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Abstract
A family of kernels for statistical learning is introduced that exploits the geometric structure of

statistical models. The kernels are based on the heat equation on the Riemannian manifold defined
by the Fisher information metric associated with a statistical family, and generalize the Gaussian
kernel of Euclidean space. As an important special case, kernels based on the geometry of multi-
nomial families are derived, leading to kernel-based learning algorithms that apply naturally to
discrete data. Bounds on covering numbers and Rademacher averages for the kernels are proved
using bounds on the eigenvalues of the Laplacian on Riemannian manifolds. Experimental results
are presented for document classification, for which the useof multinomial geometry is natural and
well motivated, and improvements are obtained over the standard use of Gaussian or linear kernels,
which have been the standard for text classification.
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1. Introduction

The use of Mercer kernels for transforming linear classification and regression schemes into nonlin-
ear methods is a fundamental idea, one that was recognized early in the development of statistical
learning algorithms such as the perceptron, splines, and support vectormachines (Aizerman et al.,
1964; Kimeldorf and Wahba, 1971; Boser et al., 1992). The resurgence of activity on kernel methods
in the machine learning community has led to the further development of this important technique,
demonstrating how kernels can be key components in tools for tackling nonlinear data analysis
problems, as well as for integrating data from multiple sources.

Kernel methods can typically be viewed either in terms of an implicit representation of a high
dimensional feature space, or in terms of regularization theory and smoothing (Poggio and Girosi,
1990). In either case, most standard Mercer kernels such as the Gaussian or radial basis function
kernel require data points to be represented as vectors in Euclidean space. This initial processing
of data as real-valued feature vectors, which is often carried out in anad hocmanner, has been
called the “dirty laundry” of machine learning (Dietterich, 2002)—while the initial Euclidean fea-
ture representation is often crucial, there is little theoretical guidance on howit should be obtained.
For example, in text classification a standard procedure for preparing the document collection for
the application of learning algorithms such as support vector machines is to represent each docu-
ment as a vector of scores, with each dimension corresponding to a term, possibly after scaling by
an inverse document frequency weighting that takes into account the distribution of terms in the
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collection (Joachims, 2000). While such a representation has proven to beeffective, the statistical
justification of such a transform of categorical data into Euclidean space isunclear.

Motivated by this need for kernel methods that can be applied to discrete, categorical data,
Kondor and Lafferty (2002) propose the use of discrete diffusion kernels and tools from spectral
graph theory for data represented by graphs. In this paper, we propose a related construction of
kernels based on the heat equation. The key idea in our approach is to begin with a statistical
family that is natural for the data being analyzed, and to represent data aspoints on the statistical
manifold associated with the Fisher information metric of this family. We then exploit the geometry
of the statistical family; specifically, we consider the heat equation with respect to the Riemannian
structure given by the Fisher metric, leading to a Mercer kernel defined on the appropriate function
spaces. The result is a family of kernels that generalizes the familiar Gaussian kernel for Euclidean
space, and that includes new kernels for discrete data by beginning with statistical families such as
the multinomial. Since the kernels are intimately based on the geometry of the Fisher information
metric and the heat or diffusion equation on the associated Riemannian manifold, we refer to them
here asinformation diffusion kernels.

One apparent limitation of the discrete diffusion kernels of Kondor and Lafferty (2002) is the
difficulty of analyzing the associated learning algorithms in the discrete setting.This stems from
the fact that general bounds on the spectra of finite or even infinite graphs are difficult to obtain,
and research has concentrated on bounds on the first eigenvalues for special families of graphs. In
contrast, the kernels we investigate here are over continuous parameter spaces even in the case where
the underlying data is discrete, leading to more amenable spectral analysis. We can draw on the
considerable body of research in differential geometry that studies the eigenvalues of the geometric
Laplacian, and thereby apply some of the machinery that has been developed for analyzing the
generalization performance of kernel machines in our setting.

Although the framework proposed is fairly general, in this paper we focuson the application
of these ideas to text classification, where the natural statistical family is the multinomial. In the
simplest case, the words in a document are modeled as independent drawsfrom a fixed multino-
mial; non-independent draws, corresponding ton-grams or more complicated mixture models are
also possible. Forn-gram models, the maximum likelihood multinomial model is obtained simply
as normalized counts, and smoothed estimates can be used to remove the zeros. This mapping is
then used as an embedding of each document into the statistical family, where the geometric frame-
work applies. We remark that the perspective of associating multinomial modelswith individual
documents has recently been explored in information retrieval, with promising results (Ponte and
Croft, 1998; Zhai and Lafferty, 2001).

The statistical manifold of then-dimensional multinomial family comes from an embedding
of the multinomial simplex into then-dimensional sphere which is isometric under the the Fisher
information metric. Thus, the multinomial family can be viewed as a manifold of constant positive
curvature. As discussed below, there are mathematical technicalities due to corners and edges on
the boundary of the multinomial simplex, but intuitively, the multinomial family can be viewed in
this way as a Riemannian manifold with boundary; we address the technicalities by a “rounding”
procedure on the simplex. While the heat kernel for this manifold does not have a closed form, we
can approximate the kernel in a closed form using the leading term in the parametrix expansion,
a small time asymptotic expansion for the heat kernel that is of great use in differential geometry.
This results in a kernel that can be readily applied to text documents, and that is well motivated
mathematically and statistically.
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We present detailed experiments for text classification, using both the WebKB and Reuters data
sets, which have become standard test collections. Our experimental results indicate that the multi-
nomial information diffusion kernel performs very well empirically. This improvement can in part
be attributed to the role of the Fisher information metric, which results in points near the boundary
of the simplex being given relatively more importance than in the flat Euclidean metric. Viewed
differently, effects similar to those obtained by heuristically designed term weighting schemes such
as inverse document frequency are seen to arise automatically from the geometry of the statistical
manifold.

The remaining sections are organized as follows. In Section 2 we review therelevant concepts
that are required from Riemannian geometry, including the heat kernel for a general Riemannian
manifold and its parametrix expansion. In Section 3 we define the Fisher metric associated with a
statistical manifold of distributions, and examine in some detail the special casesof the multinomial
and spherical normal families; the proposed use of the heat kernel or itsparametrix approximation
on the statistical manifold is the main contribution of the paper. Section 4 derivesbounds on cov-
ering numbers and Rademacher averages for various learning algorithmsthat use the new kernels,
borrowing results from differential geometry on bounds for the geometricLaplacian. Section 5
describes the results of applying the multinomial diffusion kernels to text classification, and we
conclude with a discussion of our results in Section 6.

2. The Heat Kernel

In this section we review the basic properties of the heat kernel on a Riemannian manifold, together
with its asymptotic expansion, the parametrix. The heat kernel and its parametrix expansion contains
a wealth of geometric information, and indeed much of modern differential geometry, notably index
theory, is based upon the use of the heat kernel and its generalizations.The fundamental nature of the
heat kernel makes it a natural candidate to consider for statistical learning applications. An excellent
introductory account of this topic is given by Rosenberg (1997), and an authoritative reference for
spectral methods in Riemannian geometry is Schoen and Yau (1994). In Appendix A we review
some of the elementary concepts from Riemannian geometry that are required, as these concepts
are not widely used in machine learning, in order to help make the paper more self-contained.

2.1 The Heat Kernel

The Laplacian is used to model how heat will diffuse throughout a geometricmanifold; the flow is
governed by the following second order differential equation with initial conditions

∂ f
∂t

−∆ f = 0

f (x,0) = f0(x) .

The valuef (x, t) describes the heat at locationx at timet, beginning from an initial distribution of
heat given byf0(x) at time zero. The heat or diffusion kernelKt(x,y) is the solution to the heat
equationf (x, t) with initial condition given by Dirac’s delta functionδy. As a consequence of the
linearity of the heat equation, the heat kernel can be used to generate thesolution to the heat equation
with arbitrary initial conditions, according to

f (x, t) =
Z

M
Kt(x,y) f0(y)dy .
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As a simple special case, consider heat flow on the circle, or one-dimensional sphereM = S1,
with the metric inherited from the Euclidean metric onR

2. Parameterizing the manifold by angleθ,
and letting f (θ, t) = ∑∞

j=0a j(t) cos( jθ) be the discrete cosine transform of the solution to the heat
equation, with initial conditions given bya j(0) = a j , it is seen that the heat equation leads to the
equation

∞

∑
j=0

(
d
dt

a j(t)+ j2a j(t)

)
cos( jθ) = 0,

which is easily solved to obtaina j(t) = e− j2t and thereforef (θ, t) = ∑∞
j=0a j e− j2t cos( jθ). As the

time parametert gets large, the solution converges tof (θ, t) −→ a0, which is the average value of
f ; thus, the heat diffuses until the manifold is at a uniform temperature. To express the solution in
terms of an integral kernel, note that by the Fourier inversion formula

f (θ, t) =
∞

∑
j=0

〈 f ,ei j θ〉e− j2t ei j θ

=
1
2π

Z

S1

∞

∑
j=0

e− j2tei j θ e−i j φ f0(φ)dφ ,

thus expressing the solution asf (θ, t) =
R

S1 Kt(θ,φ) f0(φ)dφ for the heat kernel

Kt(φ,θ) =
1
2π

∞

∑
j=0

e− j2t cos( j(θ−φ)) .

This simple example shows several properties of the general solution of theheat equation on a
(compact) Riemannian manifold; in particular, note that the eigenvalues of the kernel scale asλ j ∼
e− j2/d

where the dimension in this case isd = 1.
WhenM = R, the heat kernel is the familiar Gaussian kernel, so that the solution to the heat

equation is expressed as

f (x, t) =
1√
4πt

Z

R

e−
(x−y)2

4t f0(y)dy,

and it is seen that ast −→ ∞, the heat diffuses out “to infinity” so thatf (x, t) −→ 0.
WhenM is compact, the Laplacian has discrete eigenvalues 0= µ0 < µ1 ≤ µ2 · · · with corre-

sponding eigenfunctionsφi satisfying∆φi = −µiφi . When the manifold has a boundary, appropriate
boundary conditions must be imposed in order for∆ to be self-adjoint. Dirichlet boundary con-

ditions setφi |∂M = 0 and Neumann boundary conditions require∂φi
∂ν

∣∣∣
∂M

= 0 whereν is the outer

normal direction. The following theorem summarizes the basic properties forthe kernel of the heat
equation onM; we refer to Schoen and Yau (1994) for a proof.

Theorem 1 Let M be a complete Riemannian manifold. Then there exists a function K∈C∞(R+×
M × M), called the heat kernel, which satisfies the following properties for all x,y ∈ M, with
Kt(·, ·) = K(t, ·, ·)

1. Kt(x,y) = Kt(y,x)

2. limt→0Kt(x,y) = δx(y)
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3.
(

∆− ∂
∂t

)
Kt(x,y) = 0

4. Kt(x,y) =
R

M Kt−s(x,z)Ks(z,y)dz for any s> 0 .

If in addition M is compact, then Kt can be expressed in terms of the eigenvalues and eigenfunctions
of the Laplacian as Kt(x,y) = ∑∞

i=0e−µitφi(x)φi(y).

Properties 2 and 3 imply thatKt(x,y) solves the heat equation inx, starting from a point heat
source aty. It follows that et∆ f0(x) = f (x, t) =

R

M Kt(x,y) f0(y)dy solves the heat equation with
initial conditions f (x,0) = f0(x), since

∂ f (x, t)
∂t

=
Z

M

∂Kt(x,y)
∂t

f0(y)dy

=
Z

M
∆Kt(x,y) f0(y)dy

= ∆
Z

M
Kt(x,y) f0(y)dy

= ∆ f (x, t),

and limt→0 f (x, t) =
R

M limt→0Kt(x,y)dy= f0(x). Property 4 implies thatet∆es∆ = e(t+s)∆, which
has the physically intuitive interpretation that heat diffusion for timet is the composition of heat
diffusion up to timeswith heat diffusion for an additional timet−s. Sinceet∆ is a positive operator,

Z

M

Z

M
Kt(x,y)g(x)g(y)dxdy =

Z

M
f (x)et∆g(x)dx

= 〈g,et∆g〉 ≥ 0.

ThusKt(x,y) is positive-definite. In the compact case, positive-definiteness follows directly from
the expansionKt(x,y) = ∑∞

i=0e−µitφi(x)φi(y), which shows that the eigenvalues ofKt as an integral
operator aree−µit . Together, these properties show thatKt defines a Mercer kernel.

The heat kernelKt(x,y) is a natural candidate for measuring the similarity between points be-
tweenx,y ∈ M, while respecting the geometry encoded in the metricg. Furthermore it is, unlike
the geodesic distance, a Mercer kernel—a fact that enables its use in statistical kernel machines.
When this kernel is used for classification, as in our text classification experiments presented in
Section 5, the discriminant functionyt(x) = ∑i αi yi Kt(x,xi) can be interpreted as the solution to the
heat equation with initial temperaturey0(xi) = αi yi on labeled data pointsxi , and initial temperature
y0(x) = 0 elsewhere.

2.1.1 THE PARAMETRIX EXPANSION

For most geometries, there is no closed form solution for the heat kernel. However, the short
time behavior of the solutions can be studied using an asymptotic expansion called theparametrix
expansion. In fact, the existence of the heat kernel, as asserted in the above theorem, is most directly
proven by first showing the existence of the parametrix expansion. In Section 5 we will employ the
first-order parametrix expansion for text classification.

Recall that the heat kernel on flatn-dimensional Euclidean space is given by

KEuclid
t (x,y) = (4πt)−

n
2 exp

(
−‖x−y‖2

4t

)
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where‖x−y‖2 = ∑n
i=1 |xi −yi |2 is the squared Euclidean distance betweenx andy. The parametrix

expansion approximates the heat kernel locally as a correction to this Euclidean heat kernel. To
begin the definition of the parametrix, let

P(m)
t (x,y) = (4πt)−

n
2 exp

(
−d2(x,y)

4t

)
(ψ0(x,y)+ψ1(x,y)t + · · ·+ψm(x,y)tm) (1)

for currently unspecified functionsψk(x,y), but whered2(x,y) now denotes the square of the geodesic
distance on the manifold. The idea is to obtainψk recursively by solving the heat equation approxi-
mately to ordertm, for small diffusion timet.

Let r = d(x,y) denote the length of the radial geodesic fromx to y∈Vx in the normal coordinates
defined by the exponential map. For any functionsf (r) andh(r) of r, it can be shown that

∆ f =
d2 f
dr2 +

d
(
log

√
detg

)

dr
d f
dr

∆( f h) = f ∆h+h∆ f +2
d f
dr

dh
dr

.

Starting from these basic relations, some calculus shows that
(

∆− ∂
∂t

)
P(m)

t = (tm∆ψm)(4πt)−
n
2 exp

(
− r2

4t

)
(2)

whenψk are defined recursively as

ψ0 =

(√
detg

rn−1

)− 1
2

(3)

ψk = r−kψ0

Z r

0
ψ−1

0 (∆φk−1) sk−1ds for k > 0. (4)

With this recursive definition of the functionsψk, the expansion (1), which is defined only locally,
is then extended to all ofM ×M by smoothing with a “cut-off function”η, with the specification
thatη : R+ −→ [0,1] is C∞ and

η(r) =

{
0 r ≥ 1

1 r ≤ c

for some constant 0< c < 1. Thus, the order-mparametrix is defined as

K(m)
t (x,y) = η(d(x,y))P(m)

t (x,y) .

As suggested by equation (2),K(m)
t is an approximate solution to the heat equation, and satisfies

Kt(x,y) = K(m)
t (x,y)+O(tm) for x andy sufficiently close; in particular, the parametrix is not unique.

For further details we refer to (Schoen and Yau, 1994; Rosenberg, 1997).
While the parametrixK(m)

t is not in general positive-definite, and therefore does not define a
Mercer kernel, it is positive-definite fort sufficiently small. In particular, define the functionf (t) =
minspec(Km

t ), where minspec denotes the smallest eigenvalue. Thenf is a continuous function

with f (0) = 1 sinceK(m)
0 = I . Thus, there is some time interval[0,ε) for which K(m)

t is positive-
definite in caset ∈ [0,ε). This fact will be used when we employ the parametrix approximation to
the heat kernel for statistical learning.
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3. Diffusion Kernels on Statistical Manifolds

We now proceed to the main contribution of the paper, which is the application ofthe heat kernel
constructions reviewed in the previous section to the geometry of statistical families, in order to
obtain kernels for statistical learning.

Under some mild regularity conditions, general parametric statistical families comeequipped
with a canonical geometry based on the Fisher information metric. This geometryhas long been
recognized (Rao, 1945), and there is a rich line of research in statistics,with threads in machine
learning, that has sought to exploit this geometry in statistical analysis; see Kass (1989) for a survey
and discussion, or the monographs by Kass and Vos (1997) and Amari and Nagaoka (2000) for
more extensive treatments. The basic properties of the Fisher information metric are reviewed in
Appendix B.

We remark that in spite of the fundamental nature of the geometric perspective in statistics,
many researchers have concluded that while it occasionally provides aninteresting alternative in-
terpretation, it has not contributed new results or methods that cannot be obtained through more
conventional analysis. However in the present work, the kernel methods we propose can, arguably,
be motivated and derived only through the geometry of statistical manifolds.1

The following two basic examples illustrate the geometry of the Fisher information metric and
the associated diffusion kernel it induces on a statistical manifold. The spherical normal family
corresponds to a manifold of constant negative curvature, and the multinomial corresponds to a
manifold of constant positive curvature. The multinomial will be the most importantexample that
we develop, and we report extensive experiments with the resulting kernels in Section 5.

3.1 Diffusion Kernels for Gaussian Geometry

Consider the statistical family given byF = {p(· |θ)}θ∈Θ where θ = (µ,σ) and p(· |(µ,σ)) =
N (µ,σ2In−1), the Gaussian having meanµ∈ R

n−1 and varianceσ2In−1, with σ > 0. Thus,Θ =
R

n−1×R+. A derivation of the Fisher information metric for this family is given in AppendixB.1,
where it is shown that under coordinates defined byθ′

i = µi for 1≤ i ≤ n−1 andθ′
n =

√
2(n−1)σ,

the Fisher information matrix is given by

gi j (θ′) =
1

σ2 δi j .

Thus, the Fisher information metric givesΘ = R
n−1×R+ the structure of the upper half plane in

hyperbolic space. The distance minimizing or geodesic curves in hyperbolicspace are straight lines
or circles orthogonal to the mean subspace.

In particular, the univariate normal density has hyperbolic geometry. As ageneralization in
this 2-dimensional case, any location-scale family of densities is seen to havehyperbolic geometry
(Kass and Vos, 1997). Such families have densities of the form

p(x|(µ,σ)) =
1
σ

f

(
x−µ

σ

)

where(µ,σ) ∈ R×R+ and f : R → R.

1. By a statistical manifoldwe mean simply a manifold of densities together with the metric induced by the Fisher
information matrix, rather than the more general notion of a Riemannian manifold together with a (possibly non-
metric) connection, as defined by Lauritzen (1987).
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Figure 1: Example decision boundaries for a kernel-based classifier using information diffusion
kernels for spherical normal geometry withd = 2 (right), which has constant negative
curvature, compared with the standard Gaussian kernel for flat Euclidean space (left).
Two data points are used, simply to contrast the underlying geometries. The curved
decision boundary for the diffusion kernel can be interpreted statisticallyby noting that
as the variance decreases the mean is known with increasing certainty.

The heat kernel on the hyperbolic spaceH
n has the following explicit form (Grigor’yan and

Noguchi, 1998). For oddn = 2m+1 it is given by

Kt(x,x
′) =

(−1)m

2mπm

1√
4πt

(
1

sinhr
∂
∂r

)m

exp

(
−m2t − r2

4t

)
, (5)

and for evenn = 2m+2 it is given by

Kt(x,x
′) =

(−1)m

2mπm

√
2

√
4πt

3

(
1

sinhr
∂
∂r

)mZ ∞

r

sexp
(
− (2m+1)2t

4 − s2

4t

)

√
coshs−coshr

ds, (6)

wherer = d(x,x′) is the geodesic distance between the two points inH
n. If only the meanθ = µ is

unspecified, then the associated kernel is the standard Gaussian RBF kernel.
A possible use for this kernel in statistical learning is where data points are naturally represented

as sets. That is, suppose that each data point is of the formx = {x1,x2, . . .xm} wherexi ∈ R
n−1.

Then the data can be represented according to the mapping which sends each group of points to
the corresponding Gaussian under the MLE:x 7→ (µ̂(x), σ̂(x)) whereµ̂(x) = 1

m ∑i xi and σ̂(x)2 =
1
m ∑i (xi − µ̂(x))2.

In Figure 3.1 the diffusion kernel for hyperbolic spaceH
2 is compared with the Euclidean space

Gaussian kernel. The curved decision boundary for the diffusion kernel makes intuitive sense, since
as the variance decreases the mean is known with increasing certainty.

Note that we can, in fact, considerM as a manifold with boundary by allowingσ ≥ 0 to be
non-negative rather than strictly positiveσ > 0. In this case, the densities on the boundary become
singular, as point masses at the mean; the boundary is simply given by∂M ∼= R

n−1, which is a
manifold without boundary, as required.
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3.2 Diffusion Kernels for Multinomial Geometry

We now consider the statistical family of the multinomial overn+ 1 outcomes, given byF =
{p(· |θ)}θ∈Θ whereθ = (θ1,θ2, . . . ,θn) with θi ∈ (0,1) and∑n

i=1 θi < 1. The parameter spaceΘ
is the openn-simplexPn defined in equation (9), a submanifold ofR

n+1.

To compute the metric, letx = (x1,x2, . . . ,xn+1) denote one draw from the multinomial, so that
xi ∈ {0,1} and∑i xi = 1. The log-likelihood and its derivatives are then given by

logp(x|θ) =
n+1

∑
i=1

xi logθi

∂ logp(x|θ)

∂θi
=

xi

θi

∂2 logp(x|θ)

∂θi∂θ j
= − xi

θ2
i

δi j .

SincePn is ann-dimensional submanifold ofRn+1, we can expressu,v∈TθM as(n+1)-dimensional
vectors inTθR

n+1 ∼= R
n+1; thus, u = ∑n+1

i=1 uiei , v = ∑n+1
i=1 viei . Note that due to the constraint

∑n+1
i=1 θi = 1, the sum of then+1 components of a tangent vector must be zero. A basis forTθM is

{
e1 = (1,0, . . . ,0,−1)>,e2 = (0,1,0, . . . ,0,−1)>, . . . ,en = (0,0, . . . ,0,1,−1)>

}
.

Using the definition of the Fisher information metric in equation (10) we then compute

〈u,v〉θ = −
n+1

∑
i=1

n+1

∑
j=1

uiv jEθ

[
∂2 logp(x|θ)

∂θi∂θ j

]

= −
n+1

∑
i=1

uiviE
{
−xi/θ2

i

}

=
n+1

∑
i=1

uivi

θi
.

While geodesic distances are difficult to compute in general, in the case of themultinomial
information geometry we can easily compute the geodesics by observing that the standard Euclidean
metric on the surface of the positiven-sphere is the pull-back of the Fisher information metric on
the simplex. This relationship is suggested by the form of the Fisher informationgiven in equation
(10).

To be concrete, the transformationF(θ1, . . . ,θn+1) = (2
√

θ1, . . . ,2
√

θn+1) is a diffeomorphism
of the n-simplex Pn onto the positive portion of then-sphere of radius 2; denote this portion of
the sphere asS+

n =
{

θ ∈ R
n+1 : ∑n+1

i=1 θ2
i = 2, θi > 0

}
. Given tangent vectorsu = ∑n+1

i=1 uiei , v =
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Figure 2: Equal distance contours onP2 from the upper right edge (left column), the center (center
column), and lower right corner (right column). The distances are computed using the
Fisher information metricg (top row) or the Euclidean metric (bottom row).

∑n+1
i=1 viei , the pull-back of the Fisher information metric throughF−1 is

hθ(u,v) = gθ2/4

(
F−1
∗

n+1

∑
k=1

ukek,F
−1
∗

n+1

∑
l=1

vl el

)

=
n+1

∑
k=1

n+1

∑
l=1

ukvl gθ2/4(F
−1
∗ ek,F

−1
∗ el )

=
n+1

∑
k=1

n+1

∑
l=1

ukvl ∑
i

4

θ2
i

(F−1
∗ ek)i (F

−1
∗ el )i

=
n+1

∑
k=1

n+1

∑
l=1

ukvl ∑
i

4

θ2
i

θkδki

2
θl δli

2

=
n+1

∑
i=1

uivi .

Since the transformationF : (Pn,g) → (S+
n ,h) is an isometry, the geodesic distanced(θ,θ′) on

Pn may be computed as the shortest curve onS+
n connectingF(θ) andF(θ′). These shortest curves

are portions of great circles—the intersection of a two dimensional plane and S+
n —and their length

is given by

d(θ,θ′) = 2arccos

(
n+1

∑
i=1

√
θi θ′

i

)
. (7)
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Figure 3: Example decision boundaries using support vector machines withinformation diffusion
kernels for trinomial geometry on the 2-simplex (top right) compared with the standard
Gaussian kernel (left).

In Appendix B we recall the connection between the Kullback-Leibler divergence and the in-
formation distance. In the case of the multinomial family, there is also a close relationship with the
Hellinger distance. In particular, it can easily be shown that the Hellinger distance

dH(θ,θ′) =

√

∑
i

(√
θi −

√
θ′

i

)2

is related tod(θ,θ′) by
dH(θ,θ′) = 2sin

(
d(θ,θ′)/4

)
.

Thus, asθ′ → θ, dH agrees with1
2d to second order:

dH(θ,θ′) =
1
2

d(θ,θ′)+O(d3(θ,θ′))

The Fisher information metric places greater emphasis on points near the boundary, which is
expected to be important for text problems, which typically have sparse statistics. Figure 2 shows
equal distance contours onP2 using the Fisher information and the Euclidean metrics.

While the spherical geometry has been derived as the information geometry for a finite multi-
nomial, the same geometry can be used non-parametrically for an arbitrary subset of probability
measures, leading to spherical geometry in a Hilbert space (Dawid, 1977).

3.2.1 THE MULTINOMIAL DIFFUSION KERNEL

Unlike the explicit expression for the Gaussian geometry discussed above, there is not an explicit
form for the heat kernel on the sphere, nor on the positive orthant ofthe sphere. We will therefore
resort to the parametrix expansion to derive an approximate heat kernelfor the multinomial.

Recall from Section 2.1.1 that the parametrix is obtained according to the localexpansion given
in equation (1), and then extending this smoothly to zero outside a neighborhood of the diagonal,
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as defined by the exponential map. As we have just derived, this results inthe following parametrix
for the multinomial family:

P(m)
t (θ,θ′) = (4πt)−

n
2 exp

(
−arccos2(

√
θ ·

√
θ′)

t

)
(
ψ0(θ,θ′)+ · · ·+ψm(θ,θ′)tm) .

The first-order expansion is thus obtained as

K(0)
t (θ,θ′) = η(d(θ,θ′))P(0)

t (θ,θ′) .

Now, for then-sphere it can be shown that the functionψ0 of (3), which is the leading order correc-
tion of the Gaussian kernel under the Fisher information metric, is given by

ψ0(r) =

(√
detg

rn−1

)− 1
2

=

(
sinr

r

)− (n−1)
2

= 1+
(n−1)

12
r2 +

(n−1)(5n−1)

1440
r4 +O(r6)

(Berger et al., 1971). Thus, the leading order parametrix for the multinomialdiffusion kernel is

P(0)
t (θ,θ′) = (4πt)−

n
2 exp

(
− 1

4t
d2(θ,θ′)

)(
sind(θ,θ′)

d(θ,θ′)

)− (n−1)
2

.

In our experiments we approximate this kernel further as

P(0)
t (θ,θ′) = (4πt)−

n
2 exp

(
−1

t
arccos2(

√
θ ·

√
θ′)

)

by appealing to the asymptotic expansion in (8) and the explicit form of the distance given in (7);
note that(sinr/r)−n blows up for larger. In Figure 3 the kernel (3.2.1) is compared with the
standard Euclidean space Gaussian kernel for the case of the trinomial model,d = 2, using an SVM
classifier.

3.2.2 ROUNDING THE SIMPLEX

The case of multinomial geometry poses some technical complications for the analysis of diffusion
kernels, due to the fact that the open simplex is not complete, and moreover,its closure is not a dif-
ferentiable manifold with boundary. Thus, it is not technically possible to apply several results from
differential geometry, such as bounds on the spectrum of the Laplacian,as adopted in Section 4. We
now briefly describe a technical “patch” that allows us to derive all of theneeded analytical results,
without sacrificing in practice any of the methodology that has been derived so far.

Let ∆n = P n denote the closure of the open simplex; thus∆n is the usual probability simplex
which allows zero probability for some items. However, it does not form a compact manifold with
boundary since the boundary has edges and corners. In other words, local chartsϕ : U → R

n+

cannot be defined to be differentiable. To adjust for this, the idea is to “round the edges” of∆n to
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Figure 4: Rounding the simplex. Since the closed simplex is not a manifold with boundary, we
carry out a “rounding” procedure to remove edges and corners. The δ-rounded simplex
is the closure of the union of allδ-balls lying within the open simplex.

obtain a subset that forms a compact manifold with boundary, and that closely approximates the
original simplex.

Forδ > 0, letBδ(x) = {y|‖x−y‖ < δ} denote the open Euclidean ball of radiusδ centered atx.
Denote byCδ(Pn) theδ-ball centersof Pn, the points of the simplex whoseδ-balls lie completely
within the simplex:

Cδ(Pn) = {x∈ Pn : Bδ(x) ⊂ Pn} .

Finally, let P δ
n denote theδ-interior of Pn, which we define as the union of allδ-balls contained in

Pn:
P δ

n =
[

x∈Cδ(Pn)

Bδ(x) .

Theδ-rounded simplex∆δ
n is then defined as the closure∆δ

n = P δ
n .

The rounding procedure that yields∆δ
2 is suggested by Figure 4. Note that in general theδ-

rounded simplex∆δ
n will contain points with a single, but not more than one component having zero

probability. The set∆δ
n forms a compact manifold with boundary, and its image under the isometry

F : (Pn,g) → (S+
n ,h) is a compact submanifold with boundary of then-sphere.

Whenever appealing to results for compact manifolds with boundary in the following, it will
be tacitly assumed that the above rounding procedure has been carried out in the case of the multi-
nomial. From a theoretical perspective this enables the use of bounds on spectra of Laplacians for
manifolds of non-negative curvature. From a practical viewpoint it requires only smoothing the
probabilities to remove zeros.

4. Spectral Bounds on Covering Numbers and Rademacher Averages

We now turn to establishing bounds on the generalization performance of kernel machines that use
information diffusion kernels. We first adopt the approach of Guo et al.(2002), estimating covering
numbers by making use of bounds on the spectrum of the Laplacian on a Riemannian manifold,
rather than on VC dimension techniques; these bounds in turn yield bounds on the expected risk of
the learning algorithms. Our calculations give an indication of how the underlying geometry influ-
ences the entropy numbers, which are inverse to the covering numbers. We then show how bounds
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on Rademacher averages may be obtained by plugging in the spectral bounds from differential ge-
ometry. The primary conclusion that is drawn from these analyses is that from the point of view of
generalization error bounds, diffusion kernels behave essentially the same as the standard Gaussian
kernel.

4.1 Covering Numbers

We begin by recalling the main result of Guo et al. (2002), modifying their notation slightly to
conform with ours. LetM ⊂R

d be a compact subset ofd-dimensional Euclidean space, and suppose
thatK : M×M −→ R is a Mercer kernel. Denote byλ1 ≥ λ2 ≥ ·· · ≥ 0 the eigenvalues ofK, that is,
of the mappingf 7→ R

M K(·,y) f (y)dy, and letψ j(·) denote the corresponding eigenfunctions. We

assume thatCK
def
= supj

∥∥ψ j
∥∥

∞ < ∞.
Givenm pointsxi ∈ M, the kernel hypothesis class forx = {xi} with weight vector bounded by

R is defined as the collection of functions onx given by

FR(x) = { f : f (xi) = 〈w,Φ(xi)〉 for some‖w‖ ≤ R} ,

whereΦ(·) is the mapping fromM to feature space defined by the Mercer kernel, and〈·, ·〉 and‖·‖
denote the corresponding Hilbert space inner product and norm. It is of interest to obtain uniform
bounds on the covering numbersN (ε,FR(x)), defined as the size of the smallestε-cover ofFR(x)
in the metric induced by the norm‖ f‖∞,x = maxi=1,...,m| f (xi)|.

Theorem 2 (Guo et al., 2002)Given an integer n∈N, let j∗n denote the smallest integer j for which

λ j+1 <

(
λ1 · · ·λ j

n2

)1
j

and define

ε∗n = 6CKR

√√√√ j∗n

(
λ1 · · ·λ j∗n

n2

) 1
j∗n

+
∞

∑
i= j∗n

λi .

Thensup{xi}∈Mm N (ε∗n,FR(x)) ≤ n.

To apply this result, we will obtain bounds on the indicesj∗n using spectral theory in Riemannian
geometry.

Theorem 3 (Li and Yau, 1980) Let M be a compact Riemannian manifold of dimension d with
non-negative Ricci curvature, and let0 < µ1 ≤ µ2 ≤ ·· · denote the eigenvalues of the Laplacian
with Dirichlet boundary conditions. Then

c1(d)

(
j

V

) 2
d

≤ µj ≤ c2(d)

(
j +1
V

) 2
d

where V is the volume of M and c1 and c2 are constants depending only on the dimension.
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Note that the manifold of the multinomial model (afterδ-rounding) satisfies the conditions of
this theorem. Using these results we can establish the following bounds on covering numbers for
information diffusion kernels. We assume Dirichlet boundary conditions; asimilar result can be
proven for Neumann boundary conditions. We include the constantV = vol(M) and diffusion coef-
ficient t in order to indicate how the bounds depend on the geometry.

Theorem 4 Let M be a compact Riemannian manifold, with volume V, satisfying the conditions of
Theorem 3. Then the covering numbers for the Dirichlet heat kernel Kt on M satisfy

logN (ε,FR(x)) = O

((
V

t
d
2

)
log

d+2
2

(
1
ε

))
. (8)

Proof By the lower bound in Theorem 3, the Dirichlet eigenvalues of the heat kernelKt(x,y), which

are given byλ j = e−tµj , satisfy logλ j ≤−tc1(d)
(

j
V

) 2
d
. Thus,

−1
j
log

(
λ1 · · ·λ j

n2

)
≥ tc1

j

j

∑
i=1

(
i
V

) 2
d

+
2
j
logn ≥ tc1

d
d+2

(
j

V

) 2
d

+
2
j
logn,

where the second inequality comes from∑ j
i=1 ip ≥ R j

0 xpdx= j p+1

p+1 . Now using the upper bound of
Theorem 3, the inequalityj∗n ≤ j will hold if

tc2

(
j +2
V

) 2
d

≥ − logλ j+1 ≥ tc1
d

d+2

(
j

V

) 2
d

+
2
j
logn

or equivalently
tc2

V
2
d

(
j( j +2)

2
d − c1

c2

d
d+2

j
d+2

d

)
≥ 2logn.

The above inequality will hold in case

j ≥




(
2V

2
d

t(c2−c1
d

d+2)
logn

) d
d+2




≥




(
V

2
d (d+2)

tc1
logn

) d
d+2




since we may assume thatc2 ≥ c1; thus, j∗n ≤
⌈

c1

(
V

2
d

t logn

) d
d+2

⌉
for a new constantc1(d). Plug-

ging this bound onj∗n into the expression forε∗n in Theorem 2 and using
∞

∑
i= j∗n

e−i
2
d = O

(
e− j∗n

2
d

)
,

we have after some algebra that

log

(
1
εn

)
= Ω

((
t

V
2
d

) d
d+2

log
2

d+2 n

)
.

Inverting the above expression in logn gives equation (8).

We note that Theorem 4 of Guo et al. (2002) can be used to show that this bound does not, in fact,

depend onm andx. Thus, for fixedt the covering numbers scale as logN (ε,F ) = O
(

log
d+2

2
(

1
ε
))

,

and for fixedε they scale as logN (ε,F ) = O
(

t−
d
2

)
in the diffusion timet.
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4.2 Rademacher Averages

We now describe a different family of generalization error bounds that can be derived using the ma-
chinery of Rademacher averages (Bartlett and Mendelson, 2002; Bartlett et al., 2004). The bounds
fall out directly from the work of Mendelson (2003) on computing local averages for kernel-based
function classes, after plugging in the eigenvalue bounds of Theorem 3.

As seen above, covering number bounds are related to a complexity term ofthe form

C(n) =

√√√√ j∗n

(
λ1 · · ·λ j∗n

n2

) 1
j∗n

+
∞

∑
i= j∗n

λi .

In the case of Rademacher complexities, risk bounds are instead controlledby a similar, yet simpler
expression of the form

C(r) =

√
j∗r r +

∞

∑
i= j∗r

λi

where now j∗r is the smallest integerj for which λ j < r (Mendelson, 2003), withr acting as a
parameter bounding the error of the family of functions. To place this into somecontext, we quote
the following results from Bartlett et al. (2004) and Mendelson (2003), which apply to a family of
loss functions that includes the quadratic loss; we refer to Bartlett et al. (2004) for details on the
technical conditions.

Let (X1,Y1),(X2,Y2) . . . ,(Xn,Yn) be an independent sample from an unknown distributionP
on X × Y , whereY ⊂ R. For a given loss functioǹ : Y × Y → R, and a familyF of mea-
surable functionsf : X → Y , the objective is to minimize the expected lossE[`( f (X),Y)]. Let
E` f ∗ = inf f∈FE` f , where` f (X,Y) = `( f (X),Y), and let f̂ be any member ofF for which En` f̂ =
inf f∈FEn` f whereEn denotes the empirical expectation. TheRademacher averageof a family
of functionsG = {g : X → R} is defined as the expectationERnG = E

[
supg∈GRng

]
with Rng =

1
n ∑n

i=1 σi g(Xi), whereσ1, . . . ,σn are independent Rademacher random variables; that is,p(σi =
1) = p(σi = −1) = 1

2.

Theorem 5 (Bartlett et al., 2004) LetF be a convex class of functions and defineψ by

ψ(r) = aERn
{

f ∈ F : E( f − f ∗)2 ≤ r
}

+
bx
n

where a and b are constants that depend on the loss function`. Then when r≥ ψ(r),

E
(
` f̂ − ` f ∗

)
≤ cr +

d x
n

with probability at least1−e−x, where c and d are additional constants.
Moreover, suppose that K is a Mercer kernel andF =

{
f ∈ HK : ‖ f‖K ≤ 1

}
is the unit ball in

the reproducing kernel Hilbert space associated with K. Then

ψ(r) ≤ a

√
2
n

∞

∑
j=1

min{r,λ j}+
bx
n

.
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Thus, to bound the excess risk for kernel machines in this framework it suffices to bound the
term

ψ̃(r) =

√
∞

∑
j=1

min{r,λ j}

=

√
j∗r r +

∞

∑
i= j∗r

λi

involving the spectrum. Given bounds on the eigenvalues, this is typically easy to do.

Theorem 6 Let M be a compact Riemannian manifold, satisfying the conditions of Theorem 3.
Then the Rademacher term̃ψ for the Dirichlet heat kernel Kt on M satisfies

ψ̃(r) ≤C

√(
r

t
d
2

)
log

d
2

(
1
r

)
,

for some constant C depending on the geometry of M.

Proof We have that

ψ̃2(r) =
∞

∑
j=1

min{r,λ j}

= j∗r r +
∞

∑
j= j∗r

e−tµj

≤ j∗r r +
∞

∑
j= j∗r

e−tc1 j
2
d

≤ j∗r r +Ce−tc1 j∗r
2
d

for some constantC, where the first inequality follows from the lower bound in Theorem 3. But
j∗r ≤ j in case logλ j+1 > r, or, again from Theorem 3, if

t c2( j +1)
2
d ≤− logλ j < log

1
r

or equivalently,

j∗r ≤
C′

t
d
2

log
d
2

(
1
r

)
.

It follows that

ψ̃2(r) ≤ C′′
(

r

t
d
2

)
log

d
2

(
1
r

)

for some new constantC′′.

From this bound, it can be shown that, with high probability,

E
(
` f̂ − ` f ∗

)
= O

(
log

d
2 n

n

)
,
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which is the behavior expected of the Gaussian kernel for Euclidean space.
Thus, for both covering numbers and Rademacher averages, the resulting bounds are essentially

the same as those that would be obtained for the Gaussian kernel on the flatd-dimensional torus,
which is the standard way of “compactifying” Euclidean space to get a Laplacian having only dis-
crete spectrum; the results of Guo et al. (2002) are formulated for the case d = 1, corresponding to
the circleS1. While the bounds for diffusion kernels were derived for the case of positive curva-
ture, which apply to the special case of the multinomial, similar bounds for general manifolds with
curvature bounded below by a negative constant should also be attainable.

5. Multinomial Diffusion Kernels and Text Classification

In this section we present the application of multinomial diffusion kernels to the problem of text
classification. Text processing can be subject to some of the “dirty laundry” referred to in the
introduction—documents are cast as Euclidean space vectors with specialweighting schemes that
have been empirically honed through applications in information retrieval, rather than inspired from
first principles. However for text, the use of multinomial geometry is natural and well motivated;
our experimental results offer some insight into how useful this geometry maybe for classification.

5.1 Representing Documents

Assuming a vocabularyV of sizen+1, a document may be represented as a sequence of words over
the alphabetV. For many classification tasks it is not unreasonable to discard word order; indeed,
humans can typically easily understand the high level topic of a document by inspecting its contents
as a mixed up “bag of words.” Letxv denote the number of times termv appears in a document.
Then{xv}v∈V is the sample space of the multinomial distribution, with a document modeled as
independent draws from a fixed model, which may change from documentto document. It is nat-
ural to embed documents in the multinomial simplex using an embedding functionθ̂ : Z

n+1
+ → Pn.

We consider several embeddingsθ̂ that correspond to well known feature representations in text
classification (Joachims, 2000). Theterm frequency(tf) representation uses normalized counts; the
corresponding embedding is the maximum likelihood estimator for the multinomial distribution

θ̂tf(x) =

(
x1

∑i xi
, . . . ,

xn+1

∑i xi

)
.

Another common representation is based onterm frequency, inverse document frequency(tfidf).
This representation uses the distribution of terms across documents to discount common terms;
the document frequency d fv of term v is defined as the number of documents in which termv
appears. Although many variants have been proposed, one of the simplest and most commonly used
embeddings is

θ̂tfidf(x) =

(
x1 log(D/d f1)

∑i xi log(D/d fi)
, . . . ,

xn+1 log(D/d fn+1)

∑i xi log(D/d fi)

)

whereD is the number of documents in the corpus.
We note that in text classification applications the tf and tfidf representations are typically nor-

malized to unit length in theL2 norm rather than theL1 norm, as above (Joachims, 2000). For
example, the tf representation withL2 normalization is given by

x 7→
(

x1

∑i x
2
i

, . . . ,
xn+1

∑i x
2
i

)
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and similarly for tfidf. When used in support vector machines with linear or Gaussian kernels,L2-
normalized tf and tfidf achieve higher accuracies than theirL1-normalized counterparts. However,
for the diffusion kernels,L1 normalization is necessary to obtain an embedding into the simplex.
These different embeddings or feature representations are comparedin the experimental results
reported below.

To be clear, we list the three kernels we compare. First, the linear kernel isgiven by

KLin(θ,θ′) = θ ·θ′ =
n+1

∑
v=1

θv θ′
v .

The Gaussian kernel is given by

KGauss
σ (θ′,θ′) = (2πσ)−

n+1
2 exp

(
−‖θ−θ′‖2

2σ2

)

where‖θ− θ′‖2 = ∑n+1
v=1 |θv−θ′

v|2 is the squared Euclidean distance. The multinomial diffusion
kernel is given by

KMult
t (θ,θ′) = (4πt)−

n
2 exp

(
−1

t
arccos2(

√
θ ·

√
θ′)

)
,

as derived in Section 3.

5.2 Experimental Results

In our experiments, the multinomial diffusion kernel using the tf embedding wascompared to the
linear or Gaussian (RBF) kernel with tf and tfidf embeddings using a support vector machine clas-
sifier on the WebKB and Reuters-21578 collections, which are standard data sets for text classifica-
tion.

The WebKb dataset contains web pages found on the sites of four universities (Craven et al.,
2000). The pages were classified according to whether they were student, faculty, course, project
or staff pages; these categories contain 1641, 1124, 929, 504 and 137 instances, respectively. Since
only the student, faculty, course and project classes contain more than 500 documents each, we
restricted our attention to these classes. The Reuters-21578 dataset is a collection of newswire
articles classified according to news topic (Lewis and Ringuette, 1994). Although there are more
than 135 topics, most of the topics have fewer than 100 documents; for this reason, we restricted
our attention to the following five most frequent classes: earn, acq, moneyFx, grain and crude, of
sizes 3964, 2369, 717, 582 and 578 documents, respectively.

For both the WebKB and Reuters collections we created two types of binary classification tasks.
In the first task we designate a specific class, label each document in the class as a “positive”
example, and label each document on any of the other topics as a “negative” example. In the second
task we designate a class as the positive class, and choose the negative class to be the most frequent
remaining class (student for WebKB and earn for Reuters). In both cases, the size of the training
set is varied while keeping the proportion of positive and negative documents constant in both the
training and test set.

Figure 5 shows the test set error rate for the WebKB data, for a representative instance of the one-
versus-all classification task; the designated class was course. The results for the other choices of
positive class were qualitatively very similar; all of the results are summarizedin Table 1. Similarly,
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Figure 5: Experimental results on the WebKB corpus, using SVMs for linear(dotted) and Gaussian
(dash-dotted) kernels, compared with the diffusion kernel for the multinomial (solid).
Classification error for the task of labeling course vs. either faculty, project, or student is
shown in these plots, as a function of training set size. The left plot uses tfrepresentation
and the right plot uses tfidf representation. The curves shown are the error rates averaged
over 20-fold cross validation, with error bars representing one standard deviation. The
results for the other “1 vs. all” labeling tasks are qualitatively similar, and aretherefore
not shown.
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Figure 6: Results on the WebKB corpus, using SVMs for linear (dotted) andGaussian (dash-dotted)
kernels, compared with the diffusion kernel (solid). The course pagesare labeled positive
and the student pages are labeled negative; results for other label pairs are qualitatively
similar. The left plot uses tf representation and the right plot uses tfidf representation.
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Figure 7: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and Gaussian
(dash-dotted) kernels, compared with the diffusion kernel (solid). Theclasses acq (top),
and moneyFx (bottom) are shown; the other classes are qualitatively similar. The left
column uses tf representation and the right column uses tfidf. The curves shown are
the error rates averaged over 20-fold cross validation, with error bars representing one
standard deviation.

149



LAFFERTY AND LEBANON

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 8: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and Gaussian
(dash-dotted) kernels, compared with the diffusion (solid). The classesmoneyFx (top)
and grain (bottom) are labeled as positive, and the class earn is labeled negative. The left
column uses tf representation and the right column uses tfidf representation.
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.1225 0.1196 0.0646 0.0761 0.0726 0.0514
80 0.0809 0.0805 0.0469 0.0569 0.0564 0.0357

course vs. all 120 0.0675 0.0670 0.0383 0.0473 0.0469 0.0291
200 0.0539 0.0532 0.0315 0.0385 0.0380 0.0238
400 0.0412 0.0406 0.0241 0.0304 0.0300 0.0182
600 0.0362 0.0355 0.0213 0.0267 0.0265 0.0162

40 0.2336 0.2303 0.1859 0.2493 0.2469 0.1947
80 0.1947 0.1928 0.1558 0.2048 0.2043 0.1562

faculty vs. all 120 0.1836 0.1823 0.1440 0.1921 0.1913 0.1420
200 0.1641 0.1634 0.1258 0.1748 0.1742 0.1269
400 0.1438 0.1428 0.1061 0.1508 0.1503 0.1054
600 0.1308 0.1297 0.0931 0.1372 0.1364 0.0933

40 0.1827 0.1793 0.1306 0.1831 0.1805 0.1333
80 0.1426 0.1416 0.0978 0.1378 0.1367 0.0982

project vs. all 120 0.1213 0.1209 0.0834 0.1169 0.1163 0.0834
200 0.1053 0.1043 0.0709 0.1007 0.0999 0.0706
400 0.0785 0.0766 0.0537 0.0802 0.0790 0.0574
600 0.0702 0.0680 0.0449 0.0719 0.0708 0.0504

40 0.2417 0.2411 0.1834 0.2100 0.2086 0.1740
80 0.1900 0.1899 0.1454 0.1681 0.1672 0.1358

student vs. all 120 0.1696 0.1693 0.1291 0.1531 0.1523 0.1204
200 0.1539 0.1539 0.1134 0.1349 0.1344 0.1043
400 0.1310 0.1308 0.0935 0.1147 0.1144 0.0874
600 0.1173 0.1169 0.0818 0.1063 0.1059 0.0802

Table 1: Experimental results on the WebKB corpus, using SVMs for linear,Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns
use tfidf representation. The error rates shown are averages obtained using 20-fold cross
validation. The best performance for each training set sizeL is shown in boldface. All
differences are statistically significant according to the pairedt test at the 0.05 level.

Figure 7 shows the test set error rates for two of the one-versus-all experiments on the Reuters data,
where the designated classes were chosen to be acq and moneyFx. All ofthe results for Reuters
one-versus-all tasks are shown in Table 3.

Figure 6 and Figure 8 show representative results for the second type of classification task,
where the goal is to discriminate between two specific classes. In the case ofthe WebKB data the
results are shown for course vs. student. In the case of the Reuters data the results are shown for
moneyFx vs. earn and grain vs. earn. Again, the results for the other classes are qualitatively similar;
the numerical results are summarized in Tables 2 and 4.

In these figures, the leftmost plots show the performance of tf features while the rightmost plots
show the performance of tfidf features. As mentioned above, in the case of the diffusion kernel we
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.0808 0.0802 0.0391 0.0580 0.0572 0.0363
80 0.0505 0.0504 0.0266 0.0409 0.0406 0.0251

course vs. student 120 0.0419 0.0409 0.0231 0.0361 0.0359 0.0225
200 0.0333 0.0328 0.0184 0.0310 0.0308 0.0201
400 0.0263 0.0259 0.0135 0.0234 0.0232 0.0159
600 0.0228 0.0221 0.0117 0.0207 0.0202 0.0141

40 0.2106 0.2102 0.1624 0.2053 0.2026 0.1663
80 0.1766 0.1764 0.1357 0.1729 0.1718 0.1335

faculty vs. student 120 0.1624 0.1618 0.1198 0.1578 0.1573 0.1187
200 0.1405 0.1405 0.0992 0.1420 0.1418 0.1026
400 0.1160 0.1158 0.0759 0.1166 0.1165 0.0781
600 0.1050 0.1046 0.0656 0.1050 0.1048 0.0692

40 0.1434 0.1430 0.0908 0.1304 0.1279 0.0863
80 0.1139 0.1133 0.0725 0.0982 0.0970 0.0634

project vs. student 120 0.0958 0.0957 0.0613 0.0870 0.0866 0.0559
200 0.0781 0.0775 0.0514 0.0729 0.0722 0.0472
400 0.0590 0.0579 0.0405 0.0629 0.0622 0.0397
600 0.0515 0.0500 0.0325 0.0551 0.0539 0.0358

Table 2: Experimental results on the WebKB corpus, using SVMs for linear,Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns
use tfidf representation. The error rates shown are averages obtained using 20-fold cross
validation. The best performance for each training set sizeL is shown in boldface. All
differences are statistically significant according to the pairedt test at the 0.05 level.

useL1 normalization to give a valid embedding into the probability simplex, while for the linear and
Gaussian kernels we useL2 normalization, which works better empirically thanL1 for these kernels.
The curves show the test set error rates averaged over 20 iterations of cross validation as a function
of the training set size. The error bars represent one standard deviation. For both the Gaussian and
diffusion kernels, we test scale parameters (

√
2σ for the Gaussian kernel and 2t1/2 for the diffusion

kernel) in the set{0.5,1,2,3,4,5,7,10}. The results reported are for the best parameter value in
that range.

We also performed experiments with the popular Mod-Apte train and test split for the top 10
categories of the Reuters collection. For this split, the training set has about7000 documents and
is highly biased towards negative documents. We report in Table 5 the test set accuracies for the
tf representation. For the tfidf representation, the difference between the different kernels is not
statistically significant for this amount of training and test data. The providedtrain set is more
than enough to achieve outstanding performance with all kernels used, and the absence of cross
validation data makes the results too noisy for interpretation.

In Table 6 we report the F1 measure rather than accuracy, since this measure is commonly used
in text classification. The last column of the table compares the presented results with the published
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
80 0.1107 0.1106 0.0971 0.0823 0.0827 0.0762

120 0.0988 0.0990 0.0853 0.0710 0.0715 0.0646
earn vs. all 200 0.0808 0.0810 0.0660 0.0535 0.0538 0.0480

400 0.0578 0.0578 0.0456 0.0404 0.0408 0.0358
600 0.0465 0.0464 0.0367 0.0323 0.0325 0.0290

80 0.1126 0.1125 0.0846 0.0788 0.0785 0.0667
120 0.0886 0.0885 0.0697 0.0632 0.0632 0.0534

acq vs. all 200 0.0678 0.0676 0.0562 0.0499 0.0500 0.0441
400 0.0506 0.0503 0.0419 0.0370 0.0369 0.0335
600 0.0439 0.0435 0.0363 0.0318 0.0316 0.0301

80 0.1201 0.1198 0.0758 0.0676 0.0669 0.0647∗

120 0.0986 0.0979 0.0639 0.0557 0.0545 0.0531∗

moneyFx vs. all 200 0.0814 0.0811 0.0544 0.0485 0.0472 0.0438
400 0.0578 0.0567 0.0416 0.0427 0.0418 0.0392
600 0.0478 0.0467 0.0375 0.0391 0.0385 0.0369∗

80 0.1443 0.1440 0.0925 0.0536 0.0518∗ 0.0595
120 0.1101 0.1097 0.0717 0.0476 0.0467∗ 0.0494

grain vs. all 200 0.0793 0.0786 0.0576 0.0430 0.0420∗ 0.0440
400 0.0590 0.0573 0.0450 0.0349 0.0340∗ 0.0365
600 0.0517 0.0497 0.0401 0.0290 0.0284∗ 0.0306

80 0.1396 0.1396 0.0865 0.0502 0.0485∗ 0.0524
120 0.0961 0.0953 0.0542 0.0446 0.0425∗ 0.0428

crude vs. all 200 0.0624 0.0613 0.0414 0.0388 0.0373 0.0345∗

400 0.0409 0.0403 0.0325 0.0345 0.0337 0.0297
600 0.0379 0.0362 0.0299 0.0292 0.0284 0.0264∗

Table 3: Experimental results on the Reuters corpus, using SVMs for linear, Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns use
tfidf representation. The error rates shown are averages obtained using 20-fold cross vali-
dation. The best performance for each training set sizeL is shown in boldface. An asterisk
(*) indicates that the difference is not statistically significant according to the pairedt test
at the 0.05 level.

results of Zhang and Oles (2001), with a+ indicating the diffusion kernel F1 measure is greater
than the result published in Zhang and Oles (2001) for this task.

Our results are consistent with previous experiments in text classification using SVMs, which
have observed that the linear and Gaussian kernels result in very similar performance (Joachims
et al., 2001). However the multinomial diffusion kernel significantly outperforms the linear and
Gaussian kernels for the tf representation, achieving significantly lower error rate than the other
kernels. For the tfidf representation, the diffusion kernel consistently outperforms the other kernels
for the WebKb data and usually outperforms the linear and Gaussian kernels for the Reuters data.
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tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.1043 0.1043 0.1021∗ 0.0829 0.0831 0.0814∗

80 0.0902 0.0902 0.0856∗ 0.0764 0.0767 0.0730∗

acq vs. earn 120 0.0795 0.0796 0.0715 0.0626 0.0628 0.0562
200 0.0599 0.0599 0.0497 0.0509 0.0511 0.0431
400 0.0417 0.0417 0.0340 0.0336 0.0337 0.0294

40 0.0759 0.0758 0.0474 0.0451 0.0451 0.0372∗

80 0.0442 0.0443 0.0238 0.0246 0.0246 0.0177
moneyFx vs. earn 120 0.0313 0.0311 0.0160 0.0179 0.0179 0.0120

200 0.0244 0.0237 0.0118 0.0113 0.0113 0.0080
400 0.0144 0.0142 0.0079 0.0080 0.0079 0.0062

40 0.0969 0.0970 0.0543 0.0365 0.0366 0.0336∗

80 0.0593 0.0594 0.0275 0.0231 0.0231 0.0201∗

grain vs. earn 120 0.0379 0.0377 0.0158 0.0147 0.0147 0.0114∗

200 0.0221 0.0219 0.0091 0.0082 0.0081 0.0069∗

400 0.0107 0.0105 0.0060 0.0037 0.0037 0.0037∗

40 0.1108 0.1107 0.0950 0.0583∗ 0.0586 0.0590
80 0.0759 0.0757 0.0552 0.0376 0.0377 0.0366∗

crude vs. earn 120 0.0608 0.0607 0.0415 0.0276 0.0276∗ 0.0284
200 0.0410 0.0411 0.0267 0.0218∗ 0.0218 0.0225
400 0.0261 0.0257 0.0194 0.0176 0.0171∗ 0.0181

Table 4: Experimental results on the Reuters corpus, using SVMs for linear, Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns use
tfidf representation. The error rates shown are averages obtained using 20-fold cross vali-
dation. The best performance for each training set sizeL is shown in boldface. An asterisk
(*) indicates that the difference is not statistically significant according to the pairedt test
at the 0.05 level.

The Reuters data is a much larger collection than WebKB, and the document frequency statistics,
which are the basis for the inverse document frequency weighting in the tfidf representation, are
evidently much more effective on this collection. It is notable, however, thatthe multinomial in-
formation diffusion kernel achieves at least as high an accuracy without the use of any heuristic
term weighting scheme. These results offer evidence that the use of multinomial geometry is both
theoretically motivated and practically effective for document classification.

6. Discussion and Conclusion

This paper has introduced a family of kernels that is intimately based on the geometry of the Rie-
mannian manifold associated with a statistical family through the Fisher information metric. The
metric is canonical in the sense that it is uniquely determined by requirements ofinvariance (̌Cencov,
1982), and moreover, the choice of the heat kernel is natural because it effectively encodes a great
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Category Linear RBF Diffusion

earn 0.01159 0.01159 0.01026
acq 0.01854 0.01854 0.01788
money-fx 0.02418 0.02451 0.02219
grain 0.01391 0.01391 0.01060
crude 0.01755 0.01656 0.01490
trade 0.01722 0.01656 0.01689
interest 0.01854 0.01854 0.01689
ship 0.01324 0.01324 0.01225
wheat 0.00894 0.00794 0.00629
corn 0.00794 0.00794 0.00563

Table 5: Test set error rates for the Reuters top 10 classes using tf features. The train and test sets
were created using the Mod-Apte split.

Category Linear RBF Diffusion ±
earn 0.9781 0.9781 0.9808 −
acq 0.9626 0.9626 0.9660 +

money-fx 0.8254 0.8245 0.8320 +

grain 0.8836 0.8844 0.9048 −
crude 0.8615 0.8763 0.8889 +

trade 0.7706 0.7797 0.8050 +

interest 0.8263 0.8263 0.8221 +

ship 0.8306 0.8404 0.8827 +

wheat 0.8613 0.8613 0.8844 −
corn 0.8727 0.8727 0.9310 +

Table 6: F1 measure for the Reuters top 10 classes using tf features. Thetrain and test sets were
created using the Mod-Apte split. The last column compares the presented results with the
published results of Zhang and Oles (2001), with a+ indicating the diffusion kernel F1
measure is greater than the result published in Zhang and Oles (2001) forthis task.

deal of geometric information about the manifold. While the geometric perspective in statistics has
most often led to reformulations of results that can be viewed more traditionally,the kernel methods
developed here clearly depend crucially on the geometry of statistical families.

The main application of these ideas has been to develop the multinomial diffusion kernel. A
related use of spherical geometry for the multinomial has been developed byGous (1998). Our ex-
perimental results indicate that the resulting diffusion kernel is indeed effective for text classification
using support vector machine classifiers, and can lead to significant improvements in accuracy com-
pared with the use of linear or Gaussian kernels, which have been the standard for this application.
The results of Section 5 are notable since accuracies better or comparableto those obtained using
heuristic weighting schemes such as tfidf are achieved directly through the geometric approach. In

155



LAFFERTY AND LEBANON

part, this can be attributed to the role of the Fisher information metric; because of the square root in
the embedding into the sphere, terms that are infrequent in a document are effectively up-weighted,
and such terms are typically rare in the document collection overall. The primary degree of freedom
in the use of information diffusion kernels lies in the specification of the mappingof data to model
parameters. For the multinomial, we have used the maximum likelihood mapping. The use of other
model families and mappings remains an interesting direction to explore.

While kernel methods generally are “model free,” and do not make distributional assumptions
about the data that the learning algorithm is applied to, statistical models offer many advantages, and
thus it is attractive to explore methods that combine data models and purely discriminative meth-
ods. Our approach combines parametric statistical modeling with non-parametric discriminative
learning, guided by geometric considerations. In these aspects it is relatedto the methods proposed
by Jaakkola and Haussler (1998). However, the kernels proposed inthe current paper differ sig-
nificantly from the Fisher kernel of Jaakkola and Haussler (1998). Inparticular, the latter is based
on the score∇θ logp(X | θ̂) at a single point̂θ in parameter space. In the case of an exponential
family model it is given by a covarianceKF(x,x′) = ∑i

(
xi −Eθ̂[Xi ]

)(
x′i −Eθ̂[Xi ]

)
; this covariance

is then heuristically exponentiated. In contrast, information diffusion kernels are based on the full
geometry of the statistical family, and yet are also invariant under reparameterization of the family.
In other conceptually related work, Belkin and Niyogi (2003) suggest measuring distances on the
data graph to approximate the underlying manifold structure of the data. In thiscase the underlying
geometry is inherited from the embedding Euclidean space rather than the Fisher geometry.

While information diffusion kernels are very general, they will be difficult tocompute in many
cases—explicit formulas such as equations (5–6) for hyperbolic spaceare rare. To approximate
an information diffusion kernel it may be attractive to use the parametrices and geodesic dis-
tance between points, as we have done for the multinomial. In cases where thedistance itself is
difficult to compute exactly, a compromise may be to approximate the distance between nearby
points in terms of the Kullback-Leibler divergence, using the relation with the Fisher information
that is noted in Appendix B. In effect, this approximation is already incorporated into the ker-
nels recently proposed by Moreno et al. (2004) for multimedia applications,which have the form
K(θ,θ′) ∝ exp(−αD(θ,θ′)) ≈ exp(−2αd2(θ,θ′)), and so can be viewed in terms of the leading
order approximation to the heat kernel. The results of Moreno et al. (2004) are suggestive that dif-
fusion kernels may be attractive not only for multinomial geometry, but also for much more complex
statistical families.
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Appendix A. The Geometric Laplacian

In this appendix we briefly review some of the elementary concepts from Riemannian geometry that
are used in the construction of information diffusion kernels, since these concepts are not widely
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used in machine learning. We refer to Spivak (1979) for details and further background, or Mil-
nor (1963) for an elegant and concise overview; however most introductory texts on differential
geometry include this material.

A.1 Basic Definitions

An n-dimensional differentiable manifoldM is a set of points that is locally equivalent toR
n by

smooth transformations, supporting operations such as differentiation. Formally, a differentiable
manifoldis a setM together with a collection oflocal charts{(Ui ,ϕi)}, whereUi ⊂ M with ∪iUi =
M, andϕi : Ui ⊂ M −→ R

n is a bijection. For each pair of local charts(Ui ,ϕi) and(U j ,ϕ j), it is
required thatϕ j(Ui ∩U j) is open andϕi j = ϕi ◦ϕ−1

j is a diffeomorphism.
The tangent spaceTpM ∼= R

n at p∈ M can be be thought of as directional derivatives operating
onC∞(M), the set of real valued differentiable functionsf : M →R. Equivalently, the tangent space
TpM can be viewed in terms of an equivalence class of curves onM passing throughp. Two curves
c1 : (−ε,ε) −→ M andc2 : (−ε,ε) −→ M are equivalent atp in casec1(0) = c2(0) = p andϕ ◦ c1

andϕ ◦ c2 are tangent atp for some local chartϕ (and therefore all charts), in the sense that their
derivatives at 0 exist and are equal.

In many cases of interest, the manifoldM is a submanifold of a larger manifold, oftenRm,
m≥ n. For example, the openn-dimensional simplex, defined by

Pn =
{

θ ∈ R
n+1 : ∑n+1

i=1 θi = 1, θi > 0
}

(9)

is a submanifold ofRn+1. In such a case, the tangent space of the submanifoldTpM is a subspace
of TpR

m, and we may represent the tangent vectorsv ∈ TpM in terms of the standard basis of the
tangent spaceTpR

m∼= R
m, v= ∑m

i=1vi ei . The openn-simplex is a differential manifold with a single,
global chart.

A manifold with boundaryis defined similarly, except that the local charts(U,ϕ) satisfyϕ(U)⊂
R

n+, thus mapping a patch ofM to the half-spaceRn+ = {x∈R
n |xn ≥ 0}. In general, ifU andV are

open sets inRn+ in the topology induced fromRn, and f : U −→V is a diffeomorphism, thenf in-
duces diffeomorphisms Intf : IntU −→ IntV and∂ f : ∂U −→ ∂V, where∂A= A∪(Rn−1×{0}) and
IntA = A∪{x∈ R

n |xn > 0}. Thus, it makes sense to define theinterior IntM = ∪Uϕ−1(Int(ϕ(U)))
andboundary∂M = ∪Uϕ−1(∂(ϕ(U))) of M. Since IntM is open it is ann-dimensional manifold
without boundary, and∂M is an(n−1)-dimensional manifold without boundary.

If f : M → N is a diffeomorphism of the manifoldM onto the manifoldN, then f induces a
push-foward mapping f∗ of the associated tangent spaces. A vector fieldX ∈ TM is mapped to the
push-forwardf∗X ∈ TN, satisfying( f∗X)(g) = X(g◦ f ) for all g ∈ C∞(N). Intuitively, the push-
forward mapping transforms velocity vectors of curves to velocity vectorsof the corresponding
curves in the new manifold. Such a mapping is of use in transforming metrics, asdescribed next.

A.2 The Laplacian

The construction of our kernels is based on the geometric Laplacian.2 In order to define the gener-
alization of the familiar Laplacian∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · ·+ ∂2

∂x2
n

on R
n to manifolds, one needs a notion

2. As described by Nelson (1968), “The Laplace operator in its variousmanifestations is the most beautiful and central
object in all of mathematics. Probability theory, mathematical physics, Fourier analysis, partial differential equations,
the theory of Lie groups, and differential geometry all revolve aroundthis sun, and its light even penetrates such
obscure regions as number theory and algebraic geometry.”
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of geometry, in particular a way of measuring lengths of tangent vectors. ARiemannian manifold
(M,g) is a differentiable manifoldM with a family of smoothly varying positive-definite inner prod-
uctsg = gp on TpM for eachp∈ M. Two Riemannian manifolds(M,g) and(N,h) areisometricin
case there is a diffeomorphismf : M −→ N such that

gp(X,Y) = hf (p)( f∗X, f∗Y)

for everyX,Y ∈ TpM and p∈ M. Occasionally, hard computations on one manifold can be trans-
formed to easier computations on an isometric manifold. Every manifold can be given a Riemannian
metric. For example, every manifold can be embedded inR

m for somem≥ n (the Whitney embed-
ding theorem), and the Euclidean metric induces a metric on the manifold under theembedding. In
fact, every Riemannian metric can be obtained in this way (the Nash embedding theorem).

In local coordinates,g can be represented asgp(v,w) = ∑i, j gi j (p)vi w j whereg(p) = [gi j (p)]
is a non-singular, symmetric and positive-definite matrix depending smoothly onp, and tangent
vectorsv andw are represented in local coordinates atp asv = ∑n

i=1vi ∂i|p andw = ∑n
i=1wi ∂i|p. As

an example, consider the openn-dimensional simplex defined in (9). A metric onR
n+1 expressed

by the symmetric positive-definite matrixG = [gi j ] ∈ R
(n+1)×(n+1) induces a metric onPn as

gp(v,u) = gp
(
∑n+1

i=1 uiei ,∑n+1
i=1 viei

)
=

n+1

∑
i=1

n+1

∑
j=1

gi j uiv j .

The metric enables the definition of lengths of vectors and curves, and therefore distance be-
tween points on the manifold. The length of a tangent vector atp∈M is given by‖v‖=

√
〈v,v〉p, v∈

TpM and the length of a curvec : [a,b] → M is then given byL(c) =
R b

a ‖ċ(t)‖dt whereċ(t) is the
velocity vector of the pathc at timet. Using the above definition of lengths of curves, we can define
the distanced(x,y) between two pointsx,y∈M as the length of the shortest piecewise differentiable
curve connectingx andy. This geodesic distance dturns the Riemannian manifold into a metric
space, satisfying the usual properties of positivity, symmetry and the triangle inequality. Rieman-
nian manifolds also support convex neighborhoods. In particular, ifp∈ M, there is an open setU
containingp such that any two points ofU can be connected by a unique minimal geodesic inU .

A manifold is said to begeodesically completein case every geodesic curvec(t), t ∈ [a,b], can
be extended to be defined for allt ∈ R. It can be shown (Milnor, 1963), that the following are
equivalent: (1)M is geodesically complete, (2)d is a complete metric onM, and (3) closed and
bounded subsets ofM are compact. In particular, compact manifolds are geodesically complete.
The Hopf-Rinow theorem (Milnor, 1963) asserts that ifM is complete, then any two points can
be joined by a minimal geodesic. This minimal geodesic is not necessarily unique, as seen by
considering antipodal points on a sphere. Theexponential mapexpx maps a neighborhoodV of
0∈ TxM diffeomorphically onto a neighborhood ofx ∈ M. By definition, expxv is the pointγv(1)
whereγv is a geodesic starting atx with initial velocity v = dγv

dt |t=0. Any such geodesic satisfies
γrv(s) = γv(rs) for r > 0. This mapping defines a local coordinate system onM called normal
coordinates, under which many computations are especially convenient.

For a functionf : M −→ R, the gradient gradf is the vector field defined by

〈gradf (p),X〉 = X( f ) .

In local coordinates, the gradient is given by

(gradf )i = ∑
j

gi j ∂ f
∂x j

,
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where
[
gi j (p)

]
is the inverse of[gi j (p)]. The divergence operator is defined to be the adjoint of

the gradient, allowing “integration by parts” on manifolds with special structure. An orientation of
a manifold is a smooth choice of orientation for the tangent spaces, meaning that for local charts
ϕi andϕ j , the differentialD(ϕ j ◦ϕi)(x) : R

n −→ R
n is orientation preserving, so the sign of the

determinant is constant. If a Riemannian manifoldM is orientable, it is possible to define avolume
form µ, where ifv1,v2, . . . ,vn ∈ TpM (positively oriented), then

µ(v1, . . . ,vn) =
√

det〈vi ,v j〉 .

A volume form, in turn, enables the definition of thedivergenceof a vector field on the manifold.
In local coordinates, the divergence is given by

divX =
1√
detg ∑

i

∂
∂xi

(√
detgXi

)

where detg denotes the determinant of the matrixgi j .
Finally, theLaplace-Beltrami operatoron functions is defined by

∆ = div ◦grad,

which in local coordinates is thus given by

∆ f =
1√
detg ∑

j

∂
∂x j

(

∑
i

gi j
√

detg
∂ f
∂xi

)
.

These definitions preserve the familiar intuitive interpretation of the usual operators in Euclidean
geometry; in particular, the gradient points in the direction of steepest ascent and the divergence
measures outflow minus inflow of liquid or heat.

Appendix B. Fisher Information Geometry

Let F = {p(· |θ)}θ∈Θ be ann-dimensional regular statistical family on a setX . Thus, we assume
thatΘ ⊂ R

n is open, and that there is aσ-finite measureµ on X , such that for eachθ ∈ Θ, p(· |θ)
is a density with respect toµ, so that

R

X p(x|θ)dµ(x) = 1. We identify the manifoldM with Θ by
assuming that for eachx∈ X the mappingθ 7→ p(x|θ) is C∞.

Let ∂i denote∂/∂θi , and`θ(x) = logp(x|θ). TheFisher information metric atθ ∈ Θ is defined
in terms of the matrixg(θ) ∈ R

n×n given by

gi j (θ) = Eθ [∂i`θ ∂ j`θ] =
Z

X
p(x|θ)∂i logp(x|θ)∂ j logp(x|θ)dµ(x) .

Since the scoresi(θ) = ∂i`θ has mean zero,gi j (θ) can be seen as the variance ofsi(θ), and is
therefore positive-definite. By assumption, it is smoothly varying inθ, and therefore defines a
Riemannian metric onΘ = M.

An equivalent and sometimes more suggestive form of the Fisher informationmatrix, as will be
seen below for the case of the multinomial, is

gi j (θ) = 4
Z

X
∂i

√
p(x|θ)∂ j

√
p(x|θ)dµ(x) .
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Yet another equivalent form isgi j (θ) = −Eθ[∂ j∂i`θ]. To see this, note that

Eθ[∂ j∂i`θ] =
Z

X
p(x|θ)∂ j∂i logp(x|θ)dµ(x)

= −
Z

X
p(x|θ)

∂ j p(x|θ)

p(x|θ)2 ∂i p(x|θ)dµ(x)−
Z

X
∂ j∂i p(x|θ)dµ(x)

= −
Z

X
p(x|θ)

∂ j p(x|θ)

p(x|θ)

∂i p(x|θ)

p(x|θ)
dµ(x)−∂ j∂i

Z

X
p(x|θ)dµ(x)

= −
Z

X
p(x|θ)∂ j logp(x|θ)∂i logp(x|θ)dµ(x)

= −gi j (θ) .

Since there are many possible choices of metric on a given differentiable manifold, it is impor-
tant to consider the motivating properties of the Fisher information metric. Intuitively, the Fisher
information may be thought of as the amount of information a single data point supplies with respect
to the problem of estimating the parameterθ. This interpretation can be justified in several ways,
notably through the efficiency of estimators. In particular, the asymptotic variance of the maximum
likelihood estimator̂θ obtained using a sample of sizen is (ng(θ))−1. Since the MLE is asymptot-
ically unbiased, the inverse Fisher information represents the asymptotic fluctuations of the MLE
around the true value. Moreover, by the Cramér-Rao lower bound, the variance of any unbiased
estimator is bounded from below by(ng(θ))−1. Additional motivation for the Fisher information
metric is provided by the results ofČencov (1982), which characterize it as the only metric (up to
multiplication by a constant) that is invariant with respect to certain probabilistically meaningful
transformations called congruent embeddings.

The connection with another familiar similarity measure is worth noting here. Ifp andq are
two densities onX with respect toµ, the Kullback-Leibler divergenceD(p,q) is defined by

D(p,q) =
Z

X
p(x) log

p(x)
q(x)

dµ(x) .

The Kullback-Leibler divergence behaves at nearby points like the square of the information dis-
tance. More precisely, it can be shown that

lim
q→p

d2(p,q)

2D(p,q)
= 1,

where the convergence is uniform asd(p,q) → 0. As we comment in the text, this relationship may
be of use in approximating information diffusion kernels for complex models.

B.1 Fisher information for the Spherical Gaussian

Here we derive the Fisher information for the special case of the familyF = {p(· |θ)}θ∈Θ where
θ = (µ,σ) andp(· |(µ,σ)) = N (µ,σIn−1), the Gaussian having meanµ∈ R

n−1 and varianceσIn−1,
with σ > 0. The parameter space is thusΘ = R

n−1×R+.
To compute the Fisher information metric for this family, it is convenient to use the general

expression given by equation (10). Let∂i = ∂/∂µi for i = 1. . .n−1, and∂n = ∂/∂σ. Then simple
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calculations yield, for 1≤ i, j ≤ n−1

gi j (θ) = −
Z

Rn−1
∂i∂ j

(
−

n−1

∑
k=1

(xk−µk)
2

2σ2

)
p(x|θ)dx

=
1

σ2 δi j

gni(θ) = −
Z

Rn−1
∂n∂i

(
−

n−1

∑
k=1

(xk−µk)
2

2σ2

)
p(x|θ)dx

=
2

σ3

Z

Rn−1
(xi −µi) p(x|θ)dx

= 0

gnn(θ) = −
Z

Rn−1
∂n∂n

(
−

n−1

∑
k=1

(xk−µk)
2

2σ2 − (n−1) logσ

)
p(x|θ)dx

=
3

σ4

Z

Rn−1

n−1

∑
k=1

(xk−µk)
2 p(x|θ)dx− n−1

σ2

=
2(n−1)

σ2 .

Letting θ′ be new coordinates defined byθ′
i = µi for 1≤ i ≤ n−1 andθ′

n =
√

2(n−1)σ, it is
seen that the Fisher information matrix is given by

gi j (θ′) =
1

σ2 δi j .

Thus, the Fisher information metric givesΘ = R
n−1×R+ the structure of the upper half plane in

hyperbolic space.
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Nigam, and Séan Slattery. Learning to construct knowledge bases from the World Wide Web.
Artificial Intelligence, 118(1/2):69–113, 2000.

A. Philip Dawid. Further comments on some comments on a paper by Bradley Efron. The Annals
of Statistics, 5(6):1249, 1977.

Tom Dietterich. AI Seminar. Carnegie Mellon, 2002.

Alan T. Gous.Exponential and Spherical Subfamily Models. PhD thesis, Stanford University, 1998.

Alexander Grigor’yan and Masakazu Noguchi. The heat kernel on hyperbolic space.Bulletin of the
London Mathematical Society, 30:643–650, 1998.

Ying Guo, Peter L. Bartlett, John Shawe-Taylor, and Robert C. Williamson.Covering numbers for
support vector machines.IEEE Trans. Information Theory, 48(1), January 2002.

Tommi S. Jaakkola and David Haussler. Exploiting generative models in discriminative classifiers.
In Advances in Neural Information Processing Systems, volume 11, 1998.

Thorsten Joachims.The Maximum Margin Approach to Learning Text Classifiers Methods, Theory
and Algorithms. PhD thesis, Dortmund University, 2000.

Thorsten Joachims, Nello Cristianini, and John Shawe-Taylor. Composite kernels for hypertext
categorisation. InProceedings of the International Conference on Machine Learning (ICML),
2001.

Robert E. Kass. The geometry of asymptotic inference.Statistical Science, 4(3), 1989.

Robert E. Kass and Paul W. Vos.Geometrical Foundations of Asymptotic Inference. Wiley Series
in Probability and Statistics. John Wiley & Sons, 1997.

George Kimeldorf and Grace Wahba. Some results on Tchebychean splinefunctions.J. Math. Anal.
Applic., 33:82–95, 1971.

Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs andother discrete input spaces. In
C. Sammut and A. Hoffmann, editors,Proceedings of the International Conference on Machine
Learning (ICML). Morgan Kaufmann, 2002.

John Lafferty and Guy Lebanon. Information diffusion kernels. In S.Thrun S. Becker and K. Ober-
mayer, editors,Advances in Neural Information Processing Systems 15, pages 375–382. MIT
Press, Cambridge, MA, 2003.

162



DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

Stefan L. Lauritzen. Statistical manifolds. In S. I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L.
Lauritzen, and C. R. Rao, editors,Differential Geometry in Statistical Inference, pages 163–216.
Institute of Mathematical Statistics, Hayward, CA, 1987.

David D. Lewis and Marc Ringuette. A comparison of two learning algorithms for text categoriza-
tion. In Symposium on Document Analysis and Information Retrieval, pages 81–93, Las Vegas,
NV, April 1994. ISRI; Univ. of Nevada, Las Vegas.

Shahar Mendelson. On the performance of kernel classes.Journal of Machine Learning Research,
4:759–771, 2003.

John W. Milnor.Morse Theory. Princeton University Press, 1963.

Pedro J. Moreno, Purdy P. Ho, and Nuno Vasconcelos. A Kullback-Leibler divergence based kernel
for SVM classification in multimedia applications. InAdvances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

Edward Nelson.Tensor Analysis. Princeton University Press, 1968.

Tomaso Poggio and Frederico Girosi. Regularization algorithms for learningthat are equivalent to
multilayer networks.Science, 247:978–982, 1990.

Jay Ponte and W. Bruce Croft. A language modeling approach to informationretrieval. InProceed-
ings of the ACM SIGIR, pages 275–281, 1998.

Calyampudi R. Rao. Information and accuracy attainable in the estimation of statistical parameters.
Bull. Calcutta Math. Soc., 37:81–91, 1945.

Steven Rosenberg.The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.

Richard Schoen and Shing-Tung Yau.Lectures on Differential Geometry, volume 1 ofConference
Proceedings and Lecture Notes in Geometry and Topology. International Press, 1994.

Michael Spivak.Differential Geometry, volume 1. Publish or Perish, 1979.

Chengxiang Zhai and John Lafferty. A study of smoothing methods for language models applied to
ad hoc information retrieval. InProceedings of SIGIR’2001, pages 334–342, Sept 2001.

Tong Zhang and Frank J. Oles. Text categorization based on regularized linear classification meth-
ods. Information Retrieval, 4:5–31, April 2001.

163


