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Abstract

Belief propagation (BP) is an increasingly popular methbgerforming approximate inference

on arbitrary graphical models. At times, even further agpnations are required, whether due
to quantization of the messages or model parameters, frber simplified message or model

representations, or from stochastic approximation methdde introduction of such errors into the
BP message computations has the potential to affect thémolbtained adversely. We analyze
the effect resulting from message approximation under tartiqular measures of error, and show
bounds on the accumulation of errors in the system. This/aisdleads to convergence conditions
for traditional BP message passing, and both strict boundseatimates of the resulting error in

systems of approximate BP message passing.

Keywords: belief propagation, sum-product, convergence, appra@nmderence, quantization

1. Introduction

Graphical models and message-passing algorithms defined on graphsseoangrowing field of
research. In particular, theelief propagationfor sum-product) algorithm has become a popular
means of solving inference problems exactly or approximately. One péc appeal lies in its
optimality for tree-structured graphical models (models which contain no Jodpawever, its is
also widely applied to graphical models with cycles. In these cases it mayneérge, and if it
does its solution is approximate; however in practice these approximatiooemngood. Recently,
some additional justifications for loopy belief propagation have been deselincluding a handful
of convergence results for graphs with cycles (Weiss, 2000; Tatikand Jordan, 2002; Heskes,
2004).

The approximate nature of loopy belief propagation is often a more thaptatde price for
performing efficient inference; in fact, it is sometimes desirable to radkigionalapproximations.
There may be a number of reasons for this—for example, when exachgeesspresentation is
computationally intractable, the messages may be approximated stochasticily €Kal., 1999)
or deterministically by discarding low-likelihood states (Coughlan and Ferr2d02). For belief
propagation involving continuous, non-Gaussian potentials, some foappobximation is required
to obtain a finite parameterization for the messages (Sudderth et al., 2868; 2003; Minka,

(©2005 Alexander T. Ihler, John W. Fisher Ill and Alan S. Wijsk



IHLER, FISHER AND WILLSKY

2001). Additionally, simplification of complex graphical models through edgeoval, quantiza-
tion of the potential functions, or other forms of distributional approximatiog beaconsidered in
this framework. Finally, one may wish to approximate the messages and tbeiraepresentation
size for another reason—to decrease the communications requiredtfimudesd inference applica-
tions. In distributed message passing, one may approximate the transmittegerntessaduce its
representational cost (Ihler et al., 2004a), or discard it entirely if iesnged “sufficiently similar”
to the previously sent version (Chen et al., 2004). Through such noeameay significantly reduce
the amount of communications required.

Given that message approximation may be desirable, we would like to knotveffaet the
errors introduced have on our overall solution. In order to charizeténe approximation effects
in graphs with cycles, we analyze the deviation from the solution given k&cté loopy belief
propagationrfot, as is typically considered, the deviation of loopy BP from the true margisail-d
butions). As a byproduct of this analysis, we also obtain some results @otirergence of loopy
belief propagation.

We begin in Section 2 by briefly reviewing the relevant details of graphicalaetsoand be-
lief propagation. Section 4 then examines the consequences of measurirsgageerror by its
dynamic range. In particular, we explain the utility of this measure and its b@haith respect
to the operations of belief propagation. This allows us to derive conditimnthé convergence
of traditional loopy belief propagation, and bounds on the distance betame pair of BP fixed
points (Sections 5.1-5.2), and these results are easily extended to maoyimape forms of BP
(Section 5.3). If the errors introduced are independent, as is a ty@isaigtion in, for example,
quantization analysis (Gersho and Gray, 1991; Willsky, 1978), tighteanates of the resulting
error can be obtained (Section 5.5).

It is also instructive to examine other measures of message error, in f@arboes which em-
phasize more average-case (as opposed to pointwise or worst-ggendes. To this end, we
consider a KL-divergence based measure in Section 6. While the anafybis KL-divergence
measure is considerably more difficult and does not lead to strict guagaittserves to give some
intuition into the behavior of perturbed BP under an average-casedlfiffermeasure.

2. Graphical Models

Graphical models (Lauritzen, 1996; Kschischang et al., 2001) pravittenvenient means of rep-
resenting conditional independence relations among large numbersdofmarariables. Specif-
ically, each nodes in an undirected graph is associated with a random varigblevhile the
set of edge<E is used to describe the conditional dependency structure of the vartabdegh
graph separation If every path between two sefsandC passes through another &fsee Fig-
ure 1(a)], the sets of variableg = {Xs: s€ A} andxc = {Xs: s € C} must be independent given
the values ofxg = {Xs: s€ B}. Thus, the distributiorp(xa,Xs,Xc) can be written in the form
P(XB) P(Xa|XB) P(Xc|Xa)-

It can be shown that a distributiga{x) is consistent with (i.e., satisfies the conditional indepen-
dence relations specified by) an undirected graph if it factors into auptad potential functions
Y defined on the cliques (fully-connected subsets) of the graph, anththabnverse is also true
if p(x) is strictly positive (Clifford, 1990). For convenience, we confine dterdion to graphical
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Figure 1: (a) Graphical models describe statistical dependencyg;, tiee seté\ andC are independent given
B. (b) BP propagates information frotrand its neighborsi is to s by a simple message-passing
procedure; this procedure is exact on a tree, but approgimagraphs with cycles. (c) For a
graph with cycles, one may show an equivalence betwétarations of loopy BP and the depth-
n computation tree [shown here for= 3 and rooted at node; example from Tatikonda and
Jordan (2002)].

models with at most pairwise potential functions, so that the distribution faat@arding to

p(Xx) = I_l Wst(Xs, X |_| Ps(Xs)-

(st)eE

This is a typical assumption for belief propagation, and can be taken withawriimg any real loss

of generality since a graphical model with higher-order potential funstioay always be converted
to a graphical model with only pairwise potential functions through a psosegariable augmenta-
tion, though this may also increase the nodes’ state dimension undesirahlfgrsexample, Weiss

(2000).

2.1 Belief Propagation

The goal of belief propagation (BP) (Pearl, 1988), also called the suohipt algorithm, is to
compute the marginal distributiop(x;) at each nodé. BP takes the form of a message-passing
algorithm between nodes, expressed in terms of an update to the outgoisggmed iteratiom
from each nodéto each neighbosin terms of the previous iteration’s incoming messages frem
neighbord; [see Figure 1(b)],

s(Xs) O /wts X, Xs) Pt (X |_| rn:Jt . 1)

uel\s

Typically each message is normalized so as to integrate to unity (and we assursectinnormal-
ization is possible). For discrete-valued random variables, of cotivséntegral is replaced by a
summation. At any iteration, one may calculate iedief at nodet by

) O (% D M (% (2)

For tree-structured graphical models, belief propagation can be uséitiently perform exact
marginalization. Specifically, the iteration (1) converges in a finite numberratibes (at most the
length of the longest path in the graph), after which the belief (2) equatsotinect marginap(x; ).
However, as observed by Pearl (1988), one may also apply belighgation to arbitrary graphical
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models by following the samiecal message passing rules at each node and ignoring the presence
of cycles in the graph; this procedure is typically referred to as “loo®.” B

For loopy BP, the sequence of messages defined by (1) is not gueatdateonverge to a fixed
point after any number of iterations. Under relatively mild conditions, one guayantee the ex-
istence of fixed points (Yedidia et al., 2004). However, they may not bguennor are the results
exact [the belieM| does not converge to the true margipék )]. In practice however the procedure
often arrives at a reasonable set of approximations to the correcimaladgstributions.

2.2 Computation Trees

It is sometimes convenient to think of loopy BP in terms ofdtsnmputation tree Tatikonda and
Jordan (2002) showed that the effechdferations of loopy BP at any particular noslis equivalent
to exact inference on a tree-structured ‘unrolling” of the graph fenA small graph, and its
associated 4-level computation tree rooted at nig@ae shown in Figure 1(c).

The computation tree with depticonsists of all lengtm paths emanating fromin the original
graph which do not immediately backtrack (though they may eventually repeas): We draw
the computation tree as consisting of a numbelewéls corresponding to each node in the tree’s
distance from the root, with the root node at level 0 and the leaf nodegednleEach level may
contain multiple replicas of each node, and thus there are potentially manyasepfieach node in
the graph. The root nodghas replicas of all neighbofs; in the original graph as children, while
all other nodes have replicas of all neighbors except their paretadhildren.

Each edge in the computation tree corresponds to both an edge in the ogigipaland an
iteration in the BP message-passing algorithm. Specifically, assume anlequindialization of
both the loopy graph and computation tree—i.e., the initial messafieim the loopy graph are
taken as mputs to the leaf nodes. Then, the upward messages fronm kevidvel n — 1 match
the messagesy, in the first iteration of loopy BP, and more generally, a upward messggen
the computation tree which originates from a naden leveln —i + 1 to its parent nodeon level
n—i is identical to the message from nodéo nodet in theit" iteration of loopy BP (out oh total
iterations) on the original graph. Thus, the incoming messages to the m®{level 0) correspond
to the messages in tm# iteration of loopy BP.

2.3 Message Approximations

Let us now consider the conceptagproximateBP messages. We begin by assuming that the “true”
messagests(xs) are some fixed point of BP, so thal, = m¢t. We may ask what happens when
these messages are perturbed by some (perhaps small) error fusgtion Although there are
certainly other possibilities, the fact that BP messages are combined by takingroduct makes

it natural to consider multiplicative message deviations (or additive in thedogaah):

Ms(Xs) = Mis(Xs)Els(Xs)-

To facilitate our analysis, we split the message update operation (1) into tig0 pathe first,
we focus on the messageoducts

Mis0¢) 0 w(%) [ e(x x) O W (% |;|tm'ut 3)

uelt\s

1. Thus in Figure 1(c), the computation tree includes the sequence— 4 — 1, but not the sequende—2 —4 — 2.
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where the proportionality constant is chosen to normaliizeThe second operation, then, is the
messageonvolution

%) 0 W, % Wi @

where agaiM is a normalized message or product of messages.

In this paper, we use the convention that lowercase quantities(, . . .) refer to messages and
message errors, while uppercase ohks, E:s, M, . . .) refer to their products—at nodgthe product
of all incoming messages and the local potential is denMga), its approximationMi (x;) =
M: (% )E: (%), with similar definitions foMs, Mis, andEss.

3. Overview of Results

To orient the reader, we lay out the order and general results whecbbdained in this paper. We
begin in Section 4 by examiningdynamic rangeneasurel (e) of the variability of a message error
e(x) (or more generally of any function) and show how this measure behatlesaspect to the
BP equations (1) and (2). Specifically, we show in Section 4.2 that the meek® (e) is sub-
additive with respect to the product operation (3), and contractive wipect to the convolution
operation (4).

Applying these results to traditional belief propagation results in a new uificondition for
BP convergence (Section 5.1), specifically

2
max d(Wu) —1 <1, 5)

st uclt\s d (unt)Z +1

and this condition may be further improved in many cases. The condition ({&eahown to be
slightly stronger than the sufficient condition given in Tatikonda and Jof2@02), and empirically
appears to be stronger than that of Heskes (2004). In experimentsortdéion appears to be
tight (exactly predicting uniqueness or non-uniqueness of fixed pdonts} least some problems,
such as binary—valued random variables with attractive potentials. Mo tiamply, however, the
methodin which it is derived allows us to generalize to many other situations:

1. Using the same methodology, we may demonstrate that any two BP fixed poisthenu
within a ball of a calculable diameter; the condition (5) is equivalent to this diarbeiag
zero (Section 5.2).

2. Both the diameter of the bounding ball and the convergence criteri@ré®asily improved
for graphical models with irregular geometry or potential strengths, leadibgtter condi-
tions on graphs which are more “tree-like” (Section 5.3).

3. The same analysis may also be applied to the case of quantized or othmppisgimated
messages and models (potential functions), yielding bounds on the resuitin¢Section 5.4).

4. If we regard the message errors as a stochastic process, a simijsisandh a few addi-

tional, intuitive assumptions gives alternate, tighter estimates (though naisagite bounds)
of performance (Section 5.5).
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Figure 2: (a) A messagen(x) and an example approximatiom(X); (b) their log-ratio
logm(x) /m(x), and the error measure Idge).

Finally, in Section 6 we perform the same analysis for a less strict measwessage error [i.e.,
disagreement between a messayg) and its approximatiom(x)], namely the Kullback-Leibler
divergence. This analysis shows that, while failing to provide strict beumdeveral key ways,
one is still able to obtain some intuition into the behavior of approximate messagjagander an
average-case difference measure.

In the next few sections, we first describe the dynamic range meastidistuss some of its
salient properties (Section 4). We then apply these properties to anadyaehthvior of loopy belief
propagation (Section 5). Almost all proofs are given in an in-line fastasrthey frequently serve
to give intuition into the method and meaning of each result.

4. Dynamic Range Measure

In order to discuss the effects and propagation of errors, we fgstreea measure of the difference
between two messages. In this section, we examine the following measeygxa let d (as)
denote the function’dynamic range specifically

d(es) = Sali)p\/ as(a)/as(b). (6)

Then, we have thats = ris (i.e., the pointwise equality conditians(x) = rfys(X)VX) if and only if
logd (es) = 0. Figure 2 shows an examplemfx) andni(x) along with their associated erre(x).

4.1 Motivation

We begin with a brief motivation for this choice of error measure. It hasrabeu of desirable
features; for example, it is directly related to the pointwise log error bettreetwo distributions.

Lemma 1. The dynamic range measui@) may be equivalently defined by

logd (&s) = infsup|logams(x) — logrits(x)| = infsupjloga —loges(x)|.
X X

Proof. The minimum is given by log = %(suglogas(a) +infplogas(b)), and thus the right-hand
side is equal tg (sup, loges(a) —infploges(b)), or %(supiblogas(a)/qs(b)), which by definition
is logd (as). O

2. This measure has also been independently investigated to providdlitysiahlysis for the max-product algorithm
in Bayes’ nets (acyclic, directed graphical models) (Chan and Daey2005). While similar in some ways, the
analysis for acyclic graphs is considerably simpler; loopy graphdneedemonstrating a rate of contraction, which
we show is possible for the sum-product algorithm (Theorem 8).
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The scalan serves the purpose of “zero-centering” the functiorglgx) and making the mea-
sure invariant to simple rescaling. This invariance reflects the fact thaicidle factor for BP
messages is essentially arbitrary, defining a class of equivalent messdtheugh the scale factor
cannot be completely ignored, it takes on the role of a nuisance pararmbgemclusion ofa in
the definition of Lemma 1 acts to select particular elements of the equivalessesl@vith respect
to rescaling) from which to measure distance—specifically, choosing teestlsuch messages in
a log-error sense. The log-error, dynamic range, and the minimizerg depicted in Figure 2.

Lemma 1 allows the dynamic range measure to be related directly to an approximaton
in the log-domain when both messages are normalized to integrate to unity, usifgldiving
theorem:

Theorem 2. The dynamic range measure can be used to bound the log-approxireation
llogms(x) — logriis(x)| < 2logd (&s) VX.

Proof. We first consider the magnitude of lag

Mis(X)
VX, Iog ~ ‘ logd (&s)
1 Oms(X)
= d(a) < m(s( X <d(&s)
= Mis(X <0(/ms dx</mts )dxd(as)

and since the messages are normalizied,a| < logd (as). Then by the triangle inequality,
llogms(X) — logrits(X)| < [logams(x) — logrits(X)| + [loga| < 2logd (&s) . O

In this light, our analysis of message approximation (Section 5.4) may beaéeniiy regarded
as a statement about the required quantization level for an accurate imgéorenf loopy belief
propagation. Interestingly, it may also be related to a floating-point precgions(x).

Lemma 3. Letrits(x) be an F-bit mantissa floating-point approximation t(x). ThenJlogd (gs) <
2 F402°%).

Proof. For anF-bit mantissa, we havims(x) — fis(x)| < 277 - 2°%MX] < 27F . mg(x). Then,
using the Taylor expansion of Igg+ (T — 1)] ~ (1 — 1) we have that

M(X)
m(x)

M(X) — m(x) m(x) — m(x)\ 2
=S i +O<<Si‘p () ))

<2 Fio0(2%F). O

logd (&s) < supllog
X

Thus our measure of error is, to first order, similar to the typical measymeoision in floating-
point implementations of belief propagation on microprocessors. We mayedéged (e) to other
measures of interest, such as the Kullback-Leibler (KL) divergence.
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Lemma4. The KL-divergence satisfies the inequalitynix||fis) < 2logd (&s)

Proof. By Theorem 2, we have

D(msli) = [ ma(9log i dx< [ ma(x) (2logd (@) dx—2logd (@), O

Finally, a bound on the dynamic range or the absolute log-error can alaeduketo develop
confidence intervals for the maximum and median of the distribution.

Lemma5. Letm(x) be an approximation of () with logd (i/m) < ¢, so that
Mt (x) = exp(2e)M(x) M~ (x) = exp(—2€)M(x)

are upper and lower pointwise bounds oy respectively. Then we have a confidence region on
the maximum of ) given by

arg nlaxn(x) € {x:m"(x) > m;axrﬁ* (y)}

and an upper bound p on the median dbani.e.,

/j:o m(x) > /: m(x) where /j; m (x) = /uoo At (x)

with a similar lower bound.

Proof. The definitions ofm™ andn~ follow from Theorem 2. Given these bounds, the maximum
value ofm(x) must be larger than the maximum valuenof (%), and this is only possible at locations
x for whichii* (x) is also greater than the maximumraf .”Similarly, the left integral ofm(x) (—co

to k) must be larger than the integralmf (x), while the right integraljf to o) must be smaller than
for M* (x). Thus the median afh(x) must be less thap. O

These bounds and confidence intervals are illustrated in Figure 3: tigeapproximate mes-
sageni (solid black), a bound on the error yields" () and M~ (x) (dotted lines), which yield
confidence regions on the maximum and median valueg .

4.2 Additivity and Error Contraction

We now turn to the properties of our dynamic range measure with respect top#rations of
belief propagation. First, we consider the error resulting from taking théyet (3) of a number of
incoming approximate messages.

Theorem 6. The log of the dynamic range measure is sub-additive:

logd (E) < 3 logd (d) logd (E/) < ¥ logd ().

uel\s uel
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Confidence Region on Maximum (Right boundary of) Conf. Region odikfe
(a) (b)

Figure 3: Using the error measure (6) to find confidence regions on maxiamd median lo-
cations of a distribution. The distribution estimatgx) is shown in solid black, with
llogm(x)/M(x)| < % bounds shown as dotted lines. Then, the maximum valua(gf
must lie above the shaded region, and the median value is less than the deioad
line; a similar computation gives a lower bound.

Proof. We show the left-hand sub-additivity statement; the right follows from a simitauraent.
By definition, we have

. . . 1 . .
logd (Elg) =logd (Vis/Mi) = 5 log sup[T] ex(@)/ [ elu(b).
a,
Increasing the number of degrees of freedom gives

< 5100 supe (@) /(b = T loga (¢yx).

Theorem 6 allows us to bound the error resulting from a combination of tloeniimg approx-
imations from two different neighbors of the notlelt is also important that lod(e) satisfy the
triangle inequality, so that the application of two successive approximatsn#s in an error which
is bounded by the sum of their respective errors.

Theorem 7. The log of the dynamic range measure satisfies the triangle inequality:
logd (e1€2) < logd (e;) +logd (e2).
Proof. This follows from the same argument as Theorem 6. O

We may also derive a minimum rate of contraction occurring with the convoluieradion (4).
We characterize the strength of the potenfigl by extending the definition of the dynamic range

measure: bie(ab)
a
d(Yrs)® = sup =2
® ab,cd Yrs(c,d)
When this quantity is finite, it represents a minimum ratmofingfor the potential, and thus causes
a contraction on the error. This fact is exhibited in the following theorem.

(7)

Theorem 8. When dyxs) is finite, the dynamic range measure satisfies a rate of contraction:

d (L|Jts)2d (Etls) +1

—, 8
d(lIJts)2+d(Et's) ®)

d(ddh) <
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logd (E)
T
o 2
= logd ()
o
o
d(p)2d(E)+1
o9 5w rdm
logd (E) —

Figure 4: Three bounds on the error outd(e) as a function of the error on the product of incom-
ing messaged (E).

Proof. See Appendix A. O

Two limits are of interest. First, if we examine the limit as the potential stred@gh grows,
we see that the error cannot increase due to convolution with the pairatisetialy. Similarly, if
the potential strength is finite, the outgoing error cannot be arbitrarily [@mdependent of the size
of the incoming error).

Corollary 9. The outgoing message errof@s) is bounded by
d (ed*) < d(E) d(ed") <d(Ws)’.
Proof. Letd (yxs) or d (Ef) tend to infinity in Theorem 8. O

The contractive bound (8) is shown in Figure 4, along with the two simplend®wof Corol-
lary 9, shown as straight lines. Moreover, we may evaluate the asymptbawibe by considering
the derivative

_dr -1
_d( ) Jrl_tant’(logd(qJ)).

The limits of this bound are quite intuitive: for lalf ) = 0 (independence of andxs), this deriva-
tive is zero; increasing the error in incoming messaggshas no effect on the error imz*. For
d (@) — o, the derivative approaches unity, indicating that for very lat¢g) (strong potentials)
the propagated error can be nearly unchanged.

We may apply these bounds to investigate the behavior of BP in graphs widscyige begin
by examining loopy belief propagation with exact messages, using the psengsults to derive a
new sufficient condition for BP convergence to a unique fixed point. Mthes condition is not
satisfied, we instead obtain a bound on the relative distances betweenafiyevpoints of the
loopy BP equations. This allows us to consider the effect of introducidgiadal errors into the
messages passed at each iteration, showing sufficient conditions fopénetion to converge, and
a bound on the resulting error from exact loopy BP.
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5. Applying Dynamic Rangeto Graphswith Cycles

In this section, we apply the framework developed in Section 4, along withdimpatation tree
formalism of Tatikonda and Jordan (2002), to derive results on thevhmhaf traditional belief
propagation (in which messages and potentials are represented exdudyhen use the same
methodology to analyze the behavior of loopy BP for quantized or othemygpeoximated mes-
sages and potential functions.

5.1 Convergence of Loopy Belief Propagation

The work of Tatikonda and Jordan (2002) showed that the conveegamd fixed points of loopy
BP may be considered in terms of a Gibbs measure on the graph’s computagiom tparticular,
this led to the result that loopy BP is guaranteed to converge if the grapfiesafdbrushin’s
condition (Georgii, 1988). Dobrushin’s condition is a global measure dficult to verify; given
in Tatikonda and Jordan (2002) is the easier to check sufficient condidften called Simon'’s
condition),

Theorem 10 (Simon’s condition). Loopy belief propagation is guaranteed to converge if

max logd (W) < 1. (9

uel ¢

where d ) is defined as irf7).
Proof. See Tatikonda and Jordan (2002). O

Using the previous section’s analysis, we obtain the following, strongetitton, and (after the
proof) show analytically how the two are related.

Theorem 11 (BP convergence). Loopy belief propagation is guaranteed to converge if
d(pu)®—1

max —=—<1 (10)
(st)eE uert\sd (lput) +1

Proof. By induction. Let the “true” messagess be any fixed point of BP, and consider the in-
coming error observed by a nodleat leveln — 1 of the computation tree (corresponding to the
first iteration of BP), and having parent nosle Suppose that the total incoming error tb@E}S)
is bounded above by some constantdbfpr all (t,s) € ‘E. Note that this is trivially true (for any
n) for the constant logt = max > uer, logd (L|Jut)2, since the error on any messagg is bounded
above byd (P2

Now, assume that la( bt) < loge¢' for all (u,t) € £. Theorem 8 bounds the maximum log-
error logd (Etis“) at any replica of nodewith parents, wheresis on leveln—i of the tree (which
corresponds to thi" iteration of loopy BP) by

logd (Ei*) < gs(loge’) = Gis(e)) = 5 m,M

- (11)
uer\s d(lIJut)2+E'

We observe a contraction of the error between iteratiamsli + 1 if the boundys(loge') is smaller
than loge' for every(t,s) € £, and asymptotically achieve lgg— O if this is the case for any value
of g > 1.
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Definingz = loge, we may equivalently shows(z) < zfor all z> 0. This can be guaranteed
by the conditiongis(0) = 0, gi5(0) < 1, andgis(z) < O for eacht,s. The first is easy to verify, as is
the last (term by term) using the identigf(z) = €2Gl(€) + £Gl4(€); the secondd((0) < 1) can be
rewritten to give the convergence condition (10). O

We may relate Theorem 11 to Simon’s condition by expanding th&ses to the larger set
I't, and observing that log> ;‘i—j for all x > 1 with equality asx — 1. Doing so, we see that
Simon’s condition is sufficient to guarantee Theorem 11, but that Threbiemay be true (implying
convergence) when Simon’s condition is not satisfied. The improvementSinon’s condition
becomes negligible for highly-connected systems with weak potentials, buiecaignificant for
graphs with low connectivity. For example, if the graph consists of a single tleen each node
has at most two neighbors. In this case, the contraction (11) tells us thadtipging message in
either direction isalwaysas close or closer to the BP fixed point than the incoming message. Thus
we easily obtain the result of Weiss (2000), that (for finite-strength piatepBP always converges
to a unique fixed point on graphs containing a single loop. Simon’s condiiothe other hand,
is too loose to demonstrate this fact. The form of the condition in Theorem 14as@nilar to a
result shown for binary spin models; see Georgii (1988) for details.

However, both Theorem 10 and Theorem 11 depend only on the papaisatialsWst(Xs, X ),
and not on the single-node potentials(xs), Wi (x). As noted by Heskes (Heskes, 2004), this
leaves a degree of freedom to which the single-node potentials may bencdmas to minimize the
(apparent) strength of the pairwise potentials. Thus, (9) can be impstigidly by writing

. Wyt >
max minlogd <1 12
t uer, u, Pt g <lpulpt ( )

and similarly for (10) by writing

2
d Yut -1
. (U—'u'-lk)
(;Tt])%)é i W |2
sy us ut
uelt\s d (LIJullJt> +1
To evaluate this quantity, one may also observe that

( Wyt >4: su Prs(a, b) Ws(c, d)
Wul abcd Wts(a,d) Yrs(c,b)

In general we shall ignore this subtlety and simply write our results in terrd$ypf, as given in (9)
and (10). For binary random variables, it is easy to see that the minimumgttug,; has the form

n 1-n
LIJUI |: 1_ n n :| ’
and that when the potentials are of this form (such as in the examples of thisndehe two
conditions are completely equivalent.

We provide a more empirical comparison between our condition, Simon’stemmadand the
recent work of Heskes (2004) shortly. Similarly to Heskes (2004),vedl see that it is possible to
use the graph geometry to improve our bound (Section 5.3); but perhapsmortantly (and in
contrast to both other methods), when the conditiamoissatisfied, we still obtain useful informa-
tion about the relationship between any pair of fixed points (Section 5.2)iafidts extension to
guantized or otherwise distorted versions of belief propagation (Secdyn 5

<1 (13)

mind
Wy, Pt
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5.2 Distance of Multiple Fixed Points

Theorem 11 may be extended to provide not only a sufficient conditiom dimique BP fixed point,
but an upper bound on distance between the beliefs generated bysued®P updates and any
BP fixed point. Specifically, the proof of Theorem 11 relied on demonstratinound log' on the
distance from some arbitrarily chosen fixed poiM;} at iterationi. When this bound decreases
to zero, we may conclude that only one fixed point exists. However, gveuld it decrease only
to some positive constant, it still provides information about the distance betesmy iteration’s
belief and the fixed point. Moreover, applying this bound to another,rdiftfixed point{l\7|t} tells

us that all fixed points of loopy BP must lie within a sphere of a given diamatenieasured by
logd (Mt/|\7lt)]. These statements are made precise in the following two theorems:

Theorem 12 (BP distance bound). Let {M;} be any fixed point of loopy BP. Then, after-nlL

iterations of loopy BP resulting in belief$/"}, for any node t and for all x

2.n-1
logd (M¢/M") < Iogd(w“t) 28 +1
uel d(Yut) +ent

whereg is given bye! = maxs; d (wst)z and

| 2
loge"™ = max log ()€ +1 28 1
(st)eE ue\s d (L|Jut) + ¢l

Proof. The result follows directly from the proof of Theorem 11. O

We may thus infer a distance bound between any two BP fixed points:

Theorem 13 (Fixed-point distance bound). Let{M;}, {M;} be the beliefs of any two fixed points
of loopy BP. Then, for any node t and for all x

2
[logMi(x)/Mi(x)| < 2logd (M;/M;) < 2 IOQMZSJrl (14)
ueT d(Pu)”+e
wheree is the largest value satisfying
2
loge = max Gis(€) = max Iogw. (15)
(shex (sHeZ uel\s d(wut) +E&

Proof. The inequality] logM;(x) /M (x)| < 2logd (Mt/l\7lt) follows from Theorem 2. The rest fol-
lows from Theorem 12—taking the “approximate” messages to be any oxieer ffioint of loopy
BP, we see that the error cannot decrease over any number of iteratitmwever, by the same
argument given in Theorem 16;%(z) < 0, and forz sufficiently large gis(z) < z. Thus (15) has at
most one solution greater than unity, aith < &' for all i with &' — € asi — . Letting the number
of iterationsi — o, we see that the message “errors” ¢b@/lts/ |\7Its) must be at mosi, and thus
the difference inVi; (the belief of the root node of the computation tree) must satisfy (14). O
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Thus, if the value of log is small (the sufficient condition of Theorem 11 is nearly satisfied)
then although we cannot guarantee convergence to a unique fixedweioan still make a strong
statement: that the set of fixed points are all mutually close (in a log-errseseand reside within a
ball of diameter described by (14). Moreover, even though it is postibtdoopy BP does not con-
verge, and thus even after infinite time the messages may not corres@ondik@d point of the BP
equations, we are guaranteed by Theorem 12 that the resulting belieftestivilbasymptotically
approach the same bounding ball [achieving distance at most (14 glidixed points].

5.3 Path-Counting

If we are willing to put a bit more effort into our bound-computation, we mayble to improve

it further, since the bounds derived using computation trees are vety fwacst-case” bounds. In
particular, the proof of Theorem 11 assumes that, as a message epagates through the graph,
repeated convolution witlnly the strongest set of potentials is possible. But often even if the
worst potentials are quite strong, every cycle which contains them may@aisaitc several weaker
potentials. Using an iterative algorithm much like belief propagation itself, weabtgin a more
globally aware estimate of how errors can propagate through the graph.

Theorem 14 (Non-uniform distance bound). Let{M;} be any fixed point belief of loopy BP. Then,
after n> 1iterations of loopy BP resulting in belie{3V{'}, for any node t and for all x

llogM;(x)/M¢(x)| < 2logd (M/M{") <2 S logul}

uel

wherev!, is defined by the iteration

i+1 _

2] | |
loguig® = log 2 (Wts) Ers T 1 logels = logul (16)

d (luts)z + 5{5 uel\s
with initial conditionvl, = d (Y.

Proof. Again we consider the error I@L(Etis) incoming to node with parents, wheret is at level
n—i+ 1 of the computation tree. Using the same arguments as Theorem 11 it is esytbys
induction that the error products Idg(Etis) are bounded above kg, and the individual message
errors logl () are bounded above hy, and . Then, by additivity we obtain the stated bound on
d(E") at the root node. O

The iteration defined in Theorem 14 can also be interpreted as a (scasmggeepassing proce-
dure, or may be performed offline. As before, if this procedure resultg ;s — O for all (t,s) € £
we are guaranteed that there is a unique fixed point for loopy BP; if roggain obtain a bound
on the distance between any two fixed-point beliefs. When the graphfecpgisymmetric (every
node has identical neighbors and potential strengths), this yields the samd &s Theorem 12;
however, if the potential strengths are inhomogeneous Theorem lidigsay strictly better bound
on loopy BP convergence and errors.

This situation is illustrated in Figure 5—we specify two different graphical ef®defined on a
5x 5 grid in terms of their potential strengths ld¢)?, and compute bounds on the dynamic range
d (Mt/l\7lt) of any two fixed point belief8/;, M; for each model. (Note that, while potential strength

918



LoorPYBP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

or— Simple bound, grids (a) and (b)
== Nonuniform bound, grid (a)

Nonuniform bound, grid (b)
++ Simons condition

N~ o
T T

logd (E) —

————— e e el e e e

(@) (b) (c)

o

Figure 5: (a-b) Two small (5 5) grids. In (a), the potentialp are all of equal strength (|Gﬂl.p)2 =
w), while in (b) several potentials (thin lines) are weaker qu;)z =.5w). The methods
described may be used to compute bounds (c) on the disth{if;¢ between any two
fixed point beliefs as a function of potential strength

does not completely specify the graphical model, it is sufficient for all thenlds considered here.)
One grid (a) has equal-strength potential'sdt()q;)2 = w, while the other has many weaker potentials
(w/2). The worst-case bounds are the same (since both have a node witliremg neighbors),
shown as the solid curve in (c). However, the dashed curves showstineate of (16), which
improves only slightly for the strongly coupled graph (a) but considerfailihe weaker graph (b).
All three bounds give considerably more information than Simon’s conditott€d vertical line).

Having shown how our bound may be improved for irregular graph gegnvatrmay now com-
pare our bounds to two other known uniqueness conditions (Tatikordldaadan, 2002; Heskes,
2004). Simon’s condition can be related analytically, as described in Sectio®b the other hand,
the recent work of Heskes (2004) takes a very different apprmaghiqueness based on analysis of
the minima of the Bethe free energy, which directly correspond to stablegoiets of BP (Yedidia
et al., 2004). This leads to an alternate sufficient condition for uniggemesobserved in Heskes
(2004) it is unclear whether a unique fixed point necessarily implies cgemee of loopy BP. In
contrast, our approach gives a sufficient condition for the connermgef BP to a unique solution,
which implies uniqueness of the fixed point.

Showing an analytic relation between all three approaches does natrageghtforward; to
give some intuition, we show the three example binary graphs compared kedi€004), whose
structures are shown in Figure 6(a-c) and whose potentials are paraedtey a scalan > .5,

namely
| n 1-n
o= " "] an

(so thatd(qJ)2 = 1?—”). The trivial solutionM; = [.5;.5] is always a fixed point, but may not be
stable; the precisgqir at which this fixed point becomes unstable (implying the existence of other,
stable fixed points) can be found empirically for each case (Hesked);2b@ same values may
also be found algebraically by imposing symmetry requirements on the meg¥agitia et al.,
2004). This value may then be compared to the uniqueness bounds ofiiai&od Jordan (2002),
the bound of Heskes (2004), and this work; these are shown in Figure 6

Notice that our bound is always better than Simon’s condition, though fqrdifectly symmet-
ric graph the margin is not large (and decreases further with increaseectivity, for example a
cubic lattice). Additionally, in all three examples our method appears to ootpethat of Heskes
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Method @ [ (¢
Simon’s condition| .62 .62 .62
Heskes' condition| .55 .58 .65
This work .67 .79 .88
Empirical .67 .79 .88

(b) (c) Nerit

Figure 6: Comparison of various uniqueness bounds: for binary fiaeparameterized by, we
find the predictedy¢i; at which loopy BP can no longer be guaranteed to be unique. For
these simple problems, thg; at which the trivial (correct) solution becomes unstable
may be found empirically. Examples and empirical valueggf from Heskes (2004).

(2004), though without analytic comparison it is unclear whether this isyaltvee case. In fact, for
these simple binary examples, our bound appears to be tight.

However, our method also allows us to make statements about the results pBBoafter
finite numbers of iterations, up to some finite degree of numerical precisioreifirtal results.
For example, we may also find the valuerpbelow which BP will attain a particular precision,
say logd (Mt/|\7l{‘) < 1073 in at leastn = 100 iterations [obtaining the valu¢s6,.77,.85} for the
grids in Figure 6(a), (b), and (c), respectively].

5.4 Introducing Intentional M essage Errorsand Censoring

As discussed in the introduction, we may wish to introduce or alldditional errors in our mes-

sages at each stage, in order to improve the computational or communicéitiamey of the algo-

rithm. This may be the result of an actual distortion imposed on the messagepdo decrease
its complexity, for example quantization), or the result of censoring the mesgaate (reusing the
message from the previous iteration) when the two are sufficiently similaorsEmay also arise
from quantization or other approximation of the potential functions. Sudtiiadal errors may be
easily incorporated into our framework.

Theorem 15. If at every iteration of loopy BP, each message is further approximateddh a way
as to guarantee that the additional distortion has maximum dynamic rangwstd, then for any
fixed point belief§ M, }, after n> 1 iterations of loopy BP resulting in beliefdV{'} we have

logd (M¢/M{) <5 loguf

uel ¢
whereuv!,, is defined by the iteration

2 i i i
M+|og5 logets = Z loguy,

loguiit = log :
° d (thS)Z + S{S uerl\s

with initial conditionul, = 3d ().

Proof. Using the same logic as Theorems 12 and 14, apply additivity of the log dynamge r
measure to the additional distortion dgtroduced to each message. O
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As with Theorem 14, a simpler bound can also be derived (similar to Thed®m Either
gives a bound on the maximum total distortion from any true fixed point whitttbbeincurred by
guantized or censored belief propagation. Note that (except onttrezttsed graphs) this doest
bound the error from the true marginal distributions, only from the loopyig#l points.

Itis also possible to interpret the additional error as arising from aroappation to the correct
single-node and pairwise potentidlg Ys.

Theorem 16. Suppose thafM; } are a fixed point of loopy BP on a graph defined by potentigds
andyy, and let{ M{"} be the beliefs of n iterations of loopy BP performed on a graph with potentials

Qrs and iy, where d(is/Wrs) < 81 and d(( /) < &2. Then,

logd (M¢/M{') < ¥ loguf}; +logd,

uel ¢

whereuv!,, is defined by the iteration

2, : i
M+|ogél loges =logdz + 3 loguy,

loguiit = log
° d (lpts)z + &s uel\s

with initial conditionvl, = 5;d (Py)?.

Proof. We first extend the contraction result given in Appendix A by applying teequmlity

S W% 2) g MO0)E(x)dx < JWOAMOOE)AR 402
S, b) SEIM(x)E(x)dx — [ W& DIMx)E(x)dx |

Then, proceeding similarly to Theorem 15 yields the definitionigfand including the additional
errors logd, in each message product (resulting from the product Withather than)y) gives the
definition ofeg;. O

Incorrect model§) may arise when the exact graph potentials have been estimated or quantized;
Theorem 16 gives us the means to interpret the (worst-case) ovéealisséf using an approximate
model. As an example, let us again consider the model depicted in Figure S({ppose that
we are giverquantizedversions of the pairwise potential§, specified by the value (rounded to
two decimal places) = .65. Then, the true potentid hasn € .65+ .005, and thus is within
01 ~ 1.022= % of the known approximatio. Applying the recursion of Theorem 16
allows us to conclude that the solution obtained using the approximate maaed true modelp
are within logd (e) < .36, or alternatively that the beliefs found using the approximate model are
correct to within a multiplicative factor of about43. The samé), with n assumed correct to three

decimal places, gives a bound kb¢e) < .04, or multiplicative factor of D4.

5.5 Stochastic Analysis

Unfortunately, the bounds given by Theorem 16 are often pessimisticarechpo actual perfor-
mance. We may use a similar analysis, coupled with the assumption of uncatrakedeage errors,
to obtain a more realistic estimate (though no longer a strict bound) on the rgsaritom.
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Proposition 17. Suppose that the errofeges are random and uncorrelated, so that at each iter-
ation i, for s# u and any X, E[Ioge"st(x) . Ioge"ut(x)] = 0, and that at each iteration of loopy BP,
the additional error (in the log domain) imposed on each message is atated with variance at
most(logd)?2. Then,

[('Ogd }< Z_ Oy (18)

wherec, = logd (Yrs)® and

(o{§1)2_<logw> + (logd)? (loghis)® = S CAR
(thS) ts uel\s

Proof. Let us define the (nuisance) scale faatfy = argmin, sup,| logae(x)| for each errod,

and let}¢(x) = logalds(x). Now, we model the error functio@is(x) (for eachx) as a random
variable with mean zero, and bound the standard deviatidh©d) by ol at each iteratioi;, under

the assumption that the errors in any two incoming messages are uncorreiatady assert addi-
tivity of their variances. Thus the variancepﬁ\szht(x) is bounded by{logAls)?. The contraction

of Theorem 8 is a non-linear relationship; we estimate its effect on theariance using a sim-

ple sigma-point quadrature (“unscented”) approximation (Julier and Utrip096), in which the
standard deviationis ! is estimated by applying Theorem 8's nonlinear contraction to the standard
deviation of the error on the incoming product ()g. O

The assumption of uncorrelated errors is clearly questionable, sinpagation around loops
may couple the incoming message errors. However, similar assumptionsiblaeayuseful analy-
sis of quantization effects in assessing the behavior and stability of digites fjiélisky, 1978). It
is often the case that empirically, such systems behave similarly to the preditimesby assum-
ing uncorrelated errors. Indeed, we shall see that in our simulationassienption of uncorrelated
errors provides a good estimate of performance.

Given the bound (18) on the variance of tb@ ), we may apply a Chebyshev-like argument to
provide probabilistic guarantees on the magnitude of errord (By observed in practice. In our
experiments (Section 5.6), the 2listance was almost always larger than the observed error. The
probabilistic bound derived using (18) is typically much smaller than the botimdeorem 15 due
to the strictly sub-additive relationship between the standard deviationsewoythe underlying
assumption of uncorrelated errors makes the estimate obtained using §l@pble for deriving
strict convergence guarantees.

5.6 Experiments

We demonstrate the dynamic range error bounds for quantized messtdygaset of Monte Carlo
trials. In particular, for each trial we construct a binary—valued%grid with uniform potential
strengths, which are either (1) all positively correlated, or (2) randaindsen to be positively or
negatively correlated (equally likely); we also assign random single-potentials to each variable
Xs. We then run a quantized version of BP for= 100 iterations from the same initial conditions,
rounding each log-message to discrete values separated by @oguring that the newly intro-
duced error satisfied(e) < 8). Figure 7 shows the maximum belief error in each of 100 trials of
this procedure for various values &f
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— Strict bound

, [ == Stochastic estimate
10" | # Ppositive corr. potentials
« Mixed corr. potentials

Bmax_logd (_Et)

(a) logd (¢)? = .25 (b) logd (y)* =1

Figure 7: Maximum belief errors incurred as a function of the quantizatir.eThe scatterplot
indicates the maximum error measured in the graph for each of 200 Monite rQas;
this is strictly bounded above by Theorem 15, solid, and bounded with hayapility
(assuming uncorrelated errors) by Proposition 17, dashed.

Also shown are two performance estimators—bwaind on belief error developed in Sec-
tion 5.4, and the @ estimate computed assuming uncorrelated message errors as in Section 5.5.
As can be seen, the stochastic estimate is a much tighter, more accuratmesse$®rror, but it
does not possess the same strong theoretical guarantees. Sincecfasdibor digital filtering ap-
plications (Willsky, 1978)] the errors introduced by quantization are tyjgicéose to independent,
the assumptions underlying the stochastic estimate are reasonable, andadiympie®bserve that
the estimate and actual errors behave similarly.

6. KL-Divergence M easures

Although the dynamic range measure introduced in Section 4 leads to a nuratveng guarantees,
its performance criterion may be unnecessarily (and undesirably) stpetifieally, it provides a
pointwiseguarantee, thah andm are close for every possible stateFor continuous-valued states,
this is an extremely difficult criterion to meet—for instance, it requires that thesages’ tails
match almost exactly. In contrast, typical measures of the difference dettme distributions
operate by an average (mean squared error or mean absolute emweibted average (Kullback-
Leibler divergence) evaluation. To address this, let us consider iagpdymeasure such as the
Kullback-Leibler (KL) divergence,

R P(X)
D(plp) = [ pixlog g sax

The pointwise guarantees of Section 4 are necessary to bound paréar®een in the case of
“unlikely” events. More specifically, the tails of a message approximatiorbeanme important if
two parts of the graph strongly disagree, in which case the tails of eaclageesse the only overlap
of significant likelihood. One way to discount this possibility is to consider ttaply potentials
themselves (in particular, the single node potentjg)sas a realization of random variables which
“typically” agree, then apply a probabilistic measure to estimate the typicainpesthce. From this
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viewpoint, since a strong disagreement between parts of the graph islymli&ewill be able to
relax our error measure in the message tails.

Unfortunately, many of the properties which we relied on for analysis ofdghamic range
measure do not strictly hold for a KL-divergence measure of errsultiag in anapproximation
rather than a bound, on performance. In Appendix B, we give a detailalysis of each property,
showing the ways in which each aspect can break down and discussirgggonability of simple
approximations. In this section, we apply these approximations to developdiviétgence based
estimate of error.

6.1 Local Observations and Parameterization

To make this notion concrete, let us consider a graphical model in whichingke-sode poten-
tial functions are specified in terms of a set of observation variabtesy; }; in this section we
will examine the average (expected) behavior of BP over multiple realizatibtiee observation
variablesy. We further assume that both the pripix) and likelihoodp(y|x) exhibit conditional
independence structure, expressed as a graphical model. Specifieatigsume throughout this
section that the observation likelihood factors as

p(y[x) = r| P(Ye[X), (19)

in other words, that each observation variaplés local to (conditionally independent given) one
of thex. As for the prior modep(x), for the moment we confine our attention to tree-structured
distributions, for which one may write (Wainwright et al., 2003)

XS7

p(x) = r| p(x (20)

(st)eE p(

The expressions (19)-(20) give rise to a convenient parameterizattithre joint distribution, ex-
pressed as

p(xzy) U rl qut Xs, Xt |—| llJS XS l‘lJy XS) (21)

(st)eE

where

P(Xs, %)

o] A4 W =R0Y W9 =Pl (22)

Pst(Xs, %) =

Our goal is to compute the posterior marginal distributig(ss|y) at each node; for the tree-
structured distribution (21) this can be performed exactly and efficientgmyAs discussed in the
previous section, we treat tHg: } as random variables; thus almost all quantities in this graph are
themselves random variables (as they are dependent g tlse that the single node observation
potentials(xs), messages(x ), etc.are random functions of their argumegt The potentials
due to the priors; andysy), however, are not random variables as they do not depend orf &gy o
observations;.

For models of the form (21)-(22), the (unique) BP message fixed pomgists of normalized
versions of the likelihood functiomss(Xs) O p(Yis|Xs), whereys denotes the set of all observations
{yu} such that separates from s. In this section it is also convenient to perforrpr@or-weighted
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normalization of the messagess, so that/ p(xs)ms(Xs) = 1 (as opposed tg ms(xs) = 1 as as-
sumed previously); we again assume this prior-weighted normalization iyaeassible (this is
trivially the case for discrete-valued statds Then, for a tree-structured graph, the prior-weight
normalized fixed-point message frdrno sis precisely

Ms(Xs) = P(Yis|Xs)/ P(Yts) (23)
and the products of incoming messages ts defined in Section 2.3, are equal to
Mis(%) = P(%|Yts) Mi (%) = P(x]y)-

We may now apply posterior-weighted log-erromeasure, defined by

Myt (X) .
D(Mye|| M) /p %y) Iog > (Xt)dx{, (24)

and may relate (24) to the Kullback-Leibler divergence.

Lemma 18. On a tree-structured graph, the error measutM;, M) is equivalent to the KL-
divergence of the true and estimated posterior distributions at node t:

D(M|[Mr) = D(p(x|y)[| B(xIy))-

Proof. This follows directly from the definitions ab, and the fact that on a tree, the unique fixed
point has beliefd; (%) = p(x|y). O

Again, the errorD(my||Myt) is a function of the observatiorys both explicitly through the term
p(x|y) and implicitly through the messaga;:(%), and is thus also a random variable. Although
the definition ofD(my:||Myt) involves theglobal observatiory and thus cannot be calculated at node
u without additional (non-local) information, we will primarily be interested in thpected value
of these errors over many realizationswhich is a function only of the distribution. Specifically,
we can see that in expectation over the datiais simply

E [D(my[fy)] = Up )Myt (%) log Ezid& - (25)

One nice consequence of the choice of potential functions (22) is thityoohprior infor-
mation. Specifically, ilho observationy are available, and only prior information is present, the
BP messages are trivially constant,{(x) = 1 ¥x]. This ensures that any message approximations
affect only the data likelihood, and not the pria(ix ); this is similar to the motivation of Paskin and
Guestrin (2004), in which an additional message-passing procedusedsta create this parame-
terization.

Finally, two special cases are of note. Firstxifis discrete-valued and the prior distribu-
tion p(xs) constant (uniform), the expected message distortion with prior-normalizedages,
E[D(m||M)], and the KL-divergence of traditionally normalized messages behaweaéntly, i.e.,

E[D(ms|hs)] = { (fmSHfms>]
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where we have abused the notation of KL-divergence slightly to apply ietodhmalized likelihood
ms/ [ M. This interpretation leads to the same message-censoring criterion usedrireCal.
(2004).

Secondly, when the statg is a discrete-valued random variable taking on on&lgbossible
values, a straightforward uniform quantization of the valup@©&)m(Xs) results in a bound on the
divergence (25). Specifically, we have the following lemma:

Lemma 19. For an M-ary discrete variable x, the quantization
p(x)m(x) — {&,3¢,...,1—¢€}
results in an expected divergence bounded by
E [D(m(x)||M(x))] < (2log2+M)Me 4+ O(M3e?).

Proof. Definep(x) = p(x)m(x), andu(x) € {¢,3¢,...,1—¢€} (for eachx) to be its quantized value.
Then, the prior-normalized approximation{x) satisfies

POIM(X) = H(X) / D K(X) =

whereC € [1— Mg, 1+ Mg]. The expected divergence

m(x)
m(x)

< ZH I09—+ZIIOQCI

E (03 ()] = 3 Py

The first sum is at its maximum fqu(x) = 2e andp(x) = €, which results in the valug,(2log 2.
Applying the Taylor expansion of the log, the second spilogC| is bounded above biyl%e +
0(M3¢?), O

Thus, for example, for uniform quantization of a message with binaryedatate, fidelity up
to two significant digits€ = .005) results in an erraP which, on average, is less thai84.

We now state the approximations which will take the place of the fundamentas niexpused
in the preceding sections, specifically versions of the triangle inequaliiyadditivity, and contrac-
tion. Although these properties amt hold in general, in practice useful estimates are obtained by
making approximations corresponding to each property and following the savelopment used
in the preceding sections. (In fact, experimentally these estimates still agpiéaiconservative.)
A more detailed analysis of each property, along with justification for thecaqipiation applied, is
given in Appendix B.

6.2 Approximations

Three properties of the dynamic range described in Section 4 are importdrg error analysis
of Section 5—a form of the triangle inequality, enabling the accumulation ofsmosuccessive
approximations to be bounded by the sum of the individual errors, adbsub-additivity, enabling
the accumulation of errors in the message product operation to be boloytleelsum of incoming
errors, and a rate of contraction due to convolution with each pairwisetelteWe assume the
following three properties for the expected error; see Appendix B fooee detailed discussion.
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Approximation 20 (Triangle Inequality). For a true BP fixed-point messagemand two approx-
imationsiy, My, we assume

D(mye||Myt) < D(Mye|[Mye) + D (Mgt || Mt (26)

Comment.This is not strictly true for arbitraryn,"m, since the KL-divergence (and thtg) does
not satisfy the triangle inequality.

Approximation 21 (Sub-additivity). For true BP fixed-point messagésy,:} and approximations
{My}, we assume

@(MtsHMts)S Z D(Myt|[ M) (27)

uelt\s

Approximation 22 (Contraction). For a true BP fixed-point message produgt léind approxima-
tion M5, we assume

D(ms||rits) < (1_Vts)Q)(Mts||Mts) (28)

where

- ' B - . Prs(Xs, % ) WE(Xs)
s = min [ minfp(iex =), O x =Bl pliex) = [y EEEE TR

Comment.For tree-structured graphical models with the parametrization describé2ilpy22),
P(Xs, %) = P(Xs|% ), andys corresponds to the rate of contraction described by Boyen and Koller
(1998).

6.3 Steady-State Errors

Applying these approximations to graphs with cycles, and following the sanadagenent used
for constructing the strict bounds of Section 5, we find the following estinwdtsteady-state error.
Note that, other than those outlined in the previous section (and describgupiendix B), this

development involves no additional approximations.

Approximation 23. After n> 1 iterations of loopy BP subject to additional errors at each iteration
of magnitude (measured %) bounded above by some constantwith initial messagegny,}
satisfying?(my||mg,) less than some constant C, results in an expected KL-divergence heiwee
true BP fixed poin{M;} and the approximatio§M} bounded by

£, [DOMIN)] = B | D(]19¢7)] < 5 (1-ya)eli *+9)

wheregd, = C and
gs= > ((L—ywey'+9).

uel\s

Comment.The argument proceeds similarly to that of Theorem 15. debound the quantity
D(Ms| ML) at each iteratiom, and apply Approximations 20-22.
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We refer to the estimate described in Approximation 23 as a “bound-apprtieiiyan order
to differentiate it from the stochastic error estimate presented next.

Just as a stochastic analysis of message error gave a tighter estimatepfuntivise difference
measure, we may obtain an alternate Chebyshev-like “bound” by assurairthetmessage pertur-
bations are uncorrelated (already an assumption of the KL additivity asialyrsd that we require
only an estimate which exceeds the expected error with high probability.

Approximation 24. Under the same assumptions as Approximation 23, but describing theirerr
terms of its variance and assuming that these errors are uncorrelated the estimate

E[D()947)?] < 3 (052

uel ¢

where(c%)? = C and _ _
(O)° =Y ((1-ywoy")*+8

uelt\s

Comment.The argument proceeds similarly to Proposition 17, by induction on the clatrfth3?
bounds the variance at each iteratiohis again applies Theorem 29 ignoring any effects due to
loops, as well as the assumption that the message errors are uncol(ieiatgohg additivity of the
variances of each incoming message). As in Section 5.5, we taketha@ @ as our performance
estimate.

6.4 Experiments

Once again, we demonstrate the utility of these two estimates on the same unifdsnuggd
in Section 5.6. Specifically, we generate 200 example realizations of & Binary grid and its
observation potentials (100 with strictly attractive potentials and 100 with mixezhpals), and
compare a quantized version of loopy BP with the solution obtained by examt BP, as a function
of KL-divergence bound incurred by the quantization levelsee Lemma 18).

Figure 8(a) shows the maximum KL-divergence from the correct fix@dtpesulting in each
Monte Carlo trial for a grid with relatively weak potentials (in which loopy BPnalgtically guar-
anteed to converge). As can be seen, both the bound (solid) andstodsimate (dashed) still
provide conservative estimates of the expected error. In Figure &b@peat the same analysis but
with stronger pairwise potentials (for which convergence to a unique solistioot guaranteed but
typically occurs in practice). In this case, the bound-based estimate afivdrgence is trivially
infinite—its linear rate of contraction is insufficient to overcome the accumulagitn However,
the greater sub-additivity in the stochastic estimate leads to the non-trivied shown (dashed),
which still provides a reasonable (and still conservative) estimate of tiierpgnce in practice.

7. Conclusions and Future Directions

We have described a framework for the analysis of belief propagatiomsteg from the view that
the message at each iteration is some noisy or erroneous version of serB®tfixed point. By

measuring and bounding the error at each iteration, we may analyze taadyedf various forms

of BP and test for convergence to the ideal fixed-point messagespadtihe total error from any
such fixed point.
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Figure 8: KL-divergence of the beliefs as a function of the added rges=saord. The scatterplots
indicates the average error measured in the graph for each of 200 Zani runs,
along with the expected divergence bound (solid) aads@®chastic estimate (dashed).
For stronger potentials, the upper bound may be trivially infinite; in this exathgle
stochastic estimate still gives a reasonable gauge of performance.

In order to do so, we introduced a measure of the pointwise dynamic remigh represents
a strong condition on the agreement between two messages; after showitilifytéor common
inference tasks such as MAP estimation and its transference to other comrasurasof error, we
showed that under this measure the influence of message errors is battiditive and measurably
contractive. These facts led to conditions under which traditional belogfggation may be shown
to converge to a unique fixed point, and more generally a bound on theatidtetween any two
fixed points. Furthermore, it enabled analysis of quantized, stochastither approximate forms
of belief propagation, yielding conditions under which they may be guagdriteconverge to some
unigue region, as well as bounds on the ensuing error over exadf ®E. further assume that
the message perturbations are uncorrelated, we obtain an alternate dgimerte of the resulting
error.

The second measure considered an average case error similar to theckdlllbbler diver-
gence, in expectation over the possible realizations of observations withigraiph. While this
gives no guarantees about any particular realization, the differerasumeeitself is able to be much
less strict (allowing poor approximations in the distribution tails, for examplaalysis of this case
is substantially more difficult and leads to approximations rather than guasabig explains some
of the observed similarities in behavior among the two forms of perturbediBiRl&ions indicate
that these estimates remain sufficiently accurate to be useful in practice.

Further analysis of the propagation of message errors has the potergiaetan improved
understanding of when and why BP converges (or fails to conveaigd)potentially also the role of
the message schedule in determining the performance. Additionally, thereayeother possible
measures of the deviation between two messages, any of which may be ablde pn alternative
set of bounds and estimates on performance of BP using either exaigiroxamate messages.
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Appendix A. Proof of Theorem 8

Because all quantities in this section refer to the fas), we suppress the subscripts. The error
measureal (e) is given by

. ;AMO)EMX)dX [ P(%,b)M(x)dx
d(6)% = d (f/m)2 = max . ¥ &) :

() = /) = X x aM)dx W0, b)M () E () o
subject to a few constraints: positivity of the messages and potential foactiormalization of

the message produdt, and the definitions ofi (E) andd (). In order to analyze the maximum
possible value ofl (e) for any functionsy, M, andE, we make repeated use of the following

property:

Lemma 25. For fq, f, g1, gy all positive,

fitfs max[E E]

(29)

g1+02 01’ 92
Proof. Assume without loss of generality thz&i/gl > fa/92. Then we havefi /g1 > fa/g2 =
figo > fog1 = f101+ fago > fig1 + fogh = & > 22, O

This fact, extended to more general sums, may be applied directly to (2%wve @orollary 9.
However, a more careful application leads to the result of Theorem 8.fallowing lemma will
assist us:

Lemma 26. The maximum of e) with respect tap(x,a), Y(x,b), and Ex) is attained at some
extremum of their feasible function space. Specifically,

W(x,a) = 1+ (d (P)* - D)Xa(X) E(x) =1+ (d(E)* — 1)xe(x)
W(x,b) =1+ (d(Y)* - Dxs(X)

wherexa, Xs, andxg are indicator functions taking on only values 0 and 1.

Proof. We simply show the result fap(x,a); the proofs fonp(x,b) andE(x) are similar. First, ob-
serve that without loss of generality we may safg, a) so that its minimum value is 1. Now con-
sider a convex combination of any two possible functionswile, a) = a1P1 (X, a) + da2Wa (X%, a)
with a3 > 0,02 > 0, anda; + o = 1. Then, applying Lemma 25 to the left-hand term of (29) we
have

a1 [ P1(%,a)M(%)E(x)dx + 02 [ Wa(x, a)M (X ) E (% )dx
o1 S W1(%; )M (%) dX + 02 [ Pa (X, 3)M (X ) dx
JWi(%, @M (x)E(x)dx [ Wa(%, )M (X)E(x)dx

S, aMx)dx 7 [W2(%,2)M(x)dx

< max

(30)
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Thus,d (e) is maximized by taking whichever df1, Y- results in the largest value—an extremum.
It remains only to describe the form of such a function extremum. Any potabtiaa) may be

considered to be the convex combination of functions of the féd’fll))z - 1) X(X) + 1, wherex
takes on value$0, 1}. This can be seen by the construction

woxa) = [ (dw)? 1) xhoca) + 1y

1 g(xa) >1+(d(W)?-1)y

where Y(x,a) =
Xm(x.2) {O otherwise.

Thus, the maximum value af(e) will be attained by a potential equal to one of these functioris.

Applying Lemma 26, we define the shorthand

Ma = [ M(Xa(X) Me = [ M(x)xe(x) Me = [ M(OXe(¥
Mag = [MOOXAOOXE()  Mae = [ MOOXa0OXe(
a=d(p)?-1 B=d(E)’-1,
giving
d(E)Z < max 1+aMa+ BME —I—GBMAE 1+aMg

="M 1+0aMg+PBMg+0PMge 1+0Ma’

Using the same argument outlined by Equation 30, one may argue that thes dtgtaMpgg, Ma,
andMg must also be extremum of their constraint sets. Noticinghgt should be large aniligg
small, we may summarize the constraints by

0<Ma, Mg, Mg <1 Mae < min[Ma, Mg] Mge > max0, Mg — (1—Mg)]
(where the last constraint arises from the fact Mat+ Mg — Mge < 1). We then consider each
possible caseMa < Mg, Ma > Mg, ... In each case, we find that the maximum is found at the

extremaMag = Ma = Mg andMg = 1— Mg. This gives

d(e)? < max 1+ (a+B+ap)Me 1+a—aMe
- M 1+0+(B—0)Mg 1+ aMg

The maximum with respect t8le (whose optimum is not an extreme point) is given by taking the
derivative and setting it to zero. This procedure gives a quadratiatieqy solving and selecting
the positive solution giveMg = [—15(\/[3+ 1—1). Finally, plugging in, simplifying, and taking the
square root yields
2
d(e) < d(w) 2d(E)+1'
d(p)°+d(E) O
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Appendix B. Properties of the Expected Diver gence

We begin by examining the properties of the expected divergence (25 exstructured graphical
models parameterized by (21)-(22); we discuss the application of thedésr® graphs with cycles
in Appendix B.4. Recall that, for tree-structured models described by(€2), the prior-weight
normalized messages of the (unique) fixed point are equivalent to

Mut(%) = P(Yut/%)/P(Yut)s

and that the message products are given by

Mis(X) = P(X|yts)Mt (%) = P(X|y).

Furthermore, let us define trapproximatemessages;(x) in terms of some approximate like-

lihood function, i.e.;m(X) = P(Yut[%)/P(Yur) Whereplyu) = [ P(Yut|X)P(X%)dx. We may then
examine each of the three properties in turn: the triangle inequality, addi&ivitycontraction.

B.1 Triangle Inequality

Kullback-Leibler divergence is not a true distance, and in general,g$ dot satisfy the triangle
inequality. However, the following generalization does hold.

Theorem 27. For a tree-structured graphical model parameterized ag24)(22), and given
the true BP message %) and two approximationsiy (X ), My (%), suppose that g(x) <
CutMut (%) V. Then,

D(mye||Mur) < D(Mye|Mut) + Cut D (Mt || Mue)

and furthermore, iffy: (%) < CiMut(X%) VX, then my(X) < cuCliMut (%) V.

Comment.Sincem, rh are prior-weight normalized[(p(x)m(x) = [ p(x)M(x) = 1), for a strictly
positive priorp(x) we see thaty > 1, with equality if and only ifmy(X) = My (X) Yx. However,
this is often quite conservative and Approximation 2Q € 1) is sufficient to estimate the resulting
error. Moreover, we shall see that the constduts} are also affected by the product operation,
described next.

B.2 Near-Additivity

For BP fixed-point messagés,(X )}, approximated by the messades: (%)}, the resulting error
is not quite guaranteed to be sub-additive, but is almost so.

Theorem 28. The expected error ED(M||M; )] between the true and approximate beliefs is nearly
sub-additive; specifically,

E [D(M[My)] < Z E [D(myl )]+ (T—1) (31)

where I:Ellog py)/ p(Yut)] and FzEllog ply)/ f)(yut)]'

uel ¢ uely
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Moreover, if my (%) < cutffut (%) for all x; and for each we Iy, then

Mt (Xt) < Cutct* Mt (Xt) Q* p(y) I_l uelt p(Yut)

I Mocr, Blya)  P(Y) (32)

Proof. By definition we have

E[D(M||M)] [/p %,Y)log = Ezidn} =E [/ p(x|y)log E(Xt) g%'xt) E(yidxt]

Using the Markov property of (21) to fact@(y|x ), we have

_ <YUt‘Xt) ﬁ(y)
E[/pxt\y ( ) p(xtly)log@dx{]

and, applying the identityn, (%) = p(Yut|X)/P(Yut) gives

D e e T

= Y E[D(myl[fu)]+ (1)

uel ¢

wherel, | are as defined. Heréjs the mutual information (the divergence from independence) of
the variableqyut }uer,. Equation (32) follows from a similar argument. O

Unfortunately, it isnot the case that the quantify— | must necessarily be less than or equal
to zero. To see how it may be positive, consider the following examplex kefxa, xp] be a two-
dimensional binary random variable, andygtandy, be observations of the specified dimension
of x. Then, ify, andyy are independent & 0), the true messages(x) andm,(X) have a regular
structure; in particulam, andmy, have the formsp; p2pi1p2] and|[pspspapa) for somepy, ..., pa.
However, we have placed no such requirements on the messagem/m; they have the poten-
tially arbitrary formse, = [ejee3e4], etc. If either message erra,, e, doesnot have the same
structure asmn,, m, respectively (even if they are random and independent), fiveiti in general
not be zero. This creates tappearancef information betweery, andy,, and the KL-divergence
will not be strictly sub-additive.

However, this is not a typical situation. One may argue that in most problemnseoést, the
informationl between observations is non-zero, and the types of message perasifjadidicularly
random errors, such as appear in stochastic versions of BP (Sudtal., 2003; Isard, 2003; Koller
etal., 1999)] tend to degrade this information on average. Thus, is s@lale to assume thag .

A similar quantity defines the multiplicative const&jtin (32). WhenC; < 1, it acts to reduce
the constant which boundg; by M; if this occurs “typically”, it lends additional support for Ap-
proximation (20). Moreover, iE[C;] < 1, then by Jensen’s inequality, we hdve | < 0, ensuring
sub-additivity as well.
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B.3 Contraction

Analysis of the contraction of expected KL-divergence is also nomatritowever, the work of Boyen
and Koller (1998) has already considered this problem in some deptlefep#tific case of directed
Markov chains (in which additivity issues do not arise) and projectisetapproximations (for
which KL-divergence does satisfy a form of the triangle inequality). Weg digectly apply their
findings to construct Approximation 22.

Theorem 29. On a tree-structured graphical model parameterized a&ih)-(22), the error mea-
sureD(M, M) satisfies the inequality

E[D(ms|Ms)] < (1—ws)E [@(Mts”mts)]
where s min / min[p(xsx =), p(x = b)]dx.

Proof. For a detailed development, see Boyen and Koller (1998); we merely sketghoof here.
First, note that

o N P(YisXs) P(Yts)
Elo(mai o] =€ | [ oy og Ble7e) SV

=E [/ P(Xs|yts) log ggzﬁﬂ

= E [D(p(Xs|Yts) || P(Xs|Yts))]
(which is the quantity considered by Boyen and Koller, 1998) and futtietr

P(Xs|Yts) = / P(Xs|Xt) P(X|Yts)dX-

By constructing two valid conditional distributiorfg(xs|x ) and f2(xs|% ) such thatf; has the form
f1(Xs|%) = f1(xs) (independence of;, %), and

P(XsX) = Vs F1(Xs|%) + (1 — Vs F2(Xs[X)

one may use the convexity of KL-divergence to show

D(p(Xslyts) [ P(Xs|yts)) < ¥tsD(f1* p(%e[Yis)[| f1 + P(Xc|yts))+
(1—vts)D(f2% p(%|Yts)|| 2+ P(Xe|yts))

where %” denotes convolution, i.ef; * p(X|yis) = [ f1(Xs|%)P(X|Yts)d%. Since the conditional
f1 induces independence betwegrandx;, the first divergence term is zero, and sirfgés a valid
conditional distribution, the second divergence term is less Engtx: |yis)|| P(%|Yis)) (see Cover
and Thomas, 1991). Thus we have a minimum rate of contracti¢h-ofs). O

It is worth noting that Theorem 29 givesliaear contraction rate. While this makes for sim-
pler recurrence relations than the nonlinear contraction found in Secfoit Bas the disadvantage
that, if the rate of error addition exceeds the rate of contraction it may riesaltrivial (infinite)
bound. Theorem 29 is the best contraction rate currently known fatramb conditional distri-
butions, although certain special cases (such as binary—valuedwarad@bles) appear to admit
stronger contractions.
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B.4 Graphswith Cycles

The analysis and discussion of each property (Appendices B.1-Bd3)ediksd on assuming a tree-
structured graphical model, and using the direct relationship betweeagassznd likelihood func-
tions for the parameterization (21)-(22). However, for BP on gergegihs, this parameterization
is not valid.

One way to generalize this choice is given by the re-parameterizationchsmmme fixed point
of loopy BP on the graphical model of the prior. If the original potentigds J% specify the prior
distribution [cf. (22)], .

p(x) O |_| Dst(Xs, Xt ) st)s((xs) (33)

(st)eE
then given a BP fixed poir{tl\7|st, I\7Is} of (33), we may choose a new parameterization of the same
prior Wst, Y% given by

Mst(xs) Mts(xt ) Dst(Xs, %)
|\7|5<Xs) I\zt (%)

This parameterization ensures that uninformative messaggs]) = 1 Vx] comprise a fixed point
for the graphical model op(x) as described by the new potentidlds;, Ws}. For a tree-structured
graphical model, this recovers the parameterization given by (22).

However, the messages of loopy BP are no longer precisely equal to ¢tibdikd functions
m(x) = p(y|X)/p(y), and thus the expectation applied in Theorem 28 is no longer consistent with
the messages themselves. Additionally, the additivity and contraction statenmeretsieveloped
under the assumption that the observed glabong different branches of the tree are conditionally
independentin graphs with cycles, this is not the case. In the computation tree formalisteachs
of being conditionally independent, the observatigrgtuallyrepeatthroughout the tree.

However, the assumption of independence is precisely the same assumplied ag loopy
belief propagation itself to perform tractable approximate inference. ,fTouproblems in which
loopy BP is well-behaved and results in answers similar to the true posteriobuli®ns, we may
expect our estimates of belief error to be similarly incorrect but near totlealivergence.

In short, all three properties required for a strict analysis of the gatan of errors in BP fall,
in one sense or another, for graphs with cycles. However, for mamtisitis of practical interest,
they are quite close to the real average-case behavior. Thus we nest that our approximations
give rise to reasonable estimates of the total error incurred by approxiovgg BP, an intuition
which appears to be borne out in our simulations (Section 6.4).

and W3 (Xs) = Ms(xs). (34)

Wst(Xs, %) =
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