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Abstract

We introduce two new functionals, the constrained covariance and the kernel mutual information,
to measure the degree of independence of random variables. These quantities are both based on
the covariance between functions of the random variables inreproducing kernel Hilbert spaces
(RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the
random variables are pairwise independent. We also show that the kernel mutual information is an
upper bound near independence on the Parzen window estimateof the mutual information. Anal-
ogous results apply for two correlation-based dependence functionals introduced earlier: we show
the kernel canonical correlation and the kernel generalised variance to be independence measures
for universal kernels, and prove the latter to be an upper bound on the mutual information near
independence. The performance of the kernel dependence functionals in measuring independence
is verified in the context of independent component analysis.
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1. Introduction

Measures to determine the dependence or independence of random variables are well established
in statistical analysis. For instance, one well known measure of statistical dependence between two
random variables is themutual information(Cover and Thomas, 1991), which for random vectors
x,y is zero if and only if the random vectors are independent. This may also be interpreted as the
KL divergenceDKL

(
px,y||pxpy

)
between the joint density and the product of the marginal densities;

the latter quantity generalises readily to distributions of more than two random variables (there exist
other methods for independence measurement: see for instance Ingster,1989).

There has recently been considerable interest in using criteria based onfunctions in reproduc-
ing kernel Hilbert spaces to measure dependence, notably in the contextof independent component
analysis.1 This was first accomplished by Bach and Jordan (2002a), who introduced kernel de-
pendence functionals that significantly outperformed alternative approaches, including for source
distributions that are difficult for standard ICA methods to deal with. In the present study, we build
on this work with the introduction of two novel kernel-based independencemeasures. The first,
which we call the constrained covariance (COCO), is simply the spectral norm of the covariance
operator between reproducing kernel Hilbert spaces. We prove COCO to be zero if and only if
the random variables being tested are independent, as long as the RKHSs used to compute it are
universal. The second functional, called the kernel mutual information (KMI), is a more sophisti-
cated measure of dependence, being a function of the entire spectrum ofthe covariance operator.
We show that the KMI is an upper bound near independence on a Parzenwindow estimate of the
mutual information, which becomes tight (i.e., zero) when the random variables are independent,
again assuming universal RKHSs. Note that Gretton et al. (2003a,b) attempted to show a link with
the Parzen window estimate, although this earlier proof is wrong - the readermay compare Section
3 in the present document with the corresponding section of the original technical report, since the
differences are fairly obvious.2

The constrained covariance has substantial precedent in the dependence testing literature. In-
deed, Rényi (1959) suggested using the functional covariance or correlation to measure the de-
pendence of random variables (implementation details depend on the nature of the function spaces
chosen: the use of RKHSs is a more recent innovation). Thus, rather than using the covariance, we
may consider a kernelised canonical correlation (KCC) (Bach and Jordan, 2002a; Leurgans et al.,
1993), which is a regularised estimate of the spectral norm of thecorrelation operator between
reproducing kernel Hilbert spaces. It follows from the properties ofCOCO that the KCC is zero
at independence for universal kernels, since the correlation differs from the covariance only in its
normalisation: at independence, where both the KCC and COCO are zero,this normalisation is
immaterial. The introduction of a regulariser requires a new parameter that must be tuned, however,
which was not needed for COCO or the KMI.

Another kernel method for dependence measurement, the kernel generalised variance (KGV)
(Bach and Jordan, 2002a), extends the KCC by incorporating the entirespectrum of its associated

1. The problem of instantaneous independent component analysis involves the recovery of linearly mixed, i.i.d. sources,
in the absence of information about the source distributions beyond their mutual independence (Hyvärinen et al.,
2001).

2. Briefly, we now use Lemma 27 as a basis for our proof, which appliesto every singular value of a matrix product;
our earlier proof relied on Theorem 4.2.2 of Gretton et al. (2003a), which implies a result only for the largest singular
value, and is therefore insufficient. On the other hand, we believe that theproof given by Gretton (2003) in Chapter
9 is correct, but the approach is a bit clumsy, and much longer than it needs to be.
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Covariance Correlation

Max.
singular
value

COCO (Gretton
et al., 2005b)

KCC (Bach and
Jordan, 2002a)

MI
bound KMI

KGV (Bach and
Jordan, 2002a)

Table 1: Table of kernel dependence functionals. Columns show whether the functional is covari-
ance or correlation based, and rows indicate whether the dependence measure is the max-
imum singular value of the covariance/correlation operator, or a bound onthe mutual in-
formation.

correlation operator: in this respect, the KGV and KMI are analogous (see Table 1). Indeed, we
prove here that under certain reasonable and easily enforced conditions, the KGV is an upper bound
on the KMI (and hence on the mutual information near independence), which also becomes tight at
independence. A relation between the KGV and the mutual information is also proposed by Bach
and Jordan (2002a), who rely on a limiting argument in which the RKHS kernel size approaches
zero (no Parzen window estimate is invoked): our discussion of this proofis given in Appendix B.2.

We should warn the reader that results presented in this study have a conceptual emphasis: we
attempt to build on the work of Bach and Jordan (2002a) by on one hand exploring the mechanism
by which kernel covariance operator-based functionals measure independence (including a charac-
terisation of all kernels that induce independence measures), and on theother hand demonstrating
the link between kernel dependence functionals and the mutual information.That said, we observe
differences in practice when the various kernel methods are applied in ICA: the KMI generally out-
performs the KGV for many sources/large sample sizes, whereas the KGV gives best performance
for small sample sizes. The choice of regulariser for the KGV (and KCC) isalso crucial, since a
badly chosen regularisation is severely detrimental to performance when outlier noise is present.
The KMI and COCO are robust to outliers, and yield experimental performance equivalent to the
KGV and KCC with optimal regulariser choice, but without any tuning required.

The COCO and KCC dependence functionals for the 2-variable case aredescribed in Section
2, and it is shown that these measure independence when the associated kernels are universal. The
main results in this section are Definition 2, which presents both the population COCO and its em-
pirical counterpart, and Theorem 6, which shows that COCO is an independence measure. Section
3 contains derivations of the kernel-based upper bounds on the mutual information, and proofs that
these latter quantities likewise measure independence. In particular, the kernel mutual informa-
tion is introduced in Definition 14, its use as an independence measure is justified by Theorem 15,
and its relation to the mutual information is provided in Theorem 16. A generalisation to more
than two variables, which permits the measurement of pairwise independence, is also presented.
Section 4 addresses the application of kernel dependence measures to independent component anal-
ysis, including a method for reducing computational cost and a gradient descent technique (these
being adapted straightforwardly from Bach and Jordan, 2002a). Finally, Section 5 describes our
experiments: these demonstrate that the performance of the KMI and COCO,when used in ICA,
is competitive with the KGV and KCC, respectively. The kernel methods also compare favourably
with both standard and recent specialised ICA algorithms (RADICAL, CFICA, Fast ICA, Jade, and
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Acronym Description

COCO Constrained covariance
ICA Independent component analysis
KCC Kernel canonical correlation
KGV Kernel generalised variance
KMI Kernel mutual information

RKHS Reproducing kernel Hilbert space

Table 2: Table of acronyms

Infomax), and outperform these methods when demixing music sources (where the sample size is
large). Most interestingly, when the KGV is made to approach the KMI by an appropriate choice
of regularisation, its resistance to outlier noise is improved — moreover, kernel methods perform
substantially better than the other algorithms tested when outliers are present.3 We list our most
commonly used acronyms in Table 2.

2. Constrained Covariance, Kernel Canonical Correlation

In this section, we focus on the formulation of measures of independence for two random variables.
This reasoning uses well established principles, going back to Rényi (1959), who gave a list of
desirable properties for a measure of statistical dependenceQ(Px,y) between random variablesx,y
with distributionPx,y. These include

1. Q(Px,y) is well defined,

2. 0≤ Q(Px,y) ≤ 1,

3. Q(Px,y) = 0 if and only ifx,y independent,

4. Q(Px,y) = 1 if and only ify = f (x) or x = g(y), wheref andg are Borel measurable functions.

Rényi (1959) shows that one measure satisfying these constraints is

Q(Px,y) = sup
f ,g

corr( f (x),g(y)) ,

where f (x),g(y) must have finite positive variance, andf ,g are Borel measurable. This is similar
to the kernel canonical correlation (KCC) introduced by Bach and Jordan (2002a), although we
shall see that the latter is more restrictive in its choice off ,g. We propose a different measure, the
constrained covariance(COCO), which omits the fourth property and the upper bound in the second
property; in the context of independence measurement, however, the first and third properties are
adequate.4

3. The performance reported here improves on that obtained by Bachand Jordan (2002a); Learned-Miller and Fisher
III (2003) due to better tuning of the KGV and KCC regularisation.

4. The fourth property is required forQ to identify deterministic dependence, which anindependence measure should
not be concerned with.
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We begin in Section 2.1 by defining RKHSs and covariance operators between them. In Section
2.2, we introduce the constrained covariance, and we demonstrate in Section 2.3 that this quantity
is a measure of independence when computed in universal RKHSs (it follows that the KCC also
requires a universal RKHS, as do all independence criteria that are based on the covariance in
RKHSs). Finally, we describe the canonical correlation in Section 2.4, andits RKHS-based variant.

2.1 Covariance in Function Spaces

In this section, we provide the functional analytic background necessary in describing covariance
operators between RKHSs. Our presentation follows and extends the work of Zwald et al. (2004);
Hein and Bousquet (2004), who deal with covariance operators froma space to itself rather than
from one space to another, and Fukumizu et al. (2004), who use covariance operators as a means of
defining conditional covariance operators. Functional covariance operators were investigated earlier
by Baker (1973), who characterises these operators for general Hilbert spaces.

Consider a Hilbert spaceF of functions fromX to R, whereX is a separable metric space. The
Hilbert spaceF is an RKHS if at eachx ∈ X , the point evaluation operatorδx : F → R, which
maps f ∈ F to f (x) ∈ R, is a bounded linear functional. To each pointx ∈ X , there corresponds
an elementx := φ(x) ∈ F (we call φ the feature map) such that〈φ(x),φ(x′)〉F = k(x,x′), where
k : X ×X → R is a unique positive definite kernel. We also define a second RKHSG with respect
to the separable metric spaceY , with feature mapψ and kernel〈ψ(y),ψ(y′)〉G = l(y,y′).

Let Px,y(x,y) be a joint measure5 on (X ×Y ,Γ×Λ) (hereΓ andΛ are the Borelσ-algebras
on X andY , respectively, as required in Theorem 4 below), with associated marginal measuresPx

andPy and random variablesx andy. Then following Baker (1973); Fukumizu et al. (2004), the
covariance operatorCxy : G → F is defined6 such that for allf ∈ F andg∈ G ,

〈 f ,Cxyg〉F = Ex,y ([ f (x)−Ex( f (x))] [g(y)−Ey(g(y))]) .

In practice, we do not deal with the measurePx,y itself, but instead observe samples drawn indepen-
dently according to it. We write an i.i.d. sample of sizem from Px,y aszzz= {(x1,y1), . . . ,(xm,ym)},
and likewisexxx := {x1, . . . ,xm} andyyy := {y1, . . .ym}. Finally, we define the Gram matricesK andL
of inner products inF andG , respectively, between the mapped observations above: hereK has
(i. j)th entryk(xi ,x j) andL has(i, j)th entryl(yi ,y j). The Gram matrices for the variables centred
in their respective feature spaces are shown by Schölkopf et al. (1998) to be

K̃ := HKH , L̃ := HLH ,

where

H = I − 1
m

111m111>m, (1)

and 111m is anm×1 vector of ones.

5. We do not require this to have a density with respect to a reference measuredx×dy in this section. Note that we will
need a density in Section 3, however.

6. Our operator (and that of Fukumizu et al., 2004) differs from Baker’s in that Baker defines all measures directly on
the function spaces.
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2.2 The Constrained Covariance

In this section, we define the constrained covariance (COCO), and describe the properties of the
kernelised version. The covariance betweenx andy is defined as follows.

Definition 1 (Covariance) The covariance of two random variablesx,y is given as

cov(x,y) := Ex,y[xy]−Ex[x]Ey[y].

We next define the constrained covariance.

Definition 2 (Constrained Covariance (COCO)) Given function classesF ,G and a probability
measurePx,y, we define theconstrained covarianceas

COCO(Px,y;F ,G) := sup
f∈F ,g∈G

[cov( f (x),g(y))] . (2)

If F andG are unit balls in their respective vector spaces, then this is just the norm of the covariance
operator: see Mourier (1953). Given m independent observations zzz := ((x1,y1), . . . ,(xm,ym)) ⊂
(X ×Y )m, the empirical estimate of COCO is defined as

COCO(zzz;F ,G) := sup
f∈F ,g∈G

[
1
m

m

∑
i=1

f (xi)g(yi)−
1

m2

m

∑
i=1

f (xi)
m

∑
j=1

g(y j)

]
.

WhenF andG are RKHSs, withF andG their respective unit balls, then COCO(Px,y;F,G) is
guaranteed to exist as long as the kernelsk andl are bounded, since the covariance operator is then
Hilbert-Schmidt (as shown by Gretton et al., 2005a). The empirical estimate COCO(zzz;F,G) is also
simplified whenF andG are unit balls in RKHSs, since the representer theorem (Schölkopf and
Smola, 2002) holds: this states that a solution of an optimisation problem, dependent only on the
function evaluations on a set of observations and on RKHS norms, lies in thespan of the kernel
functions evaluated on the observations. This leads to the following lemma:

Lemma 3 (Value ofCOCO(zzz;F,G)) Denote byF andG RKHSs on the domainsX andY respec-
tively, and let F,G be the unit balls in the corresponding RKHSs. Then

COCO(zzz;F,G) =
1
m

√
‖K̃ L̃‖2, (3)

where the matrix norm‖ · ‖2 denotes the largest singular value. An equivalentunnormalisedform
(which we will refer back to in Section 3) isCOCO(zzz;F,G) = maxi γi , whereγi are the solutions to
the generalised eigenvalue problem

[
000 K̃ L̃

L̃ K̃ 000

][
αααi

βββi

]
= γi

[
K̃ 000
000 L̃

][
αααi

βββi

]
. (4)
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Proof By the representer theorem, the solution of the maximisation problem arising from
COCO(zzz;F,G) is given by f (x) = ∑m

i=1 αik(xi ,x) andg(y) = ∑m
j=1 β j l(y j ,y). Hence

COCO(zzz;F,G) = sup
ααα>Kααα≤1,βββ>Lβββ≤1

1
m

ααα>KL βββ− 1
m2ααα>K111m111>mLβββ

= sup
‖ααα‖,‖βββ‖≤1

1
m

ααα>K1/2HL 1/2βββ

=
1
m
‖K1/2HL 1/2‖2.

Squaring the argument in the norm, rearranging, and using the fact thatH = HH proves the lemma.

The constrained covariance turns out to be similar in certain respects to a number of kernel algo-
rithms, for an appropriate choice ofF ,G . By contrast with independence measurement, however,
these methods seek tomaximisethe constrained covariance through the correct choice of feature
space elements. First, and most obvious, is kernel partial least squares(kPLS) (Rosipal and Trejo,
2001), which at each stage maximises the constrained covariance directly (see Bakır et al., 2004).
COCO is also optimised when obtaining the first principal component in kernelprincipal compo-
nent analysis (kPCA), as described by Schölkopf et al. (1998), andis the criterion optimised in the
spectral clustering/kernel target alignment framework of Cristianini et al. (2002). Details may be
found in Appendix A.1.

Finally, we remark that alternative norms of the covariance operator should also be suited to
measuring independence. Indeed, the Hilbert-Schmidt (HS) norm is proposed in this context by
Gretton et al. (2005a): like the KMI, it exploits the entire spectrum of the empirical covariance
operator, and gives experimental performance superior to COCO in ICA. The HS norm has the
additional advantage of a well-defined population counterpart, and guarantees ofO(1/

√
m) conver-

gence of the empirical to the population quantity. The connection between the HS norm and the
mutual information remains unknown, however.

2.3 Independence Measurement with the Constrained Covariance

We now describe how COCO is used as a measure of independence. For our purposes, the notion
of independence of random variables is best characterised by Jacodand Protter (2000, Theorem
10.1(e)):

Theorem 4 (Independence)Let x andy be random variables on(X ×Y ,Γ×Λ) with joint mea-
surePx,y(x,y), whereΓ and Λ are Borelσ-algebras onX and Y , respectively. Then the random
variablesx andy are independent if and only ifcov( f (x),g(y)) = 0 for any pair( f ,g) of bounded,
continuous functions.

It follows from Theorem 4 that ifF ,G are the sets of bounded continuous functions, then
COCO(Px,y;F ,G) = 0 if and only if x andy are independent. In other words, COCO(Px,y;F ,G)
and COCO(zzz;F ,G) are criteria which can be testeddirectly without the need for an intermediate
density estimator (in general, the distributions may not even have densities). It is also clear, however,
that unlessF ,G are restricted in further ways, COCO(zzz;F ,G) will always be large, due to the rich
choice of functions available. Anon-trivial dependence functionalis thus obtained using function
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classes that do not give an everywhere-zero empirical average, yet which still guarantee that COCO
is zero if and only if its arguments are independent. A tradeoff between the restrictiveness of the
function classes and the convergence of COCO(zzz;F ,G) to COCO(Px,y;F ,G) can be accomplished
using standard tools from uniform convergence theory (see Gretton etal., 2005b). It turns out that
unit-radius balls inuniversalreproducing kernel Hilbert spaces constitute function classes that yield
non-trivial dependence estimates. Universality is defined by Steinwart (2001) as follows:

Definition 5 (Universal kernel) A continuous kernelk(·, ·) on a compact metric space(X ,d) is
called universal if and only if the RKHSF induced by the kernel is dense in C(X ), the space of
continuous functions onX , with respect to the infinity norm‖ f −g‖∞ .

Steinwart (2001) shows the following two kernels are universal on compact subsets ofRd:

k(x,x′) = exp
(
−λ‖x−x′‖2) and

k(x,x′) = exp
(
−λ‖x−x′‖

)
for λ > 0.

We now state our main result for this section.

Theorem 6 (COCO(Px,y;F,G) is only zero at independence for universal kernels)Denote byF
andG RKHSs with universal kernels on the compact metric spacesX andY , respectively, and let
F,G be the unit balls inF andG . ThenCOCO(Px,y;F,G) = 0 if and only ifx,y are independent.

Proof It is clear that COCO(Px,y;F,G) is zero ifx andy are independent. We prove the converse
by showing that7 COCO(Px,y;B(X ),B(Y )) = c for somec > 0 implies COCO(Px,y;F,G) = d for
d > 0: this is equivalent to COCO(Px,y;F,G) = 0 implying COCO(Px,y;B(X ),B(Y )) = 0 (where
this last result implies independence by Theorem 4). There exist two sequences of functionsfn ∈
C(X ) andgn ∈C(Y ), satisfying‖ fn‖∞ ≤ 1,‖gn‖∞ ≤ 1, for which

lim
n→∞

cov( fn(x),gn(y)) = c.

More to the point, there exists ann∗ for which cov( fn∗(x),gn∗(y)) ≥ c/2. We know thatF and
G are respectively dense inC(X ) andC(Y ) with respect to theL∞ norm: this means that for all
c
24 > ε > 0, we can find somef ∗ ∈ F (and an analogousg∗ ∈ G ) satisfying‖ f ∗− fn∗‖∞ < ε. Thus,
we obtain

cov( f ∗(x),g∗(y)) = cov( f ∗(x)− fn∗(x)+ fn∗(x),g
∗(x)−gn∗(x)+gn∗(x))

= Ex,y [( f ∗(x)− fn∗(x)+ fn∗(x))(g
∗(y)−gn∗(y)+gn∗(y))]

−Ex ( f ∗(x)− fn∗(x)+ fn∗(x))Ey (g∗(y)−gn∗(y)+gn∗(y))

≥ cov( fn∗(x),gn∗(y))−2ε |Ex ( fn∗(x))|−2ε |Ey (gn∗(y))|−2ε2

≥ c
2
−6

c
24

=
c
4

> 0.

Finally, bearing in mind that‖ f ∗(x)‖F < ∞ and‖g∗(x)‖G < ∞, we have

cov

(
f ∗(x)

‖ f ∗(x)‖F

,
g∗(y)

‖g∗(x)‖G

)
≥ c

4‖ f ∗(x)‖F ‖g∗(x)‖G

> 0,

7. HereB(X ) denotes the subset ofC(X ) of continuous functions bounded by 1 inL∞(X ), andB(Y ) is defined in an
analogous manner.
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and hence COCO(Px,y;F,G) > 0.

The constrained covariance is further explored by Gretton et al. (2005b, 2004). We prove two main
results in these studies, which are not covered in the present work:

• Theorems 10 and 11 of Gretton et al. (2005b) give upper bounds on theprobability of large
deviations of the empirical COCO from the population COCO: Theorem 10 covers negative
deviations of the empirical COCO from the population COCO, and Theorem 11describes
positive deviations. For a fixed probability of deviation, the amount by whichthe empirical
COCO differs from the population COCO decreases at rate 1/

√
m (for shifts in either direc-

tion). These bounds are necessary if we are to formulatestatistical testsof independence
based on themeasureof independence that COCO provides. In particular, Gretton et al.
(2005b, Section 5) give one such test .

• Theorem 8 of Gretton et al. (2005b) describes the behaviour of the population COCO when
the random variables are not independent, for a simple family of probability densities rep-
resented as orthogonal series expansions. This is used to illustrate two concepts: first, that
dependence can sometimes be hard to detect without a large number of samples (since the
deviation of the population COCO from zero can be very small, even for dependent random
variables); and second, that one type of hard-to-detect dependence is encoded in high fre-
quencies of the probability density function.

We also apply COCO in these studies to detecting dependence in fMRI scans of the Macaque visual
cortex. We refer the reader to these references for further detail onCOCO.

2.4 The Canonical Correlation

The kernelised canonical correlation (KCC) — i.e., the norm of thecorrelation operatorbetween
RKHSs — was proposed as a measure of independence by Bach and Jordan (2002a). Consistency
of the KCC was shown by Leurgans et al. (1993) for the operator norm,and by Fukumizu et al.
(2005) for the functions inF andG that define it (in accordance with Definition 7 below). Further
discussion and applications of the kernel canonical correlation include Akaho (2001); Bach and
Jordan (2002a); Hardoon et al. (2004); Kuss (2001); Lai and Fyfe (2000); Melzer et al. (2001);
Shawe-Taylor and Cristianini (2004); van Gestel et al. (2001). In particular, a much more extensive
discussion of the properties of canonical correlation analysis and its kernelisation may be found
in these studies, and this section simply summarises the properties and derivations relevant to our
requirements for independence measurement.

The idea underlying the KCC is to find the functionsf ∈ F andg∈ G with largestcorrelation
(as opposed to covariance, which we covered in the previous section).This leads to the following
definition.

Definition 7 (Kernel canonical correlation (KCC)) The kernel canonical correlation is defined
as

KCC(Px,y;F ,G) = sup
f∈F ,g∈G

corr( f (x),g(y))

= sup
f∈F ,g∈G

E( f (x)g(y))−Ex ( f (x))Ey (g(y))√
Ex ( f 2(x))−E2

x
( f (x))

√
Ey (g2(y))−E2

y
(g(y))

.
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As in the case of the constrained covariance, we may specify an empirical estimate similar to that
in Lemma 3:

Lemma 8 (Empirical KCC) The empirical kernel canonical correlation is given by
KCC(zzz;F ,G) := maxi (ρi), whereρi are the solutions to the generalised eigenvalue problem

[
000 K̃ L̃

L̃ K̃ 000

][
ci

di

]
= ρi

[
K̃2 000
000 L̃2

][
ci

di

]
. (5)

Bach and Jordan (2002a) point out that the first canonical correlation is very similar to the function
maximised by thealternating conditional expectationalgorithm of Breiman and Friedman (1985),
although in the latter casef (x) may be replaced with a linear combination of several functions ofx.

We note that the numerator of the functional in Definition 7 is just the functionalcovariance,
which suggests that the kernel canonical correlation might also be a useful measure of independence:
this was proposed by Bach and Jordan (2002a) (the functional correlation was also analysed as an
independence measure by Dauxois and Nkiet (1998), although this approach did not make use
of RKHSs). A problem with using the kernel canonical correlation to measure independence is
discussed in various forms by Bach and Jordan (2002a); Fukumizu et al. (2005); Greenacre (1984);
Kuss (2001); Leurgans et al. (1993); we now describe one formulation of problem, and the two main
ways in which it has been solved.

Lemma 9 (Without regularisation, the empirical KCC is independent of the data) Suppose that
the Gram matricesK andL have full rank. The2(m−1) non-zero solutions to (5) are thenρi =±1,
regardless of zzz.

The proof is in Appendix B.1. This argument is used by Bach and Jordan (2002a); Fukumizu et al.
(2005); Leurgans et al. (1993) to justify a regularised canonical correlation,

KCC(Px,y;F ,G ,κ) := sup
f∈F ,g∈G

cov( f (x),g(y))
(

var( f (x))+κ‖ f‖2
F

)1/2(
var(g(y))+κ‖g‖2

G

)1/2
, (6)

although this requires an additional parameterκ, which complicates the model selection problem.
As the number of observations increases,κ must approach zero to ensure consistency of the esti-
mated KCC, and of the associated functionsf andg that achieve the supremum. The rate of decrease
of κ for consistency of KCC is derived by Leurgans et al. (1993) (for RKHSs based on spline ker-
nels), and the rate required for consistency in theL2 norm of f andg is obtained by Fukumizu et al.
(2005) (for all RKHSs).

An alternative solution to the problem described in Lemma 9 is given by Kuss (2001), in which
the projection directions used to compute the canonical correlations are expressed in terms of a
more restricted set of basis functions, rather than the respective subspaces ofF andG spanned by
the entire set of mapped observations. These basis functions can be chosen using kernel PCA, for
instance.

Finally, we show that the regularised kernel canonical correlation is a measure of independence,
as long as the functions attaining the supremum have bounded variance.
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Theorem 10 (KCC(Px,y;F ,G ,κ) = 0 only at independence for universal kernels)Denote byF
andG RKHSs with universal kernels on the compact metric spacesX andY , respectively, and as-
sume thatvar( f (x)) < ∞ andvar(g(y)) < ∞. ThenKCC(Px,y;F ,G ,κ) = 0 if and only ifx,y are
independent.

Proof The proof is almost identical to the proof of Theorem 6. First, it is clear thatx and y

being independent implies KCC(Px,y;F ,G ,κ) = 0. Next, assume COCO(Px,y;B(X ),B(Y )) = c
for c > 0. We can then definef ∗ ∈ F andg∗ ∈ G as before, such that

cov( f ∗(x),g∗(y)) ≥ c
4
.

Finally, assuming var( f (x)) and var(g(y)) to be bounded, we get

cov




f ∗(x)
(

var( f ∗ (x))+κ‖ f ∗‖2
F

)1/2
,

g∗(y)
(

var(g∗ (y))+κ‖g∗‖2
G

)1/2




≥ c

4
(

var( f ∗ (x))+κ‖ f ∗‖2
F

)1/2(
var(g∗ (y))+κ‖g∗‖2

G

)1/2

> 0.

The requirement of bounded variance is not onerous: indeed, as in thecase of the covariance oper-
ator, we are guaranteed that var( f (x)) and var(g(y)) are bounded whenk andl are bounded.

3. Kernel Approximations to the Mutual Information

In this section, we investigate approximations to the mutual information that can beused for mea-
suring independence. Our main results are in Section 3.1. We present the kernel mutual information
(KMI) in Definition 14, and prove it to be zero if and only if the empirical COCOis zero (Theorem
15), which justifies using the KMI as a measure of independence. We then show the KMI upper
bounds a Parzen window estimate of the mutual information near independence (Theorem 16). An
important property of this bound is that it doesnot require numerical integration, or indeed any
space partitioning or grid-based approximations (see e.g. Paninski (2003) and references therein).
Rather, we are able to obtain a closed form expression when the grid8 becomes infinitely fine.

We should emphasise at this point an important distinction between the KMI and KGV on one
hand, and COCO and the KCC on the other. We recall that the empirical COCOin Lemma 3
is a finite sample estimate of the population quantity in Definition 2, and the empirical KCC in
Lemma 8 has a population equivalent in Definition 7 (convergence of the empirical estimates to
the population quantities is guaranteed in both cases, as described in the discussion of Section 2).
The KMI and KGV, on the other hand, are bounds on particular sample-based quantities, and are
not defined here with respect to corresponding population expressions. That said, the KGV appears
to be a regularised empirical estimate of the mutual information for Gaussian processes of Baker

8. Introduced in the discrete approximation to the mutual information
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(1970), although to our knowledge the convergence of the KGV to this population quantity is not
yet established.

In Section 3.2, we derive generalisations of COCO and the KMI to more than two univariate
random variables. We prove the high dimensional COCO and KMI are zeroif and only if the asso-
ciated pairwise empirical constrained covariances are zero, which makesthem suited for application
in ICA (see Theorem 24).

3.1 The KMI, the KGV, and the Mutual Information

Three intermediate steps are required to obtain the KMI from the mutual information: an approxi-
mation to the MI which is accurate near independence, a Parzen window estimate of this approxi-
mation, and finally a bound on the empirical estimate. We begin in Section 3.1.1 by introducing the
mutual information between two multivariate Gaussian random variables, for which a closed form
solution exists. In Section 3.1.2, we describe a discrete approximation to the mutual information
between two continuous, univariate random variables with an arbitrary jointdensity function, which
is defined via a partitioning of the continuous space into a uniform grid of bins; it is well established
that this approximation approaches the continuous mutual information as the grid becomes infinitely
fine (Cover and Thomas, 1991). We then show in Section 3.1.3 that the discrete mutual information
may be approximated by the Gaussian mutual information (GMI), by doing a Taylor expansion of
both quantities to second order around independence.

We next address how to go about estimating this Gaussian approximation of thediscrete mutual
information, given observations drawn according to some probability density. In Section 3.1.4, we
derive a Parzen window estimate of the GMI. Next, in Section 3.1.5, we give an upper bound on
the empirical GMI, which constitutes the kernel mutual information. Finally, we demonstrate in
Section 3.1.6 that the regularised kernel generalised variance (KGV) proposed by Bach and Jordan
(2002a) is an upper bound on the KMI, and hence on the Gaussian mutualinformation, under certain
circumstances. A comparison with the link originally proposed between the KGVand the mutual
information is given in Appendix B.2.

3.1.1 MUTUAL INFORMATION BETWEEN TWO MULTIVARIATE GAUSSIAN RANDOM

VARIABLES

We begin by introducing the Gaussian mutual information and its relation with the canonical cor-
relation. Thus, the present section should be taken as background material which we will refer
back to in the discussion that follows. Cover and Thomas (1991) provide amore detailed and gen-
eral discussion of these principles. IfxG,yG are Gaussian random vectors9 in R

lx,Rly respectively,

with joint covariance matrixC :=

[
Cxx Cxy

C>
xy Cyy

]
, then the mutual information between them can be

written

I (xG;yG) = −1
2

log

( |C|
|Cxx| |Cyy|

)
, (7)

where| · | is the determinant. We note that the Gaussian mutual information takes the distinctive
form of a log ratio of determinants: we will encounter this expression repeatedly in the subsequent

9. The subscriptsG are used to emphasise thatxG,yG are Gaussian; this notation is introduced here to make the reason-
ing clearer in subsequent sections.
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reasoning, under various guises. For this reason, we now present atheorem which describes several
alternative expressions for this ratio.

Theorem 11 (Ratio of determinants) Given a partitioned matrix10

[
A B

B> C

]
� 000, (8)

we can write

∣∣∣∣
[

A B
B> C

]∣∣∣∣
|A| |C| =

∣∣∣∣
[

I A −1/2BC−1/2

C−1/2B>A−1/2 I

]∣∣∣∣

=
∣∣∣I −A−1/2BC−1B>A−1/2

∣∣∣

= ∏
i

(1−ρ2
i )

> 0

whereρi are the singular values ofA−1/2BC−1/2 (i.e. the positive square root of the eigenvalues of
A−1/2BC−1B>A−1/2). Alternatively, we can writeρi as the positive solutions to the generalised
eigenvalue problem [

000 B
B> 000

]
ai = ρi

[
A 000
000 C

]
ai .

The proof is in Appendix A.2. Using this result, we may rewrite (7) as

I (xG;yG) = −1
2

log

(

∏
i

(1−ρ2
i )

)
, (9)

whereρi are the singular values ofC−1/2
xx CxyC

−1/2
yy ; or alternatively, the positive solutions to the

generalised eigenvalue problem

[
000 Cxy

C>
xy 000

]
ai = ρi

[
Cxx 000
000 Cyy

]
ai . (10)

In this final configuration, it is apparent thatρi are the canonical correlates of the Gaussian random
variablesxG and yG. We note that the definition of the Gaussian mutual information provided

by (9) and (10) holds even whenC does not have full rank (which indicates that
[

x>G y>G
]>

spans a subspace ofR
lx+ly), since forC � 000 we requireCxy to have the same nullspace asCyy, and

C>
xy to have the same nullspace asCxx. Alternatively, we could make a change of variables to a

lower dimensional space in which the resulting covariance has full rank, and then use the ratio of
determinants (7) with this new covariance.

10. We useX � 000 to indicate thatX is positive definite.
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3.1.2 MUTUAL INFORMATION BETWEEN DISCRETISEDUNIVARIATE RANDOM VARIABLES

In this section, and in the sections that follow, we consider only the case where X and Y are
closed, bounded subsets ofR, and require(x,y) ∈ X ×Y to have the joint densitypx,y (this is
by contrast with the discussion in Section 2, in whichX andY were defined simply as separable
metric spaces, and the measurePx,y did not necessarily admit a density). We will also assume
X ×Y represents the support ofpx,y. The present section introduces a discrete approximation to the
mutual information betweenx andy, as described by Cover and Thomas (1991). Consider a grid of
size lx× ly over X ×Y . Let the indicesi, j denote the point(qi , r j) ∈ X ×Y on this grid, and let
qqq = (q1, . . . ,qlx) ,rrr =

(
r1, . . . , r ly

)
be the complete sequences of grid coordinates. Assume, further,

that the spacing between points along thex andy axes is respectively∆x and∆y (the bins being
evenly spaced). We define two multinomial random variables ˆx, ŷ with a distributionPx̂,ŷ (i, j) over
the grid (the completelx× ly matrix of such probabilities isPxy); this corresponds to the probability
thatx,y is within a small interval surrounding the grid positionqi , r j , so

Px̂ (i) =
Z qi+∆x

qi

px(x)dx, Pŷ ( j) =
Z r j+∆y

r j

py(y)dy,

Px̂,ŷ (i, j) =
Z qi+∆x

qi

Z r j+∆y

r j

px,y(x,y)dxdy.

ThusPx̂,ŷ (i, j) is a discretisation ofpx,y. Finally, we denote aspx the vector for which(px)i = Px̂(i),
with a similarpy definition. The mutual information between ˆx andŷ is defined as

I (x̂; ŷ) =
lx

∑
i=1

ly

∑
j=1

Px̂,ŷ (i, j) log

(
Px̂,ŷ (i, j)

Px̂ (i)Pŷ ( j)

)
. (11)

It is well known thatI(x,y) is the limit of I (x̂; ŷ) as the discretisation becomes infinitely fine (Cover
and Thomas, 1991, Section 9.5).

3.1.3 MULTIVARIATE GAUSSIAN APPROXIMATION TO THEDISCRETISEDMUTUAL

INFORMATION

In this section, we draw together results from the two previous sections, showing it is possible to
approximate thediscretemutual information in Section 3.1.2 with aGaussianmutual information
between vectors of sufficiently high dimension, as long as we are close to independence. The results
in this section are due to Bach and Jordan (2002a), although the proof of(18) below is novel. We
begin by defining an equivalent multidimensional representationx̌, y̌ of x̂, ŷ in the previous section,
wherex̌ ∈ R

lx andy̌ ∈ R
ly, such that ˆx = i is equivalent to(x̌)i = 1 and(x̌) j : j 6=i = 0. To be precise,

we define the functions11

Ki(x) =

{
1 x∈ [qi ,qi +∆x)
0 otherwise

, K j(y) =

{
1 x∈ [r j , r j +∆y)
0 otherwise

,

such that
Ex (Ki(x)) = Ex ((x̌)i) =

Z ∞

−∞
Ki(x)px(x)dx= Px̂ (i)

11. Note that we donot require∆x = ∆y: thus the functionsKi(x) andK j (y) below may not be identical (the argument of
the function specifies whether∆x or ∆y is used, to simplify notation).
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and

Ex,y (Ki(x)K j(y)) = Ex,y

(
(x̌)i (y̌) j

)
=

Z ∞

−∞

Z ∞

−∞
Ki(x)K j(y)px,y(x,y)dxdy= Px̂,ŷ (i, j) .

A specific instance of the second formula is wheny = x, Ki(x) = Ki(y), andpx,y(x,y) = δx(y)px(x),
whereδx(y) is a delta function centred atx. Then

Ex (Ki(x)K j(x)) = Ex

((
x̌x̌>

)
i, j

)
=

Z ∞

−∞

Z ∞

−∞
Ki(x)K j(y)px(x)δx(y)dxdy

=

{
Px̂ (i) i = j

0 otherwise
.

In summary,

Ex,y

(
x̌ y̌>

)
= Pxy (12)

Ex (x̌) = px (13)

Ex

(
x̌ x̌>

)
= Dx (14)

whereDx = diag(px). Using these results, it is possible to define the covariances

Cxy = Ex,y

(
x̌ y̌>

)
−Ex (x̌)Ey (y̌)> = Pxy−pxp>

y , (15)

Cxx = Ex

(
x̌ x̌>

)
−Ex (x̌)Ex (x̌)> = Dx−pxp>

x , (16)

Cyy = Ey

(
y̌ y̌>

)
−Ey (y̌)Ey (y̌)> = Dy−pyp>

y . (17)

We may therefore define Gaussian random variablesxG,yG with the same covariance structure as
x̌, y̌, and with mutual information given by (7). We prove in Appendix A.3 that the mutual informa-
tion for this Gaussian case is

I (xG;yG) = −1
2

log

(∣∣∣∣I ly −
(

Pxy−pxp>
y

)>
D−1

x

(
Pxy−pxp>

y

)
D−1

y

∣∣∣∣
)

, (18)

which can also be expressed in the singular value form (9). The relation between (18) and (11) is
given in the following lemma, which is proved by Bach and Jordan (2002a, Appendix. B.1).

Lemma 12 (The discrete MI approximates the Gaussian MI near independence)
Let Px̂,ŷ (i, j) = Px̂ (i)Pŷ ( j)(1+ εi, j) for an appropriate choice ofεi, j , whereεi, j is small near
independence. Then the second order Taylor expansion of the discrete mutual information in (11) is

I (x̂; ŷ) ≈ 1
2

lx

∑
i=1

ly

∑
j=1

Px̂ (i)Pŷ ( j)ε2
i, j ,

which is equal to the second order Taylor expansion of the Gaussian mutual information in (18),
namely

I (xG;yG) ≈ 1
2

lx

∑
i=1

ly

∑
j=1

Px̂ (i)Pŷ ( j)ε2
i, j .
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3.1.4 KERNEL DENSITY ESTIMATES OF THEGAUSSIAN MUTUAL INFORMATION

In this section, we describe a kernel density estimate of the approximate mutualinformation in (18):
this is the point at which our reasoning diverges from the approach of Bach and Jordan (2002a). Be-
fore proceeding, we motivate this discussion with a short overview of the Parzen window estimate
and its properties, as drawn from Silverman (1986); Duda et al. (2001)(this discussion pertains to
the general case of multivariatex, although our application requires only univariate random vari-
ables). Given a samplexxx of sizem, each pointxl of which is assumed generated i.i.d. according to
some unknown distribution with densitypx, the associated Parzen window estimate of this density
is written

p̂x(x) =
1
m

m

∑
l=1

κ(xl −x) .

The kernel function12 κ(xl −x) must be a legitimate probability density function, in that it should
be correctly normalised,

Z

X
κ(x)dx= 1, (19)

andκ(x) ≥ 0. We may rescale the kernel according to1
Vx

κ
(

x
σx

)
, where the termVx is needed to

preserve (19). Denoting asVx,m the normalisation for a sample sizem, then we are guaranteed that
the Parzen window estimate converges to the true probability density as long as

lim
m→∞

Vx,m = 0,

lim
m→∞

mVx,m = ∞.

This method requires an initial choice ofσx for the sample size we start with, which can be obtained
by cross validation.

We return now to the problem of empirically estimating the mutual information described in
Sections 3.1.2 and 3.1.3. Our estimate is described in the following definition.

Definition 13 (Parzen window estimate of the Gaussian mutual information) A Parzen window
estimate of the Gaussian mutual information in (18) is defined as

Î (x̂; ŷ) = −1
2

log

(
min(lx,ly)

∏
i=1

(1+ ρ̂i)(1− ρ̂i)

)
, (20)

whereρ̂i are the singular values of
(

D(x)
l

)−1/2(
K l H (L l )

>
)(

D(y)
l

)−1/2
. (21)

Of the four matrices in this definition,D(x)
l is a diagonal matrix of unnormalised Parzen window

estimates ofpx at the grid points,

D(x)
l =

1
∆x




∑m
l=1 κ(q1−xl ) . . . 0

...
. . .

...
0 . . . ∑m

l=1 κ(qlx −xl )


 , (22)

12. The reader should not confuse the present kernel with the RKHS kernels introduced earlier. That said, we shall see
later that the two kernels are linked.
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D(y)
l is the equivalent diagonal matrix forpy,13 and

K l :=




κ(q1−x1) . . . κ(q1−xm)
...

. . .
...

...
. . .

...
κ(qlx −x1) . . . κ(qlx −xm)




, L l :=




κ(r1−y1) . . . κ(r1−ym)
...

. ..
...

...
. ..

...
κ
(
r ly −y1

)
. . . κ

(
r ly −ym

)




, (23)

where we write the above in such a manner as to indicate lx � m and ly � m.

Details of how we obtained this definition are given in Appendix A.4. The main disadvantage
in using this approximation to the mutual information is that it is exceedingly computationally
inefficient, in that it requires a kernel density estimate at each point in a finegrid. In the next
section, we show that it is possible to eliminate this grid altogether when we take anupper bound.

3.1.5 THE KMI: A N UPPERBOUND ON THE MUTUAL INFORMATION

We now define the kernel mutual information, and show is both a valid dependence criterion (The-
orem 15), and an upper bound on the Parzen GMI in Lemma 13 (Theorem 16).

Definition 14 (The kernel mutual information) The kernel mutual information is defined as

KMI (zzz;F ,G) := −1
2

log
(∣∣∣I −ν−2

zzz K̃ L̃
∣∣∣
)

= −1
2

log

(

∏
i

(
1− γ2

i

ν2
zzz

))
,

whereγi are the non-zero solutions14 to
[

000 K̃ L̃
L̃ K̃ 000

][
ci

di

]
= γi

[
000 K̃
L̃ 000

][
ci

di

]
, (24)

the centred Gram matrices̃K andL̃ are defined using RKHS kernels obtained via convolution of the
associated Parzen windows,15

k(xi ,x j) =
Z

X
κ(xi −q)κ(x j −q)dq and l(yi ,y j) =

Z

Y
κ(yi − r)κ(y j − r)dr,

and

νzzz = min



 min

j ∈ {1. . .m}

m

∑
i=1

κ(xi −x j) , min
j ∈ {1. . .m}

m

∑
i=1

κ(yi −y j)



 .

13. As in our Section 3.1.3 definition ofKi(x) andK j (y), we use the notationκ(x) andκ(y) to denote the Parzen windows
for the estimateŝpx(x) andp̂y(y), respectively, even though these may not be identical kernel functions. The argument
again indicates which kernel is used.

14. Compare with (4).
15. Recall thatκ(x−q) may be different fromκ(y− r), and that the identity of the Parzen window is specified by its

argument.
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We note that the above definition bears some similarity to the estimate of Pham (2002). That said,
we approximate the mutual information, rather than the entropy; in addition, the KMI is computed
in the limit of infinitely small grid size, which removes the need for binning. Thus, we retain our
original kernel, rather than using a spline kernel in all cases. This allowsus greater freedom to
choose a kernel density appropriate to the characteristics of the sources.

The KMI inherits the following important property from the constrained covariance.

Theorem 15 (The KMI is zero if and only if the empirical COCO is zero) The KMI is zero,
KMI (zzz;F ,G) = 0, if and only if the empirical constrained covariance is zero,
COCO(zzz;F,G) = 0.

Proof This theorem follows from the constrained covariance being the largest eigenvalueγi of (24).

The relation of the KMI to the mutual information is given by the following theorem,which is the
main result of Section 3.

Theorem 16 (The KMI upper bounds the GMI) Assume thatX ×Y is chosen to be the support
of px,y, thatpx,y is bounded away from zero, and that

min
x∈X

m

∑
i=1

κ(x−xi) ≈ min
j ∈ {1. . .m}

m

∑
i=1

κ(xi −x j) and

min
y∈Y

m

∑
i=1

κ(y−yi) ≈ min
j ∈ {1. . .m}

m

∑
i=1

κ(yi −y j)

(the expressions above are alternative, unnormalised estimates ofminx∈X px(x) andminy∈Y py(y),
respectively; the right hand expressions are used so as to obtain the KMIentirely in terms of the
sample zzz). Then

KMI (zzz;F ,G) ' Î (x̂; ŷ) . (25)

This theorem is proved in Appendix A.5. In particular, the approximate nature of the inequality (25)
arises from our use of empirical estimates for lower bounds onpx(x) andpy(y) (see the proof for
details).

3.1.6 THE KGV: A N ALTERNATIVE UPPERBOUND ON THE MUTUAL INFORMATION

Bach and Jordan (2002a) propose two related quantities as independence functionals: the ker-
nel canonical correlation (KCC), as discussed in Section 2.4, and the kernel generalised variance
(KGV). In this section, we demonstrate that the latter quantity is an upper bound on the KMI under
certain conditions. This approach is different to the proof of Bach and Jordan, who employ a limit
as the RKHS kernels become infinitely small, and do not make use of Parzen windows. In any event,
there may be some problems with this limiting argument: see Appendix B.2 for furtherdiscussion.
We begin by recalling the definition of the KGV.

Definition 17 (The kernel generalised variance)The empirical KGV is defined as

KGV (zzz;F ,G ,θ) = −1
2

log

(

∏
i

(
1−ρ2

i

)
)

, (26)
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whereρi are the solutions to the generalised eigenvalue problem16

[
000 K̃ L̃

L̃ K̃ 000

][
ci

di

]
= ρi

[
θK̃2 +νzzz(1−θ)K̃ 000

000 θL̃2 +νzzz(1−θ)L̃

][
ci

di

]
, (27)

andθ ∈ [0,1].

Next, we demonstrate the link between the KGV and the KMI.

Theorem 18 (The KGV upper bounds the KMI) For all θ ∈ [0,1],

KGV (zzz;F ,G ,θ) ≥ KMI (zzz;F ,G) ,

with equality only atθ = 0, subject to the conditions

νzzzI − K̃ � 0 and νzzzI − L̃ � 0. (28)

This theorem is proved in Appendix A.6. The requirements (28) should be checked at the point
of implementation to guarantee a bound, but we are assured of being able to enforce them: for
example, whenk is the convolution of (properly normalised) Gaussian kernelsκ of sizeσ, then

k(xi ,x j) =
1√

2π(2σ2)
exp

(
− 1

2(2σ2)
(x j −xi)

2
)

,

which is a Gaussian with twice the variance and 1/
√

2 the peak amplitude ofκ. An upper bound
on the spectral norm of̃K is maxj ∑m

i=1k(xi ,x j), which follows from Horn and Johnson (1985,
Corollary 6.1.5).17 In other words, even by this conservative estimate, we are assured there exists
a σ > 0 small enough for (28) to hold (the requirements (28) are also sufficientto guarantee the
existence of the KMI, since they cause the argument of the logarithm in Definition 14 to be positive).

3.2 Multivariate COCO and KMI

We now describe how our dependence functionals may be generalised to more than two random
variables. Let us define the continuous univariate random variablesx1, . . . ,xn on X1, . . . ,Xn, with
joint distributionPx1,...,xn. We also define the associated feature spacesFX1, . . . ,FXn, each with its
corresponding kernel (as in the 2 variable case, the kernels may be different). We begin with a
generalisation of the concept of constrained covariance. Our expression takes a similar form to that
of Bach and Jordan (2002a, Appendix A.3), although they deal with canonical correlations rather
than constrained covariances, which changes the discussion in some respects.

Definition 19 (Empirical multivariate COCO) Let zzz := {xxx1, . . . ,xxxn} be an i.i.d. sample of size m
from the joint distributionPx1,...,xn. The multivariate COCO is defined as

COCO(zzz;FX1, . . . ,FXn) := max
j

(∣∣λ j
∣∣) ,

16. See (5). Note that Bach and Jordan (2002a) handle the scaling differently: they replace the right hand matrix in (27)

with

[
K̃2 + ςK̃ 000

000 L̃2 + ςL̃

]
for a regularisation scaleς. We shall see that the form in (27) guarantees the KGV to

upper bound the KMI (and hencêI(x̂, ŷ) in (20)).
17. Bearing in mind Lemma 27, and thatH has singular values in{1,0}.
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whereλ j are the solutions to the generalised eigenvalue problem



000 K̃1K̃2 . . . K̃1K̃n

K̃2K̃1 000 . . . K̃2K̃n
...

...
.. .

...
K̃nK̃1 K̃nK̃2 . . . 000







c1, j

c2, j
...

cn, j


= λ j




K̃1 000 . . . 000
000 K̃2 . . . 000
...

...
.. .

...
000 000 . . . K̃n







c1, j

c2, j
...

cn, j


 , (29)

K̃ i = HK iH, andK i is the uncentred Gram matrix of the observations xxxi drawn fromPxi .

This expression is obtained using reasoning analogous to the bivariate empirical COCO in Section
2. The following result justifies using the multivariate COCO as an independence measure.

Lemma 20 (The multivariate COCO measures pairwise independence)The multivariate con-
strained covariance is zero if and only if all the empirical pairwise constrained covariances are
zero:
COCO(zzz;FX1, . . . ,FXn) = 0 iff COCO

(
xxxi ,xxx j ;FXi ,FX j

)
= 0 for all i 6= j.

We note that although the multivariate COCO only verifies pairwise independence, this is nonethe-
less sufficient to recover mutually independent sources in the context oflinear ICA: see Theorem
24. It is instructive to compare with the KCC-based dependence functional for more than two vari-
ables, which uses the smallest eigenvalue of a matrix of correlations (with diagonal terms equal to
one, rather than zero), where this correlation matrix has only positive eigenvalues.

We next introduce a generalisation of the kernel mutual information to more than two variables.
By analogy with the 2-variable case in Definition 14, we propose the followingdefinition.

Definition 21 (Multivariate KMI) The kernel mutual information for more than two random vari-
ables is defined as

KMI (zzz;FX1, . . . ,FXn) := −1
2

log
mn

∏
j=1

(
1+ λ̆ j

)
, (30)

whereνzzzλ̆ j = λ j , and

νzzz := min
i∈{1,...,n}

νxxxi , where (31)

νxxxi := min
j ∈ {1. . .m}

m

∑
l=1

κ(xi,l −xi, j) .

For (30) to be defined, it is necessary that 1+ λ̆ j > 0 for all j, which is true near independence. The
following lemma describes the sense in which the multivariate KMI measures independence.

Lemma 22 (The multivariate KMI measures pairwise independence)The multivariate KMI is
zero if and only if the empirical constrained covariance is zero for everypair of random variables:
in other words,

KMI (zzz;FX1, . . . ,FXn) = 0

if and only if
COCO

(
xxxi ,xxx j ;FXi ,FX j

)
= 0

for all i 6= j.

2094



KERNEL METHODS FORMEASURING INDEPENDENCE

The proof is in Appendix A.7. We now briefly outline how the dependence functional in (30) relates
to the KL divergence. In the case of a Gaussian random vectorxG, which can be segmented as
x>G :=

[
x>G,1 . . . x>G,n

]
, the KL divergence between the joint distribution ofxG and the product

of the marginal distributions of thexG,i can be written in terms of the relevant covariance matrices
as

DKL

(
pxG

∥∥∥∥∥
n

∏
i=1

pxG,i

)
= −1

2
log

( |C|
∏n

i=1 |Cii |

)
,

where

C = ExG

(
xGx>G

)
−ExG (xG)ExG

(
x>G
)

,

Cii = ExG,i

(
xG,ix

>
G,i

)
−ExG,i (xG,i)ExG,i

(
x>G,i

)
.

These results should allow us to generalise the reasoning in Section 3.1, substituting the kernel
density estimates

P̂xi (xi) =
1
m

m

∑
l=1

κ(xi,l −xi) ,

P̂x1,...,xn(x1, . . . ,xn) =
1
m

m

∑
l=1

n

∏
i=1

κ(xi,l −xi) ,

and applying the bounding technique of Section 3.1.5 to obtain the quantity in (30); this is a reason
for our choosingνzzz to scaleλ̆ j .18 The details of this generalisation are beyond the scope of the
present work.

4. Implementation and Application to ICA

Any practical validation of the independence measures described aboveis best conducted with re-
spect to some ground truth, in which genuinely independent random variables are tested using the
proposed functionals (COCO, KMI). Thus, one test of performance isindependent component anal-
ysis (ICA): this entails separating independent random variables that have been linearly mixed, using
only their property of independence (specifically, we recover the coefficients that describe the linear
mixing).

An ICA algorithm using COCO and the KMI comprises two components: the efficient compu-
tation of COCO and the KMI, using low rank approximations of the Gram matrices, and gradient
descent on the space of linear mixing matrices. These results are summarisedfrom the more de-
tailed discussion by Bach and Jordan (2002a) (although the low rank decomposition is in our case
made easier by the absence of the variance term used in the KCC and KGV).

4.1 Efficient Computation of Kernel Dependence Functionals

We note that COCO requires us to determine the eigenvalue of maximum magnitude for anmn×mn
matrix (see (29)), and the KMI is a determinant of anmn×mnmatrix, as specified in (30). For any

18. On a more pragmatic note, the factorνzzz generally causes
∣∣∣λ̆ j

∣∣∣ <
∣∣λ j
∣∣, which results in KMI(zzz;FX1, . . . ,FXn) being

defined further from independence. This is not the only such scaling factor, however.
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reasonable sample sizem, the cost of these computations is prohibitive. We now describe how the
computational complexity of this problem may be substantially reduced. First, wenote that any
positive (semi)definite matrix can be writtenK i = Z iZ>

i , whereZ i is lower triangular: this is known
as the Cholesky decomposition. If the eigenvalues of the Gram matrixK i decay sufficiently rapidly,
however, we may make the approximation

K i ≈ Z iZ>
i (32)

to the Gram matrixK i , whereZ i is anm×di matrix; the error due to this approach may be measured
via the maximum eigenvalueµi of K i −Z iZ>

i . TheZ i are determined via anincompleteCholesky
decomposition, in which the smaller pivots are skipped; symmetric permutation of the rows and
columns ofK i is used in the course of this process to increase the accuracy and numerical stability
of the approximation. This method is applied by Fine and Scheinberg (2001) todecrease the stor-
age and computational requirements of interior point methods in SVMs, and byBach and Jordan
(2002a) for faster computation of the KGV and KCC (pseudocode algorithms may be found in both
references). Once the incomplete Cholesky decomposition is accomplished,we can compute the
approximatecentredGram matrices according tõK i := HK iH = (HZ i)

(
HZ>

i

)
= Z̃ iZ̃>

i .
We now show how this low rank decomposition may be used to more efficiently compute the

constrained covariance in (29). Substituting

di, j = Z̃>
i ci, j ,

we get




000 Z̃1Z̃>
1 Z̃2 . . . Z̃1Z̃>

1 Z̃n

Z̃2Z̃>
2 Z̃1 000 . . . Z̃2Z̃>

2 Z̃n
...

...
.. .

...
Z̃nZ̃>

n Z̃1 Z̃nZ̃>
n Z̃2 . . . 000







d1, j

d2, j
...

dn, j


= λ j




Z̃1 000 . . . 000
000 Z̃2 . . . 000
...

...
.. .

...
000 000 . . . Z̃n







d1, j

d2, j
...

dn, j


 .

We may premultiply both sides by19 diag
([

Z̃>
1 . . . Z̃>

n

])
without increasing the nullspace of

this generalised eigenvalue problem, and we then eliminate diag
([

Z̃>
1 Z̃1 . . . Z̃>

n Z̃n

])
from

both sides. Making these changes, we are left with




000 Z̃>
1 Z̃2 . . . Z̃>

1 Z̃n

Z̃>
2 Z̃1 000 . . . Z̃>

2 Z̃n
...

...
. . .

...
Z̃>

n Z̃1 Z̃>
n Z̃2 . . . 000







d1, j

d2, j
...

dn, j


= λ j




d1, j

d2, j
...

dn, j


 , (33)

which is a much more tractable eigenvalue problem, having dimension∑n
i=1di . The same procedure

may easily be used to recast (30) as the determinant of an(∑n
i=1di)× (∑n

i=1di) matrix. We now
briefly consider how to choose the rankdi for a given precisionµi : this depends on both the density

19. The notation diag
([

Z̃>
1 . . . Z̃>

n

])
defines a matrix with blocks̃Z>

i along the diagonal, and zeros elsewhere.

The matrix need not be square, however, and the diagonal is in this casedefined in a manner consistent with the
asymmetry of thẽZ>

i .
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pxi
and the kernelk(xi ,x). For Gaussian kernels and densities with exponential decay rates, Bach

and Jordan (2002a) show the required precision relates to the rank according todi = O(log (m/µi)),
which demonstrates the slow increase in rank with sample size. In the case of the KGV and KCC,
however, the form of the empirical estimate causes eigenvalues less than approximately 10−3mκ/2
to be discarded, which thus serves as a target precision to ensure theZ i retain constant rank regard-
less ofm. We also adopt this threshold in our simulations with the Gaussian kernel, although our
motivation is purely a reduction of computational cost.

4.2 Independent Component Analysis

We describe the goal of instantaneous independent component analysis(ICA), drawing on the nu-
merous existing surveys of ICA and related methods, including those by Hyvärinen et al. (2001);
Lee et al. (2000); Cichocki and Amari (2002); Haykin (1998); as well as the review by Comon
(1994) of older literature on the topic. We are givenm samplesttt := (t1, . . . , tm) of the n dimen-
sional random vectort, which are drawn independently and identically from the distributionPt.
The vectort is related to the random vectors (also of dimensionn) by the linear mixing process

t = Bs, (34)

whereB is a matrix with full rank. We refer to our ICA problem as beinginstantaneousas a way of
describing the dual assumptions that any observationt depends only on the samples at that instant,
and that the sampless are drawn independently and identically.

The componentssi of s are assumed to be mutually independent: this model codifies the assump-
tion that the sources are generated by unrelated phenomena (for instance, one component might be
an EEG signal from the brain, while another could be due to electrical noisefrom nearby equip-
ment). Mutual independence (in the case where the random variables admit probability densities)
has the following definition (Papoulis, 1991):

Definition 23 (Mutual independence) Suppose we have a random vectors of dimension n. We say
that the componentssi aremutually independent if and only if

ps (s) =
n

∏
i=1

psi
(si) . (35)

It follows easily that the random variables arepairwiseindependent if they aremutually indepen-
dent; i.e.psi

(si)ps j
(sj) = psi ,s j

(si ,sj) for all i 6= j. The reverse doesnot hold, however: pairwise
independence does not guarantee mutual independence.

Our goal is to recovers via an estimateW of the inverse of the matrixB, such that the recovered
vectorx = WBs has mutually independent components.20 For the purpose of simplifying our dis-
cussion, we will assume thatB (and henceW) is anorthogonal matrix; in the case of arbitraryB, the
observations must first be decorrelated before an orthogonalW is applied (Hyvärinen et al., 2001).
In our experiments, however, we will deal with general mixing matrices.

20. It turns out that the problem described above is indeterminate in certain respects. For instance, our measure of
independence does not change when the ordering of elements inx is swapped, or when components ofx are scaled
by different constant amounts. Thus, source recovery takes placeup to these invariances.
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Mutual independence is generally difficult to determine. In the case of linear mixing, however,
we are able to find a unique optimal unmixing matrixW using only thepairwise independence
between elements ofx, which is equivalent to recovering themutually independent terms ofs (up
to permutation and scaling). This is due to the following theorem (Comon, 1994, Theorem 11).

Theorem 24 (Mutual independence in linear ICA) Let s be a vector of dimension n with mutu-
ally independent components, of which at most one is Gaussian, and forwhich the underlying
densities do not contain delta functions. Letx be a random vector related tos according tox = As,
whereA is an orthogonal n×n matrix.21 Then the properties

• The components ofx are pairwise independent

• The components ofx are mutually independent

• A = PS, whereP is a permutation matrix, andS a diagonal matrix

are equivalent.

We acknowledge that the application of a general dependence function tolinear ICA is not guaran-
teed to be an optimal non-parametric approach to the problem of estimating the entries in B—for
instance, Samarov and Tsybakov (2004) provide a method that guarantees

√
n-consistent estimates

of the columns ofB under certain smoothness assumptions on the source densities, which is a more
natural goal in view of the mixing model (34). Indeed, most specialised ICAalgorithms exploit
the linear mixing structure of the problem to avoid having to employ a general measure of indepen-
dence, which makes the task of recoveringB easier. That said, ICA is in general a good benchmark
for dependence measures, in that it applies to a problem with a known “ground truth”, and tests
that the dependence measures approach zero gracefully as dependent random variables are made
to approach independence (through optimisation of the unmixing matrix). In addition, the kernel
methods yield better experimental performance than other specialised ICA approaches (including
recent state-of-the-art algorithms) in our tests of outlier resistance and musical source separation
(see Section 5).

We also note at this point that if elementst i , t j in the samplettt arenot drawn independently for
i 6= j (for instance, if they are generated by a random process with non-zero correlation between
the outputs at different times), then an entirely different set of approaches can be brought to bear
(see for instance Belouchrani et al., 1997; Pham and Garat, 1997).22 Although the present study
concentrates entirely on the i.i.d. case, we will briefly address random processes with time depen-
dencies in Section 6, when describing possible extensions to our work. Finally, we draw attention to
an alternative ICA setting, as described by Cardoso (1998b); Theis (2005), in whichs is partitioned
into mutually independent vectors (which might each have internal dependence structure): we wish
to recover these vectors following linear mixing. As pointed out by Bach andJordan (2002a), kernel
dependence functionals are well suited to this problem, since they also applystraightforwardly to
multivariate random variables: it suffices to define appropriate Gram matrices.

21. For the purposes of ICA,A combines both the mixing and unmixing processes,i.e., A = WB.
22. In particular, it becomes possible to separate Gaussian processeswhen they are correlated over time.
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4.3 Gradient Descent on the Stiefel Manifold

We now describe the method used to minimise our kernel dependence functionals over possible
choices of the orthogonal demixing matrixW. The manifold described byn× p matricesA for
which A>A = I , wheren ≥ p, is known as theStiefel manifold. Gradient descent for functions
defined on this manifold is described by Edelman et al. (1998), and Bach and Jordan (2002a) applied
this technique to kernel ICA. A clear and intuitive explanation of this procedure is also given by
Hyvärinen and Plumbley (2002). Letf (W,ttt) be the particular dependence functional (COCO or
KMI) on which we wish to do gradient descent, wherettt := (t1, . . . , tm) are the whitened, mixed
observations. A naive gradient descent algorithm would involve computing the derivative

G :=
∂ f (W,ttt)

∂W
,

updatingW according toW → W + µG (whereµ is chosen to minimisef (W + µG,ttt)), and pro-
jecting the resulting matrix back onto the Stiefel manifold. This might not be particularly efficient,
however, in that the update can largely be cancelled by the subsequent projection operation. In-
stead, we attempt to find the direction of steepest descent on the Stiefel manifold, and to perform
our update with the constraint that we remain on this manifold. To achieve this, we first describe the
set of perturbations toW that retain the orthogonality ofW, then choose the direction of steepest
descent/ascent within this set, and finally give the expression that parameterises the shifts along the
geodesic23 in this direction.

Let ∆∆∆ be a perturbation with small norm to the orthogonal matrixW, such thatW +∆∆∆ remains
on the Stiefel manifold. For this constraint to hold, we require

(W +∆∆∆)> (W +∆∆∆) = I , which implies (36)

W>∆∆∆+∆∆∆>W ≈ 000; (37)

in other words,W>∆∆∆ is skew-symmetric. To find the particular∆∆∆ that gives the direction of steepest
change off (W,ttt), we solve

∆∆∆max := arg max
∆∆∆

f (W +∆∆∆,ttt),

subject to tr(∆∆∆>∆∆∆) = const and (37). This yields

∆∆∆max = G−WG>W,

where the proof is provided by Edelman et al. (1998); Hyvärinen and Plumbley (2002). Finally, if
we useq to parameterise displacement along a geodesic in the direction∆∆∆max from an initial matrix
W(0), then the resultingW(q) is given by

W(q) = W(0)exp
(

qW(0)>∆∆∆max

)
.

As in the implementation of Bach and Jordan (2002a), we determine an approximation of the gradi-
ent of f (W,ttt) by making small perturbations toW about each possible Jacobi rotation, and recom-
puting f for each such perturbation. Gradient descent is then accomplished using a Golden search
along this direction of steepest descent.

23. A geodesic represents the shortest path on a manifold between two points; equivalently, the acceleration involved in
moving between two points along a geodesic is perpendicular to the manifold when constant velocity is maintained.
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Finally, we note that procedures are given by Edelman et al. (1998) to compute the Hessian on
the Stiefel manifold, as are implementations of Newton’s method and conjugate gradient descent.
In addition, an adaptive algorithm for gradient descent on the Stiefel manifold is proposed by Zhu
and Zhang (2002). The application of these methods to improve the performance of our algorithm
is beyond the scope of the present work.

4.4 Computational Cost

We conclude this section with a summary of the overall computational cost of ICA based on COCO
and the KMI: this analysis draws directly from the assessment of Bach andJordan (2002a, Sec-
tion 6), since COCO and the KMI cost effectively the same as the KCC and KGV, respectively.
The first step in ICA, which is not discussed here, is the decorrelation ofthe sources (as described
for instance by Hyvärinen et al., 2001), which has a cost O(mn2). We next consider the cost of
computing the multivariate COCO and KMI. In both approaches, each of then sources requires an
estimate of itsm×mGram matrix using incomplete Cholesky decomposition, which costs O(md2),
whered is the largest rank retained in the computation of theZ i in (32): the net cost is O(mnd2).
TheseZ i are then centred and assembled into the matrix in (33), which entailsn(n−1)/2 operations
each costing O(md2), for an overall cost O(mn2d2). COCO is given by the largest eigenvalue of
this matrix, and costs O(n2d2); the KMI is a determinant, and costs O(n3d3).

We compute the gradient of the kernel dependence measures using the method of finite dif-
ferences (as described in the previous section), which necessitatesn(n− 1)/2 evaluations of the
measure used. In each evaluation, we need only compute two incomplete Cholesky decompositions
(we cache the remainder); the assembly of the matrix in (33) then entails 2n−3 matrix products,
for an overall cost (Cholesky + matrix assembly for all the Jacobi rotations) of O(mn3d2). The
eigenvalue computations used to obtain the gradient of COCO cost O(n4d2), and the determinants
used in the KMI gradient cost O(n5d3).

5. Experimental Results on ICA

In this section, we examine the performance of our independence functionals (COCO, KMI) as it
compares to the KGV and KCC, when used to address the problem of linear instantaneous ICA.
Since the objective is to find an estimateW of the inverseof the mixing matrixB (the reader is
referred to Section 4.2 for a description of the ICA problem), we require ameasure of distance
between our approximation and the true inverse: this is given by theAmari divergence, which
is introduced in Section 5.1. Next, in Section 5.2, we present results obtainedwhen separating
a range of artificial signals mixed using randomly generated matrices, including cases in which
the observations are corrupted by noise. Finally, we describe our attempts at separating artificial
mixtures of audio signals representing a number of musical genres. Resultsare compared with
those obtained using standard methods (FastICA, Jade, Infomax) and recent state-of-the-art methods
(RADICAL, CFICA), as well as the KCC and KGV.

5.1 Measurement of Performance

We use the Amari divergence, defined by Amari et al. (1996), as an index of ICA algorithm per-
formance: this is an adaptation and simplification of a criterion proposed earlier by Comon (1994).

2100



KERNEL METHODS FORMEASURING INDEPENDENCE

Note that the properties of this quantity in Lemma 26 were not described by Amari et al. (1996), but
follow from the proof of Comon (1994).

Definition 25 (Amari divergence) Let B and W be two n× n matrices, whereB is the mixing
matrix andW the estimated unmixing matrix (these need not be orthogonal here), and let D = WB.
Then the Amari divergence betweenB andW is

D (WB) =
100

2n(n−1)

n

∑
i=1

(
∑n

j=1 |di, j |
maxj |di, j |

−1

)
+

1
2n(n−1)

n

∑
j=1

(
∑n

i=1 |di, j |
maxi |di, j |

−1

)
.

Although this measure is not, strictly speaking, a distance metric for general matrices B,W, it
nonetheless possesses certain useful properties, as shown below.

Lemma 26 (Properties of the Amari divergence)The Amari divergenceD (WB) between the n×
n matricesB,W has the following properties:

• 0 ≤ D (WB) ≤ 100. The factor of 100 is not part of the original definition of Amari et al.
(1996), who defined the Amari divergence on[0,1]. In our experiments, however, the Amari
divergence was generally small, and we scaled it by 100 to make the resultstables more
readable.

• Let P be an arbitrary permutation matrix (a matrix with a single1 in each row and column,
and with remaining entries0), andS be a diagonal matrix of non-zero scaling factors. Then
W = B−1 if and only ifD (WB) = 0, or equivalentlyD (WBSP) = 0 or D (SPWB) = 0.

The final property in the above Lemma is particularly useful in the context ofICA, since it causes
our performance measure to be invariant to output ordering ambiguity oncethe sources have been
demixed (see Theorem 24).

5.2 Experiments and Performance Assessment

Since our main purpose is to compare the performance with that reported by Bach and Jordan
(2002a), we generated our test distributions independently following theirdescriptions. A list of the
distributions used in our experiments, and their respective kurtoses, is given in Table 3. While these
distributions represent a broad range of behaviours, we note that negative kurtoses predominate,
which should be borne in mind when evaluating performance. We used the KGV and KCC Matlab
implementations downloadable from (Bach and Jordan) (thus, we employ the KGV as originally
defined by Bach and Jordan (2002a), and not the version describedin Section 3.1.6). The precision
of the incomplete Cholesky decomposition, used to approximate the Gram matricesfor the kernel
dependence functionals, was set atη := εn; our choice ofε represents a tradeoff between accuracy
and computation speed. Unless otherwise specified, the kernel algorithm results were refined in a
“polishing step”, in which the kernel size was halved upon convergence, and the gradient descent
procedure recommenced with this smaller kernel. This polishing was carried out since the larger
kernel size results in the kernel dependence measures being a smootherfunction of the estimated
unmixing matrix, making it easier to find the global minimum; but making the location of this
global minimum less precise than obtained with a smaller kernel. The polishing stepusually caused
a measurable improvement in our results.
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As well as the kernel algorithms, we compare with three standard ICA methods: FastICA (Hyväri-
nen et al., 2001), Jade (Cardoso, 1998a), and Infomax (Bell and Sejnowski, 1995); and two more
sophisticated methods, neither of them based on kernels: RADICAL (Learned-Miller and Fisher
III, 2003), which uses order statistics to obtain entropy estimates; and characteristic function based
ICA (CFICA) (Chen and Bickel, 2004).24 It was recommended to run the CFICA algorithm with a
good initialising guess; we used RADICAL for this purpose. All kernel algorithms were initialised
using Jade (except for the 16 source case, where FastICA was useddue to its more stable output).
RADICAL is based on an exhaustive grid search over all the Jacobi rotations, and does not require
an initial guess. In the case of FastICA, we used the nonlinearity most appropriate to the signal char-
acteristics: this was generally the kurtosis based contrast, since the predominantly negative kurtoses
in Table 3 made this a good choice (see Hyvärinen et al., 2001). In some experiments, however, the
kurtosis was unsuited to the source characteristics, in which case we signal our alternative choice
of nonlinearity. The Infomax algorithm selects its contrast automatically basedon the super- or
sub-Gaussianity of the signal, and does not require manual contrast choice. Likewise Jade uses only
a kurtosis-based contrast, and thus does not require the user to choose a demixing function.

We begin with a brief investigation into the form taken by the various kernel dependence func-
tionals for a selection of the data in Table 3. Contours of the KGV, COCO, KMI, and Amari di-
vergence are plotted in Figure 1, which describes the demixing of samples from three distributions,
combined using a product of known Jacobi rotations. All kernel functionals in this demonstration
were computed with a Gaussian RBF kernel,

kG(x,x′) =
1

σ
√

2π
exp

(
− 1

2σ2‖x−x′‖2
)

. (38)

We observe that each of the functionals exhibits local minima at locations distant from indepen-
dence, but that each possesses a “basin of attraction” in the vicinity of thecorrect answer. More-
over, we note that each of the functionals is smooth (given the choice of kernel size), and that the
global minima are fairly symmetric. For these reasons, the gradient descentalgorithm described in
Section 4.3 should converge rapidly to the global optimum, given a reasonableinitialisation point.
Our solution method differs from that of Bach and Jordan (2002a), however, in that we generally
use Jade (unless specified otherwise) to initialise the kernel functionals (COCO, KCC, KGV, KMI),
whereas Bach and Jordan only do this when separating large numbers ofsignals (in most cases,
they initialise using a one-unit kernel dependence functional with deflation, and with a less costly
polynomial kernel). For more than two signals, this process is repeated several times, starting from
different initialising matrices. While Jade is less computationally costly as an initialisation method,
it might be less reliable in certain cases (where the sources are near-Gaussian, or when a large
number of outliers exist due to noise, both of which can cause Jade to misconverge).

5.3 General Mixtures of Artificial Data

We now describe the ICA experiments performed with the distributions in Table 3, where the Amari
divergence is used to measure the closeness of the estimated mixing matrix to the true matrix.

24. We are aware that Chen and Bickel propose an alternative algorithm, “efficient ICA”. We did not include results from
this algorithm in our experiments, since it is unsuited to mixtures of Gaussians(which have fast decaying tails) and
discontinuous densities (such as the uniform density on a finite interval), which both occur in our benchmark set.
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Figure 1: Contour plots of kernel independence functionals. Top left: Amari divergence. Top right:
kernel mutual information. Bottom left: constrained covariance. Bottom right: kernel
generalised variance. Three signals of length 1000 and with respectivedistributionsg, k,
andq (this choice was random) were combined using a 3×3 orthogonal rotation matrix.
This matrix was expressed as a product of Jacobi rotationsB = Rz(θz)Ry(θy)Rx(θx),
whereθx = −π/6, θy = −π/4, andθz = −π/3; the subscript denotes the axis about
which the rotation occurs. An estimateW = Rx(−θx)Ry(θ̂y)Rz(θ̂z) of B−1 was made, in
which θ̂y andθ̂z took values in the range[0,π]. The red “x” in each plot is located at the
coordinates(−θz,−θy) corresponding to the optimal estimate ofB. A Gaussian kernel of
sizeσ2 = 1 was used in all cases, andκ = 10−3 for the KGV.
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Label Definition Kurtosis

a Student’s t distribution, 3 DOF ∞
b Double exponential 3.00
c Uniform -1.20
d Students’st distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
j Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
l Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

Table 3: Labels of distributions used, and their respective kurtoses. Alldistributions have zero
mean and unit variance.
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Kernels used include the Gaussian RBF kernel in (38), and the Laplace kernel,

kL(x,x
′) =

λ
2

exp(−λ‖x−x′‖).

We combined the independent sources using random mixing matrices, with condition numbers be-
tween 1 and 2, and then whitened the resulting observations before estimatingthe orthogonal de-
mixing matrix.25

Our first experiment consisted in de-mixing data drawn independently from2-16 sources chosen
at random with replacement from Table 3. Results are given in Table 4. The KMI with Gaussian
kernel matches or exceeds KGV performance in the final four experiments; and, with the Laplace
kernel, in five of the seven experiments. Moreover, the KMI yields performance statistically in-
distinguishable from RADICAL in four of the seven experiments.26 On the other hand, the KGV
outperforms the KMI in the first and third case, where the numberm of samples is small (although
in then= 4,m= 1000 case, the difference is not statistically significant). The superior performance
of the Laplace kernel compared with the Gaussian may be due to its slower decaying spectrum,
which allows dependence encoded at higher frequencies in the sourcedensity to induce a greater
departure of COCO from zero (making this dependence easier to detect):see Gretton et al. (2005b,
Section 4.2). The Laplace kernel has a greater computational cost, however, since the eigenvalues of
the associated Gram matrices decay more slowly than for the Gaussian kernel, necessitating the use
of a higher rank in the incomplete Cholesky decomposition to maintain good performance. Finally,
the extended Infomax algorithm seems unable to separate the signals in 250 sample, 2 signal case:
the Amari divergence was spread almost uniformly over the range[0,100].

5.4 Performance on Difficult Artificial Problems

In our next experiment, we investigated the effect of outlier noise added tothe observations. We
selected two generating distributions from Table 3, randomly and with replacement. After combin-
ing these signals with a randomly generated matrix with condition number between 1and 2, we
generated a varying number of outliers by adding±5 (with equal probability) toboth signals at
random locations. All kernels used were Gaussian with sizeσ = 1; Laplace kernels resulted in de-
creased performance for this noisy data. In the case of COCO, this can be explained by functions in
the Laplace RKHS having less penalisation at high frequencies, causing the functions attaining the
supremum in Definition 2 to adapt to (and be affected by) outliers to a greaterdegree than functions
in the Gaussian RKHS (the KMI is also subject to this effect). Results are shown in the left hand
plot in Figure 2. Note that we usedκ = 0.11 for the KGV and KCC in this plot, which is an order of
magnitude above the level recommended by Bach and Jordan (2002a): thisresulted in an improve-
ment in performance (broadly speaking, an increase inκ causes the KGV to approach the KMI, and

25. We did not use simple orthogonal matrices to mix our sources, since this would have lowered the variance in our
estimate ofW, making the problem (slightly) easier than that of estimating a truly random mixing matrix (Cardoso,
1998a).

26. The mean performance of the various methods, both kernel and otherwise, is affected in some experiments by a small
number of misconverged results with large Amari divergence (although misconvergence of the kernel methods does
not always correspond to misconvergence of the Jade initialisation). These results may arise from diversion to local
minima, causing an increase in the overall mean Amari divergence thatdoes not reflect the typical behaviour of the
kernel algorithms. Such outliers occur less often, or not at all, at larger sample sizes, as can be seen by the decreased
variance in these cases.
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the KCC to approach COCO).27 It is clear that the kernel methods substantially outperform both the
standard and recent alternatives in outlier resistance (we omitted the remaining standard methods,
since their performance was worse than FastICA).

An additional experiment was also carried out on the same data, to test the sensitivity of the
KCC and KGV to the choice of the regularisation constantκ. We observe in the right hand plot
of Figure 2 that too small aκ can cause severe underperformance for the KCC and KGV. On the
other hand,κ is required to be small for good performance at large sample sizes in Table 4. A
major advantage of COCO and the KMI is that these do not require any additional tuning beyond
the selection of a kernel.

Our third experiment addresses the effects of low kurtosis, since many ICA methods rely (some-
times implicitly, through their choice of nonlinearity) on the kurtosis as an index ofsignal indepen-
dence. Two samples were drawn from a single distribution, consisting of a mixture of two Gaussians
with means+5 and−5 and unit variance, with a selection of mixture weights chosen such that, fol-
lowing normalisation of the overall sample to zero mean and unit variance, the (empirical) kurtosis
took on a range of positive, near-zero, and negative values. Resultsare given in Figure 3. All
kernel based methods were unaffected by near-zero kurtosis, as were CFICA and RADICAL; the
remaining ICA methods do less well (Infomax was omitted since it performed worse than Jade).

27. The results presented here for the KCC and KGV also improve on those of Learned-Miller and Fisher III (2003);
Bach and Jordan (2002a) since they include a polishing step for the KCC and KGV, which was not carried out in
these earlier studies.
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n m Rep. Fica Jade Imax CFICA RAD KCC COCO(g) COCO(l) KGV KMI(g) KMI(l)

2 250 1000 10.5±0.4 9.5±0.4 44.4±1 7.2±0.3 5.4±0.2 7.0±0.3 7.8±0.3 7.0±0.3 5.3±0.2 6.0±0.2 5.7±0.2
2 1000 1000 6.0±0.3 5.1±0.2 11.3±0.6 3.2±0.1 2.4±0.1 3.3±0.1 3.5±0.1 2.9±0.1 2.3±0.1 2.6±0.1 2.3±0.1
4 1000 100 5.7±0.4 5.6±0.4 13.3±1 3.3±0.2 2.5±0.1 4.5±0.4 4.2±0.3 4.6±0.6 3.1±0.6 4.0±0.7 3.5±0.7
4 4000 100 3.1±0.2 2.3±0.1 5.9±0.7 1.5±0.1 1.3±0.1 2.4±0.5 1.9±0.1 1.6±0.1 1.4±0.1 1.4±0.05 1.2±0.05
8 2000 50 4.1±0.2 3.6±0.2 9.3±0.9 2.4±0.1 1.8±0.1 4.8±0.9 3.7±0.9 5.2±1.3 2.6±0.3 2.1±0.1 1.9±0.1
8 4000 50 3.2±0.2 2.7±0.1 6.4±0.9 1.6±0.1 1.3±0.05 2.1±0.2 2.0±0.1 1.9±0.1 1.7±0.2 1.5±0.1 1.3±0.05
16 5000 25 2.9±0.1 3.1±0.3 9.4±1.1 1.7±0.1 1.2±0.05 3.7±0.6 2.4±0.1 2.6±0.2 1.7±0.1 1.5±0.1 1.5±0.1

Table 4: Illustration of the demixing ofn randomly chosen signals of lengthm, drawn independently with replacement from Table 3. For
COCO and the KMI, we used a Gaussian kernel of sizeσ = 1 in the experiments labelled (g), and a Laplace kernel of sizeλ = 3 for
those experiments labelled (l). In the case of the KCC and KGV, we usedσ = 1 andκ = 2×10−2 for signals of lengthm≤ 1000,
andσ = 0.5 andκ = 2×10−3 for the remaining signals. In all cases, we usedε = 1×10−5 for the Gaussian kernels, andε = 0.01
for the Laplace kernels. We initialised the kernel methods with Jade in all cases butn = 16, for which we used FastICA (due to its
more stable output). The performance figures are an average overRep.independent runs. The best results are shown in boldface, as
are those results statistically indistinguishable from the best according to a level 0.05 left-tailed paired difference t-test.

n Fica Jade Imax CFICA RADICAL KGV KMI

2 0.92±0.07 0.99±0.07 1.07±0.10 0.84±0.06 1.02±0.07 0.65±0.05 0.51±0.13
4 0.93±0.03 0.87±0.03 1.09±0.06 0.89±0.03 0.91±0.03 0.62±0.02 0.68±0.03

Table 5: Illustration of the demixing ofn music segments of lengthm= 55272, taken from the collection of 17 music samples at (Pearl-
mutter). Then = 2 case represents an average over 136 samples, and then = 4 case is an average over 120 samples. Details of
the KGV and KMI parameters may be found in Section 5.5. The best results are shown in boldface, as those results statistically
indistinguishable from the best according to a level 0.05 left-tailed paired difference t-test.
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Figure 2: Left: Effect of outliers on the performance of the ICA algorithms, for two sources of
lengthm = 1000, drawn independently with replacement from Table 3, and corrupted
at random observations with outliers at±5 (where each sign has probability 0.5). Each
point represents an average over 100 independent experiments. Thenumber of corrupted
observations inboth signals is given on the horizontal axis. The kernel methods used
σ = 1, ε = 2× 10−5, andκ = 0.11 (KCC and KGV only). The tanh nonlinearity was
used for the FastICA algorithm, since this is more resistant to outliers than the kurto-
sis (Hyvärinen, 1997).Right: Performance of the KCC and KGV as a function ofκ for
two sources of sizem= 1000, where 25 outliers were added to each source following the
mixing procedure.

5.5 Audio Signal Demixing

Our final experiment involved demixing brief extracts from various musicalsources, which were
combined using a randomly generated matrix (in the same manner as the artificial signals described
in the previous section). A total of 17 different extracts were taken fromthe ICA benchmark set at
(Pearlmutter). These consist of 5 second segments sampled at 11 kHz with aprecision of 8 bits,
and represent a wide variety of musical genres. While samples of a musicalsignal are certainly
not generated independently and identically in time, many ICA algorithms have nonetheless been
applied successfully to this problem, which is why we investigate this benchmark. Indeed, many
practical applications of ICA are in a context where complete independence of the unmixed signals
is nota goal, in theory or in practice: rather, the objective of the linear unmixing is toobtain signals
that are relatively “more independent” than the original observations, in the hope that these will be
physically interpretable in the light of the system generating the data.

A summary of our results is given in Table 5: the KMI, KGV, and CFICA are statistically in-
distinguishable for two extracts, and the KGV does best with four extracts,followed by the KMI.
In then = 2 case, every possible combination of two different extracts was investigated (for a to-
tal of 136 experiments), and the results averaged. We usedκ = 2×10−3, σ = 0.5, ε = 1×10−5,
and a Gaussian kernel for the KGV; andλ = 3, ε = 1×0.01, and a Laplace kernel for the KMI.
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Figure 3: Effect of near-zero kurtosis on the performance of the algorithms, for two signals of
length 1000 drawn from a range of mixtures of two Gaussians. Each pointrepresents an
average over 100 independent experiments. We used a Gaussian kernel with σ = 1 and
precisionε = 2×10−5 for all kernel dependence functionals, andκ = 2×10−2 for the
KCC and KGV.

In both cases, a polishing step was applied to refine the result. For each experiment withn = 4,
music segments were drawn randomly and without replacement from the 17 available extracts, and
the results averaged over 120 repetitions. All kernel algorithm parameters were the same as in the
n = 2 case besides the Laplace kernel size, which was increased toλ = 4. In addition, no polishing
step was applied to the KGV or KMI, since it caused a drop in performance inboth cases.28 Our
use of the Laplace kernel in the KMI was motivated by music generally being super-Gaussian (Bell
and Sejnowski, 1995). Random permutation of time indices was used to reduce the statistical de-
pendence of adjacent samples in the music, since this was found to improve performance (note that
this permutation was carried out on the mixed signals, and was the same for each of the observed
mixtures). It is notable that RADICAL, which performs best in the case of noise-free artificial data,
does not improve on standard methods in the case of musical sources.

Although the results in Table 5 are quite similar for the KGV and KMI, it is instructive to
compare the distribution of the outcomes obtained in each experiment. Generally, the KGV results
are more tightly grouped about their mean, whereas the KMI yields more results at smaller Amari
divergences, but a larger number of outliers with greater error.

6. Conclusions and Outlook

To conclude this study, we provide a summary of our main results in Section 6.1,and explore
directions for future research in Section 6.2.

28. This is perhaps surprising, given that the polishing step caused a minor increase in performance in then= 2 case. On
the other hand, the larger dimension of then = 4 problem makes the global minimum harder to find, and diversion to
local minima more likely.
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6.1 Conclusions

We have introduced two novel functionals to measure independence: the constrained covariance
(COCO), which is the spectral norm of the covariance operator betweenreproducing kernel Hilbert
spaces, and the kernel mutual information (KMI), which is a function of theentire spectrum of the
empirical estimate of this covariance operator. The first quantity is analogous to the kernel canonical
correlation (KCC), which is the spectral norm of the correlation operator; the second is analogous
to the kernel generalised variance (KGV), which is a function of the empirical correlation operator
spectrum (see Table 1 in the introduction). We prove two main results. First, we describe the class
of all reproducing kernel Hilbert spaces for which these four functionals determine independence:
the RKHSs must be universal. Second, we link the KMI and the KGV with the mutual information,
proving the KMI is an upper bound near independence on the Parzen window estimate of the mutual
information, and the KGV is a looser upper bound under certain conditions.We emphasise that the
KMI and KGV do not require the space partitioning or binning approximationsusually associated
with estimates of the mutual information (Paninski, 2003).

Our experiments demonstrate the effectiveness of kernel algorithms in ICA, as compared with
both standard methods (Jade, Fast ICA, and Extended Infomax); and modern approaches (CFICA,
RADICAL). We emphasise that kernel methods (the KMI and KGV in particular) are clearly supe-
rior to the alternatives when outlier noise is present in the observations, and are also best at unmixing
real (musical) signals. In addition, all modern methods are unaffected by the sources having zero
kurtosis, which is not true of earlier algorithms.

Our experiments also point to the superiority of the KMI and KGV over the KCCand COCO
in measuring independence. Since independence of two random variables implies that the entire
spectrum of the associated covariance (or correlation) operator is zero, it comes as no surprise that
measures using the whole spectrum are more robust than those using only the largest singular value.
This intuition remains to be formalised, however.

The choice between the KGV and KMI (or, alternatively, COCO and the KCC) is more compli-
cated. The methods proposed by Bach and Jordan (2002a) appear to do well when there is little data
available, as in then = 2, m= 250 andn = 4,m= 1000 cases in Table 4, although the mechanism
by which this is achieved remains unclear. On the other hand, the KCC and KGV do less well when
the sample size/number of sources are large. The KGV and KCC can also bemore susceptible to
noise in the observations, which is particularly apparent whenκ becomes small29 (and the bound on
mutual information provided by the KGV is looser). Indeed, in our outlier resistance experiments,
the KMI and COCO achieve by default the optimal performance of the KCC and KGV with model
selection overκ. The absence of a separate regularisation parameter in our kernel functionals there-
fore greatly simplifies model selection, especially if the observations are known to be corrupted by
outliers.

6.2 Directions for Future Study

A number of extensions to this work are readily apparent. For instance, thebehaviour of the KMI has
not been studied in detail for more than two univariate random variables, besides the discussion in
Section 3.2 which guarantees it to be zero when the empirical COCO is zero. In particular, it would
be of interest to prove that (30) in Section 3.2 is an upper bound on the Gaussian mutual information,
in the manner described in Section 3.1.5 for two random variables. This wouldincidentally require

29. κ is the regularisation scaling factor for these dependence functionals.
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the link between the Gaussian mutual information and the discrete mutual information, described in
Section 3.1 for the two variable case, to be extended to a greater number of random variables. The
optimisation procedure we use for ICA might also be made faster, for instance by implementing
Newton’s method or conjugate gradient descent on the Stiefel manifold (asdescribed by Edelman
et al. (1998)), rather than simple gradient descent.

We also need to ensure that both the KMI and COCO approach their population expressions
as the sample size increases. In the case of COCO, Gretton et al. (2005b,2004) give probabilistic
bounds for deviations from the expected value using standard tools fromuniform convergence the-
ory. The application of these results to the empirical KMI is less clear, however, since the KMI is
a productof multiple COCO-type quantities, and we do not know what expression it approaches
in the population limit. More generally, it is necessary to further investigate methods for model
selection (i.e., for choosing the kernel size and type) in COCO and the KMI.It is not presently
known whether performance is most effectively tuned by simple cross-validation, using bounds de-
rived from concentration inequalities, or via the properties of Parzen window estimates described
by Silverman (1986).

Many real life problems do not fit neatly into the linear ICA framework: we now outline ways
in which our kernel dependence functionals might be used to improve performance in these more
difficult signal separation problems. First, let us consider the separationof random processes, as
opposed to random variables. It is rare in practice to encounter signals that do not depend on their
previous outputs. Rather, most real signals exhibit statistical dependencies between the observations
at different times (this is obviously true of music, for example). These random processes may be
stationary, meaning that their statistical properties (for instance the mean andcorrelation) do not
change over time; or they may be nonstationary. In both cases, however,the time dependence greatly
assists in separating signals into independent components, the idea being that the independence of
different random processes should hold not only between samples drawn at the same time, but also
between samples drawn atdifferenttimes. Approaches to this problem include that of Belouchrani
et al. (1997), who separate the signals using decorrelation between the sources at any time shift, and
the more general approach of Belouchrani and Amin (1998), who use Cohen’s class time-frequency
kernels to transform the signal and facilitate source separation. The former approach is limited since
it breaks down when the sources have overlapping spectra, due to its using only a second order
dependence measure. Thus, it would be interesting to generalise the approach of Belouchrani et al.
(1997) using kernel measures of dependence, rather than correlation. This generalisation has been
investigated, using the mutual information as a dependence measure, by Stögbauer et al. (2004).

Another generalisation of ICA is the separation of sources when mixing is nonlinear. This is
considerably more difficult than linear ICA, due to the increased complexity of the mixing model.
One simplification, which makes the problem more tractable, is thepost-nonlinearmodel: theith
component of the observation vectort is

ti = fi(bis), (39)

where fi is the ith (unknown) nonlinearity, andbi is the ith row of the mixing matrixB. This
situation corresponds for instance to the observations being distorted by the sensors. Approaches
to this problem include the methods of Taleb and Jutten (1999); Achard et al.(2001, 2003)—a
comparison of these techniques with COCO and the KMI would therefore be of interest (this would
require an efficient optimisation algorithm for our dependence measures under the setting (39)).
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Various efforts have also been made to solve the more general case

t = f (s).

This problem requires additional constraints onf , to avoid a trivial solution via the Darmois de-
composition (Hyvärinen and Pajunen, 1999) (even then, it is generally thecase that each sourcesi

can only be recovered up to a nonlinear distortion; this is the analogue of thescaling indeterminacy
(Theorem 24) in the linear mixing case). It may also be necessary for the observations to arise from
random processes, rather than being i.i.d. For instance, according to Hosseni and Jutten (2003),
enforcing temporal decorrelation over a single time step is sufficient to test whether the recovered
independent processes are simply the result of a Darmois decomposition. While this does not rule
out other transforms that return independent signals unrelated to the sources, it suggests that time
dependencies have a crucial role to play in general nonlinear mixing. In the scheme suggested by
Harmeling et al. (2003), demixing is achieved by mapping the observations to areproducing kernel
Hilbert space, finding a low dimensional basis in the feature space which approximately spans the
subspace formed by the observations, and enforcing the second order temporal decorrelation of pro-
jections onto this basis. The applicability of the KMI is less clear than in the case of post-nonlinear
mixtures, although this might follow from a better understanding of the technique of Harmeling
et al. (2003) and its relation to our work.

Finally, Bach and Jordan (2002b) propose using kernel dependence measures in representing
probability distributions as tree structured graphical models. Fitting these models requires in partic-
ular that the mutual information between pairs of random variables be maximised: thus, Bach and
Jordan compare the KGV to a Parzen window estimate of the mutual information in this context.
Although the Parzen window approach generally performs better, the KGVis also very effective.
We have shown, however, that the KGV is an upper bound (near independence) on the mutual in-
formation: thus the KGV performance is a possible indication of the tightness ofthis upper bound.
Given that the KMI is in theory a tighter upper bound than the KGV, it would beinteresting to
compare its performance with the KGV in this setting.
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Appendix A. Proofs

This appendix contains derivations of the main results in the present study,excluding our discussion
of the original proofs of Bach and Jordan (2002a) (which are in Appendix B).
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A.1 COCO, kernel PCA, and Kernel Target Alignment

In this appendix, we show that COCO is the quantity optimised when obtaining the first principal
component in the kernel principal component analysis (kPCA) method of Schölkopf et al. (1998).
This can be seen as follows: kPCA satisfies the eigenvalue problem

max
‖y‖≤1

y>Ky = λ

(an inequality is used to keep the constraint set convex). This is rewritten

max
‖y‖≤1

y>Ky = max
‖y‖≤1

tr
(

Kyy>
)

= max
‖y‖≤1

∥∥∥Kyy>
∥∥∥

2
,

where the norm in the final line is the largest singular value. The final expression is just COCO2emp,
with feature spaceG := R and inner product30 l(yi ,y j) = yiy j . The difference with respect to the
dependence measurement framework described previously is that we now maximise over the mem-
bersyi of G , rather than being given them in advance. This last argument also showsthat COCO is
optimised in the spectral clustering/kernel target alignment framework of Cristianini et al. (2002).

A.2 Ratio of Determinants

In this appendix, we prove Theorem 11. First, we note that bothA andC must be positive definite,
since they are submatrices of the positive definite matrix (8). Then

∣∣∣∣
[

A B
B> C

]∣∣∣∣
|A| |C| =

∣∣∣∣
[

A B
B> C

]∣∣∣∣
∣∣∣∣
[

A 000
000 C

]∣∣∣∣

(a)
=

∣∣∣∣
[

A B
B> C

]∣∣∣∣
∣∣∣∣
[

A1/2 000
000 C1/2

][
A1/2 000

000 C1/2

]∣∣∣∣

=

∣∣∣∣
[

A−1/2 000
000 C−1/2

][
A B

B> C

][
A−1/2 000

000 C−1/2

]∣∣∣∣

=

∣∣∣∣
[

I A −1/2BC−1/2

C−1/2B>A−1/2 I

]∣∣∣∣ .

(b)
=

∣∣∣I −A−1/2BC−1B>A−1/2
∣∣∣

=
∣∣∣I −C−1/2B>A−1BC−1/2

∣∣∣
(c)
= ∏

i
(1−ρ2

i )

30. Note that the linear kernel used here isnot universal, and thus COCO is not a general dependence functional in this
context: see Section 2.3.
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where (a) requires thatA andC be positive definite,31 (b) uses the relation between the determinant
of a matrix and that of its Schur complement from Horn and Johnson (1985,p. 22), and (c) uses The-
orem 7.3.7 of Horn and Johnson (1985) to determine thatρi are the singular values ofA−1/2BC−1/2.
Note that since (8) has only positive eigenvalues, and the determinant of asymmetric matrix is the
product of the eigenvalues, we are guaranteed

∏
i

(1−ρ2
i ) > 0.

From Horn and Johnson (1985, Theorem 7.3.7), we can writeρi as the positive solutions of the
eigenvalue problem [

000 A−1/2BC−1/2

C−1/2B>A−1/2 000

]
bi = ρibi ,

bearing in mind that these solutions come in pairs with equal magnitude and opposite sign. Rear-
ranging and making an appropriate change of variables yields the generalised eigenvalue problem

[
000 B

B> 000

]
ai = ρi

[
A 0
0 C

]
ai .

A.3 Determinant Form of the Gaussian Mutual Information

In this section, we give a derivation of (18) in Section 3.1.3, which states that

I (xG;yG) = −1
2

log

(∣∣∣∣I ly −
(

Pxy−pxp>
y

)>
D−1

x

(
Pxy−pxp>

y

)
D−1

y

∣∣∣∣
)

. (40)

This result was given without proof by Bach and Jordan (2002a, Appendix B). We begin with the
mutual information betweenxG andyG, which is written

I (xG;yG) = −1
2

log

(

∏
i

(1−ρ2
i )

)
, (41)

whereρi are the positive solutions to the generalised eigenvalue problem
[

000 Pxy−pxp>
y(

Pxy−pxp>
y

)>
000

][
ci

di

]
= ρi

[
Dx−pxp>

x 000
000 Dy−pyp>

y

][
ci

di

]
(42)

(this can be found by substituting the covariances (15)-(17) into (10)).Note that bothDx−pxp>
x

andDy−pyp>
y have ranklx−1 andly−1 respectively, and are not invertible.32 To see this, we make

the expansions

Dx−pxp>
x = Dx

(
I lx −111lxp

>
x

)
= DxEx,

Dy−pyp>
y = Dy

(
I ly −111lyp

>
y

)
= DyEy,

31. A matrix has a square root if and only if it is positive definite.
32. This is why we use (41) as our expression for the mutual information, rather than the ratio of determinants (7) (which

would be undefined here).
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whereEx := I lx −111lxp
>
x andEy := I ly −111lyp

>
y have zero eigenvalues corresponding to the eigenvec-

tors 1√
lx

111lx and 1√
ly

111ly, respectively. In addition, we note that

(
Pxy−pxp>

y

)
Ey =

(
Pxy−pxp>

y

)(
I ly −111lyp

>
y

)

= Pxy−pxp>
y −Pxy111lyp

>
y +pxp>

y 111lyp
>
y

= Pxy−pxp>
y −pxp>

y +pxp>
y

= Pxy−pxp>
y ,

with an analogous result for
(
Pxy−pxp>

y

)>
Ex. We may therefore write (42) as

[
000

(
Pxy−pxp>

y

)
Ey(

Pxy−pxp>
y

)>
Ex 000

][
ci

di

]
= ρi

[
DxEx 000

000 DyEy

][
ci

di

]
,

from which we obtain a generalised eigenvalue problem with identical eigenvaluesρi ,
[

000 Pxy−pxp>
y(

Pxy−pxp>
y

)>
000

][
ei

f i

]
= ρi

[
Dx 000
000 Dy

][
ei

f i

]
.

SinceDx andDy have full rank, we may now apply Theorem 11 to obtain (40).

A.4 Details of Definition 13

In this section, we derive the Parzen window estimate of the Gaussian mutual information provided
in Definition 13. The kernel density (Parzen window) estimates forpx,y and its marginals, on the
basis of the samplezzz, are

p̂x(x) =
1
m

m

∑
l=1

κ(xl −x) , p̂y(y) =
1
m

m

∑
l=1

κ(yl −y) ,

p̂x,y(x,y) =
1
m

m

∑
l=1

κ(xl −x)κ(yl −y) ,

where the kernel argument indicates which kernel is used, to simplify notation. We require approx-
imations to the terms in the Gaussian mutual information, as described in (18). We therefore define
the vectorŝpx, p̂y, and the matrix̂Pxy, using the expectations in (12)-(14) computed with these kernel
expressions;

Êx,y

(
x̌ y̌>

)
= P̂xy, (43)

Êx (x̌) = p̂x, (44)

Êx

(
x̌ x̌>

)
= D̂x. (45)

In the limit where∆x,∆y are small (and thus, by implication,lx �m, ly �m, σx � ∆x, andσy � ∆y,
whereσx andσy define the kernel sizes), we make the approximations

Êx ((x̌)i) = P̂x̂ (i) =
1
m

Z qi+∆x

qi

m

∑
l=1

κ(xl −x)dx≈ ∆x

m

m

∑
l=1

κ(xl −qi) ,
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Êx

((
x̌ x̌>

)
i, j

)
≈
{ ∆x

m ∑m
l=1 κ(xl −qi) i = j

0 otherwise
,

and

Êx,y

((
x̌ y̌>

)
i, j

)
= P̂x̂,ŷ (i, j) =

1
m

Z qi+∆x

qi

Z r j+∆y

r j

m

∑
l=1

κ(xl −x)κ(yl −y)dxdy

≈ ∆x∆y

m

m

∑
l=1

κ(xl −qi)κ(yl − r j) .

Before proceeding further, we define two matrices of kernel inner products to simplify our notation.
Namely,

K l :=




κ(q1−x1) . . . κ(q1−xm)
...

. . .
...

...
. . .

...
κ(qlx −x1) . . . κ(qlx −xm)




, L l :=




κ(r1−y1) . . . κ(r1−ym)
...

. ..
...

...
. ..

...
κ
(
r ly −y1

)
. . . κ

(
r ly −ym

)




, (46)

where we write the above in such a manner as to indicatelx � mandly � m. We now use the above
results to re-write (43)-(45) as respectively

P̂xy− p̂xp̂>
y ≈ ∆x∆y

m

(
K l L>

l − 1
m

K l111m111>mL>
l

)
=

∆x∆y

m
K l HL >

l ,

D̂x ≈ ∆x

m
diag(K l111m) =:

∆2
x

m
D(x)

l ,

and

D̂y ≈ ∆y

m
diag(L l111m) =:

∆2
y

m
D(y)

l ,

where we introduce the terms

D(x)
l =

1
∆x




∑m
l=1 κ(q1−xl ) . . . 0

...
...

...
0 . . . ∑m

l=1 κ(qlx −xl )


 (47)

and

D(y)
l =

1
∆y




∑m
l=1 κ(r1−yl ) . . . 0

...
...

...
0 . . . ∑m

l=1 κ(r ly −yl )


 . (48)

With these substitutions, we can rewrite

(
D̂x

)−1/2(
P̂xy− p̂xp̂>

y

)(
D̂y

)−1/2
≈
(

D(x)
l

)−1/2(
K l H (L l )

>
)(

D(y)
l

)−1/2
,

which results in our definition.
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A.5 Proof of Theorem 16

Our proof of Theorem 16 requires the following lemma.

Lemma 27 (Singular values of a matrix product) Let A, B be m× n matrices, q:= min(m,n),
andA have singular valuesσ1(A), . . . ,σq(A) (ordered from largest to smallest). Thenσ1(AB>) ≤
σ1(A)σ1(B) and

σq(AB>) ≤ min
{

σq(A)σ1(B) ,σ1(A)σq(B)
}

.

.

This is a special case of a result of Horn and Johnson (1985, p. 423). We now proceed with the
proof. The principle we will follow is straightforward: we want to upper bound the Gaussian
mutual information in (20) by upper boundingeachof the ρ̂i that define it. Indeed, if we can find a
matrix to replace (21) with singular valuesαi ≥ ρ̂i for all i, it follows that−1

2 log
(
∏i

(
1−α2

i

))
≥

−1
2 log

(
∏i

(
1− ρ̂2

i

))
. First, we note that±ρ̂i are the eigenvalues of the matrix



(
D(x)

l

)−1
000

000
(

D(y)
l

)−1




︸ ︷︷ ︸
D−1

[
000 K l H (L l )

>

L l H (K l )
> 000

]

︸ ︷︷ ︸
E

.

According to (22),D(x)
l is a diagonal matrix withjth entry 1

∆x
∑m

i=1 κ(xi −q j), which is an unnor-

malised Parzen window estimate ofpx at grid pointq j (an analogous result holds forD(y)
l ). It follows

thatD is diagonal, and we denote itsith largest value asdi (i.e., d1 is the overall maximum); we also
defineσi to be theith singular value ofE. We may obtain a new matrix with singular valuesαi ≥ ρ̂i

by replacing the diagonal entries ofD with their smallest value,33

D → min
i

(di)I

=
νzzz

∆
I , (49)

whereνzzz = min{νxxx,νyyy} and

νxxx := min
j ∈ {1. . . lx}

m

∑
i=1

κ(xi −q j) , νyyy := min
j ∈ {1. . . ly}

m

∑
i=1

κ(yi − r j) . (50)

The singular valuesαi of ( ν
∆ I)−1E satisfy34

ρ̂i ≤ min
{

d−1
lx+ly

σi , d−1
lx+ly−i+1σ1

}

≤ d−1
lx+ly

σi

=
∆
νzzz

σi = αi

33. We assume without loss of generality that∆x = ∆y = ∆, since this simplifies notation.
34. Bear in mind that due to the ordering of the singular values, maxj d−1

j = d−1
lx+ly

; and thed−1
j are sorted in reverse

order to thed j .
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for all i, where the first inequality derives from Lemma 27. Rather than computing theminima in
(50) over the grid, however, we may simply use

νxxx := min
j ∈ {1. . .m}

m

∑
i=1

κ(xi −x j) , νyyy := min
j ∈ {1. . .m}

m

∑
i=1

κ(yi −y j) ,

which are respectively the smallest (unnormalised) Parzen window estimatesof px andpy at any
sample point: these approach the smallest values ofpx on X , and ofpy on Y , as the sample size
increases (the densities are bounded away from zero by assumption).

Having made the replacement in (49), it is straightforward to take a limit in which the grid
becomes infinitely fine. We begin by rearranging the Lemma 13 definition as

Î (x̂; ŷ) ≤ −1
2

log

∣∣∣∣∣I −
(

∆
νzzz

)2(
K l H (L l )

>
)(

K l H (L l )
>
)>
∣∣∣∣∣

= −1
2

log

∣∣∣∣∣I −
(

∆
νzzz

)2(
HK >

l K l H
)(

HL >
l L l H

)∣∣∣∣∣ .

We then have the limiting result

lim
lx→∞

(
∆x

νzzz
K>

l K l

)

i. j
= ν−1

zzz lim
lx→∞

∆x

lx

∑
p=1

κ(xi −qp)κ(x j −qp)

= ν−1
zzz

Z

X
κ(xi −q)κ(x j −q)dq

= ν−1
zzz k(xi ,x j),

where we recover our RKHS kernel as the convolution of the kernel density functions at each pair
of data points.

A.6 Proof of Theorem 18

In this section, we prove that the KGV upper bounds the KMI when conditions (28) hold. We recall
the definition of theunregularisedKGV,35 which occurs atθ = 1. It follows from Lemma 9 that

KGV (zzz;F,G,1) = ∞,

since the associated eigenvaluesρi in (27) are all either 1,−1, or 0 (given we use universal kernels,
there will be at least one pair of non-zero eigenvalues). Conversely,whenθ = 0, we recover the
KMI. It remains to show that increasingθ from 0 to 1 causes the KGV to increase monotonically.

We may rearrange the eigenvalue problem in (27) as




I
(

θK̃ +(1−θ)νI
)−1

L̃
(

θL̃ +(1−θ)νI
)−1

K̃ I



[

ci

di

]
= (1+ρi)

[
ci

di

]
.

35. We emphasise that only the regularised KGV is used in practice.
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Then

KGV (zzz;F,G,θ) = − log

∣∣∣∣∣∣∣




I
(

θK̃ +(1−θ)νzzzI
)−1

L̃
(

θL̃ +(1−θ)νzzzI
)−1

K̃ I




∣∣∣∣∣∣∣

= − log

∣∣∣∣I −
(

θK̃ +(1−θ)νzzzI
)−1

L̃
(

θL̃ +(1−θ)νzzzI
)−1

K̃

∣∣∣∣ .

We now use the result that ifA′ � A � 000 andB′ � B � 000, thenA′B′ � AB (this is a straightforward
corollary to Theorem 7.7.3 of Horn and Johnson, 1985). The desired result then holds as long as

θ′K̃ +(1−θ′)νzzzI ≺ θK̃ +(1−θ)νzzzI

whenθ′ > θ (as well as the analogous result forθL̃ +(1−θ)νzzzI ), which means

(θ−θ′)K̃ +(θ′−θ)νzzzI � 0 and (θ−θ′)L̃ +(θ′−θ)νzzzI � 0,

or

νzzzI − K̃ � 0 and νzzzI − L̃ � 0. (51)

A.7 Proof of Lemma 22

In this section, we show that the multivariate KMI is zero if and only if the empirical COCO be-
tween each pair of random variables is zero. This may be shown via a minor adaptation of the
corresponding proof of Bach and Jordan (2002a, Appendix A.2). First, we may rewrite each factor
λ̆ j +1 in (30) as the solution to




I ν−1
zzz K̃1/2

1 K̃1/2
2 . . . ν−1

zzz K̃1/2
1 K̃1/2

n

ν−1
zzz K̃1/2

2 K̃1/2
1 I . . . ν−1

zzz K̃1/2
2 K̃1/2

n
...

...
. ..

...

ν−1
zzz K̃1/2

n K̃1/2
1 ν−1

zzz K̃1/2
n K̃1/2

2 . . . I







d1, j

d2, j
...

dn, j


=

(
λ̆ j +1

)



d1, j

d2, j
...

dn, j


 ,

whereK̃1/2
i ci, j = di, j , bearing in mind that the determinant of the left hand matrix is the product

of these eigenvalues. Since the left hand matrix is symmetric, the trace is equalto the sum of the
eigenvalues, and

mn

∑
j=1

(
λ̆ j +1

)
= mn. (52)
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Assuming without loss of generality that the themnth eigenvalue corresponds toλ̆max := λmax/νzzz,
we rewrite (30) as

−1
2

log
mn

∏
j=1

(
1+ λ̆ j

)
= −1

2
log(1+ λ̆max)−

1
2

log
mn−1

∏
j=1

(
1+ λ̆ j

)

= −1
2

log(1+ λ̆max)−
mn−1

2

mn−1

∑
j=1

1
mn−1

log
(

1+ λ̆ j

)

≥ −1
2

log(1+ λ̆max)−
mn−1

2
log

(
1

mn−1

mn−1

∑
j=1

(
1+ λ̆ j

))

= −1
2

log(1+ λ̆max)−
mn−1

2
log

(
mn− λ̆max−1

mn−1

)
,

where the penultimate line uses Jensen’s inequality, and we substitute (52) in the final line. The
resulting expression is strictly convex with respect toλ̆max (its second derivative is everywhere
positive), and has a global minimum atλ̆max = 0. It follows that (30) is likewise minimised at
KMI (zzz;FX1, . . . ,FXn) = 0 (at which point̆λ j = 0 for all j), and that this corresponds to the point at
which all pairs of empirical constrained covariances are zero, using Definition 19 and Lemma 20.

Appendix B. Discussion of Bach and Jordan’s Derivation of the KGV

This appendix contains a demonstration of the need for regularisation whenestimating the canonical
correlation in high dimensional spaces, and a discussion of the original KGV derivation of Bach and
Jordan (2002a).

B.1 Computation of the Unregularised Kernel Canonical Correlations

In this section, we prove Lemma 9, which is used to show a regularised empirical estimate for the
kernel canonical correlates is needed when the associated RKHSs have high dimension. We begin
with (5), which we restate below for reference;

[
000 K̃ L̃

L̃ K̃ 000

][
ci

di

]
= ρi




(
K̃
)2

000

000
(

L̃
)2



[

ci

di

]
.

This is equivalent to




000
(

K̃−
)2

K̃ L̃
(

L̃−
)2

L̃ K̃ 000



[

ci

di

]
= ρi

[
ci

di

]
,
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where we use the pseudoinverses since the Gram matrices do not have full rank. If we recall thatH
is the centring matrix, then the solutionsρi correspond to the solutions of

0 =

∣∣∣∣∣∣∣

−ρI
(

K̃−
)2

K̃ L̃
(

L̃−
)2

L̃ K̃ −ρI

∣∣∣∣∣∣∣

= |ρI |
∣∣∣∣ρI − 1

ρ

(
L̃−
)2

L̃ K̃
(

K̃−
)2

K̃ L̃

∣∣∣∣

= |ρI |
∣∣∣∣ρI − 1

ρ
H

∣∣∣∣

= ρm

(
ρ2−1

)m−1

ρm−2 ,

which hasm− 1 roots+1, m− 1 roots−1, and 2 roots 0. To avoid this problem, a regularised
empirical estimate is used, as shown by Bach and Jordan (2002a); Fukumizu et al. (2005); Leurgans
et al. (1993).

B.2 Discussion of the KGV Proof of Bach and Jordan (2002a)

In this section, we describe a possible problem in the derivation by Bach and Jordan (2002a, Ap-
pendix B) of the kernel generalised variance (KGV). We begin with a quick summary of the steps
from Section 3 needed to get us to the point where the proof begins.36 Assume thatX andY are
both bounded intervals onR. In Section 3.1.2, we recall the standard result from Cover and Thomas
(1991) that the mutual informationI(x,y) between two real-valued, univariate random variables
x ∈ X andy ∈ Y can be approximated by imposing a uniform grid of sizelx× ly overX ×Y , and
defining a multinomial distribution over the discrete valued random variables ˆx ∈ {1, . . . , lx} and
ŷ ∈ {1, . . . , ly} using the probability mass in the resulting bins (this multinomial distribution is de-
scribed by the matrixPxy of joint probabilities, with marginal distribution vectorspx andpy).37 We
denote the resulting discrete mutual information asI (x̂; ŷ). In Section 3.1.3, we approximateI (x̂; ŷ)
using theGaussianmutual informationI (xG;yG) between vectorsxG;yG, defined to have the same
covariance ašx andy̌, wherex̂ = i is equivalent to(x̌)i = 1 and(x̌) j : j 6=i = 0 (likewise forŷ). Bach
and Jordan (2002a, Appendix B.1) show this approximation holds when therandom variables are
close to independence, in which case

I (x̂; ŷ) ≈ I (xG;yG) = −1
2

log

(

∏
i

(1−ρ2
i )

)
,

whereρi are the positive solutions to the generalised eigenvalue problem
[

000 Pxy−pxp>
y(

Pxy−pxp>
y

)>
000

][
ci

di

]
= ρi

[
Dx−pxp>

x 000
000 Dy−pyp>

y

][
ci

di

]
,

andDx = diag(px), Dy = diag(py) (see (41) in Appendix A.3).

36. The reader is strongly advised to consult Sections 3.1.1-3.1.3 before proceeding, since the following discussion might
not otherwise make much sense.

37. The approximation becomes exact in the limit of an infinitely fine grid.
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We are now at the point where we can describe the reasoning of Bach and Jordan (2002a,
Appendix B.3) in establishing a link betweenI (x̂; ŷ) and the KGV. Rather than replacing ˆx andŷ by
xG andyG, we may instead replace them with thesmoothed approximations

kl = ∆x
[

k(x,q1) · · · k(x,qlx)
]>

and ll = ∆y
[

l(y, r1) . . . l(y, r ly)
]>

(53)

to xG andyG, respectively, wherek(·, ·) and l(·, ·) are the RKHS kernels forF and G , and the
grid coordinatesqqq := (q1, . . . ,qlx) andrrr := (r1, . . . , r ly) are defined in Section 3.1.2.38 We can of
course specify the Gaussian mutual informationI(kl ; ll ) between these smoothed vectors, using
the appropriate log ratio of determinants. Two questions then arise. First, does this smoothed ap-
proximationI(kl ; ll ) approach the Gaussian mutual informationI (xG;yG) as the kernel size drops?
Second, under what conditions does the empirical estimate ofI(kl ; ll ) correspond to the KGV? We
now describe the approach of Bach and Jordan (2002a) to solving the first question, and postpone
discussion of the second question to the end of the section.

The link between the Gaussian approximation to the discrete mutual information and the KGV
could be shown by demonstrating

Pxy
?≈ ∆x∆yEx,y

(
kl l

>
l

)
, Dx

?≈ ∆2
xEx

(
klk

>
l

)
, px

?≈ ∆xEx (kl ) (54)

under appropriate conditions, with similar results for the terms iny. We consider the case where
both kernels are Gaussian; that is,

k(x−qi) =
1√

2πσ2
x

exp

(
−(x−qi)

2

2σ2
x

)
,

l(y− r j) =
1√

2πσ2
y

exp

(
−(y− r j)

2

2σ2
y

)
,

bearing in mind that the impulse function is a limiting case (Bracewell, 1986);

δqi (x) = lim
σx→0

1√
2πσ2

x

exp

(
−(x−qi)

2

2σ2
x

)
:= lim

σx→0
k(x−qi) . (55)

To compute the covariance structure of the vectors in (53), we require expressions for the expecta-
tions

Ex,y

(
kl l

>
l

)
, Ex (kl ) , Ex

(
klk

>
l

)
,

Ey

(
ll l

>
l

)
, Ey (ll ) .

The expectation of individual entries in the matrixkl l
>
l is

Ex,y [k(qi ,x)l(r j ,y)] =
Z

X

Z

Y
k(x−qi)l(y− r j)px,y(x,y)dxdy

=
[
k(x)l(y)?px,y(x,y)

]
(qi , r j),

38. We use a sans-serif font to definekl andll , to indicate that these are random vectors. In addition, Bach and Jordan
(2002a) define these quantities without multiplying by∆x and∆y, but we believe these scalings to be necessary: see
below.
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which is the convolution of the product of kernels with the underlying (unknown) densitypx,y(x,y)
of the random variablesx,y, evaluated atqi , r j . Since the kernels are normalised, the above expec-
tation is also a probability density, smoothed byk(x)l(y). Similarly,

Ex [k(qi ,x)k(q j ,x)] =
Z

X
k(x−qi)k(x−q j)px(x)dx

≈
{ [

k2(x)?px(x)
]
(qi) i = j

0 otherwise
,

where the above assumesσx � ∆x � 1. Note, however, that

k2(x−qi) =
1

2πσ2
x

exp

(
−(x−qi)

2

σ2
x

)
(56)

=
1

2σx
√

π
× 1√

πσ2
x

exp

(
−(x−qi)

2

σ2
x

)
, (57)

and thusk2(x) is not a probability density (the integral overR is equal to 1
2σx

√
π ). Finally,

Ex [k(qi,,x)] =
Z

R

k(x−qi)px(x)dx

= [k(x)?px(x)] (qi).

In the light of these observations, it might seem that the relations in (54) ought to hold in the
limit as ∆x,∆y → 0 andσx,σy → 0, so long asσx � ∆x andσy � ∆y: the grid size must be small to
allow us to make the approximations

Px̂ (i) =
Z qi+∆x

qi

px (x)dx≈ ∆xpx (qi)

and

Px̂,ŷ (i, j) =
Z qi+∆x

qi

Z r j+∆y

r j

px,y(xy)dxdy≈ ∆x∆ypx,y(qi , r j),

and the kernel size is made small so that the kernel functions approach delta functions (although the
squared kernel functions do not do so). In other words, the limit in the kernel size is takenbeforethe
limit in the grid size. We can then write population expression for the kernel generalised variance,
in the limit of small kernel size, as

lim
σx,σy→0

I(kl ; ll )

= lim
σx,σy→0

−1
2

log

(∣∣∣∣I −
(
Ex,y

(
kl l

>
l

)
−Ex (kl )Ey

(
l>l
))>(

Ex

(
klk

>
l

)
−Ex (kl )Ex

(
k>l
))−1

×
(
Ex,y

(
kl l

>
l

)
−Ex (kl )Ey

(
l>l
))(

Ey

(
ll l

>
l

)
−Ey (ll )Ey

(
l>l
))−1

∣∣∣∣
)

≈ lim
σx,σy→0

−1
2

log

(∣∣∣∣∣I −
(

Pxy−pxp>
y

)>( ∆x

2σx
√

π
Dx−pxp>

x

)−1

×
(

Pxy−pxp>
y

)( ∆y

2σy
√

π
Dy−pyp>

y

)−1
∣∣∣∣∣

)

= 0,
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where we use the expression for the squared kernel in (57). In otherwords,I(kl ; ll ) doesnot ap-
proachI (x̂; ŷ) as the kernel size decreases. This problem reveals the need to enforce the opposite
assumption to that made above, namelyσx � ∆x andσy � ∆y (see Section 3.1.4).39

We conclude this section with a brief discussion of the link between the empiricalestimate
of I(kl ; ll ) and the KGV. As described by Bach and Jordan (2002a) and by Gretton(2003, Sec-
tion 9.2.3, Appendix D.5.2), an empirical estimate ofI(kl ; ll ) is obtained via the usual expression
(9), whereρi are the solutions to the generalised eigenvalue problem

[
000 K l H (L l )

>

L l H (K l )
> 000

][
ci

di

]
= ρi

[
K l H (K l )

> 000
000 L l H (L l )

>

][
ci

di

]
, (58)

and K l and L l are defined in Section 3.1.4 (replacing the Parzen windows with the appropriate
RKHS kernels). This is simply the kernel CCA problem, but with the solutions expressed in terms
of linear combinations of the grid pointsqqq andrrr mapped intoF andG , respectively. As the grid
becomes infinitely fine, and assumingk(·, ·) and l(·, ·) to be continuous, we recover the standard
kernel CCA formulation.40

39. Also bear in mind that the expression for the KGV used in practice is defined in the limit of infinitely small grid size,

but with finite kernel size, rather than vice versa. That said, the ratios∆x
σx

and ∆y

σy
suggest a possible resolution of this

convergence problem might be to decrease the kernel size and the gridspacing at the same time, as the number of
samples rises.

40. This is not a proof - we would need to formally establish both convergence of the kernel CCA solutions in the limit of
an infinitely fine grid size, and to demonstrate that the converged solutions liein the span of the mapped data. These
details fall outside the scope of the present study.
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