
Journal of Machine Learning Research 6 (2005) 341-361 Submitted 11/04; Published 03/05

A Modified Finite Newton Method for Fast Solution
of Large Scale Linear SVMs

S. Sathiya Keerthi SATHIYA .KEERTHI@OVERTURE.COM

Dennis DeCoste DENNIS.DECOSTE@OVERTURE.COM

Yahoo! Research Labs
210 South Delacey Avenue
Pasadena, CA 91105, USA

Editor: Thorsten Joachims

Abstract

This paper develops a fast method for solving linear SVMs with L2 loss function that is suited for
large scale data mining tasks such as text classification. This is done by modifying the finite Newton
method of Mangasarian in several ways. Experiments indicate that the method is much faster than
decomposition methods such as SVMlight, SMO and BSVM (e.g., 4-100 fold), especially when
the number of examples is large. The paper also suggests waysof extending the method to other
loss functions such as the modified Huber’s loss function andthe L1 loss function, and also for
solving ordinal regression.

Keywords: linear SVMs, classification, conjugate gradient

1. Introduction

Linear SVMs (SVMs whose feature space is the same as the input space ofthe problem) are power-
ful tools for solving large-scale data-mining tasks such as those arising in the textual domain. Quite
often, these large-scale problems have a large number of examples as wellas a large number of
features and the data matrix is very sparse (e.g.>99.9% sparse “bag of words” in text classifica-
tion). In spite of their excellent accuracy, SVMs are sometimes not preferred because of the huge
training times involved (Chakrabarti et al., 2003). Thus, it is important to have fast algorithms for
solving them. Traditionally, linear SVMs have been trained using decompositiontechniques such
as SVMlight (Joachims, 1999), SMO (Platt, 1999), and BSVM (Hsu and Lin, 2002), which solve
the dual problem by optimizing a small subset of the variables in each iteration.Each iteration costs
O(nnz) time, wherennz is the number of non-zeros in the data matrix (nnz = mn if the data matrix is
full wherem is the number of examples andn is the number of features). The number of iterations,
which is a function ofmand the number of support vectors, tends to grow super-linearly withmand
thus these algorithms can be inefficient whenm is large.

With SVMs two particular loss functions for imposing penalties on slacks (violations on the
wrong side of the margin, usually denoted byξ) have been popularly used.L1-SVMs penalize
slacks linearly (penalty=ξ) while L2-SVMs penalize slacks quadratically (penalty=ξ2/2). Though
both SVMs give good generalization performance,L1-SVMs are more popularly used because they
usually yield classifiers with a much less number of support vectors, thus leading to better classifi-
cation speed. For linear SVMs the number of support vectors is not a matterof much concern since

c©2005 Sathiya Keerthi and Dennis DeCoste.

KEERTHI AND DECOSTE

the final classifier is directly implemented using the weight vector in feature space. In this paper we
focus onL2-SVMs.

Since linear SVMs are directly formulated in the input space, it is possible andworthwhile
to think of direct methods of solving the primal problem without using the kernel trick. Primal
approaches are attractive because they assure a continuous decrease in the primal objective function.

Recently some promising primal algorithms have been given for training linear classifiers. Fung
and Mangasarian (Fung and Mangasarian, 2001) have given a primalversion of the least squares
formulation of SVMs given by Suykens and Vandewalle (1999). Komarek(2004) has effectively
applied conjugate gradient schemes to logistic regression. Zhang et al. (2003) have given an indirect
algorithm for linearL1-SVMs that works by approximating theL1 loss function by a sequence
of smooth modified logistic regression loss functions and then sequentially solving the resulting
smooth primal modified logistic regression problems by nonlinear conjugate gradient methods. A
particular drawback of that method is its inability to exploit the sparsity propertyof SVMs: that
only the support vectors determine the final solution.

A direct primal algorithm forL2-SVMs that exploits the sparsity property, called the finite New-
ton method, was given by Mangasarian (2002). It was mainly presented for problems in which
the number of features is small. The main aim of this paper is to introduce appropriate tools that
transform this method into a powerfully fast technique for solving large scale data mining problems
(with a large number of examples and/or a large number of features). Our main contributions are:
(1) we modify the finite Newton method by keeping the least squares nature ofthe problem intact in
each iteration and using exact line search; (2) we bring in special, numerically robust conjugate gra-
dient techniques to implement the Newton iterations; and (3) we introduce heuristics that speed-up
the baseline implementation considerably. The result is an algorithm that is numerically robust and
very fast. An attractive feature of the algorithm is that it is also very easy toimplement; Appendix
A gives a pseudocode that can be easily transcribed into a working code.

We show that the method that we develop forL2-SVMs can be extended in a straight-forward
way to the modified Huber’s loss function (Zhang, 2004) and, in a slightly more complicated way
to theL1 loss function. We also show how the algorithm can be modifed to solve ordinalregression.

The paper is organized as follows. Section 2 formulates the problem and gives basic results.
The modified finite Newton algorithm is developed in Section 3. Section 4 gives full details associ-
ated with a practical implementation of this algorithm. Section 5 gives computational experiments
demonstrating the efficiency of the method in comparison with standard methods such as SVMlight

(Joachims, 1999) and BSVM (Hsu and Lin, 2002). Section 6 suggests ways for extending the
method to other loss functions and Section 7 explains how ordinal regression can be solved. Section
8 contains some concluding remarks.

2. Problem Formulation and Some Basic Results

Consider a binary classification problem with training examples,{xi , ti}m
i=1 wherexi ∈ Rn andti ∈

{+1,−1}. To obtain a linear classifiery = w·x+b, L2-SVM solves the following primal problem:

min
(w,b)

1
2
(‖w‖2 +b2)+

C
2

m

∑
i

ξ2
i s.t. ti(w·xi +b) ≥ 1−ξi ∀ i (1)

whereC is the regularization parameter. We have included theb2/2 term so that standard regularized
least squares algorithms can be used directly. Our experience shows that generalization performance

342

FINITE NEWTON METHOD FOR LINEARSVMS

is not affected by this inclusion. In a particular problem if there is reason tobelieve that the added
term does affect performance, one can proceed as follows: takeγ2b2/2 as the term to be included;
then defineb̃ = γb as the new bias variable and take the classifier to bey = w · x+ (1/γ)b̃. The
parameterγ can either be chosen to be a small positive value or be tuned by cross validation.

For applying least squares ideas neatly, it is convenient to transform (1) to an equivalent formu-
lation by eliminating theξi ’s and dividing the objective function by the factorC. This gives1

min
β

f (β) =
λ
2
‖β‖2 +

1
2 ∑

i∈I(β)

d2
i (β) (2)

whereβ = (w,b), λ = 1/C, di(β) = yi(β)− ti , yi(β) = w·xi +b, andI(β) = {i : tiyi(β) < 1}.
Least Squares SVM (LS-SVM) (Suykens and Vandewalle, 1999) corresponds to (1) with the

inequality constraints replaced by the equality constraints,ti(w · xi + b) = 1− ξi for all i. When
transformed to the form (2), this is equivalent to settingI(β)={1, . . . ,m}; thus, LS-SVM is solved
via a single regularized least squares solution. In contrast, the dependance ofI(β) onβ complicates
theL2-SVM solution. In spite of this complexity, it can be advantageous to opt for usingL2-SVMs
because they do not allow well-classified examples to disturb the classifier design. This is especially
true in problems where the support vectors are a small subset of all examples.2

Let us now review several basic results concerningf , some of which are given in Mangasarian
(2002). First note thatf is a piecewise quadratic function. The presence of theλ‖β‖2/2 term makes
f strictly convex. Thus it has a unique minimizer.f is continuously differentiable in spite of the
jumps inI(β), the reason for this being that when an indexi causes a jump inI(β) at someβ, its di

is 0. The gradient off is given by

∇ f (β) = λβ+ ∑
i∈I(β)

di(β)

(

xi

1

)

. (3)

Given an index setI ⊂ {1, . . . ,m}, let us define the functionfI as

fI (β) =
λ
2
‖β‖2 +

1
2 ∑

i∈I

d2
i (β). (4)

Clearly fI is a strictly convex quadratic function and so it has a unique minimizer. It follows directly
from (3) that, for anȳβ, ∇ f (β)|β=β̄ = ∇ fĪ (β)|β=β̄ whereĪ = I(β̄). In fact, there exists an open set

aroundβ̄ in which f and fĪ are identical. It follows that̄β minimizes f iff it minimizes fĪ .

3. The Modified Finite Newton Algorithm

Mangasarian’s finite newton method (Mangasarian, 2002) does iterationsof the form

βk+1 = βk +δkpk,

1. To help see the equivalence of (1) and (2), note that at a given(w,b), the minimization ofξ2
i in (1) will automatically

chooseξi = 0 for all i 6∈ I(β).
2. We find thatL2-SVMs usually achieve better generalization performance over LS-SVMs. Interestingly, we also find

L2-SVMs often train faster than LS-SVMs, due to sparseness arising fromsupport vectors.

343

KEERTHI AND DECOSTE

where the search directionpk is based on a second order approximation of the objective function at
βk:

pk = −H(βk)
−1∇ f (βk).

Since f is not twice differentiable atβ where at least one of thedi is zero,H(β) is taken to be
the generalized Hessian defined byH(β) = λJ+CTDC whereJ is then×n identity matrix,C is a
matrix whose rows are(xT

i ,1) andD is a diagonal matrix whose diagonal elements are given by:

Dii =







1 if tiyi(β) < 1
some specific element of[0,1] if tiyi(β) = 1
0 if tiyi(β) > 1

(5)

Note that examples with indices satisfyingtiyi(β) > 1 do not affectH(β) and pk. (This property
contributes greatly to the overall efficiency of the method.) The step sizeδk is chosen to satisfy an
Armijo condition that ensures convergence, and it is found by applying a halving method of line
search in the[0,1] interval. (IfC in (1) is sufficiently small then it is shown in Mangasarian (2002)
that the fixed step size,δk = 1 suffices for convergence.)

We modify the algorithm slightly in two ways. First, we avoid doing anything special for cases
wheretiyi(β) = 1 occurs. (Essentially, we setDii = 0 in (5) for such cases.) This lets us keep the least
squares nature of the problem intact. More precisely, instead of computingthe Newton direction
pk, we compute the Newton point,βk + pk, which is the solution of a regularized least squares
problem. As we will see in the next section, this has useful implications on stablealgorithmic
implementation. Second, we do an exact line search to determineδk. This feature allows us to
directly apply convergence results from nonlinear optimization theory. (Inthe next section we give
a fast method for exact line search.) Thus, at one iteration, given a point β we setI = I(β) and
minimize fI to obtain the Newton point,̄β. Then an exact line search on the ray fromβ to β̄
yields the next point of the method. These iterations are repeated till the algorithm converges. The
overall algorithm is given below. Implementation details associated with each step are discussed in
Section 4.

344

FINITE NEWTON METHOD FOR LINEARSVMS

Algorithm L2-SVM-MFN.

1. Choose a suitable startingβ0. Setk = 0 and go to step 2.

2. Check ifβk is the optimal solution of (2). If so, stop withβk as the solution. Else go to step 3.

3. Let Ik = I(βk). Solve
min

β
fIk(β). (6)

Let β̄ denote the solution obtained.

4. Do a line search to decrease the “full” objective function,f :

min
β∈L

f (β), (7)

whereL = {β = βk + δ(β̄−βk) : δ ≥ 0}. Let δ? denote the solution of this line search. Set
βk+1 = βk +δ?(β̄−βk), k := k+1 and go back to step 2 for another iteration.

Theorem 1. Algorithm L2-SVM-MFN converges to the solution of (1) in a finite number of
iterations.

Proof. Let pk = (β̄ − βk). Note thatpk = −H−1
Ik

∇ f (βk) and λI ≤ HIk ≤ Hall whereHIk is
the Hessian offIk andHall is the Hessian off{1,...,m}. By Proposition 1.2.1 of Bertsekas (1999) it
follows3 that {βk} converges to the minimizer off . Proof of finite convergence is exactly as in
Mangasarian’s proof of finite convergence of his algorithm, and goes as follows. Letβ? denote the
minimizer of f andI? = I(β?). Let O = {β : I(β) = I?}. ClearlyO is an open set that containsβ?.
Since{βk} converges toβ?, there exists ak such thatβk ∈ O. When this happens in step 2 of the
algorithm, we get̄β = β? in step 3 and soβk+1 = β?.

4. Practical Implementation

In this section we discuss details associated with the implementation of the various steps of the
modified finite Newton algorithm and also introduce some useful heuristics forspeeding up the
algorithm. The discussion leads to a fast and robust implementation ofL2-SVM-MFN. The fi-
nal algorithm is also very easy to implement; Appendix A gives a pseudocodethat can be easily
transcribed into a working code. A number of data sets are used in this section to illustrate the
effectiveness of various implementation features. These data sets are described in Appendix B. All
our computations were done on a 2.4 GHz machine with Intel Xeon processorand having four Gb
RAM.

4.1 Step 1: Initialization

If no guess ofβ is available, then the simplest starting point isβ0 = 0. For this point we haveyi = 0
for all i and soI0 = {1, . . . ,m}. Therefore, with such a zero initialization, thēβ obtained in step 3 is
exactly the LS-SVM solution.

3. To apply Proposition 1.2.1 of Bertsekas (1999) note the following: (a) Becauseλ > 0 andHall is positive definite,
condition (1.12) of Bertsekas (1999) holds; (b) Bertsekas (1999) shows that (1.12) implies (1.13) given there; (c) in
Bertsekas (1999) exact line search is referred as the minimization rule.

345

KEERTHI AND DECOSTE

Adult-9 Web-8 News20 Financial Yahoo
No β-seeding 60.26 105.16 1321.87 1130.35 11650.56

β-seeding 36.80 24.43 944.27 692.47 4419.89

Table 1: Effectiveness ofβ-seeding on five data sets. The following 21C values were used:
√

2
k
,

k = −10,−9, . . . ,9,10. All computational times are in seconds.

Suppose we have a guess ˜w for the weight vectorw. It is possible that ˜w comes from an in-
expensive classification method, such as the Naive-Bayes classifier. In that case it is necessary to
rescale ˜w and also chooseb0 so as to form aβ0 that is good for starting the SVM solution. So we
setβ0 = (γw̃,b0) and choose suitable values forγ andb0. Suppose we also assume thatI , a guess of
the optimal set of active indices, is available. (If no guess is available, we can simply letI be the set
of all training indices.) Then chooseγ andb0 to minimize the cost

λ
2
[γ2‖w̃‖2 +b2

0]+
1
2 ∑

i∈I

[γw̃·xi +b0− ti]
2. (8)

It is easy to check that the resultingγ andb0 are given by

γ = (p22q1− p12q2)/d and b0 = (p11q2− p12q1)/d. (9)

where p11 = λ‖w̃‖2 + ∑i∈I (w̃ · xi)
2, p22 = λ + |I |, p12 = ∑i∈I w̃ · xi , q1 = ∑i∈I tiw̃ · xi , q2 = ∑i∈I ti

andd = p11p22− (p12)
2. Onceγ andb0 are thus obtained, we can setβ0 = (γw̃,b0) and start the

algorithm.4 Note that the set of initial indicesI0 chosen by the algorithm in step 3 is the set of active
indices atβ0 and so it could be different fromI .

There is another situation where the above initialization comes in handy. Suppose we solve (2)
for oneC and want to re-solve (2) for a slightly changedC. Then we can use the ˜w andI that are
obtained from the optimal solution of the first value ofC to do the above mentioned initialization
process for the second value ofC. For this situation we have also tried simply choosingγ = 1 and
b0 equal to theb that is optimal for the first value ofC. This simple initialization also works quite
well. We will refer to this initialization for the ‘slightly changedC’ situation asβ-seeding; seeding
is crucial to efficiency when (2) is to be solved for manyC values (such as when tuningC via cross-
validation). Theβ-seeding idea used here is very much similar to the idea ofα-seeding popularly
employed in the solution of SVM duals(DeCoste and Wagstaff, 2000).

Eventhough full details of the final version of our implementation ofL2-SVM-MFN is only
developed further below, here let us compare the final implementation5 with and withoutβ-seeding.
Table 1 gives computational times for several data sets. Clearly,β-seeding gives useful speed-ups.

4. To get a betterβ0 one can also resetI = I(β0) and repeat (9) and get revised values forγ andb0. This computation is
cheap since ˜w ·xi need not be recomputed.

5. For noβ-seeding, the implementation corresponds to the use of ‘both heuristics’ mentioned in Table 3. Forβ-seeding,
the two heuristics are not used since they do not contribute much whenβ-seeding is done.

346

FINITE NEWTON METHOD FOR LINEARSVMS

4.2 Step 2: Checking Convergence

Checking of the optimality ofβk is done by first calculatingyi(βk) anddi(βk) for all i, determining
the active index setIk and then checking if

‖∇ fIk(βk)‖ = 0. (10)

For practical reasons it is necessary to employ a tolerance parameter when checking (10). We deal
with this important issue below after the discussion of the implementation of step 3.

4.3 Step 3: Regularized Least Squares Solution

The solution of (6) can be approached in one of the following ways: usingfactorization methods
such as QR or SVD; or, using an iterative method such as the conjugate gradient (CG) method. We
prefer the latter method due to the following reasons: (a) it can make effective use of knowledge of
good starting vectors; and (b) it is much better suited for large-scale problems having sparse data
sets. To setup the details of the CG method, let:X be the matrix whose rows are(xT

i ,1), i ∈ Ik;
andt be a vector whose elements areti , i ∈ Ik. Then (6) is the same as the regularized least squares
problem

min
β

fIk(β) =
λ
2
‖β‖2 +

1
2
‖Xβ− t‖2. (11)

This corresponds to the solution of the normal system,

(λI +XTX)β = XTt. (12)

With CG methods there are several ways of approaching the solution of (11/12). A simple approach
is to solve (12) using the CG method meant for solving positive definite systems.However, such
an approach will not be numerically well-conditioned, especially whenλ is small. As pointed out
by Paige and Saunders (Paige and Saunders, 1982) this is mainly due to theexplicit use of vectors
of the form XTX p. An algorithm with better numerical properties can be easily derived by an
algorithmic rearrangement that is special to the regularized least squaressolution, which makes use
of the intermediate vectorX p. LSQR (Paige and Saunders, 1982) and CGLS (Björck, 1996) are two
such special CG algorithms. Another very important reason for using oneof these algorithms (as
opposed to using a general purpose CG solver) is that, for the special methods it is easy to derive a
good stopping criterion to approximately terminate the CG iterations using the intermediate residual
vector. We discuss this issue in more detail below.

For our work we have used the version of the CGLS algorithm given in Algorithm 3 of Frommer
and Maaß (Frommer and Maaß, 1999) which uses initial seed solutions neatly.6 Following is the
CGLS algorithm for solving (11).

Algorithm CGLS. Setβ0 = βk (whereβk is as in steps 2 and 3 of AlgorithmL2-SVM-MFN).
Computez0 = t −Xβ0, r0 = XTz0−λβ0,7 setp0 = r0 and do the following steps forj = 0,1, . . .

6. Frommer and Maaß have also given interesting variations of the CGLS method for efficiently solving (12) for several
values ofλ. But we have not tried those methods in this work.

7. It is useful to note that, at any point of the CGLS algorithm−zj is the vector containing the classifier residuals,di ,
i ∈ Ik andr j is the negative of the gradient offIk(β) atβ j . At the beginning (j = 0), z0 andr0 are already available in
view of the computations in step 2 of AlgorithmL2-SVM-MFN. This fact can be used to gain some efficiency.

347

KEERTHI AND DECOSTE

q j = X pj

γ j = ‖r j‖2/(‖q j‖2 +λ‖p j‖2)
β j+1 = β j + γ j p j

zj+1 = zj − γ jq j

r j+1 = XTzj+1−λβ j+1

If r j+1 = 0 stop withβ j+1 as the solution.
ω j = ‖r j+1‖2/‖r j‖2

p j+1 = r j+1 +ω j p j

There are exactly two matrix-vector operations in each iteration; sparsity ofthe data matrix can
be effectively used to do these operations inO(nz) time wherenz is the number of non-zero elements
in the data matrix.

Let us now discuss the convergence properties of CGLS. It is known that the algorithm will
take at mostl iterations wherel is the rank ofX. Note thatl ≤ min{m,n} wherem is the number
of examples andn is the number of features. The actual number of iterations required to achieve
good practical convergence is usually much smaller than min{m,n} and it depends on the number
of singular values ofX that are really significant.

Stopping the CG iterations with the right accuracy is very important because, an excessively
accurate solution would lead to too much work while an inaccurate solution will not give good
descent. Using a simple absolute tolerance on the size of the gradient offIk in order to stop is a bad
idea, even for a given data set since the typical size of the gradient varies a lot asλ is varied over a
range of values. For a method such as CGLS it is easy to find effective practical stopping criteria.
We can decide to stop when the negative gradient vectorr j+1 has come near zero up to some relative
precision. To do this we can use the bound,‖r j+1‖ ≤ ‖X‖‖zj+1‖+‖λβ j+1‖. Thus a good stopping
criterion is

‖r j+1‖ ≤ ε(ρ‖zj+1‖+λ‖β j+1‖),
whereρ = ‖X‖. SinceX varies at different major iterations of theL2-SVM-MFN algorithm, we can
simply takeρ = ‖X̂‖ whereX̂ is the entirem×n data matrix.

In most datamining tasks the data is normalized so that all values in the data matrix are in the
unity range. For such data sets we have‖X‖ ≤ √

n. One can take a conservative approach and
simply use the stopping criterion

‖r j+1‖ ≤ ε‖zj+1‖. (13)

We have found this criterion to be very effective and have used it for allthe computational experi-
ments reported in this paper. The parameterε is a relative tolerance parameter. A value ofε = 10−6,
which roughly yields solutions accurate up to six decimal digits, is a good choice.

Sincer = −∇ fIk we can apply exactly the same criteria as in (13) for approximately checking
(10) also. Almost always, termination ofL2-SVM-MFN occurs when, after the least squares solu-
tion at step 3, exact line search in step 4 givesβk+1 = β̄ (i.e., δ? = 1), and the active set remains
unchanged, i.e.,I(βk) = I(β̄) = I(βk+1).

Let us illustrate the effectiveness of the CGLS method using the LS-SVM solution as an ex-
ample. For LS-SVM we can setI = {1, . . . ,m} and solve (12) using the CGLS method mentioned
above; let us refer to such an implementation as LS-SVM-CG. In their proximal SVM implemen-
tation of LS-SVM, Fung and Mangasarian (2001) solve (12) using Matlabroutines that employ
factorization techniques onXTX. For large and sparse data sets it is much more efficient to use CG
methods and avoid the formation ofXTX and its factorization. Table 2 illustrates this fact using two

348

FINITE NEWTON METHOD FOR LINEARSVMS

Table 2: Ratio of the computational cost (averaged overC = 2−5,2−4, . . . ,25) of the proximal SVM
algorithm to that of LS-SVM-CG.s is the sparsity factor,s= nnz/(nm).

Australian Web-7
(n = 14,m= 690,s= 1.0) (n = 300,m= 24692,s= 0.04)

Ratio 0.72 15.72

data sets. The complexity of the original proximal SVM implementation isO(nnzn+n3) whereas the
complexity of the CGLS implementation isO(nnzl), wherel is the number of iterations needed by
the CGLS algorithm.8 When the data matrix is dense (e.g.,Australian) the factorization approach is
slightly faster than the CGLS approach. But, when the data matrix is sparse (e.g.,Web-7) the CGLS
approach is considerably faster, even withn being small.

Similar observations hold for Mangasarian’s finite Newton method as well as our L2-SVM-
MFN. When the data matrix is sparse, factorization techniques are much more expensive compared
to CG methods, even whenn is not too big. Of course, factorization methods get completely ruled
out when bothmandn are large.

4.4 Step 4: Exact Line Search

Let β(δ) = βk +δ(β̄−βk). The one dimensional function,φ(δ) = f (β(δ)) is a continuously differ-
entiable, strictly convex, piecewise quadratic function. To determine the minimizer of this function
analytically, we compute the points at which the second derivative jumps. Forany giveni, let us
define:δi = (ti −yk

i)/(ȳi −yk
i), where ¯yi = yi(β̄) andyk

i = yi(βk). The jump points mentioned above
are given by

∆ = ∆1∪∆2, (14)

where
∆1 = {δi : i ∈ Ik, ti(ȳi −yk

i) > 0} and ∆2 = {δi : i 6∈ Ik, ti(ȳi −yk
i) < 0}. (15)

For ∆1 we are not usingi with ti(ȳi − yk
i) ≤ 0 because they do not cause switching at a positiveδ;

similarly, for ∆2 we are not usingi with ti(ȳi −yk
i) ≥ 0.

Take oneδi ∈ ∆1. When we increaseδ acrossδi , the indexi leavesI(β(δ)). Thus, the termd2
i /2

has to be left out of the objective function for allδ > δi . Similarly, for δi ∈ ∆2, when we increase
δ acrossδi , the indexi entersI(β(δ)). Thus, the termd2

i /2 has to be included into the objective
function for allδ > δi .

The slope,φ′(δ) is a continuous piecewise linear function that changes its slope only at one of
theδi ’s. The optimal pointδ? is the point at whichφ′(δ) crosses 0.9 To determine this point we first
sort allδi ’s in ∆ in non-decreasing order. To simplify the notations, let us assume thatδi , i = 1,2, . . .
denotes that ordering. Betweenδi andδi+1 we know thatφ′(δ) is a linear function. Just for doing
calculations extend this line both sides (left and right) to meet theδ = 0 andδ = 1 vertical lines.

8. It is useful to note here that the proximal SVM implementation solves (12) exactly while LS-SVM-CG uses the
practical stopping condition (13) that contributes further to its efficiency.

9. Note that this point may not necessarily be at one of theδi ’s.

349

KEERTHI AND DECOSTE

Let us call the ordinate values at these two meeting points asl i andr i respectively. It is very easy to
keep track of the changes inl i andr i as indices get dropped and added to the active set of indices.

We move from left to right to find the zero crossing ofφ′(δ). At the beginning we are atδ0 = 0.
Betweenδ0 andδ1 we haveIk as the active set. It is easy to get, from the definition ofφ(δ) that

l0 = λβk · (β̄−βk)+ ∑
i∈Ik

(yk
i − ti)(ȳi −yk

i) (16)

and
r0 = λβ̄ · (β̄−βk)+ ∑

i∈Ik

(ȳi − ti)(ȳi −yk
i). (17)

(If, at step 3 of theL2-SVM-MFN algorithm, we solve (6) exactly, then it is easy to check that
r0 = 0. However, in view of the use of the approximate termination mentioned in (13) itis better to
computer0 using (17).) Find the point where the line joining(0, l0) and(1, r0) points on the(δ,φ′)
plane crosses zero. If the zero crossing point of this line is between 0 and δ1 then that point isδ?. If
not, we move over to searching betweenδ1 andδ2. Herel1 andr1 need to be computed. This can
be done by a simple updating overl0 andr0 since only the termd2

i /2 enters or leaves. Thus, for a
general situation where we already havel i , r i computed for the intervalδi to δi+1 and we need to get
l i+1, r i+1 for the intervalδi+1 to δi+2, we use the update formula

l i+1 = l i +s(yk
i − ti)(ȳi −yk

i) and r i+1 = r i +s(ȳk
i − ti)(ȳi −yk

i), (18)

wheres= −1 if δi ∈ ∆1 ands= 1 if δi ∈ ∆2. Thus we keep moving to the right until we get a zero
satisfying the condition that the root determined by interpolating(0, l i) and(1, r i) lies betweenδi

andδi+1. The process is bound to converge since we know the existence of the minimizer (we are
dealing with a strictly convex function). In a typical application of the above line search algorithm,
manyδi ’s are crossed beforeδ? is reached, especially in the early stages of the algorithm, causing
|I(βk+1)| to be much different from|I(βk)|. This is the crucial step where the support vectors of the
problem get identified.

The complexity of the above exact line search algorithm isO(mlogm). Since the least squares
solution (step 3) is much more expensive, the cost of exact line search is negligible.

4.5 Complexity Analysis

The bulk of the cost of the algorithm is associated with step 3, which only dealswith examples that
are active at the current point. (The full set of examples is involved onlyin step 4.) This crucial
factor greatly contributes to the overall efficiency of the algorithm. The number of iterations, i.e.,
loops of steps 2-4 is usually small, say 5-20. Thus, the empirical complexity ofthe algorithm is
O(nnzlav) wherelav, the average number of CG iterations in step 3, is bounded by the rank of the
data matrix and solav ≤ min{m,n}. As already mentioned,lav usually turns out to be much smaller
than both,m andn. For example, when applied to thefinancialdata set that has 198788 examples
and 252472 features, forC = 1 andβ = 0 initialization, L2-SVM-MFN took 11 iterations, with
lav = 102.

4.6 Speed-up Heuristics

Suppose we are solving a problem for which the number of support vectors, i.e.,|I(β?)| is a small
fraction ofm, and we use the initialization,β0 = 0. SinceI(β0) = {1, . . . ,m}, step 3 corresponds to

350

FINITE NEWTON METHOD FOR LINEARSVMS

Adult-9 Web-8 News20 Financial Yahoo
No heuristics 7.28 11.79 98.06 456.85 1443.23
Heuristic 1 5.12 9.24 67.85 70.86 904.99
Heuristic 2 3.57 4.17 90.54 202.62 848.99

Both heuristics 3.00 3.90 52.73 62.18 524.16
SV fraction 0.605 0.219 0.650 0.068 0.710

Table 3: Effectiveness of the two speed-up heuristics on five data sets.The valueC = 1 was used.
All computational times are in seconds. SV fraction is the ratio of the number of support
vectors to the number of training examples.

solving an unnecessarily large least squares problem; it is wasteful to solve it accurately. One (or
both) of the following two heuristics can be employed to avoid this.

Heuristic 1. Wheneverβ0 is a crude approximation (say,β0 = 0), terminate the least squares
solution of (6) after a fixed, small number (say, 10) of CGLS iterations at the first call to step 3.
Even with the crudēβ thus generated, the following step 4 usually leads to a pointβ1 with |I(β1)|
much smaller thanm, and a good bulk of the non-support vectors get identified correctly.

Heuristic 2.First run theL2-SVM-MFN algorithm using a crude tolerance, sayε = 10−2. Use
the β thus generated as the starting vector and make another run withε = 10−6, the final desired
accuracy.

Table 3 gives the effectiveness of the above heuristics on a few data sets. Clearly both heuristics
are useful. It is not easy to say which one is more effective and so usingboth of them is the
appropriate thing to do. This gives at least a 2-fold speed-up. As expected, the amount of speed-up
is big if the fraction of examples that are support vectors is small. The pseudocode of Appendix B
uses both heuristics.

A third heuristic may also be used when working with a very large number of examples. First
choose a small random subset of the examples and run the algorithm. Then use theβ thus generated
to seed a second run, this time using all the examples for training.

We end this section on implementation by explaining how a solution of the SVM dual can be
obtained afterL2-SVM-MFN solves the primal.

4.7 Obtaining a Dual Solution

Note that the SVM dual variables,αi , i = 1, . . . ,m are not involved anywhere in the algorithm. But
it is easy to recover them once we solve (2) usingL2-SVM-MFN. From the structure of (3) it is
easy to see thatαi = −tidi/λ, if i ∈ I(β) andαi = 0 otherwise. In a practical solution we do not get
the true solution due to the use of (13). In such a situation it is useful to ask as to how well theα
defined above satisfies the KKT optimality conditions of the dual. This can be easily done. After
computingα as mentioned above, setβ̂ = ∑i αiti(xT

i ,1)T , ξi = λαi ∀i, gi = tiyi(β̂)+ ξi −1 ∀i, and
obtain the maximum dual KKT violation as max{maxi:αi>0 |gi |,maxi:αi=0max{0,−gi}}. If, keeping
the maximum dual KKT violation within some specified tolerance (say,τ = 0.001) is important for
some reason, then one can proceed as follows. First solveL2-SVM-MFN usingε = 10−3 and then

351

KEERTHI AND DECOSTE

check the maximum dual KKT violation as described above. If it does not satisfy the required
tolerance then continue theL2-SVM-MFN solution with a suitably chosen smaller value ofε.

5. Comparison with SVMlight and BSVM

The experiments of this section compareL2-SVM-MFN against two dual-based methods: the pop-
ular SVMlight (Joachims, 1999)10 and the more modern BSVM (Hsu and Lin, 2002). In order to
make a proper comparisonL2-SVM-MFN was forced to satisfy the same dual KKT tolerance of
τ = 0.001 as the other methods. (The procedure given at the end of the last section was used to
do this.) We used default-q (subproblem size) for SVMlight & BSVM; other values tried were
not faster.11 We also tried SMO (Platt, 1999), but found it slower than the others for these linear
problems. An explanation for this is given by Kao et al (Kao et al., 2004) inSection 4 of their paper
via the fact that, for the linear SVM implementation, the cost of updating the gradient of the dual is
independent of the number of dual variables that are optimized in each basic iteration.

Tables 4-6 report training times and 10-fold cross-validation (CV) error rates forAdult-9, Web-8
andNews20data sets.

We show training times for variousC’s, with optimal (lowest) mean CV error rate for each
method shown in bold. Due to the different loss functions used, a direct comparison of these meth-
ods is challenging and necessarily approximate on non-separable data. Therefore, in the following
tables we show results for a range ofC values around values ofC yielding minimum cross-validation
errors for each of the three methods. A reasonable conservative speedup for our method can then be
determined by selecting the slowest training time for a near-optimalC value for our method versus
the fastest training time for a near-optimalC value for an alternative method.

For example, forAdult-9one could compare the time for SVMlight’s CV-optimal (112.6 secs)
versus the time forL2-SVM-MFN’s CV-optimal (1.6 secs), yielding a speedup ratio of 70.4. Al-
ternatively,nearly-CV-optimal cases forAdult-9(e.g. 15.23%>15.22% for SVMlight with C=2−3)
yield other speedups (e.g. 13.2 if both SVMlight andL2-SVM-MFN useC=2−3). Over all such
nearly-optimal cases for all three data sets, speedups are consistently significant (e.g. 4-100 over
SVMlight and 4-40 over BSVM). Even forNews20which has more than a million features12 L2-
SVM-MFN is more than four times faster than SVMlight and BSVM.

For theYahoodata set having a million examples, SVMlight and BSVM could not complete
the solution even after one full day, whileL2-SVM-MFN took only about 10 minutes to obtain a
solution.

We also did an experiment to study how the algorithms scale withm, the number of examples.
Figure 1 gives log-log plots showing the variation of training times as a functionof m, for four of the
conventionalAdult andWebsubsets. The times plotted for each data subset/method pair are for the
corresponding CV-optimalC’s. These plots show that not only wasL2-SVM-MFN always faster,
but it also scaled much better withm.

10. We report results using version 5.0 of SVMlight. We also tried the newer version 6.0, but found for our particular
experiments with linear kernels that it was no faster, and sometimes even slower.

11. Specifically, the values used forq were 10 for SVMlight and 30 for BSVM.

12. Dual algorithms such as SVMlight and BSVM are efficient when the number of features is large. Their cost scales
linearly with the number of features.

352

FINITE NEWTON METHOD FOR LINEARSVMS

SVMlight BSVM L2-SVM-MFN
log2C secs CV% secs CV% secs CV%

-4.5 16.8 15.29 7.3 15.29 1.2 15.30
-4.0 15.3 15.28 8.1 15.27 1.3 15.26
-3.5 18.6 15.25 8.9 15.27 1.4 15.22
-3.0 21.1 15.23 10.0 15.23 1.6 15.21
-2.5 25.8 15.24 11.7 15.23 1.8 15.21
-2.0 44.4 15.25 13.3 15.24 1.9 15.23
-1.5 47.0 15.23 15.9 15.24 2.2 15.23
-1.0 58.9 15.26 20.3 15.25 3.1 15.22
-0.5 80.9 15.23 25.8 15.24 2.9 15.22
0.0 112.6 15.22 32.4 15.22 2.9 15.23
0.5 189.2 15.23 41.7 15.23 3.1 15.23
1.0 235.9 15.24 54.4 15.22 3.5 15.23

Table 4: Results forAdult-9

SVMlight BSVM L2-SVM-MFN
log2C secs CV% secs CV% secs CV%

-0.5 14.3 1.36 11.4 1.35 3.2 1.34
0.0 14.9 1.35 15.8 1.35 4.2 1.34
0.5 19.6 1.34 20.7 1.34 5.0 1.33
1.0 29.1 1.34 28.4 1.34 5.0 1.33
1.5 46.8 1.33 - 1.33 4.7 1.33
2.0 60.3 1.33 61.4 1.33 5.7 1.33
2.5 110.5 1.33 82.4 1.33 7.6 1.33
3.0 131.6 1.33 139.0 1.33 8.9 1.34
3.5 232.6 1.33 191.4 1.33 10.8 1.34
4.0 279.8 1.34 282.9 1.34 10.8 1.34
4.5 347.5 1.35 441.1 1.35 11.6 1.34
5.0 615.1 1.35 647.1 1.34 11.2 1.34

Table 5: Results forWeb-8

353

KEERTHI AND DECOSTE

10
3

10
4

10
510

−2

10
0

10
2

se
co

nd
s

ADULT−{1,4,7,9}

10
3

10
4

10
510

−2

10
0

10
2

number of training examples

se
co

nd
s

WEB−{1,4,7,8}

SVMlight

BSVM
L

2
SVM

Figure 1: Training time versusm for the Adult and Web data sets, on a log-log plot. Note that the
vertical axes are only marked at 10−2, 100 and 102.

354

FINITE NEWTON METHOD FOR LINEARSVMS

SVMlight BSVM L2-SVM-MFN
log2C secs CV% secs CV% secs CV%

0.0 335.9 2.93 330.4 2.93 69.3 3.35
0.5 407.6 2.82 392.6 2.81 55.4 3.16
1.0 437.1 2.78 436.1 2.78 84.5 3.07
1.5 442.2 2.78 434.4 2.78 62.7 2.98
2.0 466.8 2.74 437.3 2.73 76.0 2.89
2.5 466.9 2.77 432.3 2.78 75.0 2.88
3.0 455.9 2.85 450.4 2.85 91.6 2.88
3.5 471.3 3.02 439.0 3.02 98.0 2.86
4.0 513.7 3.07 432.2 3.07 114.0 2.86
4.5 554.7 3.07 437.0 3.07 120.4 2.89
5.0 525.7 7.76 421.6 3.07 159.2 2.90
5.5 535.7 3.07 426.5 3.08 193.9 2.97

Table 6: Results forNews20

6. Extension to Other Loss Functions

The previous sections addressed the solution ofL2-SVM, i.e., the SVM primal problem that uses
theL2 loss function:

min
β

f (β) =
λ
2
‖β‖2 +∑

i

L(ξi) (19)

whereξi = 1− tiyi(β) andL = L2 where

L2(ξi) =

{

0 if ξi ≤ 0
ξ2

i /2 if ξi > 0
(20)

The modified Newton algorithm can be adapted for other loss functions too. We briefly explain how
to do this for the following loss functions: the modifed Huber’s loss function (Zhang, 2004) and the
L1 loss function.

Consider, first, the modified Huber’s loss function. The solution for this loss function forms the
basis of the solution for theL1 loss function. Recently, Zhang (Zhang, 2004) pointed out that the
modified Huber’s loss function has some attractive theoretical properties.The loss function is given
by

Lh(ξi) =







0 if ξi ≤ 0
ξ2

i /2 if 0 < ξi < 2
2(ξi −1) if ξi ≥ 2

(21)

With L = Lh, the primal objective functionf in (19) is strictly convex, continuously differentiable
and piecewise quadratic, very much as when (20) is used. So the extensionof the modified Newton
algorithm toLh is rather easy. A basic iteration proceeds as follows. Givenβk let I0 = {i : ξi(βk) ≤
0}, I1 = {i : 0 < ξi(βk) < 2} andI2 = {i : ξi(βk) ≥ 2}. The natural quadratic approximation off to
minimize is the one which keeps these index sets unchanged, i.e.,

min
β

f̃ (β) =
λ
2
‖β‖2 +

1
2 ∑

i∈I1

(yi(β)− ti)
2−2∑

i∈I2

tiyi(β). (22)

355

KEERTHI AND DECOSTE

Let

q =
2
λ ∑

i∈I2

ti

(

xi

1

)

andβ̃ = β−q so that (22) can be equivalently rewritten as the solution of

min
β

f̄ (β) =
λ
2
‖β−q‖2 +

1
2 ∑

i∈I1

(yi(β)− ti)
2. (23)

This is nothing but a regularized least squares solution that is shifted inβ space; the CG techniques
described in Section 4 can be used to solve forβ̃ = β−q and thenβ can be obtained. The exact
line search for minimizingf on a ray is only slightly more complicated than the one in Section 4:
with (21) we need to watch for jumps of examples from/to three sets of the typeI0, I1 andI2 defined
above. The proof of finite convergence of the overall algorithm is verymuch as for theL2 loss
function.

Let us now consider theL1 loss function given by

L1(ξi) =

{

0 if ξi ≤ 0
ξi if ξi > 0.

(24)

Chooseτ, a positive tolerance parameter and defineξ̃ = (ξi/τ) + 1. TheL1 loss function can be
approximated byLh(ξ̃). Thus, we can solve the primal problem corresponding to theL1 loss function
as follows. Take a sequence ofτ values, sayτ j = 2− j , j = 0,1, Start by solving the problem
for j = 0. Use theβ thus obtained to seed the solution of the problem forj = 1 and so on until a
solution that approximates the true solution of theL1 loss function satisfactorily is obtained. This is
only a rough outline of the main scheme. Several details need to be worked out in order to arrive at
an overall method that is actually very efficient. Currently we are working on these details; we will
report the results in a future paper.

Recently Zhang et al (Zhang et al., 2003) gave a primal algorithm for SVMs with L1 loss func-
tion in which a modified logistic regression function is used to approximate theL1 loss function and
a sequential approximation scheme similar to what we described above is employed. Our method
is expected to be more efficient since the approximating loss function (modifiedHuber) helps keep
the sparsity propery, i.e., examples with|ξi | ≥ τ are inactive during the solution of the linear least
squares problem at each iteration. However, this claim needs to be corraborated by proper imple-
mentation of both methods and detailed numerical experiments.

7. Extension to Ordinal Regression

In this section we explain how theL2-SVM-MFN algorithm can be adapted to solve ordinal re-
gression problems. In ordinal regression the target variable,ti takes a value from a finite set, say,
{1,2, . . . , p}. Thus, p is the total number of possible ordinal values. LetJs = {i : ti = s}. Let w
denote the weight vector andyi(w) = w · xi denote the ‘score’ of the SVM for thei-th example.
To set up the SVM formulation we follow the approach given in Chu and Keerthi (2005) and use
p−1 thresholds,bs, s= 1, . . . , p−1 to divide the scores intop bins so that the interval,(bs−1,bs) is
assigned for examples which haveti = s.13 Let β denote the vector which containsw together with

13. To make this statement properly, we takeb0 = −∞ andbp = ∞.

356

FINITE NEWTON METHOD FOR LINEARSVMS

bs, s= 1, . . . , p−1. For a givenβ and ans∈ {1, . . . , p−1} define the following ‘margin-violating’
index sets:

Ls(β) = {i : i ∈ Jl for some l ≤ s and yi(w)−bs > −1}

Us(β) = {i : i ∈ Jl for some l > s and yi(w)−bs < 1}.

Then the primal SVM problem can be written as

min
β

f (β) =
λ
2
‖β‖2 +

p−1

∑
s=1

(
1
2 ∑

i∈Ls(w)

(yi(w)−bs+1)2 +
1
2 ∑

i∈Us(w)

(yi(w)−bs−1)2). (25)

A nice property of the above formulation is that, as shown in Chu and Keerthi(2005), the solution
of (25) automatically satisfies the condition,b1 ≤ b2 ≤ ·· · ≤ bp−1.

Clearly, f is a differentiable, strictly convex, piecewise quadratic function ofβ, very much
like the f in (2). So, the extension ofL2-SVM-MFN to solve (25) is easy. A basic iteration goes
as follows. Givenβk, let L̄k = Ls(βk), Ūk = Us(βk) for s = 1, . . . , p−1 and solve the following
quadratic approximation off corresponding to keeping those index sets unchanged:

min
β

f̃ (β) =
λ
2
‖β‖2 +

p−1

∑
s=1

(
1
2 ∑

i∈L̄k

(yi(w)−bs+1)2 +
1
2 ∑

i∈Ūk

(yi(w)−bs−1)2). (26)

Let β̄ denote the solution of (26). Exact line search to minimizef on the ray fromβk to β̄ is more
complicated than the line search we described in Section 4, but it is quite easy toprogram in code;
also, if p is small, the algorithm is not expensive. As in Section 4, we need to identify the points
along the ray at which jumps in the second derivative off take place. Take one example, say the
i-th. Let β̄ = (w̄, b̄1, . . . , b̄p−1), ȳi = yi(w̄) and l = ti . For eachs= 1, . . . , l −1, calculateδsi such
that yi(βk) + δsi(ȳi − yi(βk)) = bs + 1. Similarly, for eachs = l , . . . , p− 1, calculateδsi such that
yi(βk)+ δsi(ȳi − yi(βk)) = bs−1. Each positiveδsi is a point where the second derivative jumps.
By calculating all such points (there are at mostpm of them, wherem is the number of training
examples), sorting them and using the ideas of Section 4 to locate the minimizer where the slope
crosses the zero value, exact line search can be performed. The proof of convergence of the overall
algorithm is very much similar to the proof of Theorem 1.

The ideas outlined above for theL2 loss function can be extended to other loss functions such
as the modified Huber’s loss function and theL1 loss function using the ideas of Section 6.

8. Conclusion

In this paper we have modified the finite Newton method of Mangasarian in several ways to ob-
tain a very fast method for solving linear SVMs that is easy to implement and trains much faster
than existing alternative SVM methods, making it attractive for solving large-scale classification
problems.

We have also tried another method for linearL2-SVMs. This corresponds to the direct appli-
cation of a nonlinear CG method (such as Polak-Ribierre) to (2); note thatf is a differentiable
function. This method also works well, but it is not as efficient and numerically robust asL2-SVM-
MFN. One of the main reasons for this is that the bulk of the computations ofL2-SVM-MFN takes
place in the CGLS iterations which operate only with potential support vectors. On the other hand,

357

KEERTHI AND DECOSTE

the nonlinear CG method has to necessarily deal with all examples in each iteration, unless clever
shrinking strategies are designed.

It is interesting to ask if the modified finite Newton algorithm can be extended to nonlinear
kernels. If (6) is solved via its dual (say, by using an algorithm for LS-SVMs) the new algorithm
can indeed be extended to nonlinear kernels. That would be an interestingprimal algorithm that is
implemented using dual variables. But it is not yet clear whether such an algorithm will be more
efficient than existing good dual methods (e.g. SMO or SVMlight).

Appendix A. A Pseudocode forL2-SVM-MFN

Below, β represents the current point;y and I denote the output vector and active index set atβ.
F = f (β) andIall = {1, . . . ,m}.

1. Initialization.

• If no initial guess ofβ is available, setini = 0, β = 0, yi = 0 ∀i ∈ Iall andI = Iall .

• If a guess ofw is obtained from another method (say, the Naive Bayes method), set
ini = 0, use (9) to formβ and then computeyi ∀i ∈ Iall and the active index setI at β.

• If continuing the solution from oneC value to another nearbyC value, setini = 1 and
simply start with theβ, yi , i ∈ Iall andI available from the previousC solution.

If ini = 0 setε = 10−2 andNeedSecondRound=1. If ini = 1 setε = 10−6 andNeedSecondRound=0.
ComputeF = f (β).14 SetFprevious= F .

2. Setiter = 0 anditermax= 50.

3. DefineX to be a restricted data matrix whose rows are(xT
i ,1), i ∈ Ik andt to be the corre-

sponding target vector whose elements areti , i ∈ Ik. (X andt are defined just for stating the
steps easily here. In the actual implementation there is no need to actually form them.15) Set:
iter = iter +1, β̄ = β, z= t −Xβ, r = XTz−λβ, φ1 = ‖r‖2, p = r, φ2 = φ1. If (ini = 0 and
iter = 1) setcgitermax= 10; else setcgitermax= 5000. Setcgiter= 0, optimality= 0 and
exit = 0.

4. Repeat the following steps untilexit = 1 occurs:

cgiter= cgiter+1
q = X p, φ3 = ‖q‖2

γ = φ1/(φ3 +λφ2), β̄ = β̄+ γp
z= z− γq, φ4 = ‖z‖2

r = −λβ̄+XTz, φold
1 = φ1, φ1 = ‖r‖2

If φ1 ≤ ε2φ4 setoptimality= 1
If (optimality= 1 orcgiter≥ cgitermax) setexit = 1
ω = φ1/φold

1 , p = r +ωp, φ2 = ‖p‖2

14. If β = 0 then note thatF = m/2.

15. It is ideal to store the input data,{xi , ti} in the SVMlight format where each example is specified by the target value
together with a bunch of (feature-index,value) pairs corresponding tothe non-zero components.

358

FINITE NEWTON METHOD FOR LINEARSVMS

5. Compute16 ȳi = yi(β̄), ∀i ∈ Iall . Check if the following conditions hold: (a)optimality = 1;
(b) ti ȳi ≤ 1+ tol ∀i ∈ I ; and (c)ti ȳi ≥ 1− tol ∀i 6∈ I .17 If all three conditions hold, go to step
8.

6. Compute18 ∆1, ∆2 and∆ using (14) and (15). Sort theδi in ∆ in non-decreasing order. Let
{i1, i2, . . . , iq} denote the list of ordered indices obtained. Computels andrs using (16) and
(17). Setexit = 0, j = 0. Repeat the following steps untilexit = 1 occurs:

j = j +1, δ = δi j

delslope= ls+δ(rs− ls)
If delslope≥ 0 setδ? = −δ ls/(delslope− ls) andexit = 1
Use (18) to updatels andrs usingi = i j .

7. Setβ := β+δ?(β̄−β), y := y+δ?(ȳ−y), and compute the new active index set:I = {i ∈ Iall :
tiyi < 1}. ComputeF = f (β). If (iter ≥ itermaxor F > Fprevious) stop with an error message.
Else, setFprevious= F and go back to step 3 for another iteration.

8. If NeedSecondRound=0 stop withβ = β̄, y = ȳ andIk as the optimal active index set. Else,
setε = 10−6, NeedSecondRound=0 and go back to step 3.

Appendix B. A Description of Data Sets Used

As in the main paper, letm, n andnnz denote, respectively, the number of examples, the number
of features and the number of non-zero elements in the data matrix. Lets= nnz/(mn) denote the
sparsity in the data matrix.

Australianis a small dense data set taken from the UCI repository(Blake and Merz, 1998) and
it hasm= 690,n = 14 ands= 1.

Adult andWebare data sets exactly as those used by Platt(Platt, 1999). ForAdult, n is 120 and
s is 0.21, while, forWeb, n is 300 ands= 0.04. With each of these two data sets, Platt created a
sequence of data sets with increasing number of examples in order to study the scaling properties of
his SMO algorithm with respect tom. Adult-1, Adult-4, Adult-7andAdult-9have themvalues 1605,
4781, 16100 and 32561.Web-1, Web-4, Web-7andWeb-8have themvalues 2477, 7366, 24692 and
49749.

We generatedNews20for easily reproducible results on a text classification task having bothn
andm large. It is a size-balanced two-class variant of the UCI “20 Newsgroups” data set (Blake and
Merz, 1998). The positive class consists of the 10 groups with names of form sci.*, comp.*, or
misc.forsale, and the negative class consists of the other 10 groups. We tokenized viaMcCal-
lum’s Rainbow(McCallum, 1996), using:rainbow -g 3 -h -s -O 2 -i (i.e. trigrams, skip mes-
sage headers, no stoplist, drop terms occurring less than two times), givingm= 19996,n= 1355191

16. The arrays,p, r, q andz are local to step 4 and are not used elsewhere. Hence it is alright to use the same arrays
elsewhere in the implementation. This can help save some memory. For example, p can be used to store the ¯yi
computed in step 5 andr can be used to store theδi computed in step 6.

17. In view of numerical errors it is a good idea to employ the parametertol in these checks. A value oftol = 10−8 is a
good choice.

18. This step refers to several equations from the main paper. To matchthe notations given there, take:yi in this algorithm
to beyk

i of the main paper;ls in this pseudocode to stand forl0, l i , l i+1 etc; andrs in this pseudocode to stand forr0,
r i , r i+1 etc.

359

KEERTHI AND DECOSTE

ands= 0.000336. We used binary term frequencies and normalized each example vector to unit
length.

Financial is a text classification data set that we created and corresponds to classifying news
stories as financial or non-financial. Unigrams occuring in the news texts were taken as the features
and a tf-idf representation was used to form the data. The data set hasm= 198788,n= 252472 and
s= 0.00094.

Yahoois a large data set obtained from Yahoo! and is a classification problem concerning the
prediction of behavior of customers. It hasm=1 million, n = 80 ands= 0.098.

References

D. P. Bertsekas.Nonlinear Programming. Athena Scientific, Belmont, Massachussetts, 1999.

A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases. Technical report,
University of California, Irvine, 1998. www.ics.uci.edu/∼mlearn/MLRepository.html.

S. Chakrabarti, S. Roy, and M. V. Soundalgekar. Fast and accuratetext classification via multiple
linear discriminant projections.The VLDB Journal, 12:170–185, 2003.

W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. Technical report,
Yahoo! Research Labs, Pasadena, California, USA, 2005.

D. DeCoste and K. Wagstaff. Alpha seeding for support vector machines. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining, pages 345–359, 2000.

A. Frommer and P. Maaß. Fast CG-based methods for Tikhonov-Phillips regularization. SIAM
Journal of Scientific Computing, 20(5):1831–1850, 1999.

G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In Proceedings of
the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 77–86, 2001.

C. W. Hsu and C. J. Lin. A simple decomposition method for support vector machines. Machine
Learning, 46:291–314, 2002.

T. Joachims. Making large-scale SVM learning practical. InAdvances in Kernel Methods - Support
Vector Learning. MIT Press, Cambridge, Massachussetts, 1999.

W. C. Kao, K.M. Chung, T. Sun, and C. J. Lin. Decomposition methods for linear support vector
machines.Neural Computation, 16:1689–1704, 2004.

P. Komarek. Logistic regression for data mining and high-dimensional classification. Ph.d. thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2004.

O. L. Mangasarian. A finite Newton method for classification.Optimization Methods and Software,
17:913–929, 2002.

360

FINITE NEWTON METHOD FOR LINEARSVMS

A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and
clustering. Technical report, University of Massachssetts, Amherst, Massachussetts, USA, 1996.
www.cs.cmu.edu/∼mccallum/bow.

C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least
squares,.ACM Transactions on Mathematical Software, 8:43–71, 1982.

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. In
Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, Massachussetts,
1999.

J. Suykens and J. Vandewalle. Least squares support vector machine classifiers.Neural Processing
Letters, 9(3):293–300, 1999.

J. Zhang, R. Jin, Y. Yang, and A. Hauptmann. Modified logistic regression: An approximation to
SVM and its applications in large-scale text categorization. InTwentieth International Conference
on Machine Learning, pages 472–479, 2003.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization.The Annals of Statistics, 32:56–85, 2004.

361

