernel choice we only require that the graafiéim¢ kernel with respect to

=K lyYTK1-DK (10)
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the latent points can be computed. These gradients may then be used in ¢ambiih (6) in a
non-linear optimiser to obtain a latent variable representation of the dattheFuore, gradients
with respect to the parameters of the kernel matrix may be computed and ysiediyooptimiseX
and the kernel’s parameters.

The log-likelihood is a highly non-linear function of the embeddings and trenpaters. We are
therefore forced to turn to gradient based optimisation of the objectivaifum Scaled conjugate
gradient (Mgller, 1993) is an approach to optimisation which implicitly considecsnd order
information while using a scale parameter to regulate the positive definitveridse Hessian at
each point. We made use of scaled conjugate gradient (SCG) for oenirmemts.

3.2 lllustration of GP-LVM via SCG

To illustrate a simple Gaussian process latent variable model we turn to the ‘tnattemil flow’
data (Bishop and James, 1993). This is a twelve dimensional data set cuntkita of three known
classes corresponding to the phase of flow in an oil pipeline: stratifietjaarand homogeneous.
In Bishop et al. (1998), see also Section 7.2.1, this data was used to deatwtisee GTM algorithm.
The data set is artificially generated and therefore is known to lie on a lamendional manifold.
Here we use a sub-sampled version of the data (containing 100 data poaesg)onstrate the fitting
of a GP-LVM with a simple radial basis function (RBF) kernel.

As we saw in Section 2.3, seeking a lower dimensional embedding with PCAiisabmi to a
GP-LVM model with a linear kernel,

k(xi,Xj) = %] Xj + B 18,

wherek (x;,X;) is the element in thith row and thejth column of the kernel matriK andd;; is the
Kronecker delta function.

For comparison we visualised the data set using several of the appsoa@ntioned in the
introduction. In Figure 1(a) we show the first two principal componenthefdata. Figure 1(b)
then shows the visualisation obtained using the GP-LVM with the RBF kernel,

K(Xi,Xj) = Orpr exp(—% (xi —xj)" (xi — Xj)) + Bpias+ Bwhitedij -

To obtain this visualisation the log likelihood was optimised jointly with respect to thetlptesi-
tions X and the kernel parametegias, Ownite, Orbr andy. The kernel was initialised using PCA to
setX, the kernel parameters were initialiseddag = y = 1 andBynite = Bpias = exp(—1).

Note that there is a redundancy in the representation between the oeatalb§the matrixxX
and the value of. This redundancy was removed by penalising the log likelihood (6) with half th
sum of the squares of each elemenofthis implies we were actually seeking a MAP solufitn
with a Gaussian prior foX,

N
p(X)= DlN(xn\O,l).

The likelihood for the RBF kernel was optimised using scaled conjugateemgia@eeht t p:
/I www. dcs. shef . ac. uk/ ~nei | / gpl vimapp/ for the code used).

12. Multiplying the likelihood by this prior leads to a joint distribution over data tmand latent points. As a func-
tion of X this joint distribution is proportional to the posterior distributip(X|Y ), therefore maximising the joint
distribution is equivalent to seeking a MAP solution.
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Figure 1: Visualisation of the Oil data with (a) PCA (a linear GP-LVM) andAl3P-LVM which

uses an RBF kernel, (c) Non-metric MDS using Kruskal’s stress, (dji¢/&DS using
the ‘Sammon Mapping’, (e) GTM and (f) kernel PCA. Red crossesmrcles and
blue plus signs represent stratified, annular and homogeneous flspectigely. The
greyscales in plot (b) indicate thel%%cision with which the manifold was egptkein

data-space for that latent point.
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Method | PCA | GP-LVM | Non-metric MDS| Metric MDS | GTM* | kernel PCA*
Errors 20 4 13 6 7 13

Table 2: Errors made by the different methods when using the latent-&pagearest neighbour
classification in the latent space. Both the GTM and kernel PCA are gsterisks as the
result shown is the best obtained for each method from a range ofeditfearameterisa-
tions.

We also provide visualisations of the data using the range of algorithms iegvesVin the intro-
duction. In Figure 1(c) we show the result of non-metric MDS using thasigterion of Kruskal
(1964). Figure 1(d) shows the result from metric MDS using the criterfddammon (1969). To
objectively evaluate the quality of the visualisations we classified each disiaagaording to the
class of its nearest neighbour in the two dimensional latent-space suppkaati method. The er-
rors made by such a classification are given in Table 2. For the GTM andIkCA some selection
of parameters is required. For GTM we varied the size of the latent grickleet®< 3 and 15x 15,
and the number of hidden nodes in the RBF network was varied betweah3baf he best result
was obtained for a 10 10 latent grid with 25 nodes in the RBF network, it is shown in Figure 1(e).
Note the characteristic gridding effect in the GTM’s visualisation which arisem the layout of
the latent points. For kernel PCA we used the RBF kernel and variecthelkwidth between 0.01
and 100. The best result was obtained for a kernel width of 0.75, geciased visualisation is
shown in Figure 1(f).

The gradient based optimisation of the RBF based GP-LVM's latent-spagesgesults which
are clearly superior (in terms of separation between the different fl@gqs#) to those achieved
by the linear PCA model. The GP-LVM approach leads to a number of diratss the smallest
of all the approaches used. Additionally the use of a Gaussian procpssféom our ‘mapping’
means that we can express uncertainty about the positions of the pointsdiattfspace. For our
formulation of the GP-LVM the level of uncertainty is shared acrosB @imensions and thus may
be visualised in the latent-space.

3.2.1 MISUALISING THE UNCERTAINTY

Recall that the likelihood (4) is a product Dfseparate Gaussian processes. In this paper we chose
to retain the implicit assumption in PCA thatpriori each dimension is identically distributed by
assuming that the processes shared the same covariance/kernehféncBbaring of the covari-
ance function also leads to anposteriorishared level of uncertainty in each process. While it is
possible to use different covariance functions for each dimension apdenaecessary when each

of the data’s attributes have different characteristicye more constrained model implemented
here allows us to visualise the uncertainty in the latent space and will benaigefer our empirical

13. A simple example of this is given by Grochow et al. (2004) with thel&st&P-LVM’, where a scale parameter is
associated with each dimension of the data.
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studiest* In Figure 1(b) (and subsequently) the uncertainty is visualised by \@tiimintensity of
the background pixels. The lighter the pixel the higher the precision of tipgimg

3.2.2 GOMPUTATIONAL COMPLEXITY

While the quality of the results seem good, a quick analysis of the algorithmicleritypshows
that each gradient step requires an inverse of the kernel matrix (8¢ &hO (N*) operation,
rendering the algorithm impractical for many data sets of interest. In theseetibn we will show
how a practical algorithm may be developed which circumvents this problemghnmaximising
a sparse approximation to (6).

4. A Practical Algorithm for GP-LVMs

So far we have shown that PCA can be viewed probabilistically from twepeetives, the first
involves integrating latent variables and the second optimising them. Using theplattpective
we can develop a non-linear probabilistic version of PCA. Unfortunate\otitimisation problem
we are faced with is then non-linear and high dimensioNa] ihterdependent parameters/latent-
variables before we consider the parameters of the kernel). In this rseetiovill describe an
approximation that relies on a forced ‘sparsification’ of the model. Theltirg computational
advantages make visualisation of large numbers of data points practicalad#&ebr approach on
the informative vector machine algorithm (Lawrence et al., 2003). As wesedl in Section 5,
this machinery has the added advantage of allowing us to extend our nand@A model to
non-Gaussian noise models.

4.1 Sparsification

Kernel methods may be sped up through sparsificatierrepresenting the data set by a subket,
of d points known as thactive set.The remaining points are denoted by We make use of the
informative vector machine (IVM) which selects points sequentially accgrttirthe reduction in
the posterior process’s entropy that they induce: implementation detailsftvkh algorithm are
given in Lawrence et al. (2003).

A consequence of this enforced sparsification is that optimisation of théspoithe active set
(with d < N) proceeds much quicker than the optimisation of the full set of latent vasiatie
likelihood of the active set is given by

p(Y)) = m exp<—%tr (KﬁlY'Y'T)) , (11)

which can be optimised with respect to the kernel's parametersamdth gradient evaluations
costingO (d?) rather than the prohibitiv® (N*) which would arise in the full model. The dominant
cost (asymptotically) becomes that of the active selection whiﬁl“('d?N).

14. The two approaches, constraining each data direction to the sane &ed allowing each data dimension to have
its own kernel are somewhat analogous to the difference betweealplietic PCA, where each output data shares a
variance, and factor analysis, where each data dimension maintainsiiisaoance.
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Algorithm 1 An algorithm for visualisation with a GP-LVM.
Require: A size for the active set. A number of iterationsT .
Initialise X through PCA.
for T iterations.do
Select a new active set using the IVM algorithm.
Optimise (11) with respect to the parameter&dfnd optionally the latent position§) using
scaled conjugate gradients.
Select a new active set.
for each point not in active s¢t do
Optimise (12) with respect to; using scaled conjugate gradients.
end for
end for

4.2 Latent Variable Optimisation

We are interested in visualising all points in the data set, so while there is a sighiipeed ad-
vantage to selecting an active set, we still need to optimisentd@ive points.Fortunately, active
set selection allows us to optimise each of these points independently asadgixed active set,
the individual data points are no longer interdependent. A standarll fesGaussian processes
(seee.g.Williams, 1998) is that a pointj, from the inactive set can be shown to project into the
data-space as a Gaussian distribution

p(yjlxj) = N (yjlu;,0%) (12)

whose mean is
M= YTKfllkl,j

whereK, , denotes the kernel matrix developed from the active sekananade up of rows in
from the jth column ofK, and the variancé is

O'J2 = k(Xj,Xj) — kIjKillkLJ"
Gradients with respect t®; do not depend on other data Jy we can therefore independently
optimise the likelihood of eacty; with respect to corresponding. Thus the full sefX; can be
optimised with one pass through the data. The active set is then reselautetheaprocess is
repeated again.

Algorithm 1 summarises the order in which we implemented these steps. The sattiie
first selected, then the kernel parameters and active set positionptamésed. The active set is
then re-selected and then the latent positions of the points not in the adtiaeesgptimised. In
each iteration we perform two active set selections because the chaictvefset is dependent on
both the kernel parameters and the latent point positions. Note also, tizane data sets (when
N >> d) it may not be necessary to optimiXe because the active set is regularly being reselected.

15. This fixed variance for all output dimensions is a consequencbkaoing the same kernel for each output as was
discussed in Section 3.2.1.
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- J

Figure 2: The Gaussian process as a latent variable model.

5. Alternative Noise Models

So far we have considered the GP-LVM for the particular case whereawe Gaussian noise in
each dimension with variang& L. In this section we consider extensions to this noise model. To
this end we firstly reformulate our Gaussian process so that it contairgdéioaal latent variable
F=I[f;...fn]" betweerX andY.

(V.0 = [ | |‘|pyn\f p(FIX.8)dF 13)

Thus far we have been considering the case where

P (Ynl|fn) |_|N Vil fni, B77)

it is also straightforward to realise the slightly more general case whereatltanege is dependent
on both the data point and the output dimension,

P (Yn|fn) |_|N Ynil fri, Bri ) (14)

Our approach to different noise models will be to approximate them with adizausoise model
of this form (see also Csatd, 2002; Minka, 2001). The noise models n®d=y in this paper will
be independent across the dimensions,

D
P(Ynlfn) =[] P(Ynil fni)
nitn il:l nipni
giving approximations of the form
P (Vi fri) & N (mhi fri, Bit) -
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The approximation to the noise model leads to a Gaussian approximation to thaqratistribu-
tion,

q(F) = p(FIX,Y),
where B
q(F) =N (f[f,z)

wheref is a vector constructed by stacking the column& péndf is constructed by stacking the
columns of the matri¥ = [fl fN] The covariance matrix has a block diagonal struéfure

5, 0 0
2= 0 -. 0
0 0 3p

It can be shown (see.g.Csaté 2002; Minka 2001) that the parameters of the approximation are
given by
Vni

C_ 15
P 1 — VniGni (15)
rnn' gnl + fn| (16)
Vni
whereg, is nth diagonal element df;, gni = %ni InZ,i andvy = gﬁi ac - InZ, where
Zei = [ plywi ) a(F) F. an

To prevent cluttering our notation we have not indicated that the approximete) is typically
formed in a sequential manner: its parametérand Z change as data points are incorporated.
This approach to approximating the posterior distribution is known as assuensitydfiltering (see
Maybeck, 1979, Chapter 12 and Minka, 2001, Chapter 3) .

6. Missing Values

In many applications attributes are missing for particular data points. The abilitgirtdle these
missing values in a principled way is a desirable characteristic of any algorifhme. motivation
behind a probabilistic interpretation of PCA was that the resulting algorithrid dmndle missing
data in a principled manner. This is a characteristic which the Gaussiansprtatent variable
model shares. This should be contrasted with kernel PCA where hamaiissgng values is not so
straightforward.

Given the formalism we have described for using different noise modelstitaghtforward to
handle a missing attribute. The corresponding variance from (14) is idirtidy by takingBni =0

16. For the special case of Gaussian noise with fixed vari@négi.e. spherical noise) and shared kernels for each data
dimension we find that these blocks are all equal. This leads to computati@mhmemory savings. If the kernels are
different or more general noise models are used the blocks will negbal.
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7. Results

In this section we present a range of empirical evaluations with diffelsat gkts, each explores a
different characteristics of the GP-LVM. Note that for these visualisalgorithms over-fitting is
nota problem as long as the latent-space is of lower dimensionality than the da&-ghis is a
consequence of the integration over the mapping between the latent araddkapdce.

So far we have briefly considered two different kernel/covarianoetions, before proceeding
further we will reconsider these and introduce further kernels whichbeilised in the experiments
that follow.

7.1 Kernels to Be Used

A Gaussian process covariance function can be developed fromeeaityve definite kernel, new
kernels can also be formed by adding kernels together. In our expesinverprincipally make use
of three different kernel functions.

7.1.1 LUNEAR KERNEL

We have already briefly discussed the linear kernel, it is simply the matrix ef pnoducts,
Kiin (Xi,Xj) = BiinX{ X;,
where we have introducdy,, the process variance, which controls the scale of the output functions.

7.1.2 RBF KERNEL

We also made use of the popular RBF kernel, it leads to smooth functionsthaatfy to zero in
regions where there is no data.

ko (%, %) = B exp(— (6 —x1)T (x—x,))
wherey is the inverse width parameter.

7.1.3 MLP KERNEL

The MLP kernel (Williams, 1997) is derived by considering a multi-layeceptron (MLP) with
an infinite number of hidden units,

wxXj +b

\/(vvxiTxi +b+1) (vvaTx,- +b+ 1)

kmlp (Xi,Xj) = 9m|psin*1

where we callw the weight variance anidthe bias variance (they have interpretations as the vari-
ances of prior distributions in the neural network model). This covarifumoetion also leads to
smooth functions, but they have an important characteristic that diffetemtiaem from the RBF
kernel: outside regions where the data lies functions will not fall to zerbtdmd to remain at the
same value.
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7.1.4 THE NOISETERM

In the experiments in Section 3 we also made use of a ‘white noise term’. A whie pcess has
a kernel of the form

Kwhite (Xi;Xj) = Bwhiteij
whereg;j is the Kronecker delta which is zero unless j when it takes the value 1. Note that the

use of white noise in the kernel is often redundant with some parameters moige model, for
example with a Gaussian noise model, leaving out the white noise term and setting

P (Yin| fin) = N (Yin| fin, Bwhite)

is equivalent to including the white noise kernel and setting
P (Yin| fin) = @m N (Yin‘ finacz) .
04—0

In our experiments we preferred to include the noise term with the kerrlbeaswise levelByhite,
can then be jointly optimised with the kernel parameters and the latent point pssitio

7.1.5 RARAMETER CONSTRAINTS AND INITIALISATION

All the kernels we have mentioned so far have parameters that need todisagued to be positive.
In our experiments this was implemented by reparameterising:

8=1In(1+exp(6)).

Note that as our transformed parameder» —« the paramete® — 0 and asd’ — « we see that
0—0.

We used a consistent initialisation of the parameters for all experiments. Hsi€;yw= 1,
Ot =1,y=1,6mp=1,w=10andb=10.

7.2 Overview of Experiments

For the experiments that follow we used Algorithm 1 witk= 15 iterations and an active set of size
d = 100. The experiments were run on a ‘one-shot’ bassgach experiment was only run once
with one setting of the random seed and the valuek andd given.

The remainder of this section is structured as follows, firstly, in Section 7.2.tewsit the oil
data first introduced in Section 3.2, but with the revised algorithm which allev® efficiently
visualise all the data points. As well as comparing the sparse algorithm to thiea@d@ PCA we
also include a full GP-LVM model. For each of the different algorithms wa@e the quality of
the visualisation in terms of the ease with which the different flow regimes capgmrated in the
embedded space. In Section 7.3.1 we turn to a much higher (256) dimensi@etiaf hand-written
digits. Again we compare the GTM and PCA with the sparse GP-LVM algorithreg®yng how
well the different digits are separated in the latent-space.

In both of the preceding data sets we made use of the Gaussian noise motieglexperiment
with this noise model concerns issues with initialisation. In the data sets preésditee we have
no simple ‘ground truth’ which the algorithm hopes to recover. In Sectior8 "2 consider the
Swiss-roll data Tenenbaum et al. (2000). For this data the ground trkriowen and it turns out that
using PCA to initialise the GP-LVM the ground truth is not recovered, honeyénitialising using
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Model | PCA | Sparse GP-LVM (RBF) GP-LVM (RBF) | Sparse GP-LVM (MLP)| GTM
Errors || 162 24 1 14 11

Table 3: Number of errors for nearest neighbour classification in thattapace for the full olil
data set (1000 points).

Isomap (which is known to give the ground truth) we can recover a piidistorepresentation of
this data.

In Section 7.3.1 we move on to non-Gaussian data sets. We consider adrateaset of hand-
written 2s. We compare a binary model with a Gaussian model and show tHzih#drg model is
more effective at reconstructing twos when pixels are obscured frermtdel.

7.2.1 QL FLow DATA

In this section we return to the twelve dimensional oil data set that we firstluntem in Section 3.2.
We now visualise all 1000 of the data points. For this data set we are intbiastealuating two
different things: the effect of using the different non-linear kerragid the effect of the sparse
GP-LVM algorithm relative to the full model.

In Figure 3(a) and (b) we present visualisations of the data usinges@®sLVM algorithm
with the RBF and MLP kernels respectively. In Figure 4(a) we show the daualised with the
non-sparse GP-LVM algorithm and in Figure 4(b) we have recreatedishalisation in (Bishop
et al., 1998) which uses the GTM algorithm.

Again we considered a nearest neighbour classifier in the latent-spgearibfy the quality of
the visualisations.

We note that there appears to be a degradation in the quality of the GP-LV Ml mexbciated
with the sparsification, in comparision to the full GP-LVM algorithm and the GT#dparse GP-
LVM performs worse.

7.2.2 HANDWRITTEN DIGITS

The oil flow data has twelve attributes, twelve dimensions is too many for thetgteuof the
data set to be visualised without resorting to displaying embedded spat#sete are many data
sets with much greater dimensionality. One popular data set for visualisationitlathgs has been
handwritten digits. We therefore followed Hinton and Roweis (2003) in eDn&sualisation of a
sub-set of 3000 of the digits 0-4 (600 of each digit) from ax186 greyscale version of the USPS
digit data set (Figure 5). Again we made use of the RBF and the MLP keka&lell as visualising
with the GP-LVM we present visualisations from a GTM and PCA (Figure 6).

As for the oil data we looked for an objective assessment of the qualityeofiualisation
by evaluation errors on a nearest neighbour classifier in the laterg-spae performance bene-
fits associated with the non-linear visualisations are more apparent harthéyawere for the oil
data (Table 4). The sparse GP-LVM is once again outperformed by tivd &gdorithm under this
criterion. Comparision with the full GP-LVM model for this data set is not ently practical.
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Figure 3: The full oil flow data set visualised with (a) an RBF based sp@afs-LVM, (b) an MLP
based sparse GP-LVM.
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Figure 4: (a) The full GP-LVM algorithm with RBF kernel on the oil flow dafh) GTM with 225
latent points laid out on a 15615 gritkgnd with 16 RBF nodes.
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(b)

Figure 5: The digitimages visualised in the 2-D latent-space. ‘0’ is reptegddy red crosses; ‘1"
green circles; ‘2": blue pluses; ‘3"; cyan stars and ‘4’: magentasggl (a) Visualisation
using an RBF kernel. (b) Visualisatf®tusing an MLP kernel.
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Figure 6: The digit images visualised in the 2-D latent-space. ‘0’ are m@sbes, ‘1’ are green cir-
cles, ‘2" are blue pluses, ‘3’ are cyan stars and ‘4’ are magentaassjug) Visualisation
using the GTM algorithm. (b) Visualisation using PCA.
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Model | PCA | Sparse GP-LVM (RBF) Sparse GP-LVM (MLP)| GTM
Errors| 780 208 202 158

Table 4: Errors for nearest neighbour classification in the latent-dpatee digit data.

7.2.3 INITIALISATION OF THE MODEL

In the experiments we described above PCA was used to initialise the posititims points in
latent-space, however, there are data sets for which PCA can propigiar anitialisation, causing
the GP-LVM to become caught in a local minima. In Figure 7(a) we show dtifiesmn modelling
the ‘Swiss-roll’ data set (Tenenbaum et al., 2000, data available on liF@).this data the true
structure is known—the manifold is a two dimensional square twisted into a sjoraj one of its
dimensions and living in a three dimensional space. We follow Roweis and&#10) in using
colour to show the position along the sheet.

When the GP-LVM is initialised with PCA it becomes stuck in an optimum that doesenot
cover the true embedded space. However, by initialising using the Isomajitaig, we are able to
recover the underlying structure and then provide a probabilistic déscripf the data through the
GP-LVM (Figure 7(b)). In this way we can combine the strengths of the ffferdnt approaches—
Isomap (and related proximity data based algorithms) provide a unique sakttioh can recover
the structure of the manifold on which the data lies, the GP-LVM provides deriying proba-
bilistic model and an easy way to compute the mapping from the latent to the edsgrace. Due
to the probabilistic nature of the GP-LVM we can also compare the resultinglebaeugh their
log likelihood. The log likelihood of the Isomap initialised model (-45.19) is ovéacior of ten
smaller than that of the PCA initialised model (-534.0) further demonstratingdengage of the
Isomap initialisation for this data set.

7.3 Missing Data and Non-Gaussian Noise Models

The examples we have presented so far are for Gaussian noise modedses where the data is
not continuous a Gaussian noise model is no longer appropriate. Nassi@al/inear, latent trait
models have already been proposed (Bartholomew, 1987; Tipping),1898is section we use the
ADF approach described in Section 5 to explore two non-Gaussian datwite GP-LVM models
based around non-Gaussian noise models.

7.3.1 VISUALISATION OF BINARY DATA

In our first example we follow Tipping (1999) in visualising binary handwnitteos. In Figure 8
we show visualisations from an>88 data set derived from the USPS Cedar CD-ROM. The data
contains 700 examples, these examples were taken from the complete ddtallsdigits used in
Hinton et al. (1995). For both visualisations an RBF kernel was usedbic@ation with a Gaussian
prior over the latent-space, however the two visualisations make use efetiffnoise models. In
Figure 8(a) a Gaussian noise model was used, in Figure 8(b) a Bemoigki model was used.
There are certainly differences between the two visualisations in Figurev@ver we again
wish to make an objective assessment of the qualities of the embedded. spadéss end, we
turned to a test set containing 400 hundred digits. For each digit in thestegsegemoved 20% of
the pixel values. The digit was then presented to the model and its positionemthedded space
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(a) (b)

Figure 7: The effect of a poor initialisation. (a) GP-LVM initialised using PTAe log-likelihood
of the resulting model was -534.0 (b) GP-LVM initialised using Isomap. Théiked)-
hood of the resulting model was -45.19.

Reconstruction method | pixel error rate
GP-LVM with Bernoulli noise 23.5%
GP-LVM with Gaussian noise 35.9%

Assume pixels are ‘not ink’ 51.5%

Table 5: Pixel reconstruction error rates.

optimised. The missing pixels were then filled in by using the mapping from the elabldd the
data-space. Note that there can be local minima in the embedded spaceref@ ¢heptimised the
embedded space location ten times with different starting positions and seteattedth the largest
likelihood. Since we know the original pixel values we can compute the peoastruction error
rate. These rates are summarised in Table 5. Results are shown for tieeiBerise model, the
Gaussian noise model and a baseline approach (which is simply to assurntetimassing pixels
do not contain ink).

As might be hoped, both approaches considerably outperform thérngaapproach. We also
note that using the Bernoulli noise model leads to far better results than tissi@a noise model.
To illustrate the type of mistakes that are made we show some randomly sampléglireSigure 9.
For each test digit we present: the original digit, an image showing whiclspaxe removed and
reconstruction using the three methods outlined above. Note that for th&/BPeconstructions,
particularly for the Bernoulli noise model, even when mistakes are madedukimg image often
still looks like a handwritten 2.
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(b)

Figure 8: The two images visualised in the 2-D latent-space. (a) Visualisagiog an Gaussian
noise model. (b) Visualisation using a Bernoulli noise model.
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Figure 9: Randomly sampled examples from the test data for the ‘twos’ pnoblep row test
images from the data set of twasgcond row pixels removed from the test images are
shown in redthird row: reconstruction which assumes missing pixels are ‘not fiokirth
row: reconstruction by the Gaussian GP-LVHifth row. reconstruction by the binary
noise model.

8. Discussion

We have presented the Gaussian process latent variable model, whicbridiaear probabilistic
extension of PCA. Our experiments show that the GP-LVM is a viable altgentdi other non-
linear visualisation approaches for small data sets. We reviewed a pradtjodthm for fitting
the GP-LVM (Lawrence, 2004) in large data sets, but noted that it is izsedavith a degradation
in performance of the method. The GP-LVM model was extended in a pridcipnner to take
account of missing data and binary data. The advantage of explicitly modelérdpth type was
shown by a missing data problem in handwritten digits.

8.1 Computing the Likelihood of Test Data

One key advantage of the GP-LVM is that it is probabilistic. There is a liketihaesociated with
the training data. The model can be viewed as a non-parametric density estithatsize ofX
grows proportionally with the size of. However this introduces particular problems when we are
interested in computing the likelihood of a previously unseen (test) data paoirtheltraditional
probabilistic PCA model when a new data pow, is presented its likelihood under the marginal
distribution,

P(Y:|W,B) =N (y.Jo,ww T +p1), (18)

is easily computed. Therefore the likelihood of a previously unseen tessdais straightforward

to compute. In the GP-LVM the likelihood takes a different form. The newrddtias an associated
latent variablex,. The likelihood ofy,, for the special case where variances over each output
direction are constant, is given by

p(y*|X7X*) =N (y*“,l,O'Z) ’ (19)

where
H= YTKE|1k|,*7 (20)

ki . being a column vector developed from computing the elements of the kernek inettveen
the active set and the new point The variance is then given by

0 =K (X, X.) — K[ KKy . (21)
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To determine the likelihood of the new point, we first find the MAP solution for tiee latent
point. The likelihood could then approximated by computing the probability of bsemwed data
under the distribution given by projecting the MAP solution fgrback into data-space. However,
since the posterior ovet can be multi-modal with respect iq, this solution will not necessarily
be unique. In an ideal world, we would integrate out the latent-space tonde&ethis marginal
likelihood, and the problem with multiple modes would not arise. In practice it reayelsessary to
seek several modes by random restarts within the latent-space, if the ldetihstrongly peaked
around each of these modes and there is a large difference betweergthituohaof the two largest
modes it is enough to approximate the solution with the largest mode. In othes itanay be
necessary to turn to sampling methods to evaluate the likelihood.

9. Conclusions

We have presented a new class of models for probabilistic modelling andiséiom of high
dimensional data. We provided theoretical groundings for these modgisoking that principal
component analysis is a special case. We showed there is a generdivelfienction based on
the Kullback-Leibler divergence that connects these models with proximity liesed methods
such as kernel PCA and multidimensional scaling. Further analysis of tf@stme function is
expected to provide deeper insights into the behaviour of these algorithm®&aOworld data sets
we showed that visualisations provided by the model placed related data ploise to each other.
We demonstrated empirically that the model performed well in traditionally diffadobains that
involve missing and discrete data in high dimensions.

Our approach is related to density networks and the generative topagrappping in that
these models all provide a non-linear mapping from the embedded spacedbsimed space.
In all these cases the embedded space is treated as a latent variableldethgrof propagating
distributions through the non-linear mapping are avoided by using poiréseptations of the data
within the latent space. A novel characteristic of the GP-LVM is that we taralise the uncertainty
with which the manifold is defined in the data-space.
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Appendix A. Probabilistic Interpretations of PCA
The standard probabilistic interpretation of PCA (Tipping and Bishop, 1i#®8lves a likelihood,

P(YIW,X,B) = |_lp (Yn|W,Xn, B

which is taken to be Gaussian,
P (Yn|W,Xn, B) = N (Yn|Wxn, ),
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Figure 10: Graphical representation of (a) the standard probabilisticre@lel and (b) its dual
representation which also leads to a probabilistic interpretation of PCA. ®tesn
are shaded to represent different treatmeBiack shaded nodes are optimisedhite
shaded nodes are marginalised gnely shaded nodes are observed variables.

the prior distribution for the latent variables is then taken to be Gaussian,
p(Xn) =N (ano, I ) )

and is duly marginalised to recover the marginal likelihood for the data,

N
n=1
where
P(ynlW,B) =N (yn|O,WWT +B711). (23)

The structure of this model is shown graphically in Figure 10(a).
The dual representation of probabilistic PCA involves integrating/dwnd maximising with
respect tox,

N
p(YIX.B) = [ [ P(yalxn, W.B) p(W) AW,
n=1
By first specifying a prior distribution,

p(W) = [N (wil0.1)

wherew; is theith row of the matrixW, and then integrating oval/ we obtain a marginalised
likelihood forY,

1 1
YIX,B)= —s—s5 —Ztr (K~tyvy ™) ), 24
L ) 24)

whereK = XXT + B~ andX = [xI...me. The structure of this model is shown in 10(b). Note
that by takingC = WW T + B~1l we and substituting (23) into (22) as

1 1
Y[X,B) = —s— —Ztr(C YTy )
POYX.B) = g e (C YY)

1811



LAWRENCE

which highlights to a greater extent the duality between (24) and (22). Optiarisaf (24) is
clearly highly related to optimisation of (22). Tipping and Bishop (1999) sitbivow to optimise
(22), in the next section we review this optimisation for DPPCA, but generdlsightly so that
it applies for any symmetric matri®, rather than only the inner product mat¥ . Thereby the
derivation also covers the kernel PCA and multidimensional scaling casiesed in Section 2.6.

Appendix B. Optimisation of Dual PCA, KPCA and MDS Objective functions
Maximising (24) is equivalent to minimising

N 1 1 .
L_§In2n+§ln|K|+§tr(K S), (25)
whereS= D~1YYT. The derivation that follows holds regardless of the fornBaind therefore
also applies to the objective function outlined in Section 2.6. How&eeedn't be constrained to
this form, we outlined an objective function (for kernel PCA) in wh8m&as any positive definite
kernel.
The gradient of the likelihood with respectXocan be found as

oL
— = KISk X +K1x
X + )

setting the equation to zero and pre-multiplyingkbyives

S[BH+XXT] "X =X,

We substituteX with its singular value decompositiok,= ULV T, giving
SU[L+B LY VT =uLvT

Right multiplying both sides by (note that the solution is invariant ¥) we have, after some
rearrangement,

SU=U(B 1 +L?),

which, since(B*ll + L2) is diagonal can be solved by an eigenvalue problem wblesee eigen-
vectors ofS andA = (B‘ll + L2) are the eigenvalues. This implies that the elements from the
diagonal ofL are given by

=P, (26)

B.1 The Retained Eigenvalues

The natural follow up question is which of thié possible eigenvalues/vector pairs should be re-
tained? For convenience let us ignore our previously defined ordefrthg eigenvalues in terms of
their magnitude and assume that we keep thediestjenvalues.

First note that

K=U [L2+B—ﬂ u’
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whereU is all the eigenvectors &. The full KL divergence is

L(S|IK) = }In\K\—}In]SH}tr(K*lS)—g
13 —q 1 -1
= 3 InAi — |an—ziln7\.+ tr([L2+[3 u)- )
N N
_ 1 S Inki— N=Gg_N=a, P 5,
2i:q—&-l 2 2 2| g+1

where we have used the fact tt8& UAUT. Differentiating with respect tf and setting the result

to zero to obtain a fixed point equation then gives
N—q
Y
2i=q+1i

which when substituted back leads to

_N-q, Sigah 1 X
KL (S||K) = 5 (In N_q —N_qi:;rlln)\. , 27)

which is recognised as the difference between the log ratio of the arithmetigemmetric means
of the discarded eigenvalues. This difference will be zero if and onlyeifdiscarded eigenvalues
are constant (when the arithmetic and geometric means become equal) athieisymositive. The
difference is minimised by ensuring that the eigenvalues we discard areatja each other in
terms of magnitude.

Which eigenvalues should we then discard? From (26) we note that theedtigenvalues
must be larger thafi, otherwisd; will be complex. The only way this can be true is if we discard
the smallesN — g eigenvalues, as retaining any others would force at least one eigerfafuto
be negative.

Appendix C. Equivalence of Eigenvalue Problems

In this section we review the equivalence of the eigenvalue problemsiatezbwith DPPCA and
PPCA. For DPPCA the eigenvalue problem is of the form

YYTU = UA.

Premultiplying byYT then gives
YTYYTU =YTUA (28)

Since thel are the eigerllvectors oty T (see the previous section) the maM%YYTlLJ = A, there-
fore matrixU’ = YTUA 2 is orthonormal. Post multiplying both sides of (28) Ay2 gives

YTYU' = UA

which is recognised as the form of the elgenvalue problem associated @A Rvhere the eigen-
vectors ofYTY are given byU’ = YTUA~2 and the eigenvalues are given Ay(as they were for
DPPCA).
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