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Abstract
The EM algorithm is widely used to develop iterative parameter estimation procedures for statisti-
cal models. In cases where these procedures strictly followthe EM formulation, the convergence
properties of the estimation procedures are well understood. In some instances there are practical
reasons to develop procedures that do not strictly fall within the EM framework. We study EM vari-
ants in which the E-step is not performed exactly, either to obtain improved rates of convergence,
or due to approximations needed to compute statistics undera model family over which E-steps
cannot be realized. Since these variants are not EM procedures, the standard (G)EM convergence
results do not apply to them. We present an information geometric framework for describing such
algorithms and analyzing their convergence properties. Weapply this framework to analyze the
convergence properties of incremental EM and variational EM. For incremental EM, we discuss
conditions under these algorithms converge in likelihood.For variational EM, we show how the
E-step approximation prevents convergence to local maximain likelihood.
Keywords: EM, variational EM, incremental EM, convergence, information geometry

1. Introduction

The expectation-maximization (EM) algorithm (Dempster et al., 1977) for maximumlikelihood es-
timation (Fisher, 1922; Wald, 1949; Lehmann, 1980) is one of the most widelyused parameter es-
timation procedures in statistical modeling. It is clear why the algorithm is attractive to researchers
building statistical models. The algorithm has an elegant formulation and when itis applied to
appropriate model architectures it yields parameter update procedures that are easy to derive and
straightforward to implement. These parameter estimates yield increasing likelihood over the train-
ing data, and the convergence behavior of this process is well understood.

EM also has acknowledged shortcomings. It can be slow to converge or even intractable for
some combinations of models and training data sets, and there are also model architectures for
which the straightforward application of EM yields update procedures thatdo not have closed form
expressions. As a result, many improvements and extensions of EM have been developed (e.g.,
Meilijson, 1989; Salakhutdinov et al., 2003). Incremental EM (Neal and Hinton, 1998) and vari-
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ational EM (Jordan et al., 1999) are specific examples we will address in the sequel. Such exten-
sions improve various aspects of EM, such as rate of convergence andcomputational tractability.
However, classical (generalized) EM convergence analyses such as those of Wu (1983) and Boyles
(1983) do not apply to many of these variants, and in many cases their convergence behavior is
poorly understood.

We propose the generalized alternating minimization (GAM) framework with the goal of un-
derstanding the convergence properties of a broad class of such EM variants. It is based on the
interpretation of EM as an alternating minimization procedure as described by Csisźar and Tusńady
(1984) and later by Byrne (1992) and Amari (1995). We will show that this alternating minimization
procedure can be extended in a manner analogous to the manner in which generalized EM (GEM)
extends the M step of EM. We then apply a convergence argument similar to that of Wu (1983)
to GAM algorithms, characterizing their convergence. This will show that GAM algorithms are a
further generalization of GEM algorithms which are no longer guaranteed toincrease likelihood at
every iteration, but nevertheless retain convergence to stationary pointsin likelihood under fairly
general conditions.

In practice, an iteration of EM consists of an E step which calculates sufficient statistics under
the posterior distribution of the most recent model estimate, followed by an M step which generates
a new model estimate from those statistics. In contrast, many variants redefinethe E step to use
sufficient statistics calculated under other distributions. For example, an approximation to this pos-
terior distribution is used in variational EM (Jordan et al., 1999), and statistics from the posterior
distributions of previous estimates are carried over in incremental EM (Nealand Hinton, 1998).
Existing (G)EM convergence results do not apply because the E step in such variants is modified
to use other “generating distributions” for computing the sufficient statistics.In order to describe
such variants where the generating distribution is not necessarily the posterior distribution under
the current model, GAM keeps track of both the current model and the distribution generating the
statistics used for computing the next model estimate. While EM algorithms generatesequences of
parameters, GAM algorithms generate sequences of parameters paired withthese generating distri-
butions.

We use the GAM framework to analyze the convergence behavior of incremental EM (Neal and
Hinton, 1998) and variational EM (Jordan et al., 1999). We show that incremental EM converges
to stationary points in likelihood under mild assumptions on the model family. The convergence be-
havior of variational EM is more complex. We do show how GAM convergence arguments can be
used to guarantee the convergence of a broad class of variational EM estimation procedures. How-
ever, unlike incremental EM, this does not guarantee convergence to stationary points in likelihood.
On the contrary, we show that fixed points under variational EM cannot be stationary points in like-
lihood, except in the degenerate case when the model family is forced to satisfy the constraints that
define the variational approximation itself.

In Section 2, we review how the EM algorithm results from alternating minimization of the
information divergence. First, the divergence from the current modelto a family of distributions
of a certain form is minimized to give a generating distribution. Then, the divergence from this
distribution to the model family is minimized to give the next model. We then show that extensions
of the E step such as those mentioned above involve choosing “generating distributions” that do not
minimize the divergence. In GAM, the E and the M steps need only reduce—and not minimize—the
divergence. In fact, the steps need not reduce the divergence individually, but may do so when ap-
plied in succession. As in EM, the modeling assumptions are represented in theparameterization of
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the models. Additionally, GAM explicitly represents the approximations used in estimation by im-
posing constraints on the generating distributions. In pursuing this formulation we were influenced
by the work of Neal and Hinton (1998) which uses generating distributionsto introduce several EM
variants. Our intention is to extend their analysis and provide convergenceresults for the algorithms
they and others propose.

Understanding the convergence behavior of these variants requires the analysis of joint se-
quences of both parameters and their corresponding generating distributions. In Section 3 we
present such an analysis. Our main convergence theorem gives conditions under which GAM pro-
cedures converge to EM fixed points. We draw on the previous work of Wu (1983) which uses
results from nonlinear programming to give conditions under which (G)EM procedures converge to
stationary points in likelihood, as well as the work of Csiszár and Tusńady (1984) which gives an
information geometric treatment of (G)EM procedures as generating joint sequences of generating
distributions and parameters. Csiszár and Tusńady (1984) also provide a convergence analysis that
complements the original results of Wu (1983). However neither of the approaches generalize to
EM extensions that extend the E step.

In Section 4 we apply our convergence results to incremental EM and show that although the
algorithm is non-monotonic in likelihood, it does converge to EM fixed points under very gen-
eral conditions. Note that Neal and Hinton (1998) have already shown that incremental EM gives
non-increasing divergence (non-decreasing free energy) and that local minima in divergence (local
maxima in free energy) are local maxima in likelihood. However, as we show in Section 3, this
is insufficient to conclude that incremental EM converges to local maxima in likelihood, and the
further analysis that is necessary is presented here. In Section 5 we apply a similar analysis to vari-
ational EM to show that convergence to EM fixed points occurs only in degenerate cases. We then
conclude with some discussion in Section 6.

2. EM and Generalized Alternating Minimization

We adopt the view of the EM algorithm as an alternating minimization procedure under the infor-
mation geometric framework as developed by Csiszár and Tusńady (Csisźar and Tusńady, 1984;
Csisźar, 1990). This framework allows an intuitive understanding of the algorithm, and is easily
extended to cover many EM variants of interest. In Section 2.1, we briefly review the EM algo-
rithm as derived within this framework to set the groundwork for the convergence analysis of later
sections. In particular we show how EM can be derived as the alternating minimization of the in-
formation divergence between the model family and a set of probability distributions constrained to
be concentrated on the training data. In Section 2.2, we then extend this alternating minimization
framework to generalized alternating minimization (GAM) algorithms, which are EMvariants that
allow extensions of the E step, in addition to the M step extensions allowed by GEMalgorithms. We
conclude our introduction to GAM algorithms by discussing how the GAM framework is applied to
algorithms of interest in Section 2.3.

2.1 EM as Alternating Minimization

The EM algorithm, when viewed as an alternating minimization procedure, minimizes aKullback-
Leibler type divergence between amodel family(or equivalently a parameter family) and adesired
familyof probability distributions (these are the previously mentioned generating distributions).
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Let the pair of random variablesX andY be related through a function mappingX toY. That is,
X is the complete random variable andY is the incomplete, or observed, random variable (Dempster
et al., 1977; McLachlan and Krishnan, 1997). Often,X is composed of an observed and a hidden
part, andY is composed of only the observed part. We adopt the “complete”/“incomplete”variable
terminology of Dempster et al. (1977) rather than the “observed”/“hidden” variable terminology
that is also commonly used. The model familyP is defined as the set of parameterized models
PX; θ obtained whenθ ranges over the parameter familyΘ. For simplicity, we make the following
assumptions

(Q1) The complete variableX is discrete-valued.

(Q2) pX(x; θ) > 0 for all θ ∈ Θ and for all valuesx taken on byX. That is, the support of the
models does not depend on the parameter.

(Q3) The p.d.f.pX(x; θ) is continuous inθ.

These technical restrictions can be relaxed to allow continuous variables (Gunawardana, 2001). The
difficulty faced in doing so is that continuous models assign zero probability tothe training samples;
Csisźar and Tusńady (1984) show how this problem can be circumvented by the introduction of an
appropriate family of dominating measures.

The desired familyD is defined as the set of all probability distributionsQX that assign proba-
bility one to the observation ˆy of Y:

D
4
= {QX : qY(ŷ) = 1}

whereQY is obtained by marginalizingQX. Thus, desired distributionsQX ∈ D have the property
that QX = QX|Y=ŷ. These probability distributions are “desired” in the sense that they exemplify
the maximum likelihood estimation criterion by assigning the highest possible probability to the
observed data ˆy. Note that multiple training examples are treated by considering the sequences
X = (X(1), · · · ,X(n)) andY = (Y(1), · · · ,Y(n)) together with suitable i.i.d. assumptions.

Since we will be concerned with estimating parameterized modelsPX; θ, we define the Kullback-
Leibler information divergence (Liese and Vajda, 1987) between a desired distributionQX ∈ D and
a parameterθ ∈ Θ through

D(QX||PX; θ) = ∑
x

qX(x) log
qX(x)

pX(x; θ)
. (1)

Note that the divergence is finite for all desired distributionsQX ∈ D and all parametersθ ∈ Θ
because of our simplifying assumption about the support of modelsPX; θ. This implies that the
divergence is continuous over all(QX,θ) ∈ D ×Θ.

Csisźar and Tusńady (1984) show that the EM algorithm can be derived as alternating mini-
mization under the information divergence, as follows (see Figure 1):

Forward Step: Find the desired distributionQ(t+1)
X that minimizes the divergence from the previ-

ous parameterθ(t):

Q(t+1)
X = argmin

QX∈D

D(QX||PX;θ(t)).
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θ(t)

Figure 1: A schematic representation of an iteration of the alternating minimization procedure. The
square of the distance between a point inθ in Θ and a pointQX in D indicates the diver-
gence between them. The arrows indicate projection under this divergence.

Backward Step: Find the parameterθ(t+1) that minimizes the divergence toQ(t+1)
X :

θ(t+1) ∈ argmin
θ∈Θ

D(Q(t+1)
X ||PX;θ). (2)

In the language of Csiszár (1975),Q(t+1)
X is theI-projectionof PX; θ(t) ontoD and is uniquely found

asQ(t+1)
X = PX|Y=ŷ; θ(t) . The EM algorithm (Dempster et al., 1977; Wu, 1983) can be recovered easily

by substituting the I-projection into equation (2) and expanding the divergence using equation (1),
to obtain

θ(t+1) ∈ argmax
θ∈Θ

EPX|Y

[

logpX(X;θ) | ŷ; θ(t)
]

. (3)

Note that we use the notationθ(t+1) ∈argminD(Q(t+1)
X ||PX;θ) instead ofθ(t+1) = argminD(Q(t+1)

X ||PX;θ)
because the backward step may not be unique.

We distinguish between the forward and backward steps of the alternating minimization proce-
dure and the E and M steps of the EM procedure, as they are subtly different. The E step corresponds
to computing the (conditional) expected log likelihood (EM auxiliary function) under the result of
the forward projection. In practical implementations, the auxiliary function is not computed ex-
plicitly in the E step – the expected sufficient statistics are all that need be computed. Thus, the
E step corresponds to taking an expectation under the distribution found in the forward step. The
backward projection minimizes the divergence from the result of the forward projection, while the
M step maximizes the expected log likelihood computed in the E step (or alternatively, finds pa-
rameters such that the sufficient statistics of the resulting model match those computed in the E
step).

2.2 Generalized Alternating Minimization

There are many effective learning algorithms originally motivated by EM but which cannot be de-
scribed using the formulation described above, or equivalently, using theoriginal formulation of
Dempster et al. (1977), because they generalize either the forward or the backward step. Two exam-
ples of such procedures are incremental EM (Neal and Hinton, 1998) and variational EM (Jordan
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Figure 2: A schematic representation of an E step extension allowed by GAM algorithms corre-
sponding to the M step extension of the GEM algorithm. In contrast to Figure 1,both the
E and M steps reduce the divergence rather than minimizing it.

et al., 1999). We are interested in extending the alternating minimization formulationto such vari-
ants by relaxing the requirement that the forward and backward steps perform exact minimization
over the families of distributions. These generalized estimation steps are described as follows.

Generalized Forward Step:Find any desired distributionQ(t+1)
X that reduces divergence from the

previous parameterθ(t):

Q(t+1)
X : D(Q(t+1)

X ||PX;θ(t)) ≤ D(Q(t)
X ||PX;θ(t)).

Generalized Backward Step:Find a parameterθ(t+1) that reduces the divergence toQ(t+1)
X :

θ(t+1) : D(Q(t+1)
X ||PX;θ(t+1)) ≤ D(Q(t+1)

X ||PX;θ(t)). (4)

Generalizations of the backward step correspond to the well known GEM algorithms. We allow
similar generalization of the forward step. We refer to algorithms that consistof alternating ap-
plication of such generalized forward and backward steps as generalized alternating minimization
(GAM) algorithms. Thus, GAM algorithms allow for the expectation in the EM auxiliary function
(equation (3)) to be found under the distributionQ(t+1)

X rather thanPX|Y=ŷ; θ(t) . Q(t+1)
X is not chosen

arbitrarily; it must be closer toPX; θ(t) than the desired distributionQ(t)
X used at the previous itera-

tion. The effect of GAM iterations is to generate sequences of paired distributions and parameters
(Q(t)

X ,θ(t)) that satisfy

D(Q(t+1)
X ||PX;θ(t+1)) ≤ D(Q(t)

X ||PX;θ(t)).

Thus, we examine generalizations that are composed of forward and backward steps that reduce
the divergence, as shown schematically in Figure 2.

2.3 Why GAM

As shown by Jordan et al. (1999), the variational EM algorithm is best described as an alternating
minimization between a set of parameterized models and a set of variational approximations to the
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posterior. This corresponds to extending the forward step to be a projection onto a subset ofD
which satisfies additional constraints (namely, belonging to a given parametric family), rather than
a projection ontoD itself.

In the following example, which follows Jordan et al. (1999), we describehow the mean field
approximation to the E step arises by further constraining the desired familyD.

Example 1 In the case of a Boltzmann machine, we have binary r.v.s X= S= (S1, · · · ,Sn) modeled
by the parametric family

pS(s;θ) =
e∑i< j θi j sisj+∑i θi0si

z(θ)

where z(θ) ensures PS;θ is properly normalized. Suppose the nodes1, · · · ,n of the Boltzmann
machine are partitioned into a set ofevidencenodes E and a set ofhiddennodes H, so that

Y = SE
4
= (Si)i∈E. Then, given observationŝsE of the evidence nodes, the forward step for EM

estimation of the Boltzmann machine is as follows.

Forward Step: Finding the desired distribution

Q(t+1)
X = argmin

QX∈D

D(QX||PX;θ(t))

gives

q(t+1)
SH ,SE

(sH ,sE) = 1ŝE(sE)pSH |SE
(sH |ŝE; θ(t))

where1ŝE(sE) = 1 when sE = ŝE and0 otherwise.
Note that a closed-form solution for the backward step is not generally available, but convergent

algorithms can be obtained using gradient descent or iterative proportional fitting (Darroch and
Ratcliff, 1972; Byrne, 1992). While the forward step can in principle be carried out exactly, this
computation quickly becomes intractable as the number of states increases.In particular, direct
computation of pSH |SE

(sH |ŝE; θ(t)) using Bayes rule involves a summation over all possible values
of the hidden nodes sH .

To get around this we define a subset ofD consisting of mean field approximations to QSH |SE
.

That is, we defineDMF to be those distributions inD whose p.d.f. has the parametric form

qS(s;µ) = 1ŝE(sE)∏
i∈H

µsi
i (1−µi)

1−si

︸ ︷︷ ︸

qSi ;µi

where each µi takes values in[0,1]. Thus the members ofDMF allow no dependencies between
nodes. It follows that a distribution QS∈ DMF is fully specified by its parameter µ and the training
observationŝsE.

The forward step can then be replaced by an approximate forward step, which is now a mini-
mization over the variational parameter µ for fixedθ(t):

Approximate Forward Step: An (approximate) desired distribution

Q(t+1)
X ∈ argmin

QX∈DMF

D(QX||PX;θ(t))
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with p.d.f.

q(t+1)
S (s) = 1ŝE(sE)∏

i∈H
qSi (si ;µ

(t+1)
i )

is chosen by finding a variational parameter

µ(t+1) ∈ argmin
µ

D(QS;µ||PS;θ(t)).

As described by Jordan et al. (1999), this can be done directly, withoutneeding to compute
PSH |SE;θ(t) , by solving the nonlinear system of mean field equations

µ(t+1)
i = σ

(

∑
j

θ(t)
i j µ(t+1)

j +θi0

)

,

whereσ(·) is the logistic function. Note that this simplification results from the careful craft-
ing of the parametric form imposed onDMF .

It can be seen that this variational EM variant is easily described in terms ofminimizing the
divergence between a constrained family of desired distributions and a model family. The approx-
imate forward step in this example is a generalization of the usual I-projection onto D, and the
resulting algorithm is therefore a GAM procedure.

3. GAM Convergence

In this section, we describe our main result – a theorem which characterizes the convergence of
GAM procedures. As the preceding example shows, some EM variants of interest are GAM pro-
cedures but not GEM procedures. This means that their convergencebehavior may be different
from what the familiar convergence properties of (G)EM would suggest.In particular, monotonic
increase in likelihood and convergence to local maxima (technically, stationarypoints) in likelihood
may no longer hold. This may happen even when the divergence is non-increasing, and when sta-
tionary points of the likelihood are fixed points of the GAM procedure. We begin with a simple toy
example where this can easily be seen.

Example 2 Let the complete random variable X= (X1,X2) represent the result of tossing a coin
twice. That is, X1,X2 are i.i.d., with Xi taking the value1 with probabilityθ and0 with probability
1− θ. Let the incomplete random variable Y encode whether the result seemed“fair” or not. It
takes on the value1 if X takes on the values(0,1) or (1,0), and takes on the value0 otherwise.
Suppose the observationŷ of Y isŷ = 0. In this simple case, the complete data likelihood is given
by

pX(x; θ) = θx1+x2(1−θ)2−(x1+x2)

and the incomplete data likelihood is given by

pY(ŷ; θ) = pY(0; θ)

= pX(0,0; θ)+ pX(1,1, ; θ)

= (1−θ)2 +θ2.
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Note that the incomplete likelihood is convex, with global maxima atθ = 0 andθ = 1, and a global
minimum atθ = 0.5. Desired distributions QX ∈ D take the form

qX(x) =







q11 if x = (1,1),

1−q11 if x = (0,0),

0 otherwise.

The divergence between a desired distribution and a model is given by

D(QX||PX;θ) = q11 log
q11

θ2 +(1−q11) log
1−q11

(1−θ)2 ,

which can be shown to be convex in q11 for fixedθ and convex inθ for fixed q11 (though not jointly
convex in q11 and θ). The EM algorithm for estimatingθ can be given by a forward step and a
backward step as follows:

Forward Step: As described above, the forward step is given by the I-projection of the model
PX; θ(t) ontoD. This is given by

q(t+1)
X|Y (x|ŷ) = pX|Y(x|ŷ; θ(t)),

q(t+1)
11 =

θ(t)2

(1−θ(t))2 +θ(t)2 .

Backward Step: Minimizing the divergence given above overθ for a fixed q11 gives

θ(t+1) = q(t+1)
11 .

Thus, the EM iteration for this problem is

θ(t+1) =
θ(t)2

(1−θ(t))2 +θ(t)2 .

It can be seen thatθ(0) < 0.5 gives convergence to the global maximum atθ = 0.0, whileθ(0) > 0.5
gives convergence to the global maximum atθ = 1.0. Starting at the global minimum atθ = 0.5
traps the algorithm there.

We now investigate how the additional constraint

0.4≤ q11 ≤ 0.6 (5)

on the desired distribution changes the forward step, and as a result, the convergence behavior of the
algorithm. Note that a forward step that projects onto this constrained set ofdesired distributions
will reduce the divergence between the desired distribution and the model, and will therefore be a
GAM procedure.

Computing the partial derivative

∂
∂q11

D(QX||PX;θ) = log

(

q11

1−q11

(
1−θ

θ

)2
)
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shows that it is positive for0.4≤ q11≤ 0.6 whenθ < 1

1+
√

3/2
≈ 0.4495. Therefore, the forward step

from anyθ < 1

1+
√

3/2
is given by q11 = 0.4.

Supposeθ(0) = 0.3. The unconstrained forward step would have given q(1)
11 = 0.155, which

would have violated the additional constraint(5). Under the additional constraint(5), the forward

step is given by q(1)
11 = 0.4. This in turn leads toθ(1) = 0.4, and the next forward step again gives

q(2)
11 = 0.4, showing that the algorithm has converged in a single step, albeit to a value that is not

a maximum (or stationary point) in likelihood. Also, recall that the incomplete data likelihood is
convex with a minimum atθ = 0.5. This means that initial points inθ < 0.4 will converge in one
step toθ = 0.4, thereby reducing likelihood. Indeed, the likelihood at the initial point (θ = 0.3) is
0.58and the likelihood at the subsequent (limit) points (θ = 0.4) is 0.52.

Thus, it is clear that the convergence behavior of GAM algorithms can differ extremely from that
of EM algorithms, and therefore needs to be carefully studied. In fact, non-monotonic convergence
behavior can also be seen in the case of incremental EM (Byrne and Gunawardana, 2000). In
the following, we will show that under smoothness conditions on the forwardand backward steps,
GAM procedures that strictly reduce divergence at every step, except possibly at stationary points
in likelihood, will yield solutions that are stationary points in likelihood.

3.1 GAM Convergence Theorem

The GAM convergence theorem is a direct application of the generalized convergence theorem
(GCT) of Zangwill (1969). We will define the forward and the backwardsteps to be point-to-set
maps, rather than functions, so that we may deal with extended E and M stepsthat do not yield
unique iterates. The GCT will require that these maps be closed. Closedness of a point-to-set map
is a smoothness property that is related to function continuity, and is defined as follows:

Definition 1 A point-to-set-map H:U →V is closed at u∈U if for any two sequences{u(t)}∞
t=0 ∈U

and{v(t)}∞
t=0 ∈V the conditions u(t) → u, v(t) → v, and v(t) ∈ H(u(t)), imply that v∈ H(u).

We now state Zangwill (1969)’s GCT:

Theorem 2 Let the point-to-set map H: Z → Z determine an algorithm that given a point z(0)

generates a sequence
{

z(t)
}∞

t=0 through the iteration z(t+1) ∈ H(z(t)). Also let a solution setΓ be
given. Suppose

(1) All points z(t) are in a compact set S⊆ Z.

(2) There is a continuous functionα : Z → R such that:

(a) if z 6∈ Γ, thenα(z′) < α(z) ∀z′ ∈ H(z),

(b) if z∈ Γ, thenα(z′) ≤ α(z) ∀z′ ∈ H(z).

(3) The map H is closed at z if z6∈ Γ.

Then the limit of any convergent subsequence of
{

z(t)
}∞

t=0 is in Γ. That is, accumulation points z∗ of

the sequence z(t) lie in Γ. Furthermore,α(z(t)) converges toα∗, andα(z∗) = α∗ for all accumulation
points z∗.
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We use this GCT to show our main convergence result for GAM procedures and then give a
corollary that describes how they converge in likelihood.

Theorem 3 (GAM Convergence Theorem)Let D be any family of distributions on X and letΘ
be the parameter family defined in Section 2. Let the solution setΓ be defined as

Γ =

{

(QX,θ) : QX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ) andθ ∈ argmin

ξ∈Θ
D(QX||PX;ξ)

}

.

Let FB: D ×Θ → D ×Θ be any point-to-set map such that all(Q′
X,θ′) ∈ FB(QX,θ) satisfy

(GAM) : D(Q′
X||PX;θ′) ≤ D(QX||PX;θ)

with equality only if

(EQ) : (QX,θ) ∈ Γ.

Let
{
(Q(t)

X ,θ(t))
}∞

t=0 ∈ D ×Θ be a sequence generated from a pair(Q(0)
X ,θ(0)) by the iterative ap-

plication of the point-to-set-map FB:

(Q(t+1)
X ,θ(t+1)) ∈ FB(Q(t)

X ,θ(t)).

Suppose thatΘ is compact, that there is a compact setD ′ ⊆ D such that

(1) FB(D ′×Θ)
4
= ∪(QX ,θ)∈D ′×θFB(QX,θ) ⊆ D ′×Θ,

(2) The point-to-set map FB is closed onD ′×Θ,

and that it can be shown that(Q(k)
X ,θ(k)) ∈ D ′×Θ for some iteration(k).

Then all accumulation points(Q∗
X,θ∗) of the sequence

{
(Q(t)

X ,θ(t))
}∞

t=0 lie in the solution setΓ
and D(Q∗

X||PX;θ∗) = D∗ and D(Q(t)
X ||PX;θ(t)) → D∗.

Proof We restrict the point-to-set mapFB to D ′×Θ, and then apply Zangwill’s GCT above with
S= Z = D ′×Θ, α = D, H = FB, and

{
z(t)
}∞

t=0 =
{
(Q(t)

X ,θ(t))
}∞

t=k. The compactness ofD ′×Θ
follows from the compactness ofD ′ andΘ individually. The continuity of the divergence in(QX,θ)
follows from the continuity of the divergenceD(QX||PX; θ) in QX andPX; θ and the continuity of
pX; θ in θ. The theorem then follows by direct application of Zangwill’s theorem.

Corollary 4 (Stationary Points in Likelihood) In Theorem 3, suppose thatD is the desired family
defined in Section 2. Then the following hold for accumulation points(Q∗

X,θ∗):

(1) pY(ŷ; θ∗) = e−D∗
and pY(ŷ; θ(t)) → e−D∗

.

(2) θ∗ is a stationary point of the incomplete data likelihood if it is in the interior ofΘ.
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Proof For (QX,θ) ∈ Γ, qX(x) = pX|Y(x|ŷ; θ) so thatD(QX||PX; θ) = − logq(ŷ;θ) yielding conclu-
sion (1).

Since(Q∗
X,θ∗) ∈ Γ, q∗X(x) = pX|Y(x|ŷ; θ∗), giving

θ∗ ∈ argmin
θ∈Θ

D(PX|Y=ŷ; θ∗ ||PX;θ).

The divergence in the right hand side can be expanded as

D(PX|Y=ŷ; θ∗ ||PX;θ) = − logpY(ŷ; θ)+D(PX|Y=ŷ; θ∗ ||PX|Y=ŷ; θ).

Taking the gradient of this expression and setting it to zero yields

−∇θ logpY(ŷ; θ)
∣
∣
θ=θ∗ +∇θD(PX|Y=ŷ; θ∗ ||PX|Y=ŷ; θ)

∣
∣
θ=θ∗ = 0.

SinceD(PX|Y=ŷ; θ∗ ||PX|Y=ŷ; θ) is minimized whenθ = θ∗, this gives us that

∇θ logpY(ŷ; θ)
∣
∣
θ=θ∗ = 0.

This proves conclusion (2).

The GAM convergence theorem and corollary provide conditions underwhich iterative estima-
tion procedures converge to stationary points in likelihood. However it is possible that these pro-
cedures are not monotonic in likelihood. This can be see from the Pythagorean equality (Csisźar,
1975) which provides the following relationship between allQX in the linear familyD and a model
PX; θ

D(QX||PX; θ) = D(QX||Q̃X)+D(Q̃X||PX; θ)

where the I-projectionQ̃X = argminQX∈DD(QX||PX; θ) is uniquely specified as̃QX|Y=ŷ = PX|Y=ŷ;θ.
From this we find the following relationship between the likelihood of the model estimates and the
overall divergence

D(QX||PX; θ) = D(QX || PX|Y=ŷ; θ)− logpY(ŷ; θ).

While GAM procedures guarantee thatD(Q(t+1)
X || PX;θ(t+1)) ≤ D(Q(t)

X || PX;θ(t)), we can conclude
only that

logpY(ŷ; θ(t+1)) ≥ logpY(ŷ; θ(t))+∆(t)

where∆(t) = D(Q(t+1)
X || PX|Y=ŷ; θ(t+1))−D(Q(t)

X || PX|Y=ŷ; θ(t)). Since, as shown in Figure 3, this
quantity can be negative, it is possible for GAM algorithms to be non-monotonic inlikelihood even
while converging to local maxima in likelihood.

We now discuss the construction of a GAM mappingFB that satisfies the requirements of the
GAM convergence theorem.

Proposition 5 Let the point-to-set map FB in Theorem 3 above be the composition B◦F of point-
to-set maps F: D ×Θ → D ×Θ and B: D ×Θ → D ×Θ. Suppose that the point-to-set maps F and
B are defined so that
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PX|Y=ŷ;θ(t)

PX|Y=ŷ;θ(t+1)

Θ

θ(t+1)
Q(t+1)

X

D

Q(t)
X

θ(t)

Figure 3: A schematic representation of how GAM procedures may be non-monotonic in likeli-
hood. The solid arrows show forward and backward steps that reduce the divergence
rather than minimizing it. The broken arrows show the forward steps that would have
been taken by the EM algorithm (i.e., the I-projections of the models). Divergences that
obey the Pythagorean equality are indicated by right triangles. In particular, the squared
lengths of the broken arrows represent negative log likelihood. Note that the divergence
between the desired distribution yielded by the forward step and the I-projection of the
model decreases, while the negative log likelihood increases.

(1) F and B are closed onD ′×Θ

(2) F(D ′×Θ) ⊆ D ′×Θ and B(D ′×Θ) ⊆ D ′×Θ

Suppose also that F is such that all(Q′
X,θ′) ∈ F(QX,θ) haveθ′ = θ and satisfy

(GAM.F) : D(Q′
X||PX;θ) ≤ D(QX||PX;θ)

with equality only if

(EQ.F) : QX = argmin
Q′′

X∈D

D(Q′′
X||PX;θ),

with QX being the unique minimizer. Suppose also that the point-to-set map B is suchthat all
(Q′

X,θ′) ∈ B(QX,θ) have Q′X = QX and satisfy

(GAM.B) : D(QX||PX;θ′) ≤ D(QX||PX;θ)

with equality only if

(EQ.B) : θ ∈ argmin
ξ∈Θ

D(QX||PX;ξ).

Then,

(1) the point-to-set map FB is closed onD ′×Θ

(2) FB(D ′×Θ) ⊆ D ′×Θ

and FB satisfies the GAM and EQ conditions of the GAM convergence theorem.
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Proof If the point-to-set mapsF : A→ B andG : B→C are closed onA andB respectively, their
compositionFG= G◦F is closed onA if B is compact. SinceF andB are closed onD ′×Θ, which
is compact, it follows thatFB is closed onD ′×Θ. ThatFB(D ′×Θ) ⊆ D ′×Θ follows directly
from the assumptions of the proposition.

The condition (GAM) follows directly from (GAM.F) and (GAM.B).
Conditions (EQ.F) and (EQ.B) together are not enough to ensure condition(EQ). Suppose

(RX,φ) ∈ FB(QX,θ). This implies that(RX,θ) ∈ F(QX,θ) and(RX,φ) ∈ B(RX,θ).
SupposeD(RX||PX;φ) = D(QX||PX;θ). Then (GAM.F) and (GAM.B) ensure thatD(RX||PX;φ) =

D(RX||PX;θ) = D(QX||PX;θ). Condition (EQ.F) gives

QX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ), (6)

RX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ),

and (EQ.B) gives

θ ∈ argmin
ξ∈Θ

D(RX||PX;ξ). (7)

While equation (6) is the first criterion for membership inΓ, equation (7) is not quite the second cri-
terion – the divergence minimized here isD(RX||PX;ξ) instead ofD(QX||PX;ξ). Since by assumption,
QX is the unique minimizer of the divergence,QX = RX, giving the required condition

θ ∈ argmin
ξ∈Θ

D(QX||PX;ξ).

This allows us to construct a mapFB through the composition of generalized forward and backward
stepsF andB. As seen in the proof it is insufficient for the forward and backward steps to satisfy the
GAM and EQ conditions separately. It is also necessary for the forwardstep to satisfy the equality
condition with a unique minimizer. For example, this condition is satisfied whenD is defined by
linear constraints as in Section 2 and the forward step is a simple projection, asin the case of
EM. Even when this condition is not satisfied, it may be possible to show condition (EQ) for the
composite mapFB. It is important to show thatFB strictly decreases the divergence for all points
outside the solution setΓ, since any points where this does not hold are accumulation points of the
algorithm.

As an instance of the GAM procedure, EM convergence is also explainedby these results as
shown in Appendix A. The conditions of Theorem 3 and Corollary 4 are quite general, and very
similar to those that must be satisfied to ensure GEM convergence (Wu, 1983). For example, in
both GEM and GAM, condition (Q2) must hold. Insisting on this would rule out GMMs with
parameter families that allow individual Gaussians to have a variance of zero. In practice, modeling
considerations usually prevent such situations.

4. Incremental EM as GAM

We now turn our attention to the incremental EM algorithm of Neal and Hinton (1998). This variant
of the EM algorithm divides the training data into partitions, and at each iterate,computes condi-
tional sufficient statistics on only one partition. The statistics conditioned on other partitions are
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saved from previous iterations. The statistics corresponding to the different partitions are pooled
before performing the M step at each iteration, but the separate per-partition statistics are retained
for use in future iterations. This algorithm has shown to give faster convergence in a number of
applications (Digalakis, 1997; Thiesson et al., 2001; Hsiao et al., 2004),even though it may be
non-monotonic in likelihood (Byrne and Gunawardana, 2000). Here, weuse our GAM results to
show that in most cases, the incremental updates do not sacrifice the convergence guarantees of
EM, despite the non-monotonicity in likelihood. Note that Neal and Hinton (1998)have shown that
incremental EM is monotonic in divergence, but not that it converges to EMfixed points.

The complete variableX = (X(1), · · · ,X(n)) is assumed to consist ofn independent compo-
nents so thatQX = ∏n

i=1QX(i) . The visible variableY = (Y(1), · · · ,Y(n)) has observed value ˆy =
(ŷ(1), · · · , ŷ(n)). The componentsY(i) are generated independently of each other, from their corre-
spondingX(i).

The EM auxiliary function for these variables is

Φ(θ|θ(t)) =
n

∑
i=1

EP
X(i) |Y(i)

[

logpX(i)(X(i);θ) | ŷ(i); θ(t)
]

=
n

∑
i=1

Φ(i)(θ|θ(t)).

Rather than maximize this auxiliary function, the incremental EM algorithm allows re-estimation to
be performed based on a single component ˆy(i) of the observation ˆy at any step. For example, in a
two-element problem the re-estimation procedure might proceed as follows :

θ(t+1) = argmaxθ∈Θ (Φ(1)(θ|θ(t−1))+Φ(2)(θ|θ(t))),

θ(t+2) = argmaxθ∈Θ (Φ(1)(θ|θ(t+1))+Φ(2)(θ|θ(t))),

θ(t+3) = argmaxθ∈Θ (Φ(1)(θ|θ(t+1))+Φ(2)(θ|θ(t+2))),

· · ·

This is not enough to ensure thatΦ(θ(t+3)|θ(t+1)) ≤ Φ(θ(t+1)|θ(t+1)) so the (G)EM convergence
results do not apply. However the algorithm can be formulated as an GAM procedure.

To show that incremental EM can be a GAM procedure, we describe it as anested series ofn
incremental forward steps andn exact backward steps. Iteration(t +1) of incremental EM proceeds
as follows. First, the iteration is initialized from the results of the previous iteration:

Q(t+1,0)
X = Q(t)

X and θ(t+1,0) = θ(t).

We then define a series ofn incremental forward stepsj = 1, · · · ,n

Q(t+1, j)
X(i) =

{

PX(i)|Y(i)=ŷ(i);θ(t+1, j−1) if j = i

Q(t+1, j−1)

X(i) otherwise,

and backward steps

θ(t+1, j) ∈ argmin
ξ∈Θ

D(Q(t+1, j)
X ||PX;ξ),
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so that finally we setQ(t+1)
X = Q(t+1,n)

X and θ(t+1) = θ(t+1,n).
We formally represent the( j)th incremental forward stepF( j) : D ×Θ → D ×Θ as the singleton

point-to-set map

F( j)(QX,θ) =

{

(Q′
X,θ) : Q′

X = PX( j)|Y( j)=ŷ( j); θ ∏
i6= j

QX(i)

}

.

It updates the( j)th component marginalQX( j) of QX but keeps the other component marginals fixed.
The backward step is represented by a closed point-to-set mapB : D ×Θ → D ×Θ satisfy-

ing conditions (GAM.B) and (EQ.B) of Proposition 5 withQ′
X = QX for (Q′

X,θ′) ∈ B(QX,θ), and
additionally satisfying:

B(QX,θ) is a singleton set∀(QX,θ) ∈ D ×Θ : (QX,θ) ∈ M(QX,θ). (8)

Thus, we are guaranteed thatθ′ = θ when D(QX||PX; θ′) = D(QX||PX; θ). This is equivalent to
requiring that the EM auxiliary function has a unique maximizer. We note that thisoften holds in
practice – for example, when the complete data distribution comes from a flat exponential family
(Efron, 1975; Amari, 1995) as is the case with mixtures of Gaussians, or with hidden Markov
models. Even when the complete data distribution is a curved exponential family,uniqueness can
still be possible.

Using these composite maps we can describe incremental EM as

(Q(t+1)
X ,θ(t+1)) ∈ FB(Q(t)

X ,θ(t))

where

FB = B◦F(n) ◦ · · · ◦B◦F(1) .

Proposition 6 As defined, incremental EM can be shown to converge to stationary pointsin likeli-
hood through application of the GAM convergence theorem.

Proof For any(QX,θ) ∈ D × Θ, we use the independence of the componentsX(i) andY(i) to
decompose the divergenceD(QX||PX;θ) into a sum of component divergences as follows

D(QX||PX; θ) = ∑
i

D(QX(i) ||PX(i); θ).

The( j)th backward step satisfies

D(Q(t+1, j)
X ||PX; θ(t+1, j)) ≤ D(Q(t+1, j)

X ||PX; θ(t+1, j−1))

= ∑
i:i6= j

D(Q(t+1, j−1)

X(i) ||PX; θ(t+1, j−1))+D(Q(t+1, j)
X( j) ||PX; θ(t+1, j−1))

where the right hand side has been expanded using the fact that the( j)th incremental forward step
leaves all but the( j)th component divergence unchanged. Since the( j)th incremental forward step
minimizes the( j)th component divergence,we get

D(Q(t+1, j)
X ||PX; θ(t+1, j)) ≤ ∑

i:i6= j

D(Q(t+1, j−1)

X(i) ||PX; θ(t+1, j−1))+D(Q(t+1, j−1)

X( j) ||PX; θ(t+1, j−1))

= D(Q(t+1, j−1)
X ||PX; θ(t+1, j−1)).
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Condition (GAM) of Theorem 3 is therefore satisfied.
Since the mapsF( j) andB are closed (Appendix A, Proposition 7),FB will be closed onD ′, if

the set is constructed so as to be compact (Appendix A). An appropriate definition of D ′ ⊆ D is
given in Appendix B along with a proof that incremental EM satisfies the equality condition (EQ)
of Theorem 3.

Thus, the GAM convergence theorem shows that incremental EM procedures converge to EM
fixed points when the EM auxiliary function is uniquely maximized. However, it isnot a GEM
procedure, and monotonicity in likelihood is no longer guaranteed. Indeed, as discussed in Byrne
and Gunawardana (2000) non-monotonicity in likelihood is observed in practice, and the conver-
gence behavior is very different from that of (G)EM procedures, despite the common fixed point
set. Thiesson et al. (2001) also show that the convergence behavior of incremental EM is different
from that of EM in practice.

5. Variational EM as GAM

Variational approximations have been popular in cases where computing theexact forward step
qX(x) = pX|Y(x|ŷ; θ) is intractable (Jordan et al., 1999). The idea is to restrict attention to a subfam-
ily DV of D such that members ofDV have a particular parametric form, which is chosen so that
projecting a modelPX; θ ontoDV is more tractable than projecting it ontoD. That is, a parametriza-
tion qX(x; λ) with λ ∈ Λ is fixed, and the familyDV is defined as

DV = {QX ∈ D : qX(x) = qX(x; λ) for someλ ∈ Λ}.

We assumeΛ ⊆ R
n is closed and bounded.

Then, the variational forward step is defined to be

FV(QX,θ) =

{

(Q′
X,θ) : Q′

X ∈ argmin
Q′′

X∈DV

D(Q′′
X||PX; θ)

}

.

By the Pythagorean equality of Csiszár (1975),

D(Q′′
X||PX; θ) = D(Q′′

X||PX|Y=ŷ; θ)+D(PX|Y=ŷ; θ||PX; θ)

= D(Q′′
X||PX|Y=ŷ; θ)− logpY(ŷ; θ).

Thus,Q′′
X ∈ DV that minimizes this divergence also best approximatesPX|Y=ŷ; θ, which is the desired

distribution that would be chosen by the usual EM procedure.
Notice that the divergence minimized at every iteration is no longer justD(PX|Y=ŷ; θ||PX; θ)

(which is the negative log likelihood) as in the EM algorithm, and that therefore, the likelihood
is not guaranteed to increase at every iteration. We now examine if the conditions of the GAM
convergence theorem of Section 3 still hold if the forward step of the EM procedure is replaced by
FV .

First, note thatDV is a natural choice forD ′ as long as the set of variational parametersΛ is com-
pact. That the mapFV is closed onDV ×Θ follows from Corollary 8 and Lemma 9 of Appendix A,
and the assumptions onΛ. The mapping satisfies conditions (GAM.F) and (EQ.F) because each
new desired distribution must minimize the divergence toDV . However, the uniqueness condition
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of Proposition 5 (EQ.F) cannot be guaranteed in general, and must be verified for each choice of
DV . If this condition holds, then the algorithm converges to minimizers of the divergence between
the family of variational approximations and the model family. For example, this happens when the
variational E step is uniquely defined.

We now analyze when these limit points(Q∗
X,θ∗) are stationary points in likelihood. Sinceθ∗

minimizes the divergenceD(Q∗||PX; θ) overθ,

∇θD(Q∗
X||PX;θ)

∣
∣
∣
θ=θ∗

= 0.

Expanding the divergence as before,

∇θD(Q∗
X||PX|Y=ŷ;θ)

∣
∣
∣
θ=θ∗

−∇θ logq(ŷ; θ)
∣
∣
∣
θ=θ∗

= 0

so that∇θ logq(ŷ; θ)|θ=θ∗ = 0 if and only if

∇θD(Q∗
X||PX|Y=ŷ;θ)

∣
∣
∣
θ=θ∗

= 0.

Therefore aθ∗ generated by a variational EM procedure is a stationary point in likelihood ifand
only if θ∗ is a parameter that locally minimizes the variational approximation error. This canhap-
pen in two ways. First, the variational error may have stationary points at stationary points in
likelihood. This can only be ensured if the stationary points are known before estimation. Second,
the variational error is independent ofθ. This is not possible if the variational family introduces
independence assumptions that ensure tractability. In particular, a model which agrees with the
variational approximation (e.g., a factorial HMM with parameter settings that decouple the state
sequences) will have lower variational error than one that does not. Weillustrate this in the case of
the mean field approximation for Boltzmann machines.

Example 3 In Example 1, choose a pair of hidden nodes i, j connected by a dependency link. It is
well-known (Byrne, 1992) that

∂
∂θi j

logpS|SE
(s|ŝE;θ) = sisj −EPS|SE

[SiSj |ŝE;θ] ,

∂
∂θk0

logpS|SE
(s|ŝE;θ) = sk−EPS|SE

[Sk|ŝE;θ] k = i, j,

which gives

∂
∂θi j

D(Q∗
S||PS|SE=ŝE;θ) = EQ∗

S
[SiSj ;µ]−EPS|SE

[SiSj |ŝE;θ]

= µ∗i µ∗j −EPS|SE
[SiSj |ŝE;θ] ,

∂
∂θk

D(Q∗
S||PS|SE=ŝE;θ) = µ∗k −EPS|SE

[Sk|ŝE;θ] k = i, j.
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If ∇θD(Q∗
S||PS|SE=ŝE;θ)

∣
∣
∣
θ=θ∗

is to be zero,

EPS|SE
[SiSj |ŝE;θ∗] = EPS|SE

[Si |ŝE;θ∗]EPS|SE
[Sj |ŝE;θ∗]

must hold. This can only occur ifθ∗
i j = 0, when the model itself satisfies the constraints of the mean

field approximation. Thus, under this variational approximation, only Boltzmann machines where
the hidden units do not depend on each other can give stationary points in likelihood.

To summarize, the GAM convergence theorem applies to variational EM in cases when the
variational E step is uniquely defined. When this is so, the resulting model is ata local minimum of
the divergence between the model family and the family of variational approximations. However,
except in degenerate cases, this model cannot be at a stationary point inlikelihood. These degenerate
cases occur when the model satisfies the simplifying conditions that define thefamily of variational
approximations. In this case, the variational EM algorithm is essentially performing standard EM
over a restricted model family defined so as to be consistent with the variational approximations.

6. Conclusion

GAM iterative estimation procedures are a class of EM extensions whose E step can be varied
in a manner analogous to the relaxation of the M step that occurs in GEM algorithms. We have
provided conditions under which these procedures can be shown to converge to stationary points in
likelihood. The conditions specify allowable E step variations that are in factanalogous to the M
step variations that are allowed by GEM procedures. The convergenceanalysis is analogous to that
presented by Wu (1983), but takes advantage of the information geometricframework of Csisźar
and Tusńady (1984) to explicitly represent distributions in computing sufficient statistics.

We have analyzed the convergence behavior of two well known EM extensions, namely incre-
mental EM and variational EM, as GAM procedures. Our GAM convergence analysis shows that
incremental EM procedures converge to stationary points in likelihood, even though incremental
EM is in general neither a GEM procedure nor monotonic in likelihood. Variational EM algorithms
with unique E steps satisfy the conditions of the GAM convergence theorem but do not satisfy its
corollary. Thus the GAM convergence theorem shows that such algorithms converge to solutions
that minimize divergence, but these are not necessarily stationary points inlikelihood. We then
present an information geometric argument which shows that variational EMcan only converge to
stationary points in likelihood in degenerate cases.

Appendix A. EM Satisfies the GAM Convergence Theorem

Recall that the forward and backward stepsF,B : D ×Θ → D ×Θ of the EM algorithm are given
by

F(QX,θ) =

{

(Q′
X,θ) : Q′

X ∈ argmin
Q′′

X∈D

D(Q′′
X||PX;θ)

}

and

B(QX,θ) =

{

(QX,φ) : φ ∈ argmin
ξ∈Θ

D(QX||PX;ξ)

}

.
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That the conditions (GAM.F), (GAM.B), (EQ.F), and (EQ.B) hold is obviousby construction.
We will first show a compactD ′ that guarantees thatF(D ′×θ) ⊆ D ′×θ andB(D ′×θ) ⊆ D ′×θ.
We will then show thatF andB are closed onD ′×Θ. Proposition 5 then implies that the composite
mapFB satisfies the conditions of the GAM convergence theorem (Theorem 3).

Restricting the desired family to a compact set We defineD ′ as

D ′ =
{

QX ∈ D : qX|Y(x|ŷ) = pX|Y(x|ŷ; θ) for someθ ∈ Θ
}

with D defined as in Section 2. Note that this forces everyQX ∈ D ′ to be the continuous mapping
of someθ ∈ Θ. Therefore,D ′ is the continuous mapping of the compact setΘ, and is therefore
compact.

By construction ofD ′, it is guaranteed thatQX generated by a forward step will lie inD ′. Thus,
F(D ′×Θ) ⊆ D ′×Θ. By definition ofB(·), B(D ′×Θ) ⊆ D ′×Θ.

Closedness of the forward and backward steps The following proposition and corollary show
that the minimization of a continuous function forms a closed point-to-set map. This implies that
projection under the divergence forms a closed point-to-set-map, so thatthe (ungeneralized) forward
and backward steps of the EM algorithm are in fact closed point-to-set maps.

Proposition 7 Given a real-valued continuous function f on A×B, define the point-to-set map
F : A→ B by

F(a) = argmin
b′∈B

f (a,b′),

= {b : f (a,b) ≤ f (a,b′) for ∀b′ ∈ B}.

Then, the point-to-set map F is closed at a if F(a) is nonempty.

Proof Let {a(t)}∞
t=0 and{b(t)}∞

t=0 be sequences inA andB respectively, such that

a(t) → a,

b(t) → b,

and suppose

b(t) ∈ F
(

a(t)
)

.

That is,

b(t) ∈ argmin
b′∈B

f (a(t),b′).

The mapF is closed ata∈ A if this implies thatb∈ F(a) – that is, thatb∈ argmin
b′∈B

f (a,b′).

To prove the proposition by contradiction, supposeb 6∈ argmin
b′∈B

f (a,b′). By assumptionF(a) is

nonempty. Therefore, there existsb̂∈ argmin
b′∈B

f (a,b′). Chooseε > 0 such that

f (a,b) > f (a, b̂)+2ε. (9)
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By continuity of f (·, ·) and f -monotonicity of(a(t),b(t)), ∃K1 such that

f (a(t),b(t)) > f (a,b)− ε, ∀t > K1,

so that by equation (9),

f (a(t),b(t)) > f (a, b̂)+ ε, ∀t > K1.

By continuity of f (·, b̂) and f -monotonicity of(a(t),b(t)), ∃K2 such that

f (a, b̂)+ ε > f (a(t), b̂), ∀t > K2.

Combining these two bounds gives∃t > K1,K2 such that

f (a(t),b(t)) > f (a(t), b̂)

which is a contradiction since by assumption,b(t) ∈ argmin
b′∈B

f (a(t),b′), and therefore,

b∈ argmin
b′∈B

f (a,b′),

b∈ F(a).

Corollary 8 The point-to-set map F: A→ B of Proposition 7 is closed on A if the set B is closed.

The following lemma shows that the Cartesian product of two closed point-to-set-maps is itself
closed.

Lemma 9 Suppose F: A→ B and G: A→C are closed point-to-set-maps. Then the product point-
to-set-map H: A→ B×C defined by

H(a) = F(a)×G(a)

is closed.

This follows by direct application of the definition of closedness of point-to-set maps.
Proposition 7 and the existence of the I-projection shows that the mapping fromΘ to D defined

by

QX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ)

is closed. This result together with Lemma 9 then show that the forward stepF of the EM algorithm
shown above is closed. Similarly, it can be shown using Corollary 8 and Lemma9 that the backward
stepB is closed.
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Appendix B. Incremental EM: (EQ) and D ′

In this appendix, we show that incremental EM satisfies condition EQ of the GAM convergence the-
orem, and show a compact restriction of the desired family that can be used toanalyze convergence
of incrmental EM.

B.1 Incremental EM Satisfies Condition (EQ)

(Q′
X,θ′) ∈ FB(QX,θ) implies a sequence of incremental steps

(R(0)
X ,φ(0)), · · · ,(R(n)

X ,φ(n))

such that

(R(0)
X ,φ(0)) = (QX,θ),

(R( j)
X ,φ( j)) ∈ F( j)B(R( j−1)

X ,φ( j−1)),

and

(Q′
X,θ′) = (R(n)

X ,φ(n)).

WhenD(Q′
X||PX;θ′) = D(QX||PX;θ), the GAM inequality (already shown) gives that the diver-

gence is unchanged at every incremental step:

D(R( j)
X ||PX;φ( j)) = D(R( j−1)

X ||PX;φ( j−1))

for j = 1, · · · ,n. In fact, by conditions (GAM.F) and (GAM.B), the divergence is unchanged at each
incremental forward stepF( j) and the backward stepB:

D(R( j)
X ||PX;φ( j−1)) = D(R( j−1)

X ||PX;φ( j−1)) (10)

and

D(R( j)
X ||PX;φ( j)) = D(R( j)

X ||PX;φ( j−1)) (11)

for j = 1, · · · ,n. We will now show thatQX(i) = PX(i)|Y(i)=ŷ(i); φ(i−1) for i = 1, · · · ,n and thatφ( j) = θ
for j = 1, · · · ,n, which will then imply that condition (EQ) holds.

To showQX(i) = PX(i)|Y(i)=ŷ(i); φ(i−1) we decompose equation (10) as

∑
i 6= j

D(R( j)
X(i) ||PX;φ( j−1))+D(R( j)

X( j) ||PX;φ( j−1)) =

∑
i6= j

D(R( j−1)

X(i) ||PX;φ( j−1))+D(R( j−1)

X( j) ||PX;φ( j−1)).

SinceR( j)
X(i) = R( j−1)

X(i) for all i 6= j at any incremental step( j), this reduces to

D(R( j)
X( j) ||PX;φ( j−1)) = D(R( j−1)

X( j) ||PX;φ( j−1))
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for j = 1, · · · ,n. SinceR( j)
X( j) = PX( j)|Y( j)=ŷ( j); φ( j−1) uniquely minimizes the component divergence

D(RX( j) ||PX;φ( j−1)) over allRX( j) , this means that

R( j−1)

X( j) = R( j)
X( j) = PX( j)|Y( j)=ŷ( j); φ( j−1) .

Thus, for any component(i), substituting inj = i and recalling that the firsti − 1 incremental E
steps leave the component marginalRX(i) unchanged, we get

QX(i) = R(0)

X(i) = · · · = R(i)
X(i) = PX(i)|Y(i)=ŷ(i); φ(i−1) . (12)

We now show thatφ( j) = θ for j = 1, · · · ,n. Since equation (11) tells us that the divergence

is unchanged at any backward step( j) , both PX;φ( j) and PX;φ( j−1) must minimizeD(R( j)
X ||·). By

assumption (8), the M-step is uniquely determined, so we must haveφ( j) = φ( j−1). We therefore
have the desired result

θ = φ(0) = · · · = φ(n) = θ′.

Substituting this into equation (12) gives

QX(i) = R(0)

X(i) = · · · = R(i)
X(i) = PX(i)|Y(i)=ŷ(i); θ .

Since this applies for alli = 1, · · · ,n, we have

R( j)
X = PX|Y=ŷ; θ, ∀ j = 0, · · · ,n.

In particular,QX = R(0)
X = PX|Y=ŷ; θ, which means that

QX = argmin
Q′′

X∈D

D(Q′′
X||PX;θ).

SinceR(1)
X = QX, we use equation (11) withj = 1 and condition (EQ.B) on the backward map to get

θ ∈ argmin
ξ∈Θ

D(QX||PX;ξ).

This shows that condition (EQ) holds.

B.2 Definition of a CompactD ′

To find a suitable restrictionD ′ for any choice ofQ(0)
X ∈ D, we first define the following sets of

measures on the componentsX(i):

D
(i)
INC =

{

QX(i) : QX(i) = PX(i)|Y(i)=ŷ(i); θ for someθ ∈ Θ
}

∪
{

Q(0)

X(i)

}

,

and note that the continuity ofPX|Y; θ (assumed), and the compactness ofΘ (assumed) give us

compactness ofD(i)
INC. We then define our restrictionD ′

INC of D by

D ′
INC =

{

QX : QX =
n

∏
i=1

QX(i) for some(QX(1) , · · · ,QX(n)) ∈ D
(1)
INC×·· ·×D

(n)
INC

}

.
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To show compactness ofD ′
INC, suppose

{

Q(t)
X

}∞

t=0
is a sequence inD ′

INC. From the definition

of D ′
INC, this then implies that there aren sequences

{

Q(t)
X(i)

}∞

t=0
, each in the correspondingD(i)

INC,

such thatQ(t)
X = ∏n

i=1Q(t)
X(i) . The compactness ofD(1)

INC implies the existence of an infinite subset

K (1) of the integers such that the subsequence
{

Q(t)
X(1)

}

t∈K (1)
converges to someQ∗

X(1) ∈ D
(1)
INC.

Similarly, since the infinite sequence
{

Q(t)
X(i)

}

t∈K (i−1)
is contained in the compact setD

(i)
INC, there

exists an infinite subsetK (i) of K (i−1) such that the subsequence
{

Q(t)
X(i)

}

t∈K (i)
converges to some

Q∗
X(i) ∈ D

(i)
INC. Therefore, the subsequence

{

Q(t)
X

}

t∈K (n)
converges to∏n

i=1Q∗
X(i) ∈ D ′

INC, showing

thatD ′
INC is compact.
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