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Abstract

Gaussian process priors can be used to define flexible, pghghialrlassification models. Unfor-
tunately exact Bayesian inference is analytically inbtg and various approximation techniques
have been proposed. In this work we review and compare Leplatethod and Expectation Prop-
agation for approximate Bayesian inference in the binarygSian process classification model.
We present a comprehensive comparison of the approxinsatibeir predictive performance and
marginal likelihood estimates to results obtained by MCM@&pling. We explain theoretically and
corroborate empirically the advantages of Expectatiop&gation compared to Laplace’s method.

Keywords: Gaussian process priors, probabilistic classificatiopld@e’s approximation, expec-
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1. Introduction

In recent years models based on Gaussian process (GP) prioratiraeted much attention in the
machine learning community. Whereas inference in the GP regression mitlhd&aussian noise
can be done analytically, probabilistic classification using GPs is analyticalpctatile, see Ras-
mussen and Williams (2006) for a general overview. Several appegdorapproximate Bayesian
inference have been suggested, including Laplace’s method, Expedeatipagation (EP), varia-
tional approximations and Markov chain Monte Carlo (MCMC) sampling, sofrthese in con-
junction with generalisation bounds, online learning schemes and sparexiapations (e.g. Neal,
1998; Williams and Barber, 1998; Gibbs and MacKay, 2000; Opper anthéf, 2000; Csatand
Opper, 2002; Seeger, 2002; Lawrence et al., 2003).

Despite the abundance of recent work on probabilistic GP classifiers expmerimental studies
provide only anecdotal evidence, and no clear picture has yet emagéalwhen and why which
algorithm should be preferred. Thus, from a practitioners point of itisxinclear what the method
of choice is for probabilistic GP classification. In this work, we set out tenstand and compare
two of the most wide-spread approximations: Laplace’s method and Exipadtaopagation (EP).
We also compare to a sophisticated, but computationally demanding MCMC schgricl be-
comes exact in the limit of long running times. We do not address issuesrsffggdion but stick
to comparing the two types of approximation.

We examine two aspects of the approximation schemes: Firstly the accuraggrokimations
to the marginal likelihood which is of central importance for model selectiomaodl comparison.
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In any practical application of GPs in classification (usually multiple) paramefehe covariance
function (hyper-parameters) have to be handled. Bayesian modelieelprovides a consistent
framework for setting such parameters. Therefore, it is essential toadgehe accuracy of the
marginal likelihood approximations as a function of the hyper-parameterder to assess the
practical usefulness of the approach. The related question of whthararginal likelihood cor-
relates well with the generalisation performance cannot be answeredenagjeut depends on the
appropriateness of the model for a given data set. However, we desasgs empirically for two
data sets.

Secondly, we need to assess the quality of the approximate probabilistictigresl In the
past, the probabilistic nature of the GP predictions has not received rttaakti@n, the focus being
mostly on classification erraates This unfortunate state of affairs is caused primarily by typical
benchmarking problems being considered outside of a realistic contextabilitg of a classifier
to produce class probabilities or confidences, have obvious releiranoest areas of application,
e.g. medical diagnosis and ROC analysis. We evaluate the predictive distribof the approxi-
mate methods, and compare to the MCMC gold standard.

2. The Gaussian Process Model for Binary Classification

In this section we describe the Gaussian process model for binary dassifi (GPC). Lety €
{—1,1} denote the class label corresponding to an inpdthe GPC model is discriminative in the
sense that it modelg(y|x) which for fixedx is a Bernoulli distribution. The probability of success
p(y=1|x) is related to an unconstrained latent functix) which is mapped to the unit interval
by a sigmoidal transformation, e.g. thagit or the probit. Both mappings are relatively similar
around zero but show different tail behaviour. We will not examine ffferdnce in this study.
For reasons of analytic convenience (for the EP algorithm) we exclysise the probit model
p(y=1|x) = ®(f(x)), where® denotes the cumulative density function of the standard normal
distribution.

In the GPC model Bayesian inference is performed about the latent farfciio the light of
observed dat&) = {(y;,x;)[i=1,...,m}. Let f; = f(x;) andf = [f1,..., fn] ' be shorthand for the
values of the latent function and= [y1,...,ym] ' andX = [x1,...,xm] " collect the class labels and
inputs respectively.

Given the latent function, the class labels are independent Bernoudlbles, so the joint like-
lihood factorises:

p00) = [ 01 ®

and depends of only through its value at the corresponding observed inputs. For tihé pnodel
the individual likelihood terms becon@y;| f;) = ®(y; f;), due to the symmetry ab.

As prior over functionsf we use a zero-mean Gaussian process (GP) prior (O’Hagan, 1978).
A GP is a stochastic process where each inpbias an associated random variable). The
joint distribution of function values corresponding to any set of inpuis multivariate Gaussian
p(f|X,0) = AL(f|0,K). The covariance matrix is defined element-wisg, = k(xi,xj,8) wherek
is a positive definite covariance function parameterised biote that by choosing a covariance
function we introducenyper-parameter® to the prior. The zero-mean GP prior encodes that
priori p(y=1|x) = 1/2 and certain further beliefs about the characteristics of the latent fanctio
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For details on covariance functions and their implications on the prior ouetitins see for example
Abrahamsen (1997) or Rasmussen and Williams (2006, ch. 4).

Using Bayes’ rule the posterior distribution over the latent function valifes given hyper-
parameter® becomes:

p(ylf) p(f|X,0)  A(f]0,K)
o(DI8)  p(DI6) |_|°D o

which is non-Gaussian. Properties of the posterior will be describedcitinge.
The main purpose of classification models is to predict the classyalbe test inputx,. The
distribution of the latent function value can be computed by marginalisation:

p(f|D,6) =

P(1.[D.0.x) = [ P(T.IF.X.0.x.)p(f|D,0)cf, ©
and by computing the expectation:

the predictive distribution is obtained, which is again a Bernoulli distributidre flrst term in the
right hand side of equation (3) is Gaussian and obtained by conditioningitiieGaussian prior
distribution.

Unfortunately, neither the posterior eq. (@¥|D, 6), the predictive distribution eq. (§(y. =
1D, 0,x.) nor the marginal likelihood eq. (f(2D|0) can be computed analytically, so approxima-
tions are needed. For the GPC model approximations are either basedhossidd approximation
q(f|D,0) = AL(flm,A) to the posteriop(f|D,8) or involve Markov chain Monte Carlo (MCMC)
sampling.

A key insight is that a Gaussian approximation to the posterior implies a GPxamaition to
the posterior process, which gives rise to an approximate predictivibdigin for test cases. Intro-
ducing the approximate Gaussian posterior into eq. (3) gives the apptexposterioq( f.| D, 0,X.) =
AL(f.|W.,02), with mean and variance:

n = k/K™m (52)
02 = KX, x)—k]J(K1—K1AK Dk,, (5b)
wherek, = [k(X1,X.),...,k(xm,x.)]" is a vector of prior covariances betweenand the training

inputs X. For the probit likelihood the approximate predictive probability (4xotelonging to
class 1 can be computed analytically:

I"l*
qly. =1/D,0,x.) /qa N (f, |1, 02)d 1, = (m) ©)
The parametersn and A of the posterior approximation can be found using Laplace’s method
(Section 3) or by Expectation Propagation (Section 4).
We have introduced the hyper-paramet@rahich we considered to be fixed. Typically very
little information about these parameters is availabpeiori. In principle inference should be done
jointly over f and@ which can only be approximated using Markov chain Monte Carlo sampling.
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However, a model selection approach can be implemented by sel@atiaximising the marginal
likelihood (evidence):

p(D16) = [ p(yIf)pifIX. O)cf ™

which can be understood as a measure of the agreement between theammbddiserved data
(Kass and Raftery, 1995; MacKay, 1999). This approach is calledrmem likelihood Il (ML-
II) type hyper-parameter estimation and motivates the need for computing theaidikelihood.
Laplace’'s method as well as Expectation Propagation provide an appt@inta the marginal
likelihood (7) and so approximate ML-Il hyper-parameter estimation can bieimgnted in both
approximation schemes.

3. Laplace’s Method

Williams and Barber (1998) describe Laplace’s method to find a Gauggfeim, A) approximation
to the posterior over latent function values (2) for fix@dalthough they use thiegit likelihood).
LetInL(f) = Inp(y|f) denote the log likelihood and:

1

InQ(f|,6) =In £(f) — S In|K| - %fTK’lf— Min

2 Inar) ®

the unnormalised log posterior. Laplace’s approximation is found by andemaler Taylor expan-
sion:

InQ(f|D,0) ~InQ(m) — %(m—f)TA’l(m—f) (9)

around the mode of the (log) posterior:

m = argmaxin Q(f| D, 9). (20)
feRM

Since both the likelihood and the prior are log-concave the posterior is @swlocave and uni-
modal. Let:

OfnQ = CrlnL(f)—K I (11a)
OkInQ = O0finc(f)—K™? (11b)
denote the gradient and the Hessian. The mode is conveniently found Nisvmtpn’s method,

iterating:
f— f— (00 InQ(f)) T 0sIn Q(f), (12)

which usually converges rapidly ta. The covariance matrix:
A= —(0kinQm)) ™ = (K 14+w)? (13)
is approximated by the curvature at the mode, equal to the negative itvess&an, wherdV =

—00¢In L.
This approximation also facilitates an approximation to the marginal likelihood:

P(DI6) = [ PYINPIX,O)f = [ explinQ())d (14)
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Algorithm 1 Laplace’s approximation for GPC
Given: 0, D, X,
Initialise f (e.g.f < 0), computeK from € andX
repeat
fef— (OO InQ(f) 10k InQ(f)
until convergence of
m«— f
A — (K1 -0O0fInQ(m))~?t
Compute log marginal likelihood I(D|6) by (15), and predictiong(y. =1| D, 8, x..) using (6).

Substituting IQ by its Taylor approximation (9) the Gaussian integral can be solved. Foéirey
approximate log marginal likelihood is:

Inp(D|0) ~ Inq(D|B) = InQ(m) + In(2n) In]A| (15)

and the derivative of this quantity w.r&.can be derived and used for optimisation (e.g. using conju-
gate gradient methods) in an ML-Il type setting. See Algorithm 1 for anvie@rand Appendix A
for details about our implementation.

4. Expectation Propagation

Minka (2001) proposed the iterative Expectation Propagation (EP)itdgowhich can by applied
to GPC. EP finds a Gaussian approximatifi D, 8) = A(flm,A) to the posteriop(f|D, 0) by
moment matching of approximate marginal distributions. The starting point is pnoamation
mimicking the factorising structure:

p(12.0) = PO Mool = 2SR Mtmetz) - ato.0). 9

where throughout we ugeto denote exact quantities ag@pproximations, and the terms:
t(fi,1,0%,2) = ZA(filw,of) (17)

are calledsite functions Note that the site functions are approximating the likelihood (which nor-
malizes over observationg), with a Gaussian inf;, so we cannot expect the site functions to
normalize, hence the explicit ter#) is necessary. For notational convenience we hidesitieepa-
rameters p 07 andz; and writet( f;) instead. From (17) the Gaussian approximation (16) has mean
and covariance:

q(f|D,08) = AL(fm,A), wherem = AX Yy, and A = (K 143712, (18)

wherep = (W, ..., dm) " andX = diag(a?,...,02) collect site function parameters. The EP algo-
rithm iteratively visits each site function in turn, and adjusts the site parameteratéth moments
of an approximation to the posterior marginals. kKilemoment off; under the posterior is:

1
(1) = =gy [ HPVIDRUX.00F =~ [ Hiptylfp(dh (19
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where:

pu(f) = [ [] Pl pEX,O)cl" 20)

J#
is called thecavity distributionandf\ denoted without f;. The marginalisation required to compute
the exact cavity distribution is intractable for the GPC model. The key step inRredorithm is
to replace the intractable exact cavity distribution with a tractable approximagieedion the site
functions:
a.(f) = [ []tp(x.0)f" @)
J#

The approximate cavity function comes in the form of an unnormalised Gawggig) O AL( fi |u\i,0§).
Multiplying both sides by ( f;):

m
At = [ Ao [Tefar O Afim. A, 22)
]=
and basic Gaussian identities give the parameters:
_ -1 m j
02=((Ai)*-0;?) " and p,=0> <A— - %) , (23)
i Oj

of the approximate cavity function.

The core idea of EP is to adjust the site parameters andz; so that the approximate posterior
marginal using the exact likelihood approximates as well as possible theipostarginal based
on the site function:

au(f)p(yil fi) ~ au(fi)t(fi, .07, 2) (24)
by matching the zeroth, first and second moments. Recall that matching of mamientszes
Kullback-Leibler (KL) divergencé. For the probit likelihoodp(y;|fi) = ®(y; f;) thek = 0,1,2 mo-
ments of the left hand side can be computed analytically

my = q:(&) — (2, (25a)
o 0D (25b)
P(2)yvV1+aZ
20390\((0,1)

m = 2um—5+07— (25¢)

®(2)(1+07)’

wherez=yp;/v1+ 0%. By equating these moments with those of the right hand side of (24) the
update equations for the site parameters become

o7 = (mp-m) -0, (26a)
b = oiz(ml(o\’inroi’z)—%), (26b)
\i

Zi

NETRY)
Mo/ 21(0% + 07) exp(%) : (26¢)
T O

1. Although, the classical KL argument only applies to the first and gsb¢and higher) moments farormalized
distributions, it seems natural also to match zeroth moment.
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Algorithm 2 EP for Gaussian process classification
Given: 0, D, X,
Initialise: A — K and site parameters’ andyy
repeat
for i=1,...,mdo
Compute parameters (23) of cavity
Compute moments (25)
Update the site parameters using (26)
Updatem andA according to (18)
end for
until The site parameters converged
Compute log marginal likelihood of(D|0) by (27), and predictiong(y, =1|D, 8, x,.) using (6).

In the application of EP, one may generally not have a guarantee thatttstaersariance in (26a)
is non-negative; however, in the GPC model with probit likelihood, onestemv that variance is
always positive. Once we have new valuesjipando? we have to update andA according to
(18), which in practise is done using rank-one updates, to save computatio

The EP algorithm iteratively updates the site parameters as shown in Algorithttbugh
we cannot prove the convergence of EP, we conjecture that it alveany®rges for GPC with probit
likelihood, and have never encountered an exception.

Finally the approximate log marginal likelihood can be obtained from the norntialivaef (16),

giving

Inp(D}0) =~ Ing(D|6) In/q(f|x,9) ﬁt(fi)df 27)

S INZ— K4S - T (K2 - iz
= i; i~ i H= :

Perhaps this is not the standard way to compute an approximation to the mékgiitabod used
elsewhere, but it seems the most natural given the approximation. Titatokess of the log marginal
likelihood can be computed in order to implement ML-1l parameter estimatigh @&lgorithm 2
summarises the computations, more details on implementing EP for GPC can beirfofipe
pendix B.

5. Structural Properties of the Posterior

In the previous sections we described the GPC model and two alternagivexapation schemes
for finding a Gaussian approximation to the posterior. This section prowbes details on the
properties of the posterior which is compared to the structure of the t@apapproximations.

Figure 1(a) provides a one-dimensional illustration. The pigif|0,5%) combined with the
probit likelihood (y = 1) results in a skewed posterior. Intuitively, the likelihood cuts off the
values which have the opposite signyofThe mode of the posterior remains relatively close to the
origin, while the mass is placed over positive values in accordance with Hesvaltion. Laplace’s
approximation peaks at the posterior mode, but places far too much massegetive values of
f and too little over large positive values. The EP approximation attempts to matcinsthisvo
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Figure 1: Panel (a) provides a one-dimensional illustration of approximstithe priov\( f|0,5?)
combined with the probit likelihoody = 1) results in a skewed posterior. The likelihood
uses the right axis, all other curves use the left axis. In Panel (b)aweature a high
dimensional zero-mean Gaussian prior as an ellipse. The gray shadoaté@scthat for
a high dimension Gaussian most of the mass lies in a thin shell. For large latemssign
the likelihood essentially cuts off regions which are incompatible with the trainlgjda
(hatched area), leaving the upper right orthant as the posterior. dtheptesents the
mode of the posterior, which is relatively unaffected by the truncation emains close
to the origin.

posterior moments, which results in a larger mean and a more accurate placémpebability
mass compared to Laplace’s approximation.

Structural properties of the posterior in higher dimensions can bestdszsiood by examining
its construction. The prior is a correlateddimensional Gaussial((f|0,K) centred at the origin.
Each likelihood termp(y;| fi) softly truncates the half-space from the prior that is incompatible with
the observed label, see Figure 1(b). The resulting posterior is unimodalkewed, similar to a
multivariate Gaussian truncated to the orthant contaigingrhe mode of the posterior remains
close to the origin, while the mass is placed in accordance with the obsengsdatels. Addi-
tionally, high dimensional Gaussian distributions exhibit the property that probgbility mass is
contained in a thin ellipsoidal shell—depending on the covariance strucaway-from the mean
(MacKay, 2003, ch. 29.2). Intuitively this occurs since in high dimenstbesvolume grows ex-
tremely rapidly with the radius. As an effect the mode becomes less retatrge(itypical) for the
prior distribution as the dimension increases. For the GPC posterior thisrpr@ersists: the mode
of the posterior distribution stays relatively close to the origin, still being presentative for the
posterior distribution, while the mean moves to the mass of the posterior makingaméanode
differ significantly.

As described, we cannot generally assume the posterior to be closegsi&awas in the often
studied limit of low-dimensional parametric models with large amounts of dataefidrerin GPC
we must be aware of making a Gaussian approximation to a non-Gaussiariggotaplace’s ap-
proximation is centred around the mode of the posterior, which lies in the nitffatrd but too close
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Figure 2: Panel (a) illustrates a bivariate normal distribution truncated foaiéve quadrant. The
lines describe slices through the probability density function for figedalues. Panel (b)
shows the marginal distribution @f(x;) (thick line) obtained by (numerical) integration
over Xz, which—intuitively speaking—corresponds to an averaging of the sliteés (
lines) from Panel (a). Panel (c) shows a histogram of samples of dmahdistribution
of an high-dimensional truncated Gaussian. The line describes a Gawstfianean and
variance estimated from the samples.

to the origin, such that the approximation will overlap with regions havingtjmaty zero posterior
mass. As an effect the amplitude of the approximate latent posterior GP witderestimated
systematically, leading to overly cautious predictive distributions.

The EP approximation does not rely on a local expansion, but assundsetmaarginal distri-
butions of the posterior can be well approximated by Gaussians. AsliEseabove the posterior
is similar to a high dimensional multivariate normal distribution truncated to onerdrtAithough
the posterior is skew and truncated, marginals of such a distribution caeldtiealy similar to a
Gaussian.

As a low dimensional illustration the marginal distribution of a bivariate normahdsve in
Figure 2(a-b). Depending on the covariance structure, the mode of tiyggnaladistribution moves
away from the origin and the distribution appear similar to a truncated unieadBiaussian.

In order to inspect the marginals of a truncated high-dimensional multivar@teal distri-
bution we made an additional synthetic experiment. We constructed a 767 dnmedrnSaussian
A(x|0,C) with a covariance matrix having one eigenvalue of 100 with eigenvdctand all other
eigenvalues are 1. We then truncate this distribution such thag all0. Note that the mode
of the truncated Gaussian is still at zero, whereas the mean moved towardsrthining mass.
Metropolis-Hastings sampling was used to generate samples from this tidinoaite/ariate distri-
bution. Figure 2(c) shows a normalised histogram of samples from a madigtrébution of one
Xi. The samples agree very well with a Gaussian approximation. Note thacke&piaethod would
be completely inappropriate for approximating a truncated multivariate noristebdtion.

In order to validate the above arguments we will use Markov chain Montk @athods to
generate samples from the posterior and also to estimate the marginal likelihood.

1687



KuUss AND RASMUSSEN

6. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) may be too slow for many practical apptics, but has the
advantage that it becomes exact in the limit of long runs. Thus, MCMC aaidar agold standard
by which to measure the two analytic methods of the previous sections. Comgheipgedictions
via an MCMC estimate of (3) and (4) is relatively straight forward and ced/én Section 6.1.

Good MCMC estimates of the marginal likelihood are, however, notoriouslyditfio obtain,
being equivalent to the free-energy estimation problem in physics (GelnhiMang, 1998). In
Section 6.2 we explain the use of Annealed Importance Sampling (AlS), whictbe seen as a
sophisticated elaboration of Thermodynamic Integration, for this task.

6.1 Hybrid MCMC Sampling

Hybrid Monte Carlo (HMC) sampling as proposed by Duane et al. (1983@) demputationally

efficient sampling technique which exploits gradient information of the tatigaibution. Detailed

accounts are given by Neal (1993, ch. 5.2) and Liu (2001, ch. 9cKdy (2003, ch. 30) also
provides pseudo-code; we do not repeat the details here.

HMC can be used to generate samples from the poste(i(#, 2), while only the unnormalised
log posterior (8) and its derivatives are required. As described inrdnqus section, the exact
posterior (2) takes the form of a (correlated) Gaussian (the GP pnibigh is (softly) truncated by
the constraints imposed by the training labels through the likelihood. To easarti@ing task by
reducing correlations, we first do a linear transformation into gewL ~*f variables, such thagis
whitew.r.t. K, whereK = LL " is the Cholesky decomposition. Given samples from the posterior,
we generate test-latents from the Gausgigh|f, X, 8, x.) for use in a simple Monte Carlo estimate
of (4).

6.2 Annealed Importance Sampling

The marginal likelihood (7) comes in the form of ardimensional integral whem is the number
of data points. A simple approach would be to use importance sampling with the IElace’s
approximation of the posterior as proposal distribution. However, foGIR€ model the resulting
importance weights show enormous variances, making simple importance saugaiags for this
task (MacKay, 2003, ch. 29).

Neal (2001) describes Annealed Importance Sampling (AIS), which WWese to estimate the
marginal likelihood in the GPC model. Instead of solving the integral (7) direatsequence of
easier quantities is computed. We define:

z = [ Ry (X, 0)cf (28)

wheret(t) is an inverse temperature schedule such tf@t = 0 andt(T) = 1. The trick is to
rewrite the marginal likelihood = p(D|60) as a fraction and expand:

_4a _ b L 4 (29)

z - L2
Zo It 1l Iy
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Algorithm 3 Annealed Importance Sampling
Given: Temperature schedule
forr=1,...,Rdo

Samplefo from the priora((f|0,K)
fort=1,...,Tdo
Samplef; from q(f| D, 1(t),0) by HMC
Compute IiZ; /Z; 1) using (31)
end for
ComputeZ; using (32)
end for
ReturnInZ =1In (3R, 7)

whereZy = 1 since the prior normalises. Each term in (29) is approximated using impertanc
sampling using samples froqtf| D, 0,1(t)) O p(y|H)*W p(f|X, 6):

Z p(y|f)*® p(f|X,0)
M S f|D,0,7(t—1))df 30a
Z |0(y\f)f<”>|0(f|><,6')Q(| t=1) (302)
13 .
~ I AT -T(t-1)
~ Sé p(ylfi) (30b)

wheref; are samples fromy(f|D, 0, 1(t)), which we generate using HMC. Using a single sample
S=1 and a large number of temperatures, the log of each ratio is:

IN(Zt/Z-1) ~ (T(t) —T(t - 1)) Inp(ylf) (31)
wheref; is the only sample at temperatur@). Combining (29) with (31) we obtain the desired:

;
INZ~S In(Z/Z_1). 32
n t;n( t/Z-1) (32)

In all our experiments we usgt) = (t/T)4 fort = 0,...,8000. Using this temperature schedule
we found that the sampling spends most of its efforts at temperatures wittvduigimce of (31)
such that the variance of (32) is relatively small. Note that this was only exan the data
sets we use below and only for certain value®ofSo far, we have described Thermodynamic
Integration, which gives an unbiased estimate in the limit of slow temperatungebaln AlS the
bias caused by finite temperature schedules is removed by combining multipletestisaheir
geometric mean (see Algorithm 3). In the experiments we combine the estimd&es ®fruns of
Thermodynamic Integration.

7. Experiments

In this section we compare and inspect approximations for GPC using sdrémchmark data sets.
The primary focus is not to optimise the absolute performance of GPC moddls tmmpare the
relative accuracy of approximations and to validate the arguments giverciins 5.

In all the GPC experiments we use a covariance function of the form:

k(x,',8) = 0?exp( — % ||x—x||*), (33)
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Figure 3: Synthetic classification problem: Panel (a) illustrates the classificiask, the gen-
erating p(y|x) and two approximations thereof obtained by Laplace’s method and
EP. Panel (b) illustrates the approximate predictive distributipgs,|D,0,x,) ~
A(f,|u., 02) of latent function values showing the mganand the range of-20,.

such thatd = [0,¢]. We refer tog? as the signal variance and foas the characteristic length-
scale. Note that for many classification tasks it may be reasonable to us#givadual length scale
parameter for every input dimension (ARD). Nevertheless, for the siieesentability we use the
above covariance function and we believe the conclusions to be indapesfdhis choice.

Both analytic approximations have a computational complexity which is a0gic®) as com-
mon among non-sparse GP models due to inversionsm matrices. In our implementations
Laplace’s method and EP need similar running times, on the order of a few sifuuteeveral
hundred data-points. Making AIS work efficiently requires some finéatuand a single estimate
of p(|@) can take several hours for data sets of a few hundred examplesisgauld conceivably
be improved upon.

7.1 Synthetic Classification Problem

The first experiment is a synthetic classification problem with scalar inputs.observations for
class 1 were generated from two normal distributions with meahand 2, each with a standard
deviation of 08. For class-1 the mean is 0 and the same standard deviation was used.
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We computed Laplace’s and the EP approximation for the ML-Il estimated eé@i¢hat max-
imised Laplace’s approximation to the marginal likelihood (15). Note that thitcpéar choice o
should be in favour of Laplace’s method. Figure 3 shows the resultingitiéas and the underlying
latent functions. In Figure 3(a) the approximationgt{g|x) appear to be similar for positivebut
we observe an appreciable discrepancy for negative values. ke&plgmproximation gives an un-
reasonably high predictive uncertainty, which is caused by a signiftasamtap of the approximate
predictive distributionp( .| D, 0,x.) ~ A(f.|u.,0?) with zero as shown in Figure 3(b). However,
note that both approximations agree on the sign of the predictive mean.

7.2 lonosphere Data

The data consists of 351 examples in 34 dimensions. We standardised tteXrtpuzero mean
and unit variance. The training set is a random subset ofrsize200 leaving the remaining 151
instances out as a test set.

We do an exhaustive investigation on a regulak 21 grid of values for the log hyper-parameters.
For eachf on the grid we compute the approximated log marginal likelihood by Laplace’'sogheth
(15), EP (27) and AIS. Additionally we compute the predictive perforreamt the test set. As
performance measure we use the average information in bits of the preslighont the test targets
in excess of that of random guessing. lgt= p(y. = 1|x.) be the model's prediction, then we
average:

L(pi,yi) = 25 log,(p) + 5% logy(1— pf) +H (34)

over all test cases, whektis the entropy of the training set labels. Results are shown in Figure 4.

For all three approximation techniques we see an agreement betweenahbkglihood esti-
mates and test performance, which justifies the use of ML-II parameter éstimBut the shape of
the contours and the values differ between the methods. The contolwapiace’s method appear
to beslantedcompared to EP. The estimated marginal likelihood estimates of EP and AIS agree
very well? The EP predictions contain as much information about the test cases as ME& MC
predictions and significantly more than for Laplace’s method.

Note that for small signal variances (roughlydd) < 0) Laplace’s method and EP give very
similar results. A possible explanation is that for small signal variances thithbkel does not
truncatethe prior but onlydown-weightghe tail that disagrees with the observation. As an effect
the posterior will be less skewed and both approximations will lead to similaltsesu

7.3 USPS Digits

We define a binary sub-problem from the USPS digit #ihtaconsidering 3's vs. 5's. We repeated
the experiments described in the previous section for a slightly modified gfld @Gbmparing the
results shown in Figure 5 leads to similar results as mentioned above. ThedlBRCMC results
agree very well, given that the marginal likelihood comes as a 767 dimehgitegral.

We now take a closer look at the approximatiofi§ 2, 8) = A (flm, A) for a given value ob.
We have chosen the valuegdr) = 3.35 and Ir{¢) = 2.85 which are between the ML-II estimates of
EP and Laplace’s method. Comparing the respective means of the apptiorera Figure 6(a) we

2. Note that the agreement between the two seems to be limited by the gcotitae AIS runs, as judged by the
regularity of the contour lines; the tolerance is less than one unit on a &f)dbg scale.

3. Because the training and test partitions in the original data differ sigmificave pooled cases and randomly divided
them into new sets, with 767 cases for training and 773 for testing.
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Figure 4: Comparison of marginal likelihood approximations and predictvéopnances for the
lonosphere data set. The first column shows the estimates of log margirifloldds
while the second column shows the performance on the test set meastinedrifprma-
tion about test targets in bits (34).
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Log marginal likelihood Information about test targets
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Figure 5: Comparison of marginal likelihood approximations and predic&réopnances of the
different methods for classifying 3's vs. 5’s from the USPS image dataldd® plots are
arranged as in Figure 4.
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Figure 6: Comparison of approximatiogé| D, 0) = A (fim,A) for a given value of). Panel (a)
shows a comparison of the meang In Panel (b) we compare the elements of the diago-
nal matricesV; andX;i. Panels (c) and (d) compare predictigrisobtained by MCMC
(abscissa) to predictions obtained from Laplace’s method and EP (tHirRanel (c)
shows predictions on training cases and (d) shows predictions on $est ca

see that the magnitude of the means from the Laplace approximation is much shaadléom EP.
The relation appears to be roughly linear. In Figure 6(b) we compardehesats oW and 31
which cause the difference in the approximations (13) and (18) of thegmscovariance matriR.
We observe that the relatively large entriesNhare larger than the corresponding entrieXint,

but in totalW contains more small values th&1®. The exact effect on the posterior covariance
is difficult to characterise due to the inversion, but intuitively the smaller theegathe more the
posterior covariance will be similar to the prior.
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Figures 6(c-d) compare the predictive uncertaiptyresulting from the respective approxima-
tions to MCMC predictions. For both training and test set we observe thandPMMCMC agree
very well, while Laplace’s method shows over-conservative predictions

0.07+
[ IMCMC samples [ IMCMC samples| --r;
0.2 |—Laplace p(f|D) 0.06l —Laplace p(f|D) 8
---EP p(fID) 7| [-2-EP p(fiD) M
0151 0.05] ] A
0.04] * I
0.1 0.03f .
0.02r K
0.051 \
0.01- H\\
0 . EuntLl 0 I ] Hﬂm‘rﬂm h
-15 -10 =40 -20 f—lO 0 10

(@) (b)

Figure 7: Two marginal distributionp( fi|D,8) from the posterior. For Panel (a) we picked the
fi for which the posterior marginal is maximally skewed (see again Figure 16.trTie
posterior is approximated by a normalised histogram of 9000 samplgbfained by
MCMC sampling. Panel (b) shows a case where EP and Laplace’'sxapptteon differ
significantly.

We now inspect the marginal distributiopéfi| D, ) of single latent function values under the
posterior approximation. We use hybrid MCMC to generate 9000 samplastfre posterior of
for the aboved. For Laplace’s method and EP the approximated distributiog(i§|m;, Aji) where
m andA are found by the respective approximation techniques.

In general we observe that the marginal distributions of MCMC sampleseagry well with
the respective marginal distributions of the EP approximation. This supg@tslaim made in
Section 5 where we argued that the marginal distributions of the posteridoecaery similar to
Gaussians, even if the posterior is a skew distribution. For Laplacei®@pration we find the
mean to be underestimated and the marginal distributions to overlap with zerwiarthan the
EP approximations. Figure 7(a) displays the marginal distribution and itexpgations for which
the MCMC samples show maximal skewness. Figure 7(b) shows a typicalpéxavhere the
EP approximation agrees very well with the MCMC samples. We show this partiekample
because under the EP approximatiy; = 1|2,0) < 0.1% but Laplace’s approximation gives
q(y; = 1|D,0) ~ 18%.

7.4 Lower Bound Approximation

In the context of sparse EP approximations Seeger (2003) propdseerabound on the marginal
likelihood. The bound is obtained from the EP approximation of the postesiagulensen’s in-
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Lower bound on log marginal likelihood
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Figure 8: Lower bound on marginal likelihood. Panel (a) shows the Id®@end eq. (35) on the
marginal likelihood for the lonosphere data set (compare to left columriguiré 4).
Panel (b) shows the value of the lower bound for the USPS 3's vscéiaare to left
column of Figure 5)

equality:
Inp(DI6) = In [ p(yINA(0.K)df (35a)
p(y[H)AL(f[0,K)
> /N(f|m,A)In A (35h)

- i/ﬂ\[(fiymi,An)lndD(yi fi)d
1

T -1 1 ~1 1 ~1 m
—5m K m—étr(K A)+§In]K A|+§ .
Note that the one dimensional integrals in eq. (35c) have to be solved usimgrical integration
methods.

In sparse EP methods the Gaussian approximation is based on only acublservations
and so the evidence (27) may be a bad approximation of the total evideweetsitoes not take
all available data into account. Assume that thepoints are only a subset of of a total of
observations. The lower bound (35c) can be extended to a lower lwuatim’ observations by
including all points in the one dimensional integrals over the individual log likelkihterms.

Several authors maximise this lower bound instead of maximising (27) forlMypler-parameter
estimation also in the case of non-sparse EP approximations, e.g. Chu am@u@aai (2005). In
Figure 8 we show the value of the lower bound as a function of the hygrampeters for the lono-
sphere and USPS data described in the previous sections (for the fapE&ximation). Interest-
ingly, for both data sets the lower bounds appear to be more similar to thexappte evidence
obtained by Laplace’s method than by EP (compare to the upper left pakéjunes 4 and 5

(35¢)
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respectively). However, the maxima of the lower bounds correspongbt@gtimal predictive per-
formances compared to the maxima of the approximate marginal likelihood @Tpére to the
second row in Figures 4 and 5 respectively). Therefore for nansspEP approximations the use
of (27) seems advisable, which is also computationally advantageous.

7.5 Benchmark Data Sets

In this section we compare the performance of Laplace’s method and takpad’ropagation for
GPC on several well known benchmark problems for binary classification

The lonospherethe WisconsinBreast Cancer, and tigonardata sets are taken from Hettich
et al. (1998). The Leptograps@absand thePima Indians Diabetes data sets were described by
Ripley (1996). Note that for the Crabs data set we use the sex (notlthe)cof the crabs as target
variable. The largest data set in the comparison are the 3's vs. 5'sli@iSPS handwritten digits
described above.

We standardise the inpuks to zero mean and unit variance. All data sets are randomly split
into 10 folds of which one at a time is left out as a test set to measure thetpregierformance of
a model trained (or selected) on the remaining nine folds.

For GPC we implement model selection by ML-II hyper-parameter estimationusé&/e con-
jugate gradient optimisation routine to find a minimum

O = argmin—Inq(D|0) (36)
6

of the negative log marginal likelihood approximated by Laplace’s methodafibEP (27) respec-
tively. For the respectiv8y_ the approximationg((fim,A) are computed and predictions are made
for the left out test set. From the predictive distributions the averageniriion (34) is computed
and averaged over the ten folds. Furthermore the average errorisatefgorted, which equals the
average percentage of erroneous class assignments if predictioreistond as a decision problem
with symmetric costs (thresholding the predictive uncertainty/a).1

In order to have a better absolute impression of the predictive perfoewameceport the results
of support vector machines (SVM) (Silthopf and Smola, 2002). We use the LIBSVM implemen-
tation of C-SVM by Chang and Lin (2001) with a radial basis function kiewtech is equivalent
to the covariance function (33) up to the signal variance parameter. albesvof the length scale
parametef and the regularisation parame@are found by aimnner loopof 5-fold cross-validation
on the nine training folds respectively. We manually refine the parameteranmitirepeat the cross-
validation procedure until the performance stabilises.

We use the technique described by Platt (2000) to estimate predictivebpitidm from an
SVM. This is implemented by fitting a sigmoidal mapping from the unthresholdedibofghe
SVM to the unit interval. The parameters of the mapping are estimated on thettésttse inner
loop of 5-fold cross-validation.

Results are summarised in Table 1. Comparing Laplace’s method to EP the lattertshbe
more accurate both in terms of error rate and information. While the errerasgaelatively similar
the predictive distribution obtained by EP shows to be more informative dbeugst targets. As
to be expected by now, the length of the mean vefitoff shows much larger values for the EP
approximations. Comparing EP and SVM the results are mixed.

At first sight it may seem surprising that Laplace’s method gives relgtsienilar error rates
compared to EP. Note that for both methods the error rate only depends sigthof the latent
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Laplace EP SVM

| DataSet [ m [ n[ E [ I [ [m] E [ 1 | [m] E | |
lonosphere 351| 34| 8.84/0.591| 49.96| 7.99/0.661] 124.94| 5.69/0.681
Wisconsin 683 9| 3.21/0.804| 62.62|| 3.21/0.805 84.95|| 3.21/0.795
Pima Indians 768| 8(/22.77/0.252| 29.05||22.63/0.253 47.49|23.01/0.232
Crabs 200, 7 2.0/0.682/112.34)f 2.0{0.908 2552.97| 2.0/0.047
Sonan 208| 60| 15.36/0.439| 26.86|13.85/0.537/15678.55|11.14/0.567
USPS 3 vs 51540| 256| 2.27/0.849/163.05| 2.21/0.902/22011.7Q] 2.01/0.918

Table 1. Results for benchmark data sets. The first three columns giveathe of the data set,
number of observatiom and dimension of inputa. For Laplace’s method and EP the
table reports the average error rate E, the average information | (84)@average length
|Im|| of the mean vector of the Gaussian approximation. For SVMs the errormdttha
average information about the test targets are reported.

mean function (5a) at the test locations, which in turn depenchamly. Therefore the error rate
is less sensitive to the accuracy of the approximation to the posterior, baticge depends on the
ML-II estimated hyper-parameters, which differ between the methods. iAlg® example shown
in Figure 3(b) it can be observed that the latent mean functions diffethbutsign matches very
accurately.

For the Crabs data set all methods show the same error rate but the inforemtient of the
predictive distributions differs dramatically. For some test cases the SéMigts the wrong class
with large certainty. Because the mapping of the unthresholded output 8¥kieto the predictive
probability is estimated from a left out set, the mapping can be poor if too fewsesre observed
on this.

8. Conclusions

Our experiments reveal serious differences between Laplace’s matitbBP when used in GPC
models. The results corroborate the considerations about the two apptamns based on the
structure of the posterior given in Section 5. Although only a handfubtd dets have been used in
the study, we believe the conclusions to be well-founded and generally valid

From the structural properties of the posterior we described why Laplatethod systemati-
cally underestimates the mean The resulting approximate posterior GP over latent functions will
have too small amplitude, although the sign of the mean function will be mostlyotois an ef-
fect Laplace’s method gives over-conservative predictive priiied, and diminished information
about the test labels. This effect has been shown empirically on sesalalorld examples. Large
resulting discrepancies in the actual posterior probabilities were fowed, a& the training loca-
tions, which renders the predictive class probabilities produced unideagproximation grossly
inaccurate. Note, the difference becomes less dramatic if we only cotisalelassification error
rates obtained by thresholding at 1/2. For this particular task, we have seen the sign of the la-
tent function tends to be correct (at least at the training locations). Hawehe performance on
benchmark data sets also revealed the error rates obtained by Laphetle to be inferior to EP
results.
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The EP approximation has shown to give results very close to MCMC bothmirs tefrpredictive
distributions and marginal likelihood estimates. We have shown and explaimgdhe marginal
distributions of the posterior can be well approximated by Gaussians.

Further, the marginal likelihood values obtained by Laplace’s method ardifteP systemat-
ically which will lead to different results of ML-1l hyper-parameter estimatidine discrepancies
are similar for different tasks. We were able to exemplify that the EP appetion of the marginal
likelihood is accurate. To show this we described how AIS can be useddmambiased estimates
of the marginal likelihood for Gaussian process models.

In the experiments summarised in Table 1 we compared the predictive acofi@PC to sup-
port vector machines. While the SVMs show a tendency to give lower etes, the information
contained in predictive distributions seems comparable. Conceptually GRE€samith the advan-
tage that the Bayesian model selection can be used to set hyper-pasabyekék -1l estimation,
while the parameters of an SVM usually have to be set by cross-validatiadi¢gt based methods
exist, see e.g. Chapelle et al. (2002)).

In summary, we found that EP is the method of choice for approximate irdeiarbinary GPC
models, when the computational cost of MCMC is prohibitive. Very goo@gement is achieved
for both predictive probabilities and marginal likelihood estimates. In canttesLaplace approx-
imation is so inaccurate that we advise against its use, especially whentipeediobabilities are
to be taken seriously.
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Appendix A. Implementation of Laplace’s Approximation

In Sections 3 we described Laplace’s method for approximate inferentte iGPC model and
sketched the corresponding computations in Algorithm 1. In this appenddes&ibe our imple-
mentation of the method in more detail. See also the appendices of Williams and B£9&).

Computing Laplace’s approximatiai(fjm,A) for given 8 the main computational effort is
involved in finding the maximum of the unnormalised log posteria Ifeq. (8)). Our implementa-
tion uses Newton’s method to find the mode. In each Newton step the ¥estapdated according
to

fHl — ' —(O0In Q(fY)) 10sIn Q(fY) (37a)

= (K714wW)" (Wit + OfIn £(fY)) (37b)

until convergence off to the modam. To ensure convergence the update is accepted if the value of
the target function increases, otherwise the the step size is shortendd Quitf1) > In Q(f).

Computationally Newtons's method is dominated by the repeated inversion ofdbsia.
SinceK can be poorly conditioned we use the identity

(K 14+ W) =K —KW (I + W2KW 2)1WzK (38)
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such that only the well conditioned, positive definite ma(nlika%KW %) has to be inverted. In
our implementation the inverse is computed from a Cholesky decomposition of ttrig.mote
thatW is a diagonal matrix with positive entries, so computifig is trivial.

Note that implementing the Newton updates (37) only requireptbeuctof the inverse Hes-
sian times the gradient which can be computed more efficiently using an iteratigeggate gradient
method (Golub and Van Loan, 1989, ch. 10).

Having found the modm the marginal likelihood approximation (15) and its derivatives can be
computed. The approximate marginal likelihood takes the form

Ing(D|8) = InQ(mMm)+ In(2Tr) %In|A\ (39a)
= InL(m)—%mTK‘lm—%ln|l+KW|. (39b)

To avoid the direct inversion df in the second term of (39b) we use the recurrence relation (37b).
Leta= K ~Im then by substituting (38) into (37b) we obtain:

= (I —=WZ(l + WZKW 2)"'WzK ) (Wm + Of In £(m)) (40)
such tham TTm=m a e determinant in eq. can be rewritten
h tham K 1 Ta. The determinant in eq. (39b) can be rewri
In|l + KW | = In || +WZKW 2| (41)

and computed from the Cholesky decomposition, that was used to calcul@tedrse in eq. (38).
Note that ifM = LL T is a Cholesky decomposition then | = 25 InLj.

During ML-11 estimation (36) of hyper-parameters the approximate log matgikelihood (39)
is maximised as a function &. Our implementation is based on a conjugate gradient optimisation
routine such that we also need to compute the derivatives of (39b) wjithae® the elements &K

The dependency of the approximate marginal likelihood @ two-fold:

dlnq(D|6) dlnq(D)|0) aKk| dIng(2[6) om
60. g 0K 0 om’T 96,

(42)

there is a direct dependency via the terms involMiigand an implicit dependency through the
change irm (see also Williams and Barber (1998, Appendix B)).
The explicit derivative of eq. (39b) due to the direct dependencyettivariance matrix is

Z, K 36, _2m K GO.K m 2tr (1 +KW) 36, (43)

where the first term is computed usiag40) and the inverse in the second term can be rewritten as
(I+KW) =1 —(KT+wW)"w (44)

where the inverse (38) is already known.

The implicit derivative accounts for the dependency of eq. (3918 due to change in the mode
m. Differentiating eq. (39a) with respect to reduces t@In |A|/0m sincem is the maximum of
In Q and therefor@In Q /om vanishes.

olng(D|@)om 19K 1+W[om 1

JdW om
om _ 1ok "+wWjom 4 1
omT 96, 2 omT 06 2(

Ktow)y 12—
W) ST 8,

(45)
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The dependency oh on 6; is obtained by differentiating (11a) at:

0=kInL(m)—KIm — m=KkInL(m) (46)
> om oK om oK
_ _ -1
36, ~ 36 DfInL(m)-l—KDDfInL(m)aei = (I +KW) 30 OfIn £(m) (47)

and we have both terms necessary to compute the gradient (42).
To compute the predictive probability. = p(y. = 1|x.) for a test inpuk, the predictive distri-
bution (5) of the latent function value & f,|.,02) where

m = k/Km=k/a (48a)
02 = K(Xe,Xs) — KIW2 (I + WKW 2)" 2wk, (48b)

andp, can be computed from eq. (6).

Due to the Cholesky decomposition in (38) computing Laplace’s approximatiomis). How-
ever, following the implementation we described in this section a Cholesky desitop has to be
computed once per Newton step and all other quantities can be computeid ifm@ahmostO(n?).
The number of Newton steps necessary depends on the convergiéegery, the initialisation of
and the hyper-parametefis

Appendix B. Implementation of Expectation Propagation

In this appendix we describe details of our implementation of EP as descrilfgection 4 and
summarised in Algorithm 2. See also the appendices of Seeger (2003).

In our implementation the site functions (17) are parameterised in terms of Inedwaaeters
o; 2 ando; 2. For givend the algorithm starts by initialising = K ando; 2 = 0 anda; 2y = 0.
The algorithm proceeds by updating the site parameters in random andsact sweep every site
function is updated following equations (23), (25), and (26). Aftehagadate of a site function the
effect onm andA has to be computed according to (18). The change @an be computed using a
rank one update. L& be the change itri‘2 due to the update arglthe vector whoséh entry is 1
and all other 0. The relation

(K12 118eg ) T =A—-Ae(A;i +5 1) te'A (49)

can be used to updage Each single update i8(n?) and repeatethtimes per sweep, such that the
EP algorithm isO(m?) in time. Because of accumulating numerical errors, after a complete sweep
over all site functions we recompute the mathixrom scratch. For numerical stability we rewrite

A=K 14+ D 1loK-_KE (1 +2:KE2) 18 2K (50)

and compute the inverse from the Cholesky decompositicﬁhefZ*% KE*%).
After convergence the approximate log marginal likelihood (27) can be sted@nd its partial
derivatives with respect to the hyper-parameters:

dlnq(D|0) 1 <6K

o= " a—ai((K+2)‘1—(K+2)‘1WT(K+2)‘1)>- (51)
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which do not depend on tti& (Seeger, 2005).
The inverse oK + X can be computed from the inverse in eq. (50):

(K+X) t=S3(1+ X 2KE ) 193, (52)

For computing the log marginal likelihood (27) also the determiniént 3| has to be computed.
By rewriting
K+ =In(S[1 +ZK)) = In[S|+In|l + S 2K =2 (53)

we obtain an expression in which the first term is a determinant of a diagatek and the second
term can be computed from the Cholesky decomposition that was used to tect@lnverse in
eg. (50).

To compute the predictive probability. = p(y. =1|x.) for a test inpui, the predictive distri-
bution (5) of the latent function value & ( f.|., 02) where

o= kI(K+Z)'p (54a)
02 = KX, %) —k](K+2)k, (54b)

andp, can be computed from eq. (6).

The EP algorithm is of computational complexi(m?®) due to the computations for updat-
ing A. However, per sweep the computationf50) and them rank one updates sum to more
computational effort compared to Laplace’s method.

Using a covariance function of the form (33) for some data sets wewasaumerical problems
during ML-1l hyper-parameter estimation because the optimisation algoritkedds evaluate the
marginal likelihood for extremely large signal varianeg&s The problem stems from the property
that for large values o6 the marginal likelihood becomes insensitive to changes?inAt this
point it is recommended to take another look at Figure 1(b). Intuitivelyldige signal variances
the prior becomes more spread, such that the likelihood becomes more andimitar to a hard
truncation. The marginal likelihood equals the probability mass of the prior iarthant that is left
after truncation. But the probability mass in any of the orthants remains caiifstaly the signal
variance is changed for fixed correlation structure. This argumensisdoan the assumption that
the likelihood implements a hard truncation, which is only an approximation, bugppioximation
becomes better the largef is. Note that this insensitivity of the marginal likelihood with respect
to changes in the signal variance can already be observed in the ugpemop of the marginal
likelihood plots for EP in Figures 4 and 5. A possible solution to this problem is to difnit 10°,
say, since we wouldn't typically expect any new interesting behavioywmrmbthis.
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