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Abstract

A family of kernels for statistical learning is introducduat exploits the geometric structure of
statistical models. The kernels are based on the heat eguatithe Riemannian manifold defined
by the Fisher information metric associated with a statidtiamily, and generalize the Gaussian
kernel of Euclidean space. As an important special casaglebased on the geometry of multi-
nomial families are derived, leading to kernel-based legralgorithms that apply naturally to
discrete data. Bounds on covering humbers and Rademacdtragas for the kernels are proved
using bounds on the eigenvalues of the Laplacian on Rieraammanifolds. Experimental results
are presented for document classification, for which theofissultinomial geometry is natural and
well motivated, and improvements are obtained over thalstahuse of Gaussian or linear kernels,
which have been the standard for text classification.
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1. Introduction

The use of Mercer kernels for transforming linear classification angssgn schemes into nonlin-
ear methods is a fundamental idea, one that was recognized early in #epmtaent of statistical
learning algorithms such as the perceptron, splines, and support wemtbines (Aizerman et al.,
1964; Kimeldorf and Wahba, 1971; Boser et al., 1992). The resaeggractivity on kernel methods
in the machine learning community has led to the further development of this imptatamique,
demonstrating how kernels can be key components in tools for tackling nankitata analysis
problems, as well as for integrating data from multiple sources.

Kernel methods can typically be viewed either in terms of an implicit represemtatia high
dimensional feature space, or in terms of regularization theory and smg¢Bmggio and Girosi,
1990). In either case, most standard Mercer kernels such as thsi@uaaos radial basis function
kernel require data points to be represented as vectors in Euclideaas Sfas initial processing
of data as real-valued feature vectors, which is often carried out sdamocmanner, has been
called the “dirty laundry” of machine learning (Dietterich, 2002)—while the ihEaclidean fea-
ture representation is often crucial, there is little theoretical guidance oritlstvuld be obtained.
For example, in text classification a standard procedure for prepagndattument collection for
the application of learning algorithms such as support vector machines ipresesit each docu-
ment as a vector of scores, with each dimension corresponding to a tessiblgafter scaling by
an inverse document frequency weighting that takes into account thiulisin of terms in the

(©2005 John Lafferty and Guy Lebanon.



LAFFERTY AND LEBANON

collection (Joachims, 2000). While such a representation has proverefitebtve, the statistical
justification of such a transform of categorical data into Euclidean spaceisar.

Motivated by this need for kernel methods that can be applied to disciategarical data,
Kondor and Lafferty (2002) propose the use of discrete diffusionéde and tools from spectral
graph theory for data represented by graphs. In this paper, weggaprelated construction of
kernels based on the heat equation. The key idea in our approach igitoviiéh a statistical
family that is natural for the data being analyzed, and to represent datirdas on the statistical
manifold associated with the Fisher information metric of this family. We then expgdometry
of the statistical family; specifically, we consider the heat equation with ce$pe¢he Riemannian
structure given by the Fisher metric, leading to a Mercer kernel definélleoappropriate function
spaces. The result is a family of kernels that generalizes the familiar @adssnel for Euclidean
space, and that includes new kernels for discrete data by beginningtatitiisal families such as
the multinomial. Since the kernels are intimately based on the geometry of the Fifslvaradtion
metric and the heat or diffusion equation on the associated Riemannian mawialdfer to them
here asnformation diffusion kernels

One apparent limitation of the discrete diffusion kernels of Kondor antettsf(2002) is the
difficulty of analyzing the associated learning algorithms in the discrete seffinig. stems from
the fact that general bounds on the spectra of finite or even infinitdgrae difficult to obtain,
and research has concentrated on bounds on the first eigenvalseedtl families of graphs. In
contrast, the kernels we investigate here are over continuous parapaates gven in the case where
the underlying data is discrete, leading to more amenable spectral analysisanMraw on the
considerable body of research in differential geometry that studiesgbevalues of the geometric
Laplacian, and thereby apply some of the machinery that has been devdtmpanalyzing the
generalization performance of kernel machines in our setting.

Although the framework proposed is fairly general, in this paper we focuthe application
of these ideas to text classification, where the natural statistical family is the omisih In the
simplest case, the words in a document are modeled as independentrdraves fixed multino-
mial; non-independent draws, correspondinggrams or more complicated mixture models are
also possible. Fon-gram models, the maximum likelihood multinomial model is obtained simply
as normalized counts, and smoothed estimates can be used to remove thd herosapping is
then used as an embedding of each document into the statistical family, wagentimetric frame-
work applies. We remark that the perspective of associating multinomial maatélsndividual
documents has recently been explored in information retrieval, with promieswts (Ponte and
Croft, 1998; Zhai and Lafferty, 2001).

The statistical manifold of the-dimensional multinomial family comes from an embedding
of the multinomial simplex into the-dimensional sphere which is isometric under the the Fisher
information metric. Thus, the multinomial family can be viewed as a manifold of congtsitive
curvature. As discussed below, there are mathematical technicalities domeyscand edges on
the boundary of the multinomial simplex, but intuitively, the multinomial family can bevedkin
this way as a Riemannian manifold with boundary; we address the technicajiteesrbunding”
procedure on the simplex. While the heat kernel for this manifold doesawvet & closed form, we
can approximate the kernel in a closed form using the leading term in thenetica expansion,

a small time asymptotic expansion for the heat kernel that is of great usderediial geometry.
This results in a kernel that can be readily applied to text documents, anis thall motivated
mathematically and statistically.
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We present detailed experiments for text classification, using both the B/ab# Reuters data
sets, which have become standard test collections. Our experimenttd nedicate that the multi-
nomial information diffusion kernel performs very well empirically. This imygment can in part
be attributed to the role of the Fisher information metric, which results in pointstine®oundary
of the simplex being given relatively more importance than in the flat Euclideancm&iewed
differently, effects similar to those obtained by heuristically designed tenghireg schemes such
as inverse document frequency are seen to arise automatically fromaheetyg of the statistical
manifold.

The remaining sections are organized as follows. In Section 2 we reviewlthwant concepts
that are required from Riemannian geometry, including the heat kernal deneral Riemannian
manifold and its parametrix expansion. In Section 3 we define the Fisher metaciated with a
statistical manifold of distributions, and examine in some detail the special agisesmultinomial
and spherical normal families; the proposed use of the heat kernelparametrix approximation
on the statistical manifold is the main contribution of the paper. Section 4 ddriresls on cov-
ering numbers and Rademacher averages for various learning algotiithinse the new kernels,
borrowing results from differential geometry on bounds for the geomeaacian. Section 5
describes the results of applying the multinomial diffusion kernels to textifitzg®on, and we
conclude with a discussion of our results in Section 6.

2. The Heat Kernel

In this section we review the basic properties of the heat kernel on a Rieamamanifold, together
with its asymptotic expansion, the parametrix. The heat kernel and its pavaexgiansion contains
a wealth of geometric information, and indeed much of modern differenti@hgty, notably index
theory, is based upon the use of the heat kernel and its generalizattmfindamental nature of the
heat kernel makes it a natural candidate to consider for statistical Igappiications. An excellent
introductory account of this topic is given by Rosenberg (1997), analughoritative reference for
spectral methods in Riemannian geometry is Schoen and Yau (1994). BnAppA we review
some of the elementary concepts from Riemannian geometry that are re@srdgubse concepts
are not widely used in machine learning, in order to help make the paper gibomstained.

2.1 The Heat Kernel

The Laplacian is used to model how heat will diffuse throughout a geonreaitfold; the flow is
governed by the following second order differential equation with initialdiions
of
— —Af =
ot 0
f(x,00 = fo(X).

The valuef (x,t) describes the heat at locatigrat timet, beginning from an initial distribution of

heat given byfy(x) at time zero. The heat or diffusion kerngl(x,y) is the solution to the heat
equationf (x,t) with initial condition given by Dirac’s delta functiod,. As a consequence of the
linearity of the heat equation, the heat kernel can be used to generatdutien to the heat equation
with arbitrary initial conditions, according to

1) = [ Ke(xy) foly)dy.
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As a simple special case, consider heat flow on the circle, or one-dimehsjghereéM = S,
with the metric inherited from the Euclidean metricRA Parameterizing the manifold by and@le
and lettingf (6,t) = y$_,a;(t) cogj8) be the discrete cosine transform of the solution to the heat
equation, with initial conditions given bg;(0) = a;, it is seen that the heat equation leads to the
equation

(o)

Z; (% aj(t) + ja; (t)) cogj6) =0,
E

which is easily solved to obtaia; (t) = e i and thereforef (6,t) = 5§ 0q; e it cog jB). As the
time parametet gets large, the solution convergesft®,t) — ap, which is the average value of
f; thus, the heat diffuses until the manifold is at a uniform temperature. giesx the solution in
terms of an integral kernel, note that by the Fourier inversion formula

00

f(e,t) = ;<f,é19>e*12té19
J

1 @
- = e 11ei®e 119y () do,
o s > o(9)do

thus expressing the solution &$,t) = [« K:(6, @) fo(¢) dfor the heat kernel
Kq ( 9)*i S e " cos(j(6— )
1(9.0) = ZHJ; j0-9).

This simple example shows several properties of the general solution dietiteequation on a
(compact) Riemannian manifold; in particular, note that the eigenvalues oéthellscale aj ~
e~ where the dimension in this casedis= 1.

WhenM = R, the heat kernel is the familiar Gaussian kernel, so that the solution to the hea
equation is expressed as

1 _(x-y)?
f(x,t):ﬁ/Re 2" fo(y)dy,

and it is seen that as— oo, the heat diffuses out “to infinity” so thdtx,t) — O.

WhenM is compact, the Laplacian has discrete eigenvaluesug < iy < [ --- with corre-
sponding eigenfunctiong satisfyingA@ = —@. When the manifold has a boundary, appropriate
boundary conditions must be imposed in orderActo be self-adjoint. Dirichlet boundary con-

ditions set@|;, = 0 and Neumann boundary conditions requ%&‘ = 0 wherev is the outer

M
normal direction. The following theorem summarizes the basic properti¢sddrernel of the heat
equation orM; we refer to Schoen and Yau (1994) for a proof.

Theorem 1 Let M be a complete Riemannian manifold. Then there exists a functo@KR ;. x
M x M), called the heat kernel, which satisfies the following properties for gllexM, with
Kt(" ) = K(tv ) )

1. K{(Xv y) =kt (ya X)

2. lim_oKe(x,y) = 8(Y)
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3. (A— %) Ki(x,y) =0
4. KXy = JuKi=s(X,2)Ks(z,y)dz for any s> 0.

If in addition M is compact, thend<an be expressed in terms of the eigenvalues and eigenfunctions
of the Laplacian as Kx,y) = 5i° oe M@ (X) o (y).

Properties 2 and 3 imply th# (x,y) solves the heat equation ¥, starting from a point heat
source at. It follows thate®fo(x) = f(x,t) = i, Ki(x,y) fo(y) dy solves the heat equation with
initial conditionsf (x,0) = fo(X), since

oMY _ [ O

_ /Ammw%wmy
M

N / Ke(x,y) fo(y) dy
M
= Af(xt),

and lim_o f(x,t) = [y, lim;_oK(x,y)dy = fo(x). Property 4 implies thag*e® = el+92, which
has the physically intuitive interpretation that heat diffusion for tinig the composition of heat
diffusion up to timeswith heat diffusion for an additional tirte- s. Sincee® is a positive operator,

| [ kixyggdxdy = [ f(x)égxax
MJM M
= (g,é%g) > 0.

ThusK;(x,y) is positive-definite. In the compact case, positive-definiteness follinestty from
the expansioiii(x,y) = S5 o€ '@ (x) @ (y), which shows that the eigenvalueskafas an integral
operator ar@ M. Together, these properties show tKatlefines a Mercer kernel.

The heat kerneK;(x,y) is a natural candidate for measuring the similarity between points be-
tweenx,y € M, while respecting the geometry encoded in the mejri€urthermore it is, unlike
the geodesic distance, a Mercer kernel—a fact that enables its use iticstiakisrnel machines.
When this kernel is used for classification, as in our text classificatiorrempnts presented in
Section 5, the discriminant functign(x) = ¥; a;yiK¢(X,X;) can be interpreted as the solution to the
heat equation with initial temperatuyg(x;) = a;y; on labeled data points, and initial temperature
Yo(X) = O elsewhere.

2.1.1 THE PARAMETRIX EXPANSION

For most geometries, there is no closed form solution for the heat kernalvewér, the short
time behavior of the solutions can be studied using an asymptotic expansiahtbalf@rametrix
expansionin fact, the existence of the heat kernel, as asserted in the aboverthésmost directly
proven by first showing the existence of the parametrix expansion.dim8eé we will employ the
first-order parametrix expansion for text classification.

Recall that the heat kernel on flaédimensional Euclidean space is given by

2
KtEuc“d(X,y) _ (4T[t)‘5exp<—HX 4ty‘ >
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where||x—y||2 = S, |x —yi|? is the squared Euclidean distance betweandy. The parametrix
expansion approximates the heat kernel locally as a correction to this &arcllteat kernel. To
begin the definition of the parametrix, let
_n d? X,
R ) = () Fexp(~ o)) (alcy) stk )

for currently unspecified functiongs(x,y), but whered?(x,y) now denotes the square of the geodesic
distance on the manifold. The idea is to obtinrecursively by solving the heat equation approxi-
mately to ordet™, for small diffusion timet.

Letr =d(x,y) denote the length of the radial geodesic frotny € Vy in the normal coordinates
defined by the exponential map. For any functids) andh(r) of r, it can be shown that

2
Af Eer(log\/detg)g

dr2 dr dr
dfdh
A(fh) = fAh+hAf+Zaa.
Starting from these basic relations, some calculus shows that
A=) B — (tmagy) (4rt)F exp r )
o) ' m 4t
wheny, are defined recursively as
1
detg) 2
w = () @
r
P = r‘quo/ Wyt (Ag_1) s 1ds fork > 0. (4)
0

With this recursive definition of the functionlg, the expansion (1), which is defined only locally,
is then extended to all ¥l x M by smoothing with a “cut-off functionty, with the specification

thatn : R, — [0,1] isC* and
0 r>1
n(r) = { _

1 r<c

for some constant & ¢ < 1. Thus, the ordem parametrix is defined as

K™ (x.y) = n(d(x,y) A" (xy).

As suggested by equation (2<)t(m) is an approximate solution to the heat equation, and satisfies
Ki(X,y) = Kt(m) (x,y) +0O(t™) for x andy sufficiently close; in particular, the parametrix is not unique.
For further details we refer to (Schoen and Yau, 1994; Rosenb@®d)1

While the parametrbKt(m) is not in general positive-definite, and therefore does not define a
Mercer kernel, it is positive-definite farsufficiently small. In particular, define the functidit) =
minspedK{™), where minspec denotes the smallest eigenvalue. Thisra continuous function
with f(0) =1 sinceK(()m) =|. Thus, there is some time intervi@ €) for which Kt(m) is positive-
definite in caseé < [0,€). This fact will be used when we employ the parametrix approximation to
the heat kernel for statistical learning.
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3. Diffusion Kernels on Statistical Manifolds

We now proceed to the main contribution of the paper, which is the applicatitredfeat kernel
constructions reviewed in the previous section to the geometry of statistindiefs, in order to
obtain kernels for statistical learning.

Under some mild regularity conditions, general parametric statistical families eqoipped
with a canonical geometry based on the Fisher information metric. This geohasripng been
recognized (Rao, 1945), and there is a rich line of research in statisfitisthreads in machine
learning, that has sought to exploit this geometry in statistical analysis;a&e(K989) for a survey
and discussion, or the monographs by Kass and Vos (1997) and Anthilagaoka (2000) for
more extensive treatments. The basic properties of the Fisher informatioic aretrreviewed in
Appendix B.

We remark that in spite of the fundamental nature of the geometric perspéttstatistics,
many researchers have concluded that while it occasionally providiedesiasting alternative in-
terpretation, it has not contributed new results or methods that canndith@ed through more
conventional analysis. However in the present work, the kernel mgtivegoropose can, arguably,
be motivated and derived only through the geometry of statistical manifolds.

The following two basic examples illustrate the geometry of the Fisher informatidmcraad
the associated diffusion kernel it induces on a statistical manifold. Therisphnormal family
corresponds to a manifold of constant negative curvature, and the nmaiéihoorresponds to a
manifold of constant positive curvature. The multinomial will be the most impoexrainple that
we develop, and we report extensive experiments with the resultinglgénreection 5.

3.1 Diffusion Kernels for Gaussian Geometry

Consider the statistical family given by = {p(-|6)}eco Where® = (y,0) and p(-|(K,0)) =
A((K,6°l,_1), the Gaussian having meanc R"! and variances?l,_1, with ¢ > 0. Thus,0 =
R"1 x R, . A derivation of the Fisher information metric for this family is given in Appenglig,
where it is shown that under coordinates define®by 1 for 1 <i <n-—1and6, = \/2(n—1)a,
the Fisher information matrix is given by

1
gij(6) = 529

Thus, the Fisher information metric giv€s= R"! x R, the structure of the upper half plane in
hyperbolic space. The distance minimizing or geodesic curves in hypespaloe are straight lines
or circles orthogonal to the mean subspace.

In particular, the univariate normal density has hyperbolic geometry. gsnaralization in
this 2-dimensional case, any location-scale family of densities is seen tda&ebolic geometry
(Kass and Vos, 1997). Such families have densities of the form

P (o)) = ot (*5*)

o o

where(y,0) e Rx Ry andf : R —R.

1. By astatistical manifoldwe mean simply a manifold of densities together with the metric induced by therFis
information matrix, rather than the more general notion of a Riemannianifofhtogether with a (possibly non-
metric) connection, as defined by Lauritzen (1987).
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Figure 1: Example decision boundaries for a kernel-based classifieg idormation diffusion
kernels for spherical normal geometry with= 2 (right), which has constant negative
curvature, compared with the standard Gaussian kernel for flat Eanlisieace (left).
Two data points are used, simply to contrast the underlying geometries. uFedc
decision boundary for the diffusion kernel can be interpreted statistibgllyoting that
as the variance decreases the mean is known with increasing certainty.

The heat kernel on the hyperbolic spdd® has the following explicit form (Grigor'yan and
Noguchi, 1998). For odd = 2m+ 1 it is given by

G O S AN A
Ki(X) = oz \sinhrar ) &P it 4 )’ ®)
and for evem = 2m+ 2 it is given by
21?2
o) = I V2 ( l 2>m wsex\p%(_w_m) (6)
ORI m | zg® \sinhrar )y coshs— coshr

wherer = d(x,X) is the geodesic distance between the two poini&"nif only the mearf = pis
unspecified, then the associated kernel is the standard Gaussian RBF- ke

A possible use for this kernel in statistical learning is where data pointstueatly represented
as sets. That is, suppose that each data point is of theXeenixy, X, ... Xm} wherex; € R"1,
Then the data can be represented according to the mapping which sehdg@ae of points to

the corresponding Gaussian under the MiE: (fi(x),3(x)) wherefi(x) = L 3;x andG(x)? =

m
23106 — 092

In Figure 3.1 the diffusion kernel for hyperbolic spa@#is compared with the Euclidean space
Gaussian kernel. The curved decision boundary for the diffusiarekenakes intuitive sense, since
as the variance decreases the mean is known with increasing certainty.

Note that we can, in fact, considbt as a manifold with boundary by allowing > 0 to be
non-negative rather than strictly positige> 0. In this case, the densities on the boundary become
singular, as point masses at the mean; the boundary is simply giveMby R"~, which is a
manifold without boundary, as required.

136



DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

3.2 Diffusion Kernels for Multinomial Geometry

We now consider the statistical family of the multinomial ove# 1 outcomes, given by =
{p(-18)}eco Where® = (61,05,...,6,) with 6; € (0,1) and S ;6; < 1. The parameter spac@
is the opem-simplex®, defined in equation (9), a submanifoldf+1.

To compute the metric, let= (X1,X2,...,X,+1) denote one draw from the multinomial, so that
X, € {0,1} andy;x = 1. The log-likelihood and its derivatives are then given by

n+1

logp(x|8) = Xilog6;
i; i i

dlogp(x|6) X;

06; Bi
0%logp(x|8) X
600~ g

96,08, o

Since?, is ann-dimensional submanifold &"+1, we can express, v € ToM as(n+1)-dimensional
vectors inTeR™?! = R™1; thus,u = ™ lue, v=yMlvie. Note that due to the constraint
zi”jll 6; = 1, the sum of the+ 1 components of a tangent vector must be zero. A basifdris

{elz (1,0,...,0,-1) ", = (0,1,0,...,0,—1)7,....en = (o,o,...,o,l,—l)T} .

Using the definition of the Fisher information metric in equation (10) we then ctampu

n+1n+1 02 Iog p(x| e)
(uvie = _ZZ“V’ { 36i08, ]
n+1 5
= —Y WE{—x/6;
i; iVi { i |}
B n—kluivi
= o

While geodesic distances are difficult to compute in general, in the case afittimomial
information geometry we can easily compute the geodesics by observingdistatidard Euclidean
metric on the surface of the positivesphere is the pull-back of the Fisher information metric on
the simplex. This relationship is suggested by the form of the Fisher informgitien in equation
(10).

To be concrete, the transformatibiify,...,0n.1) = (2v/041,...,2v/0n11) is a diffeomorphism
of the n-simplex &, onto the positive portion of tha-sphere of radius 2; denote this portion of
the sphere as;f = {6 e R™1 : sM162=2 6, > 0}. Given tangent vectors= 3" !ue,v=
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Figure 2: Equal distance contours #mfrom the upper right edge (left column), the center (center
column), and lower right corner (right column). The distances are ctedpusing the
Fisher information metrig (top row) or the Euclidean metric (bottom row).

1y, the pull-back of the Fisher information metric through? is

n+1 n+1
he(UaV) = 962/4 (F*_l z ukem':*_l ZW&)
k=1 1=

n+1n+1
= Y > uvige(F ecF )
F s
n+1n+1 4 1 1
= uv Y = (F&)i (Fo )
25" 2w
ntintl 4 6, 819
= UV —
22" 2% 2 2

Since the transformatiol : (%,,9) — (S, h) is an isometry, the geodesic distart{®,6’) on
P, may be computed as the shortest curveSgreconnecting=(0) andF (6). These shortest curves
are portions of great circles—the intersection of a two dimensional plashg ar-and their length

is given by
n+1
d(8,0") = 2arcco 0,6 | . (7)
{5 o)
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Figure 3: Example decision boundaries using support vector machinegwatmation diffusion
kernels for trinomial geometry on the 2-simplex (top right) compared with the atend
Gaussian kernel (left).

In Appendix B we recall the connection between the Kullback-Leiblerrdimece and the in-
formation distance. In the case of the multinomial family, there is also a close nsaipowith the
Hellinger distance. In particular, it can easily be shown that the Hellingtardie

h(8.6) = \/Z (Vo)

d(6,6') = 2sin(d(8,8')/4) .

Thus, a®’ — 6, dy agrees With%d to second order:

is related tad(6,6') by

d4(6,0) = %d(e,e') +0(d%8,0))

The Fisher information metric places greater emphasis on points near thedopuwvhich is
expected to be important for text problems, which typically have sparsetisgtisigure 2 shows
equal distance contours @b using the Fisher information and the Euclidean metrics.

While the spherical geometry has been derived as the information georaetyfihite multi-
nomial, the same geometry can be used non-parametrically for an arbitizsgtaf probability
measures, leading to spherical geometry in a Hilbert space (Dawid,.1977)

3.2.1 THE MULTINOMIAL DIFFUSION KERNEL

Unlike the explicit expression for the Gaussian geometry discussed ,aheve is not an explicit
form for the heat kernel on the sphere, nor on the positive orthahiea§phere. We will therefore
resort to the parametrix expansion to derive an approximate heat kertieé multinomial.

Recall from Section 2.1.1 that the parametrix is obtained according to theshguahsion given
in equation (1), and then extending this smoothly to zero outside a neigltsbdfidhe diagonal,
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as defined by the exponential map. As we have just derived, this resthis fiollowing parametrix
for the multinomial family:

R™(6,6) = (41t) 2 ex

p(_ arccog(z/é'\/@)> (wo(e’el)+,..+L|_jm(9,9/)tm) .

The first-order expansion is thus obtained as
K”(6,6') = n(d(6,6))R” (8,6).

Now, for then-sphere it can be shown that the functipmof (3), which is the leading order correc-
tion of the Gaussian kernel under the Fisher information metric, is given by

()

rnfl

Wo(r)

n—1)

. _(
_(sinr 2
- r

(n-1) , (n=1)(5n-1) ,
12 " T 1220 "

(Berger et al., 1971). Thus, the leading order parametrix for the multinatifiasion kernel is

= 1+ +0(r®)

. -
PO (0,0) = (4rt) ? exp<—4—ltd2(97 9/)> <%> ‘

In our experiments we approximate this kernel further as
R (6,0) = (41t) 2 exp(f1 arccod(v- \/@)>

by appealing to the asymptotic expansion in (8) and the explicit form of thendistgiven in (7);
note that(sinr/r)™" blows up for larger. In Figure 3 the kernel (3.2.1) is compared with the
standard Euclidean space Gaussian kernel for the case of the trinondiall, the: 2, using an SVM
classifier.

3.2.2 ROUNDING THE SIMPLEX

The case of multinomial geometry poses some technical complications for tlysiarmd diffusion
kernels, due to the fact that the open simplex is not complete, and moriggwedwsure is not a dif-
ferentiable manifold with boundary. Thus, it is not technically possible tdyaggveral results from
differential geometry, such as bounds on the spectrum of the Laplasiatopted in Section 4. We
now briefly describe a technical “patch” that allows us to derive all ofineded analytical results,
without sacrificing in practice any of the methodology that has been diesivéar.

Let A, = P, denote the closure of the open simplex; tisis the usual probability simplex
which allows zero probability for some items. However, it does not formmapaet manifold with
boundary since the boundary has edges and corners. In othes,Wocdl chartsh : U — R™
cannot be defined to be differentiable. To adjust for this, the idea is tmtfthe edges” of\, to
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Figure 4: Rounding the simplex. Since the closed simplex is not a manifold withdaoy we
carry out a “rounding” procedure to remove edges and cornerg.dfaunded simplex
is the closure of the union of alk-balls lying within the open simplex.

obtain a subset that forms a compact manifold with boundary, and thatyckyggroximates the
original simplex.

Ford > 0, letBs(x) = {y| || x—Y]|| < &} denote the open Euclidean ball of raddusentered ax.
Denote byCs(?,) the d-ball centersof 7, the points of the simplex whoseballs lie completely
within the simplex:

Cs(Pn) = {x€ Py : Bs(X) C P} .

Finally, let f.Pné denote the-interior of &, which we define as the union of @&balls contained in
Pn:
2= |J Bs(x).

X€Cs(%n)

Thed-rounded simplexR? is then defined as the closuté = #?.

The rounding procedure that yield$ is suggested by Figure 4. Note that in generaldhe
rounded simplexA2 will contain points with a single, but not more than one component having zero
probability. The sef? forms a compact manifold with boundary, and its image under the isometry
F:(®h,9) — (S, h) is a compact submanifold with boundary of thephere.

Whenever appealing to results for compact manifolds with boundary in tlesvfog, it will
be tacitly assumed that the above rounding procedure has been cartrindh® case of the multi-
nomial. From a theoretical perspective this enables the use of boungecmasof Laplacians for
manifolds of non-negative curvature. From a practical viewpoint itiireg only smoothing the
probabilities to remove zeros.

4. Spectral Bounds on Covering Numbers and Rademacher Averag

We now turn to establishing bounds on the generalization performanceradl keachines that use
information diffusion kernels. We first adopt the approach of Guo ¢2aD2), estimating covering
numbers by making use of bounds on the spectrum of the Laplacian on arRiemananifold,
rather than on VC dimension techniques; these bounds in turn yield boarnte expected risk of
the learning algorithms. Our calculations give an indication of how the urnidgreometry influ-
ences the entropy numbers, which are inverse to the covering numbetsewshow how bounds
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on Rademacher averages may be obtained by plugging in the spectrdstfoum differential ge-
ometry. The primary conclusion that is drawn from these analyses is tmattfre point of view of
generalization error bounds, diffusion kernels behave essentiallathe as the standard Gaussian
kernel.

4.1 Covering Numbers

We begin by recalling the main result of Guo et al. (2002), modifying theirtimotaslightly to
conform with ours. LeM c RY be a compact subset dfdimensional Euclidean space, and suppose
thatK : M x M — R is a Mercer kernel. Denote by > A, > --- > 0 the eigenvalues &€, that is,
of the mappingf — [, K(-,y) f(y)dy, and let;(-) denote the corresponding eigenfunctions. We
assume thatx = sup |||, < .

Givenm pointsx; € M, the kernel hypothesis class foe= {x} with weight vector bounded by
Ris defined as the collection of functions given by

Fr(X) ={f: f(x)=(w,P(x)) for some|w|| <R},

whered(-) is the mapping fronM to feature space defined by the Mercer kernel, @ndland||-||
denote the corresponding Hilbert space inner product and norm. flinsepest to obtain uniform
bounds on the covering numbet§(e, 7r(x)), defined as the size of the smallestover of 7r(x)
in the metric induced by the norfif ||007X =maxX-1. m|f(x)|.

Theorem 2 (Guo et al., 2002)Given an integer & N, let j: denote the smallest integer j for which

1

Ao A ]
)‘j+1<< lnz J>

and define

Thensup,emm A(&;, Fr(X)) < n.

To apply this result, we will obtain bounds on the indiggsising spectral theory in Riemannian
geometry.

Theorem 3 (Li and Yau, 1980) Let M be a compact Riemannian manifold of dimension d with
non-negative Ricci curvature, and l6t< W < pp < --- denote the eigenvalues of the Laplacian
with Dirichlet boundary conditions. Then

ci(d) (%,)g < Hj < cp(d) <J$—l>s

where V is the volume of M and and ¢ are constants depending only on the dimension.
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Note that the manifold of the multinomial model (afterounding) satisfies the conditions of
this theorem. Using these results we can establish the following bounds erimcpmumbers for
information diffusion kernels. We assume Dirichlet boundary conditiorsmélar result can be
proven for Neumann boundary conditions. We include the constantvol(M) and diffusion coef-
ficientt in order to indicate how the bounds depend on the geometry.

Theorem 4 Let M be a compact Riemannian manifold, with volume V, satisfying the corglitfon
Theorem 3. Then the covering numbers for the Dirichlet heat kegrah K1 satisfy

ogac(e. 7209) =0 (5 J1oa™>* (7)) ®

Proof By the lower bound in Theorem 3, the Dirichlet eigenvalues of the heaekiér(x, y), which
o\ 2
are given by\j = e, satisfy log\; < —tcy(d) (\l,) ‘. Thus,

2 2

“Liog (AL >'Ej il a+§|0 n> o9 (1 a+§|0n
PN )= T4 \v) TN =tagaly) o9

where the second inequality comes frqﬁzlip > foj xPdx = g% Now using the upper bound of
Theorem 3, the inequalityj; < j will hold if

2 2
tc —2 a>—Io A >tci l a+glon
2\ z OAj+1 =2 1d+2 Vi j g

tco (.. 2 ¢
_< _|_2 d —
e (J(J ) :

The above inequality will hold in case

or equivalently

d d

2 d+2 2 d+2

j> _Ae logn " > | (Veldt2) logn "
o t(CZ_CldLH) o tcy

2 d+2
since we may assume that> cy; thus, j;, < |C; (@ Iogn> for a new constartt; (d). Plug-
ging this bound orj}, into the expression fag;, in Theorem 2 and using

© 2 2
e’ :O<eJn ) ,
i=]

S
n

we have after some algebra that

d
1 t N2 o
log (8_n> =Q (<\ﬁ) loga+z n) .

Inverting the above expression in Ingives equation (8). |

We note that Theorem 4 of Guo et al. (2002) can be used to show thaotlmis ldoes not, in fact,
depend orm andx. Thus, for fixed the covering numbers scale as e, F) = O (Iogd%2 (%))

and for fixede they scale as log((g, ) = O (t‘%) in the diffusion timet.
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4.2 Rademacher Averages

We now describe a different family of generalization error bounds #rabe derived using the ma-
chinery of Rademacher averages (Bartlett and Mendelson, 200@etBat al., 2004). The bounds
fall out directly from the work of Mendelson (2003) on computing locarages for kernel-based
function classes, after plugging in the eigenvalue bounds of Theorem 3.

As seen above, covering number bounds are related to a complexity ténmfofm

1
. )\1...)\-* T o
C(n)Jm( = ‘"> + 3 N
i=Th

In the case of Rademacher complexities, risk bounds are instead coniypbesimilar, yet simpler
expression of the form

I=Jf

where nowj; is the smallest integej for which Aj < r (Mendelson, 2003), withl acting as a
parameter bounding the error of the family of functions. To place this into somiext, we quote
the following results from Bartlett et al. (2004) and Mendelson (2008)clwvapply to a family of
loss functions that includes the quadratic loss; we refer to Bartlett etGd4jZor details on the
technical conditions.

Let (X1,Y1),(X2,Y2)..., (X, Yn) be an independent sample from an unknown distribuiton
on X x 9%, wherey Cc R. For a given loss functiod : & x 9 — R, and a familyg of mea-
surable functions : X — 9, the objective is to minimize the expected Idsg(f(X),Y)]. Let
Els = infrcgEls, wherels(X,Y) = £(f(X),Y), and letf be any member of for which Enl; =
infsczEnls whereE, denotes the empirical expectation. TRademacher averagef a family
of functions® = {g: X — R} is defined as the expectati®@R,& = E [SUQEQ5 Rug] with Ryg =
%zi”:loi 9(X), whereas,...,on are independent Rademacher random variables; that(cs,=
1)=p(oi=-1) =3

Theorem 5 (Bartlett et al., 2004) Let§ be a convex class of functions and definby
. *\2 bx
W(r)=aER{feF:E(f-f) gr}+F
where a and b are constants that depend on the loss funé&tidbhen when £ (r),
dx
F * < —
E(Ef ls ) <cr+ o

with probability at leastl — e *, where ¢ and d are additional constants.
Moreover, suppose that K is a Mercer kernel ahe- { f € # : || f|x <1} is the unit ball in
the reproducing kernel Hilbert space associated with K. Then

22 . bx
Yr)<a /ﬁglmm{r,)\j}jLF.
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Thus, to bound the excess risk for kernel machines in this frameworlfitesito bound the

term
o = imin{r,m
=

= jF‘I’—%—-z Ai

I=J7

involving the spectrum. Given bounds on the eigenvalues, this is typicaiyteds.

Theorem 6 Let M be a compact Riemannian manifold, satisfying the conditions of Tihe8re
Then the Rademacher tetinfor the Dirichlet heat kernel Kon M satisfies

so<0 () ()

for some constant C depending on the geometry of M.

[N[=X

Proof We have that

P2(r) = 5 min{r,Aj}
=1
= jir+ Y et
=l

© 2

. _ id

< iy et
=3

2
< jir4Cetald

for some constartt, where the first inequality follows from the lower bound in Theorem 3. But
jr <jincaselog\j,1>r,or, again from Theorem 3, if

tco(] +1)§ < —logA;j < Iog%

or equivalently,

It follows that

for some new consta@”. [ ]

From this bound, it can be shown that, with high probability,

E (ef—ef*) o) ('ng n) ,
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which is the behavior expected of the Gaussian kernel for Euclideae spa
Thus, for both covering numbers and Rademacher averages, thegesaunds are essentially

the same as those that would be obtained for the Gaussian kernel on thelifla¢nsional torus,
which is the standard way of “compactifying” Euclidean space to get a tepldhaving only dis-
crete spectrum; the results of Guo et al. (2002) are formulated for tealcad, corresponding to
the circleSt. While the bounds for diffusion kernels were derived for the caseositige curva-
ture, which apply to the special case of the multinomial, similar bounds for glemanifolds with
curvature bounded below by a negative constant should also be algainab

5. Multinomial Diffusion Kernels and Text Classification

In this section we present the application of multinomial diffusion kernels to tbielgm of text
classification. Text processing can be subject to some of the “dirty lgtimelfierred to in the
introduction—documents are cast as Euclidean space vectors with speigating schemes that
have been empirically honed through applications in information retrievagmr#tan inspired from
first principles. However for text, the use of multinomial geometry is naturdlvaell motivated,;
our experimental results offer some insight into how useful this geometryom&yr classification.

5.1 Representing Documents

Assuming a vocabulary of sizen+ 1, a document may be represented as a sequence of words over
the alphabeV. For many classification tasks it is not unreasonable to discard word, andeed,
humans can typically easily understand the high level topic of a documensjydting its contents

as a mixed up “bag of words.” Let, denote the number of times tewmappears in a document.
Then {x,}vev is the sample space of the multinomial distribution, with a document modeled as
independent draws from a fixed model, which may change from documeéacument. It is nat-

ural to embed documents in the multinomial simplex using an embedding fmﬁ:tiﬁﬁ*l — P

We consider several embeddin@shat correspond to well known feature representations in text
classification (Joachims, 2000). Ttegm frequencytf) representation uses normalized counts; the
corresponding embedding is the maximum likelihood estimator for the multinomial disribu

s (X X
th(x)— (ZiXi,...,ziXi>.

Another common representation is basedtem frequency, inverse document freque(ttyf).
This representation uses the distribution of terms across documents tordiscoumon terms;
the document frequency ¢ bf termv is defined as the number of documents in which term
appears. Although many variants have been proposed, one of the dienmlaaost commonly used
embeddings is

étﬁdf(x)z ( x1log(D/d f1) Xn+1log(D/d an))
Yixlog(D/df)” " Fixlog(D/df)
whereD is the number of documents in the corpus.
We note that in text classification applications the tf and tfidf representatiertgcally nor-
malized to unit length in th&, norm rather than thé&; norm, as above (Joachims, 2000). For
example, the tf representation with normalization is given by

( X1 Xn+1>
X | =30
YiX 2iX
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and similarly for tfidf. When used in support vector machines with linear arsGan kerneld, ,-
normalized tf and tfidf achieve higher accuracies than theimormalized counterparts. However,
for the diffusion kernelsl.; normalization is necessary to obtain an embedding into the simplex.
These different embeddings or feature representations are compattesl experimental results
reported below.

To be clear, we list the three kernels we compare. First, the linear kemjigeis by

K-"(0,0') =0 e’—me 4
’ — V- — Z v Uy -
v=1

The Gaussian kernel is given by

il 60?2
K?ausie/’e/) — (2T[O') 2 exp<_%>

where |6 —€'|? = Ciﬂe\,—e(,yz is the squared Euclidean distance. The multinomial diffusion
kernel is given by

KMt(0,0') = (41t) 2 exp(—f{—L arccod(v/8- \/@)> :
as derived in Section 3.

5.2 Experimental Results

In our experiments, the multinomial diffusion kernel using the tf embeddingoaagpared to the
linear or Gaussian (RBF) kernel with tf and tfidf embeddings using a stigpotor machine clas-
sifier on the WebKB and Reuters-21578 collections, which are standsaicsdts for text classifica-
tion.

The WebKb dataset contains web pages found on the sites of foursitis® (Craven et al.,
2000). The pages were classified according to whether they werenstéalaulty, course, project
or staff pages; these categories contain 1641, 1124, 929, 504 @nidsidnces, respectively. Since
only the student, faculty, course and project classes contain more tBados0ments each, we
restricted our attention to these classes. The Reuters-21578 datasaillscdon of newswire
articles classified according to news topic (Lewis and Ringuette, 1994)oudththere are more
than 135 topics, most of the topics have fewer than 100 documents; foettsen, we restricted
our attention to the following five most frequent classes: earn, acq, rRengyain and crude, of
sizes 3964, 2369, 717, 582 and 578 documents, respectively.

For both the WebKB and Reuters collections we created two types of bilzsiftcation tasks.
In the first task we designate a specific class, label each document ita#i®eas a “positive”
example, and label each document on any of the other topics as a “@égai@mple. In the second
task we designate a class as the positive class, and choose the ndgasite be the most frequent
remaining class (student for WebKB and earn for Reuters). In bo#scése size of the training
set is varied while keeping the proportion of positive and negative doctsneenstant in both the
training and test set.

Figure 5 shows the test set error rate for the WebKB data, for a emags/e instance of the one-
versus-all classification task; the designated class was course. dilies ffer the other choices of
positive class were qualitatively very similar; all of the results are summainZeable 1. Similarly,
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Figure 5: Experimental results on the WebKB corpus, using SVMs for liftedated) and Gaussian

(dash-dotted) kernels, compared with the diffusion kernel for the multidofddid).
Classification error for the task of labeling course vs. either facultyeptoor student is
shown in these plots, as a function of training set size. The left plot usggrésentation
and the right plot uses tfidf representation. The curves shown arerthieates averaged
over 20-fold cross validation, with error bars representing one stdrakviation. The
results for the other “1 vs. all” labeling tasks are qualitatively similar, andtereefore
not shown.
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Figure 6: Results on the WebKB corpus, using SVMs for linear (dottedizmnssian (dash-dotted)

kernels, compared with the diffusion kernel (solid). The course pagelabeled positive
and the student pages are labeled negative; results for other latebpaigualitatively
similar. The left plot uses tf representation and the right plot uses tfidéseptation.
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Figure 7: Experimental results on the Reuters corpus, using SVMs for (idetied) and Gaussian
(dash-dotted) kernels, compared with the diffusion kernel (solid). cldsses acq (top),
and moneyFx (bottom) are shown; the other classes are qualitatively simharleft
column uses tf representation and the right column uses tfidf. The cumeasmsare
the error rates averaged over 20-fold cross validation, with errar tegresenting one
standard deviation.
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Figure 8: Experimental results on the Reuters corpus, using SVMs for (idetied) and Gaussian
(dash-dotted) kernels, compared with the diffusion (solid). The classe®yFx (top)
and grain (bottom) are labeled as positive, and the class earn is labeliyacghe left
column uses tf representation and the right column uses tfidf representation
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tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion Linear Gaussian Diffusiorn
40 || 0.1225 0.1196 0.0646 | 0.0761 0.0726 0.0514
80| 0.0809 0.0805 0.0469 | 0.0569 0.0564 0.0357
coursevs. all| 120 || 0.0675 0.0670 0.0383 || 0.0473 0.0469 0.0291
200 || 0.0539 0.0532 0.0315 || 0.0385 0.0380 0.0238
400 || 0.0412 0.0406 0.0241 | 0.0304 0.0300 0.0182
600 || 0.0362 0.0355 0.0213 || 0.0267 0.0265 0.0162

40 || 0.2336  0.2303 0.1859 || 0.2493 0.2469 0.1947
80 || 0.1947 0.1928 0.1558 | 0.2048 0.2043 0.1562
faculty vs. all | 120 || 0.1836  0.1823 0.1440 | 0.1921 0.1913 0.1420
200 || 0.1641 0.1634 0.1258 || 0.1748 0.1742 0.1269
400 || 0.1438 0.1428 0.1061 | 0.1508 0.1503 0.1054
600 || 0.1308 0.1297 0.0931 || 0.1372 0.1364 0.0933

40 || 0.1827 0.1793 0.1306 | 0.1831 0.1805 0.1333
80 || 0.1426  0.1416 0.0978 | 0.1378 0.1367 0.0982
projectvs. all| 120 || 0.1213  0.1209 0.0834 | 0.1169 0.1163 0.0834
200 | 0.1053 0.1043 0.0709 || 0.1007 0.0999 0.0706
400 || 0.0785 0.0766 0.0537 | 0.0802 0.0790 0.0574
600 || 0.0702 0.0680 0.0449 | 0.0719 0.0708 0.0504

40 || 0.2417 0.2411 0.1834 || 0.2100 0.2086 0.1740
80 || 0.1900 0.1899 0.1454 || 0.1681 0.1672 0.1358
studentvs. allf 120 | 0.1696  0.1693 0.1291 | 0.1531 0.1523 0.1204
200 | 0.1539 0.1539 0.1134 || 0.1349 0.1344 0.1043
400 | 0.1310 0.1308 0.0935 || 0.1147 0.1144 0.0874
600 || 0.1173 0.1169 0.0818 || 0.1063 0.1059 0.0802

Table 1: Experimental results on the WebKB corpus, using SVMs for lifganssian, and multi-
nomial diffusion kernels. The left columns use tf representation and thé galbmns
use tfidf representation. The error rates shown are averages abissiimg 20-fold cross
validation. The best performance for each training set kiieshown in boldface. All
differences are statistically significant according to the pditedt at the 0.05 level.

Figure 7 shows the test set error rates for two of the one-versugpaltienents on the Reuters data,
where the designated classes were chosen to be acq and moneyFx.thdiretults for Reuters
one-versus-all tasks are shown in Table 3.

Figure 6 and Figure 8 show representative results for the second tygassification task,
where the goal is to discriminate between two specific classes. In the ctise\WEbKB data the
results are shown for course vs. student. In the case of the Reutarthdaesults are shown for
moneyFx vs. earn and grain vs. earn. Again, the results for the otlsseslare qualitatively similar;
the numerical results are summarized in Tables 2 and 4.

In these figures, the leftmost plots show the performance of tf featuriss thvd rightmost plots
show the performance of tfidf features. As mentioned above, in the €ése diffusion kernel we
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tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion| Linear Gaussian Diffusiorn
40 || 0.0808 0.0802 0.0391 || 0.0580 0.0572 0.0363
80| 0.0505 0.0504 0.0266 | 0.0409 0.0406 0.0251
course vs. student 120 || 0.0419 0.0409 0.0231 | 0.0361 0.0359 0.0225
200 || 0.0333 0.0328 0.0184 || 0.0310 0.0308 0.0201
400 || 0.0263 0.0259 0.0135 || 0.0234 0.0232 0.0159
600 || 0.0228 0.0221 0.0117 || 0.0207 0.0202 0.0141

40 || 0.2106 0.2102 0.1624 || 0.2053 0.2026 0.1663
80| 0.1766 0.1764 0.1357 || 0.1729 0.1718 0.1335
faculty vs. student 120 || 0.1624 0.1618 0.1198 | 0.1578 0.1573 0.1187
200 || 0.1405 0.1405 0.0992 | 0.1420 0.1418 0.1026
400 || 0.1160 0.1158 0.0759 | 0.1166 0.1165 0.0781
600 || 0.1050 0.1046 0.0656 | 0.1050 0.1048 0.0692

40 || 0.1434 0.1430 0.0908 | 0.1304 0.1279 0.0863
80 || 0.1139 0.1133 0.0725 | 0.0982 0.0970 0.0634
project vs. student 120 || 0.0958  0.0957 0.0613 || 0.0870 0.0866  0.0559
200 | 0.0781 0.0775 0.0514 || 0.0729 0.0722 0.0472
400 || 0.0590 0.0579 0.0405 | 0.0629 0.0622 0.0397
600 || 0.0515 0.0500 0.0325 || 0.0551 0.0539 0.0358

Table 2: Experimental results on the WebKB corpus, using SVMs for lifganssian, and multi-
nomial diffusion kernels. The left columns use tf representation and the cabmns
use tfidf representation. The error rates shown are averages abtsiimg 20-fold cross
validation. The best performance for each training set kil shown in boldface. All
differences are statistically significant according to the paitedt at the 0.05 level.

uselL; normalization to give a valid embedding into the probability simplex, while for the liard
Gaussian kernels we ukg normalization, which works better empirically thanfor these kernels.
The curves show the test set error rates averaged over 20 iterations® validation as a function

of the training set size. The error bars represent one standardidevieor both the Gaussian and
diffusion kernels, we test scale parametar@¢ for the Gaussian kernel and'22 for the diffusion
kernel) in the se{0.5,1,2,3,4,5,7,10}. The results reported are for the best parameter value in
that range.

We also performed experiments with the popular Mod-Apte train and test sptitdéaop 10
categories of the Reuters collection. For this split, the training set has @00tdocuments and
is highly biased towards negative documents. We report in Table 5 thestemtcuracies for the
tf representation. For the tfidf representation, the difference betweediffierent kernels is not
statistically significant for this amount of training and test data. The provided set is more
than enough to achieve outstanding performance with all kernels useédharabsence of cross
validation data makes the results too noisy for interpretation.

In Table 6 we report the F1 measure rather than accuracy, since thisneéasommonly used
in text classification. The last column of the table compares the presentdid keish the published

152



DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion Linear Gaussian Diffusion
80| 0.1107 0.1106 0.0971 | 0.0823 0.0827 0.0762
120 || 0.0988 0.0990 0.0853 | 0.0710 0.0715 0.0646
earnvs. all 200 || 0.0808 0.0810 0.0660 || 0.0535 0.0538 0.0480
400 || 0.0578 0.0578 0.0456 || 0.0404 0.0408 0.0358
600 || 0.0465 0.0464 0.0367 || 0.0323 0.0325 0.0290

80 || 0.1126 0.1125 0.0846 || 0.0788 0.0785 0.0667
120 || 0.0886 0.0885 0.0697 | 0.0632 0.0632 0.0534
acq vs. all 200 || 0.0678 0.0676 0.0562 | 0.0499 0.0500 0.0441
400 || 0.0506 0.0503 0.0419 || 0.0370 0.0369 0.0335
600 || 0.0439 0.0435 0.0363 | 0.0318 0.0316 0.0301

80| 0.1201 0.1198 0.0758 || 0.0676 0.0669 0.0647
120 || 0.0986 0.0979 0.0639 | 0.0557 0.0545 0.0531
moneyFx vs. all| 200 || 0.0814 0.0811 0.0544 | 0.0485 0.0472 0.0438
400 || 0.0578 0.0567 0.0416 | 0.0427 0.0418 0.0392
600 || 0.0478 0.0467 0.0375 || 0.0391 0.0385 0.0369

80 || 0.1443 0.1440 0.0925 || 0.0536 0.0518 0.0595
120 | 0.1101 0.1097 0.0717 || 0.0476 0.0467 0.0494
grainvs.all | 200 || 0.0793 0.0786 0.0576 | 0.0430 0.0420 0.0440
400 || 0.0590 0.0573 0.0450 || 0.0349 0.0340 0.0365
600 || 0.0517 0.0497 0.0401 || 0.0290 0.0284 0.0306

80 || 0.1396 0.1396 0.0865 || 0.0502 0.0485 0.0524
120 || 0.0961 0.0953 0.0542 || 0.0446 0.0425 0.0428
crudevs.all | 200 || 0.0624 0.0613 0.0414 | 0.0388 0.0373 0.0345
400 || 0.0409 0.0403 0.0325 || 0.0345 0.0337 0.0297
600 || 0.0379 0.0362 0.0299 || 0.0292 0.0284 0.0264

Table 3: Experimental results on the Reuters corpus, using SVMs for liGaarssian, and multi-
nomial diffusion kernels. The left columns use tf representation and theaigumns use
tfidf representation. The error rates shown are averages obtaimgd2@sfold cross vali-
dation. The best performance for each training setlsigseshown in boldface. An asterisk
(*) indicates that the difference is not statistically significant accordingegtired test
at the 0.05 level.

results of Zhang and Oles (2001), withtaindicating the diffusion kernel F1 measure is greater
than the result published in Zhang and Oles (2001) for this task.

Our results are consistent with previous experiments in text classificatiog 8%Ms, which
have observed that the linear and Gaussian kernels result in very simifarrpance (Joachims
et al., 2001). However the multinomial diffusion kernel significantly outpens the linear and
Gaussian kernels for the tf representation, achieving significantly lower ete than the other
kernels. For the tfidf representation, the diffusion kernel consistentlyeoforms the other kernels
for the WebKb data and usually outperforms the linear and Gaussiankéonéhe Reuters data.
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tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion| Linear Gaussian Diffusion
40 || 0.1043 0.1043 0.102% 0.0829 0.0831 0.0814
80 || 0.0902 0.0902 0.0856 0.0764 0.0767 0.0730
acq vs. earn 120 || 0.0795 0.0796 0.0715 0.0626 0.0628 0.0562
200 || 0.0599 0.0599 0.0497 0.0509 0.0511 0.0431
400 || 0.0417 0.0417 0.0340 0.0336 0.0337 0.0294

40 || 0.0759 0.0758 0.0474 | 0.0451 0.0451 0.0372
80 || 0.0442 0.0443 0.0238 0.0246 0.0246  0.0177
moneyFx vs. earnp 120 || 0.0313 0.0311 0.0160 0.0179 0.0179 0.0120
200 || 0.0244 0.0237 0.0118 0.0113 0.0113  0.0080
400 | 0.0144 0.0142 0.0079 0.0080 0.0079  0.0062

40 || 0.0969 0.0970 0.0543 0.0365 0.0366 0.0336
80 || 0.0593 0.0594 0.0275 0.0231 0.0231 0.0201
grainvs.earn | 120 || 0.0379 0.0377 0.0158 0.0147 0.0147 0.0114
200 || 0.0221 0.0219 0.0091 0.0082 0.0081 0.0069
400 || 0.0107 0.0105 0.0060 0.0037 0.0037 0.0037

40 || 0.1108 0.1107 0.0950 || 0.0583 0.0586 0.0590
80| 0.0759 0.0757 0.0552 0.0376 0.0377 0.0366

crude vs. earn | 120 || 0.0608 0.0607 0.0415 0.0276 0.0276 0.0284
200 | 0.0410 0.0411 0.0267 || 0.0218 0.0218 0.0225
400 | 0.0261 0.0257 0.0194 0.0176 0.017% 0.0181

Table 4: Experimental results on the Reuters corpus, using SVMs for liGaarssian, and multi-
nomial diffusion kernels. The left columns use tf representation and theaigumns use
tfidf representation. The error rates shown are averages obtaimgd2@sfold cross vali-
dation. The best performance for each training setlsiseshown in boldface. An asterisk
(*) indicates that the difference is not statistically significant accordingagtired test
at the 0.05 level.

The Reuters data is a much larger collection than WebKB, and the docuraqoeficy statistics,
which are the basis for the inverse document frequency weighting in thedfidesentation, are
evidently much more effective on this collection. It is notable, however, ttt@multinomial in-
formation diffusion kernel achieves at least as high an accuracy withewse of any heuristic
term weighting scheme. These results offer evidence that the use of multirgearaetry is both
theoretically motivated and practically effective for document classification.

6. Discussion and Conclusion

This paper has introduced a family of kernels that is intimately based on timeegggoof the Rie-
mannian manifold associated with a statistical family through the Fisher informatitric méhe
metric is canonical in the sense that it is uniquely determined by requiremeéntanénce Cencov,
1982), and moreover, the choice of the heat kernel is natural bedeeffectively encodes a great
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Category | Linear RBF | Diffusion

earn 0.01159| 0.01159| 0.01026
acq 0.01854| 0.01854| 0.01788
money-fx | 0.02418| 0.02451| 0.02219
grain 0.01391| 0.01391| 0.01060

crude 0.01755| 0.01656| 0.01490
trade 0.01722| 0.01656| 0.01689
interest 0.01854| 0.01854| 0.01689

ship 0.01324| 0.01324| 0.01225
wheat 0.00894| 0.00794| 0.00629
corn 0.00794| 0.00794| 0.00563

Table 5: Test set error rates for the Reuters top 10 classes usingutfeieaThe train and test sets
were created using the Mod-Apte split.

Category | Linear | RBF | Diffusion | + |

earn 0.9781 | 0.9781| 0.9808 | —
acq 0.9626 | 0.9626 | 0.9660 | +
money-fx | 0.8254 | 0.8245| 0.8320 | +
grain 0.8836 | 0.8844 | 0.9048 | —
crude 0.8615| 0.8763 | 0.8889 | +
trade 0.7706 | 0.7797 | 0.8050 | +
interest | 0.8263 | 0.8263 | 0.8221 | +
ship 0.8306 | 0.8404 | 0.8827 | +
wheat 0.8613 | 0.8613 | 0.8844 | —
corn 0.8727 | 0.8727 | 0.9310 | +

Table 6: F1 measure for the Reuters top 10 classes using tf featurestairhand test sets were
created using the Mod-Apte split. The last column compares the presestéts weith the
published results of Zhang and Oles (2001), with &ndicating the diffusion kernel F1
measure is greater than the result published in Zhang and Oles (20@1isftask.

deal of geometric information about the manifold. While the geometric perspantstatistics has
most often led to reformulations of results that can be viewed more traditiotieliernel methods
developed here clearly depend crucially on the geometry of statistical families
The main application of these ideas has been to develop the multinomial diffusiosl.ké

related use of spherical geometry for the multinomial has been develop@dus/(1998). Our ex-
perimental results indicate that the resulting diffusion kernel is indeectifdor text classification
using support vector machine classifiers, and can lead to significantierpemts in accuracy com-
pared with the use of linear or Gaussian kernels, which have been tliastdor this application.
The results of Section 5 are notable since accuracies better or compar#ibse obtained using
heuristic weighting schemes such as tfidf are achieved directly througletmeeairic approach. In
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part, this can be attributed to the role of the Fisher information metric; becétise square root in
the embedding into the sphere, terms that are infrequent in a documeffeativgy up-weighted,
and such terms are typically rare in the document collection overall. The pritegree of freedom
in the use of information diffusion kernels lies in the specification of the mapmidigta to model
parameters. For the multinomial, we have used the maximum likelihood mappingséloé other
model families and mappings remains an interesting direction to explore.

While kernel methods generally are “model free,” and do not make disitsital assumptions
about the data that the learning algorithm is applied to, statistical models offgradeantages, and
thus it is attractive to explore methods that combine data models and purelynilistive meth-
ods. Our approach combines parametric statistical modeling with non-pai@uhisariminative
learning, guided by geometric considerations. In these aspects it is relateimethods proposed
by Jaakkola and Haussler (1998). However, the kernels propogbeé icurrent paper differ sig-
nificantly from the Fisher kernel of Jaakkola and Haussler (1998patticular, the latter is based
on the scoréJglogp(X| é) at a single poiné in parameter space. In the case of an exponential
family model it is given by a covariandér (x,X) = 5; (xi — Eg[Xi]) (X — Eg[Xi]); this covariance
is then heuristically exponentiated. In contrast, information diffusion kemre based on the full
geometry of the statistical family, and yet are also invariant under repé&ednration of the family.
In other conceptually related work, Belkin and Niyogi (2003) suggestameéng distances on the
data graph to approximate the underlying manifold structure of the data. lcetbesthe underlying
geometry is inherited from the embedding Euclidean space rather than tlee gesimetry.

While information diffusion kernels are very general, they will be difficulctonpute in many
cases—explicit formulas such as equations (5—6) for hyperbolic spaceare. To approximate
an information diffusion kernel it may be attractive to use the parametricésgaadesic dis-
tance between points, as we have done for the multinomial. In cases wheatistdrece itself is
difficult to compute exactly, a compromise may be to approximate the distancedmetearby
points in terms of the Kullback-Leibler divergence, using the relation with thledf information
that is noted in Appendix B. In effect, this approximation is already inc@atear into the ker-
nels recently proposed by Moreno et al. (2004) for multimedia applicatiehigh have the form
K(6,6) O exp(—aD(8,6')) ~ exp(—20d?(8,6')), and so can be viewed in terms of the leading
order approximation to the heat kernel. The results of Moreno et al. {2084uggestive that dif-
fusion kernels may be attractive not only for multinomial geometry, but alsméch more complex
statistical families.
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Appendix A. The Geometric Laplacian

In this appendix we briefly review some of the elementary concepts from Ri@iarageometry that
are used in the construction of information diffusion kernels, since thaseepts are not widely
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used in machine learning. We refer to Spivak (1979) for details andeiulthckground, or Mil-
nor (1963) for an elegant and concise overview; however most inttody texts on differential
geometry include this material.

A.1 Basic Definitions

An n-dimensional differentiable manifolMl is a set of points that is locally equivalent & by
smooth transformations, supporting operations such as differentiatiomalg a differentiable
manifoldis a setM together with a collection dbcal charts{(U;, ¢i)}, whereU; C M with U;U; =
M, and¢; : Ui ¢ M — R" is a bijection. For each pair of local chaftd;, ¢;) and (U;, ), itis
required thath;(U;NU;) is open anabi; = ¢ o<|)JT1 is a diffeomorphism.

The tangent spacg,M = R" at p € M can be be thought of as directional derivatives operating
onC*”(M), the set of real valued differentiable functiohsM — R. Equivalently, the tangent space
ToM can be viewed in terms of an equivalence class of curved passing througlp. Two curves
C1:(—¢€,&) — M andc, : (—€,€) — M are equivalent ap in casec;(0) = c2(0) = panddocy
and¢ o c; are tangent ap for some local charb (and therefore all charts), in the sense that their
derivatives at 0 exist and are equal.

In many cases of interest, the manifditlis a submanifold of a larger manifold, oftéki",

m > n. For example, the opemdimensional simplex, defined by

2= {0k sMle =1 6 >0} (9)

is a submanifold oR™. In such a case, the tangent space of the submari¥fditis a subspace
of T,R™, and we may represent the tangent vectoesT,M in terms of the standard basis of the
tangent spacgR™=R"™, v= zi”;lvi €. The opem-simplex is a differential manifold with a single,
global chart.

A manifold with boundarys defined similarly, except that the local chatts ¢) satisfyd(U) C
R™, thus mapping a patch & to the half-spac&"™" = {x € R"|x, > 0}. In general, iU andV are
open sets iR"" in the topology induced froR", andf : U — V is a diffeomorphism, thef in-
duces diffeomorphisms Ifit IntU — IntV andof : 0U — aV, wheredA = AU (R"~! x {0}) and
IntA= AU {x € R"|x, > 0}. Thus, it makes sense to define theerior IntM = Uy ¢ ~1(Int(¢p(U)))
andboundaryoM = Uy$—1(a(¢(U))) of M. Since InM is open it is am-dimensional manifold
without boundary, andM is an(n— 1)-dimensional manifold without boundary.

If f:M — N is a diffeomorphism of the manifol onto the manifoldN, then f induces a
push-foward mapping. fof the associated tangent spaces. A vector field T M is mapped to the
push-forwardf, X € TN, satisfying(f.X)(g) = X(go f) for all g € C*(N). Intuitively, the push-
forward mapping transforms velocity vectors of curves to velocity veatbithe corresponding
curves in the new manifold. Such a mapping is of use in transforming metridesasbed next.

A.2 The Laplacian

The construction of our kernels is based on the geometric Lapladimorder to define the gener-

. . - . 2 2 2 . .
alization of the familiar Laplaciap = % + % 4+t % onR" to manifolds, one needs a notion
1 2 n

2. As described by Nelson (1968), “The Laplace operator in its vanwarsifestations is the most beautiful and central
object in all of mathematics. Probability theory, mathematical physicgjémanalysis, partial differential equations,
the theory of Lie groups, and differential geometry all revolve arotinigl sun, and its light even penetrates such
obscure regions as number theory and algebraic geometry.”
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of geometry, in particular a way of measuring lengths of tangent vectoRiem/annian manifold
(M, g) is a differentiable manifol® with a family of smoothly varying positive-definite inner prod-
uctsg = gp on T,M for eachp € M. Two Riemannian manifoldéM, g) and(N, h) areisometricin
case there is a diffeomorphisfmt M — N such that

for everyX,Y € T,M andp € M. Occasionally, hard computations on one manifold can be trans-
formed to easier computations on an isometric manifold. Every manifold candeg@Riemannian
metric. For example, every manifold can be embeddékfifor somem > n (the Whitney embed-
ding theorem), and the Euclidean metric induces a metric on the manifold undantiezlding. In
fact, every Riemannian metric can be obtained in this way (the Nash embedeorgrit).

In local coordinatesy can be represented gg(v,w) = ¥ ; gij (p) viw; whereg(p) = [gij (p)]
is a non-singular, symmetric and positive-definite matrix depending smoothfy, and tangent
vectorsv andw are represented in local coordinatepatsv = 3\, Vi 0, andw = 31 W; 0;p. As
an example, consider the opesimensional simplex defined in (9). A metric &+ expressed
by the symmetric positive-definite mat&= [gij] € R(™1>* (1) induces a metric o, as

— n+1,. n+1,, :n+ln+1 ETRY?
gp(v,U) =gp (Y77 uie, y i vier) Zizgu UiVj .
i=1j=1

The metric enables the definition of lengths of vectors and curves, arefdredistance be-
tween points on the manifold. The length of a tangent vectprai¥ is given by||v|| = /(V,V)p, V€
ToM and the length of a curve: [a,b] — M is then given by (c) = fab ||E(t)||dt wherec(t) is the
velocity vector of the path at timet. Using the above definition of lengths of curves, we can define
the distancel(x,y) between two points,y € M as the length of the shortest piecewise differentiable
curve connecting andy. This geodesic distance tlrns the Riemannian manifold into a metric
space, satisfying the usual properties of positivity, symmetry and the leigmgguality. Rieman-
nian manifolds also support convex neighborhoods. In particulgrsiiM, there is an open sét
containingp such that any two points &f can be connected by a uniqgue minimal geodesig.in

A manifold is said to bgeodesically complete case every geodesic curegt), t € [a,b], can
be extended to be defined for ale R. It can be shown (Milnor, 1963), that the following are
equivalent: (1)M is geodesically complete, (2) is a complete metric oM, and (3) closed and
bounded subsets ®&fl are compact. In particular, compact manifolds are geodesically complete.
The Hopf-Rinow theorem (Milnor, 1963) asserts thaMifis complete, then any two points can
be joined by a minimal geodesic. This minimal geodesic is not necessarily yraqueeen by
considering antipodal points on a sphere. Exponential magxp, maps a neighborhood of
0 € TxM diffeomorphically onto a neighborhood gfc M. By definition, expv is the pointy,(1)
wherey, is a geodesic starting atwith initial velocity v = %\t:o. Any such geodesic satisfies
Yiv(S) = W(rs) for r > 0. This mapping defines a local coordinate systemvbialled normal
coordinatesunder which many computations are especially convenient.

For a functionf : M — R, the gradient grafl is the vector field defined by

(gradf(p),X) = X(f).
In local coordinates, the gradient is given by
of

i o
(grad) =3 of 5
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where [gij (p)] is the inverse ofgij(p)]. The divergence operator is defined to be the adjoint of
the gradient, allowing “integration by parts” on manifolds with special strectin orientation of

a manifold is a smooth choice of orientation for the tangent spaces, meanirfgrthacal charts

¢i and¢;, the differentialD(¢; o ¢;)(x) : R" — R" is orientation preserving, so the sign of the
determinant is constant. If a Riemannian manifiglds orientable, it is possible to definevalume
form py, where ifvy, vo, ..., vy € ToM (positively oriented), then

H(VL,...,Vh) = q/detvi,vj).

A volume form, in turn, enables the definition of tbivergenceof a vector field on the manifold.
In local coordinates, the divergence is given by

. 1 0
divX = mza—xl (\/detg)q>

where deg denotes the determinant of the magjx
Finally, theLaplace-Beltrami operatoon functions is defined by

A =divograd,

which in local coordinates is thus given by

_ 1 L0 i gergof
Af= \/detgzaxj <Zg detgaxi> ’

These definitions preserve the familiar intuitive interpretation of the ususiatqrs in Euclidean
geometry; in particular, the gradient points in the direction of steepesihtasnd the divergence
measures outflow minus inflow of liquid or heat.

Appendix B. Fisher Information Geometry

Let§ = {p(-|0) }oco be ann-dimensional regular statistical family on a sét Thus, we assume
that® C R" is open, and that there isafinite measures on X, such that for eacB € ©, p(-|8)
is a density with respect tg, so thatf, p(x|6) dpu(x) = 1. We identify the manifoldV with © by
assuming that for eache X the mappin® — p(x|8) isC”.

Let d; denoted/06;, and/g(X) = log p(x|8). TheFisher information metric a@ € © is defined
in terms of the matrixg(8) € R™" given by

6i(6) = Eolatodifel = | P(x|0)3ilogp(x|8)d;logp(x|&)d(x).

Since the score (8) = 0ifg has mean zerag;j(6) can be seen as the variances(®), and is
therefore positive-definite. By assumption, it is smoothly varyin@,irand therefore defines a
Riemannian metric o® = M.

An equivalent and sometimes more suggestive form of the Fisher inforrmatinx, as will be
seen below for the case of the multinomial, is

6;(®) = 4/ 01v/p(x[8);y/p([8)d(x.
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Yet another equivalent form @ (6) = —Eg[0;0i¢s]. To see this, note that

Eolojaite] = [ p(x|8)0;6ilogp(x|8)k(x

_ p(x|6)
- —/» <|e>wa.p<x|e )due0 ~ [ 3,0p(x|8) dhx)

— [ pix ey P AR dig — 0,0, [ pix|6)

_ _/pr\e 9;1og p(x|6)d;log p(x| 6) di(x)

Since there are many possible choices of metric on a given differentiabiéoidart is impor-
tant to consider the motivating properties of the Fisher information metric. helyitithe Fisher
information may be thought of as the amount of information a single data pgipliess with respect
to the problem of estimating the parameerThis interpretation can be justified in several ways,
notably through the efficiency of estimators. In particular, the asymptotianae of the maximum
likelihood estimatoB obtained using a sample of sinés (ng(8))~1. Since the MLE is asymptot-
ically unbiased, the inverse Fisher information represents the asymptoticafiions of the MLE
around the true value. Moreover, by the C&arRao lower bound, the variance of any unbiased
estimator is bounded from below fng(6)) 1. Additional motivation for the Fisher information
metric is provided by the results @fencov (1982), which characterize it as the only metric (up to
multiplication by a constant) that is invariant with respect to certain probabilisticeeaningful
transformations called congruent embeddings.

The connection with another familiar similarity measure is worth noting herg. alidq are
two densities ot with respect tqu, the Kullback-Leibler divergencB(p, q) is defined by

/1p )log z dp(x).

The Kullback-Leibler divergence behaves at nearby points like tharsqof the information dis-
tance. More precisely, it can be shown that

o pa)
a—p 2D(p,q)

9

where the convergence is uniformd(9, q) — 0. As we comment in the text, this relationship may
be of use in approximating information diffusion kernels for complex models.

B.1 Fisher information for the Spherical Gaussian

Here we derive the Fisher information for the special case of the fagnity{p(-|0) }eco Where
8= (h,0) andp(-| (4, 0)) = A(1,0ln_1), the Gaussian having meare R"~* and variancel,,_1,
with ¢ > 0. The parameter space is tfBs= R" 1 x R, .

To compute the Fisher information metric for this family, it is convenient to use ¢nergl
expression given by equation (10). lat=0/0y; fori =1...n—1, andd, = 0/do. Then simple
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calculations yield, for Ki,j<n-1

n-1 _ 2
gj(0) = - Rnilaiaj ( Z %) p(x|0)dx

1

n-1 _ 2
0:(8) = — [ 00 (121%) p(x|6) dx
= 2/, (-1 p(xi9)dx

=0

n—-1 _ 2
0(®) = — [ 00 (— s % ~(n—1) Iogc) p(x|8) dx

k=1
3 n-1 N1
- @ /]Rn—l kZl(Xk B pk)z p(X’ e) dx— ?
2(n—1)
= 0-2 .

Letting © be new coordinates defined By= 1 for 1 <i <n—1and6, = /2(n—1)g0, itis
seen that the Fisher information matrix is given by

1
9i(8) = 8-

Thus, the Fisher information metric givés= R"! x R, the structure of the upper half plane in
hyperbolic space.
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