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Abstract
A unified approach is taken for deriving new generalization data dependent bounds for several

classes of algorithms explored in the existing literature by different approaches. This unified ap-
proach is based on an extension of Vapnik’s inequality for VCclasses of sets to random classes of
sets - that is, classes depending on the random data, invariant under permutation of the data and
possessing the increasing property. Generalization bounds are derived for convex combinations of
functions from random classes with certain properties. Algorithms, such as SVMs (support vec-
tor machines), boosting with decision stumps, radial basisfunction networks, some hierarchies of
kernel machines or convex combinations of indicator functions over sets with finite VC dimension,
generate classifier functions that fall into the above category. We also explore the individual com-
plexities of the classifiers, such as sparsity of weights andweighted variance over clusters from the
convex combination introduced by Koltchinskii and Panchenko (2004), and show sparsity-type and
cluster-variance-type generalization bounds for random classes.

Keywords: complexities of classifiers, generalization bounds, SVM, voting classifiers, random
classes

1. Introduction

Statistical learning theory explores ways of estimating functional dependency from a given collec-
tion of data. It, also referred to as the theory of finite samples, does not rely on a priori knowledge
about a problem to be solved. Note that “to control the generalization in the framework of this
paradigm, one has to take into account two factors, namely, the quality of approximation of given
data by the chosen function and the capacity of the subset of functions from which the approxi-
mating function was chosen” (Vapnik, 1998). Typical measures of the capacity of sets of functions
are entropy measures, VC-dimensions and V-γ dimensions. Generalization inequalities such as Vap-
nik’s inequalities for VC-classes, which assert the generalization performance of learners fromfixed
class of functions and take into account the quality of approximation of given data by the chosen
function and the capacity of the class of functions, were proven to be useful in building successful
learning algorithms such as SVMs (Vapnik, 1998).

An extension of Vapnik’s inequality, for VC classes of sets (Vapnik, 1998; Anthony and Shawe-
Taylor, 1993) and VC-major classes of functions to classes of functionssatisfying Dudley’s uniform
entropy conditions, was shown by Panchenko (2002). A class of functionsF = { f : X → [−1,1]}
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satisfies Dudley’s uniform entropy condition if

Z ∞

0
log1/2D(F ,u)du< ∞,

whereD(F ,u) denotes Koltchinksii packing numbers defined for example by Dudley (1999) or
Panchenko (2002). Applications of the inequality were shown in severalpapers (Koltchinskii and
Panchenko, 2002; Koltchinskii et al., 2003a; Koltchinskii and Panchenko, 2004) which explored the
generalization ability of ensemble classification methods, that is, learning algorithms that combine
several classifiers into new voting classifiers with better performance. “The study of the convex hull,
conv(H ), of a given base function classH has become an important object of study in machine
learning literature” (Koltchinskii and Panchenko, 2004). New measuresof individual complexities
of voting classifiers derived in related work (Koltchinskii et al., 2003a; Koltchinskii and Panchenko,
2004; Koltchinskii et al., 2003b) were shown theoretically and experimentally to play an important
role in the generalization performance of the classifiers from conv(H ) of a given base function class
H . In order to do so, the base classH is assumed to have Koltchinskii packing numbers satisfying
the following condition

D(H ,u) ≤ K(V)u−V ,

for someV > 0, and whereK depends only onV. “New margin type bounds that are based to
a greater extent on complexity measures of individual classifier functionsfrom the convex hull,
are more adaptive and more flexible than previously shown bounds” (Koltchinskii and Panchenko,
2004).

Here, we are interested in studying the generalization performance of functions from a convex
hull of randomclass of functions (random convex hull), that is, the class of learners isno longer
fixed and depends on the data. This is done by deriving a new version ofVapnik’s inequality
applied to random classes, that is, a bound for relative deviations of frequencies from probabilities
for random classes of events. The proof of the inequality mirrors the proofs of Vapnik’s inequality
for non-random classes of sets (see Vapnik et al., 1974; Vapnik, 1998; Anthony and Shawe-Taylor,
1993) but with the observation that the symmetrization step of the proof can be carried out for
random classes of sets. The new version of Vapnik’s inequality is then applied to derive flexible
and adaptive bounds on the generalization errors of learners from random convex hulls. We exploit
techniques previously used in deriving generalization bounds for convex combinations of functions
from non-random classes in (Koltchinskii and Panchenko, 2004), and several measures of individual
classifier complexities, such as effective dimension, pointwise variance andweighted variance over
clusters, similar to the measures introduced by Koltchinskii and Panchenko (2004).

Surprisingly, the idea of studying random convex hulls allows one simultaneously to prove
generalization results, and incorporate measures of classifier complexitiesin the bounds, for several
existing algorithms such as SVMs, boosting with decision stumps, radial basis function networks
and combinations of indicator functions over sets with finite VC dimension. It is also noteworthy
that an extension on the VC theory of statistical learning to data dependent spaces of classifiers was
recently found by Cannon et al., 2002, who defined a measure of complexity for data dependent
hypothesis classes and provide data dependent versions of bounds on error deviance and estimation
error.
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2. Definition of Random Classes

First, an inequality that concerns the uniform relative deviation over a random class of events of
relative frequencies from probabilities is exhibited. This inequality is an extension of the following
Vapnik’s inequality for a fixed VC-classC (with finite VC-dimensionV) of sets (see Vapnik et al.
(1974); Vapnik (1998); Anthony and Shawe-Taylor (1993)):

P
n
(

sup
C∈C

[
P(C)− 1

n ∑n
i=1 I(xi ∈C)√

(P(C))

]
≥ t
)
≤ 4
(2en

V

)V
e−

nt2
4 . (2.1)

Inequality (2.1) allows one to prove stronger generalization results for several problems dis-
cussed in (Vapnik, 1998). In order to extend the above inequality to random classes of sets, we intro-
duce the following definitions. Let(Z,S ,P) be a probability space. For a sample{z1, . . . ,zn}, zi ∈
Z, i = 1, . . . ,n, definezn = (z1, . . . ,zn) and letI(zn) = {zi : 1≤ i ≤ n}. Let C (zn) ∈ S be a class of
sets, possibly dependent on the samplezn = (z1, . . . ,zn) ∈ Zn.
The integer∆C (zn)(z

n) is defined to be the number of distinct sets of the formA
T

I(zn), whereA
runs throughC (zn), that is,∆C (zn)(z

n) = card{A
T{z1, . . . ,zn},A∈ C (zn)} . The random collection

of level setsC (zn) =
{

A = {z∈ Z : h(z) ≤ 0},h∈ H (z1, . . . ,zn)
}
, whereH (zn) is a random class

of functions possibly depending onzn serves as a useful example. We callA
T

I(zn) a representation
of the samplezn by the setA. ∆C (zn)(z

n) is the number of different representation of{z1, . . . ,zn} by
functions fromH (zn).

Now consider the random collectionC (zn) of S -measurable subsets ofZ,

C (zn) = {A : A∈ S},

having the following properties:

1.) C (zn) ⊆ C
(

zn
[

y
)

, zn ∈ Zn,y∈ Z (2.2)

(the incremental property)

2.) C (zπ(1), . . . ,zπ(n)) ≡ C (z1, . . . ,zn), (2.3)

for any permutationπ of {z1, . . . ,zn} (the permutation property).

The relative frequency ofA∈ C (zn) onzn = (z1, . . . ,zn) ∈ Zn is defined to be

Pzn(A) =
1
n
|{i : zi ∈ A}| = 1

n
|I(zn)∩A| ,

where|A| denotes the cardinality of a setA.
Let P

n be the product measure onn copies of(Z,S ,P), andEn the expectation with respect to
P

n. Define
G(n) = En∆C (zn)(z

n).
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3. Main Results

Given the above definitions, the following theorem holds.

Theorem 1 For any t> 0,

P
n
{

zn ∈ Zn : sup
A∈C (zn)

P(A)−Pzn(A)√
P(A)

≥ t
}
≤ 4G(2n)e−

nt2
4 . (3.4)

The proof of this theorem is given in the following Section 4. Observe that ifthe random col-
lection C of sets is a VC-class (Vapnik, 1998), then the inequality (3.4) is the same as Vapnik’s
inequality (2.1) for VC-classes. Based on this theorem and the above definitions, several results on
the generalization performance and the complexity of classifiers from random classes are exhibited
below.

The following notation and definitions will be used from here on. Let(X ,A) be a measurable
space (space of instances) and takeY = {−1,1} to be the set of labels. LetP be the probabil-
ity measure on

(
X ×Y ,A ×2{−1,1}) and let(Xi ,Yi), i = 1, . . . ,n be i.i.d random pairs inX ×Y ,

randomly sampled with respect to the distributionP of a random variable(X,Y). The probability
measure on the main sample space on which all of the random variables are defined will be denoted
by P. LetZ = X ×Y , Zi = (Xi ,Yi), i = 1, . . . ,n andZn = (Z1, . . . ,Zn). We will also define several
random classes of functions and show how several learning algorithms generate functions from the
convex hulls of random classes.

Consider the following four problems for which bounds on the generalization errors will be
shown using inequality (3.4).

Problem 1. Support vector machine (SVM) classifiers with uniformly bounded kernels.
Consider any solution of an SVM algorithmf (x) = ∑n

i=1 λiYiK(Xi ,x), whereK(., .) : X ×X →
[0,1] is the kernel andλi ≥ 0. sign( f (x)) is used to classifyx ∈ X in class+1 or −1. Take the
random function class

H (Zn) = {YiK(Xi ,x) : i = 1, . . . ,n},

which depends on the random sampleZn ∈ Zn. The classifier function

f ′(x) =
n

∑
i=1

λ′
iYiK(Xi ,x), λ′

i =
λi

∑n
j=1 λ j

, i = 1, . . . ,n

belongs to conv(H (Zn)) and the probability of errorP(Y f(X) ≤ 0) = P(Y f′(X) ≤ 0).

Problem 2. Classifiers, built by some two-level component based hierarchies of SVMs (Heisele
et al. (2001);Andonova (2004)) or kernel-based classifiers (like the one produced by radial basis
function (RBF) networks).

We explore component based hierarchies, such that the first level of the hierarchy is formed
by SVM classifiers (with kernelK) built on each component (formed for example by projecting
of the input spaceX ⊆ R

m of instances onto subspace ofR
l , l < m) and the second level of the

hierarchy is a linear combination of the real-valued outputs on each component of the classifier
functions from the first level (for example, applying SVM with linear kernel or boosting methods
on the output from the first level). In our formulation, the components of thehierarchy can depend
on the training data (for example, found through dimensionality reduction algorithms, such as self-
organizing maps (SOM, Kohonen (1990))). The type of the hierarchical classifier functions are of

310
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this form sign( f (x)), where

f (x,α,Q,w2) =
d

∑
j=1

w j
2

n

∑
i=1

α j
i YiK(Q jXi ,Q

jx),Yi = ±1,

whereQ j are the projections of the instances (determining the “components”),w j
2 ∈ R,α j

i ≥ 0. One
can considerQ j being nonlinear transformation of the instance space, for example applyingfilter
functions. Let|K(x, t)| ≤ 1,∀x, t ∈ X . Consider the random function class

H (X1, . . . ,Xn) = {±K(Q jXi ,Q
jx) : i ≤ n, j = 1, . . . ,d},

wheren is the number of training points(Xi ,Yi) andd is the number of the components.
In the case of RBF networks with one hidden layer and a linear threshold, the classifier function

is of the form

f (x) =
d

∑
j=1

n̂

∑
i=1

αi
jKσ j (ci ,x),

whereci , i = 1, . . . , n̂are centers of clusters, formed by clustering the training points{X1, . . . ,Xn} and
σ j (they can depend on the training data(Xi ,Yi), i = 1, . . . ,n) are different widths for the Gaussian

kernel,Kσ j (ci ,x) = e
− ||ci−x||2

σ2
j . Consider the following random function class

H (Zn) = {±Kσ j (ci ,x) : i ≤ n̂, j ≤ d},

wheren̂ is the number of clusters, which is bounded by the numbern of training points, and the
cluster centers{ci}n̂

i=1 depend on the training instances{Xi}n
i=1.

Without loss of generality, we can considerf ∈ conv(H (Zn)) in both of the above described
algorithms, after normalizing the classifier function with the sum of the absolute values of the coef-
ficients in front of the random functions.

Problem 3. Boosting over decision stumps.
Given a finite set ofd functions{hi : X ×X → [−1,1]} for i ≤ d, define the random class

of asH (X1, . . . ,Xn) = {hi(Xj ,x) : j ≤ n, i ≤ d}, wheren is the number of training points(Xi ,Yi).
This type of random class is used for example in aggregating combined classifier by boosting over
decision stumps. Indeed, decision stumps are simple classifiers,h, of the types 2I(xi ≤ a)− 1
or 2I(xi ≥ a)− 1, wherei ∈ {1, . . . ,m} is the direction of splitting (X ⊂ R

m) and a ∈ R is the
threshold. It is clear that the thresholda can be chosen amongXi

1, . . . ,X
i
n (the performance of the

stump will remain the same on the training data). In this case, takehi(Xj ,x) = 2I(xi ≤ Xi
j)−1 or

h̃i(Xj ,x) = 2I(xi ≥ Xi
j)−1 andH (X1, . . . ,Xn) = {hi(Xj ,x), h̃i(Xj ,x) : j ≤ n, i ≤ m} and taked = 2m.

Without loss of generality, we can considerf ∈ conv(H (X1, . . . ,Xn)), after normalizing with
the sum of the absolute values of the coefficients.

Problem 4. VC-classes of sets.
Let the random class of functionsH (Zn) has the property that for allh∈ H (Zn), h∈ {−1,1}

the VC dimensionV of the class of sets{{x∈ X : h(x) = 1},h∈ H (Zn)} is finite.
A classifier is formed by taking convex combinations of functions from the classH (Zn). Prob-

lem 4, in the case when the classH is not depending on the random sampleZn, was approached

311



ANDONOVA

before with the previously existing VC-inequalities for indicator functions (Vapnik, 1998; Vapnik
et al., 1968). The results shown here for Problem 4 in the case whenH is a random class, are
comparable to those derived before for indicators over class of sets withfinite VC dimension.

In general, all of the above four types of problems, consider the convex combinations of func-
tions from the random convex hull

F (Zn) = conv(H (Zn)) =
[

T∈N

FT(Zn),

FT(Zn) =
{

ΣT
i=1λihi ,λi ≥ 0,ΣT

i=1λi = 1,hi ∈ H (Zn)
}

, (3.5)

whereH (Zn) is for example one of the random classes defined above, such that either|H (Zn)| =
card(H (Zn)) is finite, orH (Zn) is a collection of indicators over random class of sets with finite
VC-dimension.

General problem:
We are interested is the following general problem:
Let H be a general-base class of uniformly bounded functions with values in[−1,1]. Let

Z1, . . . ,Zn,Zi = (Xi ,Yi) ∈ X ×Y be i.i.d. (training data) sampled with respect to the distribution
P. Assume that based on the dataZ1, . . . ,Zn one selects a class of functionsH (Zn) ⊆ H that is
either

i) with finite cardinalitydepending on the data, such that
ln(supZn |H (Zn)|) lnn

n → 0 for n→ ∞, or
ii) H (Zn) ⊆ H is a collection of indicator functions{2IC−1 :C∈ CZn} over a class of setsCZn

with finite VC-dimension V.
We will call H (Zn) a random-base classof functions. We are interested in studying the gen-

eralization errors for classifier functionsf ∈ conv(H (Zn)) that are produced by broad classes of
algorithms. Let us take

G∗(n,H ) = sup
Zn∈(X×Y )n

|H (Zn)|,

whenH is the general-base class and the random-base classesH (Zn) are with finite cardinality
H(Zn), and take

G∗(n,H ) =
(ne

V

)V
,

whenH is the general-base and the random-base classesH (Zn) are collections of indicators over
class of sets with finite VC-dimensionV (Problem 4).

From the definitions and Problems 1, 2 and 3, it is clear thatG∗(n,H ) ≤ 2n for Problem 1 and
G∗(n,H ) ≤ 2nd for Problems 2 and 3. For completeness of the results in case ofH (Zn) being a
collection of indicators over class of sets with finite VC-dimensionV, we will assume thatn≥ V

2e.

Following the notation by Koltchinskii and Panchenko (2004), letP (H (Zn)) be the collection
of all discrete distributions over the random-base classH (Zn). Let λ ∈ P (H (Zn)) and f (x) =
R

h(x)λ(dh), which is equivalent tof ∈ conv(H (Zn)). The generalization error of any classifier
function is defined as

P(sign( f (x)) 6= y) = P(y f(x) ≤ 0) = E(I(y f(x) ≤ 0)).
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Given an i.i.d sample(Xi ,Yi), i = 1, . . .n from the distributionP, let Pn denote the empirical distri-
bution and for any measurable functiong on X ×Y , let

Pg =
Z

g(x,y)dP(x,y), Png =
1
n

n

∑
i=1

g(Xi ,Yi).

The first bound we show for the generalization errors of functions from random classes of functions
is the following:

Theorem 2 Let H be a general-base class of functions. For any t> 0, with probability at least
1− e−t , for any n i.i.d. random pairs(X1,Y1), . . . ,(Xn,Yn) randomly drawn with respect to the
distributionP, for all λ ∈ P (H (Zn)) and f(x) =

R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ inf
0<δ≤1

(
U

1
2 +(Pn(y f(x) ≤ 2δ)+

1
n

+U)
1
2

)2
+

1
n
, (3.6)

where

U =
1
n

(
t + ln

4
δ

+
8lnn

δ2 lnG∗(2n,H )+ ln(8n+4)

)
.

The proof of this theorem is given in Section 4. It is based on random approximation of a function
and Hoeffding-̌Cernoff inequality as in (Koltchinskii and Panchenko, 2004), exploringthe properties
of random class of the level sets of the margins of the approximating functions, defined in the proof
and Inequality (3.4).

The first result for the generalization error of classifiers from conv(H ), whereH is a fixed
VC-class, was achieved by Schapire et al. (1998). They explained thegeneralization ability of
classifiers from conv(H ) in terms of the empirical distributionPn(y f(x) ≤ δ), f ∈ conv(H ) of the
quantityy f(x), known in the literature asmargin(“confidence” of prediction of the example x) and
proposed several boosting algorithms that are built on the idea of maximizing the margin. Important
properties, development, improvements and optimality of the generalization results of this type for
broader fixed classes of functionsH were shown by Koltchinskii and Panchenko (2004). The bound
on the generalization error shown here is valid for random classes of functions and is not optimized
for convergence with respect ton. Here, we have a different goal: to prove generalization results for
random classes of functions that relate to broader classes of algorithms.Exploring the optimality of
this result remains an open question.

In the rest of the paper, we will explore the individual complexity of classifier f ∈ conv(H ),
following the line of investigation begun by Koltchinskii and Panchenko (2004). We will explore
the structure of therandom convex hulland show bounds similar to the ones by Koltchinskii and
Panchenko (2004) that reflect some measures of complexity of convex combinations.

First, we explore how the sparsity of the weights of a function from a random convex hull
influences the generalization performance of the convex combination. Here, recall from Koltchinskii
and Panchenko (2004), by sparsity of the weights in convex combination,we mean rapidity of
decrease. Forδ > 0 and f (x) = ∑T

i=1 λihi(x),∑i λi = 1,λi ≥ 0, let us define thedimensionfunction
by

en( f ,δ) =

(
T −

T

∑
k=1

(1−λk)
8lnn
δ2

)
. (3.7)
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Figure 1: Dimension Function; From top to bottom: equal,polynomial, exponentialdecay; the x-
axis isδ, the y-axis is dimension function value.

The name of this function is motivated by the fact that it can be interpreted as adimension of
a subset of the random convex hull conv(H ) containing a function approximatingf “well enough”
(Koltchinskii and Panchenko, 2004). In a way, the dimension function measures the sparsity of the
weights in the convex combinationf . We plot the dimension function (see Fig. 1) in the cases
whenT = 100,n = 1000 and the weights{λi}T

i=1 are equal, polynomially decreasing (λi = i−2)
and exponentially decreasing (λi = e(−i+1)). One can see in Fig. 1 that when the weights decrease
faster, the dimension function values are uniformly smaller with respect toδ ∈ (0,1]. (For different
sparsity measures of voting classifiers from convex hulls of VC-major classes see (Koltchinskii et
al. (2003a); Koltchinskii and Panchenko (2004); Andonova (2004).)

Theorem 3 (Sparsity bound) For any t> 0, with probability at least1−e−t , for any n i.i.d. random
pairs (X1,Y1), . . . ,(Xn,Yn) randomly drawn with respect to the distributionP, for all λ ∈ P (H (Zn))
and f(x) = ∑T

i=1 λihi(x),

P(y f(x) ≤ 0) ≤ inf
0<δ≤1

(
U1/2 +(Pn(y f(x) ≤ 2δ)+U +

1
n
)1/2
)2

+
1
n
, (3.8)

where

U =
1
n

(
t + ln

4
δ

+en( f ,δ) lnG∗(2n,H )+en( f ,δ) ln(
8
δ2 lnn)+ ln(8n+4)

)
.

The proof of this theorem is also shown in Section 4. It is based on randomapproximation of func-
tions similarly to the proof of Theorem 2, Hoeffding-Černoff inequality, properties of conditional
expectation, exploring the capacity of random class of the level sets of themargins of the approx-
imating functions and Inequality (3.4). The constants are explicit. For many experimental results,
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showing the behavior of the above bound in the case of convex combinations of decision stumps,
such as those produced by various boosting algorithms (see Andonova,2004). There, it is shown
experimentally that the sparsity bound is indicative of the generalization performance of a classifier
from the convex hull of stumps. For further results and new algorithms, utilizing various notions of
sparsity of the weight of convex combinations (see Koltchinskii et al., 2003a). In the case of hard
margin SVM classifiersf (x) = ∑T

i=1 λiK(Xi ,x) with uniformly bounded kernels, the bound with
marginδ becomes of order

P(y f(x) ≤ 0) � min(T,8δ−2 lnn)

n
ln

n
δ
,

because
en( f ,δ) ≤ min(T,8δ−2 lnn).

The inequality foren( f ,δ) follows from the inequality(1−λ)p ≥ 1− pλ for λ ∈ [0,1] andp≥ 1,
and the fact that∑T

k=1 λk ≤ 1.
This zero-error bound is comparable to the compression bound (Littlestoneand Warmuth, 1986)

of order T
n−T ln n

T , and the bounds of Bartlett and Shawe-Taylor (1999), whereU ∼ R2

nδ2 ln2n and
R≤ 1 in case ofK(x,y) ≤ 1. WhenT � n the bound in (3.8) is an improvement of the last bound.
For example,T � nwhen SVMs produce very “sparse” solutions (small number of supportvectors),
that is, the vector of weights(λ1, . . . ,λT) is sparse. The sparseness (in the sense of there being a
small number of support vectors) of the solutions of SVMs was recently explored by Steinwart
(2003), where lower bounds (of orderO(n)) on the numberT of support vectors for specific types
of kernels were shown; in those cases, the bound in (3.8), relaxed to theupper bound ofen( f ,δ) ≤
min(T,8δ−2 lnn), is probably not a significant improvement of the result of Bartlett and Shawe-
Taylor (1999). The sparsity of weights of the solutions of SVMs, understood as rapidity of decrease
of weights, is in need of further exploration, as it would provide better insight into the bound (3.8)
of the generalizations error.

We now notice also that, becauseen( f ,δ) ≤ min(T,8δ−2 lnn) andG∗(n,H ) ≤ 2n for Problem
1 andG∗(n,H ) ≤ 2nd for Problems 2, 3 andG∗(n,H ) =

(
ne
V

)V
, the bound (3.8) is extension of the

results of Breiman (1999) for zero-error case, and is similar in nature to the result of Koltchinskii and
Panchenko (2004) and Koltchinskii et al. (2003b), but now holding for randomclasses of functions.

Motivations for considering different bounds on the generalization error of classifiers that take
into account measures of closeness of random functions in convex combinations and their clustering
properties were given by Koltchinskii and Panchenko (2004). We nowreview those complexities
and show bounds on the generalization error, that are similar to the ones proven by Koltchinskii
and Panchenko (2004), but applied for different classes of functions. The proofs of the results are
similar to those exhibited by Koltchinskii and Panchenko (2004).

Recall that a pointwise variance ofh with respect to the distributionλ ∈ P (H (Zn)) is defined
by

σ2
λ(x) =

Z (
h(x)−

Z

h(x)λ(dh)
)2

λ(dh), (3.9)

where,σ2
λ(x) = 0 if and only if h1(x) = h2(x) for all h1,h2 ∈ H (Zn) (Koltchinskii and Panchenko,

2004). The following theorem holds:

Theorem 4 For any t> 0with probability at least1−e−t , for any n i.i.d. random pairs(X1,Y1), . . . ,(Xn,Yn)
randomly drawn with respect to the distributionP, for all λ ∈ P (H (Zn)) and f(x) =

R

h(x)λ(dh),
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P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2

λ(x) ≥
γ
3
)+

+
8
n

(
56γ
δ2 (lnn) lnG∗(2n,H )+ ln(8n+4)+ t + ln

2γ
δ

)
+

6
n

)
. (3.10)

The proof is given in Section 4. This time, the proof incorporates random approximations of the
classifier function and its variance, Bernstein’s inequality as in (Koltchinskii and Panchenko, 2004),
exploring the capacity of random class of the level sets of the margins of theapproximating functions
and Inequality (3.4).

This result is an improvement of the above margin-bound in the case that the total pointwise
variance is small, that is, the classifier functionshi in the convex combinationf are close to each
other. The constants in the bound are explicit. From the Remark of Theorem3 in (Koltchinskii and
Panchenko, 2004) and the above inequality (3.10), one can see that thequantityPnσ2

λ might provide
a complexity penalty in thegeneral classof problems defined above.

A result that improves inequality (3.10) by exploring the clustering properties of the convex
combination from arandomconvex hull will now be shown.

Givenλ ∈ P (H (Zn)) and f (x) =
R

h(x)λ(dh), representf as

f =
p

∑
j=1

α j

T

∑
k=1

λ( j)
k h( j)

k

with ∑ j≤p α j = 1,T ≤ ∞,h( j)
k ∈ H (Zn).

Consider an elementc ∈ C p(λ), that is, c = (α1, . . . ,αp,λ1, . . . ,λp), such thatαi ∈ ∆(m) ={
tkm−k,k ∈ N, tk ∈ {1,2,3, . . . ,mk}

}
, m∈ N, λ = ∑p

i=1 αiλi , andλi ∈ P (H (Zn)), i = 1, . . . , p. De-

note byα∗
c = mini∈{1,...,p} αi , where{αi}p

i=1 are called the cluster weights.c is interpreted as
a decomposition ofλ into p clusters as in (Koltchinskii and Panchenko, 2004). For an element
c∈ C p(λ), a weighted variance over clusters is defined by

σ2(c;x) =
p

∑
k=1

α2
kσ2

λk(x), (3.11)

whereσ2
λk(x) are defined in (3.9). One can see in Fig. 2 that when the number of the clusters

increases, the weighted variance over clusters uniformly decreases (shifts to the left). If there are
p small clusters among functionsh1, . . . ,hT , then one should be able to choose elementc∈ C p(λ)
so thatσ2(c;x) will be small on the majority of data pointsX1, . . . ,Xn (Koltchinskii and Panchenko,
2004). The following theorem holds:

Theorem 5 For any m∈ N, for any t> 0 with probability at least1−e−t , the following is true for
any n i.i.d. random pairs(X1,Y1), . . . ,(Xn,Yn) randomly drawn with respect to the distributionP,
for any p≥ 1, c∈ C p(λ), λ = ∑p

i=1 αiλi ∈ P (H (Zn)), such thatα1, . . . ,αp ∈ ∆(m) with ∑i αi ≤ 1
and f(x) =

R

h(x)λ(dh)
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Figure 2: Empirical distribution of weighted variance over clusters; From right to left: one, tow,
four, six clusters; the x-axis isδ.

P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2(c;x) ≥ γ/3)+

+
8
n

(
56p

γ
δ2(lnn) lnG∗(2n,H )+ ln(8n+4)+2

p

∑
j=1

ln

(
logm

α j

α∗
c
+1

)
+

+ 2ln

(
logm

1
α∗

c
+1

)
+2pln2+ t + ln

p2π4γ
18δ

)
+

6
n

)
. (3.12)

The proof is given in the following Section 4. Here, the proof incorporates more sophisticated
random approximations of the classifier function and its weighted variance over clusters, Bernstein’s
inequality as in (Koltchinskii and Panchenko, 2004), exploring the capacity of random class of the
level sets of the margins of the approximating functions and Inequality (3.4).The above bound can
be simplified in the following way:

P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2(c;x) ≥ γ/3)+

+
8
n

(
56p

γ
δ2(lnn) lnG∗(2n,H )+ ln(8n+4)+

+ 2(p+1) ln

(
logm

1
α∗

c
+1

)
+2pln2+ t + ln

p2π4γ
18δ

))
.

Define the number̂pλ(m,n,γ,δ) of (γ,δ)-clusters ofλ as the smallestp, for which there exists
c∈ C p

λ such that (Koltchinskii and Panchenko, 2004)

Pn(σ2(c;x) ≥ γ) ≤ 56p
γ

nδ2(lnn) lnG∗(2n,H ).
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Recall thatG∗(n,H ) ≤ 2n for Problem 1 andG∗(n,H ) ≤ 2nd for Problems 2, 3 andG∗(n,H ) =(
ne
V

)V
. Then the above simplified bound implies that for allλ = ∑p

i=1 αiλi ∈ P(H (Zn)), such that
α1, . . . ,αp ∈ ∆(m) with ∑i αi ≤ 1,

P(y f(x) ≤ 0) ≤ K inf
0<δ≤γ≤1

(
Pn(y f(x) ≤ δ) + p̂λ(m,n,γ,δ)

γ
nδ2(lnn) lnG∗(2n,H )

+ p̂λ(m,n,γ,δ)
ln
(

logm
1

α∗
c
+1
)

n

)
.

Observe that ifγ = δ, then

P(y f(x) ≤ 0) ≤ K
(
Pn(y f(x) ≤ δ) + p̂λ(m,n,δ,δ)

(lnn) lnG∗(2n,H )

nδ

+ p̂λ(m,n,δ,δ)
ln
(

logm
1

α∗
c
+1
)

n

)
.

The above bound is an improvement of the previous bounds in the case when there is a small
numberp̂λ of clusters so that the resulting weighted variance over clusters is small, andprovided
that the minimum of the cluster weightsα∗

c is not too small. The bounds shown above are similar in
nature to the bounds by Koltchinskii and Panchenko (2004) for base-classesH satisfying a general
entropy condition. The advantages of the current results are that they are applicable for random
classes of functions. The bounds derived here are with explicit constants. For more information
regarding the empirical performance of the bounds and the complexities in thecase of boosting
with stumps and decision trees (see Koltchinskii et al., 2003b; Andonova, 2004). There, it is shown
experimentally that generalization bounds based on weighted variance over clusters and margin
capture the generalization performance of classifiers produced by several boosting algorithms over
decision stumps. Our goal here is to show theoretically the impact of the complexity terms on the
generalization performance of functions from random convex hulls, which happen to capture well
known algorithms such as SVMs. More experimental evidences are needed to explore the above
complexities in the setting of thegeneral problemdefined here.

4. Proofs

First we will prove the following lemma that will be used in the proof of Theorem1.

Lemma 6 For n large enough, if X is a random variable with values in{0,1}, P(X = 1) = p, p∈[
2
n,1
]

and X1, . . . ,Xn are independent random realizations of X (Bernoulli trials), then

P

(
1
n

n

∑
i=1

Xi ≥ p

)
≥ 1

4
.

Sketch of the Proof of Lemma 6.
We want to prove that

P

(
1
n

n

∑
i=1

Xi ≥ p

)
= ∑

k≥np

(
n
k

)
pk(1− p)n−k ≥ 1

4
.
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Observe that ifn−1
n < p ≤ 1, thenn ≥ np> n−1 and the inequality becomespn >

(
n−1

n

)n ≥ 1
4,

which is true forn≥ 2.
Assume thatp ≤ n−1

n . The proof of the inequality in this case relies on Poisson and Gaussian

approximation to binomial distribution. LetSn = ∑n
i=1Xi andZn = ∑n

i=1(Xi−p)√
np(1−p)

. Notice that

P

(
1
n

n

∑
i=1

Xi ≥ p

)
= P(Sn ≥ np) = P(Zn ≥ 0).

We want to show that there isn0, such that for anyn≥ n0 the following is true for anyp∈
[

2
n,1− 1

n

]

P

(
1
n

n

∑
i=1

Xi ≥ p

)
≥ 1

4

From the Poisson-Verteilung approximation theorem, (see Borowkow, 1976, Theorem 7, chapter
5, page 85) it follows that

P(Sn ≥ µ) ≥ ∑
k≥np

µk

k!
e−µ− µ2

n
,

whereµ = np≥ 2. From the properties of the Poisson cumulative distribution functionF(x|µ) =

e−µ∑bxc
i=0

µi

i! , one can see that 1−F(x|µ) > 1−F(2|2) > 0.32 forx < µ andµ≥ 2. Therefore,

P(Sn ≥ µ) ≥ 1−F(x|µ)− µ2

n
> 0.32− µ2

n
= 0.32−np2.

Now, from the Berry-Esśeen Theorem (see Feller, 1966, chapter XVI, page 515) one can derive
that

|P(Zn ≥ 0)−0.5| < 33
4
· E(X−EX)3
√

n(E(X−EX)2)3
=

33
4
· p2 +(1− p)2
√

np(1− p)
.

Therefore,P(Zn ≥ 0) > 0.5− 33
4 · p2+(1−p)2√

np(1−p)
. The goal is to findn0 such that for anyn ≥ n0 and

p∈
[

2
n,1− 1

n

]
the following is true:

max
{

0.32−np2,0.5− 33
4
· p2 +(1− p)2
√

np(1− p)

}
≥ 1

4
.

Let x = np2. One can see that the first term 0.32−np2 = 0.32− x is decreasing with respect tox

and the second term 0.5− 33
4 · p2+(1−p)2√

np(1−p)
= 0.5− 33

4 · p2+(1−p)2

√
(1−p)(nx)

1
4

is increasing with respect tox. The

solutionx(n) of the equation

0.32−x = 0.5− 33
4
· x/n+(1−x/n)2
√(

1−
√

x/n
)

(nx)
1
4

is decreasing with respect ton and therefore one can findn0, such that forn > n0 the inequality
0.32−x(n) ≥ 0.25 is true.
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Remark: A shorter proof could be achieved if one directly shows that forp∈
[

2
n,1
]
,

P

(
1
n

n

∑
i=1

Xi ≥ p

)
= ∑

k≥np

(
n
k

)
pk(1− p)n−k ≥ 1

4
.

A stronger version of the above inequality for anyp andn was used in (Vapnik (1998), page
133); however, a reference to a proof of this inequality appears currently to be unavailable.

Proof of Theorem 1.
The proof of Inequality (3.4) for random collection of sets of Theorem 1follows the three

main steps - Symmetrization, Randomization and Tail Inequality (see Vapnik (1998); Anthony and
Shawe-Taylor (1993)). The difference with other approaches is thatthe symmetrization step of the
proof is carried out for random classes invariant under permutation, after one combines the training
set with a ghost sample and uses the incremental property of the random class. Note that sym-
metrization for a random subset under similar incremental and permutation properties was proved
for the “standard” Vapnik’s inequality by Gat (1999) (bounding the absolute deviation).

Let t > 0 be fixed. Assume thatn≥ 2/t2, otherwise ifn < 2/t2, then 4exp−nt2/4 > 1; nothing
more need be proved.

Denote the set

A =

{
x = (x1, . . . ,xn) ∈ Zn : sup

C∈C (x)

P(C)− 1
n ∑ I(xi ∈C)√
P(C)

≥ t

}
.

Assume there exist a setCx, such that

P(Cx)− 1
n ∑ I(xi ∈Cx)√
P(Cx)

≥ t. (4.13)

ThenP(Cx) ≥ t2. We have assumed thatt2 ≥ 2
n, thereforeP(Cx) ≥ 2

n.
Let x′ = (x′1, . . . ,x

′
n) be independent copy ofx = (x1, . . . ,xn). It can be observed (see Lemma

6 and Anthony and Shawe-Taylor (1993), Theorem 2.1) that sinceP(Cx) = E(I(y∈Cx)) ≥ 2
n, then

with probability at least 1/4

P(Cx) ≤
1
n ∑ I(x′i ∈Cx). (4.14)

From the assumption (4.13) and (4.14), then sincex−a√
x+a

is a monotone and increasing function in
x > 0 (a > 0), we have that

0 < t ≤ P(Cx)− 1
n ∑ I(xi ∈Cx)√
P(Cx)

≤ P(Cx)− 1
n ∑ I(xi ∈Cx)√

1
2(P(Cx)+ 1

n ∑ I(xi ∈Cx))

≤
1
n ∑ I(x′i ∈Cx)− 1

n ∑ I(xi ∈Cx)√
1
2(1

n ∑ I(x′i ∈Cx)+ 1
n ∑ I(xi ∈Cx))

.
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From (4.14) and the above inequality,

1
4

I(x∈ A) ≤ Px′

(
P(Cx) ≤

1
n ∑ I(x′i ∈Cx)

)
I(x∈ A)

≤ Px′




1
n ∑ I(x′i ∈Cx)− 1

n ∑ I(xi ∈Cx)√
1
2(1

n ∑ I(x′i ∈Cx)+ 1
n ∑ I(xi ∈Cx))

≥ t




≤ Px′


 sup

C∈C (x)

1
n ∑ I(x′i ∈C)− 1

n ∑ I(xi ∈C)√
1
2(1

n ∑ I(x′i ∈C)+ 1
n ∑ I(xi ∈C))

≥ t


 .

Taking the expectationEx of both sides,

Px

(
sup

C∈C (x)

P(C)− 1
n ∑i I(xi ∈C)√
P(C)

≥ t

)
≤

≤ 4Px,x′


 sup

C∈C (x)

1
n ∑i I(x

′
i ∈C)− 1

n ∑i I(xi ∈C)√
1
2(1

n ∑i I(x
′
i ∈C)+ 1

n ∑i I(xi ∈C))
≥ t




(using increasing property)

≤ 4Px,x′


 sup

C∈C (x,x′)

1
n ∑i I(x

′
i ∈C)− 1

n ∑i I(xi ∈C)√
1
2(1

n ∑i I(x
′
i ∈C)+ 1

n ∑i I(xi ∈C))
≥ t




(using permutation property)

= 4Px,x′,ε


 sup

C∈C (x,x′)

1
n ∑i εi(I(x′i ∈C)−∑i I(xi ∈C))√
1
2(1

n ∑i I(x
′
i ∈C)+ 1

n ∑i I(xi ∈C))
≥ t




(using Hoeffding-Azuma’s inequality)

≤ 4E


∆C (x,x′)(x1, . . . ,xn,x

′
1, . . . ,x

′
n) ˙exp


− nt2

4∑i(Ii−I ′i )
2

∑i(Ii+I ′i )






≤ 4Ex,x′

(
∆C (x,x′)(x1, . . . ,xn,x

′
1, . . . ,x

′
n) ˙exp

(
−nt2

4

))
=

= 4G(2n)exp

(
−nt2

4

)
.

Here the increasing (2.2) and permutation (2.3) properties of the random collection of sets have
been used .

The following lemma will be useful in the proofs of Theorems 2, 3, 4 and 5.
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Lemma 7 Let Z1, . . . ,Zn be n i.i.d. random variables randomly drawn with respect to the distribu-
tion P, Zi = (Xi ,Yi) ∈ X ×Y . Let

CN,k(Z
n) = {C : C = {(x,y) ∈ X ×Y : yg(x) ≤ δ} , g∈ GN,k(Z

n),δ ∈ [0,1]} ,

where

GN,k(Z
n) =

{
g : g(z) =

1
N

N

∑
i=1

kihi(z),hi ∈ H (Zn),1≤ ki ≤ N−k+1,ki ∈ N

}
, N,k∈ N

andH (Zn) is a random-base class from the general problem. Then

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k(G∗(n,H ))k,2n

)
.

If k = N, thenki = 1 andGN,N(Zn) =
{

g : g(z) = 1
N ∑N

i=1hi(z),hi ∈ H (Zn)
}

, whereN ∈ N. In this
case, it is clear thatG(n) = En∆CN,N(Zn) (Z

n) ≤ min
(
(n+1)(G∗(n,H ))N,2n

)
.

Proof.
Following the notation we have to prove that ifH (Zn) is with finite cardinalityH(Zn), then

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

En

(
H(Zn)k

)
,2n
)

and if H (Zn) is a collection of indicators from the general problem, then

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

(ne
V

)Vk
,2n
)

.

First, letH (Zn) be with finite cardinalityH(Zn). Then

cardGN,k(Z
n) ≤ (N−k+1)kH(Zn)k,

because for eachg∈ GN,k(Zn) there arek different functionshi ∈ H (Zn) participating in the convex
combination and the integer coefficientski ∈ {1, . . . ,N− k+ 1}. Also, for fixed g ∈ GN,k(Zn), it
follows that

card
{
{yg(x) ≤ δ}

\

{z1, . . . ,zn},δ ∈ [−1,1]
}
≤ (n+1).

(This is clear after re-orderingY1g(X1), . . . ,Yng(Xn) → Yi1g(Xi1) ≤ . . . ≤ Ying(Xin) and taking for
values ofδ ∈ {Yi1g(Xi1), . . . ,Ying(Xin),1}.) Therefore,

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

EnH(Zn)k,2n
)
≤

≤ min
(
(n+1)(N−k+1)k(G∗(n,H ))k,2n

)
.

Next, let H (Zn) be a collection of indicators over class of sets with finite VC-dimensionV.
Then, for fixedδ∈ [0,1], the number of possible representations of(Z1, . . . ,Zn) by the classCN,k(Zn,δ)=
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{C : C = {(x,y) ∈ X ×Y : yg(x) ≤ δ} , g∈ GN,k(Zn)} is bounded by(N−k+1)k
(

ne
V

)Vk
. Similarly

to the previous case, for fixedg∈ GN,k(Zn),

card
{
{yg(x) ≤ δ}

\

{z1, . . . ,zn},δ ∈ [0,1]
}
≤ (n+1),

and therefore

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

(ne
V

)Vk
,2n
)

=

= min
(
(n+1)(N−k+1)k(G∗(n,H ))k,2n

)
.

Next, the proofs of Theorem 2,3, 4 and 5 are shown. They follow closelythe proofs given by
Koltchinskii and Panchenko (2004) and Koltchinskii et al. (2003b) fornon random classes of func-
tions. We adjust the proofs to hold for random classes of functions by using Inequality 3.4 from
Theorem 1.

Define the function

φ(a,b) =
(a−b)2

a
I(a≥ b),

that is convex fora > 0 and increasing with respect toa, decreasing with respect tob.
Proof of Theorem 2.
Let Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn) be i.i.d samples randomly drawn with respect to the distri-

butionP. Let us first fixδ ∈ (0,1] and let f = ∑T
k=1 λkhk ∈ conv(H (Zn)) be any function from the

convex hull ofH (Zn), whereH (Zn) is the random-base class defined in the general problem.
Given N ≥ 1, generate i.i.d sequence of functionsξ1, . . . ,ξN according to the distributionλ =
(λ1, . . . ,λT), Pξ(ξi = hk)= λk for k= 1, . . . ,T andξi are independent of{(Xk,Yk)}n

k=1. ThenEξξi(x)=

∑T
k=1 λkhk(x).

Consider a function

g(x) =
1
N

N

∑
k=1

ξk(x),

which plays the role of a random approximation off in the following sense:

P(y f(x) ≤ 0) = P

(
y f(x) ≤ 0,yg(x) ≤ δ

)
+P

(
y f(x) ≤ 0,yg(x) > δ

)

≤ P

(
yg(x) ≤ δ

)
+Ex,yPξ

(
Eξyg(x) ≤ 0,yg(x) ≥ δ

)

≤ P

(
yg(x) ≤ δ

)
+Ex,yPξ

(
yg(x)−Eξyg(x) ≥ δ

)

= P

(
yg(x) ≤ δ

)
+Ex,yPξ

(
N

∑
k=1

(yξi(x)−yEξξi(x)) ≥ Nδ

)

≤ P

(
yg(x) ≤ δ

)
+exp

(−Nδ2

2

)
, (4.15)

where in the last step is applied Hoeffding-Černoff inequality. Then,

P

(
y f(x) ≤ 0

)
≤ P

(
yg(x) ≤ δ

)
+exp(−Nδ2/2). (4.16)
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Similarly to the above inequality, one can derive that,

EξPn

(
yg(x) ≤ δ

)
≤ Pn

(
y f(x) ≤ 2δ

)
+exp(−Nδ2/2). (4.17)

For any random realization of the sequenceξ1, . . . ,ξN, the random functiong belongs to the class

GN(Zn) =
{

1
N ∑N

i=1hi(x) : hi ∈ H (Zn)
}
.

Consider the random collection of level sets for fixedN ∈ N,

C (Zn) =
{

C = {(x,y) ∈ X ×Y : yg(x) ≤ δ},g∈ GN(Zn),δ ∈ (0,1]
}
.

Clearly C (Zn) satisfies conditions (2.2) and (2.3). In order to apply the inequality for the random
collection of sets (3.4), one has to estimateG(n) = E

n∆C (Zn)(Z
n). By Lemma 7 it follows that

G(n) ≤ (G∗(n,H ))N(n+1).
From this and Theorem 1, we have

P
n

(
sup

C∈C (Zn)

P(C)− 1
n ∑n

i=1 I(Xi ∈C)√
P(C)

≥ t

)
≤ 4G(2n)e−

nt2
4 ≤

≤ 4(G∗(2n,H ))
N

(2n+1)e−
nt2
4 = e−u,

where a change of variablest =
√

4
n(u+N ln(G∗(2n,H ))+ ln(8n+4)) is made. So, for a fixed

δ ∈ (0,1], for anyu > 0 with probability at least 1−e−u, it follows that

P(yg(x) ≤ δ)− 1
n ∑n

i=1 I(Yig(Xi) ≤ δ)√
P(yg(x) ≤ δ)

≤
√

4
n
(u+N ln(G∗(2n,H ))+ ln(8n+4)). (4.18)

The functionφ(a,b),a > 0 is convex. Therefore,

Eξφ
(
P(yg(x) ≤ δ),Pn(yg(x) ≤ δ)

)
≥ φ
(
EξP(yg(x) ≤ δ),EξPn(yg(x) ≤ δ)

)
.

Based on the monotonic properties ofφ(a,b) and inequalities (4.16) and (4.17), it is obtained that
for anyδ ∈ (0,1], for anyu > 0 with probability at least 1−e−u,

φ
(
P(y f(x) ≤ 0)−exp(−Nδ2/2),Pn(y f(x) ≤ 2δ+exp(−Nδ2/2))

)
≤

≤ 4
n
(u+N ln(G∗(2n,H ))+ ln(8n+4)). (4.19)

ChooseN = 2lnn
δ2 , such that exp(−Nδ2/2) = 1

n. Take

U =
1
n

(
u+

2lnn
δ2 ln(G∗(2n,H ))+ ln(8n+4)

)
.

Solving the above inequality with respect toP(y f(x) ≤ 0), it follows that

P(y f(x) ≤ 0) ≤
(
√

U +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U

)2

+
1
n
.
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In order to make the bound uniform with respect toδ ∈ (0,1], we apply standard union bound
techniques (Koltchinskii and Panchenko, 2004). First, we prove the uniformity for δ∈∆ = {2−k,k=
0,1, . . . ..}. Apply the above inequality for fixedδ ∈ ∆ by replacingu by u+ ln 2

δ and hencee−u

replaced byδ
2e−u. Denote

U ′ =
1
n

(
u+ ln

2
δ

+
2lnn

δ2 ln(G∗(2n,H ))+ ln(8n+4)

)
.

Then

P


\

δ∈∆

{
P(y f(x) ≤ 0) ≤

(
√

U ′ +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U ′

)2

+
1
n

}

≥

≥ 1−e−u
∞

∑
k=1

2−k ≥ 1−e−u.

Now, in order to make the bound for anyδ ∈ (0,1], observe that ifδ0 ∈ (0,1] then there isk ∈
Z+, 2−k−1 ≤ δ0 < 2−k.

Therefore, if the above bound holds for fixedδ0 ∈ (0,1], then

Pn(y f(x) ≤ δ0) ≤ Pn

(
y f(x) ≤ 2−k

)

and

1/δ2
0 ≤ 22k+2, ln

2
δ0

≤ ln2k+2.

So, changing the constants in the bound, denote

U =
1
n

(
t + ln

4
δ

+
8lnn

δ2 ln(G∗(2n,H ))+ ln(8n+4)

)
.

It follows that, for anyt > 0 with probability at least 1−e−t for anyδ ∈ (0,1], the following holds:

P(y f(x) ≤ 0) ≤
(
√

U +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U

)2

+
1
n

Thus, the Theorem 2 and inequality (3.6) hold.

Now, theproof of Sparsity bound of Theorem 3will be shown.

Denote∆ = {2−k : k≥ 1} andz= (x,y), Zn =
(
(X1,Y1), . . . ,(Xn,Yn)

)
.

Let us fix f (x) = ∑T
k=1 λkhk(x) ∈ conv(H (Zn)). GivenN ≥ 1, generate an i.i.d. sequence of func-

tionsξ1, . . . ,ξN according to the distributionPξ(ξi(x) = hk(x)) = λk for k= 1, . . . ,T and independent
of {(Xi ,Yi)}n

i=1. Clearly,Eξξi(x) = ∑T
k=1 λkhk(x). Consider the function

g(x) =
1
N

N

∑
k=1

ξk(x),
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which plays the role of a random approximation off andEξg(x) = f (x). One can write,

P(y f(x) ≤ 0) = EξP
(

y f(x) ≤ 0,yg(x) < δ
)

+EξP
(

y f(x) ≤ 0,yg(x) ≥ δ
)
≤

≤ EξP
(

yg(x) ≤ δ
)

+EPξ

(
yg(x) ≥ δ,Eξyg(x) ≤ 0

)
.

In the last term for a fixed(x,y) ∈ X ×Y ,

Pξ

(
yg(x) ≥ δ,Eξyg(x) ≤ 0

)
≤ Pξ

(
yg(x)−Eξyg(x) ≥ δ

)
=

= Pξ

(
N

∑
i=1

(yξi(x)−yEξξi(x)) ≥ Nδ

)
≤ exp

(
−Nδ2/2

)
.

where in the last step Hoeffding-Černoff inequality has been applied. Hence,

P(y f(x) ≤ 0)−e−Nδ2/2 ≤ EξP(yg(x) ≤ δ). (4.20)

Similarly,

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+e−Nδ2/2. (4.21)

Clearly, for any random realization of the sequenceξ1, . . . ,ξN, the functiong(x) belongs to the
class

FN,k(Z
n) =

{
1
N

k

∑
i=1

kihi(x) :
k

∑
i=1

ki = N,1≤ ki ≤ N,hi ∈ H (Zn)

}
,

for somek ∈ N, which is the number of different indicesi andki ∈ N is the number of repeating
function hi in the representation ofg. Recall,H (Zn) is the random-base class from the general
problem. Then, 1≤ k≤ min(T,N). Let pk,N = Pξ(g∈ FN,k(Zn)).

Then the expectationEξ can be represented as

Eξ(L(g)) = ∑
k≥1

pk,NEξ (L(g)|g∈ FN,k(Z
n)) ,

whereL is a real valued measurable function andg is the random function

g(x) =
1
N

N

∑
k=1

ξk(x).

Now consider the random collection of sets

CN,k(Z
n) =

{
C : C = {(x,y) : yg(x) ≤ δ},g∈ FN,k(Z

n),δ ∈ (0,1]
}
,

whereN,k∈N. ClearlyCN,k(Zn) satisfies conditions (2.2) and (2.3). In order to apply the inequality
for random collection of sets (3.4), one has to estimateG′(n) = En∆CN,k(Zn)(Z

n).
By Lemma 7, it follows that

G′(n) ≤ (G∗(n,H ))k(N−k+1)k(n+1) ≤ (G∗(n,H ))kNk(n+1).
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Now apply Inequality (3.4) for the random collection of setsCN,k(Zn). Then, with probability
at least 1−e−t

(Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
≤ 4

n
(t +k lnG∗(2n,H )+k lnN+ ln(8n+4)).

The functionφ(a,b),a > 0 is convex, soφ(Eξa,Eξb) ≤ Eξφ(a,b) for a > 0.
Therefore,

(EξPx,y(yg(x) ≤ δ)−EξPn(yg(x) ≤ δ))2

EξPx,y(yg(x) ≤ δ)
≤ Eξ

(Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
=

= ∑
k≥1

pk,NEξ

((Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
|g∈ FN,k(Z

n)
)
≤

≤ ∑
k≥1

pk,N
4
n
(t +k lnG∗(2n,H )+k lnN+ ln(8n+4)).

Observe that

∑
k≥1

kpk,N = Ecard{k : k ′th index is picked at least once} =

T

∑
k=1

EI(k is picked at least once) =
T

∑
k=1

(1− (1−λk)
N).

Denoteen( f ,δ) = ∑T
k=1

(
1− (1−λk)

N
)
. Let N = 2

δ2 lnn, so thate−Nδ2/2 = 1
n.

The functionφ(a,b) is increasing ina and decreasing inb. Combine the last result with (4.20) and
(4.21):

φ
(
P(y f(x) ≤ 0)−n−1,Pn(y f(x) ≤ 2δ)+n−1

)
≤

≤ 4
n
(t +en( f ,δ) lnG∗(2n,H )+en( f ,δ) ln(

2
δ2 lnn)+ ln(8n+4)).

Denote

W =
1
n
(t +en( f ,δ) lnG∗(2n,H )+en( f ,δ) ln(

2
δ2 lnn)+ ln(8n+4)).

After solving the above inequality forP(y f(x) ≤ 0), one can get that, for a fixedδ ∈ {2−k : k≥ 1},
for everyt > 0 with probability at least 1−e−t the following holds

P(y f(x) ≤ 0) ≤
(√

W+

√
Pn(y f(x) ≤ 2δ)+

1
n

+W
)2

+
1
n
. (4.22)

It remains to make the bound uniform overδ ∈ (0,1], which is done again by using standard union
bound techniques shown in the proof of Theorem 2 and the observation that if δ0 ∈ (0,1], then there
is k∈ Z+, 2−k−1 < δ0 ≤ 2−k anden( f ,δ0) ≤ ∑T

k=1(1− (1−λi)
8(lnn)22k

).
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Redefineen( f ,δ) = ∑T
k=1(1− (1−λi)

8lnn
δ2 ).

So, by changing the constants in the bound, it follows that for anyt > 0, with probability at least
1−e−t for anyδ ∈ (0,1] the following holds:

P(y f(x) ≤ 0) ≤
(√

U +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U
)2

+
1
n
,

where

U =
1
n

(
t + ln

4
δ

+en( f ,δ) lnG∗(2n,H )+en( f ,δ) ln

(
8
δ2 lnn

)
+ ln(8n+4)

)
.

Thus, the Theorem 3 and inequality (3.8) hold.

We now show theproof for the bound with the total variance inTheorem 4, using Theorem 1.
Given f (x) = ∑T

k=1 λkhk(x), and givenN ≥ 1, first generate an i.i.d. sequence of functions
ξ1, . . . ,ξN independently of{(Xi ,Yi)} and according to the distributionPξ(ξi = hk) = λk, for k =
1, . . . ,T, and consider a function

g(x) =
1
N

N

∑
i=1

ξi(x),

which plays the role of random approximation off .
The main difference from the proof of the above theorems is that in equation(4.15) the condition

on the varianceσ2
λ(x) is also introduced. Namely, one can write

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ) + P
(
σ2

λ(x) ≥ γ
)
+

+ EPξ
(
yg(x) ≥ δ,y f(x) ≤ 0,σ2

λ(x) ≤ γ
)
.

The variance ofξi ’s, for a fixedx∈ X , is

Varξ(ξi(x)) = σ2
λ(x).

−1≤ ξi(x) ≤ 1, as well. Bernstein’s inequality,

Pξ
(
yg(x) ≥ δ,y f(x) ≤ 0,σ2

λ(x) ≤ γ
)
≤

≤ Pξ

(
N

∑
i=1

(yξi(x)−yEξξi(x)) ≥ Nδ|Varξ(ξ1(x)) ≤ γ

)
≤

≤ 2exp
(
−1

4
min
(Nδ2

γ
,Nδ

))
= 2exp

(
−1

4
Nδ2

γ

)
,

is used, since it is assumed thatγ ≥ δ. Making this term negligible by takingN = 4( γ
δ2 ) lnn,

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ)+P
(
σ2

λ(x) ≥ γ
)
+n−1. (4.23)
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Similarly,

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ) + Pn
(
σ2

λ(x) ≥ γ
)
+

+ PnPξ
(
yg(x) ≤ δ,y f(x) ≥ 2δ,σ2

λ(x) ≤ γ
)
.

Applying Bernstein’s inequality to the last term with the same choice ofN = 4( γ
δ2 ) lnn, one has

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+Pn
(
σ2

λ(x) ≥ γ
)
+

1
n
. (4.24)

Now, similarly to the proof of Theorem 2, we derive inequality (4.18). For any γ≥ δ∈ (0,1],N =
4( γ

δ2 ) lnn, for anyt > 0 with probability at least 1−e−t , the following holds:

φ
(
EξP(yg(x) ≤ δ),EξPn(yg(x) ≤ δ)

)
≤ Eξφ

(
P(yg(x) ≤ δ),Pn(yg(x) ≤ δ)

)
≤

≤ 4
n

(
4

γ
δ2(lnn) lnG∗(2n,H )+ ln(8n+4)+ t

)
, (4.25)

where the fact that the functionφ(a,b)= (a−b)2

a I(a≥b),a> 0 is convex has been used; so,φ(Eξa,Eξb)≤
Eξφ(a,b). The functionφ(a,b) is increasing ina and decreasing inb; combining the last result with
(4.23) and (4.24), one has

φ
(
P(y f(x) ≤ 0)−P(σ2

λ(x) ≥ γ)−n−1,Pn(y f(x) ≤ 2δ)+Pn(σ2
λ(x) ≥ γ)+n−1

)

≤ 4
n
(t +4

γ
δ2(lnn) lnG∗(2n,H )+ ln(8n+4)).

After solving this inequality forP(y f(x) ≤ 0), one has that, for anyδ ∈ (0,1], any 1≥ γ ≥ δ, for
anyt > 0 with probability at least 1−e−t , the following inequality holds

P(y f(x) ≤ 0) ≤ P(σ2(x) ≥ γ)+
1
n

+

+

((
Pn(y f(x) ≤ 2δ)+Pn(σ2(x) ≥ γ)+

1
n

+U

) 1
2

+U
1
2

)2

, (4.26)

where

U =
1
n

(
t +4

γ
δ2(lnn) lnG∗(2n,H )+ ln(8n+4)

)
.

Next, in (4.23),(4.24) and (4.26), the termP(σ2
λ(x) ≥ γ) is related to the term

Pn(σ2
λ(x) ≥ γ) that appears. In order to be able to do this, generate two independent sequencesξ1

k
andξ2

k as above and consider

σ2
N(x) =

1
2N

ΣN
k=1(ξ

2
k(x)−ξ1

k(x))
2 =

1
N

ΣN
k=1ξk(x),

where

ξk(x) =
1
2

(
ξ1

k(x)−ξ2
k(x)

)2
.
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Notice thatξk(x) are i.i.d. random variables andEξξk(x) = σ2
λ(x). Sinceξ1

k,ξ
2
k ∈ H (Zn), then

|ξ1
k(x)−ξ2

k(x)| ≤ 2. The variance

Varξ(ξ1(x)) ≤ Eξξ2
1(x) ≤ 2Eξξ1(x) = 2σ2

λ(x).

Bernstein’s inequality implies that for anyc > 0,

Pξ


σ2

N(x)−σ2(x) ≤ 2

√
σ2

λ(x)γ
c

+8
γ
3c


≥ 1−e(−Nγ

c )

and

Pξ


σ2

λ(x)−σ2
N(x) ≤ 2

√
σ2

λ(x)γ
c

+8
γ
3c


≥ 1−e(−Nγ

c ).

Let choosec = 18. If σ2
λ(x) ≤ γ, then with probability at least 1− e−Nγ/18, it follows from the

first inequality thatσ2
N(x) ≤ 2γ. On the other hand, ifσ2

N(x) ≤ 2γ, then with probability at least
1−e−Nγ/18, it follows from the second inequality thatσ2

λ(x) ≤ 3γ. Based on this,

Pξ
(
σ2

N(x) ≥ 2γ,σ2
λ(x) ≤ γ

)
≤ e(−Nγ

18 ),

and
Pξ
(
σ2

N(x) ≤ 2γ,σ2
λ(x) ≥ 3γ

)
≤ e(−Nγ

18 ).

One can write

P(σ2
λ(x) ≥ 3γ) = EξP

(
σ2

λ(x) ≥ 3γ,σ2
N(x) ≥ 2γ

)
+EξP

(
σ2

λ(x) ≥ 3γ,σ2
N(x) ≤ 2γ

)

≤ EξP
(
σ2

N(x) ≥ 2γ
)
+EPξ

(
σ2

N(x) ≤ 2γ,σ2
λ(x) ≥ 3γ

)

and

EξPn
(
σ2

N(x) ≥ 2γ
)
≤ Pn

(
σ2

λ(x) ≥ γ
)
+EξPn

(
σ2

N(x) ≥ 2γ,σ2
λ(x) ≤ γ

)
.

SettingN = cγ−1 lnn, then

P
(
σ2

λ(x) ≥ 3γ
)
≤ EξP

(
σ2

N(x) ≥ 2γ
)
+

1
n
, (4.27)

and

EξPn
(
σ2

N(x) ≥ 2γ
)
≤ Pn

(
σ2

λ(x) ≥ γ
)
+

1
n
. (4.28)

For any realization ofξ j,1
k ,ξ j,2

k , the functionsσ2
N belong to the class

FN(Zn) =

{
1

2N

N

∑
k=1

(h j,1
k −h j,2

k )2 : h j,1
k ,h j,2

k ∈ H (Zn)

}
,

whereH (Zn) is defined as the random-base function class in the general problem.
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Now, consider the random collection of sets

C (Zn) =
{
C : C =

{
x∈ X : {σ2

N(x) ≥ γ}
}

,σ2
N ∈ FN(Zn),γ ∈ (0,1]

}
.

In order to boundG′(n) = E
n∆C (Zn)(Z

n) take into account that ifH (Zn) is a random-base class of
finite cardinality, then cardFN(Zn)≤G∗(n,H )2N. In the case of the base-random classH (Zn) being
a collection of indicators, similarly to the proof of Lemma 7, one can count the maximum number
of different representations of{X1, . . . ,Xn} by

C (Zn,γ) =
{
C : C =

{
x∈ X : {σ2

N(x) ≥ γ}
}

,σ2
N ∈ FN(Zn)

}

for a fixed γ ∈ (0,1]. It is bounded by
(

ne
V

)2N
. Then varyingγ over the ordered discrete set

{1,σ2
N(Xi1),σ2

N(Xi2), . . . ,σ2
N(Xin)} for a fixedσ2

N ∈FN(Zn), one can see thatG′(n)≤ (n+1)G∗(n,H )2N.
Now, we apply Theorem 1 for the random collection of setsC , for N = 18γ−1 lnn. Then for any
t > 0 with probability at least 1−e−t for any sampleZn, the following holds

φ
(
EξP(σ2

N(x) ≥ γ),EξPn(σ2
N(x) ≥ γ)

)
≤ Eξφ

(
P(σ2

N(x) ≥ γ),Pn(σ2
N(x) ≥ γ)

)
≤

≤ 4
n

(
2N lnG∗(2n,H )+ ln(8n+4)+ t

)
.

Here, the monotonic property ofφ(a,b) is used together with (4.27) and (4.28), in order to obtain
the following bound under the above conditions:

φ
(
P(σ2

λ(x) ≥ 3γ)− 1
n
,Pn(σ2

λ(x) ≥ γ)+
1
n

)
≤

≤ 4
n

(
36γ−1(lnn) lnG∗(2n,H )+ ln(8n+4)+ t

)
,

Solving the above inequality forP(σ2
λ(x) ≥ γ), we obtain

P(σ2
λ(x) ≥ γ) ≤ 1

n
+

(
W

1
2 +

(
W+Pn(σ2

λ(x) ≥ γ/3)+
1
n

) 1
2

)2

,

where

W =
1
n

(
t +

108
γ

(lnn) lnG∗(2n,H )+ ln(8n+4)

)
.

Combining the above inequality with the inequality (4.26 ) and using the inequalities(a+ b)2 ≤
2a2 + 2b2 and 1

γ ≤ γ
δ2 for γ ≥ δ, one has that, for anyδ ∈ (0,1] and anyγ ∈ (0,1],γ ≥ δ, for all

t > 0 with probability at least 1− e−t , for any random sampleZn, for any λ ∈ P (H (Zn)) and
f (x) =

R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+2Pn(σ2
λ(x) ≥ γ)+2Pn(σ2

λ(x) ≥ γ/3)+

+
8t
n

+
8ln(8n+4)

n
+

6
n

+
448γ(lnn) lnG∗(2n,H )

nδ2 .
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Observe thatPn(σ2
λ(x) ≥ γ) ≤ Pn(σ2

λ(x) ≥ γ/3). Rewrite

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448γ(lnn) lnG∗(2n,H )

nδ2 +
8t
n

+
8ln(8n+4)

n
+

6
n
.

Next, the bound is made uniform with respect toγ ∈ (0,1] andδ ∈ (0,1]. First, one makes the bound
uniform whenγ ∈ ∆ = {2−k,k∈ Z+}, andδ ∈ ∆. Apply the above inequality for fixedδ ≤ γ ∈ ∆ by
replacing t byt ′+ ln 2γ

δ and, hence,e−t replaced bye−t ′ = e−t δ
2γ , whereδ andγ ∈ ∆ = {2−k : k≥ 0}.

P
[

\

δ,γ

{
P(y f(x) ≤ 0) ≤

(
2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

6
n

+

+
8
n

(
t + ln

2γ
δ

+ ln(8n+4)+
56γ
δ2 (lnn) lnG∗(2n,H )

))}]
≥

≥ 1− ∑
l∈Z+

2−l

2
.e−t ≥ 1−e−t ,

where is used∑l∈Z+
2−l < 2. Then the union bound should be applied in the whole range ofδ,γ ∈

(0,1].

For anyt > 0 with probability at least 1−e−t , for anyλ ∈ P (H ) and f (x) =
R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2

λ(x) ≥
γ
3
)+

+
8
n

(
t + ln

2γ
δ

+ ln(8n+4)+
56γ
δ2 (lnn) lnG∗(2n,H )

)
+

6
n

)
.

Now theproof of Theorem 5 regarding cluster-variance bound is given. Let us fix

α1, . . . ,αp,
p

∑
i=1

αi ≤ 1,αi > 0

used for the weights of the clusters in

c = (α1, . . . ,αp,λ1, . . . ,λp), λ =
p

∑
i=1

αiλi , λi ∈ P (H (Zn)).

Generate functions from each cluster independently from each other and independently of the
data and take their sum to approximatef (x) =

R

h(x)λ(dh) = ∑T
i=1 λihi(x). Given N ≥ 1, gener-

ate independentξ j
k(x),k ≤ N, j ≤ p, where for eachj, ξ j

k(x)’s are i.i.d. and have the distribution
Pξ(ξ

j
k(x) = hi(x)) = λ j

i , i ≤ T. Consider a function that plays role of a random approximation off

g(x) =
1
N

p

∑
j=1

α j

N

∑
k=1

ξ j
k(x) =

1
N

N

∑
k=1

gk(x),

332



GENERALIZATION BOUNDS AND COMPLEXITIES

wheregk(x) = ∑p
j=1 α jξ

j
k(x).

For a fixedx ∈ X and k ≤ N, the expectation ofgk with respect to the distributionPξ =
Pξ1×, . . . ,×Pξp is

Eξ(gk(x)) = Σp
j=1α jEξ(ξ

j
k(x)) = f (x);

its variance is

Varξ(gk(x)) =
p

∑
j=1

Varξ(ξ
j
k(x)) =

p

∑
j=1

α2
j σ

2
λ j (x) = σ2(c;x).

Then

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ)+P
(
σ2(c;x) ≥ γ

)
+

+ EPξ
(
yg(x) ≥ δ,y f(x) ≤ 0,σ2(c;x) ≤ γ

)
.

Using Bernstein’s inequality,γ ≥ δ > 0, |gk(x)| ≤ 1 and takingN = d2+4/3e( γ
δ2 ) lnn= 4 γ

δ2 lnn will
make the last term negligible. Thus,

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ)+P
(
σ2(c;x) ≥ γ

)
+

1
n
. (4.29)

Also,

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+Pn
(
σ2(c;x) ≥ γ

)
+

+ PnPξ
(
yg(x) ≥ δ,y f(x) ≤ 2δ,σ2(c;x) ≤ γ

)
.

Applying Bernstein’s inequality to the last term with the same choice ofN = 4 γ
δ2 lnn, it follows that

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+Pn
(
σ2(c;x) ≥ γ

)
+

1
n
. (4.30)

Now, consider the random collection of level sets

C (Zn) = {C : C = {(x,y) : yg(x) ≤ δ, (x,y) ∈ X ×Y },g∈ FN(Zn),δ ∈ [−1,1]} ,

where

FN(Zn) =

{
1
N

ΣN
i=1gi ,gi ∈ G(α1, . . . ,αp)[Zn]

}

and

G(α1, . . . ,αp)[Zn] =

{
gk(x) =

p

∑
j=1

α jξ
j
k(x),ξ

j
k ∈ H (Zn)

}
,

whereH (Zn) is the random-base class of functions, defined in the general problem.
Similarly to the proof of Theorem 2, for fixedg∈ FN(Zn), we have

card
{

C
\

Z1, . . . ,Zn

}
≤ (n+1)

and
cardFN(Zn) ≤ G∗(n,H )Np.
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Therefore,G′(n) = E
n∆C (Zn) ≤ (n+ 1)G∗(n,H )Np. Apply Inequality (3.4) from Theorem 1 for

random the collection of setsC . Then, with probability at least 1−e−t

(Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
≤ 4

n
(t +NplnG∗(2n,H )+ ln(8n+4)).

The functionφ(a,b) = (a−b)2

a I(a≥ b),a > 0 is convex, soφ(Eξa,Eξb) ≤ Eξφ(a,b)

(EξPx,y(yg(x) ≤ δ)−EξPn(yg(x) ≤ δ))2

EξPx,y(yg(x) ≤ δ)
≤ 4

n
(t +NplnG∗(2n,H )+ ln(8n+4)).

The functionφ(a,b) is increasing ina and decreasing inb and combined with the last result with
(4.29) and (4.30) (recall thatN = 4( γ

δ2 ) lnn)

φ
(
P(y f(x) ≤ 0)−P(σ2(c;x) ≥ γ)− 1

n
,Pn(y f(x) ≤ 2δ)+Pn(σ2(c;x) ≥ γ)+

1
n

)
≤

≤ 4
n

(
t +4p

γ
δ2(lnn) lnG∗(2n,H )+ ln(8n+4)

)
.

After solving this inequality forP(y f(x) ≤ 0), one can get that, for anyγ,δ ∈ (0,1], γ ≥ δ, and
α1, . . . ,αp,∑αi ≤ 1,αi > 0 for anyt > 0 with probability at least 1−e−t ,

P(y f(x) ≤ 0) ≤ P
(
σ2(c;x) ≥ γ

)
+

+

((
Pn(y f(x) ≤ 2δ)+Pn(σ2(c;x) ≥ γ)+

1
n

+U

) 1
2

+U
1
2 +

1
n

)2

, (4.31)

where

U =
1
n

(
t +4

pγ
δ2 (lnn) lnG∗(2n,H )+ ln(8n+4)

)
,

c∈ C p(λ), λ = ∑p
j=1 α jλ j , λ j ∈ P (H ).

Now,P(σ2(c;x)≥ γ) has to be estimated. Generate two independent random sequences of func-
tionsξ j,1

k (x) andξ j,2
k (x), j = 1, . . . p, k = 1, . . . ,N as before (Pξ(ξ

j,1
k (x) = hi(x)) = λ j

i , Pξ(ξ
j,2
k (x) =

hi(x)) = λ j
i ) and consider

σ2
N(c;x) =

1
2N

ΣN
k=1

(
Σp

j=1α j(ξ j,2
k (x)−ξ j,1

k (x))
)2

=
1
N

ΣN
k=1ξk(x),

where

ξk(x) =
1
2

(
Σp

j=1α j(ξ j,1
k (x)−ξ j,2

k (x))
)2

. (4.32)

Thenξk(x) are i.i.d. random variables andEξξk(x) = σ2(c;x). Sinceξ j,1
k ,ξ j,2

k ∈ H , then|ξ j,1
k (x)−

ξ j,2
k (x)| ≤ 2. The variance satisfies the following inequality

Varξ(ξ1(x)) ≤ Eξξ2
1(x) ≤ 2Eξξ1(x) = 2σ2(c;x).
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Bernstein’s inequality implies that

Pξ

(
σ2

N(c;x)−σ2(c;x) ≤ 2

√
σ2(c;x)

K
+8

γ
3K

)
≥ 1−e(−Nγ

K )

and

Pξ

(
σ2(c;x)−σ2

N(c;x) ≤ 2

√
σ2(c;x)

K
+8

γ
3K

)
≥ 1−e(−Nγ

K ).

Based on this, for large enoughK > 0 (K = 18 is sufficient),

Pξ
(
σ2

N(c;x) ≥ 2γ,σ2(c;x) ≤ γ
)
≤ e(−Nγ

K ),

and
Pξ
(
σ2

N(c;x) ≤ 2γ,σ2(c;x) ≥ 3γ
)
≤ e(−Nγ

K ).

One can write

P
(
σ2(c;x) ≥ 3γ

)
≤ EξP

(
σ2

N(c;x) ≥ 2γ
)
+EPξ

(
σ2

N(c;x) ≤ 2γ,σ2(c;x) ≥ 3γ
)
,

and

EξPn
(
σ2

N(c;x) ≥ 2γ
)
≤ Pn

(
σ2

N(c;x) ≥ γ
)
+PnPξ

(
σ2

N(c;x) ≥ 2γ,σ2(c;x) ≤ γ
)
.

ChooseN = Kγ−1 lnn; then

P
(
σ2(c;x) ≥ 3γ

)
≤ EξP

(
σ2

N(c;x) ≥ 2γ
)
+

1
n
, (4.33)

and

EξPn
(
σ2

N(c;x) ≥ 2γ
)
≤ Pn

(
σ2

N(c;x) ≥ γ
)
+

1
n
. (4.34)

Now, consider the random collection of sets

CZn =
{
C : C =

{
x : σ2

N(c;x) ≥ 2γ
}

,σ2
N(c;x) ∈ FN(Zn),γ ∈ (0,1]

}
,

where

FN(Zn) =

{
1

2N
ΣN

k=1

(
Σp

j=1α j(h j,1
k −h j,2

k )
)2

,h j,1
k ,h j,2

k ∈ H (Zn)

}
.

For any{x1, . . . ,xn} and a fixedσ2
N(c; .) ∈ FN(Zn), it follows that

card{CT{X1, . . . ,Xn}} ≤ (n+1) and cardFN(Zn) ≤ G∗(n,H )2Np

if the base-random classH (Zn) is of finite cardinality. Therefore,G′
C (n) = E

n∆CZn(Zn) ≤ (n+
1)G∗(n,H )2Np. The case ofH (Zn) being a collection of indicators as in the general problem is
similar and dealt with in the previous proofs of the theorems.

The rest of the arguments are similar to the proof of the Theorem 4. Apply theinequality (3.4)
from Theorem 1 for random collection of setsCZn, and based on convexity ofφ(a,b), one has that
for γ ∈ (0,1], α1, . . . ,αp,∑p

j=1 α j ≤ 1,α j > 0 and for anyt > 0 with probability at least 1−e−t
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(EξP
(
σ2

N(c;x) ≥ γ
)
−EξPn

(
σ2

N(c;x) ≥ γ
)
)2

EξP
(
σ2

N(c;x) ≥ γ
) ≤ 2

n
(t +2NplnG∗(2n,H )+ ln(8n+4)),

for any λ j ∈ P (H (Zn)), j = 1, . . . , p. Combining the last result (φ(a,b) is increasing ina and
decreasing inb) with (4.33) and (4.34) (recall thatN = 18γ−1 lnn),

φ
(
P
(
σ2(c;x) ≥ 3γ

)
−n−1,Pn

(
σ2(c;x) ≥ γ

)
+n−1

)
≤

≤ 4
n

(
t +36p

γ
δ2(lnn) lnG∗(2n,H )+ ln(8n+4)

)
.

Solving the above inequality forP(σ2
λ(x) ≥ γ), then with probability at least 1−e−t

P
(
σ2

λ(x) ≥ γ
)
≤ 1

n
+

(
W

1
2 +

(
W+Pn

(
σ2

λ(x) ≥ γ/3
)
+

1
n

) 1
2

)2

,

where

W =
1
n

(
t +

108p
γ

(lnn) lnG∗(2n,H )+ ln(8n+4)

)
.

Finally, combining this with (4.31) and using the inequalities(a+b)2 ≤ 2a2 +2b2 and 1
γ ≤ γ

δ2 for
γ ≥ δ, one obtains: for anyδ ∈ (0,1] and anyγ ∈ (0,1],γ ≥ δ, for all t > 0 with probability at least
1−e−t , for any random sampleZn, for anyλ ∈ P (H (Zn)) and f (x) =

R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+2Pn
(
σ2

λ(x) ≥ γ
)
+2Pn

(
σ2

λ(x) ≥ γ/3
)
+

+
8t
n

+
8ln(8n+4)

n
+

6
n

+
448pγ(lnn) lnG∗(2n,H )

nδ2 .

Observe thatPn
(
σ2

λ(x) ≥ γ
)
≤ Pn

(
σ2

λ(x) ≥ γ/3
)
. Then, rewrite

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448pγ(lnn) lnG∗(2n,H )

nδ2 +
8t
n

+
8ln(8n+4)

n
+

6
n
.

The next step is to make this bound uniform with respect toα j > 0, j = 1, . . . , p,∑p
j=1 α j ≤ 1.

First, consider simplyαi ∈ ∆ = {2− j , j = 1,2, . . .}. The case ofαi = 1 is proven in the previous
Theorem 4 for total variance. Letα j = 2−l j . Redefine clusterc(l1, . . . , lp) := c(α1, . . . ,αp,λ1, . . . ,λp).
Then consider the event

Ac(l1,...,lp) =
{
∀ f ∈ Fd : P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448pγ(lnn) lnG∗(2n,H )

nδ2 +
8t
n

+
8ln(8n+4)

n
+

6
n

}
,
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that holds with probability 1−e−t . Make change of variablest by t +2∑p
j=1 ln l j + pln4 in the last

bound. With this choice, the eventAc(l1,...,lp) can be rewritten as

Ac(l1,...,lp) =
{
∀ f ∈ Fd : P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448pγ(lnn) lnG∗(2n,H )

nδ2 +
8t
n

+
16∑p

j=1 ln l j

n
+

8pln4
n

+
8ln(8n+4)

n
+

6
n

}
,

which holds with probability at least

P(Ac(l1,...,lp)) ≥ 1−∏ 1

l2
j

e−t4−p.

This implies the probability of the intersection

P


 \

l1,...,lp

Ac(l1,...,lp)


≥ 1− ∑

l1,...,lp∈N

∏ 1

l2
j

e−t4−p =

= 1−4−pe−t( ∑
l i∈N

1

l2
i

)p = 1−4−pe−t(1+π2/6)p ≥ 1−e−t ≥ 1−e−t

and∑ ln l j = ∑ ln(| log2 α j |). For fixedp≥ 1 and 1≥ γ ≥ δ > 0 and∀t > 0 with probability at least
1−e−t , the following is true for anyα1, . . . ,αp ∈ ∆, ∑p

i=1 αi ≤ 1, ∆ = {2− j , j = 0,1, . . .} :

P(y f(x) ≤ 0) ≤
(

2Pn(y f(x) ≤ 2δ)+4Pn
(
σ2(c;x) ≥ γ/3

)
+

+
448pγ(lnn) lnG∗(2n,H )

nδ2 +
8t
n

+
16∑p

j=1 ln(| log2 α j |)
n

+
8pln4

n
+

8ln(8n+4)

n
+

6
n

)
.

Next, for a fixedm∈ N, consider the following discretization ofα j = t jm−s, for a fixed a priori
s∈ Z+, andt j ∈ {1,2,3, . . . ,ms}. Therefores+ logmα j ≥ 0.

For anyα j = t jm−s there isl j ∈ Z+, such that

m−l j−1 < α j = t j .m
−s ≤ m−l j .

That iss− l j −1 < logmt j ≤ s− l j , l j ≤ s.
This time we make the change of variablest ′ = t +∑p

j=12ln(s+ logmα j +1)+2pln2 and apply
the bound for thatt ′.

Then e−t ′ = e−t ∑p
j=1

1
(logmt j+1)2 4−p ≤ e−t ∑p

j=1
1

(s−l j+1)2 4−p. Applying union bound trick as
before, shows that for anyt > 0, with probability at least

1−e−t4−p(
s

∑
j=1

1
(s− l j +1)2)p > 1−e−t ,

for anyα j = t jm−s, t j ∈ {1,2,3, . . . ,ms}, j = 1, . . . , p, the following bound holds:

P(y f(x) ≤ 0) ≤
(

2Pn(y f(x) ≤ 2δ)+4Pn
(
σ2(c;x) ≥ γ/3

)
+

+
448pγ(lnn) lnG∗(2n,H )

nδ2 +
8t
n

+
16∑p

j=1 ln(s+ logmα j +1)

n
+

+
16pln2

n
+

8ln(8n+4)

n
+

6
n

)
.
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In order to make the bound uniform for alls, p≥ 1 and 1≥ γ ≥ δ > 0, apply the above inequality

for fixed p∈ N,δ ≤ γ ∈ ∆ = {2−k : k ≥ 1} by replacingt by t ′ = t + ln s2p2π4γ
δ18 and hence replacing

e−t by e−t ′ = e−t δ18
s2p2π4γ , whereδ andγ ∈ ∆ = {2−k : k≥ 1}.

P
[

\

δ,γ,p

{
P(y f(x) ≤ 0) ≤

(
2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2(c;x) ≥ γ/3

)
+

+
448pγ(lnn) lnG∗(2n,H )

nδ2 +
8t
n

+
8ln s2p2π4γ

18δ
n

+
16∑p

j=1 ln(s+ logmα j +1)

n
+

+
16pln2

n
+

8ln(8n+4)

n
+

6
n

)}]

≥ 1− ∑
l∈Z+

2−l 36
2π4 .(∑

k

1
k2)2e−t ≥ 1−e−t ,

where we have applied∑k∈Z+

1
k2 ≤ π2

6 and∑l∈Z+
2−l ≤ 2.

Finally, ∀t > 0 with probability at least 1−e−t , the following is true for alls∈ N,α1, . . . ,αp ∈
∆ =

{
t jm−s,0 < t j ≤ ms, t j ∈ N

}
, p∈ N and 1≥ γ ≥ δ > 0

P(y f(x) ≤ 0) ≤
(

2Pn(y f(x) ≤ 2δ)+4Pn
(
σ2(c;x) ≥ γ/3

)
+

+
1
n

(448pγ(lnn) lnG∗(2n,H )

δ2 +8t +8ln
s2p2π4γ

18δ
+

+ 16
p

∑
j=1

ln(s+ logmα j +1)+16pln2+8ln(8n+4)+6
))

.

From here, by replacings with dlogm( 1
α∗

c
)e in the above inequality, the result (3.12) follows.

5. Conclusions

Here, we showed unified data-dependent generalization bounds for classifiers fromrandomconvex
hulls in the setting of thegeneral problemdefined above. Such classifiers are generated, for example,
by broad classes of algorithms such as SVMs, RBF networks and boosting. The bounds involve
the individual complexities of the classifiers introduced by Koltchinskii and Panchenko (2004),
such as sparsity of weights and weighted variance over clusters. This was achieved by proving a
version of Vapnik’s inequality applied to random classes, that is, a boundfor relative deviations of
frequencies from probabilities for random classes of events (Theorem 1). The results show how
various algorithms fit in a single,general class. Also, it was indicated that algorithms controlling
the individual complexities of the classifiers can produce classifiers with good generalization ability
(see Koltchinskii et al. (2003a); Koltchinskii et al. (2003b); Andonova (2004) for some experimental
results in the setting of various boosting algorithms). Experimental investigations of the above
complexities in the setting of thegeneral problemare desirable.
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Vapnik, V. N., Červonenkis A. Ya.Theory of Pattern Recognition.Nauka, Moscow (in Russian),
1974.

Vapnik, V.Statistical Learning Theory.John Wiley & Sons, New York, 1998.

Vapnik, V.Estimation of Dependencies Based on Empirical Data.SpringerVerlag, New York, 1982.

340


