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Abstract

Support vector machines (SVMs) have been recognized as one of the most successful classifica-
tion methods for many applications including text classification. Even though the learning ability
and computational complexity of training in support vectormachines may be independent of the
dimension of the feature space, reducing computational complexity is an essential issue to effi-
ciently handle a large number of terms in practical applications of text classification. In this paper,
we adopt novel dimension reduction methods to reduce the dimension of the document vectors
dramatically. We also introduce decision functions for thecentroid-based classification algorithm
and support vector classifiers to handle the classification problem where a document may belong to
multiple classes. Our substantial experimental results show that with several dimension reduction
methods that are designed particularly for clustered data,higher efficiency for both training and
testing can be achieved without sacrificing prediction accuracy of text classification even when the
dimension of the input space is significantly reduced.

Keywords: dimension reduction, support vector machines, text classification, linear discriminant
analysis, centroids

1. Introduction

Text classification is a supervised learning task for assigning text documents to pre-defined classes
of documents. It is used to find valuable information from a huge collection oftext documents
available in digital libraries, knowledge databases, the world wide web (WWW), and company-wide
intranets, to name a few. Several characteristics have been observed invector space based methods
for text classification (20; 21), including the high dimensionality of the input space, sparsity of
document vectors, linear separability in most text classification problems, and the belief that few
features are irrelevant. It has been conjectured that an aggressivedimension reduction may result in
a significant loss of information, and therefore, result in poor classification results (13).

Assume that training data(xi ,yi) with yi ∈ {−1,+1} for 1≤ i ≤ n are given. The dual formula-
tion of soft margin support vector machines (SVMs) with a kernel functionK and control parameter
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C is

max
αi

n

∑
i=1

αi −
1
2

n

∑
i, j=1

αiα jyiy jK(xi ,x j), (1)

s.t.
n

∑
i=1

αiyi = 0, 0≤ αi ≤C, i = 1, . . . ,n.

The kernel function
K(xi ,x j) =< φ(xi),φ(x j) >,

where<,> denotes an inner product between two vectors, is introduced to handle nonlinearly
separable cases without any explicit knowledge of the feature mappingφ. The formulation (1) shows
that the computational complexity of SVM training depends on the number of training data samples
which is denoted asn. The dimension of the feature space does not influence the computational
complexity of training or testing due to the use of the kernel function.

However, an often neglected fact is that the computational complexity of training depends on
thedimension of the input space. This is clear when we consider some typical kernel functions such
as the linear kernel

K(x,xi) =< x,xi >,

the polynomial kernel
K(x,xi) = [< x,xi > +β]d ,

whered is the degree of the polynomial, and the Gaussian RBF (radial basis function) kernel

K(x,xi) = exp(−γ‖x−xi‖2),

whereγ is a parameter to control. The evaluation of the kernel functiondepends on the dimension of
the input data, since the kernel functions contain the inner product of two input vectors for the linear
or polynomial kernels or the distance of two vectors for the Gaussian RBF kernel. Letα∗

i denote
the optimal solution for (1). The optimal separating hyperplanef (x,α∗,b) also requires evaluation
of the kernel function since

f (x,α∗,b) = ∑
xi∈SV

αiyiK(xi ,x)+b

whereSV denotes the set of support vectors,b is a bias given by

b = −minyi=1 < w∗,φ(xi) > +maxyi=−1 < w∗,φ(xi) >

2

and

w∗ =
l

∑
i=1

yiαi
∗φ(xi).

Therefore, more efficient testing as well as training is expected from dimension reduction.
Throughout the paper, we will assume that the document set is represented in anm×n term-

document matrixA = (ai j ), in which each column represents a document, and each entryai j repre-
sents the weighted frequency of termi in documentj (1; 2). The clustering of data is assumed to be
performed previously.
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In the next section, we review Latent Semantic Indexing (LSI) (2; 1), which uses the truncated
singular value decomposition (SVD) as a low-rank approximation ofA. Although the truncated SVD
provides the closest approximation toA in Frobenius orL2 norm, LSI ignores the cluster structure
while reducing the dimension of the data. In contrast, in Section 3, we review several dimension
reduction methods that are especially effective for classification of clustered data: two methods
based on centroids (16; 12), and one method which is a generalization of linear discriminant analysis
(LDA) using the generalized singular value decomposition (GSVD) (10). With dimension reduction,
computational complexity can be dramatically reduced for all classifiers including support vector
machines and k-nearest neighbor classification. For k-nearest neighbor classification (kNN), the
distances of vector pairs need to be computed when finding k nearest neighbors. Therefore, one can
significantly reduce computational complexity by dimension reduction.

In many document data sets, documents can be assigned to more than one cluster upon clas-
sification. To handle this problem more effectively, we introduce a threshold based extension of
several classification algorithms in Section 4. Our numerical experiments illustrate that the cluster-
preserving dimension reduction algorithms we employ reduce the data dimensionwithout any sig-
nificant loss of information. In fact, in many cases, they seem to have the effect of noise reduction,
since prediction accuracy becomes better after dimension reduction when compared to that in the
original high dimensional input space.

2. Low-Rank Approximation Using Latent Semantic Indexing

LSI is based on the assumption that there is some underlying latent semantic structure in the term-
document matrix that is corrupted by the wide variety of words used in documents and queries. This
is referred to as the problem of polysemy and synonymy (6). The basic idea is that if two document
vectors represent the same topic, they will share many associating words with a keyword, and they
will have very close semantic structures after dimension reduction via SVD. Thus LSI/SVD breaks
the original relationship of the data into linearly independent components (6), where the original
term vectors are represented by left singular vectors and document vectors by right singular vectors.
That is, if l ≤ rank(A), then

A≈Ul ΣlV
T
l

, where the columns ofUl are the leadingl left singular vectors,Σl is anl × l diagonal matrix with
the l largest singular values in nonincreasing order along its diagonal, and thecolumns ofVl are
the leadingl right singular vectors. ThenΣlVT

l is the reduced dimensional representation ofA, or
equivalently, a new documentq ∈ R

m×1 can be represented in thel -dimensional space asq̂ = UT
l q.

This low-rank approximation has been widely applied in information retrieval (2). Since the
complete orthogonal decomposition such as ULV or URV has computational advantages over the
SVD including easier updating (22; 23; 24) and downdating (17), dimension reduction by these
faster low-rank orthogonal decompositions has also been exploited (3).However, LSI ignores the
cluster structure while reducing the dimension. In addition, since there is no theoretical optimum
value for the reduced dimension, potentially expensive experimentation may be required to deter-
mine a reduced dimensionl . As we report in Section 5, classification results after LSI vary de-
pending upon the reduced dimension, classification method, and similarity measure employed. The
experimental results confirm that when the data set is already clustered, the dimension reduction
methods we present in the next section are more effective for classification of new data.
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Algorithm 1 : Centroid algorithm for Dimension Reduction

Given a data setA ∈ R
m×n with p clusters and a vectorq ∈ R

m×1, this algorithm computes ap
dimensional representationq̂ ∈ R

p×1 of q.

1. Compute the centroidci of the ith cluster, 1≤ i ≤ p

2. SetC =
[

c1 c2 · · · cp
]

3. Solve min̂q ‖Cq̂−q‖2

Algorithm 2 : Orthogonal Centroid algorithm for Dimension Reduction

Given a data setA ∈ R
m×n with p clusters and a vectorq ∈ R

m×1, this algorithm computes ap
dimensional representationq̂ of q.

1. Compute the centroidci of the ith cluster, 1≤ i ≤ p

2. SetC =
[

c1 c2 · · · cp
]

3. Compute the reduced QR decomposition ofC, which isC = QpR

4. q̂ = QT
pq

3. Dimension Reduction Algorithms for Clustered Data

To achieve greater efficiency in manipulating data represented in a high dimensional space, it is
often necessary to reduce the dimensiondramatically. In this section, several dimension reduction
methods that preserve the cluster structure are reviewed. Each method attempts to choose a projec-
tion to a reduced dimensional space that will capture the cluster structure ofthe data collection as
much as possible.

3.1 Centroid-based Algorithms for Dimension Reduction of ClusteredData

Suppose we are given a data matrixA whose columns are grouped intop clusters. Instead of
treating each column of the matrixA equally regardless of its membership in a specific cluster as
in LSI/SVD, we want to find a lower dimensional representationY of A so that thep clusters are
preserved inY. Given a term-document matrix, the problem is to find a transformation that maps
each document vector in them dimensional space to a vector in thel dimensional space for some
l < m. For this, either the dimension reducing transformationGT ∈ R

l×m is computed explicitly
or the problem is formulated as a rank reducing approximation where the given matrixA is to be
decomposed into two matricesB andY. That is,

A≈ BY (2)

whereB ∈ R
m×l with rank(B) = l andY ∈ R

l×n with rank(Y) = l . The matrixB accounts for the
dimension reducing transformation. However, it is not necessary to compute the dimension reducing
transformationG from B explicitly, as long as we can find the reduced dimensional representation
of a given data item. If the matrixB is already determined, the matrixY can be computed by solving
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the least squares problem (8; 12; 16)

min
B,Y

‖BY−A‖F . (3)

Any given documentq ∈ R
m×1 can be transformed to the lower dimensional space by solving the

minimization problem
min

q̂∈Rl×1
‖Bq̂−q‖2. (4)

Latent Semantic Indexing that utilizes the SVD (LSI/SVD) can be viewed as a variation of the
model (2) withB = Ul (16), whereUl ΣlVT

l is the rankl truncated SVD ofA. Then q̂ = UT
l q is

obtained by solving the least squares problem

min
q̂∈Rl×1

‖Bq̂−q‖2 = min
q̂∈Rl×1

‖Ul q̂−q‖2. (5)

In the Centroid dimension reduction algorithm (see Algorithm 1), theith column of B is the
centroid vector of theith cluster, which is the average of the data items in theith cluster, for 1≤ i ≤ p.
This matrixB is called the centroid matrix. Then, any vectorq ∈ R

m×1 can be represented in the
p dimensional space aŝq, the solution of the least squares problem (4), whereB is the centroid
matrix. In the Orthogonal Centroid algorithm (see Algorithm 2), thep dimensional representation
of a data vectorq ∈ R

m×1 is given asq̂ = QT
pq whereQp is an orthonormal basis for the centroid

matrix obtained from its QR decomposition.
The centroid-based dimension reduction algorithms are computationally less costly than LSI/SVD.

They are also more effective when the data are already clustered. Although the centroid-based
schemes can be applied only when the data are linearly separable, they aresuitable for text classifi-
cation problems, since text data is usually linearly separable in the original dimensional space (13).
For a nonlinear extension of the Orthogonal Centroid method that utilizes kernel functions, see (18).

3.2 Generalized Discriminant Analysis based on the Generalized Singular Value
Decomposition

Recently, a new algorithm has been developed for cluster-preserving dimension reduction based
on the generalized singular value decomposition (GSVD) (10). This algorithm generalizes classi-
cal discriminant analysis, by extending its application to very high-dimensional data such as that
encountered in text classification.

Classical discriminant analysis (7; 25) preserves cluster structure by maximizing the scatter
between clusters while minimizing the scatter within clusters. For this purpose, thewithin-cluster
scatter matrixSw and the between-cluster scatter matrixSb are defined. If we denote byNi the set
of column indices that belong to the clusteri, ni the number of columns in clusteri, andc the global
centroid, then

Sw =
p

∑
i=1

∑
j∈Ni

(a j −ci)(a j −ci)
T ,

and

Sb =
p

∑
i=1

∑
j∈Ni

(ci −c)(ci −c)T

=
p

∑
i=1

ni(ci −c)(ci −c)T .
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Algorithm 3 LDA/GSVD
Given a data matrixA∈ R

m×n with p clusters, this algorithm computes the columns of the matrix
G ∈ R

m×(p−1), which preserves the cluster structure in the reduced dimensional space, and it also
computes thep−1 dimensional representationY of A.

1. ComputeHb ∈ R
m×p andHw ∈ R

m×n from A according to Eqns. (7) and (6), respectively.

2. Compute the complete orthogonal decomposition ofH = (Hb,Hw)T ∈ R
(p+n)×m, which is

PTHQ =

(

R 0
0 0

)

.

3. Let t = rank(H).

4. Compute W from the SVD ofP(1 : p,1 : t), which isUTP(1 : p,1 : t)W = ΣA.

5. Compute the firstp−1 columns of

X = Q

(

R−1W 0
0 I

)

,

and assign them toG.

6. Y = GTA

Since

trace(Sw) =
p

∑
i=1

∑
j∈Ni

‖a j −ci‖2
2

measures the closeness within the clusters, and

trace(Sb) =
p

∑
i=1

∑
j∈Ni

‖ci −c‖2
2

measures the remoteness between the clusters, the goal is to minimize the former while maximizing
the latter in the reduced dimensional space. Once again lettingGT ∈R

l×m denote the transformation
that maps a column ofA in the m dimensional space to a vector in thel dimensional space, the
goal can be expressed as the simultaneous minimization of trace(GTSwG) and maximization of
trace(GTSbG).

WhenSw is nonsingular, this simultaneous optimization is commonly approximated by maxi-
mizing

J1(G) = trace((GTSwG)−1(GTSbG)).

It is well known that the global maximum is achieved when the columns ofG are the eigenvectors
of S−1

w Sb that correspond to thel largest eigenvalues (7; 25). In fact, when the reduced dimension
l ≥ p−1, trace(S−1

w Sb) is exactly preserved upon dimension reduction, and equalsλ1 + · · ·+λp−1,
where eachλi ≥ 0. Without loss of generality, we assume that the term-document matrixA is parti-
tioned as

A = [A1, · · · , Ap]
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where the columns of each blockAi ∈ R
m×ni belong to the clusteri. Defining the matrices

Hw = [a1−c1,a2−c1, . . . ,an−cp] ∈ R
m×n (6)

and
Hb = [

√
n1(c1−c), . . . ,

√
np(cp−c)] ∈ R

m×p, (7)

then
Sw = HwHT

w and Sb = HbHT
b .

As the product of anm×n matrix with ann×m matrix, Sw will be singular when the number of
termsm exceeds the number of documentsn. In that case, classical discriminant analysis fails.
However, if we rewrite the eigenvalue problemS−1

w Sbxi = λixi as

β2
i HbHT

b xi = α2
i HwHT

wxi ,

it can be solved by the GSVD.
The resulting algorithm, called LDA/GSVD, is summarized in Algorithm 3. It followsthe

construction of the Paige and Saunders (15) proof, but only computes the necessary part of the
GSVD. The most expensive step of LDA/GSVD is the complete orthogonal decomposition of the
compositeH matrix in Step 2. When max(p,n) � m, the SVD ofH = [HT

b ,HT
w ] ∈ R

(p+n)×m can be
computed by first computing the reduced QR decompositionHT = QHRH , and then computing the
SVD of RH ∈ R

(p+n)×(p+n) as

RH = Z

(

ΣH 0
0 0

)

PT .

This gives

H = RT
HQT

H = P

(

ΣH 0
0 0

)

ZTQT
H ,

where the columns ofQHZ ∈ R
m×(p+n) are orthonormal. There exists othogonalQ∈ R

m×m whose
first p+n columns areQHZ. Hence

H = P

(

ΣH 0
0 0

)

QT ,

where there are nowm− t zero columns to the right ofΣH . SinceRH ∈ R
(p+n)×(p+n) is a much

smaller matrix thanH ∈ R
(p+n)×m, the required memory is substantially reduced. In addition, the

computational complexity of the algorithm is reduced toO(mn2)+ O(n3) (8), since this step is the
dominating part.

4. Classification Methods

To test the effect of dimension reduction in text classification, three different classification methods
were used: centroid-based classification, k-nearest neighbor (kNN), and support vector machines
(SVMs). Each classification method is modified by introducing some threshold values to perform
classification correctly when a document has membership in multiple classes. Inthis section, we
briefly review the three classification methods and discuss their modifications.
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Algorithm 4 : Centroid-based Classification
Given a data matrixA with p clusters andp corresponding centroids,ci , 1≤ i ≤ p, and a vector
q ∈ R

m×1, this method finds the indexj of the cluster in which the vectorq belongs.

• find the indexj such thatsim(q,ci), 1≤ i ≤ p, is minimum (or maximum), wheresim(q,ci)
is the similarity measure betweenq andci . (For example,sim(q,ci) = ‖q−ci‖2 using theL2

norm, and we take the index with the minimum value. Using the cosine measure,

sim(q,ci) = cos(q,ci) =
qTci

‖q‖2‖ci‖2
,

and we take the index with the maximum value.)

4.1 Centroid-based Classification

Centroid-based classification, summarized in Algorithm 4, is one of the simplestclassification meth-
ods. A test document is assigned to a class that has the most similar centroid. Using the cosine
similarity measure, we can classify a test documentq by computing

arg max
1≤i≤p

qTci

‖q‖2‖ci‖2
(8)

whereci is the centroid of theith cluster of the training data. When dimension reduction is per-
formed by the Centroid algorithm, the centroids of the full space become the columnsei ∈ R

p×1 of
the identity matrix. Then the decision rule becomes

arg max
1≤i≤p

q̂Tei

‖q̂‖2‖ei‖2
, (9)

whereq̂ is the reduced dimensional representation of the documentq. This shows that classification
can be performed by simply finding the indexi of the vector̂q with the largest component. Centroid-
based classification has the advantage that the computation involved is extremely simple. We can
also classify using theL2 norm similarity measure by finding the centroid that is closest toq in L2

norm.
The original form of centroid-based classification finds the nearest centroid and assigns the

corresponding class as the predicted class. To allow an assignment of any document to multiple
classes, we introduce the decision rule for centroid-based classificationas

y(x, j) = sign{sim(x,c j)−θc
j}, (10)

wherey(x, j) ∈ {+1,−1} is the classification for documentx with respect to classj (if y > 0 then
the class isj, else the class is notj), sim(x,c j) is the similarity between the test documentx and the
centroid vectorc j for the classj, andθc

j is the class specific threshold for the binary decision for
y(x, j) in centroid-based classification. In this way, documentx will be a member of classj if its
similarity to the centroid vectorc j for the class is above the threshold.
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Algorithm 5 : k Nearest Neighbor (kNN) Classification

Given a data matrixA = [a1, . . . ,an] with p clusters and a vectorq ∈ R
m×1, this method finds the

cluster in which the vectorq belongs.

1. Using the similarity measuresim(q,a j) for 1≤ j ≤ n, find thek nearest neighbors ofq.

2. Among thesek vectors, count the number belonging to each cluster.

3. Assignq to the cluster with the greatest count in the previous step.

4.2 k-Nearest Neighbor Classification

The kNN algorithm, summarized in Algorithm 5, is one of the most commonly used classification
methods. To correctly predict the membership of a document which belongs tomultiple classes, we
used the following modified decision rule for kNN (29):

y(x, j) = sign{ ∑
di∈kNN

sim(x,di)y(di , j)−θkNN
j } (11)

wherekNN is the set of k nearest neighbors for documentx, y(di , j)∈ {+1,−1} is the classification
for documentdi with respect to classj (if y > 0 then the class isj, else the class is notj), sim(x,di)
is the similarity between the test documentx and the training documentdi , andθkNN

j is the class
specific threshold for kNN classification.

4.3 Support Vector Machines

The optimal separating hyperplane of the one-vs-rest binary classifiercan be obtained by conven-
tional SVMs. We introduce the following decision rule for support vector machines as

y(x, j) = sign{ ∑
xi∈SV

αiyiK(x,xi)+b−θSVM
j }, (12)

wherey(x, j) ∈ {+1,−1} is the classification for documentx with respect to classj, SV is the set
of support vectors, andθSVM

j is the class specific threshold for the binary decision. This threshold is
set so that a new documentx must not be classified to belong to classj when it is located very close
to the optimal separating hyperplane, i.e. when the decision is made with a low reliability. We use
the linear kernelK =< x,xi >, the polynomial kernelK = [< x,xi > +1]d , whered is the degree of
the polynomial, and the Gaussian RBF (radial basis function) kernelK = exp(−γ‖x−xi‖2), where
γ is a parameter that controls the width of the Gaussian function.

5. Experimental Results

Prediction results are compared for the test documents in the full space without any dimension re-
duction as well as those in the reduced space obtained by LSI/SVD, Centroid, Orthogonal Centroid,
and LDA/GSVD dimension reduction methods. For SVMs, we optimized the regularization param-
eterC, polynomial degreed for the polynomial kernel, andγ for the Gaussian RBF (radial basis
function) kernel for each full and reduced dimension data set.
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classification The rank-l approximation of LSI/SVD
methods l=5 l=100 l=200 l=300 l=500 l=1000 l=1246 l=1247 Full
centroid (L2) 71.6 82.2 83.4 83.9 84.8 84.9 85.2 85.2 85.2
centroid (Cosine) 78.5 86.9 87.1 87.6 88.0 88.2 88.3 88.3 88.3
5NN (L2) 77.8 68.8 55.4 49.2 63.8 76.9 79.0 79.0 79.0
15NN (L2) 77.5 69.7 52.7 50.3 76.3 74.7 83.4 83.4 83.4
30NN (L2) 77.5 64.3 47.8 58.0 80.8 73.2 83.8 83.8 83.8
5NN (Cosine) 77.8 82.2 79.1 79.6 79.4 78.7 77.8 77.8 77.8
15NN (Cosine) 80.2 83.1 82.5 83.6 82.9 82.5 82.5 82.5 82.5
30NN (Cosine) 79.8 83.4 83.8 84.1 84.2 84.1 83.8 83.8 83.8
SVM 79.1 87.6 88.4 88.5 88.6 89.2 89.7 89.7 88.9

Table 1: Text classification accuracy (%) using centroid-based classification, k-nearest neighbor
classification, and SVMs, with LSI/SVD dimension reduction on the MEDLINE data set.
The Euclidean norm (L2) and the cosine similarity measure (Cosine) were used for the
centroid-based and kNN classification.

The first data set that we used was a subset of the MEDLINE database with 5 classes. Each class
has 500 documents. The set was divided into 1250 training documents and 1250 test documents.
After stemming and stoplist removal, the training set contains 22095 distinct terms. For this data,
each document belongs to only one class, and we used the original form of the three classification
algorithms without introducing the threshold.

The second data set was the “ModApte” split of the Reuter-21578 text collection. We only used
90 classes for which there is at least one training and one test example in each class. It contains
7769 training documents and 3019 test documents. The training set contains11941 distinct terms
after preprocessing with stoplist removal and stemming. The Reuter data setcontains documents
that belong to multiple classes, so the classification methods utilize thresholds.

We used a standard weight factor for each word stem:

φi(x) =
t fi log(id fi)

κ
, (13)

wheret fi is the number of occurrences of termi in documentx, id fi = n/d is the ratio between
the total number of documentsn and the number of documentsd containing the term, andκ is the
normalization constant that makes‖φ‖2 = 1.

Table 1 reports text classification accuracy for the MEDLINE data set using LSI/SVD with a
range of values for the reduced dimension. The smallest reduced dimension, l = 5, is included in
order to compare with centroid-based and LDA/GSVD methods, which reduce the dimension to 5
and 4, respectively. Since the training set has the nearly-full rank of 1246, we include the reduced
dimensions 1246 and 1247 at the high end of the range. For a training set of size 1250, the reduced
dimensionl = 300 is generous. However, we observe that kNN classification withL2 norm simi-
larity produces poor classification results forl values from 100 to 500. This is consistent with the
common belief that cosine similarity performs better with unnormalized text data. Also, classifica-
tion accuracy using 5NN lags that for higher values of k, suggesting thatk=5 is too small for classes
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kernel Dimension reduction methods
Full Centroid Orthogonal LDA/ LDA/

Centroid GSVD4 GSVD5
22095×1250 5×1250 5×1250 4×1250 5×1250

linear (C=1.0) 88.1 88.9 85.9 86.5 86.6
linear (C=10.0) 88.9 88.5 88.3 86.7 86.7
linear (C=50.0) 88.9 87.7 88.8 87.1 87.1
linearopt 88.9 88.9 89.0 87.4 87.4
polynomial(d=2) 88.6 88.9 88.9 87.3 87.3
polynomial(d=3) 88.0 89.0 88.8 87.4 87.4
polynomial(d=4) 87.5 88.9 88.8 87.2 87.2
polynomial(d=5) 86.5 88.6 88.8 87.1 87.1
polynomialopt 88.6 89.0 88.9 87.4 87.4
RBF (γ = 0.5) 88.5 89.0 89.0 87.1 87.2
RBF (γ = 1.0) 87.6 89.2 89.0 87.3 87.2
RBF (γ = 1.5) 86.3 89.1 88.8 87.4 87.3
RBFopt 88.7 89.2 89.0 87.4 87.3

Table 2: Text classification accuracy (%) with different kernels in SVMswith and without dimen-
sion reduction on the MEDLINE data set. The regularization parameterC for each case
was optimized by numerical experiments. Dimension of each training term-document ma-
trix is shown. LDA/GSVD4 and LDA/GSVD5 represent the results from LDA/GSVD
where the reduced dimensions are 4 and 5, respectively.

of size 250. It is noteworthy that even with LSI, which makes no attempt to preserve the cluster
structure upon dimension reduction, SVM classification achieves very consistent classification re-
sults for reduced dimensions of 100 or greater, and the SVM accuracy exceeds that of the other
classification methods.

Table 2 shows text classification accuracy (%) with different kernels in SVMs, with and without
dimension reduction on the MEDLINE data set. Note that the linearopt values are optimal over all
the values of the regularization parameterC that we tried, and the RBFopt values are optimal over
all theγ values we tried. This table shows that the prediction results in the reduced dimension are
similar to those in the original full dimensional space, while achieving a significant reduction in
time and space complexity. In the reduced space obtained by the OrthogonalCentroid dimension
reduction algorithm, the classification accuracy is insensitive to the choice ofthe kernel. Thus, we
can choose the linear kernel in this case instead of the computationally more expensive polynomial
or RBF kernel.

Table 3 shows classification accuracy obtained by all three classification methods – centroid-
based, kNN with three different values of k, and the optimal result from SVM – for each dimension
reduced data set and the full space. For the LDA/GSVD dimension reduction method, the classi-
fication accuracy with cosine similarity measure is lower with centroid-based classification as well
as with kNN, while the results withL2 norm are better. This is due to the formulation of trace
optimization criteria in terms of theL2 norm. With LDA/GSVD, documents from the same class in
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classification Dimension reduction methods
methods Full Centroid Orthogonal LDA/ LDA/

Centroid GSVD4 GSVD5
22095×1250 5×1250 5×1250 4×1250 5×1250

centroid (L2) 85.2 88.0 85.2 88.7 88.7
centroid (Cosine) 88.3 88.0 88.3 83.9 83.9
5NN (L2) 79.0 88.4 88.6 81.5 86.6
15NN (L2) 83.4 88.3 87.8 88.7 88.6
30NN (L2) 83.8 88.8 88.5 88.7 88.5
5NN (Cosine) 77.8 88.6 88.2 83.8 84.1
15NN (Cosine) 82.5 88.2 88.5 83.8 84.1
30NN (Cosine) 83.8 88.3 88.6 83.8 84.1
SVM 88.9 89.2 89.0 87.4 87.4

Table 3: Text classification accuracy (%) using centroid-based classification, k-nearest neighbor
classification, and SVMs, with and without dimension reduction on the MEDLINEdata
set. The Euclidean norm (L2) and the cosine similarity measure (Cosine) were used for
centroid-based and kNN classification.

class Dimension reduction
Full Centroid Orthogonal LDA/ LDA/

Centroid GSVD4 GSVD5
22095×1250 5×1250 5×1250 4×1250 5×1250

heart attack 92.4 94.4 94.4 92.4 92.4
colon cancer 84.8 84.8 86.0 83.2 83.2
glycemic 95.6 97.6 98.0 95.2 95.2
oral cancer 82.0 75.2 73.6 78.8 78.8
tooth decay 89.6 94.0 92.8 87.2 87.2
microavg 88.9 89.2 89.0 87.4 87.4

Table 4: Text classification accuracy (%) of the 5 classes and the microaveraged performance over
all 5 classes on the MEDLINE data set. All results are from SVMs using optimal kernels.

the full dimensional space tend to be transformed to a very tight cluster or even to a single point in
the reduced space, since the LDA/GSVD algorithm tends to minimize the trace of the within cluster
scatter. This seems to make it difficult for SVMs to find a binary classifier with low generalization
error.

Table 4 shows text classification accuracy for the 5 classes using SVMs with and without dimen-
sion reduction methods on the MEDLINE data set. The colon cancer and oral cancer documents
were relatively hard to classify correctly.

The REUTERS data set has many documents that are classified to more than 2 classes, whereas
no document is classified to belong to more than one class in the MEDLINE data set. While we
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classification Dimension reduction
methods Full Centroid Orthogonal

Centroid
11941×9579 90×9579 90×9579

centroid(L2) 78.89 73.32 78.00
centroid(Cosine) 80.45 74.79 80.46
15NN 78.65 81.70 85.51
30NN 80.21 81.94 86.19
45NN 80.29 81.01 84.79
SVM 87.11 84.54 87.03

Table 5: Comparison of micro-averagedF1 scores for 3 different classification methods with and
without dimension reduction on the REUTERS data set. The Euclidean norm (L2) and the
cosine similarity measure (Cosine) were used for the centroid-based classification. The
cosine similarity measure was used for the kNN classification. The dimension ofthe full
training term-document matrix is 11941×9579 and that of the reduced matrix is 90×9579.

could handle relatively large matrices using a sparse matrix representation and sparse QR decom-
position in the Centroid and Orthogonal Centroid dimension reduction methods,results for the
LDA/GSVD dimension reduction method are not reported, since we ran out of memory while com-
puting the GSVD. For this data set, we built a series of threshold-based classifiers, optimizing the
thresholds to capture the multiple class membership. All class specific thresholds (θkNN

j , θc
j , θSVM

j )
are determined by numerical experiments. Though we obtained precision/recall break even points
by optimizing the thresholds, we report values of theF1 measure (26) which is defined as

F1 =
2rp
r + p

, (14)

wherer is recall andp is precision for a binary classification. Table 5 shows that the effectiveness
of classification was preserved for the Orthogonal Centroid dimension reduction algorithm, while it
became worse for the Centroid dimension reduction algorithm. This is due to a property of the Cen-
troid algorithm that the centroids of the full space are projected to the columnsof the identity matrix
in the reduced space. This orthogonality between the centroids may make it difficult to represent the
multiclass membership of a document by separating closely related classes after dimension reduc-
tion. The pattern of prediction measureF1 for each class is also preserved by Orthogonal Centroid
in Table 6. The macro-averagedF1 and micro-averagedF1 for the 10 most frequent classes are also
presented.

6. Conclusion and Discussion

In this paper, we applied three methods, Centroid, Orthogonal Centroid, and LDA/GSVD, which are
designed for reducing the dimension of clustered data. For comparison, we also applied LSI/SVD,
which does not attempt to preserve cluster structure upon dimension reduction. We tested the ef-
fectiveness in classification with dimension reduction using three differentclassification methods:

49



K IM , HOWLAND AND PARK

class Dimension reduction
Full Centroid Orthogonal

Centroid
11941×9579 90×9579 90×9579

earn 98.25 97.49 96.60
acq 95.57 95.45 94.94
money-fx 75.78 77.97 79.44
grain 92.88 86.62 92.26
crude 88.11 86.49 87.70
trade 75.32 75.11 77.25
interest 77.99 78.13 83.21
ship 84.09 85.71 88.00
wheat 84.14 81.94 84.06
corn 87.27 74.78 89.47
microavg (top 10) 92.21 91.32 92.21
avg (top 10) 85.94 83.96 87.32
microavg(all) 87.11 84.54 87.03

Table 6: F1 scores of the 10 most frequent classes and micro-averaged performance over all 90
classes on the REUTERS data set. All results are from SVMs using optimal kernels.
The dimension of the full training term-document matrix is 11941×9579 and that of the
reduced matrix is 90×9579.

SVMs, kNN, and centroid-based classification. For the three cluster-preserving methods, the re-
sults show surprisingly high prediction accuracy, which is essentially the same as in the original
full space, even with very dramatic dimension reduction. They justify dimension reduction as a
worthwhile preprocessing stage for achieving high efficiency and effectiveness. Especially for kNN
classification, the savings in computational complexity in classification after dimension reduction
are significant. In the case of SVM the savings are also clear, since the distance between two pairs
of input data points need to be computed repeatedly with and without the use ofthe kernel function,
and the vectors become significantly shorter with dimension reduction.

We have also introduced threshold based classifiers for centroid-based classification and SVMs
in order to capture the overlap structure between closely related classes.Prediction results with the
Centroid dimension reduction method became better compared to those from the full space for the
completely disjoint MEDLINE data set, but became worse for the REUTERS data set. Since the
Centroid dimension reduction method maps the centroids to unit vectorsei which are orthogonal
to each other, it is helpful for the disjoint data set, but not for a data set which contains documents
belonging multiple classes. We observed that prediction accuracy with the Orthogonal Centroid di-
mension reduction algorithm was preserved for SVMs as well as with centroid-based classification.
The Orthogonal Centroid dimension reduction method maximizes the between cluster relationship
using the relatively inexpensive reduced QR decomposition, compared to LDA/GSVD which also
considers the within cluster relationship but requires a more expensive rank revealing decomposition
such as the singular value decomposition (10; 11).
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The better prediction accuracy using SVMs is due to low generalization error by maximizing
the margin, and the capability to handle non-linearity by kernel choice. Although most classes of
the Reuters-21578 data set are linearly separable (13), there seems to be some level of non-linearity.
For non-linearly separable data, SVMs with appropriate nonlinear kernel functions would work as a
better classifier. Another way to handle non-linearly separable data is to apply nonlinear extensions
of the dimension reduction methods, including those presented in (18; 19). All of the dimension
reduction methods presented here can also be applied to visualize the higherdimensional structure
by reducing the dimension to 2- or 3-dimensional space.

We conclude that dramatic dimension reduction of text documents can be achieved, without
sacrificing classification accuracy. For the document sets we tested, the Orthogonal Centroid method
did particularly well at preserving the cluster structure from the full dimensional representation.
That is, the prediction accuracies for Orthogonal Centroid rival thoseof the full space, even though
the dimension is reduced to the number of clusters. The savings in computational complexity are
significant using either kNN classification or SVM.
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