Journal of Machine Learning Research 6 (2005) 341-361 Submitted 11/04; Published 03/05

A Modified Finite Newton Method for Fast Solution
of Large Scale Linear SVMs

S. Sathiya Keerthi SATHIYA .KEERTHI@OVERTURE.COM
Dennis DeCoste DENNIS.DECOSTE@OVERTURE.COM
Yahoo! Research Labs

210 South Delacey Avenue

Pasadena, CA 91105, USA

Editor: Thorsten Joachims

Abstract

This paper develops a fast method for solving linear SVM# Wwitloss function that is suited for
large scale data mining tasks such as text classificatios.iJlone by modifying the finite Newton
method of Mangasarian in several ways. Experiments inglitett the method is much faster than

decomposition methods such as Sk'ﬁmt, SMO and BSVM (e.g., 4-100 fold), especially when
the number of examples is large. The paper also suggestsofaysending the method to other
loss functions such as the modified Huber’s loss functionthed.; loss function, and also for
solving ordinal regression.

Keywords: linear SVMs, classification, conjugate gradient

1. Introduction

Linear SVMs (SVMs whose feature space is the same as the input spespobblem) are power-
ful tools for solving large-scale data-mining tasks such as those arising textual domain. Quite
often, these large-scale problems have a large number of examples asvaelhrge number of
features and the data matrix is very sparse (£.:§9.9% sparse “bag of words” in text classifica-
tion). In spite of their excellent accuracy, SVMs are sometimes not peefdrecause of the huge
training times involved (Chakrabarti et al., 2003). Thus, it is important te fiast algorithms for
solving them. Traditionally, linear SVMs have been trained using decomposggtatmiques such
as SVMI9Nt (30achims, 1999), SMO (Platt, 1999), and BSVM (Hsu and Lin, 200Bjchvsolve
the dual problem by optimizing a small subset of the variables in each iter&mh. iteration costs
O(nnz) time, wheren,, is the number of non-zeros in the data matrix, & mnif the data matrix is
full wheremis the number of examples ands the number of features). The number of iterations,
which is a function ofnand the number of support vectors, tends to grow super-linearlymthd
thus these algorithms can be inefficient wimers large.

With SVMs two particular loss functions for imposing penalties on slacks (vigiatmn the
wrong side of the margin, usually denoted &yhave been popularly used.;-SVMs penalize
slacks linearly (penalty® while L,-SVMs penalize slacks quadratically (penafy#2). Though
both SVMs give good generalization performarice SVMs are more popularly used because they
usually yield classifiers with a much less number of support vectors, thdim¢etn better classifi-
cation speed. For linear SVMs the number of support vectors is not a mafitterch concern since

(©2005 Sathiya Keerthi and Dennis DeCoste.



KEERTHI AND DECOSTE

the final classifier is directly implemented using the weight vector in featuespathis paper we
focus onL,-SVMs.

Since linear SVMs are directly formulated in the input space, it is possiblenanthwhile
to think of direct methods of solving the primal problem without using the Rdriek. Primal
approaches are attractive because they assure a continuousdéeitba primal objective function.

Recently some promising primal algorithms have been given for training liteessifiers. Fung
and Mangasarian (Fung and Mangasarian, 2001) have given a prénsabn of the least squares
formulation of SVMs given by Suykens and Vandewalle (1999). Kom#&2€K4) has effectively
applied conjugate gradient schemes to logistic regression. Zhang €1@3) (2ave given an indirect
algorithm for linearL;-SVMs that works by approximating the;, loss function by a sequence
of smooth modified logistic regression loss functions and then sequentialipgdhe resulting
smooth primal modified logistic regression problems by nonlinear conjugatiéegtanethods. A
particular drawback of that method is its inability to exploit the sparsity propEr§VMs: that
only the support vectors determine the final solution.

A direct primal algorithm folL,-SVMs that exploits the sparsity property, called the finite New-
ton method, was given by Mangasarian (2002). It was mainly preseatgardblems in which
the number of features is small. The main aim of this paper is to introduce agteofwols that
transform this method into a powerfully fast technique for solving largkestata mining problems
(with a large number of examples and/or a large number of features). Ourcoratributions are:
(1) we modify the finite Newton method by keeping the least squares nattire pfoblem intact in
each iteration and using exact line search; (2) we bring in special, niathgricbust conjugate gra-
dient techniques to implement the Newton iterations; and (3) we introducestiesithat speed-up
the baseline implementation considerably. The result is an algorithm that isinabyaobust and
very fast. An attractive feature of the algorithm is that it is also very eagypptement; Appendix
A gives a pseudocode that can be easily transcribed into a working code

We show that the method that we develop lfierSVMs can be extended in a straight-forward
way to the modified Huber’s loss function (Zhang, 2004) and, in a slightlyermomplicated way
to thel; loss function. We also show how the algorithm can be modifed to solve omgigadssion.

The paper is organized as follows. Section 2 formulates the problem aesl lgasic results.
The modified finite Newton algorithm is developed in Section 3. Section 4 giMeddtails associ-
ated with a practical implementation of this algorithm. Section 5 gives computatiopatiments

demonstrating the efficiency of the method in comparison with standard methddas SVMIN
(Joachims, 1999) and BSVM (Hsu and Lin, 2002). Section 6 suggests fea extending the
method to other loss functions and Section 7 explains how ordinal regnasside solved. Section
8 contains some concluding remarks.

2. Problem Formulation and Some Basic Results
Consider a binary classification problem with training examp{&st; }” ; wherex; € R" andt; €
{+1,—1}. To obtain a linear classifigr= w- x+ b, L,-SVM solves the following primal problem:

Emn (HWHZ—l-bZ ZZEZ st. ti(w-x+b)>1-§& Vi (1)

whereC is the regularization parameter. We have included#ié term so that standard regularized
least squares algorithms can be used directly. Our experience shogsrbealization performance

342



FINITE NEWTON METHOD FOR LINEARSVMS

is not affected by this inclusion. In a particular problem if there is reastelieve that the added
term does affect performance, one can proceed as followsytaké2 as the term to be included,
then defineb = yb as the new bias variable and take the classifier ty bew-x+ (1/y)b. The
parametey can either be chosen to be a small positive value or be tuned by crosgigalida

For applying least squares ideas neatly, it is convenient to transfrm &b equivalent formu-
lation by eliminating the;’s and dividing the objective function by the fac®r This gives

A 1
inf(B)==|IBI?+= $ d? 2
min (B) = 5 IBIl +2i6%3) B) 2)

where = (w,b), A = 1/C, di(B) = i(B) —ti, i(B) =w-x +b, andl (B) = {i : tiyi(B) < 1}.

Least Squares SVM (LS-SVM) (Suykens and Vandewalle, 1999gspands to (1) with the
inequality constraints replaced by the equality constraints;,- x; +b) = 1—&; for all i. When
transformed to the form (2), this is equivalent to settif@)={1,...,m}; thus, LS-SVM is solved
via a single regularized least squares solution. In contrast, the deyena () on 3 complicates
theL»-SVM solution. In spite of this complexity, it can be advantageous to optdorgl,-SVMs
because they do not allow well-classified examples to disturb the classgignd@his is especially
true in problems where the support vectors are a small subset of all B&fmp

Let us now review several basic results concerringome of which are given in Mangasarian
(2002). First note that is a piecewise quadratic function. The presence ohflfi#2/2 term makes
f strictly convex. Thus it has a unique minimizef.is continuously differentiable in spite of the
jumps inl (B), the reason for this being that when an indeauses a jump ih(p) at somep, its d;
is 0. The gradient of is given by

X
a1 -+ 3 o) (). €
iel(B)

Given an index sdt C {1,...,m}, let us define the functiofy as

(B) = SIBI+ 5 3 (P @

Clearly f, is a strictly convex quadratic function and so it has a unique minimizer. It fsltdivectly
from (3) that, for anyB, Of (B)[s_g = Uf(B)[g_p Wherel = 1(B). In fact, there exists an open set

aroundp in which f and fi-are identical. It follows tha minimizesf iff it minimizes fj.

3. The Modified Finite Newton Algorithm

Mangasarian’s finite newton method (Mangasarian, 2002) does iterafitimes form

Br+1 = Bk -+ Pk,

1. To help see the equivalence of (1) and (2), note that at a gwém), the minimization oEiz in (1) will automatically
chooseg; =0 foralli € 1(B).

2. We find thatL,-SVMs usually achieve better generalization performance over LS<S\iMerestingly, we also find
L,-SVMs often train faster than LS-SVMs, due to sparseness arisingsupmort vectors.

343



KEERTHI AND DECOSTE

where the search directiqu is based on a second order approximation of the objective function at

B:

= —H (B O (By).

Since f is not twice differentiable a where at least one of the is zero,H () is taken to be
the generalized Hessian definedyf3) = AJ +CTDC whereJ is then x n identity matrix,C is a
matrix whose rows aréx’, 1) andD is a diagonal matrix whose diagonal elements are given by:

1 if tiyi([3) <1
Di = ¢ some specific element d0,1] if ty;(B)=1 (5)
0 if tiyi(|3) >1

Note that examples with indices satisfyitig () > 1 do not affectH () and px. (This property
contributes greatly to the overall efficiency of the method.) The stepdgiechosen to satisfy an
Armijo condition that ensures convergence, and it is found by applyinghariy method of line
search in the0, 1] interval. (IfC in (1) is sufficiently small then it is shown in Mangasarian (2002)
that the fixed step sizéx = 1 suffices for convergence.)

We modify the algorithm slightly in two ways. First, we avoid doing anything spéaiaases
wheret;y; () = 1 occurs. (Essentially, we S8t = 0 in (5) for such cases.) This lets us keep the least
squares nature of the problem intact. More precisely, instead of compghgngewton direction
pk, we compute the Newton poinx + pk, which is the solution of a regularized least squares
problem. As we will see in the next section, this has useful implications on saédpeithmic
implementation. Second, we do an exact line search to dete®pin&his feature allows us to
directly apply convergence results from nonlinear optimization theornth@mext section we give
a fast method for exact line search.) Thus, at one iteration, given & powe setl = | (p) and
minimize f; to obtain the Newton poinf3. Then an exact line search on the ray fr@mo 3
yields the next point of the method. These iterations are repeated till thétlalgaonverges. The
overall algorithm is given below. Implementation details associated with egelasgaliscussed in
Section 4.

344



FINITE NEWTON METHOD FOR LINEARSVMS

Algorithm L>-SVM-MFN.
1. Choose a suitable startiflg. Setk = 0 and go to step 2.
2. Check iffg is the optimal solution of (2). If so, stop wifBx as the solution. Else go to step 3.

3. Letly=1(Bk). Solve
min fi, (B). (6)

Let Edenote the solution obtained.

4. Do aline search to decrease the “full” objective functibn,

min f(B), (7)

BeL

whereL = {B :_Bk+6(§— Bk) : & > 0}. Let & denote the solution of this line search. Set
Bki1 = Bk +90*(B—PBk), k:=k-+1 and go back to step 2 for another iteration.

Theorem 1. Algorithm L,-SVM-MFN converges to the solution of (1) in a finite number of
iterations. B

Proof. Let px = (B—Px). Note thatp = —H, *0f(Bx) andAl < H,, < Hay whereH, is
the Hessian off, andHa is the Hessian ofy; .. By Proposition 1.2.1 of Bertsekas (1999) it
follows® that {Bx} converges to the minimizer df. Proof of finite convergence is exactly as in
Mangasarian’s proof of finite convergence of his algorithm, and gedsllaws. Let* denote the
minimizer of f andl* =1 (p*). LetO={B: I(B) = 1*}. ClearlyO is an open set that contaifs.
Since{Bk} converges t@*, there exists & such thaf3x € O. When this happens in step 2 of the
algorithm, we gefd = 3* in step 3 and s@x,1 =[*. m

4. Practical Implementation

In this section we discuss details associated with the implementation of the varpsso$ the
modified finite Newton algorithm and also introduce some useful heuristicspieeding up the
algorithm. The discussion leads to a fast and robust implementatiaa-8VM-MFN. The fi-
nal algorithm is also very easy to implement; Appendix A gives a pseuddtadean be easily
transcribed into a working code. A number of data sets are used in thisrséztillustrate the
effectiveness of various implementation features. These data setssaribeéd in Appendix B. All
our computations were done on a 2.4 GHz machine with Intel Xeon procasddraving four Gb
RAM.

4.1 Step 1: Initialization

If no guess of is available, then the simplest starting poinBgs= 0. For this point we havg =0
foralli and sdg = {1,...,m}. Therefore, with such a zero initialization, tRebtained in step 3 is
exactly the LS-SVM solution.

3. To apply Proposition 1.2.1 of Bertsekas (1999) note the followingBé&cause\ > 0 andHy is positive definite,
condition (1.12) of Bertsekas (1999) holds; (b) Bertsekas (19989)s that (1.12) implies (1.13) given there; (c) in
Bertsekas (1999) exact line search is referred as the minimization rule.

345



KEERTHI AND DECOSTE

Adult-9 | Web-8 | News20| Financial| Yahoo
No B-seeding| 60.26 | 105.16| 1321.87| 1130.35| 11650.56
B-seeding 36.80 | 24.43 | 944.27 | 692.47 | 4419.89

Table 1: Effectiveness @3-seeding on five data sets. The following @values were usedg/ik,
k=-10,-9,...,9,10. All computational times are in seconds.

Suppose we have a guesdor the weight vectow. It is possible thatv'comes from an in-
expensive classification method, such as the Naive-Bayes clasdifittaticase it is necessary to
rescalew”and also choosly so as to form g that is good for starting the SVM solution. So we
setPo = (YW, bp) and choose suitable values fpandby. Suppose we also assume that guess of
the optimal set of active indices, is available. (If no guess is availableawsimply letl be the set
of all training indices.) Then choogeandbg to minimize the cost

A . 1 ~
E[VZHWHZJFb%]JFE%[VW'Xi+bo—ti]2- (8)
It is easy to check that the resultiggandbg are given by

Y= (P2201 — P1202)/d and bo = (p1102 — P1201)/d. 9

where pi1 = M|W|[* + Fici (W-%)?, P22 = A+ 1], pr2= FictW- X, G1 = Jic iW- X, Gp = Jiy
andd = p11p22 — (p12)2. Oncey andby are thus obtained, we can $kt= (YW, bg) and start the
algorithm?# Note that the set of initial indicdg chosen by the algorithm in step 3 is the set of active
indices af3p and so it could be different frorin

There is another situation where the above initialization comes in handy. Saiposolve (2)
for oneC and want to re-solve (2) for a slightly changéd Then we can use th& andl that are
obtained from the optimal solution of the first value@®to do the above mentioned initialization
process for the second value®@f For this situation we have also tried simply choosjng 1 and
by equal to theb that is optimal for the first value &. This simple initialization also works quite
well. We will refer to this initialization for the ‘slightly change@ situation as3-seedingseeding
is crucial to efficiency when (2) is to be solved for mayalues (such as when tuni@via cross-
validation). The-seeding idea used here is very much similar to the idea-sdeding popularly
employed in the solution of SVM duals(DeCoste and Wagstaff, 2000).

Eventhough full details of the final version of our implementatiorL@SVM-MFN is only
developed further below, here let us compare the final implementatiiim and without3-seeding.
Table 1 gives computational times for several data sets. Cl@askyeding gives useful speed-ups.

4. To get a betteBy one can also resét= | (o) and repeat (9) and get revised valuesyfandbg. This computation is
cheap sincev~x; need not be recomputed.

5. For noB-seeding, the implementation corresponds to the use of ‘both heurisgegioned in Table 3. F@-seeding,
the two heuristics are not used since they do not contribute much +keading is done.

346



FINITE NEWTON METHOD FOR LINEARSVMS

4.2 Step 2: Checking Convergence

Checking of the optimality oy is done by first calculating; (Bx) andd; (Bx) for all i, determining
the active index sdf and then checking if

10f(Be) [l = 0. (10)

For practical reasons it is necessary to employ a tolerance parametechdeking (10). We deal
with this important issue below after the discussion of the implementation of step 3.

4.3 Step 3: Regularized Least Squares Solution

The solution of (6) can be approached in one of the following ways: usicigrization methods
such as QR or SVD; or, using an iterative method such as the conjugdtergréCG) method. We
prefer the latter method due to the following reasons: (a) it can make gfecte of knowledge of
good starting vectors; and (b) it is much better suited for large-scale pnstiaving sparse data
sets. To setup the details of the CG method, }¥tbe the matrix whose rows a(eziT,l), i€l

andt be a vector whose elements gté € . Then (6) is the same as the regularized least squares
problem

. A 1
min fi,(B) = 5 1B+ 5IXB— ). (11
This corresponds to the solution of the normal system,
(A +XTX)B=XTt. (12)

With CG methods there are several ways of approaching the solution/&2j1 A simple approach
is to solve (12) using the CG method meant for solving positive definite systdosever, such
an approach will not be numerically well-conditioned, especially whénsmall. As pointed out
by Paige and Saunders (Paige and Saunders, 1982) this is mainly duexplibi use of vectors
of the form X" X p. An algorithm with better numerical properties can be easily derived by an
algorithmic rearrangement that is special to the regularized least squédméion, which makes use
of the intermediate vectof p. LSQR (Paige and Saunders, 1982) and CGL®r(#, 1996) are two
such special CG algorithms. Another very important reason for usingbtieese algorithms (as
opposed to using a general purpose CG solver) is that, for the spectradasat is easy to derive a
good stopping criterion to approximately terminate the CG iterations using the itiatmessidual
vector. We discuss this issue in more detail below.

For our work we have used the version of the CGLS algorithm given intlga 3 of Frommer
and MaaR (Frommer and MaaR, 1999) which uses initial seed solutions.heailipwing is the
CGLS algorithm for solving (11).

Algorithm CGLS. Setp® = By (wherepy is as in steps 2 and 3 of Algorithirp-SVM-MFN).
Compute =t —Xp°, r® = XT2 —Ap%7 setp® = r® and do the following steps fgr=0,1, ...

6. Frommer and Maafl3 have also given interesting variations of the C@&itfouhfor efficiently solving (12) for several
values ofA. But we have not tried those methods in this work.

7. It is useful to note that, at any point of the CGLS algorithi is the vector containing the classifier residuals,
i € I, andr] is the negative of the gradient of (B) atpl. Atthe beginning | = 0), 2 andr are already available in
view of the computations in step 2 of Algorithim-SVM-MFN. This fact can be used to gain some efficiency.

347



KEERTHI AND DECOSTE

@ =xp |
¥ =712/l |2+ A1)
Bt =pl+ylp

Z+1 — 7 _quJ

i+l = XTZi+1 _)\pi+l

If ri+1 = 0 stop withBi*! as the solution.
W = [[riF2/rl)2

pj+1 — I’j+1+00j pJ

There are exactly two matrix-vector operations in each iteration; sparditye afata matrix can
be effectively used to do these operation®im;) time wheren, is the number of non-zero elements
in the data matrix.

Let us now discuss the convergence properties of CGLS. It is knoatrthle algorithm will
take at most iterations wheré is the rank ofX. Note thatt < min{m,n} wherem s the number
of examples and is the number of features. The actual number of iterations required tovachie
good practical convergence is usually much smaller tha{min} and it depends on the number
of singular values oK that are really significant.

Stopping the CG iterations with the right accuracy is very important becansexcassively
accurate solution would lead to too much work while an inaccurate solution wilgine good
descent. Using a simple absolute tolerance on the size of the gradignirobrder to stop is a bad
idea, even for a given data set since the typical size of the gradigas\alot as\ is varied over a
range of values. For a method such as CGLS it is easy to find effecae#iqgal stopping criteria.
We can decide to stop when the negative gradient vettdhas come near zero up to some relative
precision. To do this we can use the boujd; || < ||X||[|Z*1]| + [ AB!*1||. Thus a good stopping
criterion is _ _ ‘

e+ < e(pl|ZH2| + AR,

wherep = ||X||. SinceX varies at different major iterations of the-SVM-MFN algorithm, we can
simply takep = ||X || whereX is the entirem x n data matrix.

In most datamining tasks the data is normalized so that all values in the data meatinxte
unity range. For such data sets we hd¥d| < \/n. One can take a conservative approach and
simply use the stopping criterion

I+ < g2+, (13)

We have found this criterion to be very effective and have used it fahaltomputational experi-
ments reported in this paper. The parametera relative tolerance parameter. A valueef 107°,
which roughly yields solutions accurate up to six decimal digits, is a good €hoic

Sincer = —0f;, we can apply exactly the same criteria as in (13) for approximately checking
(10) also. Almost always, termination bp-SVM-MFN occurs when, after the least squares solu-
tion at step 3, exact line search in step 4 gigés! = B (i.e., & = 1), and the active set remains
unchanged, i.el(B) = I(B) = I (B**1).

Let us illustrate the effectiveness of the CGLS method using the LS-SVMisolas an ex-
ample. For LS-SVM we can sét= {1,...,m} and solve (12) using the CGLS method mentioned
above; let us refer to such an implementation as LS-SVM-CG. In their pro:8will implemen-
tation of LS-SVM, Fung and Mangasarian (2001) solve (12) using Mattaltines that employ
factorization techniques o' X. For large and sparse data sets it is much more efficient to use CG
methods and avoid the formationXf X and its factorization. Table 2 illustrates this fact using two

348



FINITE NEWTON METHOD FOR LINEARSVMS

Table 2: Ratio of the computational cost (averaged Gwer2->,24, ... 25) of the proximal SVM
algorithm to that of LS-SVM-CGsiis the sparsity factos = np;/(nm).

Australian Web-7
(n=14,m=690,s=1.0) | (n=300,m=24692,s=0.04)
Ratio 0.72 15.72

data sets. The complexity of the original proximal SVM implementati@(is,.,n+ n®) whereas the
complexity of the CGLS implementation @&(nnZ ), wherel is the number of iterations needed by
the CGLS algorithn¥. When the data matrix is dense (e Australian) the factorization approach is
slightly faster than the CGLS approach. But, when the data matrix is spagséNeb-j the CGLS
approach is considerably faster, even witheing small.

Similar observations hold for Mangasarian’s finite Newton method as welua 8SVM-
MFN. When the data matrix is sparse, factorization techniques are much rup@neséve compared
to CG methods, even whemis not too big. Of course, factorization methods get completely ruled
out when bottmandn are large.

4.4 Step 4: Exact Line Search

Let B(d) = Bk + &(B— Bk). The one dimensional functiop(d) = f(3(d)) is a continuously differ-
entiable, strictly convex, piecewise quadratic function. To determine the miniwfizkis function
analytically, we compute the points at which the second derivative jumpsarfyogiveni, let us
define:8 = (t — y¥)/ (Vi — yK), whereyi = yi(B) andy* = yi(Bx). The jump points mentioned above
are given by

A=A1UNy, (14)

where
A ={8:iclt(yi—y) >0} and Ay ={d :idlt(yi—y<) <O} (15)

For A; we are not using with t;(y; — y¥) < 0 because they do not cause switching at a posgjve
similarly, for A, we are not usingwith t;(y; — y&) > 0.

Take oned; € A;. When we increas@acrossy;, the index leaved (B(8)). Thus, the terna? /2
has to be left out of the objective function for alt> &;. Similarly, for & € A, when we increase
S acrossy;, the indexi entersl (B(8)). Thus, the ternd?/2 has to be included into the objective
function for alld > 9.

The slope@(0) is a continuous piecewise linear function that changes its slope only atfone o
thed;’s. The optimal poind* is the point at whichy' (8) crosses 0. To determine this point we first
sort all§;’s in A in non-decreasing order. To simplify the notations, let us assuméjthat 1,2, ...
denotes that ordering. Betwe&nandd; ;1 we know thatg'(d) is a linear function. Just for doing
calculations extend this line both sides (left and right) to meedthed andd = 1 vertical lines.

8. It is useful to note here that the proximal SVM implementation solve} ¢kactly while LS-SVM-CG uses the
practical stopping condition (13) that contributes further to its efficiency.
9. Note that this point may not necessarily be at one obtise

349



KEERTHI AND DECOSTE

Let us call the ordinate values at these two meeting pointisaalir; respectively. It is very easy to
keep track of the changeslinandr; as indices get dropped and added to the active set of indices.
We move from left to right to find the zero crossingg(d). At the beginning we are & = 0.

Betweendy andd; we havely as the active set. It is easy to get, from the definitiop@) that

lo=MBi- (B—B) + 5 (O —t:) (¥ — ¥ (16)
1€k
and o
fo=AB-(B—B)+ Y (% —t) (% — ). (17)
1€k
(If, at step 3 of theL,-SVM-MFN algorithm, we solve (6) exactly, then it is easy to check that
ro = 0. However, in view of the use of the approximate termination mentioned in (Is3pétter to
computerg using (17).) Find the point where the line joinif@ lo) and(1,ro) points on thgd, ¢)
plane crosses zero. If the zero crossing point of this line is betweed & dhen that point i®*. If
not, we move over to searching betwearandd,. Herel; andr; need to be computed. This can
be done by a simple updating ovgrandrg since only the ternd? /2 enters or leaves. Thus, for a
general situation where we already h&ye; computed for the intervd; to 6;, 1 and we need to get
lir1, riz1 for the intervald; 1 to ;. 2, we use the update formula

lice=li+sF—t) (% —¥K) and riyq=ri+ sy —t;) (% —y5), (18)

wheres= —1if § € A; ands=1if & € A,. Thus we keep moving to the right until we get a zero
satisfying the condition that the root determined by interpolathd ) and (1,r;) lies betweend;
andd;, 1. The process is bound to converge since we know the existence of the nein{miz are
dealing with a strictly convex function). In a typical application of the abowve $iearch algorithm,
manyd;’'s are crossed befor® is reached, especially in the early stages of the algorithm, causing
[l (Bk+1)| to be much different fromi (B)|. This is the crucial step where the support vectors of the
problem get identified.

The complexity of the above exact line search algorithi@(slogm). Since the least squares
solution (step 3) is much more expensive, the cost of exact line seareqligihle.

4.5 Complexity Analysis

The bulk of the cost of the algorithm is associated with step 3, which only dethilexamples that

are active at the current point. (The full set of examples is involved iongtep 4.) This crucial
factor greatly contributes to the overall efficiency of the algorithm. The rarrobiterations, i.e.,
loops of steps 2-4 is usually small, say 5-20. Thus, the empirical complexttyeadgorithm is
O(nnday) Wherelyy, the average number of CG iterations in step 3, is bounded by the rank of the
data matrix and sk, < min{m,n}. As already mentioned,, usually turns out to be much smaller
than bothm andn. For example, when applied to tfieancial data set that has 198788 examples
and 252472 features, f@ = 1 and3 = 0 initialization, L,-SVM-MFN took 11 iterations, with

lav = 102.

4.6 Speed-up Heuristics

Suppose we are solving a problem for which the number of supportrgect, |l ()| is a small
fraction ofm, and we use the initializatiofso = 0. Sincel (Bo) = {1,...,m}, step 3 corresponds to

350



FINITE NEWTON METHOD FOR LINEARSVMS

Adult-9 | Web-8 | News20| Financial| Yahoo
No heuristics | 7.28 11.79 | 98.06 456.85 | 1443.23
Heuristic 1 5.12 9.24 67.85 70.86 904.99
Heuristic 2 3.57 4.17 90.54 202.62 | 848.99
Both heuristics| 3.00 3.90 52.73 62.18 524.16

SV fraction 0.605 | 0.219| 0.650 0.068 0.710

Table 3: Effectiveness of the two speed-up heuristics on five datadetsvalueC = 1 was used.
All computational times are in seconds. SV fraction is the ratio of the numberppfost
vectors to the number of training examples.

solving an unnecessarily large least squares problem; it is wastefulMisaccurately. One (or
both) of the following two heuristics can be employed to avoid this.

Heuristic 1. Whenevelf3g is a crude approximation (safy = 0), terminate the least squares
solution of (6) after a fixed, small number (say, 10) of CGLS iterationsefitkt call to step 3.
Even with the crud@ thus generated, the following step 4 usually leads to a gintith |1 ()|
much smaller tham, and a good bulk of the hon-support vectors get identified correctly.

Heuristic 2. First run theL»-SVM-MFN algorithm using a crude tolerance, say 10 2. Use
the B thus generated as the starting vector and make another rurg with0-8, the final desired
accuracy.

Table 3 gives the effectiveness of the above heuristics on a few dataCéearly both heuristics
are useful. It is not easy to say which one is more effective and so Wbsitigof them is the
appropriate thing to do. This gives at least a 2-fold speed-up. Axeghaghe amount of speed-up
is big if the fraction of examples that are support vectors is small. The psedd of Appendix B
uses both heuristics.

A third heuristic may also be used when working with a very large numberarhples. First
choose a small random subset of the examples and run the algorithm. Sehereithus generated
to seed a second run, this time using all the examples for training.

We end this section on implementation by explaining how a solution of the SVM dinabe
obtained aftet,-SVM-MFN solves the primal.

4.7 Obtaining a Dual Solution

Note that the SVM dual variableg;, i = 1,..., mare not involved anywhere in the algorithm. But
it is easy to recover them once we solve (2) udingSVM-MFN. From the structure of (3) it is
easy to see that; = —tid; /A, if i € I(B) anda; = 0 otherwise. In a practical solution we do not get
the true solution due to the use of (13). In such a situation it is useful tosasklaow well thea
defined above satisfies the KKT optimality conditions of the dual. This candily &ane. After
computinga as mentioned above, t= ;aiti(x",1)7, & = Aai Vi, gi = tiyi(B) + & — 1 Vi, and
obtain the maximum dual KKT violation as mgmax.q;~0|0i|, max.q;—0max{0, —gi} }. If, keeping
the maximum dual KKT violation within some specified tolerance (say,0.001) is important for
some reason, then one can proceed as follows. First &6d/M-MFN usinge = 102 and then

351



KEERTHI AND DECOSTE

check the maximum dual KKT violation as described above. If it does rathgdhe required
tolerance then continue the-SVM-MFN solution with a suitably chosen smaller valuesof

5. Comparison with SYMI9Nt and BSVM

The experiments of this section compateSVM-MFN against two dual-based methods: the pop-
ular svmight (Joachims, 19999 and the more modern BSVM (Hsu and Lin, 2002). In order to
make a proper comparisdrp-SVM-MFN was forced to satisfy the same dual KKT tolerance of
T =0.001 as the other methods. (The procedure given at the end of the déshseas used to
do this.) We used defaulty (subproblem size) for svipht g BSVM,; other values tried were
not fastet! We also tried SMO (Platt, 1999), but found it slower than the others foethiesar
problems. An explanation for this is given by Kao et al (Kao et al., 200&kiction 4 of their paper
via the fact that, for the linear SVM implementation, the cost of updating theegraaf the dual is
independent of the number of dual variables that are optimized in eachiteaation.

Tables 4-6 report training times and 10-fold cross-validation (CV) eatsrforAdult-9 Web-8
andNews2data sets.

We show training times for variouS’s, with optimal (lowest) mean CV error rate for each
method shown in bold. Due to the different loss functions used, a diregb&eson of these meth-
ods is challenging and necessarily approximate on non-separable Hatafdre, in the following
tables we show results for a rangebfalues around values Gfyielding minimum cross-validation
errors for each of the three methods. A reasonable conservatiedigpéor our method can then be
determined by selecting the slowest training time for a near-opt@nallue for our method versus
the fastest training time for a near-optin@avalue for an alternative method.

For example, foAdult-9one could compare the time for SWeNts CV-optimal (112.6 secs)
versus the time fok,-SVM-MFN’s CV-optimal (1.6 secs), yielding a speedup ratio of 70.4. Al-
ternatively,nearly-CV-optimal cases foAdult-9(e.g. 15.23% 15.22% for SVMIINt yith Cc=2"9)
yield other speedups (e.g. 13.2 if both stight and L,-SVM-MFN useC=2"3%). Over all such
nearly-optimal cases for all three data sets, speedups are consisigniigant (e.g. 4-100 over
svMIi9Nt ang 4-40 over BSVM). Even falews20which has more than a million featuféd.,-
SVM-MFN is more than four times faster than SV and BSVM.

For the Yahoodata set having a million examples, sV and BSVM could not complete
the solution even after one full day, while-SVM-MFN took only about 10 minutes to obtain a
solution.

We also did an experiment to study how the algorithms scale mitthe number of examples.
Figure 1 gives log-log plots showing the variation of training times as a funofion for four of the
conventionaAdultandWebsubsets. The times plotted for each data subset/method pair are for the
corresponding CV-optimal’s. These plots show that not only whs-SVM-MFN always faster,
but it also scaled much better with

10. We report results using version 5.0 of slght. we also tried the newer version 6.0, but found for our particular
experiments with linear kernels that it was no faster, and sometimes levesr.s

11. Specifically, the values used fgpwere 10 for SVMI9Nt and 30 for BSVM.

12. Dual algorithms such as SNt and BSVM are efficient when the number of features is large. Thetrsmades
linearly with the number of features.

352



FINITE NEWTON METHOD FOR LINEARSVMS

svmiight BSVM | L,-SVM-MFN

log,C | secs | CV% | secs| CV% | secs| CV%
-4.5 16.8 | 15.29| 7.3 | 15.29| 1.2 15.30
-4.0 15.3 | 15.28| 8.1 | 15.27| 1.3 15.26
-3.5 18.6 | 15.25| 8.9 | 15.27| 1.4 15.22
-3.0 21.1 | 15.23| 10.0| 15.23| 1.6 15.21
-2.5 25.8 | 15.24| 11.7| 15.23| 1.8 15.21
-2.0 | 44.4 | 15.25| 13.3| 15.24| 1.9 15.23
-1.5 | 47.0 | 15.23| 15.9| 15.24| 2.2 15.23
-1.0 58.9 | 15.26| 20.3| 15.25| 3.1 15.22
-0.5 80.9 | 15.23| 25.8| 15.24| 2.9 15.22
0.0 | 112.6| 15.22| 32.4| 15.22| 2.9 15.23
0.5 | 189.2| 15.23| 41.7| 15.23| 3.1 15.23
1.0 | 235.9| 15.24| 54.4| 15.22| 3.5 15.23

Table 4: Results foAdult-9
svmiight BSVM Lo-SVM-MFN
log,C | secs | CV% | secs | CV% | secs| CV%
-0.5 143 | 1.36 | 114 | 1.35| 3.2 1.34
0.0 149 | 1.35| 158 | 1.35 | 4.2 1.34
0.5 196 | 1.34 | 20.7 | 1.34 | 5.0 1.33
1.0 29.1 | 1.34| 284 | 1.34 | 5.0 1.33
1.5 46.8 | 1.33 - 1.33 | 4.7 1.33
2.0 60.3 | 1.33| 614 | 1.33| 5.7 1.33
2.5 | 1105| 1.33| 824 | 1.33 | 7.6 1.33
3.0 | 131.6| 1.33 | 139.0| 1.33 | 8.9 1.34
35 | 2326| 1.33|1914| 1.33 | 10.8 1.34
40 | 279.8| 1.34 | 282.9| 1.34 | 10.8 1.34
45 | 3475| 1.35 | 441.1| 1.35 | 11.6 1.34
50 | 6151 1.35|647.1| 1.34 | 11.2 1.34
Table 5: Results fovweb-8

353




KEERTHI AND DECOSTE

seconds

10

seconds

WEB—{1,4,7,8}

10 10* 10
number of training examples

Figure 1: Training time versus for the Adult and Web data sets, on a log-log plot. Note that the
vertical axes are only marked at ) 10° and 16.

354



FINITE NEWTON METHOD FOR LINEARSVMS

svmiight BSVM Lo-SVM-MFN
log,C | secs | CV% | secs | CV% | secs | CV%

0.0 | 3359| 293 |3304| 293 | 69.3 | 3.35
0.5 | 407.6| 2.82 | 392.6| 2.81 | 55.4 | 3.16
1.0 | 437.1| 2.78 | 436.1| 2.78 | 84.5 | 3.07
15 | 4422 2.78 | 434.4| 2.78 | 62.7 | 2.98
2.0 |466.8| 2.74 | 437.3| 2.73 | 76.0 | 2.89
25 | 466.9| 2.77 | 432.3| 2.78 | 75.0 | 2.88
3.0 | 455.9| 285 |4504| 2.85| 91.6 | 2.88
3.5 | 471.3| 3.02 | 439.0| 3.02 | 98.0 | 2.86
4.0 | 513.7| 3.07 | 432.2| 3.07 | 114.0| 2.86
45 | 554.7| 3.07 | 437.0| 3.07 | 120.4| 2.89
5.0 | 525.7| 7.76 | 421.6| 3.07 | 159.2| 2.90
5.5 | 535.7| 3.07 | 426.5| 3.08 | 193.9| 2.97

Table 6: Results foNews20

6. Extension to Other Loss Functions

The previous sections addressed the solutiobh,65VM, i.e., the SVM primal problem that uses
thelL, loss function:

. A
mBmf(B) = EHB‘|2+ZL(Ei) (19)
whereg; = 1—t;y;(B) andL = L, where
0 if & <0
LZ(Ei) = { E|2/2 if Ei >0 (20)

The modified Newton algorithm can be adapted for other loss functions tedoriéfly explain how
to do this for the following loss functions: the modifed Huber's loss functititafig, 2004) and the
L, loss function.

Consider, first, the modified Huber’s loss function. The solution for this fosction forms the
basis of the solution for the; loss function. Recently, Zhang (Zhang, 2004) pointed out that the
modified Huber’s loss function has some attractive theoretical propeftiesoss function is given

by

0 if & <0
Ln(&i) = { §2/2 ifo<&<2 (22)
2(&i—1) if &>2
With L = Ly, the primal objective functiorf in (19) is strictly convex, continuously differentiable
and piecewise quadratic, very much as when (20) is used. So the extehgiermodified Newton
algorithm toLy, is rather easy. A basic iteration proceeds as follows. Gdet 1o = {i : &i(Bx) <
0}, 11 ={i:0<&(Bx) <2} andly = {i: &(Bx) > 2}. The natural quadratic approximation bto
minimize is the one which keeps these index sets unchanged, i.e.,

. A 1
mB'nf(B) = §\|B||2+§i€ l(Yi(B) )2 -2 tiyi(B). (22)

i€l

355



KEERTHI AND DECOSTE

Let 5
Xi
iz(1)
A iEZz I 1
andﬁ = B —qso that (22) can be equivalently rewritten as the solution of

minf(B) = 5B al*+

>3 (B 1) (23
2 i€l
This is nothing but a regularized least squares solution that is shiffgdpace; the CG techniques
described in Section 4 can be used to solveffer 3 — g and then3 can be obtained. The exact
line search for minimizing on a ray is only slightly more complicated than the one in Section 4:
with (21) we need to watch for jumps of examples from/to three sets of thddyheandl, defined
above. The proof of finite convergence of the overall algorithm is veugh as for thd., loss
function.

Let us now consider thle; loss function given by

L@ ={ g §eso (24)

Choosert, a positive tolerance parameter and define (& /1) + 1. Thel; loss function can be
approximated by (§). Thus, we can solve the primal problem corresponding th thess function
as follows. Take a sequence olalues, sayj = 2-J,j=0,1,.... Start by solving the problem
for j = 0. Use the thus obtained to seed the solution of the problemjfer1 and so on until a
solution that approximates the true solution of thdoss function satisfactorily is obtained. This is
only a rough outline of the main scheme. Several details need to be workedavder to arrive at
an overall method that is actually very efficient. Currently we are workmthese details; we will
report the results in a future paper.

Recently Zhang et al (Zhang et al., 2003) gave a primal algorithm for SWith L1 loss func-
tion in which a modified logistic regression function is used to approximate;thass function and
a sequential approximation scheme similar to what we described above is echp@yr method
is expected to be more efficient since the approximating loss function (moHiiedr) helps keep
the sparsity propery, i.e., examples wijg > t are inactive during the solution of the linear least
squares problem at each iteration. However, this claim needs to béamted by proper imple-
mentation of both methods and detailed numerical experiments.

7. Extension to Ordinal Regression

In this section we explain how thie,-SVM-MFN algorithm can be adapted to solve ordinal re-
gression problems. In ordinal regression the target variglbiakes a value from a finite set, say,
{1,2,...,p}. Thus,pis the total number of possible ordinal values. Uet {i:t =s}. Letw
denote the weight vector ang(w) = w- X denote the ‘score’ of the SVM for thieth example.
To set up the SVM formulation we follow the approach given in Chu and Keg&€@®5) and use
p— 1 thresholdsbs, s=1,..., p— 1 to divide the scores intp bins so that the intervalbs_1, bs) is
assigned for examples which haye- s.13 Let B denote the vector which contaimstogether with

13. To make this statement properly, we tége= —co andbp = .

356



FINITE NEWTON METHOD FOR LINEARSVMS

bs,s=1,...,p—1. Foragiverf and arse {1,..., p— 1} define the following ‘margin-violating’
index sets:
Ls(B) ={i:ie J for somel <s andy;(w)—bs>—1}

Us(B) ={i:ieJ for somel >s andy;(w) —bs < 1}.

Then the primal SVM problem can be written as

. *11 1
mBmf _—\|B|yz+zl .a@ y. bs+1)2+§ S (W) —bs—1)%). (25

i€ Us(w)

A nice property of the above formulation is that, as shown in Chu and Kg@@bb), the solution
of (25) automatically satisfies the conditidn,< by <--- <bp_3.

Clearly, f is a differentiable, strictly convex, piecewise quadratic functior,offery much
like the f in (2). So, the extension df;-SVM-MFN to solve (25) is easy. A basic iteration goes
as follows. Giverf, let £y = Ls(Bk), U = Us(Bk) for s=1,...,p— 1 and solve the following
guadratic approximation df corresponding to keeping those index sets unchanged:

p-1
. 1

min f (B ||B||2+ Z > (i(w —bs+1)? + z yi(w) —bs—1)?). (26)
B |€£4<

IE‘Uk

Let B denote the solution of (26). Exact line search to minimfizen the ray fron3 to B is more
complicated than the line search we described in Section 4, but it is quite eagtam in code;
also, if p is small, the algorithm is not expensive. As in Section 4, we need to identifycimesp
along the ray at which jumps in the second derivativd ¢hke place. Take one example, say the
i-th. Let = (w,by,...,bp-1), i =Vyi(w) andl =t;. For eachs=1,...,| —1, calculateds; such
thaty; (Bk) + 0si(Yi — Vi(Bk)) = bs+ 1. Similarly, for eachs =1,..., p— 1, calculateds; such that
Yi(Bx) + si(Yi — Yi(Bk)) = bs— 1. Each positiveds; is a point where the second derivative jumps.
By calculating all such points (there are at mpsh of them, wheram is the number of training
examples), sorting them and using the ideas of Section 4 to locate the minimizer tivbeslope
crosses the zero value, exact line search can be performed. Tdf@pomnvergence of the overall
algorithm is very much similar to the proof of Theorem 1.

The ideas outlined above for the loss function can be extended to other loss functions such
as the modified Huber’s loss function and theloss function using the ideas of Section 6.

8. Conclusion

In this paper we have modified the finite Newton method of Mangasarian imasevays to ob-
tain a very fast method for solving linear SVMs that is easy to implement and tnairch faster
than existing alternative SVM methods, making it attractive for solving lacgdesclassification
problems.

We have also tried another method for lindarSVMs. This corresponds to the direct appli-
cation of a nonlinear CG method (such as Polak-Ribierre) to (2); noteftim@a differentiable
function. This method also works well, but it is not as efficient and numigriczbust asl,-SVM-
MFN. One of the main reasons for this is that the bulk of the computatiohs-8&M-MFN takes
place in the CGLS iterations which operate only with potential support vedBorshe other hand,

357



KEERTHI AND DECOSTE

the nonlinear CG method has to necessarily deal with all examples in each itetatiess clever
shrinking strategies are designed.

It is interesting to ask if the modified finite Newton algorithm can be extended rbnear
kernels. If (6) is solved via its dual (say, by using an algorithm for MS) the new algorithm
can indeed be extended to nonlinear kernels. That would be an interpstimg algorithm that is
implemented using dual variables. But it is not yet clear whether such antalg will be more
efficient than existing good dual methods (e.g. SMO or S.WM)

Appendix A. A Pseudocode for_>-SVM-MFN

Below, B represents the current point;and| denote the output vector and active index sef.at
F=f(B)andly ={1,...,m}.

1. Initialization.

e If noinitial guess off is available, seini =0, =0,y; = 0Vi € Il andl = Iy,.

e If a guess ofw is obtained from another method (say, the Naive Bayes method), set

ini =0, use (9) to fornB and then computg Vi € Iy and the active index sétat f3.

e If continuing the solution from on€ value to another nearl value, seini =1 and
simply start with theB, i, i € Iy andl available from the previous solution.

If ini = 0 sete = 10 2 andNeedSecondRound:1. Ifini = 1 sete = 108 andNeedSecondRound-0.

Computd: - f(B)14 SetFprevious: F
2. Setiter = 0 anditermax= 50.

3. DefineX to be a restricted data matrix whose rows @qh 1), i € Iy andt to be the corre-
sponding target vector whose elementstgriec Ix. (X andt are defined just for stating the
steps easily here. In the actual implementation there is no need to actually am?)rSet:
ter =iter+ 1, =B, z=t—XB, r=X"z—AB, @ = |[r||%, p=T, @ = @. If (ini =0 and
iter = 1) setcgitermax= 10; else setgitermax= 5000. Setgiter = 0, optimality= 0 and
exit= 0.

4. Repeat the following steps ungikit = 1 occurs:

cgiter=cgiter+ 1

q=Xp @=al*_ _

Y=01/(93+Aq2), B=PB+Yyp

z=2-yq, g =|2?

r=—AB+X"z & =q, ¢ =||r|?

If @, < 2@y setoptimality= 1

If (optimality= 1 orcgiter > cgitermay setexit=1
W= /&, p=r-+wp, ¢ =|p|?

14. If B = 0 then note thaF = m/2.

15. Itis ideal to store the input datfy;,t} in the svMi9t format where each example is specified by the target value
together with a bunch of (feature-index,value) pairs corresponditigetnon-zero components.

358



FINITE NEWTON METHOD FOR LINEARSVMS

5. Computd® ;i = yi(B), Vi € lai. Check if the following conditions hold: (aptimality = 1;
(b) tiyi < 1+tol Vi € I; and (c)tjy; > 1—tol Vi ¢ 1.7 If all three conditions hold, go to step
8.

6. Computé® A;, A, andA using (14) and (15). Sort th® in A in non-decreasing order. Let
{i1,i2,...,iq} denote the list of ordered indices obtained. Compsindrs using (16) and
(17). Setexit= 0, j = 0. Repeat the following steps ungikit = 1 occurs:

j=j+10= 6ij

delslope=Is+&(rs—Is)

If delslope> 0 setd* = —dIs/(delslope-Is) andexit= 1
Use (18) to updatks andrs usingi = ij.

7. Set3:=pB+ 6*([5— B),y:=y+&(y—y), and compute the new active index det: {i € I :
tiyi < 1}. ComputeF = f(B). If (iter > itermaxor F > Fpreviou9 Stop with an error message.
Else, seFprevious= F and go back to step 3 for another iteration.

8. If NeedSecondRound:=0 stop with3 = 6 y =y andly as the optimal active index set. Else,
sete = 108, NeedSecondRound:0 and go back to step 3.

Appendix B. A Description of Data Sets Used

As in the main paper, lah, n andn,; denote, respectively, the number of examples, the number
of features and the number of non-zero elements in the data matrixs @&h,/(mn) denote the
sparsity in the data matrix.

Australianis a small dense data set taken from the UCI repository(Blake and M298) And
it hasm=690,n =14 ands= 1.

AdultandWebare data sets exactly as those used by Platt(Platt, 1999Adtdt n is 120 and
sis 0.21, while, forWeh nis 300 ands = 0.04. With each of these two data sets, Platt created a
sequence of data sets with increasing number of examples in order to stugbatimg properties of
his SMO algorithm with respect to. Adult-1, Adult-4, Adult-7andAdult-9have themvalues 1605,
4781, 16100 and 3256Web-1 Web-4 Web-7andWeb-8have themvalues 2477, 7366, 24692 and
49749.

We generatetNews2or easily reproducible results on a text classification task havingooth
andmlarge. It is a size-balanced two-class variant of the UCI “20 Newgtg'ddata set (Blake and
Merz, 1998). The positive class consists of the 10 groups with namesrofsti . *, conp. *, or
m sc. f orsal e, and the negative class consists of the other 10 groups. We tokenizbtt@ial-
lum’s Rainbow(McCallum, 1996), usingai nbow -g 3 -h -s -0 2 -i (i.e. trigrams, skip mes-
sage headers, no stoplist, drop terms occurring less than two times), miviriP996,n = 1355191

16. The arraysp, r, q andz are local to step 4 and are not used elsewhere. Hence it is alright toausartie arrays
elsewhere in the implementation. This can help save some memory. Foplexag can be used to store the —
computed in step 5 andcan be used to store tRgcomputed in step 6.

17. In view of numerical errors it is a good idea to employ the parametén these checks. A value o6l = 108 is a
good choice.

18. This step refers to several equations from the main paper. To thatobtations given there, takg:in this algorithm
to beyf of the main papers in this pseudocode to stand figr I, li11 etc; andrs in this pseudocode to stand fay,
ri, ri11 etc.

359



KEERTHI AND DECOSTE

ands = 0.000336. We used binary term frequencies and normalized each exaegbde to unit
length.

Financial is a text classification data set that we created and corresponds toyitassiéws
stories as financial or non-financial. Unigrams occuring in the news tetes taken as the features
and a tf-idf representation was used to form the data. The data set-hd98788n = 252472 and
s=0.00094.

Yahoois a large data set obtained from Yahoo! and is a classification probleceicong the
prediction of behavior of customers. It hass=1 million, n = 80 ands = 0.098.

References
D. P. BertsekasNonlinear ProgrammingAthena Scientific, Belmont, Massachussetts, 1999.

A. Bjorck. Numerical Methods for Least Squares Problei®BAM, Philadelphia, 1996.

C. L. Blake and C. J. Merz. UCI repository of machine learning databadechnical report,
University of California, Irvine, 1998. www.ics.uci.eduhlearn/MLRepository.html.

S. Chakrabarti, S. Roy, and M. V. Soundalgekar. Fast and acdesdtelassification via multiple
linear discriminant projectionslhe VLDB Journal12:170-185, 2003.

W. Chu and S. S. Keerthi. New approaches to support vector ordigedgsion. Technical report,
Yahoo! Research Labs, Pasadena, California, USA, 2005.

D. DeCoste and K. Wagstaff. Alpha seeding for support vector mashilmeProceedings of the
International Conference on Knowledge Discovery and Data Minirages 345—-359, 2000.

A. Frommer and P. Maal3. Fast CG-based methods for Tikhonov-Phillipsarezation. SIAM
Journal of Scientific Computin@0(5):1831-1850, 1999.

G. Fung and O. L. Mangasarian. Proximal support vector machinef@ass In Proceedings of
the Seventh ACM SIGKDD International Conference on Knowledge Gisgand Data Mining
pages 77-86, 2001.

C. W. Hsu and C. J. Lin. A simple decomposition method for support vectohimes. Machine
Learning 46:291-314, 2002.

T. Joachims. Making large-scale SVM learning practicalAdivances in Kernel Methods - Support
Vector LearningMIT Press, Cambridge, Massachussetts, 1999.

W. C. Kao, K.M. Chung, T. Sun, and C. J. Lin. Decomposition methods fealirsupport vector
machinesNeural Computation16:1689—-1704, 2004.

P. Komarek. Logistic regression for data mining and high-dimensionalifitas®n. Ph.d. thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2004.

O. L. Mangasarian. A finite Newton method for classificati@mptimization Methods and Software
17:913-929, 2002.

360



FINITE NEWTON METHOD FOR LINEARSVMS

A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval sslfication and
clustering. Technical report, University of Massachssetts, Amheistsithussetts, USA, 1996.
www.cs.cmu.edutmccallum/bow.

C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse lirpsat®ons and sparse least
squares,ACM Transactions on Mathematical Softwase43—71, 1982.

J. Platt. Sequential minimal optimization: A fast algorithm for training suppatorenachines. In
Advances in Kernel Methods - Support Vector LearnMilr Press, Cambridge, Massachussetts,
1999.

J. Suykens and J. Vandewalle. Least squares support vector matdssifiersNeural Processing
Letters 9(3):293-300, 1999.

J. Zhang, R. Jin, Y. Yang, and A. Hauptmann. Modified logistic regrasgim approximation to
SVM and its applications in large-scale text categorizatiofwentieth International Conference
on Machine Learningpages 472—-479, 2003.

T. Zhang. Statistical behavior and consistency of classification methsdsl loa convex risk mini-
mization. The Annals of Statistic82:56—85, 2004.

361



