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Abstract

Support vector machines (SVMs) have been recognized asfdhe most successful classifica-
tion methods for many applications including text clasatiien. Even though the learning ability
and computational complexity of training in support veatoachines may be independent of the
dimension of the feature space, reducing computationalptaxity is an essential issue to effi-
ciently handle a large number of terms in practical applicet of text classification. In this paper,
we adopt novel dimension reduction methods to reduce thertiion of the document vectors
dramatically. We also introduce decision functions for ¢teatroid-based classification algorithm
and support vector classifiers to handle the classificatioblpm where a document may belong to
multiple classes. Our substantial experimental resutbgvshat with several dimension reduction
methods that are designed particularly for clustered dagder efficiency for both training and
testing can be achieved without sacrificing prediction smcyiof text classification even when the
dimension of the input space is significantly reduced.

Keywords: dimension reduction, support vector machines, text diaasion, linear discriminant
analysis, centroids

1. Introduction

Text classification is a supervised learning task for assigning text dodarieepre-defined classes
of documents. It is used to find valuable information from a huge collecticiextfdocuments
available in digital libraries, knowledge databases, the world wide web (WW\akid company-wide
intranets, to name a few. Several characteristics have been obsememidnspace based methods
for text classification (20; 21), including the high dimensionality of the inmace, sparsity of
document vectors, linear separability in most text classification problerdsthaenbelief that few
features are irrelevant. It has been conjectured that an aggrdsseasion reduction may result in
a significant loss of information, and therefore, result in poor classiitaesults (13).

Assume that training daixi, yi) with y; € {—1,+1} for 1 <i < nare given. The dual formula-
tion of soft margin support vector machines (SVMs) with a kernel fundti@md control parameter
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Cis
1 n
max a; — = GidjyiyjK(Xi,Xj), (1)
i izl 2i,z
st. aiyi=0, 0<ao;<C, i=1,...,n.
2

The kernel function
K(Xi,Xj) =< @(xi),0(x;) >,

where <,> denotes an inner product between two vectors, is introduced to handli@esrly
separable cases without any explicit knowledge of the feature magppirige formulation (1) shows

that the computational complexity of SVM training depends on the number oirtgadlata samples
which is denoted aB. The dimension of the feature space does not influence the computational
complexity of training or testing due to the use of the kernel function.

However, an often neglected fact is that the computational complexity ofrtgadepends on
thedimension of the input spac&his is clear when we consider some typical kernel functions such
as the linear kernel

K(X,Xj) =< X, Xj >,

the polynomial kernel
K(X, %) = [< X, X} > +[3]d,

whered is the degree of the polynomial, and the Gaussian RBF (radial basis funietiorel
K (x,x;) = exp(—yllx —xi%),

wherey is a parameter to control. The evaluation of the kernel funa&pends on the dimension of
the input datasince the kernel functions contain the inner product of two input veétoithe linear
or polynomial kernels or the distance of two vectors for the Gaussian RBtek Leta; denote
the optimal solution for (1). The optimal separating hyperplafea*,b) also requires evaluation
of the kernel function since

f(x,a*,b) = Z a;yiK(xi,x)+b
Xi €SV
whereSV denotes the set of support vectdrss a bias given by

~miny_g < W5 Q(Xi) > +max,— 1 < W, (Xi) >

b= >

and |
iz 141 1

Therefore, more efficient testing as well as training is expected from dimeneduction.

Throughout the paper, we will assume that the document set is repgdsaranm x n term-
document matriXA = (&;j ), in which each column represents a document, and eachantspre-
sents the weighted frequency of terin documentj (1; 2). The clustering of data is assumed to be
performed previously.
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In the next section, we review Latent Semantic Indexing (LSI) (2; 1)ckwhses the truncated
singular value decomposition (SVD) as a low-rank approximatidgh dflthough the truncated SVD
provides the closest approximationAdn Frobenius o, norm, LSI ignores the cluster structure
while reducing the dimension of the data. In contrast, in Section 3, we rewesra dimension
reduction methods that are especially effective for classification of cadsidata: two methods
based on centroids (16; 12), and one method which is a generalizationasfdiseriminant analysis
(LDA) using the generalized singular value decomposition (GSVD) (1@h W¥mension reduction,
computational complexity can be dramatically reduced for all classifiers imgjuglipport vector
machines and k-nearest neighbor classification. For k-nearestooeiglassification (kNN), the
distances of vector pairs need to be computed when finding k nearelsbaesg Therefore, one can
significantly reduce computational complexity by dimension reduction.

In many document data sets, documents can be assigned to more than tereuglas clas-
sification. To handle this problem more effectively, we introduce a thitdgbased extension of
several classification algorithms in Section 4. Our numerical experimentsali@strat the cluster-
preserving dimension reduction algorithms we employ reduce the data dimevigiont any sig-
nificant loss of information. In fact, in many cases, they seem to havefwt ef noise reduction,
since prediction accuracy becomes better after dimension reduction wheggaced to that in the
original high dimensional input space.

2. Low-Rank Approximation Using Latent Semantic Indexing

LSl is based on the assumption that there is some underlying latent semarttiorstin the term-

document matrix that is corrupted by the wide variety of words used in dattsraad queries. This
is referred to as the problem of polysemy and synonymy (6). The basidddiat if two document
vectors represent the same topic, they will share many associating wibinds keyword, and they
will have very close semantic structures after dimension reduction via SWs LSI/SVD breaks
the original relationship of the data into linearly independent componentsvl@re the original

term vectors are represented by left singular vectors and docunetatsby right singular vectors.
That s, ifl <rank(A), then

Ax ULV’

, Where the columns adf;, are the leading) left singular vectorsg; is anl x | diagonal matrix with
thel largest singular values in nonincreasing order along its diagonal, anmblinens ofV, are
the leading right singular vectors. Theﬁ|\/,T is the reduced dimensional representatioi\obr
equivalently, a new documeqte R™! can be represented in thelimensional space @=U,"q.

This low-rank approximation has been widely applied in information retri2jal Since the
complete orthogonal decomposition such as ULV or URV has computatiomahtdjes over the
SVD including easier updating (22; 23; 24) and downdating (17), diman&duction by these
faster low-rank orthogonal decompositions has also been exploitetH{8)ever, LSI ignores the
cluster structure while reducing the dimension. In addition, since there iseooetical optimum
value for the reduced dimension, potentially expensive experimentation enegghired to deter-
mine a reduced dimensidn As we report in Section 5, classification results after LSI vary de-
pending upon the reduced dimension, classification method, and similarity reemsployed. The
experimental results confirm that when the data set is already clusteeedintension reduction
methods we present in the next section are more effective for classificdtiew data.
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Algorithm 1 : Centroid algorithm for Dimension Reduction

Given a data seh € R™" with p clusters and a vectar € R™1, this algorithm computes p
dimensional representatidéne RP*! of q.

1. Compute the centroig of theith cluster, 1<i < p
2.SetC=[c; ¢ -+ Cp

3. Solve min [|Cq —ql|2

Algorithm 2 : Orthogonal Centroid algorithm for Dimension Reduction

Given a data sef € R™" with p clusters and a vectar € R™?, this algorithm computes p
dimensional representatid@nof q.

1. Compute the centroig of theith cluster, 1<i < p
2.SetC=[c; ¢ -+ cp
3. Compute the reduced QR decompositio€pivhich isC = QpR

4. §=Qpq

3. Dimension Reduction Algorithms for Clustered Data

To achieve greater efficiency in manipulating data represented in a high slanahspace, it is
often necessary to reduce the dimengloamatically. In this section, several dimension reduction
methods that preserve the cluster structure are reviewed. Each methogtatie choose a projec-
tion to a reduced dimensional space that will capture the cluster structtie dhta collection as
much as possible.

3.1 Centroid-based Algorithms for Dimension Reduction of Clusteredata

Suppose we are given a data matAixwhose columns are grouped infoclusters. Instead of
treating each column of the matrix equally regardless of its membership in a specific cluster as
in LSI/SVD, we want to find a lower dimensional representaloaf A so that thep clusters are
preserved irY. Given a term-document matrix, the problem is to find a transformation that maps
each document vector in the dimensional space to a vector in thdimensional space for some

| < m. For this, either the dimension reducing transformat@ne R'*™ is computed explicitly

or the problem is formulated as a rank reducing approximation where tha giatrixA is to be
decomposed into two matricBsandY. That is,

A~ BY 2

whereB € R™! with rank®) = | andY € R'*" with rank(Y) = |. The matrixB accounts for the
dimension reducing transformation. However, it is not necessary to dertipudimension reducing
transformatiorG from B explicitly, as long as we can find the reduced dimensional representation
of a given data item. If the matriR is already determined, the matixcan be computed by solving
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the least squares problem (8; 12; 16)
min||BY —Alle.- ®3)

Any given document] € R™? can be transformed to the lower dimensional space by solving the
minimization problem

_min [|B4—ql2. (4)
qERle

Latent Semantic Indexing that utilizes the SVD (LSI/SVD) can be viewed asiation of the
model (2) withB = U, (16), whereU;ZV|" is the rankl truncated SVD ofA. Thend =U,"q is
obtained by solving the least squares problem

min ||Bg — = min ||U§—qll». 5
quMH q—all2 quMH 1a—qll2 (5)

In the Centroid dimension reduction algorithm (see Algorithm 1),ithecolumn of B is the
centroid vector of théh cluster, which is the average of the data items inttheluster, for 1<i < p.
This matrixB is called the centroid matrix. Then, any vectpe R™1 can be represented in the
p dimensional space &g the solution of the least squares problem (4), whgiie the centroid
matrix. In the Orthogonal Centroid algorithm (see Algorithm 2), phdimensional representation
of a data vectog € R™! is given asjj = Q,T)q whereQ)p is an orthonormal basis for the centroid
matrix obtained from its QR decomposition.

The centroid-based dimension reduction algorithms are computationally Ehstban LSI/SVD.
They are also more effective when the data are already clustered. githbe centroid-based
schemes can be applied only when the data are linearly separable, tisejtaloée for text classifi-
cation problems, since text data is usually linearly separable in the originahsiiomal space (13).
For a nonlinear extension of the Orthogonal Centroid method that utilizaslKenctions, see (18).

3.2 Generalized Discriminant Analysis based on the Generalized Singular Vadu
Decomposition

Recently, a new algorithm has been developed for cluster-preseriimension reduction based
on the generalized singular value decomposition (GSVD) (10). This algog#éneralizes classi-
cal discriminant analysis, by extending its application to very high-dimenk@ata such as that
encountered in text classification.

Classical discriminant analysis (7; 25) preserves cluster structure kimizang the scatter
between clusters while minimizing the scatter within clusters. For this purposwijttiin-cluster
scatter matrixS, and the between-cluster scatter magxare defined. If we denote by the set
of column indices that belong to the clusten; the number of columns in clustgrandc the global
centroid, then

o

Su= Zw(aj —ci)(aj—a),

i=1jeN;
and
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Algorithm 3 LDA/GSVD

Given a data matribA € R™" with p clusters, this algorithm computes the columns of the matrix
G e R™(P-1) which preserves the cluster structure in the reduced dimensional, spati also
computes thg — 1 dimensional representatianof A.

1. ComputeHp € R™P andH,, € R™" from A according to Eqns. (7) and (6), respectively.

2. Compute the complete orthogonal decompositioH ef (Hy, Hy)T € R(P*W>M which is

PTHQ—((F; g).

3. Lett =rank(H).
4. Compute W from the SVD dP(1: p,1:t), which isUTP(1:p,1:t)W = Za.

5. Compute the firsp — 1 columns of

1
x=a( 5" 7).

and assign them tG.

6. Y=G'A

Since ,
trace(Sy) = lay —cill3
I;]GZI.

measures the closeness within the clusters, and
p

waceS) =y 3 ol
1I=1]elN;

measures the remoteness between the clusters, the goal is to minimize the foi@enaximizing
the latter in the reduced dimensional space. Once again I&firgR'*™ denote the transformation
that maps a column of in the m dimensional space to a vector in thelimensional space, the
goal can be expressed as the simultaneous minimization off @48gG) and maximization of
tracdG' $,G).

When S, is nonsingular, this simultaneous optimization is commonly approximated by maxi-
mizing

J1(G) = tracd (G"S,G) 1(GTS,G)).
It is well known that the global maximum is achieved when the columr afe the eigenvectors
of S;'S, that correspond to thielargest eigenvalues (7; 25). In fact, when the reduced dimension
| > p—1, traceS,'S,) is exactly preserved upon dimension reduction, and edyals - - +Ap_1,
where each\; > 0. Without loss of generality, we assume that the term-document nfatsiyarti-
tioned as
A=A, -, A
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where the columns of each blogk € R™"™ belong to the clustar Defining the matrices

Hw = [a1 —C1,82 —C1,...,a8n — Cp] € R™" (6)
and

Hp = [y/M1(CL—©),...,/Mp(Cp —C)] € R™P, (7)
then

Sv=HwH, and S =H,H].

As the product of am x n matrix with ann x m matrix, S, will be singular when the number of
termsm exceeds the number of documents In that case, classical discriminant analysis fails.
However, if we rewrite the eigenvalue probleptSx; = Aix; as

BZHpH. i = o2HyH,! i,

it can be solved by the GSVD.

The resulting algorithm, called LDA/GSVD, is summarized in Algorithm 3. It follcie
construction of the Paige and Saunders (15) proof, but only compuwtesettessary part of the
GSVD. The most expensive step of LDA/GSVD is the complete orthogorwmposition of the
compositeH matrix in Step 2. When mayp,n) < m, the SVD ofH = [H/,H}}] € R(P*W*M can pe
computed by first computing the reduced QR decomposkibr= Qy Ry, and then computing the

SVD of Ry € R(PTMx(pn) 55
B S 0\ 7
RH_Z<O 0>P.

2y O
H=RLQL=P( o O)ZTQL,

This gives

where the columns d@yZ € R™(P+1) are orthonormal. There exists othogo@a R™™ whose
first p+n columns arQyZ. Hence

(Zn 0\ 7

where there are nom—t zero columns to the right ofy;. SinceRy € R(PH*(PM s 3 much
smaller matrix tharH € R(P*W*M the required memory is substantially reduced. In addition, the
computational complexity of the algorithm is reducedtamr?) + O(n®) (8), since this step is the
dominating part.

4. Classification Methods

To test the effect of dimension reduction in text classification, three diffasiassification methods
were used: centroid-based classification, k-nearest neighbor)(ldld support vector machines
(SVMs). Each classification method is modified by introducing some threslatlés to perform
classification correctly when a document has membership in multiple class#ss bection, we
briefly review the three classification methods and discuss their modifications.
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Algorithm 4 : Centroid-based Classification
Given a data matriA with p clusters and corresponding centroids;, 1 <i < p, and a vector
q € R™, this method finds the indejxof the cluster in which the vectay belongs.

e find the indexj such thasim(q,¢;), 1 <i < p, is minimum (or maximum), whersim(q, ¢;)
is the similarity measure betweerandc;. (For examplesim(q,c;) = ||q — Gi||2 using thel,
norm, and we take the index with the minimum value. Using the cosine measure,

. q'c

and we take the index with the maximum value.)

4.1 Centroid-based Classification

Centroid-based classification, summarized in Algorithm 4, is one of the singidssification meth-
ods. A test document is assigned to a class that has the most similar centsingy the cosine
similarity measure, we can classify a test docuney computing

q'c
arg maX —m——— 8
9025 Tall2llllz ©

whereg; is the centroid of théth cluster of the training data. When dimension reduction is per-
formed by the Centroid algorithm, the centroids of the full space become linmesg € RP*! of
the identity matrix. Then the decision rule becomes

q'e
arg max ————, ©)
1<i<p [|Q]]2]|& |2

whereq is the reduced dimensional representation of the docuqerttis shows that classification
can be performed by simply finding the indesf the vectoig with the largest component. Centroid-
based classification has the advantage that the computation involved is dxtsam@e. We can
also classify using the, norm similarity measure by finding the centroid that is closest ito Lo
norm.

The original form of centroid-based classification finds the nearegtaid and assigns the
corresponding class as the predicted class. To allow an assignment dbeurment to multiple
classes, we introduce the decision rule for centroid-based classifieation

y(x, J) = sign{sim(x, c;) — 67}, (10)

wherey(x, j) € {+1,—1} is the classification for documertwith respect to class (if y > 0 then
the class ig, else the class is ng}, sim(x, ¢j) is the similarity between the test documerand the
centroid vector; for the classj, ande‘J? is the class specific threshold for the binary decision for
y(X, j) in centroid-based classification. In this way, documentll be a member of class if its
similarity to the centroid vectar; for the class is above the threshold.
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Algorithm 5 : k Nearest Neighbor (kNN) Classification

Given a data matribA = [ay, ..., a,] with p clusters and a vectay € R™, this method finds the
cluster in which the vectay belongs.

1. Using the similarity measusgm(q,a;) for 1 < j <n, find thek nearest neighbors of
2. Among thesd vectors, count the number belonging to each cluster.

3. Assignq to the cluster with the greatest count in the previous step.

4.2 k-Nearest Neighbor Classification

The kNN algorithm, summarized in Algorithm 5, is one of the most commonly usedifitasgion
methods. To correctly predict the membership of a document which belonggtiple classes, we
used the following modified decision rule for KNN (29):

y(x, j) = sign{ sim(x, d;)y(d;, ) — 8NN} (11)

diekNN

wherekNN s the set of k nearest neighbors for documen{(d;, j) € {+1, —1} is the classification
for document; with respect to clasg (if y > 0 then the class i§, else the class is ng}, sim(x, d;)
is the similarity between the test documenand the training documeik;, ande'j‘NN is the class
specific threshold for KNN classification.

4.3 Support Vector Machines

The optimal separating hyperplane of the one-vs-rest binary clagsifiebe obtained by conven-
tional SVMs. We introduce the following decision rule for support vectochitzes as

y(x, i) =sign{ 5 aiyiK(x,x)+b—65"M}, (12)

Xi €SV

wherey(x, j) € {+1,—1} is the classification for documenrtwith respect to clasg, SV is the set

of support vectors, arﬂ?v'\" is the class specific threshold for the binary decision. This threshold is
set so that a new documenimust not be classified to belong to clgsshen it is located very close

to the optimal separating hyperplane, i.e. when the decision is made with a lohilitylidVe use

the linear kerneK =< x, x; >, the polynomial kerneK = [< X, x; > +1]d , whered is the degree of

the polynomial, and the Gaussian RBF (radial basis function) ké&rekexp(—y||x — xi||%), where

yis a parameter that controls the width of the Gaussian function.

5. Experimental Results

Prediction results are compared for the test documents in the full spaceut\giin dimension re-
duction as well as those in the reduced space obtained by LSI/SVD, @e@rthogonal Centroid,
and LDA/GSVD dimension reduction methods. For SVMs, we optimized the negatimn param-
eterC, polynomial degrea for the polynomial kernel, ang for the Gaussian RBF (radial basis
function) kernel for each full and reduced dimension data set.
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classification The rankapproximation of LSI/SVD

methods =5 1=100 [=200 [=300 I=500 [=1000 1=1246 [=1247 Full
centroid () 716 822 834 839 848 84.9 85.2 85.2 85.2
centroid (Cosine) 785 869 87.1 876 88.0 88.2 88.3 88.3 88.3
5NN (Lo) 778 688 554 492 638 76.9 79.0 79.0 79.0
15NN (L2) 775 69.7 527 503 76.3 74.7 83.4 83.4 834
30NN (L2) 775 643 478 580 808 73.2 83.8 83.8 83.8

5NN (Cosine) 778 822 791 79.6 794 78.7 77.8 778 77.8
15NN (Cosine) 80.2 831 825 836 829 82.5 82.5 825 825
30NN (Cosine) 798 834 838 841 84.2 84.1 83.8 83.8 83.8
SVM 79.1 876 884 885 886 89.2 89.7 89.7 88.9

Table 1: Text classification accuracy (%) using centroid-based ctzdifi, k-nearest neighbor
classification, and SVMs, with LSI/SVD dimension reduction on the MEDLINiEadet.
The Euclidean normL() and the cosine similarity measure (Cosine) were used for the
centroid-based and kNN classification.

The first data set that we used was a subset of the MEDLINE datalihs® elasses. Each class
has 500 documents. The set was divided into 1250 training document&Qdeist documents.
After stemming and stoplist removal, the training set contains 22095 distinct.t&wnshis data,
each document belongs to only one class, and we used the original fohe three classification
algorithms without introducing the threshold.

The second data set was the “ModApte” split of the Reuter-21578 tégtton. We only used
90 classes for which there is at least one training and one test examplehirclaas. It contains
7769 training documents and 3019 test documents. The training set calit@ihs distinct terms
after preprocessing with stoplist removal and stemming. The Reuter datargeins documents
that belong to multiple classes, so the classification methods utilize thresholds.

We used a standard weight factor for each word stem:

@ (x) = Liloglidfi) (13)

K
wheret f; is the number of occurrences of teinm document, id f; = n/d is the ratio between
the total number of documentsand the number of documerdscontaining the term, ankl is the
normalization constant that makig||> = 1.

Table 1 reports text classification accuracy for the MEDLINE data sagusSI/SVD with a
range of values for the reduced dimension. The smallest reduced dimgnsi®, is included in
order to compare with centroid-based and LDA/GSVD methods, which estihecdimension to 5
and 4, respectively. Since the training set has the nearly-full ranR4%,iwe include the reduced
dimensions 1246 and 1247 at the high end of the range. For a traininfjsiz¢ 4250, the reduced
dimensionl = 300 is generous. However, we observe that KNN classification lyitihorm simi-
larity produces poor classification results foralues from 100 to 500. This is consistent with the
common belief that cosine similarity performs better with unnormalized text data, élbssifica-
tion accuracy using 5NN lags that for higher values of k, suggestind#ftaits too small for classes
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kernel Dimension reduction methods
Full Centroid Orthogonal  LDA/ LDA/
Centroid GSVD4 GSVD5
22095<1250 5x1250 B5x1250  4x1250 5x1250

linear (C=1.0) 88.1 88.9 85.9 86.5 86.6
linear (C=10.0) 88.9 88.5 88.3 86.7 86.7
linear (C=50.0) 88.9 87.7 88.8 87.1 87.1
linearP 88.9 88.9 89.0 87.4 87.4
polynomial(d=2) 88.6 88.9 88.9 87.3 87.3
polynomial(d=3) 88.0 89.0 88.8 87.4 87.4
polynomial(d=4) 87.5 88.9 88.8 87.2 87.2
polynomial(d=5) 86.5 88.6 88.8 87.1 87.1
polynomiafP 88.6 89.0 88.9 87.4 87.4
RBF (y=0.5) 88.5 89.0 89.0 87.1 87.2
RBF (y=1.0) 87.6 89.2 89.0 87.3 87.2
RBF (y=1.5) 86.3 89.1 88.8 87.4 87.3
RBFP 88.7 89.2 89.0 87.4 87.3

Table 2: Text classification accuracy (%) with different kernels in S\Wiith and without dimen-
sion reduction on the MEDLINE data set. The regularization paranifer each case
was optimized by numerical experiments. Dimension of each training term-do¢umae
trix is shown. LDA/GSVD4 and LDA/GSVDS5 represent the results from LBSVD
where the reduced dimensions are 4 and 5, respectively.

of size 250. It is noteworthy that even with LSI, which makes no attempt teepve the cluster
structure upon dimension reduction, SVM classification achieves verystenssclassification re-
sults for reduced dimensions of 100 or greater, and the SVM accuxaegeds that of the other
classification methods.

Table 2 shows text classification accuracy (%) with different kernel®M<$ with and without
dimension reduction on the MEDLINE data set. Note that the IRifeaalues are optimal over all
the values of the regularization parame@athat we tried, and the RBP! values are optimal over
all they values we tried. This table shows that the prediction results in the reducedsionare
similar to those in the original full dimensional space, while achieving a signifieaduction in
time and space complexity. In the reduced space obtained by the Orthdgemabid dimension
reduction algorithm, the classification accuracy is insensitive to the choite deernel. Thus, we
can choose the linear kernel in this case instead of the computationally npenesése polynomial
or RBF kernel.

Table 3 shows classification accuracy obtained by all three classificatitirodse— centroid-
based, kNN with three different values of k, and the optimal result frétil S for each dimension
reduced data set and the full space. For the LDA/GSVD dimension reduaithod, the classi-
fication accuracy with cosine similarity measure is lower with centroid-basedifitation as well
as with kNN, while the results with, norm are better. This is due to the formulation of trace
optimization criteria in terms of thie; norm. With LDA/GSVD, documents from the same class in
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classification Dimension reduction methods
methods Full Centroid Orthogonal  LDA/ LDA/
Centroid GSVD4 GSVD5
22095<1250 5x1250 5<1250  4x1250 5x1250

centroid (2) 85.2 88.0 85.2 88.7 88.7
centroid (Cosine) 88.3 88.0 88.3 83.9 83.9
5NN (L2) 79.0 88.4 88.6 81.5 86.6
15NN (Lo) 83.4 88.3 87.8 88.7 88.6
30NN (L2) 83.8 88.8 88.5 88.7 88.5
5NN (Cosine) 77.8 88.6 88.2 83.8 84.1
15NN (Cosine) 82.5 88.2 88.5 83.8 84.1
30NN (Cosine) 83.8 88.3 88.6 83.8 84.1
SVM 88.9 89.2 89.0 87.4 87.4

Table 3:

Table 4:

Text classification accuracy (%) using centroid-based clagsif, k-nearest neighbor
classification, and SVMs, with and without dimension reduction on the MEDLdld&
set. The Euclidean norni§) and the cosine similarity measure (Cosine) were used for
centroid-based and kNN classification.

class Dimension reduction
Full Centroid Orthogonal  LDA/ LDA/
Centroid GSVD4 GSVD5
22095<1250 5x1250 5<1250  4x1250 5x1250

heart attack 924 94.4 94.4 92.4 92.4
colon cancer 84.8 84.8 86.0 83.2 83.2
glycemic 95.6 97.6 98.0 95.2 95.2
oral cancer 82.0 75.2 73.6 78.8 78.8
tooth decay 89.6 94.0 92.8 87.2 87.2
microavg 88.9 89.2 89.0 87.4 87.4

Text classification accuracy (%) of the 5 classes and the migexgad performance over
all 5 classes on the MEDLINE data set. All results are from SVMs using opkieraels.

the full dimensional space tend to be transformed to a very tight clusteearteva single point in
the reduced space, since the LDA/GSVD algorithm tends to minimize the trace wftthin cluster

scatter.
error.

This seems to make it difficult for SVMs to find a binary classifier withgeneralization

Table 4 shows text classification accuracy for the 5 classes using S\Mand without dimen-
sion reduction methods on the MEDLINE data set. The colon cancer ahdameer documents
were relatively hard to classify correctly.

The

REUTERS data set has many documents that are classified to more tasse® cwhereas

no document is classified to belong to more than one class in the MEDLINE elat&hile we
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classification Dimension reduction
methods Full Centroid Orthogonal
Centroid
11941x9579 90<9579 90<9579
centroid(») 78.89 73.32 78.00
centroid(Cosine) 80.45 74.79 80.46
15NN 78.65 81.70 85.51
30NN 80.21 81.94 86.19
45NN 80.29 81.01 84.79
SVM 87.11 84.54 87.03

Table 5: Comparison of micro-averagedscores for 3 different classification methods with and
without dimension reduction on the REUTERS data set. The Euclidean hgjrar(d the
cosine similarity measure (Cosine) were used for the centroid-basedickigs. The
cosine similarity measure was used for the kNN classification. The dimensibie &dll
training term-document matrix is 11949579 and that of the reduced matrix is88679.

could handle relatively large matrices using a sparse matrix representat@parse QR decom-
position in the Centroid and Orthogonal Centroid dimension reduction methesigits for the
LDA/GSVD dimension reduction method are not reported, since we ranfosemory while com-
puting the GSVD. For this data set, we built a series of threshold-basesifieless optimizing the
thresholds to capture the multiple class membership. All class specific thres(@@iﬂ, ¢, GJ-SVM)
are determined by numerical experiments. Though we obtained precis@hbeeak even points
by optimizing the thresholds, we report values of Faeneasure (26) which is defined as

- 2P (14)
r+p
wherer is recall andp is precision for a binary classification. Table 5 shows that the effe@sagen
of classification was preserved for the Orthogonal Centroid dimensituttien algorithm, while it
became worse for the Centroid dimension reduction algorithm. This is due ¢parpy of the Cen-
troid algorithm that the centroids of the full space are projected to the colahthe identity matrix
in the reduced space. This orthogonality between the centroids may makieitltid represent the
multiclass membership of a document by separating closely related classefiraéiasion reduc-
tion. The pattern of prediction measufefor each class is also preserved by Orthogonal Centroid
in Table 6. The macro-averag€&g and micro-averageB; for the 10 most frequent classes are also
presented.

6. Conclusion and Discussion

In this paper, we applied three methods, Centroid, Orthogonal Centruid,2A/GSVD, which are
designed for reducing the dimension of clustered data. For comparigoalse applied LSI/SVD,
which does not attempt to preserve cluster structure upon dimensiorticedud/e tested the ef-
fectiveness in classification with dimension reduction using three diffetassification methods:
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class Dimension reduction
Full Centroid Orthogonal
Centroid
11941x9579 90<9579 90<9579
earn 98.25 97.49 96.60
acq 95.57 95.45 94.94
money-fx 75.78 77.97 79.44
grain 92.88 86.62 92.26
crude 88.11 86.49 87.70
trade 75.32 75.11 77.25
interest 77.99 78.13 83.21
ship 84.09 85.71 88.00
wheat 84.14 81.94 84.06
corn 87.27 74.78 89.47
microavg (top 10) 92.21 91.32 92.21
avg (top 10) 85.94 83.96 87.32
microavg(all) 87.11 84.54 87.03

Table 6: F; scores of the 10 most frequent classes and micro-averaged pemfigroger all 90
classes on the REUTERS data set. All results are from SVMs using optimadl&e
The dimension of the full training term-document matrix is 1199579 and that of the
reduced matrix is 999579.

SVMs, kNN, and centroid-based classification. For the three clusésepring methods, the re-
sults show surprisingly high prediction accuracy, which is essentially time ses in the original
full space, even with very dramatic dimension reduction. They justify dimansduction as a
worthwhile preprocessing stage for achieving high efficiency andtfimess. Especially for KNN
classification, the savings in computational complexity in classification after dioreneduction
are significant. In the case of SVM the savings are also clear, since taaaidetween two pairs
of input data points need to be computed repeatedly with and without the tieelafrnel function,
and the vectors become significantly shorter with dimension reduction.

We have also introduced threshold based classifiers for centroid-bssification and SVMs
in order to capture the overlap structure between closely related cl&ssel&ction results with the
Centroid dimension reduction method became better compared to those fronti #pate for the
completely disjoint MEDLINE data set, but became worse for the REUTERS sid. Since the
Centroid dimension reduction method maps the centroids to unit vegtarsich are orthogonal
to each other, it is helpful for the disjoint data set, but not for a data ketmcontains documents
belonging multiple classes. We observed that prediction accuracy with theganal Centroid di-
mension reduction algorithm was preserved for SVMs as well as with ééfiiesed classification.
The Orthogonal Centroid dimension reduction method maximizes the betwegsr cklationship
using the relatively inexpensive reduced QR decomposition, comparedA63aSVD which also
considers the within cluster relationship but requires a more expensieaeealing decomposition
such as the singular value decomposition (10; 11).
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The better prediction accuracy using SVMs is due to low generalization lgyronaximizing
the margin, and the capability to handle non-linearity by kernel choice. Adfnooost classes of
the Reuters-21578 data set are linearly separable (13), there seemrsotadlevel of non-linearity.
For non-linearly separable data, SVMs with appropriate nonlinear kienmetions would work as a
better classifier. Another way to handle non-linearly separable data iplpragnlinear extensions
of the dimension reduction methods, including those presented in (18; 199f the dimension
reduction methods presented here can also be applied to visualize thediighasional structure
by reducing the dimension to 2- or 3-dimensional space.

We conclude that dramatic dimension reduction of text documents can beedhweithout
sacrificing classification accuracy. For the document sets we testedittimg@nal Centroid method
did particularly well at preserving the cluster structure from the full dirferad representation.
That is, the prediction accuracies for Orthogonal Centroid rival thbsee full space, even though
the dimension is reduced to the number of clusters. The savings in computatomaexity are
significant using either KNN classification or SVM.
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