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Abstract

A unified approach is taken for deriving new generalizatiataddependent bounds for several
classes of algorithms explored in the existing literatuyedifferent approaches. This unified ap-
proach is based on an extension of Vapnik’s inequality forclsses of sets to random classes of
sets - that is, classes depending on the random data, invanader permutation of the data and
possessing the increasing property. Generalization tsoarelderived for convex combinations of
functions from random classes with certain properties.oAtgms, such as SVMs (support vec-
tor machines), boosting with decision stumps, radial basistion networks, some hierarchies of
kernel machines or convex combinations of indicator funriover sets with finite VC dimension,
generate classifier functions that fall into the above eated/Ne also explore the individual com-
plexities of the classifiers, such as sparsity of weightsvagidhted variance over clusters from the
convex combination introduced by Koltchinskii and Pandtwet2004), and show sparsity-type and
cluster-variance-type generalization bounds for randasses.

Keywords: complexities of classifiers, generalization bounds, SVbtjng classifiers, random
classes

1. Introduction

Statistical learning theory explores ways of estimating functional depegdesm a given collec-
tion of data. It, also referred to as the theory of finite samples, doesIgaine priori knowledge
about a problem to be solved. Note that “to control the generalization inrdéimeefvork of this
paradigm, one has to take into account two factors, namely, the quality ohamgtion of given
data by the chosen function and the capacity of the subset of functiemsvihich the approxi-
mating function was chosen” (Vapnik, 1998). Typical measures of thadity of sets of functions
are entropy measures, VC-dimensions anddimensions. Generalization inequalities such as Vap-
nik's inequalities for VC-classes, which assert the generalization qpeaface of learners froffixed
class of functions and take into account the quality of approximation ohgihega by the chosen
function and the capacity of the class of functions, were proven to Halusduilding successful
learning algorithms such as SVMs (Vapnik, 1998).

An extension of Vapnik’s inequality, for VC classes of sets (Vapnik 8 %hthony and Shawe-
Taylor, 1993) and VC-major classes of functions to classes of funcéiaminsfying Dudley’s uniform
entropy conditions, was shown by Panchenko (2002). A class ofifunscF = {f : X — [-1,1]}
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satisfies Dudley’s uniform entropy condition if
/ logY2D(F,u)du < oo,
0

whereD(F,u) denotes Koltchinksii packing numbers defined for example by Dudley)16©
Panchenko (2002). Applications of the inequality were shown in sepagrs (Koltchinskii and
Panchenko, 2002; Koltchinskii et al., 2003a; Koltchinskii and Pankte2004) which explored the
generalization ability of ensemble classification methods, that is, learningthfgerthat combine
several classifiers into new voting classifiers with better performande $Tudy of the convex hull,
con# ), of a given base function clasd has become an important object of study in machine
learning literature” (Koltchinskii and Panchenko, 2004). New measofraglividual complexities

of voting classifiers derived in related work (Koltchinskii et al., 2003alt¢hinskii and Panchenko,
2004; Koltchinskii et al., 2003b) were shown theoretically and experinigiiteplay an important
role in the generalization performance of the classifiers from ctnwf a given base function class
H. In order to do so, the base cla&sis assumed to have Koltchinskii packing numbers satisfying
the following condition

D(H,u) <KMV)u™,

for someV > 0, and whereK depends only oV. “New margin type bounds that are based to
a greater extent on complexity measures of individual classifier funcfions the convex hull,
are more adaptive and more flexible than previously shown bounds” fioéikii and Panchenko,
2004).

Here, we are interested in studying the generalization performance aifdns from a convex
hull of randomclass of functions (random convex hull), that is, the class of learnars isnger
fixed and depends on the data. This is done by deriving a new versivapriik’'s inequality
applied to random classes, that is, a bound for relative deviationsqpfdneies from probabilities
for random classes of events. The proof of the inequality mirrors thefpaf Vapnik's inequality
for non-random classes of sets (see Vapnik et al., 1974; Vapnilg; ¥98hony and Shawe-Taylor,
1993) but with the observation that the symmetrization step of the proof caarbedcout for
random classes of sets. The new version of Vapnik’s inequality is thelredo derive flexible
and adaptive bounds on the generalization errors of learners frmhomaconvex hulls. We exploit
techniques previously used in deriving generalization bounds forexacmmbinations of functions
from non-random classes in (Koltchinskii and Panchenko, 200d)saveral measures of individual
classifier complexities, such as effective dimension, pointwise variancegigtited variance over
clusters, similar to the measures introduced by Koltchinskii and Panch20Rd )

Surprisingly, the idea of studying random convex hulls allows one simultestgd®o prove
generalization results, and incorporate measures of classifier complexitiesbounds, for several
existing algorithms such as SVMs, boosting with decision stumps, radial hagisdn networks
and combinations of indicator functions over sets with finite VC dimension. Is @oteworthy
that an extension on the VC theory of statistical learning to data depernuer@ssof classifiers was
recently found by Cannon et al., 2002, who defined a measure of coitydiexdata dependent
hypothesis classes and provide data dependent versions of bouadsiodeviance and estimation
error.

308



GENERALIZATION BOUNDS AND COMPLEXITIES

2. Definition of Random Classes

First, an inequality that concerns the uniform relative deviation over doranclass of events of
relative frequencies from probabilities is exhibited. This inequality is ameiae of the following
Vapnik’s inequality for a fixed VC-clasg (with finite VC-dimensiorV) of sets (see Vapnik et al.
(1974); Vapnik (1998); Anthony and Shawe-Taylor (1993)):

n

OB CO) s <)

Inequality (2.1) allows one to prove stronger generalization results f@raleproblems dis-
cussed in (Vapnik, 1998). In order to extend the above inequality tmramthsses of sets, we intro-
duce the following definitions. L&tZ,.S,[P) be a probability space. For a samplg,...,z,}, z €
Z,i=1,...,n,definez" = (z,...,zy) and letl (Z") = {z : 1 <i < n}. Let C(Z") € S be a class of
sets, possibly dependent on the sanile (z,...,z,) € Z".

The integerd ) (2") is defined to be the number of distinct sets of the fakm1(z"), whereA
runs throughC(2"), that is,Ap») (2") = card{AN{z,...,z},A€ C(Z")} . The random collection

of level setsC(2") = {A: {z€ Z:h(z) <0},he H(z, .. .,zn)}, where#(2") is a random class

of functions possibly depending ahserves as a useful example. We &g\ | (Z") a representation
of the sample” by the sefA. Aq»)(2") is the number of different representation{at, . .., z,} by
functions from#{ (2").

Now consider the random collectia(Z") of S-measurable subsets &f

P”(sup (2.1)

CeC

C(Z")={A:Ac S},

having the following properties:

1) C(z”)QC<z”Uy>,z”eZ”,yeZ 2.2)

(the incremental properjy

2) Clzrtays+ 2um) = C(21, . 70), (2.3)

for any permutatiomof {z,...,z,} (the permutation properjy

The relative frequency ok € C(Z") onZ" = (z,...,z,) € Z" is defined to be
1 . 1
Pa(A) = ﬁ|{| 1z €A = n 1(Z) A,
where|A| denotes the cardinality of a sét
Let P" be the product measure arcopies of(Z,.$,P), andE, the expectation with respect to

P". Define
G(n) = EnAC(z“) (Zn)
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3. Main Results

Given the above definitions, the following theorem holds.

Theorem 1 Forany t> 0,

. P(A) — Pr(A) w2
Pn ZnEZn. S — 7 S 2>ty <4G(2n)e 1. 34
{ Ry e } <46(2n) (3.4)

The proof of this theorem is given in the following Section 4. Observe thitefrandom col-
lection C of sets is a VC-class (Vapnik, 1998), then the inequality (3.4) is the sama@mgké
inequality (2.1) for VC-classes. Based on this theorem and the abovitioes, several results on
the generalization performance and the complexity of classifiers frononacthsses are exhibited
below.

The following notation and definitions will be used from here on. (&{4) be a measurable
space (space of instances) and tgke- {—1,1} to be the set of labels. Lé be the probabil-
ity measure on(X x 9,4 x 2{-31}) and let(X,Y),i = 1,...,n be i.i.d random pairs ix x 9,
randomly sampled with respect to the distributBof a random variabléX,Y). The probability
measure on the main sample space on which all of the random variablegineel aéll be denoted
by P. LetZz=Xx9,Z = (X,Y;),i=1,...,nandZ" = (Z,...,Z,). We will also define several
random classes of functions and show how several learning algoritanesage functions from the
convex hulls of random classes.

Consider the following four problems for which bounds on the generalizatioors will be
shown using inequality (3.4).

Problem 1. Support vector machine (SVM) classifiers with uniformly bounded kerne

Consider any solution of an SVM algorithfi{x) = S 1 AiYK(X;,X), whereK(.,.) : X x X —
[0,1] is the kernel and; > 0. sign(f(x)) is used to classifx € X in class+1 or —1. Take the
random function class

H(Z™) = {YiK(X,x) :i=1,...,n},

which depends on the random sampfec Z". The classifier function

n)“)\_, i=1...,
ZJ:l |

belongs to cony# (Z")) and the probability of erraP(Y f(X) < 0) =P(Y f'(X) <0).

Problem 2. Classifiers, built by some two-level component based hierarchieghdf $Heisele
et al. (2001);Andonova (2004)) or kernel-based classifiers (likkeathe produced by radial basis
function (RBF) networks).

We explore component based hierarchies, such that the first levet dfigharchy is formed
by SVM classifiers (with kerneK) built on each component (formed for example by projecting
of the input spacex C R™ of instances onto subspacef, | < m) and the second level of the
hierarchy is a linear combination of the real-valued outputs on each contpoh#re classifier
functions from the first level (for example, applying SVM with linear kérmeboosting methods
on the output from the first level). In our formulation, the components ohiberchy can depend
on the training data (for example, found through dimensionality reductiomitiges, such as self-
organizing maps (SOM, Kohonen (1990))). The type of the hierarthiaasifier functions are of

n

f/(x) —_ihi’\ﬁK%X), A=
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GENERALIZATION BOUNDS AND COMPLEXITIES

this form sigr f (x)), where
d n
f(x,0,Q,w,) = Z Z al YK (QiX;, QIx),Y = +1,

whereQ! are the projections of the instances (determining the “componetnl%’é),R,O(ij >0.0ne
can conside@’ being nonlinear transformation of the instance space, for example appiyang
functions. LefK(x,t)| < 1,¥x,t € X. Consider the random function class

}[(Xla"-vxn) = {iK(QJXhQJ)Q i S n7j = 17"'7d}7

wheren is the number of training poin{s<,Y;) andd is the number of the components.
In the case of RBF networks with one hidden layer and a linear thresheldlabsifier function
is of the form

d A
= Zli;cx'jKoj (Gi,X)

wherec;,i =1,...,Aare centers of clusters, formed by clustering the training piis .., X,} and
oj (they can depend on the training d&¥4.Y;),i = 1,...,n) are different widths for the Gaussian

=12

kernel,Kq,(ci,x) =e ° . Consider the following random function class
}[(Zn) = {:l:Koj(Ci,X) i< ﬁ?] < d}a

wherenis the number of clusters, which is bounded by the nunmbef training points, and the
cluster centergc; }i' ; depend on the training instancgs }* ;

Without loss of generallty, we can considee conv(}[(Z”)) in both of the above described
algorithms, after normalizing the classifier function with the sum of the abscllites of the coef-
ficients in front of the random functions.

Problem 3. Boosting over decision stumps.

Given a finite set ofd functions{h; : X x X — [—1,1]} for i < d, define the random class
of asH (Xq,...,%n) = {hi(Xj,x) : j < n,i <d}, wheren is the number of training pointsx;,Y;).
This type of random class is used for example in aggregating combinedieldsg boosting over
decision stumps. Indeed, decision stumps are simple classfiiets, the types 2(x < a) —1
or 21(x > a)— 1, wherei € {1,...,m} is the direction of splitting X ¢ R™ anda c R is the
threshold. It is clear that the threshadcan be chosen amor)q,...,x,i1 (the performance of the
stump will remain the same on the training data). In this case,hgkg, x) = 2| (X' < in) —1or
hi(Xj,%) = 21 (x > X1) — L and#{ (Xq, ..., %) = {h (X}, %), hi(X;,X) 1 ] <n,i < m} and taked = 2m,

Without loss of generality, we can considee conv(#H (X, ..., %)), after normalizing with
the sum of the absolute values of the coefficients.

Problem 4. VC-classes of sets.

Let the random class of functior®$(Z") has the property that for aii € #(Z"), he {-1,1}
the VC dimensiorV of the class of set§{x € X : h(x) = 1},h € #(Z")} is finite.

A classifier is formed by taking convex combinations of functions from thesct&(Z"). Prob-
lem 4, in the case when the clagsis not depending on the random samgle was approached
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before with the previously existing VC-inequalities for indicator functionapiMk, 1998; Vapnik
et al., 1968). The results shown here for Problem 4 in the case wheéna random class, are
comparable to those derived before for indicators over class of setéinifethvVC dimension.

In genera) all of the above four types of problems, consider the convex combirsadibfunc-
tions from the random convex hull

F(Z") = conv(H(Z") = | ) F(2"),
TeN
Fr(Z") = {ZLahihi N > 0,50 A = Ly € #(2")}, (3.5)

where# (Z") is for example one of the random classes defined above, such that|itt&l) | =
card(#H(Z")) is finite, or H(Z") is a collection of indicators over random class of sets with finite
VC-dimension.

General problem:

We are interested is the following general problem:

Let AH be a general-base class of uniformly bounded functions with valuésinl]. Let
Z1,...,20,Z = (X%,Yi) € X x 9 be i.i.d. (training data) sampled with respect to the distribution
[P. Assume that based on the d&g...,Z, one selects a class of functiort§(Z") C A that is
either

i) with finite cardinalitydepending on the data, such that

In(supln\ﬂr-][(zn)\)lnn L 0forn— o, OF

ii) H(Z") C #H is a collection of indicator function&Ic —1:C € (zn} over a class of setzn
with finite VC-dimension V

We will call # (Z") arandom-base classf functions. We are interested in studying the gen-
eralization errors for classifier functiorfse conv(# (Z")) that are produced by broad classes of
algorithms. Let us take

G'(n,#H)=_sup [H(Z")],

Zne(Xx )

when A is the general-base class and the random-base cl#5&&5 are with finite cardinality
H(Z"), and take
N ne\V
e =(F) -
when# is the general-base and the random-base cla&g$&8) are collections of indicators over
class of sets with finite VC-dimensidh(Problem 4).

From the definitions and Problems 1, 2 and 3, it is clear@i&nh, #) < 2n for Problem 1 and
G*(n,H) < 2nd for Problems 2 and 3. For completeness of the results in cagg(Zf') being a
collection of indicators over class of sets with finite VC-dimensignve will assume that > Zle

Following the notation by Koltchinskii and Panchenko (2004)#¢é#(Z")) be the collection
of all discrete distributions over the random-base clag¥"). Let A € P(H(Z")) and f(x) =
Jh(x)A(dh), which is equivalent tof € con(H(Z")). The generalization error of any classifier
function is defined as

P(sign(f(x)) #y) = P(yf(x) < 0) =E(l(yf(x) < 0)).
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Given an i.i.d sampléX,Y;),i = 1,...n from the distributionP, let P, denote the empirical distri-
bution and for any measurable functigon X x 9, let

IP>g:/g(><,y)dIP>(><,y), Png—%ig(m,\ﬁ)-

The first bound we show for the generalization errors of functionms flandom classes of functions
is the following:

Theorem 2 Let A be a general-base class of functions. For any 0, with probability at least
1—et, for any nii.d. random pairgXy,Y1),...,(Xs,Yn) randomly drawn with respect to the
distributionP, for all A € P(H (Z")) and f(x) = [h(x)A(dh),

P(yf(x) <0) < inf (u%+(1@( f(x)<26)+}+U)%)2+} (3.6)
y = _0<5§1 ny = n na .

where

U= % <t+|n%+ %lne*(zn,ﬂ)ﬂn(snw)) .
The proof of this theorem is given in Section 4. It is based on randomoajppation of a function
and Hoeffdingéernoff inequality as in (Koltchinskii and Panchenko, 2004), explditiegroperties

of random class of the level sets of the margins of the approximating fusctiefined in the proof
and Inequality (3.4).

The first result for the generalization error of classifiers from €@y where # is a fixed
VC-class, was achieved by Schapire et al. (1998). They explainededheralization ability of
classifiers from con\#{) in terms of the empirical distributiofi,(y f(x) < &), f € con#) of the
quantityy f(x), known in the literature asargin (“confidence” of prediction of the example x) and
proposed several boosting algorithms that are built on the idea of maximizmgetgin. Important
properties, development, improvements and optimality of the generalizatidtsrekthis type for
broader fixed classes of functiof§were shown by Koltchinskii and Panchenko (2004). The bound
on the generalization error shown here is valid for random classescidas and is not optimized
for convergence with respectio Here, we have a different goal: to prove generalization results for
random classes of functions that relate to broader classes of algorExpisring the optimality of
this result remains an open question.

In the rest of the paper, we will explore the individual complexity of classific conu #),
following the line of investigation begun by Koltchinskii and Panchenko 20@Ve will explore
the structure of theandom convex hukhnd show bounds similar to the ones by Koltchinskii and
Panchenko (2004) that reflect some measures of complexity of coovexications.

First, we explore how the sparsity of the weights of a function from a nandonvex hull
influences the generalization performance of the convex combinatiog, kéeall from Koltchinskii
and Panchenko (2004), by sparsity of the weights in convex combinatiermean rapidity of
decrease. Fa¥ > 0 andf(x) = ZiTzl?\ihi (X),3iAi = 1,A; > 0, let us define thelimensiorfunction
by

T 8inn
en(f,d) = (T—Z(l—)\k)52>. (3.7)

k=1
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Figure 1: Dimension Function; From top to bottom: equal,polynomial, exponeatecdy; the x-
axis is9, the y-axis is dimension function value.

The name of this function is motivated by the fact that it can be interpretedimsemsion of
a subset of the random convex hull cofi() containing a function approximating“well enough”
(Koltchinskii and Panchenko, 2004). In a way, the dimension functiorsarea the sparsity of the
weights in the convex combinatioh We plot the dimension function (see Fig. 1) in the cases
whenT = 100,n = 1000 and the weight$)\i}iT:1 are equal, polynomially decreasing; & i~2)
and exponentially decreasin; (= €~'+1)). One can see in Fig. 1 that when the weights decrease
faster, the dimension function values are uniformly smaller with respectt@, 1. (For different
sparsity measures of voting classifiers from convex hulls of VC-majosetasee (Koltchinskii et
al. (2003a); Koltchinskii and Panchenko (2004); Andonova (2004)

Theorem 3 (Sparsity bound) For anyt 0, with probability at leastL — e, for any ni.i.d. random
pairs (X1,Y1),..., (X, Yn) randomly drawn with respect to the distributi@for all A € P(H(Z"))
and f(x) = S1_; Aihi(x),

1 2 1
PYf(0 <0) < inf (UM (Balyf( <28)+U+2)M2) "+ (3.8)

where

U= %(t+|ng+en(f,6)InG*(2n,ﬂ{)+aq(f,6)ln(§Inn)+|n(8n+4)).
The proof of this theorem is also shown in Section 4. It is based on raagpnoximation of func-
tions similarly to the proof of Theorem 2, Hoeffdir@ernoff inequality, properties of conditional

expectation, exploring the capacity of random class of the level sets ofidhgins of the approx-
imating functions and Inequality (3.4). The constants are explicit. For mgpgrignental results,
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showing the behavior of the above bound in the case of convex combisatiatecision stumps,
such as those produced by various boosting algorithms (see Anddt®A4),. There, it is shown
experimentally that the sparsity bound is indicative of the generalizatioorpesthce of a classifier
from the convex hull of stumps. For further results and new algorithms,inglizarious notions of
sparsity of the weight of convex combinations (see Koltchinskii et al., 2D0® the case of hard
margin SVM classifiers (x) = S, AiK(X;,x) with uniformly bounded kernels, the bound with
margind becomes of order

min(T,852Inn)
n

P(yf(x) <0) < Ins,
because
en(f,8) < min(T,85 2Inn).

The inequality fore,( f,d) follows from the inequality1—A)P > 1— pA for A € [0,1] andp > 1,
and the fact thay|_, \¢ < 1.

This zero-error bound is comparable to the compression bound (Littlestahé/armuth, 1986)
of order%ln 2. and the bounds of Bartlett and Shawe-Taylor (1999), whkre % In?n and
R<1incase oK(x,y) < 1. WhenT < nthe bound in (3.8) is an improvement of the last bound.
For exampleT <« nwhen SVMs produce very “sparse” solutions (small number of sumeetors),
that is, the vector of weightf\1,...,AT) is sparse. The sparseness (in the sense of there being a
small number of support vectors) of the solutions of SVMs was recentjoeed by Steinwart
(2003), where lower bounds (of ordén)) on the numbel of support vectors for specific types
of kernels were shown; in those cases, the bound in (3.8), relaxed tppiee bound 0&,(f,d) <
min(T,85~2Inn), is probably not a significant improvement of the result of Bartlett andvBha
Taylor (1999). The sparsity of weights of the solutions of SVMs, urtdesas rapidity of decrease
of weights, is in need of further exploration, as it would provide better inmsigo the bound (3.8)
of the generalizations error.

We now notice also that, becausg f,8) < min(T,85 ?Inn) andG*(n, #) < 2n for Problem
1 andG*(n, #) < 2nd for Problems 2, 3 an@*(n, #) = (%E)V , the bound (3.8) is extension of the
results of Breiman (1999) for zero-error case, and is similar in nature t@#ult of Koltchinskii and
Panchenko (2004) and Koltchinskii et al. (2003b), but now holdingédodomclasses of functions.

Motivations for considering different bounds on the generalizatioor exfr classifiers that take
into account measures of closeness of random functions in convexreatiohs and their clustering
properties were given by Koltchinskii and Panchenko (2004). We mawew those complexities
and show bounds on the generalization error, that are similar to the comengdoy Koltchinskii
and Panchenko (2004), but applied for different classes of fumtidhe proofs of the results are
similar to those exhibited by Koltchinskii and Panchenko (2004).

Recall that a pointwise variance bfwith respect to the distributioh € P(#(Z")) is defined

by
02 (x) = / (h9 - / h(X)A(d h))z)\(d h, (3.9)

where,02(x) = 0 if and only if hy(x) = hp(x) for all hy,h, € #(Z") (Koltchinskii and Panchenko,
2004). The following theorem holds:

Theorem 4 For any t> O with probability at leastL— e, for any ni.i.d. random pairéxy,Y1),..., (Xn, Yn)
randomly drawn with respect to the distributinfor all A € P(H(Z")) and f(x) = [ h(x)A(dh),
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P(yf(x) <0) < inf (ZIP’n(yf(x) < 28) 4 4Pn(05(X) > 2) +

0<d<y<1
8 ( 56y . 2y) 6
= (W(Inn)lnG (2n, H) +In(8n+4) +t+In 6> + n)' (3.10)

wi<<

+

The proof is given in Section 4. This time, the proof incorporates randmmoaimations of the
classifier function and its variance, Bernstein’s inequality as in (Koltcliinakl Panchenko, 2004),
exploring the capacity of random class of the level sets of the margins apgiveximating functions
and Inequality (3.4).

This result is an improvement of the above margin-bound in the case thattgh@antwise
variance is small, that is, the classifier functidnsn the convex combinatiorh are close to each
other. The constants in the bound are explicit. From the Remark of ThebneiiKoltchinskii and
Panchenko, 2004) and the above inequality (3.10), one can see thamhlinyIPnci might provide
a complexity penalty in thgeneral clas®f problems defined above.

A result that improves inequality (3.10) by exploring the clustering propedfehe convex
combination from aandomconvex hull will now be shown.

GivenA € P(H(Z")) and f(x) = [ h(x)A(dh), represent as

—

0 (i)
f=Sa; 5Alh
; klk K

with 3,0 = 1,T < w,hl!) € 7(2").

Consider an elemert € CP(M), that is, ¢ = (ay,...,0p,AL,...,AP), such thataj € A(m) =
{tkm*",ke Nt € {1,2,3,...,mk}}, meN,A=3P oA, and\' € P(H(Z")),i =1,...,p. De-
note byag = minicgy . p O, where {ai}ip:l are called the cluster weightsc is interpreted as

a decomposition ok into p clusters as in (Koltchinskii and Panchenko, 2004). For an element
ce CP(N), aweighted variance over clusters is defined by

0%(C;x) = i afo2i(x), (3.11)
=1

whereofk(x) are defined in (3.9). One can see in Fig. 2 that when the number of thersluste
increases, the weighted variance over clusters uniformly decredsts (s the left). If there are

p small clusters among functiotns, ..., hr, then one should be able to choose elenwentCP(A)

so thato?(c; x) will be small on the majority of data poind, . .., X, (Koltchinskii and Panchenko,
2004). The following theorem holds:

Theorem 5 For any me N, for any t> 0 with probability at leastl — e, the following is true for
any n i.i.d. random pairgXs,Y1),...,(Xn, Yn) randomly drawn with respect to the distributid

forany p> 1, ce CP(A), A = 3P aiAl € P(#(ZM)), such thatay, ..., ap € A(m) with 30 < 1

and f(x) = [h(x)A(dh)
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P(yf(x) <0) < inf (ZJP’n(yf(x) < 20) +4IP’n(02(c; X) >vy/3)+

0<o<y<1
+ §(56 l(lnn)lnG*(Zn H)+In(Bn+4)+2 : In{ lo ﬂJrl +
0\ P 7 le gmaé
1 p’riyy 6

The proof is given in the following Section 4. Here, the proof incorparat®re sophisticated
random approximations of the classifier function and its weighted variarrelusters, Bernstein’s
inequality as in (Koltchinskii and Panchenko, 2004), exploring the égpattrandom class of the
level sets of the margins of the approximating functions and Inequality (Bt above bound can
be simplified in the following way:

P(yf(x) < 0) < inf (2[P’n(yf(x) < 28) 4 4P, (0%(c;x) > y/3) +
0<d<y<1

+ 2 (56p6—y2 (Inn)InG*(2n, H) +1In(8n+4) +

18

Define the numbep), (m,n,y,8) of (y,d)-clusters ofA as the smallegp, for which there exists
ce CAp such that (Koltchinskii and Panchenko, 2004)
Y

Pn(0?(c;x) > y) < 56p 5 (Inn)InG"(2n, 7).

2
+ 2(p+1)in (logma_];+1> +2pn2+t+in L T‘AV)).
C
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Recall thatG*(n,#) < 2n for Problem 1 and>*(n, #) < 2nd for Problems 2, 3 an@®*(n, H) =

(”ve)v Then the above simplified bound implies that foriak= $P , aiAl € P(#£(Z")), such that
ai,...,0p € A(m) with 5 a; <1,

. A Y %
P <0) <K inf (B(yf(<8) + Pa(mny.8) g (nn)inG (2n, 50)
In (log, = +1
+ ﬁ)\(ma n,y, 6) ( nac ) ) .

Observe that iy = 9, then

(Inn)InG*(2n, #)
nd

In (Iogm o+ 1)
n )

Byf() <0) <K(Ba(yf() <8) + Pr(mn.33)

+ p\)\(ma n, 67 6)

The above bound is an improvement of the previous bounds in the casetidre is a small
numberp, of clusters so that the resulting weighted variance over clusters is smalbravided
that the minimum of the cluster weight$ is not too small. The bounds shown above are similar in
nature to the bounds by Koltchinskii and Panchenko (2004) for blasses? satisfying a general
entropy condition. The advantages of the current results are that tbegpplicable for random
classes of functions. The bounds derived here are with explicit aasst&or more information
regarding the empirical performance of the bounds and the complexities raieeof boosting
with stumps and decision trees (see Koltchinskii et al., 2003b; Andon6@4,)2There, it is shown
experimentally that generalization bounds based on weighted variancelosters and margin
capture the generalization performance of classifiers produced byas®oosting algorithms over
decision stumps. Our goal here is to show theoretically the impact of the caigpkxns on the
generalization performance of functions from random convex hullgsiwthappen to capture well
known algorithms such as SVMs. More experimental evidences are chée@xplore the above
complexities in the setting of thgeneral problendefined here.

4. Proofs
First we will prove the following lemma that will be used in the proof of Theofem

Lemma 6 For n large enough, if X is a random variable with value§h 1}, P(X=1)=p, p€
[%, 1] and X, ..., X, are independent random realizations of X (Bernoulli trials), then

l n
P(=SX>p]|>
n i;
Sketch of the Proof of Lemma 6
We want to prove that
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Observe that i"=2 < p < 1, thenn > np>n—1 and the inequality becomes > (=L ) > 1,
which is true fom > 2.
Assume thap < ”;nl The proof of the inequality in this case relies on Poisson and Gaussian

approximation to binomial distribution. L&, = 51! ; X andZ, = % Notice that

p(13500) -pisomm -pa0

We want to show that there i, such that for any > ng the following is true for anyp € [%, 1- 1]

n
1 n
Pl = P > >
( n;x > p) >
From the Poisson-Verteilung approximation theorem, (see Borowkog, T9igorem 7, chapter
5, page 85) it follows that

N

s W2
P&Gzw= ) Set——,

k;p kl n
wherep = np > 2. From the properties of the Poisson cumulative distribution fund&oxp) =
et ZZJO %’ one can see that1F (x|p) > 1—F(2]|2) > 0.32 forx < pandu > 2. Therefore,

5 5

PS> W >1-F( - >0382- " = 0.32—np?.
Now, from the Berry-Essen Theorem (see Feller, 1966, chapter XVI, page 515) one cae der

that
33  E(XX-EX)? _33 PP+ (1-p? p)
4 \/n (X—EX)2)3 4 . /np(1-p)
Therefore,P(Z, > 0) > 0.5— 33 CPHAP? The goal is to findny such that for anyr > ny and

np(1-p)
pe [2,1- 1] the following is true:

IP(Zh > 0)-0.5| <

33 PP+(1-p? 1
max{0.32— np?,0.5— 7 m } > 2

Let x = np?. One can see that the first ternBR— np? = 0.32— x is decreasing with respect 0

and the second term®- 33 i 3. _P+A-P” 5 increasing with respect to The
np(1-p) (1-p)(nx)4

solutionx(n) of the equation
33 x/n+(1-x/n)?

0.32—x=05——
(1— x/n) (nx)fll

4

is decreasing with respect toand therefore one can fing, such that fom > ng the inequality
0.32—x(n) > 0.25 is true.

319



ANDONOVA

Remark: A shorter proof could be achieved if one directly shows thatfer |2, 1],

A stronger version of the above inequality for apyandn was used in (Vapnik (1998), page

133); however, a reference to a proof of this inequality appearsmilyrto be unavailable.
O

Proof of Theorem 1

The proof of Inequality (3.4) for random collection of sets of Theorerolbbws the three
main steps - Symmetrization, Randomization and Tail Inequality (see VapniB);1Q8thony and
Shawe-Taylor (1993)). The difference with other approaches iglibatymmetrization step of the
proof is carried out for random classes invariant under permutatfitam,ane combines the training
set with a ghost sample and uses the incremental property of the randesn &late that sym-
metrization for a random subset under similar incremental and permutatiparfies was proved
for the “standard” Vapnik’s inequality by Gat (1999) (bounding thechlite deviation).

Lett > O be fixed. Assume that> 2/t2, otherwise ifn < 2/t2, then 4exp"*/4 > 1; nothing
more need be proved.

Denote the set

_1 .
A= {x:(xl,...7xn)€Z”: sup PO 526 €C) zt}.

CeC(x) P(C)
Assume there exist a s, such that

P(C)—33 1 €C) _
P(Cx) B

t. (4.13)

ThenP(Cy) > t2. We have assumed thet> 2, thereforeP(C,) > 2.

Letx = (x},...,X,) be independent copy of= (x1,...,X,). It can be observed (see Lemma
6 and Anthony and Shawe-Taylor (1993), Theorem 2.1) that $hiCg) = E(I(y € Cx)) > % then
with probability at least 14

P(C)< Y 10X eCy). (4.14)

From the assumption (4.13) and (4.14), then si@% is a monotone and increasing function in
x> 0 (a> 0), we have that

P(Cx) — 23 1(% €Cy)
B(Cy)
P(C) — 3316 €Cy)
VARG +E31(% €Cy)
31X eC)-15I(xeC)
VEESIKeC)+131(xeC)

O<t

<
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From (4.14) and the above inequality,

Hixen) <P (RIS IKEC) ke A)

<PX< 15104 €G)~ 15106 £y >t)
VAESIKeC)+E31(x €Cy)

1 / 1 .
<py [ sup 231X eC)—=351(x€C) >t
cecto /435 1(€C)+131(% €C))

Taking the expectatioRiy of both sides,

PX<SUP P(C)—%zilgmec>2t>§

CeC(x) P(C

il 15 (x
< 4Py y ( sup %. I €C)—+3il(x €C) . t)
n )

(using increasing property)

ls.(x 1 ((x
<4Py, | sup 1Sil(XeC)—13il(x €C) .
CeC(xX) \/:—ZL(% Zil(xi/ 6C)+%Zi|(xi €C))

(using permutation property)

1s e(l1(x < (e
—ape. | sup 2 EUKECIHIEC)
CeC(xx) \/%(%ziloq €C)+151(x €C))

(using Hoeffding-Azuma’s inequality)

. nt?
< 4K (AC(X7X') <X17 e 7Xn7X€L7 vee 7X:’])exp ( Zi(li*li,)z ) )
A5

: nt?
< 4EX,X/ <AC(X7X’) (X]_, e ,Xn,Xll, e ,x’n)exp<—7> )

= 4G(2n) exp(—n?tz> .

Here the increasing (2.2) and permutation (2.3) properties of the randbect®on of sets have
been used .

The following lemma will be useful in the proofs of Theorems 2, 3, 4 and 5.
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Lemma?7 LetZ,...,Z, be ni.i.d. random variables randomly drawn with respect to the distribu-
tionP, Z = (X,Y;) € X x 9. Let

Guk(Z") ={C:C={(xy) € X x 7 :yg(x) <8}, g€ Gnk(Z"),d€[0,1]},

where
gN,k(Z”):{ NElk.h 2),he H(Z"),1<k <N-— k+1k.eN},N,keN

and # (Z") is a random-base class from the general problem. Then
G(n) = Enbgyy(z0 (Z") < min ((n-+ 1) (N —k+1)4(G"(n, 7)), 2") .

If k=N, thenk; = 1 andGnn(Z") = {9:9(2) = & 31 hi(2),h € #(Z")}, whereN € N. In this
case, itis clear thab(n) = EnA, zn) (2") < mln((n+l)(G*(n,}[))N,2”).

Proof.
Following the notation we have to prove thatAf(Z") is with finite cardinalityH (Z"), then

G(n) = Enlgyy(zn) (Z") < min ((n+ 1)(N—k+1)*E, (H (zn)k> 72n)

and if #(Z") is a collection of indicators from the general problem, then
. ne
G(n) = Enlg, zn (Z") < min ((n+ 1)(N —k+ 1)K (v ) ,2”) .

First, let# (Z") be with finite cardinalityH (Z"). Then
cardGn k(Z") < (N —k+1)*H(ZMK,

because for eaae Gy k(Z") there arek different functiondy, € H(Z") participating in the convex
combination and the integer coefficieri(se {1,...,N —k+ 1}. Also, for fixedg € Gnk(Z"), it
follows that

card{{yg ) <8z z},8€ 1,1} < (n+1).
<.

(This is clear after re-orderingg(X1),...,Ya0(Xn) — Yi;9(X,)
values ofd € {Y,,9(X,),...,Yi,0(X,),1}.) Therefore

<Y;,9(X,) and taking for

G(n) =Enlgyy(zn) (Z7) < min ((n+ 1)(N— k+ DKEH (Zn)k,zn) <

< min ((n+ 1)(N —k+1)%(G*(n, }[))k,zn) .

Next, let #(Z") be a collection of indicators over class of sets with finite VC-dimen$ion
Then, for fixed® € [0, 1], the number of possible representationgif . . ., Z,) by the clasgi k(Z",0) =
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{C:C={(xy) € X x 9 :yg(X) <8}, g€ Gnk(Z"} is bounded byN —k+ 1)k (%E)Vk. Similarly
to the previous case, for fixepe Gnk(Z"),

card{{yg <8}z, 2}, 8€ [0, 1}} (n+1),
and therefore

G() = Eng 20 (2°) < min <(n+ HIN-—k+1¥(7) k,zn) _

— min <(n+ 1)(N —k+ DK(G*(n, y{))k,zn) .

O
Next, the proofs of Theorem 2,3, 4 and 5 are shown. They follow clabeyproofs given by
Koltchinskii and Panchenko (2004) and Koltchinskii et al. (2003byiam random classes of func-
tions. We adjust the proofs to hold for random classes of functions img uisequality 3.4 from
Theorem 1.

Define the function 5
gab) =2 i@z )

that is convex foma > 0 and increasing with respect&pdecreasing with respect o

Proof of Theorem 2.

LetZ; = (X1,Y1),...,Zn = (X, Yn) be i.i.d samples randomly drawn with respect to the distri-
butionP. Let us first fixd € (0,1] and letf = S}_; Achx € conM(#(Z")) be any function from the
convex hull of #(Z"), where# (Z") is the random-base class defined in the general problem.
Given N > 1, generate i.i.d sequence of functiobs...,§y according to the distribution =
(A1,.., A7), P (& =hy) =Acfork=1,..., T and§; are independent df( X, Yi) }r_;. ThenEg&;(x) =
Stoa Achi().

Consider a function

1N
X) =N k;ﬁk(X)
which plays the role of a random approximationfah the following sense:
P <0)  =P(yf(x)<0ygx) <3)+P(yf(x) <0ygx) >3)
< P(yg(x) < 8) +ExyPg (Egyg(x) < 0,yg(x) > 3)
(

J
< P(yg(x 6) + ExyPe ( yo(X) — Egyg(x) > 6)
)

) <
) <
N
P(yg(X) <8) +ExyPs (kz (Y&i (X) — YEg&i(x)) > N6>
2

—Nb&
< P(yg) < 8) +exp(——). (4.15)
where in the last step is applied Hoeffdi@grnoff inequality. Then,

P(yf(x) <0) <P(yg(x) <) +exp(~N&?/2). (4.16)
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Similarly to the above inequality, one can derive that,
E¢Pn (yg(x) < 5) <P, (yf(x) < 26> +exp(—N&2/2). (4.17)
For any random realization of the sequeige .., &y, the random functiomg belongs to the class

Gu(@) = {F3Nhie) by e 32 ).
Consider the random collection of level sets for fixéd N,

@) ={c={(xy exx7:yg <8}.ge Gu(). 8¢ (0.1]}.

Clearly C(Z") satisfies conditions (2.2) and (2.3). In order to apply the inequality forgahdam
collection of sets (3.4), one has to estim@m) = E"Arzn)(Z"). By Lemma 7 it follows that
G(n) < (G*(n,H))N(n+1).

From this and Theorem 1, we have

P(C)—isM . I(X eC n
P"( sup (©)-55ml(%€C) >t] < 4G(2n)e*%2 <
Cec(zn) P(C)

N

2

< 4G 2nH)N (2n+1)e T =e Y,

where a change of variablés= \/‘ﬁ‘(u+NIn(G*(2n, H))+In(8n+4)) is made. So, for a fixed
0 € (0,1], for anyu > 0 with probability at least + e™Y, it follows that

P(yg(x) <8)— 251 1(Yig(X) <9)
P(yg(x) <)

The functiong(a, b),a > 0 is convex. Therefore,

< \/%(quNln(G*(Zn,}[))+In(8n+4)). (4.18)

Ee@(P(ya(x) < ), Pa(ya(x) < 8)) > 0 EcP(va(X) < 8), EePa(yg(x) < ).

Based on the monotonic properties@#f, b) and inequalities (4.16) and (4.17), it is obtained that
for anyd € (0, 1], for anyu > 0 with probability at least + e,

cp(xp(yf(x) < 0) — exp(—N&2/2), Ba(yf(x) < 25+ exp(—N62/2))> <

< %(u+NIn(G*(2n,}[))+In(8n+4)). (4.19)

ChooseN = 25" such that exp-N&?/2) = 1. Take

U= % <u+% In(G*(2n, #)) +In(8n+4)) .

Solving the above inequality with respectiy f(x) < 0), it follows that

2
P(yf(x) < 0) < <\Fu+\/ n(yf(x)§26)+%+u> +%.
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In order to make the bound uniform with respecdta (0, 1], we apply standard union bound
techniques (Koltchinskii and Panchenko, 2004). First, we prove tifiermity for 5 A= {27 K k=
0,1,..... }+. Apply the above inequality for fixed € A by replacingu by u+ In% and hencee™
replaced by3e~. Denote

0= 1 (w2 25 G @) inen+4)).

Then

v

2
1 1
Pl {Eyfx) <0)< [ VU +/Pu f()§26)+—+U’> 4=
ez (o zan L) )

Now, in order to make the bound for adye (0,1], observe that i € (0,1] then there ik €
Zy, 27 K1<dg< 27K
Therefore, if the above bound holds for fixagle (0, 1], then
Pa(y f(x) < &) < Po (yF(x) <27)

and 5
1/83 < 2242 In 5 < In2+2,

So, changing the constants in the bound, denote

1 4 8lInn .
U= - <t+ln(—3+7In(G (2n,}[))+ln(8n+4)>.

It follows that, for anyt > 0 with probability at least & e for anyd € (0, 1], the following holds:

2
P(yf(x) <0) < (\/U+\/]P’n(yf(x) < 26)+%+U> +%

Thus, the Theorem 2 and inequality (3.6) hold.

Now, theproof of Sparsity bound of Theorem 3will be shown.

DenoteA = {27 : k> 1} andz= (x,y), Z" = ((Xl,Yl), " (Xn,Yn)>.
Let us fix f(x) = S1_; Akhk(X) € cony(H(Z")). GivenN > 1, generate an i.i.d. sequence of func-
tions&y, ..., &y according to the distributiofis (& (X) = hk(Xx)) =Akfork=1,..., T and independent
of {(X,Yi)}L,. Clearly,E¢&;(x) = 3 k_1 Mhi(X). Consider the function
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which plays the role of a random approximationfaindE;g(x) = f(x). One can write,

P <0) = EgP(yf(x) <0ygx) <3)+EeP(yf(x) <0ygx) >3) <
< EEIP(yg<x) < 6) +EP; (yg(X) > 8, Egyg(x) < 0).

In the last term for a fixedx,y) € X x 9,

P (yo0) > 8, Feyg(x) <0) < Pg(ya() —Eeya(x) > 8) =

N
= P (Z(y&i(x) —yE£&i(x)) > N6> < exp(—N&?/2).
i=
where in the last step Hoeffdingernoff inequality has been applied. Hence,

P(yf(x) <0) - e N2 < EgP(yg(x) < ). (4.20)

Similarly,

EgPn(yg(x) < 8) < Pa(yf(x) < 28) + & N/2, (4.21)

Clearly, for any random realization of the sequeége. .,&n, the functiong(x) belongs to the
class

k k
Fnk(Z") = {%_;hhi(X) : _leq =N,1<k <N,h € }[(z“)},

for somek € N, which is the number of different indicesandk; € N is the number of repeating
function h; in the representation af. Recall, #(Z") is the random-base class from the general
problem. Then, K k < min(T,N). Let pun = Pg(g € Fyx(Z")).

Then the expectatiofi; can be represented as

Eg(L(9) = kzl PnEe (L(9)lg € Fu(ZY),

wherelL is a real valued measurable function anid the random function

1 N
900 = 5 3 &)
Now consider the random collection of sets
(2" = {C:C={(xy) :yax) < 8},0 € Fui(2").8€ (0.1]},

whereN, k € N. Clearly (x k(Z") satisfies conditions (2.2) and (2.3). In order to apply the inequality
for random collection of sets (3.4), one has to estin@i{@) = EnAg, 2z (Z").
By Lemma 7, it follows that

G'(n) < (G*(n, H))*¥(N—k+1D)¥(n+1) < (G*(n, #H))*N¥(n+1).
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Now apply Inequality (3.4) for the random collection of s€tgk(Z"). Then, with probability
atleast 1-e!

(Px,y(yg(xlipS(E;)g(—XI)P’l(yég;(@ <9)* < % (t+kInG*(2n, #) +kInN +In(8n+4)).
X,y >

The functiong(a,b),a > 0 is convex, sap(Eza,E:b) < E;@(a,b) fora> 0.

Therefore,
(EgPxy(yg(x) < 8) —EePa(yg(x) < 8))* _ = (Pxy(yg¥) <8) ~Pa(yg(x) < 8))* _
EgPxy(yg(x) < ) = Py, (yo(X) < 3)
= k; PrNEe ( (Px,y(yg(x]%”i(?g(xl)?ng(ya%()() <97 lge FN,k(Zn)> <
<> pk’Ng(t +KkInG*(2n, H) +kInN+In(8n+4)).
Observe that -

z kpcn = Ecardk : k'thindex is picked at least onge=
K>1

—

.
El (kis picked at least once= 3 (1—(1—N)").
K =]

1

Denoteen(f,8) = S¢_; (1— (l—)\k)N). LetN = 2Inn, so thate N&/2 =1,

The functiong(a, b) is increasing ira and decreasing ih. Combine the last result with (4.20) and
(4.21):

9(P(yf(x) < 0)—n L Pa(yf(x) <28) +n7t) <

IS

< ﬁ(t+aq(f,6)InG*(2n,ﬂ{)+aq(f,6)ln(élnn)+In(8n+4)).

Denote

W = %(t+en(f,6)InG*(2n,}[)+en(f,6)ln(élnn)+In(8n+4)).

After solving the above inequality fd(y f(x) < 0), one can get that, for a fixelle {27%: k> 1},
for everyt > 0 with probability at least 1 et the following holds

1 2 1
P(yf(x) <0) < (\/V_V+\/Pn(yf(x) 325)+ﬁ+w) + (4.22)
It remains to make the bound uniform ov®e (0, 1], which is done again by using standard union

bound techniques shown in the proof of Theorem 2 and the observatibifidg < (0, 1], then there
iskeZ,, 271 < 8 <2 %anden(f,8) < Ty, (1— (1—A;)8nm2%),
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Redefineen(f,8) = ST_,(1— (1— M) % ).
So, by changing the constants in the bound, it follows that fotan®, with probability at least
1—e ' for anyd € (0, 1] the following holds:

1 2 1
P(yf(x) <0) < <\/U+ \/Pn(yf(x) <28)+ - +U) + o
where
1 4 . 8
U= - <t+|n8+en(f,6)InG (2n,H) 4+ en(f,d)In <§Inn) +In(8n+4)> :
Thus, the Theorem 3 and inequality (3.8) hold.

O
We now show thgroof for the bound with the total variance irheorem 4, using Theorem 1.
Given f(x) = S§_; Adhk(x), and givenN > 1, first generate an i.i.d. sequence of functions
&1,...,&n independently of (X;,Y;)} and according to the distributidP (& = hx) = Ak, for k=
1,...,T, and consider a function

1 N
9 = 3 &N,

which plays the role of random approximationfof
The main difference from the proof of the above theorems is that in equdtibs) the condition
on the variance? (x) is also introduced. Namely, one can write

P(yf(x) <0) <EP(yg(x) <& + P(05(x)>y)+
+ EPg (yg(x) > 3,yf(x) <0,05(x) <y).
The variance og;’s, for a fixedx € X, is
Var (&(X)) = 03 (X)-

—1<&(x) <1, as well. Bernstein’s inequality,

P (yg(x) > 8,yf(x) < 0,02(x) <y) <
N
=P (_Zi(yii (X) — YE£&i(x)) > N&|Varg (§1(x)) < y> <

< 2exp<—%min<N762,N6)> =2eX —%NTESZ),

is used, since it is assumed tlyat 8. Making this term negligible by takiny = 4(%) Inn,
P(yf(x) <0) <EgP(yg(x) <8)+P(05(x) >y)+n*. (4.23)
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Similarly,

EsPn(yg(x) < 8) <Pa(yf(x) <28) + Pn(03(X)>y)+
+ PP (yo(x) < 8,yf(X) > 25,02(X) < ).

Applying Bernstein’s inequality to the last term with the same choids ef4(%)Inn, one has

[ed]

BEa(yO(X) < 8) < Fnly () < 28) + B (03(%) 2 ) + . (4.24)

Now, similarly to the proof of Theorem 2, we derive inequality (4.18). Fyrg> &€ (0,1],N=
4(%)Inn, for anyt > 0 with probability at least e, the following holds:

9(BcP(y9(x) < 8), EgPa(yg(x) < 8)) < Ee@(P(yg(x) < 8),Pa(yg(x) < 3)) <
Ary .
<~ <4§(In n)InG"(2n, 7) +In(8n-+4) +1), (4.25)
where the fact that the functiapia, b) = @I (a>b),a>0is convex has been used; §0fiza,Egb) <
E:@(a,b). The functiong(a, b) is increasing ira and decreasing ib; combining the last result with
14
(4.23) and (4.24), one has

9(P(yF(x) < 0) = P(G3() > y) ~ "%, Po(yF(x) < 28) +Pn(0F(x) > y) +n°?)

< %(t+46—y2(ln n)ING*(2n, #) + In(8n + 4)).
After solving this inequality foi?(y f(x) < 0), one has that, for any € (0,1], any 1>y > 9, for
anyt > 0 with probability at least L e, the following inequality holds

P(yf(x) <0) < P(oz(x)>y)+%+

1 2
+ ((Pn(yf(x)§26)+]P’n(02(x)2y)+i~|—U>2+U%>, (4.26)

where 1
_ 1 Y x
U= - (t+462(lnn)InG (2n,5—[)+|n(8n+4)>.

Next, in (4.23),(4.24) and (4.26), the tem‘noi(x) >y) is related to the term
IP’n(of(x) >y) that appears. In order to be able to do this, generate two independeenses;
and&? as above and consider

5 1

1
oN(X) = N

T3 (G0 — E09)2 = S T 18(X),

where
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Notice that&(x) are i.i.d. random variables arik&x(x) = 02(x). Since&},&Z € #(Z"), then
|EL(X) — &2(x)| < 2. The variance

Varg (81(x)) < Eg&5(x) < 2Eg&1(x) = 202(X).

Bernstein’s inequality implies that for amy> 0,

o3 (X)y

Pe | 02 (x)—02(x) <21/ 2 g Y | > 1)
E(GN(X) 0°(x) < c + ]2 e

and

o2 (x
IPg (Gi(x)cﬁ(X) <2 AE:>y+8§::> >1—ed),

Let choosec = 18. If 02(x) <y, then with probability at least + e"NV/18, it follows from the
first inequality thato (x) < 2y. On the other hand, i6%(x) < 2y, then with probability at least
1—e /18 it follows from the second inequality theaf (x) < 3y. Based on this,

Pg (0% (X) > 2y,02(x) <y) < 1),

and
Pg (0%(x) < 2y,03(x) > 3y) < e ).

One can write

P(03(x) >3y) = EeP(03(X) > 3y,08(X) > 2y) +EeP (03(x) > 3y,08(x) < 2y)
< EgP (0} (X) = 2y) +EPg (0} (x) < 2v,05(x) > 3y)

and
EgPn (03 () > 2) < Pn (03(X) > V) + EgPn (0R(X) > 21,03(x) <) .

SettingN = cy tInn, then

P (0300 > 3y) < BB (GR(%) > 29) + - (4.27)
and
E¢Pn (0%(X) > 2y) <Pq(02(x) >) + % (4.28)

For any realization o{ﬂ(’l, Eﬂ(’z, the functionso? belong to the class

z

where# (Z") is defined as the random-base function class in the general problem.

(et —hk?)2:hth? e ﬂ(z")} :
1
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Now, consider the random collection of sets
C(Z" ={C:C={xex:{oj(X) > y}},08 € Fn(Z"),y€ (0,1]}.

In order to bound3'(n) = E"A -z (Z") take into account that i#/(Z") is a random-base class of
finite cardinality, then cargiy(Z") < G*(n, #)?N. In the case of the base-random clas&") being

a collection of indicators, similarly to the proof of Lemma 7, one can count thémuam number
of different representations X, ..., X,} by

C(Z"y)={C:C={xex:{od(x) >Vy}}.0k € A(Z"}
for a fixedy € (0,1]. It is bounded by(”ve)ZN. Then varyingy over the ordered discrete set
{1,0%(X,),08(%,),--.,0%(X%,)} for afixedo? € Fn(Z"), one can see th& (n) < (n+1)G*(n, H)?N.

Now, we apply Theorem 1 for the random collection of s€tdor N = 18y Inn. Then for any
t > 0 with probability at least 2 et for any sample&", the following holds

O(BeP(07() 2 ¥). EgPn(0R(X) =) < Es@(P(GR(X) = V), Pa(0f(X) 2 )) <
< %(ZNInG*(Zn,}[)+In(8n+4)+t>.

Here, the monotonic property @f{a,b) is used together with (4.27) and (4.28), in order to obtain
the following bound under the above conditions:

o(P(0309 > ) - . Bu(0f(0) > y) + ) <

< g<36y*1(ln n)InG*(2n, #) +In(8n+ 4) +t) :
Solving the above inequality fd@(oZ(x) > ), we obtain

PO 9 < o+ <W% # (W Ba(gf09 2 v/3)+ 1) ) |

where

W = % <t+1—88(lnn)lnG*(2n7}[)+In(8n+4)> .

Combining the above inequality with the inequality (4.26 ) and using the inequalities)? <
2a’ + 2b? and\—ll < & for y> 3, one has that, for an§ € (0,1] and anyy € (0,1],y > 3, for all
t > 0 with probability at least 1-et, for any random sampl&", for any A € P(#(Z")) and
f(x) = /h(x)A(dh),

P(yf(x) < 0) < 2Py (yf(x) < 28) + 2Py (02(x) > ) + 2Pn(02(X) > y/3)+

8In(8n+4)
n

448y(Inn)InG*(2n, H)
nd2

8t 6
+—+ +-+ :
n n
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Observe thaPn(0%(x) > y) < Pn(0%(x) > y/3). Rewrite

P <0) < 2Po(yf(x) <25)+4Py(0f(x) >} )+
448/(Inn)InG*(2n,ﬂ{)+§+8l (8n+4)+6

nd? n n n

00|-<

Next, the bound is made uniform with respecyte (0, 1] andd € (0, 1]. First, one makes the bound
uniform wheny € A = {27¥ k€ Z. }, andd € A. Apply the above inequality for fixed <y € A by

replacing t byt’ +In %V and, henceg ! replaced bye ¥ = et %, wheredandyc A= {27%:k > 0}.

P[Q{ P(y(x) < 0) < (2Pnlyf(x) < 26) + 4P (03(x) > §)+6+

+ g (t+|n2—6y+ln(8n+4)+%—?’(Inn)lnG*(Zn,%)))H >

> 1- ~_et>1-et,

where is useg .z, 2! < 2. Then the union bound should be applied in the whole rangeyof
(0,1].
For anyt > 0 with probability at least + e, for anyA € P(#) and f(x) = [h(x)A(dh),

P(Yf(9 <0) < inf (2Pn(yf( <20) + 4Ba(0F00 > )+

2
+§ <t+lny+ln(8n+4)~l—

56y . 6
5 — (Inn)InG (2n,ﬂ-[)>—|—n).

62

Now theproof of Theorem 5regarding cluster-variance bound is given. Let us fix

P
al,...,ap,zlai <1lai>0

used for the weights of the clusters in
p S
c=(ag,...,0p, AL L AP), A = Zaix', N e P(H(ZM).
i=

Generate functions from each cluster independently from each otldemdependently of the
data and take their sum to approximdte) = [h(x)A(dh) = ST, Aihi(x). GivenN > 1, gener-

ate independerg}(x),k < N, j < p, where for eachj, &}(x)'s are i.i.d. and have the distribution
Pe(&)(x) = hi(x)) = A!,i < T. Consider a function that plays role of a random approximatiof of

Z|H

SPA

HMZ
Z|H

P2
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wheregk(x) = 3 7_; A& (X).
For a fixedx € X andk < N, the expectation ofy with respect to the distributioff; =
Palx,...,xIP’Ep is

B (0k(¥) = 2§10 (E4(X)) = f(%);
its variance is 0
Vare (gk(X Z Varg (g,(¥) = 5 a0 (x) = 0%(C;X).

Then

P(yf(x) <0) < EP(yg(x) <8)+P(c*(cX) >y) +
+ EPg (ygx) > 3,yf(x) <0,0%(c;x) <V).
Y

Using Bernstein’s inequality,> 6 > 0, |gk(x)| < 1 and takingN = [2+4/3] (5 ) Inn= 45—\’2 Innwill
make the last term negligible. Thus,

<
>

P(YH() < 0) < ExP(ygx) < 8) + P (0%(c:) > y) + - (4.29)
Also,

EePn(yg(x) <8) < Py(yf(x) <28)+Pn(0%(c;x) >y) +

+ PPg (yo(x) > 8,yf(X) < 25,0%(c;x) < ).

Applying Bernstein’s inequality to the last term with the same choidg @1‘4% Inn, it follows that

1
EePn(yg(x) < 8) < Pn(yf(X) < 20) +Pp (UZ(C; X) >y) + n (4.30)
Now, consider the random collection of level sets

C(ZM ={C:C={(xy) 1ygx) <3, (xy) X x I}, g€ I(Z"), € [-1,1]},
where
Fn(Z) = {%Zi’\‘_lgi,gi € G(al,...,ap)[zn]}
and

p . .
G(ay,...,0p)zn = {gk(X) = Zﬂjﬁi(X),Ei S ﬂ(Z”)},

J:

where# (Z") is the random-base class of functions, defined in the general problem.
Similarly to the proof of Theorem 2, for fixegle Fy(Z"), we have

card{CﬂZl,...,Zn} <(n+1)

and
card(Z") < G*(n, H#)NP
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Therefore,G'(n) = E"A-(Z") < (n+1)G*(n, #)NP. Apply Inequality (3.4) from Theorem 1 for
random the collection of sets. Then, with probability at least 4 e

(Px,y(ng% Xéy (?)glef’;(xg(X) <9))? < ;_:(t +NpInG*(2n, #) +In(8n+ 4)).

The functiong(a, b) = (a=by b) I(a>b),a> 0is convex, sa(Ega,Esb) < Es@(a,b)

(EePxy(Y(X) <) —EePn(yg(x) < 5))2
EgPxy(yg(Xx) < 9)

The functiong(a,b) is increasing im and decreasing ib and combined with the last result with
(4.29) and (4.30) (recall that = 4( > ) Inn)

(t+NpInG*(2n, H) +In(8n+4)).

3I-l>

O(PYF(¥ <0)~P(%(6X) >V) — 1 PalyF(X) < 28) + Ba(02(cix) > y) + ) <
< % (t+4p6—y2(lnn)InG*(2n,}[) +In(8n+4)> :

After solving this inequality forfP(yf(x) < 0), one can get that, for anyd € (0,1}, y > §, and
al,....aP s ai < 1,a; > 0 for anyt > 0 with probability at least + e,

P(yf(x) <0) <P (a%(c;x) > ) +
1 2
+ ((Pn(yf(x) < 28) + Pp(a?(c;x) > y) + % +U> +UZ+ %) , (4.31)

where

T ( g;’(lnn)lne*(zn ) +In(8n+4))

ce CP(\), A =3P_ ajN, Aj € P(H).

Now P(0?(c;x) >) has to be estimated. Generate two mdependent random sequences of fun
tions&}; ( )andEkz( X), j=1,...p,k=1,...,N as before P (&} ( X) =hi(X)) = )\,’,IP’E(E ( ) =
hi(x)) = M) and consider

it (220 (€200 ~&00)) = Tl iE0),

OR (C;X) =

where
&0 = 5 (210l (€100 - 820) ) (4.32)

Then&y(x) are i.i.d. random variables afit}&x(x) = 02(c; ). SinceElj(’l,Elj(’2 €A, then]&lj(’l(x) —
£%(x)| < 2. The variance satisfies the following inequality

Varg (81(x)) < Eg&5(x) < 2Eg&1(X) = 20%(C; X).
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Bernstein’s inequality implies that

2 .
P <0ﬁ(c;x)—oz(c;x) <2/2 (€%) +8l> >1—¢l"x)

K 3K/~
and
2/ -
2~ 2 (o 02(C; ) Y (-5
_ < L y>1-—
PE(O (g x) —on(cx) <2 K +83K)_1 e K/,

Based on this, for large enough> 0 (K = 18 is sufficient),
Ps (0% (C;X) > 2y,0%(G;x) <) < =%,

and
Ny

P (0% (C;X) < 2y,02(c;x) > 3y) < el x).
One can write
P (0?(c;x) > 3y) < E¢P (0§ (C;X) > 2y) +EPg (0] (c;x) < 2y,0%(c;x) > 3y),
and
EgPn (0%(C;X) > 2y) < Pn(08(C;X) > Y) +PnPs (08 (C;X) > 2y,0%(c;x) < ).

ChooseN = Ky~ tInn; then

P (0?(c;x) > 3y) < E¢P (0% (%) > 2y) + %, (4.33)
and

EePn (0R(GX) > 2y) < Pp (0j(GiX) > ) + % (4.34)
Now, consider the random collection of sets

(= {C:C={x:0](c;x) > 2y},0%(c;:x) € Fn(Z"),y€ (0,1},

where
1 il mi2\2 gl i
NZ") = {ﬁZE‘_l(Zj_la’(h& —hy )) ey e}[(zn)}-

For any{xy,...,x,} and a fixeds%(c;.) € Fn(Z"), it follows that

card{CN{Xy,...,%}} < (n+1) and cardn(Z") < G*(n, H)2NP
if the base-random clas& (Z") is of finite cardinality. ThereforeG/.(n) = E"Ag, (Z2") < (n+
1)G*(n, #)>NP. The case of(Z") being a collection of indicators as in the general problem is
similar and dealt with in the previous proofs of the theorems.

The rest of the arguments are similar to the proof of the Theorem 4. Appindlgeality (3.4)
from Theorem 1 for random collection of sefs, and based on convexity gfa,b), one has that
forye (0,1], ag,...,ap, ZF:lGj <1,aj > 0 and for anyt > 0 with probability at least + e
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(E¢P (03 (c;X) > y) — E¢Pp (0] (6 X) > Y))? _
E¢P (0% (C;X) >Y) -

(t+2NpInG*(2n,#) +In(8n+4)),

S5IN

for any Al € P(H(Z")),j = 1,...,p. Combining the last resultp(a,b) is increasing ina and
decreasing i) with (4.33) and (4.34) (recall that = 18y Inn),

cp(IP’ (0%(c;x) > 3y) —n 1, Pn (02(6%) > y) + nfl) <

4

4 >k
<- <t—|—36p§(ln n) InG*(2n, #) +|n(8n+4)) :

Solving the above inequality fdf?(of(x) >y), then with probability at least 2 et

1\ 2
P(Gi(x)zy)S%*(W%+<W+Pn(0§(><)2v/3)+%> ) ,

where
108p .
W:ﬁ t+ v ——(INn)InG*(2n, H) +In(8n+4)
Finally, combining this with (4.31) and using the inequalitias-- b)? < 2a? 4 2b? and\—ll < & for
y > 8, one obtains: for ang € (0,1] and anyy € (0,1],y > §, for all t > 0 with probability at least

1—e, for any random sampl&", for anyA € P(#(Z")) and f(x) = [h(x)A(dh),

P(yf(x) < 0) < 2Py (yf(X) < 28) + 2Py (05 (X) > V) + 2Py (05(x) > y/3) +

8 8In(8n+4) 6 44 Inn)INnG*(2n, H
(8, 8N4 6 4depy(inn)InG'(2n, )
n n n no

Observe thaP, (0% (x) > y) <P, (0%(X) > y/3). Then, rewrite

P(Yf() <0) < 2Pa(yf(x) <20)+4Pn(0F(x) = 1) +

448py(l INnG*(2n, H 8 8In(8n+4 6
py(Inn) InG*(2n, )JF_Jr n(8n-+ )+_.
nd? n n n

The next step is to make this bound uniform with respectjto- 0, j = 1,..., p, z;’:laj <1l

First, consider simply; e A= {271, j=1,2,...}. The case ofi; = 1 is proven in the previous
Theorem 4 for total variance. Lat = 271i. Redefine cluster(ly, .. Slp) i=c(ay,.. .,ap,)\l, <, AP).
Then consider the event

2 Y
Aty = { ¥1 € Fa : PYT() < 0) < 2Pa(yf(x) < 28) + 4Py (0F(x) = 3 ) +
448py(Inn)InG*(2n,H) 8t 8In(8n+4) 6
| A48py( )2 (2n, )+_+M+_}’
nd n n n
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that holds with probability - e~t. Make change of variablasoy t + ZZf’len l; 4+ pIn4 in the last

bound. With this choice, the eveAy, ) can be rewritten as
A1y = { V1 € Fa 1 PYF(X) < 0) < 2Pa(yF(x) < 28) +4Pn (02(x) > 1) +
448py(Inn)InG*(2n,7) 8 1630 ;Inl; 8pIn4 8In(8n+4) 6
N IDV(nn)n2 (2n, )JrijL 2j-1 i 8pin4_ 8In(8n+4) 7}7
no n n n n n

which holds with probability at least
P(Agty,.1,) = 1— |‘|— 4P,

This implies the probability of the intersection

1
P( N Ac(|1ﬂ...7|p)) >1— Z M |2 etlgP—
|1, |17~~7 pGN

P 1 P . N
=1-4Pe t(lle?)pzl_4 Pet(1+m/6)P>1-e'>1-¢"
i€EN I
andy Inlj = y In(|log,a;j). For fixedp > 1 and 1>y > &> 0 andvt > O with probability at least
1—e™, the following is true for anyy,...,ap € A, Zip:10(i <1A={27'j=01,...}:

P(yF(x) < 0) < (2Pa(yF(x) < 28) + 4Pa (6%(C:X) = ¥/3) +
Jr448py(|n n)InG*(2n, ) L8 163} ;In(|logz aj]) 4 8pin4 8In(8n+4) n 6)

né? n n n n n/’
Next, for a fixedm € N, consider the following discretization of, = t;m~®, for a fixed a priori
s€ Zy,andt; € {1,2,3,...,m"}. Therefores+ log,,a; > 0.
For anya; =t;m ®there isl; € Z., such that

mi~l<a;=tpmS<m.

Thatiss—Ij — 1 <lognutj <s—1j, I <s.

This time we make the change of variabies t + 2?212 In(s+log,,a;+1)+2plIn2 and apply
the bound for that'.

Thene ' =e 'yl ) WA' P<etyl 1@4*9 Applying union bound trick as
before, shows that for arty> 0, with probablllty at least

S
1—e 4 P( Z |+1 P>1-et,
= (S

foranyaj =t;mS, tj € {1,2,3,...,n"°},j =1,..., p, the following bound holds:

P <0) < (2Pa(yf(x) <28)+4Pn (0%(c:X) > v/3) +

448py(InN)InG*(2n,7) 8 163" ;In(s+logya;+1)
5 +—=+ +
no n n
16pin2 8In(8n+4) 6
pin2 (8n+4) )

+

n n n/’
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In order to make the bound uniform for allp > 1 and 1> y > 6 > 0, apply the above inequality
2.
for fixedpe N,d <ye A= {2K:k> 1} by replacingt byt’ =t +In Szglgdy and hence replacing

e'tbye ! =e g% wheredandye A= {27*:k>1}.

PIN{  POTX <0 < (2Pa(yf(x) <25)+ 4Py (0%(c:X) > v/3) +

3y,p
448py(Inn)InG*(2n, ) 8 8INZEY  165P  In(s+logya;+1)
+ ) = 180 + j=1 m*] +
nod? n n n
16pIin2 8In(8n+4) 6
o e e )
n n n
27136 1
>1— —( —)Ze*tzl—e*‘,
2 o i

Finally, vt > 0 with probability at least + e, the following is true for als € N,ay,...,0p €
A={tmsS0<tj<ntjeN},peNand1>y>5>0

where we have applie§lcz, k—12 < % andycz, 27 <2.

PO <0) < (2Pa(yF(x) < 28) +4Pn (0%(c:X) 2 v/3) +
1 /448py(Inn)InG*(2n, H) sp?mdy
+ 5 = +8t+8In >0 2V

P
+ 162 In(s+log,aj+ 1)+ 16pIn2+8In(8n+4) +6>).
=1

From here, by replacingwith ﬂogm(a—léﬂ in the above inequality, the result (3.12) follows.

5. Conclusions

Here, we showed unified data-dependent generalization boundagsifiers fromrandomconvex
hulls in the setting of thgeneral problendefined above. Such classifiers are generated, for example,
by broad classes of algorithms such as SVMs, RBF networks and bao8tirvggbounds involve
the individual complexities of the classifiers introduced by Koltchinskii anddRenko (2004),
such as sparsity of weights and weighted variance over clusters. Thiaakéeved by proving a
version of Vapnik’s inequality applied to random classes, that is, a bfarnélative deviations of
frequencies from probabilities for random classes of events (Thedje The results show how
various algorithms fit in a singlegeneral class Also, it was indicated that algorithms controlling
the individual complexities of the classifiers can produce classifiers witl generalization ability
(see Koltchinskii et al. (2003a); Koltchinskii et al. (2003b); Andoa¢2004) for some experimental
results in the setting of various boosting algorithms). Experimental investigatibthe above
complexities in the setting of thgeneral problenare desirable.
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