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Abstract

The EM algorithm is widely used to develop iterative paramestimation procedures for statisti-
cal models. In cases where these procedures strictly faheweM formulation, the convergence
properties of the estimation procedures are well undedstbosome instances there are practical
reasons to develop procedures that do not strictly falliwitie EM framework. We study EM vari-
ants in which the E-step is not performed exactly, eitheri@io improved rates of convergence,
or due to approximations needed to compute statistics umaeodel family over which E-steps
cannot be realized. Since these variants are not EM proeggilre standard (G)EM convergence
results do not apply to them. We present an information géaerfeamework for describing such
algorithms and analyzing their convergence properties.apfdy this framework to analyze the
convergence properties of incremental EM and variatiomdl Eor incremental EM, we discuss
conditions under these algorithms converge in likelihoBdr variational EM, we show how the
E-step approximation prevents convergence to local makirtikelihood.

Keywords: EM, variational EM, incremental EM, convergence, inforiroatgeometry

1. Introduction

The expectation-maximization (EM) algorithm (Dempster et al., 1977) for maxitikaetihood es-
timation (Fisher, 1922; Wald, 1949; Lehmann, 1980) is one of the most witkelgt parameter es-
timation procedures in statistical modeling. It is clear why the algorithm is atteaittivesearchers
building statistical models. The algorithm has an elegant formulation and wherjitplied to
appropriate model architectures it yields parameter update procedatesé¢heasy to derive and
straightforward to implement. These parameter estimates yield increasing lilkieblieothe train-
ing data, and the convergence behavior of this process is well understo

EM also has acknowledged shortcomings. It can be slow to convergeenrigractable for
some combinations of models and training data sets, and there are also nuhitelcaures for
which the straightforward application of EM yields update proceduregithabt have closed form
expressions. As a result, many improvements and extensions of EM hemedbeeloped (e.g.,
Meilijson, 1989; Salakhutdinov et al., 2003). Incremental EM (Neal amddd, 1998) and vari-
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ational EM (Jordan et al., 1999) are specific examples we will addrese isettjuel. Such exten-
sions improve various aspects of EM, such as rate of convergenceoamulitational tractability.

However, classical (generalized) EM convergence analyses sublose of Wu (1983) and Boyles
(1983) do not apply to many of these variants, and in many cases theiergemece behavior is
poorly understood.

We propose the generalized alternating minimization (GAM) framework with tlad¢ afoun-
derstanding the convergence properties of a broad class of suchaEdhts. It is based on the
interpretation of EM as an alternating minimization procedure as describediszCand Tusady
(1984) and later by Byrne (1992) and Amari (1995). We will show thigtdhiernating minimization
procedure can be extended in a manner analogous to the manner in whichlged EM (GEM)
extends the M step of EM. We then apply a convergence argument similarttoftidéu (1983)
to GAM algorithms, characterizing their convergence. This will show thaMGaégorithms are a
further generalization of GEM algorithms which are no longer guaranteedtease likelihood at
every iteration, but nevertheless retain convergence to stationary poilikelihood under fairly
general conditions.

In practice, an iteration of EM consists of an E step which calculates suffisiatistics under
the posterior distribution of the most recent model estimate, followed by anpMwiieh generates
a new model estimate from those statistics. In contrast, many variants rettefigestep to use
sufficient statistics calculated under other distributions. For example,moxamation to this pos-
terior distribution is used in variational EM (Jordan et al., 1999), and statistien the posterior
distributions of previous estimates are carried over in incremental EM (&fehHinton, 1998).
Existing (G)EM convergence results do not apply because the E steghnvatiants is modified
to use other “generating distributions” for computing the sufficient statisticerder to describe
such variants where the generating distribution is not necessarily theaiposlistribution under
the current model, GAM keeps track of both the current model and thébdistn generating the
statistics used for computing the next model estimate. While EM algorithms gesetatences of
parameters, GAM algorithms generate sequences of parameters pairéiesélyenerating distri-
butions.

We use the GAM framework to analyze the convergence behavior ohieeral EM (Neal and
Hinton, 1998) and variational EM (Jordan et al., 1999). We show thatinental EM converges
to stationary points in likelihood under mild assumptions on the model family. Theeagence be-
havior of variational EM is more complex. We do show how GAM convergearguments can be
used to guarantee the convergence of a broad class of variationastiEvaton procedures. How-
ever, unlike incremental EM, this does not guarantee convergencditmata points in likelihood.
On the contrary, we show that fixed points under variational EM cammetdtionary points in like-
lihood, except in the degenerate case when the model family is forced tiy sa¢isonstraints that
define the variational approximation itself.

In Section 2, we review how the EM algorithm results from alternating minimizatfoimen
information divergence. First, the divergence from the current mtmdalfamily of distributions
of a certain form is minimized to give a generating distribution. Then, the girere from this
distribution to the model family is minimized to give the next model. We then show thasons
of the E step such as those mentioned above involve choosing “generiatitiigudions” that do not
minimize the divergence. In GAM, the E and the M steps need only reducd-reaminimize—the
divergence. In fact, the steps need not reduce the divergensgdunaliy, but may do so when ap-
plied in succession. As in EM, the modeling assumptions are representegerémeeterization of
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CONVERGENCE OFGAM PROCEDURES

the models. Additionally, GAM explicitly represents the approximations usediimaison by im-
posing constraints on the generating distributions. In pursuing this formublatowvere influenced
by the work of Neal and Hinton (1998) which uses generating distributmimgroduce several EM
variants. Our intention is to extend their analysis and provide convergesgks for the algorithms
they and others propose.

Understanding the convergence behavior of these variants requeen#tlysis of joint se-
guences of both parameters and their corresponding generating distribu In Section 3 we
present such an analysis. Our main convergence theorem givesiamndnder which GAM pro-
cedures converge to EM fixed points. We draw on the previous work w{1883) which uses
results from nonlinear programming to give conditions under which (G)EMexlures converge to
stationary points in likelihood, as well as the work of Céisand Tusady (1984) which gives an
information geometric treatment of (G)EM procedures as generating joinesegs of generating
distributions and parameters. Csisand Tusady (1984) also provide a convergence analysis that
complements the original results of Wu (1983). However neither of theoappes generalize to
EM extensions that extend the E step.

In Section 4 we apply our convergence results to incremental EM and sladwalthough the
algorithm is non-monotonic in likelihood, it does converge to EM fixed poindeurvery gen-
eral conditions. Note that Neal and Hinton (1998) have already shoatriritremental EM gives
non-increasing divergence (non-decreasing free energy) ahtbttal minima in divergence (local
maxima in free energy) are local maxima in likelihood. However, as we shovedtidd 3, this
is insufficient to conclude that incremental EM converges to local maxima ilindad, and the
further analysis that is necessary is presented here. In Section Solyeaagimilar analysis to vari-
ational EM to show that convergence to EM fixed points occurs only inrdegée cases. We then
conclude with some discussion in Section 6.

2. EM and Generalized Alternating Minimization

We adopt the view of the EM algorithm as an alternating minimization proceduter uhe infor-
mation geometric framework as developed by Caisand Tusady (Csisar and Tusady, 1984;
Csisar, 1990). This framework allows an intuitive understanding of the algaritnd is easily
extended to cover many EM variants of interest. In Section 2.1, we briefilgwehe EM algo-
rithm as derived within this framework to set the groundwork for the cayergce analysis of later
sections. In particular we show how EM can be derived as the alternatingimation of the in-
formation divergence between the model family and a set of probability diitsiis constrained to
be concentrated on the training data. In Section 2.2, we then extend thigitgmminimization
framework to generalized alternating minimization (GAM) algorithms, which areveNants that
allow extensions of the E step, in addition to the M step extensions allowed byakgevithms. We
conclude our introduction to GAM algorithms by discussing how the GAM fraankvs applied to
algorithms of interest in Section 2.3.

2.1 EM as Alternating Minimization

The EM algorithm, when viewed as an alternating minimization procedure, minimigaileack-
Leibler type divergence betweemadel family(or equivalently a parameter family) andlasired
family of probability distributions (these are the previously mentioned generatitripdisons).
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Let the pair of random variableé andY be related through a function mappikgo Y. That is,
X is the complete random variable a¥ids the incomplete, or observed, random variable (Dempster
et al., 1977; McLachlan and Krishnan, 1997). Oft&nis composed of an observed and a hidden
part, andy is composed of only the observed part. We adopt the “complete”/“incomplateble
terminology of Dempster et al. (1977) rather than the “observed”/“hitlstariable terminology
that is also commonly used. The model famityis defined as the set of parameterized models
Px: o Obtained wher® ranges over the parameter fam@y For simplicity, we make the following
assumptions

(Q1) The complete variabl¥ is discrete-valued.

(Q2) px(x; B) > 0 for all 8 € © and for all valuesx taken on byX. That is, the support of the
models does not depend on the parameter.

(Q3) The p.d.f.px(x; 8) is continuous irP.

These technical restrictions can be relaxed to allow continuous vari&glesardana, 2001). The
difficulty faced in doing so is that continuous models assign zero probabilibettvaining samples;
Csiszar and Tusady (1984) show how this problem can be circumvented by the introdudtiam o
appropriate family of dominating measures.

The desired familyD is defined as the set of all probability distributioQg that assign proba-
bility one to the observation of Y:

D2 {Qx: ay(§) =1}

whereQy is obtained by marginalizinQx. Thus, desired distribution®x € D have the property
that Qx = Qxjy—y- These probability distributions are “desired” in the sense that they exgmplif
the maximum likelihood estimation criterion by assigning the highest possible lplibp#o the
observed datg. ”~Note that multiple training examples are treated by considering the sequences
X=(XD,... XMyandY = (YD ... Y together with suitable i.i.d. assumptions.

Since we will be concerned with estimating parameterized mdétledswe define the Kullback-
Leibler information divergence (Liese and Vajda, 1987) between aatkdistributionQx € 0 and
a paramete € © through

ax (X)
D(Qx||Px:e) = X)lo . 1
(QxI[Px;e) qu<> 9o 8) 1)
Note that the divergence is finite for all desired distributi@hs € D and all parameter8 € ©
because of our simplifying assumption about the support of mdgels This implies that the
divergence is continuous over &Dx,0) € D x ©.

Csisar and Tusady (1984) show that the EM algorithm can be derived as alternating mini-

mization under the information divergence, as follows (see Figure 1):
Forward Step: Find the desired distributio@QJ’l) that minimizes the divergence from the previ-
ous parameted®):

1 .
Q§+ )= argminD(Qx|[Py.q0) )-
QxeD
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Figure 1: A schematic representation of an iteration of the alternating minimizatorgture. The
square of the distance between a poindin © and a poinQy in D indicates the diver-
gence between them. The arrows indicate projection under this divergenc

Backward Step: Find the paramete¥*1) that minimizes the divergence Qﬁﬂ):

8D e argminD(Q||Pxco). )
6coO

In the language of Csiéz (1975),Q§+1) is thel-projectionof Py. g« onto D and is uniquely found
asQQH) =Pxjy—y,00- The EM algorithm (Dempster et al., 1977; Wu, 1983) can be recovasly e
by substituting the I-projection into equation (2) and expanding the dimesgasing equation (1),
to obtain

g, 80| 3)

6Y € argmaxEp, [Iog px (X;0)
0€O

Note that we use the notati@i 2 € argminD(Q\ "™||Px.¢) instead 0B +1) = argminD(Q{ | |Pc.)
because the backward step may not be unique.

We distinguish between the forward and backward steps of the alternatingigdtion proce-
dure and the E and M steps of the EM procedure, as they are subtlediffdihe E step corresponds
to computing the (conditional) expected log likelihood (EM auxiliary function)arritie result of
the forward projection. In practical implementations, the auxiliary functionoiscomputed ex-
plicitly in the E step — the expected sufficient statistics are all that need be tednpthus, the
E step corresponds to taking an expectation under the distribution found forilkard step. The
backward projection minimizes the divergence from the result of the forpeaojection, while the
M step maximizes the expected log likelihood computed in the E step (or alternafinely pa-
rameters such that the sufficient statistics of the resulting model match thogeiteal in the E
step).

2.2 Generalized Alternating Minimization

There are many effective learning algorithms originally motivated by EM hichvcannot be de-
scribed using the formulation described above, or equivalently, usingribmal formulation of

Dempster et al. (1977), because they generalize either the forware loatkward step. Two exam-
ples of such procedures are incremental EM (Neal and Hinton, 19@Byaxiational EM (Jordan
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Figure 2: A schematic representation of an E step extension allowed by Ggdvitams corre-
sponding to the M step extension of the GEM algorithm. In contrast to Figureth the
E and M steps reduce the divergence rather than minimizing it.

et al., 1999). We are interested in extending the alternating minimization formutatgrch vari-
ants by relaxing the requirement that the forward and backward stefesrpesxact minimization
over the families of distributions. These generalized estimation steps aréddsas follows.

Generalized Forward Step:Find any desired distributio@&*l) that reduces divergence from the

previous parametet:

QY D(Q Y IIPen) < DIQY [ IPxan)-

Generalized Backward Step:Find a parameted(t+1) that reduces the divergence@&“):
8 : D(QY ™ IRegen) < DIQK I IPcgn)- (4)

Generalizations of the backward step correspond to the well known Qgddithms. We allow
similar generalization of the forward step. We refer to algorithms that coosmiternating ap-
plication of such generalized forward and backward steps as gereraliternating minimization
(GAM) algorithms. Thus, GAM algorithms allow for the expectation in the EM auilfainction
(equation (3)) to be found under the distribut'@ﬁ“) rather tharPX‘Yzy; ) - Q§+1) is not chosen
arbitrarily; it must be closer t€y. ¢ than the desired distributio@Q) used at the previous itera-
tion. The effect of GAM iterations is to generate sequences of pairedbdigtns and parameters
(QY,00) that satisfy

D(Q§+1>|!Px;e<r+1>) < D(QQ)HPx;eM-

Thus, we examine generalizations that are composed of forward akalduacsteps that reduce
the divergence, as shown schematically in Figure 2.

2.3 Why GAM

As shown by Jordan et al. (1999), the variational EM algorithm is bestrieed as an alternating
minimization between a set of parameterized models and a set of variatiomakiapgations to the
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posterior. This corresponds to extending the forward step to be a fioojemnto a subset o
which satisfies additional constraints (namely, belonging to a given paiarfaetily), rather than
a projection ontaD itself.

In the following example, which follows Jordan et al. (1999), we desdnitne the mean field
approximation to the E step arises by further constraining the desired fdmily

Example 1 In the case of a Boltzmann machine, we have binary r«sS& (S, - -+ ,S,) modeled
by the parametric family
e2i<jBijssj+3;Gios

z(6)
where %6) ensures By is properly normalized. Suppose the nodes - ,n of the Boltzmann
machine are partitioned into a set evidencenodes E and a set dfiddennodes H, so that

Y=% = (S)ice. Then, given observatiors of the evidence nodes, the forward step for EM
estimation of the Boltzmann machine is as follows.

Ps(s,0) =

Forward Step: Finding the desired distribution

Q§+l) = argminD(Qx ||Px.gv))

QxeD
gives

1 ~
qgf,%)(SHst) = 1g (S2) Psy s (%5 BY)

wherels (s£) = 1 when g = & and0 otherwise.

Note that a closed-form solution for the backward step is not generally dlajlaut convergent
algorithms can be obtained using gradient descent or iterative propatibiting (Darroch and
Ratcliff, 1972; Byrne, 1992). While the forward step can in principle beiedrout exactly, this
computation quickly becomes intractable as the number of states increlasparticular, direct
computation of g, s (su|Se; 6Y) using Bayes rule involves a summation over all possible values
of the hidden nodesys

To get around this we define a subset/otonsisting of mean field approximations tg (. .
That is, we defin@yr to be those distributions i® whose p.d.f. has the parametric form

as(siH) = 1 (se) [H (L—p)*S
ieH """
Os:iy
where each ptakes values in0,1]. Thus the members dhye allow no dependencies between
nodes. It follows that a distribution £ Dye is fully specified by its parameter p and the training
observationse.

The forward step can then be replaced by an approximate forward stephvws now a mini-

mization over the variational parameter p for fix@d:

Approximate Forward Step: An (approximate) desired distribution

QY™ € argminD(Qx||Py.q0)
Qx€Dvr
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with p.d.f.

a8 ™(s) = 1 (se) [ as (s ™)
ieH
is chosen by finding a variational parameter

M(t+1)

€ argminD(Qsy|[Psgw)-

u
As described by Jordan et al. (1999), this can be done directly, witheeding to compute
Ps, 5.0+ DYy solving the nonlinear system of mean field equations

M””=0<ZG$MH”+aO,
J

whereo(-) is the logistic function. Note that this simplification results from the careful craft-
ing of the parametric form imposed k.

It can be seen that this variational EM variant is easily described in termsrfizing the
divergence between a constrained family of desired distributions and el fiaodly. The approx-
imate forward step in this example is a generalization of the usual I-projectitm?®, and the
resulting algorithm is therefore a GAM procedure.

3. GAM Convergence

In this section, we describe our main result — a theorem which charastéhieeconvergence of
GAM procedures. As the preceding example shows, some EM variantteoésh are GAM pro-
cedures but not GEM procedures. This means that their convergpehewior may be different
from what the familiar convergence properties of (G)EM would sugdesparticular, monotonic
increase in likelihood and convergence to local maxima (technically, statipoaris) in likelihood
may no longer hold. This may happen even when the divergence is n@asieg, and when sta-
tionary points of the likelihood are fixed points of the GAM procedure. Wgrbwith a simple toy
example where this can easily be seen.

Example 2 Let the complete random variable X (X;, X;) represent the result of tossing a coin
twice. That is, X Xp are i.i.d., with X taking the valuel with probability 8 and 0 with probability
1—0. Let the incomplete random variable Y encode whether the result seéémiméar not. It
takes on the valué if X takes on the value®,1) or (1,0), and takes on the valu@ otherwise.
Suppose the observatignof Y isy = 0. In this simple case, the complete data likelihood is given

by
px(x; B) = 87 (1 )2 ue)
and the incomplete data likelihood is given by
Py (¥; 8) = pv(0; 6)
= (1-0)°+6%
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Note that the incomplete likelihood is convex, with global maxinta=aD and8 = 1, and a global
minimum at = 0.5. Desired distributions Q € D take the form

Ou1 if x=(1,1),
ax(X) =4 1-aqu ifx=(0,0),
0 otherwise.
The divergence between a desired distribution and a model is given by

1—
+(1—0u1) |09(1_7qel)127

D(Qx||Px:e) = du1log %
which can be shown to be convex in fpr fixedd and convex ir® for fixed g1 (though not jointly
convex in g1 and 8). The EM algorithm for estimatin§ can be given by a forward step and a

backward step as follows:

Forward Step: As described above, the forward step is given by the I-projection of tlieimo
Py. gv ONtoD. This is given by

Ay (X19) = Py (xI5; 61),
g2
Ay =

(1-80)2+00%

Backward Step: Minimizing the divergence given above o%dor a fixed g1 gives

e(t+1) — qurl)
Thus, the EM iteration for this problem is
2
gty _ o .
(1-01)2+01?2

It can be seen thé(® < 0.5 gives convergence to the global maximurf at 0.0, while8© > 0.5
gives convergence to the global maximun®at 1.0. Starting at the global minimum &= 0.5
traps the algorithm there.

We now investigate how the additional constraint

04<011<06 (5)

on the desired distribution changes the forward step, and as a result, thergamce behavior of the
algorithm. Note that a forward step that projects onto this constrained saesifed distributions
will reduce the divergence between the desired distribution and the mautklyidl therefore be a
GAM procedure.

Computing the partial derivative

3 _ Q11 1-8 i
mD(QXHF’X;G) —|°g<1—qll (T) )
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h hatiti itive fdd.4 < gy1 < 0.6 wh —_
shows thatitis ;iosmve @.4 <11 <0.6whend < %
from anyf < % is given by g1 = 0.4.

Supposed© = 0.3. The unconstrained forward step would have givé]fl g 0.155 which
would have violated the additional constraifs). Under the additional constrair(®), the forward

step is given byﬁ) = 0.4. This in turn leads t®) = 0.4, and the next forward step again gives

q(lzl) = 0.4, showing that the algorithm has converged in a single step, albeit to a vahtésthot
a maximum (or stationary point) in likelihood. Also, recall that the incompleita dikelihood is
convex with a minimum & = 0.5. This means that initial points il < 0.4 will converge in one
step toB = 0.4, thereby reducing likelihood. Indeed, the likelihood at the initial poéh#=(0.3) is

0.58 and the likelihood at the subsequent (limit) poiris{0.4) is 0.52.

~ 0.4495 Therefore, the forward step

Thus, itis clear that the convergence behavior of GAM algorithms caerdiftremely from that
of EM algorithms, and therefore needs to be carefully studied. In fantnmanotonic convergence
behavior can also be seen in the case of incremental EM (Byrne andv@utana, 2000). In
the following, we will show that under smoothness conditions on the foraaddbackward steps,
GAM procedures that strictly reduce divergence at every steppépossibly at stationary points
in likelihood, will yield solutions that are stationary points in likelihood.

3.1 GAM Convergence Theorem

The GAM convergence theorem is a direct application of the generalizedemyence theorem
(GCT) of Zangwill (1969). We will define the forward and the backwateps to be point-to-set
maps, rather than functions, so that we may deal with extended E and Mtlséemio not yield
unigue iterates. The GCT will require that these maps be closed. Closenfreepoint-to-set map
is a smoothness property that is related to function continuity, and is defrfetavs:

Definition 1 A point-to-set-map MU — V is closed at « U if for any two sequenceai® }* , € U
and {vV}® ;€ V the conditions ¥ — u, V) — v, and W) € H(u®), imply that ve H (u).

We now state Zangwill (1969)’s GCT:

Theorem 2 Let the point-to-set map HZ — Z determine an algorithm that given a poirfz
generates a sequende },_ through the iteration & € H(z"). Also let a solution seff be
given. Suppose

(1) All points 2V are in a compact setS Z.
(2) There is a continuous functian: Z — R such that:

(@) ifz¢ T, thena(Z) <a(z) VZ € H(2),
(b) ifze T, thena(Z) <a(z) VZ € H(z2).

(3) The map H is closed at z ifzl".

Then the limit of any convergent subsequenc{z@)‘}io isinl. Thatis, accumulation points bf

the sequencé'zlie in . Furthermorep(ZY) converges ta*, anda(z*) = a* for all accumulation
points Z.
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We use this GCT to show our main convergence result for GAM procsdand then give a
corollary that describes how they converge in likelihood.

Theorem 3 (GAM Convergence Theorem)Let D be any family of distributions on X and I&t
be the parameter family defined in Section 2. Let the solutioh betdefined as

M= {(Qxﬁ) : Qx € argminD(Q4||Px;e) and® € argminD(Qx|Px;§)} :
QkeD £cO

Let FB: D x © — D x © be any point-to-set map such that &% ,0') € FB(Qx, 0) satisfy
(GAM) : D(QkIIPx;:e') < D(Qxl[Px:e)
with equality only if
(EQ): (Qx.0) eT.

Let {(QQ),e@))}:;O € D x O be a sequence generated from a p(zi@‘o),e(o)) by the iterative ap-
plication of the point-to-set-map FB:

(QF™,600) c FB(QY, 81).
Suppose thab is compact, that there is a compact €2tC 9D such that
(1) FB(D x ©) £ Ujgy 0)en-6F B(Qx,8) C ' x ©,
(2) The point-to-set map FB is closed &) x O,

and that it can be shown thaQ{’,69) € 2’ x © for some iteratior(k).
Then all accumulation point€Q, 6*) of the sequencé(QQ),G(t))}io lie in the solution sef

and D(Qy||Pxe-) = D* and D(QY||P.g0) — D*.

Proof We restrict the point-to-set mdpB to 2’ x ©, and then apply Zangwill's GCT above with
S=Z=7'x0,a=D,H=FB,and{zV}" = {(QY,8")}" . The compactness @’ x ©
follows from the compactness d@¥ and® individually. The continuity of the divergence (®x, 0)
follows from the continuity of the divergend®(Qx||Px:¢) in Qx andPx. g and the continuity of
px: ¢ in 6. The theorem then follows by direct application of Zangwill's theorem. [ |

Corollary 4 (Stationary Points in Likelihood) In Theorem 3, suppose thé@kis the desired family
defined in Section 2. Then the following hold for accumulation pg¢@§s6*):

(1) pr(¥; 6) =e P and p/(y; 6Y) — e ",

(2) 6% is a stationary point of the incomplete data likelihood if it is in the interioof
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Proof For (Qx,0) €T, ax(x) = px)y(X|y; 0) so thatD(Qx||Px; ) = —logq(y;6) yielding conclu-
sion (1).
since(Qx.8) € T, Gk (X) = pxyy (XI5 6, giving

0" € argminD(Pxjy—y, o || Px:6)-
6cO

The divergence in the right hand side can be expanded as

D(Pxjy—y; e IPx:6) = —log py (¥; ©) + D(Pxjy—y -

Taking the gradient of this expression and setting it to zero yields

Pxiy=y:0)-

—Uglog pv(f/, 9) ’9:9* + DGD(PX\Yzﬁ; S*HPX|Y:9; 9) ‘e:e* =0.

SinceD(Pxjy—y; o-||[Px|v=y: 6) is minimized wher = 6%, this gives us that

Oelogpy (¥; 8)|g_g. =0

This proves conclusion (2). |

The GAM convergence theorem and corollary provide conditions untah iterative estima-
tion procedures converge to stationary points in likelihood. However itssipte that these pro-
cedures are not monotonic in likelihood. This can be see from the Pytwgequality (Csisa,
1975) which provides the following relationship between@llin the linear family?D and a model

PX;B
D(Qx||Px; 6) = D(Qx||Qx) + D(Qx||Px; )

where the I-projectiox = argminy, .,D(Qx||Px; 6) is uniquely specified axy_y = Pxygs-
From this we find the following relationship between the likelihood of the modehates and the
overall divergence

D(Qx||Px;8) = D(Qx || Pxjv=y;06) —logpy(¥; 6).

While GAM procedures guarantee tHa(QQH) y

only that

| Pogten) < D(QQ) || Px.g), We can conclude

logpy (¥; 8Y) > logpy (¥; 8Y) +AY

whereA® = D(Q{Y || Peiv—y: ot-1) — DQY || Pyjy—ge0)- Since, as shown in Figure 3, this
guantity can be negative, it is possible for GAM algorithms to be non-monotofileiihood even
while converging to local maxima in likelihood.

We now discuss the construction of a GAM mappkg that satisfies the requirements of the
GAM convergence theorem.

Proposition 5 Let the point-to-set map FB in Theorem 3 above be the compositidghdd point-
to-setmaps FDx© — D x ©and B: D x ® — D x ©. Suppose that the point-to-set maps F and
B are defined so that
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Figure 3: A schematic representation of how GAM procedures may bemumotonic in likeli-
hood. The solid arrows show forward and backward steps that eetthécdivergence
rather than minimizing it. The broken arrows show the forward steps thaldwave
been taken by the EM algorithm (i.e., the I-projections of the models). Dévergs that
obey the Pythagorean equality are indicated by right triangles. In partidoéasquared
lengths of the broken arrows represent negative log likelihood. Notehealivergence
between the desired distribution yielded by the forward step and the lepimjeof the
model decreases, while the negative log likelihood increases.

(1) F and B are closed od’' x ©
(2 F(D'x0)CD'xOandBD' x0©) C D' x O
Suppose also that F is such that &0 ,8') € F(Qx,0) have®’ = 6 and satisfy

(GAM.F):: D(Qx|Px;e) < D(Qx|[Px;e)
with equality only if
(EQF): Qx = argminD(Q¥|[Px:s),
%eD

with Qx being the unique minimizer. Suppose also that the point-to-set map B iglsicall
(Q%,9) € B(Qx,0) have @, = Qx and satisfy

(GAM.B) : D(Qx||Pxe) < D(Qx|[Px;e)
with equality only if
(EQB): 8 € argminD(Qx||Px:z)-
£coO

Then,
(1) the point-to-set map FB is closed @n x ©
(2) FB(D'x©)C D' x 0O

and FB satisfies the GAM and EQ conditions of the GAM convergence theore
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Proof If the point-to-set map§ : A— B andG: B — C are closed o\ andB respectively, their
compositionFG = GoF is closed orAif Bis compact. Sincé andB are closed o’ x ©, which
is compact, it follows thaFB is closed on?’ x ©. ThatFB(?' x ©) C D' x © follows directly
from the assumptions of the proposition.

The condition (GAM) follows directly from (GAM.F) and (GAM.B).

Conditions (EQ.F) and (EQ.B) together are not enough to ensure con@®Q@h Suppose
(Rx,®) € FB(Qx,8). This implies thaf{Rx,8) € F(Qx,8) and(Rx,®) € B(Rx,8).

Suppose®(Rx||Px:¢) = D(Qx||Px;e). Then (GAM.F) and (GAM.B) ensure thBX(Rx||Px.q) =
D(Rx||Pxe) = D(Qx||Px:). Condition (EQ.F) gives

Qx € argminD(Qx|[Pxe), (6)
QeD
Rx € argminD(Q4||Px;e),
QieD
and (EQ.B) gives
8 € argminD(Rx||Px:z). (7)
Eco

While equation (6) is the first criterion for membershig irequation (7) is not quite the second cri-
terion —the divergence minimized herdlgRx||Px.¢) instead oD (Qx ||Px.¢). Since by assumption,
Qx is the unique minimizer of the divergend@y = Rx, giving the required condition

0 € argmirD(Qx||Px:¢)-
13SC)

This allows us to construct a m&B through the composition of generalized forward and backward
steps- andB. As seen in the proof it is insufficient for the forward and backwarpsste satisfy the
GAM and EQ conditions separately. It is also necessary for the forstaplto satisfy the equality
condition with a unique minimizer. For example, this condition is satisfied whes defined by
linear constraints as in Section 2 and the forward step is a simple projectiom,tl#s case of
EM. Even when this condition is not satisfied, it may be possible to show comdHE®Q) for the
composite magB. It is important to show thdE B strictly decreases the divergence for all points
outside the solution sét, since any points where this does not hold are accumulation points of the
algorithm.

As an instance of the GAM procedure, EM convergence is also expléynddese results as
shown in Appendix A. The conditions of Theorem 3 and Corollary 4 aiegeneral, and very
similar to those that must be satisfied to ensure GEM convergence (Wu). 1B88example, in
both GEM and GAM, condition (Q2) must hold. Insisting on this would rule oMN& with
parameter families that allow individual Gaussians to have a variancemflagoractice, modeling
considerations usually prevent such situations.

4. Incremental EM as GAM

We now turn our attention to the incremental EM algorithm of Neal and Hinto®8)L 9T his variant
of the EM algorithm divides the training data into partitions, and at each itevateputes condi-
tional sufficient statistics on only one partition. The statistics conditioned cgr @idrtitions are
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saved from previous iterations. The statistics corresponding to thedtiffpartitions are pooled

before performing the M step at each iteration, but the separate pémpestatistics are retained
for use in future iterations. This algorithm has shown to give faster cgemee in a number of

applications (Digalakis, 1997; Thiesson et al., 2001; Hsiao et al., 2@@4)) though it may be

non-monotonic in likelihood (Byrne and Gunawardana, 2000). Hereysgeour GAM results to

show that in most cases, the incremental updates do not sacrifice thergemee guarantees of
EM, despite the non-monotonicity in likelihood. Note that Neal and Hinton (1B88¢ shown that

incremental EM is monotonic in divergence, but not that it converges tdi¥éd points.

The complete variablX = (X, ... X() is assumed to consist of independent compo-
nents so thaQx = "1 Qyw. The visible variabley = (YW, ... Y(W) has observed valug=
(yV,... . yM). The component¥) are generated independently of each other, from their corre-
spondingX ().

The EM auxiliary function for these variables is
n - -
(6)6") = .ZLEqu)mi) [IOQ Py (XV;0) | 9; e(t)]
1=
= iq)(i)(ew(f))
i=

Rather than maximize this auxiliary function, the incremental EM algorithm allovestienation to
be performed based on a single componéhtof the observatioly at any step. For example, in a
two-element problem the re-estimation procedure might proceed as follows :

01 = argmax.o (@1 (66" Y) + 0@ (8]6")),

6+2) — argmax.q (¢ (616" V) + 2 (68")),

61 *% — argmax.o (V) (616" 1Y) + @2 (8]0 1)),

This is not enough to ensure th&(8+3)|8+1)) < d(8+1|g(+1) so the (G)EM convergence
results do not apply. However the algorithm can be formulated as an GAbégdure.

To show that incremental EM can be a GAM procedure, we describe inastad series of
incremental forward steps amdexact backward steps. Iteratint 1) of incremental EM proceeds
as follows. First, the iteration is initialized from the results of the previous iteratio

Q§+1,0) _ Qg) and 8t+10 — gt).

We then define a series nfincremental forward steps=1,---,n

Q(H_l’j) B {PX(i)|Y(i)_9(i);e(t+1.j—1) if j=i

X0 Q%l’j_l) otherwise

and backward steps

gt+1i) ¢ argminD(QQH’j)HPX;E)’
&cO
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so that finally we seQf ™" = Q¢™" and 8D = gt+in
We formally represent thg)" incremental forward step!) : D x © — D x © as the singleton
point-to-set map

F(J)(QX76):{(Q§(7 ) QX_PX ‘Y I_IQX }
i)
It updates the )" component margindDy ;) of Qx but keeps the other component marginals fixed.
The backward step is represented by a closed point-to-setBnal x @ — D x © satisfy-
ing conditions (GAM.B) and (EQ.B) of Proposition 5 wif = Qx for (Q4,8’) € B(Qx,6), and
additionally satisfying:

B(Qx,0) is a singleton set(Qx,0) € D x O: (Qx,0) € M(Qx,0). (8)

Thus, we are guaranteed th{t= 6 when D(Qx||Px:¢) = D(Qx||Px:9). This is equivalent to
requiring that the EM auxiliary function has a unique maximizer. We note thabftés holds in
practice — for example, when the complete data distribution comes from a filabemtial family
(Efron, 1975; Amari, 1995) as is the case with mixtures of Gaussians,tbrhidden Markov
models. Even when the complete data distribution is a curved exponential famidyeness can
still be possible.

Using these composite maps we can describe incremental EM as

Q™. 04 ) e FB(QY',6Y)
where
FB=BoFMo...0BoFW
Proposition 6 As defined, incremental EM can be shown to converge to stationary proirksli-
hood through application of the GAM convergence theorem.

Proof For any(Qx,8) € D x O, we use the independence of the componetitsand Y() to
decompose the divergenB¢Qx||Px.g) into a sum of component divergences as follows

D(Qx|[Px;0) = Z D(Qx IPxa;e)-

The (j)' backward step satisfies

D(QY ™Ry gsy) < D(Q”“ 1Py gcri )

D(Q TV IIPy. geenin) + DQS | IPy. genn)
1]

where the right hand side has been expanded using the fact thighthimcremental forward step
leaves all but the j)™ component divergence unchanged. Since({h® incremental forward step
minimizes the( )" component divergence,we get

L] Li-1) 1,j-1)
DX IR oran) < 3 DQ™ lIPggrinin) +D(Q™ VI[P grinia)
RE3|
1,j-1
:D( §+ & )HP)(;S(HlAj—l)).
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Condition (GAM) of Theorem 3 is therefore satisfied.

Since the mapB(!) andB are closed (Appendix A, Proposition BB will be closed on?Y, if
the set is constructed so as to be compact (Appendix A). An appropefitetion of 2/ C D is
given in Appendix B along with a proof that incremental EM satisfies the laguandition (EQ)
of Theorem 3. [ ]

Thus, the GAM convergence theorem shows that incremental EM pioedonverge to EM
fixed points when the EM auxiliary function is uniquely maximized. However, itdsa GEM
procedure, and monotonicity in likelihood is no longer guaranteed. Inageediscussed in Byrne
and Gunawardana (2000) non-monotonicity in likelihood is observed ictipea and the conver-
gence behavior is very different from that of (G)EM procedurespite the common fixed point
set. Thiesson et al. (2001) also show that the convergence behaincremental EM is different
from that of EM in practice.

5. Variational EM as GAM

Variational approximations have been popular in cases where computirexaae forward step

ax (X) = pxjy (X|y; 6) is intractable (Jordan et al., 1999). The idea is to restrict attention to asubfa
ily Dy of D such that members @by, have a particular parametric form, which is chosen so that
projecting a modelPx. g onto 2y is more tractable than projecting it orda That is, a parametriza-
tion gx (x; A) with A € Ais fixed, and the familyDy is defined as

Dy ={Qx € D: ax(X) =qx(x; A) for someA € A}.

We assumé\ C R" is closed and bounded.
Then, the variational forward step is defined to be

R (Qx.0) = {(Q’x,e>: % E%QrgvinD(Qééllpx;e)}-

By the Pythagorean equality of Csis1975),

D(Q%I|Px; 6) = D(Q%||Pxjv—y: 8) + D(Pxjv—y; 6l|Px;0)
= D(QX||Pxjv—y.6) — logpy (¥; 6).

Thus,Q € Dy that minimizes this divergence also best approximBigs.y. ¢, which is the desired
distribution that would be chosen by the usual EM procedure.

Notice that the divergence minimized at every iteration is no longer (8 y—_y; o/ |Px; e)
(which is the negative log likelihood) as in the EM algorithm, and that theretbeelikelihood
is not guaranteed to increase at every iteration. We now examine if thétioosdbf the GAM
convergence theorem of Section 3 still hold if the forward step of the Eddaature is replaced by
Fv.

First, note thatDy is a natural choice foP’ as long as the set of variational paramefers com-
pact. That the mapy is closed onDy, x @ follows from Corollary 8 and Lemma 9 of Appendix A,
and the assumptions ol The mapping satisfies conditions (GAM.F) and (EQ.F) because each
new desired distribution must minimize the divergencé@to However, the uniqueness condition

2065



GUNAWARDANA AND BYRNE

of Proposition 5 (EQ.F) cannot be guaranteed in general, and mustified/ér each choice of
Dy. If this condition holds, then the algorithm converges to minimizers of the gitvere between
the family of variational approximations and the model family. For example, tipipdres when the
variational E step is uniquely defined.

We now analyze when these limit poini®y, 6*) are stationary points in likelihood. Sinéé
minimizes the divergendd(Q*||Px: ¢) overo,

T6D(Qx|IPxel| =0

0—0+

Expanding the divergence as before,

=0

DeD(Q§<||PX\Y:919)‘e:e* ~Dologa(y; e)‘e:e* -

so thatlglogq(y; 6)|e—e- = O if and only if

oD (QkIPxv—30)|,_,. =©.
Therefore &0* generated by a variational EM procedure is a stationary point in likelihoaddf
only if 8* is a parameter that locally minimizes the variational approximation error. Thifaan
pen in two ways. First, the variational error may have stationary points atrsafigoints in
likelihood. This can only be ensured if the stationary points are knowrréeftimation. Second,
the variational error is independent @&f This is not possible if the variational family introduces
independence assumptions that ensure tractability. In particular, a moa#i agrees with the
variational approximation (e.g., a factorial HMM with parameter settings thaiugde the state
sequences) will have lower variational error than one that does noiiluasteate this in the case of
the mean field approximation for Boltzmann machines.

Example 3 In Example 1, choose a pair of hidden nodgsconnected by a dependency link. It is
well-known (Byrne, 1992) that

d . .
100 Pss (SIS 6) = S8 — Epgg, [SSj[S6;6],

38,
9 | &;0) = E 50 k=1,j
WKOOQPSSE(SJSE, ) = S«— Ergq [Sd/SE: 6] =i,j,
which gives
0 * . a .
38y D (QsllPsse—s0) = Eos [SSjiH — Ersg, [SS11%:6)
— WK — Enye, [S51/56:6],
0
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If DoD(Qgl[Pyse—s:10) | ,_, IS t0 be zero,

Erg. [SSilSe:07] = Epgg, [S156:67] Epgg, [S)156: 6]

must hold. This can only occurff; = 0, when the model itself satisfies the constraints of the mean
field approximation. Thus, under this variational approximation, only Badimn machines where
the hidden units do not depend on each other can give stationary pointslihdike.

To summarize, the GAM convergence theorem applies to variational EM &sagken the
variational E step is uniquely defined. When this is so, the resulting modehilwaal minimum of
the divergence between the model family and the family of variational appatons. However,
except in degenerate cases, this model cannot be at a stationary figgithood. These degenerate
cases occur when the model satisfies the simplifying conditions that defifeniig of variational
approximations. In this case, the variational EM algorithm is essentially peirig standard EM
over a restricted model family defined so as to be consistent with the varisijgm@ximations.

6. Conclusion

GAM iterative estimation procedures are a class of EM extensions whosepEcan be varied
in a manner analogous to the relaxation of the M step that occurs in GEM algerittie have
provided conditions under which these procedures can be shownwvergerto stationary points in
likelihood. The conditions specify allowable E step variations that are ingfiaglogous to the M
step variations that are allowed by GEM procedures. The convergeratgsis is analogous to that
presented by Wu (1983), but takes advantage of the information georfratriework of Csisar
and Tusiady (1984) to explicitly represent distributions in computing sufficient stagistic

We have analyzed the convergence behavior of two well known EM sixtes, namely incre-
mental EM and variational EM, as GAM procedures. Our GAM convergeanalysis shows that
incremental EM procedures converge to stationary points in likelihoody gnaigh incremental
EM is in general neither a GEM procedure nor monotonic in likelihood. Vanati&M algorithms
with unique E steps satisfy the conditions of the GAM convergence theouéolbnot satisfy its
corollary. Thus the GAM convergence theorem shows that such algwitonverge to solutions
that minimize divergence, but these are not necessarily stationary poilitelihood. We then
present an information geometric argument which shows that variationalgeMnly converge to
stationary points in likelihood in degenerate cases.

Appendix A. EM Satisfies the GAM Convergence Theorem

Recall that the forward and backward stépB : D x © — D x © of the EM algorithm are given
by

F(Qx.0) = {(Q’xﬁ) Qe a&grgnD(Q&IPx;e)}

and

B(Qx,6) = {(Qx,cp) OIS argreninD(QxHPx;z)}.
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That the conditions (GAM.F), (GAM.B), (EQ.F), and (EQ.B) hold is obvidysconstruction.
We will first show a compact’ that guarantees th&t(D' x 6) C 2’ x 6 andB(2’ x 8) C D' x 6.
We will then show thaF andB are closed o’ x ©. Proposition 5 then implies that the composite
mapF B satisfies the conditions of the GAM convergence theorem (Theorem 3).

Restricting the desired family to a compact set We define?’ as
D' ={Qx € D: axyy (X)) = px)y (x|y; 8) for somed € O}

with D defined as in Section 2. Note that this forces ev@gyc 2’ to be the continuous mapping
of someB € ©. Therefore, D’ is the continuous mapping of the compact @stand is therefore
compact.

By construction of?, it is guaranteed thddy generated by a forward step will lie ifY. Thus,
F (D' x ©) C D' x ©. By definition of B(-), B(D' x ©) C D' x ©.

Closedness of the forward and backward steps The following proposition and corollary show
that the minimization of a continuous function forms a closed point-to-set maig.implies that
projection under the divergence forms a closed point-to-set-map, sbéh@ingeneralized) forward
and backward steps of the EM algorithm are in fact closed point-to-sex.map

Proposition 7 Given a real-valued continuous function f onxM, define the point-to-set map
F:A—Bhy

F(a) =argminf(a,b’),
b'eB
={b: f(ab) < f(a b)) for v € B}.
Then, the point-to-set map F is closed at a {flris nonempty.
Proof Let {a®}* ,and{b®} , be sequences it andB respectively, such that

at) - a,
bt — b,

and suppose
B0 € F (V).
That is,

b € argminf(a¥ b').
b'eB

The mapF is closed ai € A if this implies thatb € F(a) — that is, thab € argminf(a,b').

b'eB
To prove the proposition by contradiction, suppbsgeargminf(a,b’). By assumptiorf(a) is
b'eB
nonempty. Therefore, there exifts argmin f(a,b’). Choose > 0 such that
beB
f(a,b) > f(a,b)+ 2¢. )
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By continuity of f (-, -) and f-monotonicity of(a), b)), 3K; such that
f(a¥,bY) > f(a,b)—g, Vt>Ky,
so that by equation (9),
f(a® b®) > f(a,b)+e, Wt>Ki.
By continuity of f (-, b) and f-monotonicity of(a®’, b)), 3K, such that
f(a,b)+e> f(a¥,b), Wt >Ko.

Combining these two bounds gives> K1, K5 such that

f(a¥,bY) > f(a¥,b)

which is a contradiction since by assumptibﬁ), cargminf (a(t), b'), and therefore,
b'eB

b e argminf(a,b’),
b'eB

beF(a). [ |

Corollary 8 The point-to-set map FA — B of Proposition 7 is closed on A if the set B is closed.

The following lemma shows that the Cartesian product of two closed poirdgttoraps is itself
closed.

Lemma 9 Suppose FA— B and G: A— C are closed point-to-set-maps. Then the product point-
to-set-map H A — B x C defined by

H(a) =F(a) x G(a)
is closed.

This follows by direct application of the definition of closedness of poirggbmaps.
Proposition 7 and the existence of the I-projection shows that the mappimgfto D defined

by

Qx € argminD(Q4|[Px:e)
QeD

is closed. This result together with Lemma 9 then show that the forwardrstéphe EM algorithm
shown above is closed. Similarly, it can be shown using Corollary 8 and Lehthad the backward
stepB is closed.
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Appendix B. Incremental EM: (EQ) and 2/

In this appendix, we show that incremental EM satisfies condition EQ of thd G#xvergence the-
orem, and show a compact restriction of the desired family that can be uaedlyae convergence
of incrmental EM.

B.1 Incremental EM Satisfies Condition (EQ)

(Q%,9) € FB(Qx, 0) implies a sequence of incremental steps

0
(R§(>’(p(0))’ . ’(R§<n)’(p(n))

such that

(RS, ¢%) = (Qx.9),
(R, @) e FIBR{™, ¢fi-1),

and

(Qk.8) = (RY,@™).

WhenD(Q%||Px.e') = D(Qx||Px:6), the GAM inequality (already shown) gives that the diver-
gence is unchanged at every incremental step:

D(RY||Pxgr) = DRY ™Y [|Pgin)

for j=1,---,n. Infact, by conditions (GAM.F) and (GAM.B), the divergence is undethat each
incremental forward step()) and the backward stef

D(RY||Py.gii-) = D(RY ™Y [[Px.giin) (10)

and

D(RY|IPegn) = D(RY|[Pgi-v) (11)

for j=1,---,n. We will now show thaQy = Px(i)mi):y(i);di,l) fori=1,---,nand thatp) = 6
for j =1,---,n, which will then imply that condition (EQ) holds.
To showQy i = PX(i)‘Y(i):y(i); gi-n We decompose equation (10) as

;D |PX(p(11 +D RX(J ’PX(p(]l)
;D |Px(p(11)+D(Rx HPX(p(Jl)
SinceR;j()i) = R%l) for all i # j at any incremental sted ), this reduces to
DRY 1P, ) = DRIV, .
(Rme x:cw—”)— (Rxm I x;<p“—1>)
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for j=1,---,n. SinCGR;j(),-) = Pxiyt)—g); gi-v uniquely minimizes the component divergence
D(Rxi)[|Px.qi-n ) over allRy(), this means that

- .

(Jm = R§<J()j) = Pyt —gti; gli-v -

Thus, for any componerii), substituting inj = i and recalling that the firdt— 1 incremental E
steps leave the component margiRgl, unchanged, we get

Qi) = R;% =...= R%) = PX(i)|Y(i):9(i); @i - (12)

We now show thatp) =@ for j = 1,---,n. Since equation (11) tells us that the divergence
is unchanged at any backward stgp , both Py, andPy.-1 must minimizeD(Rg(j)H-). By
assumption (8), the M-step is uniquely determined, so we must ¢iéve: ¢/i-1. We therefore
have the desired result

=0 =...=¢" =¢.
Substituting this into equation (12) gives
Qi = R;og) == R% = Pxayir—y; 6 -
Since this applies for all=1,--- ,n, we have
RY =Pay_g0, Vj=0,--,n.
0

In particular,Qx = R§<) = Px|y—y, 8, Which means that

Qx = argminD(Qy ||Px;o)-

%eD
SinceRY = Qx, we use equation (11) with= 1 and condition (EQ.B) on the backward map to get

8 € argminD(Qx||Px:z).
13SC)

This shows that condition (EQ) holds.

B.2 Definition of a Compact?’

To find a suitable restrictioﬂ)f for any choice on§<0) € D, we first define the following sets of
measures on the componeXt$:

Q)I(II\I)C — {Qx(i) . Qx(i) = Px(i)‘y(i):)”/(i); 8 for somef e @} U {Qi(og)} ,

and note that the continuity dy,¢ (assumed), and the compactnessiofassumed) give us

compactness cﬂ)l(,i\,)c. We then define our restrictiafyy of D by

n
Dine = {Qx P Qx = rlem for some(Qy .-+, Qxin) € Dl X+ X Dm)c} :
i=
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To show compactness @), suppose{QQ)}t_o is a sequence i[yc. From the definition
of Dfyc., this then implies that there amequence{Qﬁ?D}t:O, each in the correspondir@l(,i\l)c,
such thatQQ) =Nk, Q%. The compactness cﬂ)l(,\ll)c implies the existence of an infinite subset

. t) * (1)
KD of the integers such that the subsequevﬁ(‘ém}tex(l> converges to some ;, € Dyyc-

Similarly, since the infinite sequen({dgggi)}t is contained in the compact s@,’(li\l)c, there

e K (-1

exists an infinite subsek® of % (-1 such that the subsequen%@gzw} , converges to some

te x(
Qi € Q),(,'\,)C. Therefore, the subsequen%@@}te?((n) converges tq‘|i”:1Qj((i> € D{\ye, Showing
that Dy is compact.
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