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Abstract

Recent work has introduced Boolean kernels with which omelearn linear threshold functions
over a feature space containing all conjunctions of lengttol (for any 1< k < n) over the original

n Boolean features in the input space. This motivates thetigmesf whether maximum margin
algorithms such as Support Vector Machines can learn DisiggnNormal Form expressions in
the Probably Approximately Correct (PAC) learning modelusing this kernel. We study this
guestion, as well as a variant in which structural risk miaation (SRM) is performed where the
class hierarchy is taken over the length of conjunctions.

We show that maximum margin algorithms using the Booleanddsrdo not PAC leart(n)-
term DNF for anyt(n) = w(1), even when used with such a SRM scheme. We also consider PAC
learning under the uniform distribution and show that if #&¥nel uses conjunctions of length
®(y/n) then the maximum margin hypothesis will fail on the uniforistdbution as well. Our
results concretely illustrate that margin based algorgmnay overfit when learning simple target
functions with natural kernels.

Keywords: computational learning theory, kernel methods, PAC legyriBoolean functions

1. Introduction

Maximum margin algorithms, notably the Support Vector Machines (SVM) inikted by Boser

et al. (1992), have received considerable attention in recent y&@sd.g., Shawe-Taylor and Cris-
tianini, 2000, for an introduction). In their basic form, SVM learn linear $hidd hypotheses and
combine two powerful ideas. The first idea is to learn using the linear aparhich achieves

the maximum margiron the training data rather than an arbitrary consistent linear threshold hy-
pothesis. The second idea is to use an implicit feature expansiorkénnal function The kernel

K: X x X — R, whereX is the original space of examples, computes the inner product in the ex-
panded feature space. Given a kerdelvhich corresponds to some expanded feature space, the
SVM hypothesidh is (an implicit representation of) the maximum margin linear threshold hypoth-
esis over this expanded feature space rather than the original fepaioe SVM theory (see, e.g.,
Shawe-Taylor and Cristianini, 2000) implies that if the kerkes efficiently computable then it is
possible to efficiently construct this maximum margin hypothbesasd thath itself is efficiently
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computable. Several on-line algorithms have also been proposed whadiver construct large
margin hypotheses in the feature space (see, e.g., Friess et al., 198i&,G601).

Both theoretical and experimental studies suggest that such algorithmseralyleto take
advantage of properties of the distribution and data to converge fastewtta would be required
by uniform convergence bounds. In particular, convergencedsbased on the maximum margin
of the classifier on the observed data have been obtained by Shalee-@awpl. (1998) and by
Shawe-Taylor and Cristianini (2000).

1.1 Can SVMs Learn DNF?

Another major focus of research in learning theory is the question of whetrious classes of
Boolean functions can be learned by computationally efficient algorithmescdionical open ques-
tion in this area is whether there exist efficient algorithms in the ProbablyoXppately Correct
(PAC) learning model of Valiant (1984) for learning Boolean formulasisjuihctive Normal Form,
or DNF. This question has been open since the introduction of the PAC randdias been inten-
sively studied by many researchers (see, e.g., Blum et al., 1994; BldRwdtich, 1995; Bshouty,
1996; Hancock and Mansour, 1991; Jackson, 1997; Khardd®¥; Idivans and Servedio, 2001;
Kucera et al., 1994; Kushilevitz and Roth, 1993; Sakai and Marud}Q;2larui and Tsukiji, 1999;
Verbeurgt, 1990, 1998).

In this paper we analyze the performance of maximum margin algorithms wheshwith
Boolean kernels to learn DNF formulas. Several authors including Kimaed al. (2002), Sado-
hara (2001), Watkins (1999) and Kowalczyk et al. (2002) haventcproposed a family of kernel
functionsKy : {0,1}" x {0,1}" — N, where 1< k < n, such thaKy(x,y) computes the number of
(monotone or unrestricted) conjunctions of length (exactly or ug teich are true in botk andy.
This is equivalent to expanding the original feature spaaeBbolean features to include all such
conjunctions: Since linear threshold elements can represent disjunctions, one carllpatiers
any DNF formula as a linear threshold function over this expanded fegpaee. It is thus natural
to ask whether th&y kernel maximum margin learning algorithms are good algorithms for learning
DNF.

Additional motivation for studying DNF learnability with thi€ kernels comes from recent
progress on the DNF learning problem. The fastest known algorithmA@r |[Parning DNF is
due to Klivans and Servedio (2001); it works by explicitly expandinchea@mple into a feature
space of monotone conjunctions and explicitly learning a consistent lineshibid function over
this expanded feature space. SinceKhekernel enables us to do such expansions implicitly in a
computationally efficient way, it is natural to investigate whetherkhdeernel maximum margin
algorithm yields a computationally efficient algorithm for PAC learning DNF.

1.2 Discussion of the Problem and Previous Work

Recall that a polynomial size sample is sufficient for PAC learning anyequindass where each
concept in the class has a polynomial size description. In any such asashown by Blumer
et al. (1987), an Occam algorithm which identifies a short consisterdthgpis in the class is a

1. This Boolean kernel is similar to the well known polynomial kernel in @aimonomials of length up t& are
represented. The main difference is that the polynomial kernel assigights to monomials which depend on
certain binomial coefficients; thus the weights of different monomialsditier by an exponential factor. In the
Boolean kernel all monomials have the same weight.
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PAC learner. Thus the statistical ingredient of the problem of PAC leaimahgnomial size DNF
expressions is in some sense solved and the main question seems to be congbutégipit is not
known whether such an Occam algorithm exists.

As mentioned above recent work of Shawe-Taylor et al. (1998) aad/SfTaylor and Cristian-
ini (2000) has introduced convergence bounds for maximum margindesarhese bounds are
independent of the dimension of the expanded feature space but {heydden the_, norm of ex-
amples in this space, as well as the margin obtained on the sample. In partieyldefiend oiR/d
whered is the margin andR bounds thd_, norm of examples. It is instructive to consider applying
these results in our setting, where we assume for concreteness tha& araing a function given
by onek-monomialT, and that we are using th§ monotone kernel with the maximum margin
algorithm. The linear threshold representation for this functioxris 1, i.e. only one weight is
non-zero and the (non-normalized) margin obtained is 1. However, thiemaa_, norm of exam-
ples is@(n¥/2) so the quantityR/3 is exponentially large. Seen in another way, we can normalize
the examples to have a maximum norm of 1, but then the normalized margin obita@gd/2).
Indeed, the bound given by Theorem 4.18 of the paper of Shawle+Tayd Cristianini (2000) only
implies nontrivial generalization error for th& kernel algorithm if a sample of siz€® is used,
and with such a large sample the computational advantage of usiig Keenel is lost. As a result,
using such bounds we canrafpriori conclude anything about the performance of the algorithm
when it is run with a polynomial size sample.

Recently, several negative results have been obtained for embedudiogpt classes into Eu-
clidean spaces (Ben-David et al., 2002; Forster et al., 2003). Théisese best understood in
terms of their relation to the convergence bounds. For example, Ben-Bealid(2002) show that
there are concept classes for which there is no mapping@id" that achieves a large margin,
for anyN. This actually holds “for the majority of concept classes with low VC dimensi@ther
work of Forster et al. (2003) gives bounds on the margin (or the dimemsiguired) for concrete
concept classes. Again, the implication is that known convergence bdonast imply success in
these cases. It is worth noting that the notion of embedding used in thedts ieslightly stronger
than the requirement in the upper bounds, in that the embedding and marfpn alt the examples
(or a large fraction of the instance space) and not just for a small samdpleever, these results
rule out any simple application of the upper bounds that use properties obtitept class directly.

Therefore, in many cases, and concretely in our case of learning NRezmonomial kernel,
the upper bounds provided by standard convergence theorems onlythmply large sample will
guarantee successful generalization. However, such upper $doembdt imply that theKy kernel
maximum margin algorithm must have poor generalization error if run with a snsalfeple. This
is precisely the question studied in this paper. Notice the contrast with thessiisouwf Occam
algorithms; here we have an efficient algorithm with no known bounds othgsis size. The
guestion is whether its hypothesis provides a good generalization in a sthtietica.

The notion that this might succeed is not unreasonable. In an analogoatsos, Servedio
(1999) studied the generalization error of the Perceptron and Winnasithigs for various prob-
lems. For both Perceptron and Winnow the standard bounds gave ontpamestial upper bound
on the number of examples required to learn various classes, but a datgdeithm-specific anal-
ysis showed that the Perceptron algorithm succeeds in polynomial timeagh@eWinnow algo-
rithm requires exponential time for the problems considered. Analogonshis paper we perform
detailed algorithm-specific analysis for tg kernel maximum margin algorithms.
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In previous work we have studied a similar question with regard to the peoceggorithm. In
particular, Khardon et al. (2002) constructed a simple Boolean functidraa example sequence
for the online mistake-bound learning model, and showed that this seqoaunses th&,, kernel
Perceptron algorithm (i.e. the Perceptron algorithm run over a featae sif all 2 monotone
conjunctions) to make®®" many mistakes. The current paper differs in several ways from this
earlier work: we study the maximum margin algorithm rather than Percept@rconsider PAC
learning from a random sample rather than online learning, and we arthlykg kernels for all
1 <k < n. We note here that maximum margin linear threshold learning algorithms areatigne
viewed as being more powerful than the simple Perceptron algorithm, anéAlatearning is
generally viewed as being easier than online mistake bound learning (it ikmeiin that any
concept class which is efficiently learnable in the mistake bound model ieafficPAC learnable,
but the converse is not true as shown by Blum, 1994). Thus, the reéutts avork represent a
substantial strengthening and generalization of the work of Kharddn(@082).

1.3 Our Results

In this paper we study the kernels corresponding to all monotone monomildagih up tok,
which we denote b¥y. We also consider the polynomial kerrd€lx,y) = (x-y)¥, parametrized by
the degree of the polynomial.

In addition to unaugmented maximum margin algorithms we also consider a natueahs of
structural risk minimization (SRM) that can be used with maximum margin algorithrasthis
family of Boolean kernels. In SRM, given a hierarchy of classes C, C ..., one learns with each
class separately and uses a cost function combining the complexity of tisendthsts observed
accuracy to choose the final hypothesis. The cost function typicallybedavarious criteria such
as the observed error and the (bound on) generalization error. Aahatlheme here is to use SRM
over the classes formed I withk=1,...,n.2

Combining either of these algorithms (i.e. with or without SRM scheme) with the mohomia
kernel we get a concrete and efficient algorithm that can be applied pvab&em of learning DNF.
We prove several negative results which establish strong limitations onitte @fsuch algorithms
to learn DNF. Similar negative results are proved for the polynomial keselell.

Our first result says essentially that for aifig) = w(1), for all k= 1,...,n theKy kernel maxi-
mum margin algorithm cannot PAC learfm)-term DNF. More precisely, we prove

Result 1: Lett(n) = w(1) and lete = . There is aO(t(n)*/)-term monotone DNF ovetr(n)
relevant variables, and a distributidnover {0, 1}" such that for alk € {1,...,n} theKy maximum
margin hypothesis has error larger treafwith overwhelmingly high probability over the choice of
a polynomial size random sample fraf).

Note that this result implies that th& maximum margin algorithms fail even when combined
with SRM regardless of the cost functioithis is simply because the maximum margin hypothesis
has error> € for all k, and hence the final SRM hypothesis must also have erwor

While our accuracy bound in the above result is small (i(i5) sincet(n) = w(1)), a simple
variant of the construction used for Result 1 also proves:

2. This is standard practice in experimental work with the polynomial kewteere typically small values df are tried
(e.g. 1to 5) and the best is chosen
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Result 2: Let f(x) = x; be the target function. There is a distributi@nover {0, 1}" such that for

anyk = w(1) theKy maximum margin hypothesis has error at Ie}’;\SIZ‘“Q(” (with overwhelmingly
high probability over the choice of a polynomial size random sample ffjym

Thus any attempt to learn using monomials of non-constant size can préeabip overfitting.
Note that for ank = ©(1), standard bounds on maximum margin algorithms show thatkernel
algorithm can learrf (x) = x; from a polynomial size sample.

Given these strong negative results for PAC learning under arbitrstrybaitions, we next con-
sider the problem of PAC learning monotone DNF under the uniform distrilbulibis is one of the
few frameworks in which some positive results have been obtained forihggdNF from random
examples only (see, e.g., Bshouty and Tamon, 1996; Servedio, 2001hisIscenario a simple
variant of the construction for Result 1 shows that learning must fkiisftoo small:

Result 3: Lett(n) = w(1) ande = ﬁlt(n). There is aO(t(n)/3)-term monotone DNF ove(n)
relevant variables such that for &lk t(n) the Ky maximum margin hypothesis has error at least
(with probability 1 over the choice of a random sample from the uniform digiah).

This result is representation based; we show that no possible hypathgsig by theky algorithm
can have error less than On the other hand, we also show that #ealgorithm fails under the
uniform distribution for largek:

Result 4: Let f(x) = x; be the target function. For arly= &(,/n), the Kx maximum margin
hypothesis will have errof —2-%(" with probability at least 28 over the choice of a polynomial
size random sample from the uniform distribution.

Note that there is a substantial gap between the “low” valuds(ffr which learning is guar-
anteed to fail) and the “high” values &f (for which we show that learning fails with constant
probability). It is of significant interest to characterize the performari¢he Ky maximum margin
algorithm under the uniform distribution for these intermediate valu&saéliscussion of this point
is given in Section 5.

2. Preliminaries

We consider learning Boolean functions over the Boolean ¢0b&}" so thatf : {0,1}" — {0,1}.
Itis convenient to consider instead the rafggel, 1} with 0 mapped to-1 and 1 mapped to 1. This
is easily achieved by the transformatiéf{x) = 1 — 2f(x) and since we deal with linear function
representations this can be done without affecting the results. For thaf tbe paper we assume
this representation.

For x,y € R" we write x-y to denote the standard inner prodijct ; x;yi. Note that forx,y €
{0,1}", x-y calculates the number of bits which are 1 in brtiindy. Our arguments will refer to

L, andL, norms of vectors for which we use the notatigh= S |x| and||x|| = /T *2.

Definition 1 Let h: RN — {—1,1} be a linear threshold function(R) = sign(\W - x— ) for some
W € RN, 8 € R. Themargin ofhon (z b) € RN x {-1,1} is

b(W-z—0)

A

Note thatjm,(z,b)| is the Euclidean distance fromto the hyperplangV - x = 6.
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Definition 2 Let S= {(x‘,bi>}i:1,_,_,m be a set of labeled examples where edch RN and each
bi € {—1,1}. Let h(x) = sign(W - x— 8) be a linear threshold function. Theargin ofhonS is

S = mi b).
Mh(S) = min_ mh(x, b)
Themaximum margin classifier fo® is the linear threshold function(X) = sign(\W - x— 0) such
that

m(S) = max  min b(W'-x— &) 1)

WeRNGeR (xbies  [|[W/|
The quantity (1) is called themargin ofS and is denoted gn

Note thatms > 0 iff Sis consistent with some linear threshold function.n§ > 0 then the
maximum margin classifier fdgis unique (see, e.g., Shawe-Taylor and Cristianini, 2000).

For a samplé& and exampléx', 1) in Swe sometimes writ&-* to indicate thak' is a positive
example. Similarlyd-~ is used to indicate thad is a negative example.

Let @be a transformation which mag6, 1}" toRN and letk : {0,1}" x {0,1}" — R be the cor-
responding kernel functioki(x, y) = @(x) - @(y). Given a set of labeled exampl8s- { (X, b;) }i=1 ..
where eaclx' belongs tg{0, 1}" we denote by(S) the set of transformed examplg&(x' ), bi) }i=1..._m.

We refer to the following learning algorithm as tiemaximum margin learner

We assume th&contains both positive and negative examples, and that the sample is linearly
separable. If these conditions do not hold then the maximum margin hypdghesisiefined.
The assumptions are simply used to rule out the degenerate cases framalifsisa

We also assume that = poly(n), i.e. thatm= n°® and we have both a lower and upper
bound on the number of examples. The upper bound as usual limits theaesadhbe al-
gorithm uses. The lower bound is again simply used to rule out degenase from the
analysis.

e The algorithm’s hypothesis Is: {0,1}" — {—1,1},h(x) = sign(W - ¢(x) — 6) where sigiiw -
x—0) is the maximum margin classifier fgXS). Without loss of generality we assume that
W is normalized, that igW|| = 1.

SVM theory tells us that iK(x,y) can be computed in palg) time then th&-maximum margin
learning algorithm runs in po[y, m) =poly(n) time and the output hypothesiéx) can be evaluated
in poly(n,m) =poly(n) time (see, e.g., Shawe-Taylor and Cristianini, 2000).

Our goal is to analyze the PAC learning ability of various kernel maximum madegiming
algorithms. Recall (see, e.g., Kearns and Vazirani, 1994) that a PAQirigaalgorithm for a class
C of functions over{0,1}" is an algorithm which runs in time polynomial i’nand%, % whered is
a confidence parameter aads an accuracy parameter. We assume here, as is the case throughout
the paper, that each function ghhas a description of size pdly). Given access to random labeled
examplegx, f(x)) forany f € ¢ and any distributiorD over{0,1}", with probability at least - d a
PAC learning algorithm must output an efficiently computable hypothesigh that Bg »[h(X) #
f(x)] < e. Applying this framework to the maximum margin learner, we assume that the s&isple
drawn by taking IID samples from® and providing the label according to the target functforif
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an algorithm only satisfies this criterion for a particular distribution such asritierm distribution
on{0,1}", we say that it is a uniform distribution PAC learning algorithm.

Let pk(n) = z}j (?) Note that the number of nonempty monotone conjunctions (i.e. mono-
mials) of size at mosk on n variables ispx(n). Forx € {0,1}" we write ¢«(x) to denote the
pk(n)-dimensional vectotxr )rc(1,...n},1<T|<k Wherexr = [ict X, i.e. the components afi(x)
are all monotone conjunctions of the desired size. We note that for an &xamg0,1}", thel;
norm of the expanded examppe(x) is |@(X)| = pk(|X]).

Definition 3 We write k(X,y) to denotep(X) - @(y). We refer to k as the kmonomials kernel
The following theorem shows that tlkenonomial kernels are easy to compute:
Theorem 4 (Khardon, Roth, and Servedio, 2002) For alK k < n we have K(x,y) = 3£, ().

We will frequently use the following observation which is a direct consege®f the Cauchy-
Schwarz inequality:

Observation 1 IfU € RM with [U[| =L and I C {1,...,N;},

I| =Nz, theny i |Ui| <L-v/Np.

As a consequence of Observation 1 we have thak(h) = N; is the number of features in the
expanded feature space agd(x)| = pk(|X|) = Np, thenU - @(x) < L-/Na.

Finally we also use the following well-known tail bound on sums of independ@eamom vari-
ables (see, e.g., Kearns and Vazirani, 1994):

Fact 2 (Chernoff Bounds) Let X, ..., X, be a sequence of m independent 0/1-valued random vari-
ables, each of which has[K] = p. Let X denotes"; X;, so EX] = pm Then for0 <y <1, we
have

PX > (1+y)pml <e ™¥/3 and PrX < (1—y)pm <e MP/2,

3. Distribution-Free Non-Learnability

We give a DNF and a distribution which are such that the maximum margin algousimg the
k-monomials kernel fails to learn, for alld k < n. The DNF we consider is a read once monotone
DNF overt(n) variables wheré(n) = w(1) andt(n) = O(logn). In fact our results hold for any
t(n) = w(1) but for concreteness we ug@) = logn as a running example. Let

FOO = (X Xa2) V (X1 Xgr2) VooV (Xags_aziy - Xags) (2)

where 42 = t(n) = logn so that the number of ternfsequalsO(t(n)¥/3) = @((logn)¥/3). For the
rest of this sectiorf (x) will refer to the function defined in Equation (2) adtb its size parameter.
A polynomial threshold functiois defined by a multivariate polynomialxs,...,%,) with real
coefficients. The output of the polynomial threshold function is p(i,...,x,) > 0 and is—1
otherwise. The degree of the function is the degree of the polyngmiak simple but useful
observation is that any hypothesis output by Kaekernel maximum margin algorithm must be a
polynomial threshold function of degree at mksMinsky and Papert (1968) (see also Klivans and
Servedio, 2001) gave the following lower bound on polynomial threshoidtfon degree for DNF:
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Theorem 5 Any polynomial threshold function for(xX) in Equation (2) must have degree at least
L.

The distribution? on {0,1}" we consider is the following:
e With probability% the distribution outputs'0

e With probability% the distribution outputs a string € {0,1}" drawn from the following
product distribution?’: the firstt(n) bits are drawn uniformly, and the last-t(n) bits are
drawn from the product distribution which assigns 1 to each bit with pn'd)'t;agllﬁ.

For small values ok the result is representation based and does not depend on the sample dra

Lemma 6 If the maximum margin algorithm uses the kerngfdt k < £ when learning x) under

D then its hypothesis has error greater thas- Z 2t 4—1n.

Proof If hypothesish has error at most = 42“,1 under? then clearly it must have error at most

22t under?’. Since we are using the kernel, the hypothesi$ is some polynomial threshold

function of degree at mo&twhich has error < 22{ under?’. So there must be some setting of
the lastn —t(n) variables which causésto have error at mostunder the uniform distribution on
the firstt(n) bits. Under this setting of variables the hypothesis is a deipynomial threshold
function on the first(n) variables. By Minsky and Papert's theorem, this polynomial threshold
function cannot compute the target function exactly, so it must be wrongf éeast one setting

of the firstt(n) variables. But under the uniform distribution, every setting of those hi@sahas
probability at Ieastz— This contradictg < 5 zt |

For larger values df (in fact for allk = w(1)) we show that with high probability the maximum
margin hypothesis will overfit the sample. We start by explaining the high Ewetture of the
proof. Note that the target function depends on a small number of thedsata most features are
irrelevant for the target. On the other hand the distribution is constructddthat each example
in the sample has a “large” weight on its own, whereas the weight of the corfeatmes in any
two examples is “small”. As a result of these facts, one can find a simple ggistith relatively
large margin by using all the structure from the examples, i.e. fitting them exadtyarally such
a hypothesis overfits the sample and provides little by way of generalizing éo examples. It is
hard in general to analyze the maximum margin hypothesis directly, and inysarticdoes not
necessarily follow the overfitting scheme of the simple hypothesis. Howawegnalysis uses the
simple hypothesis to infer some properties of the maximum margin hypothesis raughhthis
provide error bounds for it. The same structure is used again to analypeiynomial kernel and
for the analysis of the uniform distribution. However, the technical detaitkerlying the analysis
are different in each case.

The following definition captures typical properties of a sample from digiohuD:

Definition 7 A sample S is @-typical samplaf
e The sample includes the exampfe

e Any nonzero example x in the sample B&9n?/3 < |x| < 1.01n%/3,
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e Every pair of examples'x and ¥~ in S satisfies'x" - x)'~ < 1.01n1/3,

We can apply Chernoff bounds to analyze the second and third conditichs definition (with
p= n1—1/3 andp = n2—1/3 respectively) over the last—t(n) > n/2 bits, and absorb the fir{n) bits

in the multiplicative(1+ 0.01) divergence from the expected value in each case (recalt that
is only O(logn)). We thus have that the second and third conditions each fail with probaduility
most 2™ Since the maximum margin algorithm usas=poly(n) = n®Y many examples (see
Section 2), the first condition fails with probability 2 = 2" aswell. A union bound thus gives:

Lemma 8 For m= poly(n), with probability 1 — 2" 3 random i.i.d. sample of m draws fromm
is a D-typical sample.

Definition 9 Let S be a sample. The setS consists of all positive examples=z{0,1}" (i.e.
f(2) = 1) which have the property that every example x in S satisfizsx.01n'/3,

As above, we can apply Chernoff bounds with= n2—1/3 and use the union bound over all
examplesx € S to show that the probability that a random exampldrawn from D will have
x-z > 1.0In%/3 for any x € Sis at most 2"™". Recall thatf only depends on the firg(n)
bits and its terms are shorter thgim). Since the distribution is uniform over these bits we have
Prif(z) =1] > 2“1”) = % Thus, conditioning oz being a positive example we still have:

Lemma 10 Let S be aD-typical sample of size s poly(n) examples. TheRrp[z € Z(9)|f(z) =
1]=1-2"",

We now show that for &-typical sample one can achieve a very large margin:
Lemma 11 Let S be aD-typical sample. Then the maximum margigsatisfies

2/3) 1/3
me> My = = P(-99n%/) — mpy(1.01n*%)
2 mpx(L.01r%/3)

Proof We exhibit an explicit linear threshold functidtiwhich has margin at leady on the data
set. Leth/(x) = signW’ - @(x) — 8') be defined as follows:

e W[ = 1if T is satisfied in some positive example;
e Wy = 0if T is not satisfied in any positive example.

o 6 is the value that gives the maximum margin@S) for thisW', i.e. & is the average of
the smallest value ol - @«(X"") and the largest value ¥ - @(x!"7).

Since each positive exampie in Shas at least99n?/3 ones, we hav&V’ - (x*) > pi(.99n%/3).
Since each positive example has at ma8tla?/3 ones, each positive example in the sample con-
tributes at mospy(1.01n%/3) ones toN’, so [W/|| < /mpk(1.01n2/3).

Finally, for any negative example in the sample a terf contributes taV' - @(x~) only if T
is true inx~ and in some positive example. Now since shares at most.@In%/2 ones with any
positive example in the sample, the number of such terms is atmm@.Olnm). We therefore
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getW’ - o(x~) < mpy(1.01n%/3). Putting these conditions together, we get that the marght of
the sample is at least
1 pk(.99%/3) — mpy(1.01n1/3)

' mpx(1.01n23)
as desired. [ |

NI

It is instructive to use a rough calculation and compare the margin obtained tméhcalcu-

lated in the introduction. The main term in the bound above grows roug %éﬂ@ which is
exponentially larger than the constant value obtained by the corredifielass

Lemma 12 If S is a®D-typical sample, then the threshdddn the maximum margin classifier for S
is at least My.

Proof Leth(x) = sign(W - @(x) — 8) be the maximum margin hypothesis. Sing#| = 1 we have

e n
0= Wi~ my(@(0"),—1) > my(S) > My

where the second equality holds becavsap(0") = 0 and the last inequality is by Lemma 118

Lemma 13 If the maximum margin algorithm uses the kerngfét k = w(1) when learning fx)
underD then with probabilityl — 21 g hypothesis has error greater than= ?%(n) = 4—1n.

Proof Let Sbe the sample used for learning andhéx) = sign(W - ¢(x) — 8) be the maximum
margin hypothesis. It is well known (see, e.g., Shawe-Taylor and Ciiisti&000, Proposition 6.5)
that the maximum margin weight vectdf is a linear combination of the support vectors, i.e. of
certain exampleg(x) in the samplep(S). Hence the only coordinat&¥r of W that can be nonzero
are those corresponding to features (conjunctidnsiich thatkr = 1 for some examplgin S,

By Lemma 8 we have that with probability—lZ‘”Q(l) the sampleSis D-typical. Consider
anyze Z(S). It follows from the above observations & thatW - ¢«(z) is a sum of at most
mpk(1.01n%/3) nonzero numbers, and moreover the sum of the squares of these slisiemost
1. Thus by Observation 1 we have tht: ¢(z) < 1/mpx(1.01n1/3). The positive example is
erroneously classified as negativelby 6 > W - @(z); by Lemma 12 this inequality holds if

2/3y _ 1/3
}‘pk(.g% ) — mpy(1.01n/°) S mpk(1.01n1/3),
2 mpx(1.01n2/3)
ie. if
Pk(.99n?/3) > 2m\/ PK(1.01n1/3)py (1.01n2/3) + mpy (1.01n*/3). (3)

We prove in Appendix A that this holds for aky= w(1).
1

Finally, observe that positive examples have probability at I%gt: =. The above argu-

ment shows that any € Z(S) is misclassified, and Lemma 10 guarantees that the relative weight
of Z(S) in positive examples is + 2" Thus the overall error rate df under? is at least
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Q(1) 1

(1-27" 320

1 _1 :
) > = 75 as claimed. [ |

Together, Lemma 6 and Lemma 13 imply Result 1:

Theorem 14 For any value of k, if the maximum margin algorithm (as defined in Sectiusey

the kernel k when Iearnlng fx) under? then with probabilityl — 2~ Y jts hypothesis has error
1

greater thare = > = ﬁ.

With a small modification we can also obtain Result 2. In particular, since weotinaed to
deal with smallk we can use a simple functioh= x; and modify? as follows. With probability
% the assignmentOs drawn. With probability%1 we draw from?’ wherex; = 1 with probability
5 and as before the other bits are 1 with probabijity. Note that for the modified distribution the
probability thatf (x) = 1 is 0.5. It is easy to see the that previous arguments go through for this case
and we get:

Theorem 15 For k = w(1), if the maximum margin algorithm uses the kernglvihen learning
f(X) = x4 under? then with probabilityl — 21 jtg hypothesis has error at least= 5 1 e

Remark 16 The proofs above can be adapted to show the same non-learnability fesuhg
polynomial kerneKy(x,y) = (x-y)X which is commonly being used with SVM systems. The low
degree argument in Lemma 6 holds directly. We briefly sketch the ideas foighalegree case.
First note that Lemmas 8 and 10 hold without modification. The argument in Lertirdaels not

go through if we use the same valueWf (sinceW’ is defined in the expanded feature space and
@(X) is not a zero-one vector, it is not as easy to argue about the val¥é-@f(x)). However, we
can use a simple modification to get a similar result. First note that fok a0,1}", all features

in @(x) take only non-negative values. Now defivé to beW’ = ¥+ @' *). Asin Lemma 11

we have:

e W -@(x") = Tyi+es@®XT) - @(xT) > @(xT) - @(xT) > (0.99n%3)k where the first inequality
uses the fact that all features in the expanded space have a positieeava therefore all
inner products in the sum are positive.

o WX ") = Ty es®X ) - @(x7) <m(1.0InY3)k.

o W=/ (Tx+cs®X ) (Tares@®XF)) < /mP(10INZ/3)K,

So the maximum margin is at least

1 (.99n%/3)K —m(1.01nY/3)k
2 my/(1.01n2/3)k

(4)

Now the proof of Lemma 12 shows that (4) is a lower bound on the threstidlteanaximum
margin classifier.

The argument in Lemma 13 needs to be changed since we need a bolhdpar). This can
be derived as follows. Léf be such that; > 0 andU; = |W| so weights irJ andW have the same
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magnitude but the weights o are forced to be non-negative. Then we have fhdt = |W|| = 1.
For an example € Z(S) we now have

W-(2) U-9(2)
Y U-g(znx)

XeS

m(1.01nY/3)/2,

<
<

IA

The first inequality holds since all entries @iz) are non-negative. The second inequality is true

since both vectors do not have negative weights and a monomial contribitesp(z) only if it is

true both inzand in at least one example in the sample (recall that, as in the proof of Lemma 13

the vectorW is a linear combination of vectorgx) € ¢(S)). Therefore, each weight iq(z) is

represented by a weight in one of the intersections, and the value of ijetwdepends only on the

monomial so it is the same ip(z) and@(zNx'). Summing over alk; in Sgives an upper bound on

the total contribution t&W - ¢(z). The last inequality follows from the Cauchy-Schwarz inequality.
As a result of this upper bound ™ - @(z), we have that is misclassified if

1 (.99n%/3)k —m(1.01nY/3)k
=, > my/ (1.01nt/3)k,
2 my/(1.01n2/3)k ( )

This can be shown to hold for &= w(1).

4. Uniform Distribution

While Theorem 14 tells us that thig-maximum margin learner is not a PAC learning algorithm for
monotone DNF in the distribution-free PAC model, it does not rule out theilpbigsthat the K-
maximum margin learner might succeed for particular probability distributiocis asi the uniform
distribution on{0, 1}". In this section we investigate the uniform distribution.

It is easy to observe that the proof of Lemma 6 goes through for the omd@tribution as well
(we actually gain a factor of 2). This therefore proves Result 3: if therdlgn uses too low a
degreek then its hypothesis cannot possibly be a sufficiently accurate approxintdtiba target.

In contrast, the next result will show that if a rather lakgis used then the algorithm is likely to
overfit.

The case of largkis more complex. In Section 3 we took advantage of the fact thatéurred
with high weight under the distributio®. This provided a lower bound (of 0) on the value of
W - @(x) for some negative example in the sample, and then we could argue that theof/&luin
the maximum margin classifier must be at least as largasaBor the uniform distribution, though,
this lower bound no longer holds, so we must use a more subtle analysiseBeplaining the idea
we need some technical details.

For the next result, we consider the target functfdr) = x;. LetS=S"US™ be a data set
drawn from the uniform distributiortl and labeled according to the functidiix) whereS™ =
ples. Letu; denote|x*| the weight of the-th positive example, and let the positive examples be
ordered so thatiy < up < --- < upy. Similarly letv; denote|xj=*| the weight of thej-th negative
example withvy <vo < -+ < V.

It turns out that the relative sizes of andv;, the weights of the lightest positive and negative
examples ir5, play an important role. This is captured by the following definition:
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Definition 17 A sample S of size m positive-skewedf u; > v; + B, i.e. the lightest positive
example in S weighs at least B more than the lightest negative example, &A&ee%‘ /%.

Now, if the sample is positive skewed we can calculate a lower boul ag(x) for negative
examples in the sample. The valueBik chosen so that this bound can be used to give a hon-trivial
bound forB. The details of this argument are developed in Section 4.2. But we musdiegilish
that the algorithm may indeed get a positive-skewed sample as input.

4.1 The Probability of Obtaining Positive-Skewed Samples

Theorem 18 Let S be a sample of sizesmpoly(n) drawn from the uniform distribution. Then S is
positive-skewed with probability at lea®029.

Proof Our first step is to reduce to a situation in which the positive examples antiveegieamples
are independent from each otRer.

LetM_,M, be any two positive integers. Consider the following new probabilistic éxyet
which we callEy_, : first M_ draws are made from a binomial distributiBn — 1, 3) to obtain
(sorted) values; < --- <wy_, and therM .. draws are made from-£B(n— 1, %) to obtain (sorted)
valuesu; < --- < um.. The valuesr, ..., vy are thus distributed identically to the weights of the
negative examples in the scenario of Theorem 18 conditioned oa M_, and likewise for the
us,...,Um, and the positive examples.

We define the following event:

e EventAy my: Ui >Vvi+B.

For succinctness let us writls,, for the event (in our original scenario of a sigesampleS
drawn from%l) thatSis positive-skewed. We then have

PrAm] Pr.49m<m_,m, < .51m|-Pr{Am | .49m<m_,m, < .51m|
(1—2"%M)PHAy, | .49m< m_,m, < .51m]

_ o—Q(m) i _ _
(1-2 ).49n<Mrnll\r/l1+<.5nnPr[Am|m’ M- andm, = M.]

AVARAVARY

(1_2—Q(m)) PI’[AMﬂMJ.

min
A49mM<M_ M, <.51m

where the second inequality holds by Chernoff bound.

It thus suffices to show that for any valubs_,M, in (.49m,.5Im) we have PiAy_w, ] >
0.0291. Fix anyM_, M, in this range; we will henceforth only consider the experintant v, in
which any event involving only the;’s is independent from any event involving onkys.

Letn’ denoten— 1. The idea of the next part of the proof is to show that with some probability
v; falls into a relatively small left tail of the distribution while, is bounded away from this tail.
This gives us a gap betweenandv; as desired.

We consideuy first. For 1<i < n' lety(i) denotezij;% (T)Z*”'. Note thatyi(i) is precisely the
weight in the “left tail up tai” of the distribution 1+ B(1, 1). Let X be the event thap(uy) > 5

3. Note that this is not the case $because the total number of examplemiso that more positive examples means
less negative examples and vice versa. This dependence affeqisotbability over weights for the lightest positive
and negative examples in a subtle way which is hard to analyze directly.
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andu; < n'/2. In order to havep(u;) < %n, at least one of th#, < .51mdraws from 1+ B(n', %)
must land in the “left tail” of weight less thaf}ﬁ; by a union bound the probability that this occurs
is less than®3! and hence Rp(u1) > 2] > 1— 23! > 0.745 The probability thau; > n'/2 is
2-2m and thus AX] > 0.745—2-2M > 0.74,

Next considew;. For 1<i < n'let¢(i) denotey’|_, (r}')Z*”/; similar toy(i) we have that (i)
captures the weight in the left tail &1, 3). LetY be the event thapn(v1) < 4. This event fails
to occur only if each of th/_ draws fromB(rY, %) misses the left tail of weight at mogﬁﬁ. We
need to be slightly careful; note thix{-) takes discrete values, so this tail may actually weigh less
than 2 (e.g. conceivably(22) = % and¢(23) = 1) To take care of this we will now show that
this tail cannot weigh much less thgg. .

Forc > 1 leta(c) denote the largest integer such that(c)) < .

Lemma 19 For any constant ¢ 1 we havep(o(c)) > %n

Proof Suppose not; then we hag¢o(c)) < %n and¢(o(c)+1) > Clm This implies that(o(gﬂ) >
Zz?fg (’]) soin particulal(o(é‘)'ﬂ) > 2(0’(1'0)). This implies thatY — o(c) > 20(c) + 2 which implies
o(c) < (n"—2)/3. But then Chernoff bound implies that for such values @), ¢(o(c) +1) =

2-2") which contradicts the inequaligy(a(c) + 1) > %n sincec is constant andhn is polynomial
inn. [

The lemma implies that the left tail of weight at mqﬁ{ must have weight at Iea%. Hence
the probability that each of thel_ > .49m draws fromB(r', ) misses this left tail is at most
(1— 53-)9™. This is at most ®6 and hence Y] > 0.04.

We next show that if events andY both occur then everfty_ v, occurs. This will complete
the proof of the theorem since the eveXtandY are independent and we have thatpr v, | >
Pr{X]Pr{Y] > 0.0296.

Suppose, for the sake of contradiction, that eveéhendY both occur buu; <v; + (B—1).

SinceX occurs we have(ur) > 5, i.e.

u-t /py 1
L|J(U1): <_>2—n > —.
J;) J 2m

On the other hand sinééoccurs we have (v1) < %n,

! n n 1
5. ( | )2 < (5)

These two inequalities together clearly imply> v;. In fact they imply

U1z_l (n/> 2_n’ > i (6)

j=vi+1 ] 4m

SO

Thus we see that the weights betwegr- 1 andu; — 1 have a substantial size. We next show that
this implies that the weights below also have a substantial size, contradicting Equation (5). The
following lemma is useful:

1418



MAXIMUM MARGIN ALGORITHMS WITH BOOLEAN KERNELS

Lemma 20 For all jsuchthaty —3B< j <u;—1we have(r}/) > 2 w ).

ur—1

Proof Clearly it suffices to prove that(g1E'3B) > (ulr‘il). By eventX we know that(u;) > 2.

m
But the left tail Chernoff bound implies that unless

/
ul—lzg—zx/n’logm @)

we have(u) < & < 5t so (7) must hold.
Letc= ”7' —(u1 — 1) so 0< c < 2y/n"fogm. Now observe that for anly such thab < 0.1n" we
have

n ,
(v/2-1) _Mj24b+l 2+l 2+l 5b+25

(n//ZE/bfl) ~nj2-b ' wj2-b" 04w~ n
We thus have
(Ulril) — (Ulnll) . (LllriZ) .... (Ulfg/B%»l)
(U123B) (uln—z) (U1r13) (U123B)
R A I T B P cia0- 2)
(%’I‘cfl) (iz'fncfz) (77 (c+3B— 3)
<1+ 5c4r;/2.5> <1+ 5(c+ 1/) +2.5> (1+ 5(c+38n—/ 2) +2.5>
5(c+3B)+2.5)\%®
< <1+ -y )

5(c+3B)+25
e 7 3B

where we have used the inequality-X < €. The last quantity is at moste < 2 provided that

n/
B<Tocram s ®

Now sincec < 2/nlogmand we can bound & /n’logmand 3® < 0.5,/ logm this holds if

3B—i n - n 1 n
-~ 22\/logm " 215/nwlogm 215/ logm

which is clearly true for sufficiently large. |

Recalling thau; <v; + (B— 1) we have that the sum in Equation (6) has at ni®st2 terms.
Now since evenk holds,u; < % and therefore the largest of these term§j )2-". By Equa-
tion (6) we thus have that

A ©
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Now Lemma 20 together with Equation (9), implies that we have

L A U 41 AN ol VA | 2B 1 1
5 (M3 (M "5 4 (7 e Bt L
j=d—3s \J j—ti—3 \J j:U1—3BZ up—1 2 4B—-2)m" 4m

but this contradicts Equation (5). |

4.2 Lower Bound for Large k

Using the fact that the sample is positive-skewed with constant probabilisaw@rove the lower
bound along the same lines as before.

Definition 21 A sample S is dl-typical samplaf
e Every example x S satisfie®.49n < |x| < 0.51n.

e Every pair of examples:x and X'~ in S satisfies'x" - x)~ < 0.26n.

As above we can apply Chernoff bounds to derive the next two lemmas:

Lemma 22 For m = poly(n), with probability 1 — 2-%" a random i.i.d. sample of m draws from
U is a U-typical sample.

Definition 23 Let S be a sample. The setS! includes all positive examples z such that every
example x in S satisfies x< 0.26n.

Lemma 24 Let S be atl-typical sample of size g poly(n) examples. TheRry[z€ Z(9)|f(z) =
] =1-2"°0,

The following lemma is analogous to Lemma 11:

Lemma 25 Let S be ati-typical sample of size nThen the maximum margingsatisfies

ms > % (\/im\/pk(ul) - \/mpk(~26n)> :

Proof We exhibit an explicit linear threshold functidit which has this margin. Lelt'(x) =
signW’ - @«(x) — 6') be defined as follows:

e For each positive exampbé* in S, pick a set ofpy(uy) features (monomials) which take
value 1 onx""*. This can be done since each positive examplehas at leasti; bits which
are 1. For each featufiein each of these sets, assigh = 1.

e For all remaining feature® setW; = 0.

e Set® to be the value that gives the maximum marginggS) for thisW', i.e. & is the
average of the smallest value\f - @ (x"*) and the largest value &% - @ (x):7).
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Note that since each positive example contributes at mgst) nonzero coefficients tV’, the
number of 1's inW’ is at mostmpy(uy), and hence/W’|| < /mpk(uz). By construction we also
have that each positive example™ satisfiedV’ - (X") > p(uy).

SinceSis a U-typical sample, each negative examgle in Sshares at mos26n ones with
any positive example i, Hence the value oV’ - g«(x)' ) is a sum of at mosinp(.26n) num-
bers whose squares sum to at mogi(u;). By Observation 1 we have thay’ - g (x)—) <
V/mpk(.26n) /mpic(uy). , _

The lemma follows by combining the above bounds|@¥||, W’ - g(X"") andW’ - @ (x> ). B

Now we can give a lower bound on the threshélidr the maximum margin classifier.

Lemma 26 Let S be a labeled sample of size m whicltiigypical and positive skewed, and let
h(x) = sign(W - @(x) — 8) be the maximum margin hypothesis folT&en

0> ;5 ( TP~ V28 ) - V/pulur B

Proof SinceSis positive-skewed we know thef - g«(x>~) is a sum of at mogpy(u; — B) weights
Wr, and sincaV is normalized the sum of the squares of these weights is at most 1. By @tiserv
1 we thus haviV - @(x>~) > —+/pk(ur — B). Now sinced > W - @ (x> ™) +ms, Lemma 25 implies
the result. |

Putting all of the pieces together, we have:

Theorem 27 If the maximum margin algorithm uses the kerngfdt k = w(ﬁlogg n) when learn-
ing f(x) =x1 under the uniform distribution then with probability at le&s028its hypothesis has
errorg = 5 — 279,

Proof By Lemma 22 and Theorem 18, the samBlesed for learning is botfil-typical and positive
skewed with probability at least@9— 1/2*9(”) which is more than @28 for sufficiently largen.
Consider any € Z(S). Using the reasoning from Lemma M, ¢(2) is a sum of at mosnpy(.26n)
numbers whose squares sum to at most Ws@(z) < /mpy(.26n). The exampleis erroneously
classified as negative bhyif

% <%]\/pk(ul) - \/mpk(-26n)) —V/Pi(uL—B) > /mpy(.26n).
so it suffices to show that

v/ Pk(ug) > 3m (\/pk(-26”) + /Pt — B)) : (10)

Recall thatpk(x) = Z'j(:o (’J‘) Note that fork = n (all-monomials kernel) the above inequality be-
comes #/2 > 3m (2134 2(w=B)/2) which is clearly true. In Appendix B we show that Equation

(20) holds for alk = m(\/ﬁlog%”) as required.
The above argument shows that ayZ(S) is misclassified, and Lemma 24 guarantees that the
relative weight ofZ(S) in positive examples is 2 2-2"_ Since Pgc[f(x) = 1] is 1/2, we have
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that with probability at least.028 the hypothesis has error rate at least= 3 — 2%, and we are
done. |

Remark 28 Here again we can adapt the proofs to show non-learnability resultssfpotiinomial
kernelKk(x,y) = (X y)¥. We modify the definition ofV’ in Lemma 25 as follows. For every positive
examplex'* in the sample lex'™ be the example obtained by picking an arbitrary subset ofugize
of the original true bits and setting all other bits to 0. NowMét= S i+ cs@X"*). Arguing as in
Remark 16 we get that the maximum margin is at least

uk —m(0.26n)k

k

1
2 my/ uf

Now in Lemma 26 we get thal’ - ¢(x~) > —(uy — B)¥/2 which again implies a lower bound on
the threshold.

Finally, following Theorem 27 and the argument in Remark 16 one can statviothan example
ze Z(S) we havew - ¢(z) < my/(0.26n)k so thatzis misclassified if

m(0.26n)* 2m\/7\/u1— )k > 2mPy /uk(0.26n)k

U2 > 5P (uy — B)W2

Using the reasoning in Case 1 of Appendix B, one can show that this hmlk!&fm(\/ﬁlogg n).

which is true if

5. Conclusions and Future Work

Boolean kernels offer an interesting new algorithmic approach to one ohéj@ open problems
in computational learning theory, namely learnability of DNF expressions.haVe studied the
performance of the maximum margin algorithm with the Boolean kernels, givegative results
for several settings of the problem. Our results indicate that the maximum redggirithm can
overfit even when learning simple target functions and using naturabareéssive kernels for such
functions, and even when combined with structural risk minimization. Ouitsesonsider cases
where the l, norm of examples in the expanded feature space is large. This seerssargder
learning DNF; note that while one can use an exponential function to dekieenel with weighted
monomials where the weight decays exponentially depending on the deghéeimplies that the
margin for functions of high degree is exponentially small.

While our results are negative there are several interesting averagessed by this work which
may succeed; we discuss these briefly below. One direction is to modify #helbarning algo-
rithm. Many interesting variants of the basic maximum margin algorithm have tsszhini recent
years, such as soft margin criteria and kernel regularization. It maossible to prove positive
results for some DNF learning problems using these approaches. A sgaotimigvould be to test
their performance on the counterexamples (functions and distributionsh wie have constructed.

A more immediate goal is to close the gap between small and lkaigeour results for the
uniform distribution. It is well known (see, e.g., Verbeurgt, 1990) thhewlearning polynomial
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size DNF under the uniform distribution, conjunctions of lengffogn) can be ignored with little
effect. Hence the most interesting settingkdbr the uniform distribution learning problem ks=
O(logn). Learning under the uniform distribution withka= ©(logn) kernel is qualitatively quite
different from learning with the large values lofvhich we were able to analyze. For example, for
k = O(logn) if a sufficiently large polynomial size sample is taken, then with very high goitiba

all features (monomials of size at md3tare active in the sample.

As a first concrete problem in this scenario, one might consider the guestishether &k =
O(logn) kernel maximum margin algorithm can efficiently PAC learn the target fundti@h= x;.
For this problem it is easy to show that that the naive hypotHésisnstructed in our proofs achieves
both a large margin and high accuracy. Moreover, it is possible to shdawvitiahigh probability
the maximum margin hypothesis has a margin which is within a multiplicative factdr-e®(1))
of the margin achieved bly. Though these preliminary results do not answer the above question
they suggest that the answer may be positive. A positive answer, ini@uy would be strong
motivation to analyze the general case.

Finally, the kernel we have used is natural in terms of capturing all mononfialsartain length
but there are other ways to capture natural kernels for Boolean pneblken interesting possibility
is using a kernel of parity functions and such a construction can indeegvbn. The resulting
representation is closely related to learning via the Fourier transformrasidahe work of Linial
et al. (1993); Kushilevitz and Mansour (1993); Mansour (1995)theatalgorithmic ideas are very
different to the ones used by maximum margin algorithms.
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Appendix A. Proof of Equation (3)

To show that

PK(-992/3) > 2m /i (L.OINY/3)p (L.O1/3) + mpy(1.01n/3)

it suffices to show that

pu(-99%/2) > 3my /py(1.011/3) i (L.O12/3). (11)

The proof uses several cases depending on the vakiestdtive ton.

Case 1:k < 0.505n2. Sincepk(¢) = 5X ; (1), for k < ¢/2 we have thapi(¢) < k(). For allk we
havepi(¢) > (1) so it suffices to show that

.9on?/3 > 3mk 1.01n1/3\ /1.01n?/3
k K K
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which is equivalent (clearing denominators from the binomial coefficie¢ats)

|‘L(99n2/3 >3mk\/|_L 1.01n1/3 —i)(1.01n2/3 —i).

We now use the fact that foe> 0 we havglA—i)(B—i) < (v/AB—i)? provided that 2/AB< A+B;
it is easy to see that this latter condition holds foe= 1.01n%/3, B = 1.01n%/3. It thus suffices to
show that

k-1 k-1
(9?3 —i) > 3mk|‘L(1.01n1/2— i)
f [

oon?/2 \ ¢
1012 > 3mn
(we used the fact thdt < n to obtain the right-hand side above). This holds as lond as

% = O(1) for anym = poly(n). Therefore the condition holds for aky= w(1).

Case 2:0.5-1.01n%/2 < k < 5-1.0In%>. In this case we use the boungg* < pk(¢) = 3£, (}) <
(%)k for the first and third occurrences pf in equation (11) and we ugg(¢) < 2‘ for the second
occurrence. It thus suffices to show that

k
2/3 k
(.99:(1/ ) >3m¢(e-1.cl)(1n2/3> pLomR

Applying the upper bound okin the denominator on the left side, and the lower boun& onthe
denominator on the right side, it suffices to show that

22 21.01n
(5.05n ) >3m/{ 5505"

Now since 101n/3 < 2k the condition holds if

nt/3 K k/2
S >3m(2e-n1/3) oK

a6\
(sovm) -2

This obviously holds sinck= 0(n'/3).

Case 3:5-1.01n'/3 < k < 0.25-0.99n%/3. We use the same bounds as in the previous case to start
the analysis, so we want to show that

k
2/3 k
(99; / ) > Sm\/<e 1?(:'“2/3) . 21401n1/3'
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Since 101n1/2 < k/5 it suffices to show that

k k/2
(.99n2/3> = am (e- 1.01n2/3> K10
Kk Kk

which holds (takingk-th roots and rearranging) if and only if
L\ oS VK _ (L V(99 N\ > (3m)Vk
2 k  n/3/101e \2 1.01-e/ vk '

Using our upper bound dkon the left side, the previous inequality holds if

1110 -99 2 1k
= ————>(3m
(2) 1.01-e .99 (3m)
and since the left side is greater thaii the inequality holds ik > :‘88—13'2 = O(logn) for m=

poly(n). This obviously holds sinck= Q(n'/3).

Case 4:0.25-0.99n%/3 < k < 0.5-0.99n%/3. We use the following bound (proved later) which holds
forO<oa<1:

< (9 1 h
5 (1) = 7z 42

whereH (p) = —plogp— (1— p)log(1— p) is the binary entropy function. Applying this bound to
the left side of (11) withg = .99n%2 anda = k/q, we have25< a < .5 soH(a) > .81 Sincepk(/)
is always at most‘2it suffices to show that

1 2/3
20.81-:0.99n > 3mV/ 21.01n%/3+1.01n1/3
V211 .99n?/3
This is easily seen to hold for amy= poly(n).
To prove the bound (12) we use Stirling’s approximatig2rn(2)" < n! < v2m(2)"\/1+ 5;

in fact we use a weaker form witff2 instead of, /1 + 2—1n in the upper bound. We thus have

2 <?> - <°‘qq> - (GCI)!(((;!—O()CI)! - Nﬁ% (g)q <%>°‘q <(1%)q><1—“>q

— 1 a*aq(l_a)*(lfa)q — 1 qu(G)_

2,/2m(1—a)q 2\/2m(1—a)q

Equation (12) follows sinca(1—a) < 1/4.
Note that by using % (%) < aq(g) one can also obtaifii () < —X22_2H(@a,

Case 5:k > 0.5-0.99%2. In this case we havpy(.9%3) = sk, (9"°) >

suffices to show that
1 ooaes < 3m/2L.01n%/341.01n/3
2

which is easily seen to hold for amy= poly(n). Thus Equation (11) holds for atl= w(1). [ |
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Appendix B. Proof of Equation (10)

We must show that/py(uy) > 3m<\/pk(.26n) +v/Pr(u1 — B)) . Since we are assuming that the

sampleSis U-typical, we haveu; > .49n sou; — B > 0.26n. It thus suffices to show thai(uy) >
36mzpk(u1 — B).

Case 1:k < 1(up — B). Sincepk(£) = ¥, (), for k < ¢/2 we havepy(¢) < k(f). Also for allk,
p(¢) > (}) so it suffices to show that

() 75", %)

U\ etk
< B)> .

u; —

This inequality is true if

Recall thatB = 66 D_ Now using the fact that

logm*
Uz B B 1
=1 1+—=1+4+—
u—B +u1—B> Jrn +66\/nlogm
it suffices to show that .
1
1+ —— 36k
( * 6&/n|ogm> ”
Using the fact that % x > €92 for 0 < x < 1, we can see that this inequality holds if
k > 132,/nlog(m) In(36m?n).

Sincem = poly(n), this is the case fdk = oo(\/ﬁlog% n).
Case 2: %(ul —B) < k. Sincepk(u; — B) < 2“~B jt suffices to show that

Yy
35—

Z (L:1> > 362 2B

Since/ty > v/0.49n > £2,,/n > 928 it suffices to show that

L VA
279

Y <L:1> > 3607 248

Using Stirling approximation it is easy to check tr@z 142 % \/7 29 and this implies
that

u

W vu
2 92 Ul u u u
> 2 t— 2 1> 0.49-2"
& i 2u1

so the condition above holds if

0.49.28 > 36m7’.
This is clearly true sincen= poly(n) andB = ﬁi, /Wn =
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