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Abstract

We introduce two new functionals, the constrained covagaand the kernel mutual information,
to measure the degree of independence of random variablesseTguantities are both based on
the covariance between functions of the random variablegpnoducing kernel Hilbert spaces
(RKHSSs). We prove that when the RKHSs are universal, botbtfonals are zero if and only if the
random variables are pairwise independent. We also shavh&ernel mutual information is an
upper bound near independence on the Parzen window estifngte mutual information. Anal-
ogous results apply for two correlation-based dependanusibnals introduced earlier: we show
the kernel canonical correlation and the kernel genexhlisgiance to be independence measures
for universal kernels, and prove the latter to be an uppenttan the mutual information near
independence. The performance of the kernel dependencgdinals in measuring independence
is verified in the context of independent component analysis
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1. Introduction

Measures to determine the dependence or independence of randaliesgare well established
in statistical analysis. For instance, one well known measure of statistipahdence between two
random variables is theautual information(Cover and Thomas, 1991), which for random vectors
x,y is zero if and only if the random vectors are independent. This may alsddrprieted as the
KL divergenceDk, (px7y| |pxpy) between the joint density and the product of the marginal densities;
the latter quantity generalises readily to distributions of more than two randoafhes (there exist
other methods for independence measurement: see for instance 1h§8&),

There has recently been considerable interest in using criteria basadations in reproduc-
ing kernel Hilbert spaces to measure dependence, notably in the cohtestépendent component
analysist This was first accomplished by Bach and Jordan (2002a), who inteddiernel de-
pendence functionals that significantly outperformed alternative appesaincluding for source
distributions that are difficult for standard ICA methods to deal with. In tlesent study, we build
on this work with the introduction of two novel kernel-based independemeasures. The first,
which we call the constrained covariance (COCO), is simply the spectral obthe covariance
operator between reproducing kernel Hilbert spaces. We proveCCt@Me zero if and only if
the random variables being tested are independent, as long as the REgtb®wcompute it are
universal. The second functional, called the kernel mutual informatidflKs a more sophisti-
cated measure of dependence, being a function of the entire spectthe advariance operator.
We show that the KMI is an upper bound near independence on a Raizéow estimate of the
mutual information, which becomes tighte(, zero) when the random variables are independent,
again assuming universal RKHSs. Note that Gretton et al. (2003a,b) &tkhopshow a link with
the Parzen window estimate, although this earlier proof is wrong - the re@ecompare Section
3 in the present document with the corresponding section of the origirralitad report, since the
differences are fairly obvious.

The constrained covariance has substantial precedent in the deperidsting literature. In-
deed, Rényi (1959) suggested using the functional covariancermlation to measure the de-
pendence of random variables (implementation details depend on the niattoeeunction spaces
chosen: the use of RKHSs is a more recent innovation). Thus, rathreusivag the covariance, we
may consider a kernelised canonical correlation (KCC) (Bach ancdpf002a; Leurgans et al.,
1993), which is a regularised estimate of the spectral norm otdneslation operator between
reproducing kernel Hilbert spaces. It follows from the propertie€0OICO that the KCC is zero
at independence for universal kernels, since the correlation glfifem the covariance only in its
normalisation: at independence, where both the KCC and COCO arethsramormalisation is
immaterial. The introduction of a regulariser requires a new parameter thabmusied, however,
which was not needed for COCO or the KMI.

Another kernel method for dependence measurement, the kernehlisegvariance (KGV)
(Bach and Jordan, 2002a), extends the KCC by incorporating the ep@trum of its associated

1. The problem of instantaneous independent component analydiggsvbe recovery of linearly mixed, i.i.d. sources
in the absence of information about the source distributions beyond thwiraindependence (Hyvérinen et al.
2001).

2. Briefly, we now use Lemma 27 as a basis for our proof, which apfdiesery singular value of a matrix product;
our earlier proof relied on Theorem 4.2.2 of Gretton et al. (2003h)ctimplies a result only for the largest singular
value, and is therefore insufficient. On the other hand, we believe thatdloé given by Gretton (2003) in Chapter
9 is correct, but the approach is a bit clumsy, and much longer thandsriede.
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| | Covariance | Correlation |

sil\r?a;([ar COCO (Gretton| KCC (Bach and
vaglue etal., 2005b) | Jordan, 2002a)

Ml KM KGV (Bach and
bound Jordan, 2002a)

Table 1: Table of kernel dependence functionals. Columns show witethéunctional is covari-
ance or correlation based, and rows indicate whether the dependeasermis the max-
imum singular value of the covariance/correlation operator, or a bourtdeomutual in-
formation.

correlation operator: in this respect, the KGV and KMI are analogows Table 1). Indeed, we
prove here that under certain reasonable and easily enforced cognditie KGV is an upper bound
on the KMI (and hence on the mutual information near independence)hwlso becomes tight at
independence. A relation between the KGV and the mutual information is alpoged by Bach
and Jordan (2002a), who rely on a limiting argument in which the RKHS kerpe approaches
zero (no Parzen window estimate is invoked): our discussion of this rgafen in Appendix B.2.

We should warn the reader that results presented in this study haveeptussicemphasis: we
attempt to build on the work of Bach and Jordan (2002a) by on one haoorigrg the mechanism
by which kernel covariance operator-based functionals measurgendence (including a charac-
terisation of all kernels that induce independence measures), and oth#érehand demonstrating
the link between kernel dependence functionals and the mutual informatiam said, we observe
differences in practice when the various kernel methods are appliedirth€ KMI generally out-
performs the KGV for many sources/large sample sizes, whereas the K@&¥/lgest performance
for small sample sizes. The choice of regulariser for the KGV (and KC@lsis crucial, since a
badly chosen regularisation is severely detrimental to performance wiliker moise is present.
The KMI and COCO are robust to outliers, and yield experimental perfacmaquivalent to the
KGV and KCC with optimal regulariser choice, but without any tuning reqlire

The COCO and KCC dependence functionals for the 2-variable caskescebed in Section
2, and it is shown that these measure independence when the assoeratdd &re universal. The
main results in this section are Definition 2, which presents both the populati@OGDd its em-
pirical counterpart, and Theorem 6, which shows that COCO is an indepee measure. Section
3 contains derivations of the kernel-based upper bounds on the mutrah&tion, and proofs that
these latter quantities likewise measure independence. In particular, ted kawtual informa-
tion is introduced in Definition 14, its use as an independence measure is guistifeEheorem 15,
and its relation to the mutual information is provided in Theorem 16. A genetialisto more
than two variables, which permits the measurement of pairwise independsraiso presented.
Section 4 addresses the application of kernel dependence measudependent component anal-
ysis, including a method for reducing computational cost and a gradisnedetechnique (these
being adapted straightforwardly from Bach and Jordan, 2002a).ll\si&ction 5 describes our
experiments: these demonstrate that the performance of the KMI and C@@&D,used in ICA,
is competitive with the KGV and KCC, respectively. The kernel methods asgare favourably
with both standard and recent specialised ICA algorithms (RADICAL, @Fkast ICA, Jade, and
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| Acronym | Description |
CocCoO Constrained covariance
ICA Independent component analysis
KCC Kernel canonical correlation
KGV Kernel generalised variance
KMI Kernel mutual information
RKHS | Reproducing kernel Hilbert space

Table 2: Table of acronyms

Infomax), and outperform these methods when demixing music sourcesg\lie sample size is
large). Most interestingly, when the KGV is made to approach the KMI bypgnagriate choice

of regularisation, its resistance to outlier noise is improved — moreoverekerethods perform
substantially better than the other algorithms tested when outliers are ptegétist our most

commonly used acronyms in Table 2.

2. Constrained Covariance, Kernel Canonical Correlation

In this section, we focus on the formulation of measures of independented random variables.
This reasoning uses well established principles, going back to Rényd)1@&ho gave a list of
desirable properties for a measure of statistical depende(g,) between random variablesy
with distributionP, ,. These include

1. Q(Py) is well defined,
2. 0<Q(Pyy) <1,
3. Q(Pyy) = 0ifand only ifx,y independent,

4. Q(Pyy)=1ifand onlyify = f(x) orx =g(y), wheref andg are Borel measurable functions.
Rényi (1959) shows that one measure satisfying these constraints is

Q(Pyy) = Squpcorr(f(x),g(y)),

wheref(x),g(y) must have finite positive variance, afidy are Borel measurable. This is similar

to the kernel canonical correlation (KCC) introduced by Bach and dof2@02a), although we
shall see that the latter is more restrictive in its choicé,@f We propose a different measure, the
constrained covariancCOCO), which omits the fourth property and the upper bound in the second
property; in the context of independence measurement, however, sharfd third properties are
adequaté.

3. The performance reported here improves on that obtained by &attlordan (2002a); Learned-Miller and Fisher
[l (2003) due to better tuning of the KGV and KCC regularisation.

4. The fourth property is required f& to identify deterministic dependence, whichiadependence measure should
not be concerned with.
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We begin in Section 2.1 by defining RKHSs and covariance operatorsd&etivem. In Section
2.2, we introduce the constrained covariance, and we demonstrate innS&&tithat this quantity
is a measure of independence when computed in universal RKHSs (iv$ollat the KCC also
requires a universal RKHS, as do all independence criteria thataaedbon the covariance in
RKHSSs). Finally, we describe the canonical correlation in Section 2.4itfgaRKHS-based variant.

2.1 Covariance in Function Spaces

In this section, we provide the functional analytic background necgssalescribing covariance
operators between RKHSs. Our presentation follows and extends theofdwald et al. (2004);
Hein and Bousquet (2004), who deal with covariance operators &@pace to itself rather than
from one space to another, and Fukumizu et al. (2004), who usei@ogaroperators as a means of
defining conditional covariance operators. Functional covarianeeatgrs were investigated earlier
by Baker (1973), who characterises these operators for gendvaltspaces.

Consider a Hilbert spacg of functions fromX to R, whereX is a separable metric space. The
Hilbert space¥ is an RKHS if at eackx € X, the point evaluation operatd : ¥ — R, which
mapsf € ¥ to f(x) € R, is a bounded linear functional. To each poirg X, there corresponds
an elemenk := @(x) € 7 (we call ¢ the feature map such that{g(x), (X)) = k(x,X), where
k: X x X — Ris aunique positive definite kernel. We also define a second R&k\#th respect
to the separable metric spa@e with feature mapp and kerneky(y), qJ(y’)>g =I(y,y).

Let P,y (x,y) be a joint measupeon (X x 9", x A) (herel" and A are the Boreb-algebras
on X and?’, respectively, as required in Theorem 4 below), with associated mamessures,,
andP, and random variablesandy. Then following Baker (1973); Fukumizu et al. (2004), the
covariance operat@y, : G — ¥ is defined such that for allf € ¥ andg € G,

(£.Co0) 5 = Exy([f(x)—E(f(x)][9(y) —Ey(a(y))])-

In practice, we do not deal with the meas#g, itself, but instead observe samples drawn indepen-
dently according to it. We write an i.i.d. sample of sindrom P, , asz= {(X1,y1),...,(Xm,Ym)},

and likewisex := {x1,...,Xm} andy := {yi,...ym}. Finally, we define the Gram matric&sandL

of inner products inf and G, respectively, between the mapped observations above:khaees
(i.j)th entryk(x;,x;) andL has(i, j)th entryl(y;,y;). The Gram matrices for the variables centred
in their respective feature spaces are shown by Schdélkopf et aBY198e

K:=HKH, L:=HLH,

where

1
H=1-— Elml;’ (1)

andl, is anmx 1 vector of ones.

5. We do not require this to have a density with respect to a referencaumeea x dy in this section. Note that we will
need a density in Section 3, however.

6. Our operator (and that of Fukumizu et al., 2004) differs fromeéBakin that Baker defines all measures directly on
the function spaces.
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2.2 The Constrained Covariance

In this section, we define the constrained covariance (COCO), andlue$ice properties of the
kernelised version. The covariance betweeamdy is defined as follows.

Definition 1 (Covariance) The covariance of two random variables is given as
cov(x,y) := Exy[xy] — Ex[X]Ey[y].
We next define the constrained covariance.

Definition 2 (Constrained Covariance (COCQ)) Given function classe$, G and a probability
measureP, ,, we define theonstrained covarianas

COCQPyy; F.G) = f;UgF;g [cov(f(x),9(y))]- 2)

If 7 and G are unit balls in their respective vector spaces, then this is just the norre cbtrariance
operator: see Mourier (1953). Given m independent observattaes(Zxi,y1),. .-, (Xm,Ym)) C
(X x 9™, the empirical estimate of COCO is defined as

COCQz ¥,G):= sup
feF.geg

7.3, 0030~ 3 100 3 o).

When # and G are RKHSs, withF and G their respective unit balls, then COCR, ,;F,G) is
guaranteed to exist as long as the kerkedsd| are bounded, since the covariance operator is then
Hilbert-Schmidt (as shown by Gretton et al., 2005a). The empirical estima@®0CLF, G) is also
simplified whenF and G are unit balls in RKHSs, since the representer theorem (Schélkopf and
Smola, 2002) holds: this states that a solution of an optimisation problem, daperdy on the
function evaluations on a set of observations and on RKHS norms, lies sptreof the kernel
functions evaluated on the observations. This leads to the following lemma:

Lemma 3 (Value of COCQ(z;F,G)) Denote by and G RKHSs on the domaims and 9" respec-
tively, and let EG be the unit balls in the corresponding RKHSs. Then

COCQzF,G) = %\/”REHZ, (3)

where the matrix nornfl - ||> denotes the largest singular value. An equivalemhormalisedorm
(which we will refer back to in Section 3) @0CQ(z F,G) = max y;, wherey; are the solutions to

the generalised eigenvalue problem
K 0 a;
=V = . 4
¥ [ 0 L ] [ Bi } @

0 KL
LK O
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Proof By the representer theorem, the solution of the maximisation problem arisimg fro
COCQzF,G) is given by f(x) = 3 aik(x;,x) andg(y) = 3L, Bl (yj,y). Hence

1 1
COCQzF,G) = sup  —a'KLB-—=a'K1,1.LB
aTKa<i1BTLB<1 m?

1
=  sup —a KY2HLY?B
o], B <1 M

= SIKIHLI2],

Squaring the argument in the norm, rearranging, and using the fa¢i taaddH proves the lemma.
|

The constrained covariance turns out to be similar in certain respects tmlzenwof kernel algo-
rithms, for an appropriate choice gf, G. By contrast with independence measurement, however,
these methods seek maximisethe constrained covariance through the correct choice of feature
space elements. First, and most obvious, is kernel partial least sqkBte3) (Rosipal and Trejo,
2001), which at each stage maximises the constrained covariance dissglékir et al., 2004).
COCO is also optimised when obtaining the first principal component in kerivaipal compo-
nent analysis (KPCA), as described by Scholkopf et al. (1998)isattvé criterion optimised in the
spectral clustering/kernel target alignment framework of Cristianinl.€02). Details may be
found in Appendix A.1.

Finally, we remark that alternative norms of the covariance operatoiddiatao be suited to
measuring independence. Indeed, the Hilbert-Schmidt (HS) norm is sgdgo this context by
Gretton et al. (2005a): like the KMI, it exploits the entire spectrum of the eogpicovariance
operator, and gives experimental performance superior to COCO in TBA HS norm has the
additional advantage of a well-defined population counterpart, ancugieges ofd(1/,/m) conver-
gence of the empirical to the population quantity. The connection between3h®kHn and the
mutual information remains unknown, however.

2.3 Independence Measurement with the Constrained Covariance

We now describe how COCO is used as a measure of independenceur fparposes, the notion
of independence of random variables is best characterised by dadogrotter (2000, Theorem
10.1(e)):

Theorem 4 (Independence)Let x andy be random variables oQX x 9, x A) with joint mea-
sureP, ,(x,y), wherel" and A are Borelo-algebras onX and 9, respectively. Then the random
variablesx andy are independent if and only @owv( f (x),g(y)) = 0 for any pair(f,qg) of bounded,
continuous functions.

It follows from Theorem 4 that iff , G are the sets of bounded continuous functions, then
COCQPyy; F,G) =0if and only ifx andy are independent. In other words, CO®Q,; ¥, G)
and COCQz 7, G) are criteria which can be testelitectly without the need for an intermediate
density estimator (in general, the distributions may not even have densitiss)lsb clear, however,
that unlessf , G are restricted in further ways, COGB¥ , G) will always be large, due to the rich
choice of functions available. Aon-trivial dependence functional thus obtained using function
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classes that do not give an everywhere-zero empirical averagshiah still guarantee that COCO

is zero if and only if its arguments are independent. A tradeoff betweeretitiectiveness of the
function classes and the convergence of CQ®, G) to COCQP, ,; ¥, G) can be accomplished
using standard tools from uniform convergence theory (see Grettln 005b). It turns out that
unit-radius balls iruniversalreproducing kernel Hilbert spaces constitute function classes that yield
non-trivial dependence estimates. Universality is defined by Stein2@0t] as follows:

Definition 5 (Universal kernel) A continuous kernek(-,-) on a compact metric spadex,d) is
called universal if and only if the RKH% induced by the kernel is dense if.X0), the space of
continuous functions oA, with respect to the infinity normf — g, .

Steinwart (2001) shows the following two kernels are universal on ectrgubsets dR¢:

k(x,X) = exp(—A[jx—X||?) and
k(x,X') = exp(—A[x—X|) for A > 0.

We now state our main result for this section.

Theorem 6 COCQ(P,,;F,G) is only zero at independence for universal kernels)Denote byF
and G RKHSs with universal kernels on the compact metric spacaad 9, respectively, and let
F,G be the unit balls inF and G. ThenCOCQ(P, ,;F,G) = 0if and only ifx,y are independent.

Proof It is clear that COCCP, ,;F,G) is zero ifx andy are independent. We prove the converse
by showing that COCQ(P,,;B(X),B(7")) = ¢ for somec > 0 implies COCQPy;F,G) = d for

d > 0: this is equivalent to COC@®,,;F,G) = 0 implying COCQP, ,;B(X),B(9)) = 0 (where
this last result implies independence by Theorem 4). There exist tw@segs! of functiond, €
C(X) andgn € C(9), satisfying|| fnllo < 1,]/gnllw < 1, for which

A'LTL coV( fa(x),an(y)) =¢

More to the point, there exists ari for which coV fn«(x),gn(y)) > ¢/2. We know that# and
G are respectively dense ®(X) andC(9") with respect to the.,, norm: this means that for all
53 > £€> 0, we can find somé* € ¥ (and an analogouy € G) satisfying|| f* — fy||,, < €. Thus,
we obtain

cov(f*(x),g"(y)) = cov(f*(x)— fn:(x) + fn: (%), 9" (x) — Gn+ (X) + Gn+ (x))
= By [(F7 (%) = far (%) + frr (x)) (9" (y) — G (y) + G ()]

B (£ — (0 + f () Ey (@°(y) — G (¥) + G ()
> cou(f (x),Gn (1)) — 26 Ex (fr ()] ~ 2 Ey (g (1) ~ 25
> 6——E>0
= 2 24 4
Finally, bearing in mind thaf f*(x)|| 5 < e and||g*(x)||; < e, we have
gy c
°°V<||f*<x>|7’ |g*<x>||g) = AW, 1ol

7. HereB(X) denotes the subset 6f.X) of continuous functions bounded by 1lig,(X), andB(9") is defined in an
analogous manner.
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and hence COC®,,;F,G) > 0. [ |

The constrained covariance is further explored by Gretton et al. (R@I®4). We prove two main
results in these studies, which are not covered in the present work:

e Theorems 10 and 11 of Gretton et al. (2005b) give upper bounds @grabability of large
deviations of the empirical COCO from the population COCO: Theorem 10rsmagative
deviations of the empirical COCO from the population COCO, and Theoreae&dribes
positive deviations. For a fixed probability of deviation, the amount by wthiehempirical
COCO differs from the population COCO decreases at ra{g (for shifts in either direc-
tion). These bounds are necessary if we are to formgttstical testof independence
based on theneasureof independence that COCO provides. In particular, Gretton et al.
(2005b, Section 5) give one such test .

e Theorem 8 of Gretton et al. (2005b) describes the behaviour of thelggagn COCO when
the random variables are not independent, for a simple family of probabditgities rep-
resented as orthogonal series expansions. This is used to illustrate naepts first, that
dependence can sometimes be hard to detect without a large number ofssésiple the
deviation of the population COCO from zero can be very small, even faerdgmt random
variables); and second, that one type of hard-to-detect dependeracoded in high fre-
guencies of the probability density function.

We also apply COCO in these studies to detecting dependence in fMRI ddardvbacaque visual
cortex. We refer the reader to these references for further det@Qs£O.

2.4 The Canonical Correlation

The kernelised canonical correlation (KCC) — i.e., the norm ofdtieelation operatorbetween
RKHSs — was proposed as a measure of independence by Bach dad #002a). Consistency
of the KCC was shown by Leurgans et al. (1993) for the operator nanth,by Fukumizu et al.
(2005) for the functions iF and G that define it (in accordance with Definition 7 below). Further
discussion and applications of the kernel canonical correlation inclidd@ (2001); Bach and
Jordan (2002a); Hardoon et al. (2004); Kuss (2001); Lai arfé E3000); Melzer et al. (2001);
Shawe-Taylor and Cristianini (2004); van Gestel et al. (2001). ttiquéar, a much more extensive
discussion of the properties of canonical correlation analysis and iteligation may be found
in these studies, and this section simply summarises the properties and desivatevant to our
requirements for independence measurement.

The idea underlying the KCC is to find the functiohs ¥ andg € G with largestcorrelation
(as opposed to covariance, which we covered in the previous seclibis)leads to the following
definition.

Definition 7 (Kernel canonical correlation (KCC)) The kernel canonical correlation is defined
as

KCC(Pxy: F.G) = feiugzgcorf(f(x)vg(y»
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As in the case of the constrained covariance, we may specify an empstoabée similar to that
in Lemma 3:

Lemma 8 (Empirical KCC) The empirical kernel canonical correlation is given by
KCC(z ¥, G) := max (pi), wherep; are the solutions to the generalised eigenvalue problem

[EOR KOEHSZ]:“[E: EOZHC(H' ©)

Bach and Jordan (2002a) point out that the first canonical correlticery similar to the function
maximised by thalternating conditional expectatioalgorithm of Breiman and Friedman (1985),
although in the latter cas&x) may be replaced with a linear combination of several functions of
We note that the numerator of the functional in Definition 7 is just the functiooeriance,

which suggests that the kernel canonical correlation might also bewd ossdsure of independence:
this was proposed by Bach and Jordan (2002a) (the functionalatiorewas also analysed as an
independence measure by Dauxois and Nkiet (1998), although thisamgbpdid not make use
of RKHSs). A problem with using the kernel canonical correlation to measwependence is
discussed in various forms by Bach and Jordan (2002a); Fukumizu20@5); Greenacre (1984);
Kuss (2001); Leurgans et al. (1993); we now describe one formalafiproblem, and the two main
ways in which it has been solved.

Lemma 9 (Without regularisation, the empirical KCC is independent of the data) Suppose that
the Gram matrice& andL have full rank. Th& (m— 1) non-zero solutions to (5) are thgn= +1,
regardless okz

The proof is in Appendix B.1. This argument is used by Bach and Jo&024); Fukumizu et al.
(2005); Leurgans et al. (1993) to justify a regularised canonicaélziion,

cov(f(x),q(y)) (6)

Y

KCC(Pxy; F,G,K) = sup
fef . geG (var(f 09) K |[f H§r>1/2 (Var(g(y)) +K HgHé)l/z

although this requires an additional parametewhich complicates the model selection problem.
As the number of observations increasesnust approach zero to ensure consistency of the esti-
mated KCC, and of the associated functidresdg that achieve the supremum. The rate of decrease
of k for consistency of KCC is derived by Leurgans et al. (1993) (foHSs based on spline ker-
nels), and the rate required for consistency inltheorm of f andg is obtained by Fukumizu et al.
(2005) (for all RKHSS).

An alternative solution to the problem described in Lemma 9 is given by K$x§2in which
the projection directions used to compute the canonical correlations aresegd in terms of a
more restricted set of basis functions, rather than the respectiveasigsspff and G spanned by
the entire set of mapped observations. These basis functions candemnasing kernel PCA, for
instance.

Finally, we show that the regularised kernel canonical correlation is auneaf independence,
as long as the functions attaining the supremum have bounded variance.
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Theorem 10 KCC(Py; ¥, G,K) = 0 only at independence for universal kernels)Denote byF
and G RKHSs with universal kernels on the compact metric spacasd 9, respectively, and as-
sume thavar(f (x)) < o andvar(g(y)) < «. ThenKCC (P, ; ¥, G,k) = 0if and only ifx,y are
independent.

Proof The proof is almost identical to the proof of Theorem 6. First, it is clear thahdy

being independent implies KOQ®,,; ¥, G,k) = 0. Next, assume COQ®,.;B(X),B(9)) =c
for c > 0. We can then definé* € # andg* € G as before, such that

MO

cov(f7(x),g"(y)) =

Finally, assuming vaif (x)) and varg(y)) to be bounded, we get

f(x 9'(y)
cov SN2’ o172
(var(f () +x1f15) " (var(g: () +xlg*[15)
Cc
>
a(var(t+ () +x 1 °13) " (var(gr () +xlgr]2)
> 0.

The requirement of bounded variance is not onerous: indeed, asdagbeof the covariance oper-
ator, we are guaranteed that v&fx)) and varg(y)) are bounded whekand| are bounded. B

3. Kernel Approximations to the Mutual Information

In this section, we investigate approximations to the mutual information that casdaefor mea-
suring independence. Our main results are in Section 3.1. We presenttied iutual information
(KMI) in Definition 14, and prove it to be zero if and only if the empirical CO@Zero (Theorem
15), which justifies using the KMI as a measure of independence. We tiosnthe KMI upper
bounds a Parzen window estimate of the mutual information near indepen(érenrem 16). An
important property of this bound is that it doest require numerical integration, or indeed any
space patrtitioning or grid-based approximations (see e.g. Paninsid)(20a references therein).
Rather, we are able to obtain a closed form expression when tiebgridmes infinitely fine.

We should emphasise at this point an important distinction between the KMI @&wldf one
hand, and COCO and the KCC on the other. We recall that the empirical GO@COmma 3
is a finite sample estimate of the population quantity in Definition 2, and the empiric@l iIKC
Lemma 8 has a population equivalent in Definition 7 (convergence of the iealpstimates to
the population quantities is guaranteed in both cases, as described in tmsaismf Section 2).
The KMI and KGV, on the other hand, are bounds on particular samdeebquantities, and are
not defined here with respect to corresponding population expressibassaid, the KGV appears
to be a regularised empirical estimate of the mutual information for Gaussiaassex of Baker

8. Introduced in the discrete approximation to the mutual information
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(1970), although to our knowledge the convergence of the KGV to thislptpn quantity is not
yet established.

In Section 3.2, we derive generalisations of COCO and the KMI to more tharuhivariate
random variables. We prove the high dimensional COCO and KMI areizenal only if the asso-
ciated pairwise empirical constrained covariances are zero, which riretasuited for application
in ICA (see Theorem 24).

3.1 The KMI, the KGV, and the Mutual Information

Three intermediate steps are required to obtain the KMI from the mutual infiaman approxi-
mation to the MI which is accurate near independence, a Parzen window testifriais approxi-
mation, and finally a bound on the empirical estimate. We begin in Section 3.1.1 bguning the
mutual information between two multivariate Gaussian random variables,hichva closed form
solution exists. In Section 3.1.2, we describe a discrete approximation to thalrmfarmation
between two continuous, univariate random variables with an arbitrarydemgity function, which
is defined via a partitioning of the continuous space into a uniform grid of thiissvell established
that this approximation approaches the continuous mutual information asdhegomes infinitely
fine (Cover and Thomas, 1991). We then show in Section 3.1.3 that theteiseutual information
may be approximated by the Gaussian mutual information (GMI), by doing larTeypansion of
both quantities to second order around independence.

We next address how to go about estimating this Gaussian approximationdig¢hete mutual
information, given observations drawn according to some probabilityityets Section 3.1.4, we
derive a Parzen window estimate of the GMI. Next, in Section 3.1.5, we givgper bound on
the empirical GMI, which constitutes the kernel mutual information. Finally, esahstrate in
Section 3.1.6 that the regularised kernel generalised variance (K@gdged by Bach and Jordan
(2002a) is an upper bound on the KMI, and hence on the Gaussian rimftwaiation, under certain
circumstances. A comparison with the link originally proposed between the &@Mhe mutual
information is given in Appendix B.2.

3.1.1 MUTUAL INFORMATION BETWEEN TWO MULTIVARIATE GAUSSIAN RANDOM
VARIABLES

We begin by introducing the Gaussian mutual information and its relation with thenazal cor-
relation. Thus, the present section should be taken as backgroundamatach we will refer
back to in the discussion that follows. Cover and Thomas (1991) providera detailed and gen-
eral discussion of these principles.xif, yc are Gaussian random vectdis R, Rl respectively,

with joint covariance matrixC := [ g’?‘ gxy ] , then the mutual information between them can be
Xy Yy
written
1 IC|
| (xa:ye) = —=log [ ——=— ) 7
(xG¥G) 5 9<’CXX| ny) (7)

where| - | is the determinant. We note that the Gaussian mutual information takes the distinctiv
form of a log ratio of determinants: we will encounter this expression tedgain the subsequent

9. The subscript& are used to emphasise that yg are Gaussian; this notation is introduced here to make the reason-
ing clearer in subsequent sections.
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reasoning, under various guises. For this reason, we now pregerdram which describes several
alternative expressions for this ratio.

Theorem 11 (Ratio of determinants) Given a partitioned matri}’

A B
oo ©
we can write
A B
BT C B | A-1/2gc-1/2
IA][C] Cc-12BTAY/2 |
— ’I _A—l/ZBc—lBTA—l/Z‘
= []a-ef)
|
> 0

wherep; are the singular values &% ~/2BC~1/2 (j.e. the positive square root of the eigenvalues of
A-12BC-IBTA-1/2), Alternatively, we can writg; as the positive solutions to the generalised

eigenvalue problem
0 B A O

The proof is in Appendix A.2. Using this result, we may rewrite (7) as

I (xg;¥G) = —% log (H(l— piz)) ; %)

!
wherep; are the singular values @’ ZCXYCle/ % or alternatively, the positive solutions to the
generalised eigenvalue problem

0 Cyl|. [Cx O _
o @laeel TG fe @

In this final configuration, it is apparent thgtare the canonical correlates of the Gaussian random
variablesxg andyg. We note that the definition of the Gaussian mutual information provided
by (9) and (10) holds even whe® does not have full rank (which indicates thakj yd ]T
spans a subspace &), since forC > 0 we requireCyy to have the same nullspace@g, and

C)fy to have the same nullspace @g,. Alternatively, we could make a change of variables to a
lower dimensional space in which the resulting covariance has full ramkiteen use the ratio of
determinants (7) with this new covariance.

10. We useX > 0 to indicate thaX is positive definite.
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3.1.2 MUTUAL INFORMATION BETWEEN DISCRETISEDUNIVARIATE RANDOM VARIABLES

In this section, and in the sections that follow, we consider only the caseewhend 9 are
closed, bounded subsets Rf and require(x,y) € X x 9" to have the joint densitp, , (this is

by contrast with the discussion in Section 2, in whiXrand9” were defined simply as separable
metric spaces, and the measilg, did not necessarily admit a density). We will also assume
X x 9 represents the supportpf . The present section introduces a discrete approximation to the
mutual information betweexnandy, as described by Cover and Thomas (1991). Consider a grid of
sizely x Iy over X x 9. Let the indiced, j denote the pointg;,rj) € X x 9 on this grid, and let
a=(q1,..-,q,),r (rl, r|y) be the complete sequences of grid coordinates. Assume, further,
that the spacing between points along ¥handy axes is respectivelfs, andAy (the bins being
evenly spaced). We define two multinomial random variakl¢with a distributionPs (i, j) over

the grid (the completk x |, matrix of such probabilities iByy); this corresponds to the probability
thatx, y is within a small interval surrounding the grid positignr, so

Pi) = " eoax pyt)= [1 b )y

i
L. Qi +Ox rj+Ay
Pis(i)) = [ [ by (xy)dxay
i j

ThusP; (i, ) is a discretisation g, . Finally, we denote as the vector for whict{px); = Px(i),
with a similarpy definition. The mutual information betweerandy'is defined as

Iy |
)’Z.A = - - 2o (i 729(’ )
1665)= 33 Pasiion 5ot ) 1)

It is well known thatl (x,y) is the limit of | (x;¥) as the discretisation becomes infinitely fine (Cover
and Thomas, 1991, Section 9.5).

3.1.3 MULTIVARIATE GAUSSIAN APPROXIMATION TO THEDISCRETISEDMUTUAL
INFORMATION

In this section, we draw together results from the two previous sectioogiirgh it is possible to
approximate theliscretemutual information in Section 3.1.2 with@aussiarmutual information
between vectors of sufficiently high dimension, as long as we are closedpdndence. The results
in this section are due to Bach and Jordan (2002a), although the pr{8)dbelow is novel. We
begin by defining an equivalent multidimensional representatigrof %,y in the previous section,
wherex € R'x andy € RY, such thak= i is equivalent tqx); = 1 and(x);.j = 0. To be precise,
we define the functior$

1 xelg,a+4)) = L XElrri+hy)
R.(x)—{ 0 otherwise ’ Rily) = 0 otherwise ’

such that

E.(81(0) = E.((®) = | 8(9p.0dx= P ()

11. Note that we daotrequireAx = Ay: thus the functionstj (x) and £ (y) below may not be identical (the argument of
the function specifies wheth&x or Ay is used, to simplify notation).
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and
oy (09K ) = Exy (0 3);) = [ [ 0080wy (6 )y = Py (i, ]).

A specific instance of the second formula is wiyen x, £i(x) = fi(y), andp, , (X,y) = &(Y)p«(X),
wheredy(y) is a delta function centred &t Then

e (00 () =B ((367), ) = [ [ 005 0)p, 08. ey
(P i

0 otherwise

In summary,
EX(i) = Px (13)
E, (xxT> — Dy (14)

whereDy = diag(px). Using these results, it is possible to define the covariances

Cy =Exy (}') —E<(R)E,(¥) = Poy—puby, (15)
Cxx = Ex(x") ~Ex(X)Ex(X)' = Dx—PpxPy. (16)
Cy =E(¥)-EFEF = Dy—pypy. (17)

We may therefore define Gaussian random variakdggc with the same covariance structure as
x,y, and with mutual information given by (7). We prove in Appendix A.3 that théumlinforma-
tion for this Gaussian case is

). as

which can also be expressed in the singular value form (9). The relagiovebn (18) and (11) is
given in the following lemma, which is proved by Bach and Jordan (200@peAdix. B.1).

1 "b; y
| (xaiye) = _§'°g<"v—(ny_poyT> 0" (Pu—pay ) 0

Lemma 12 (The discrete Ml approximates the Gaussian Ml near indepedence)
Let Py (i, j) = Ps(i)Py(j) (1+¢ ;) for an appropriate choice of; ;, whereg; j is small near
independence. Then the second order Taylor expansion of thetdismntual information in (11) is

Ix Iy

19)~ 3> 5 PelPy(i)ehy
i=1j=

which is equal to the second order Taylor expansion of the Gaussiaraivinfarmation in (18),
namely

I Iy
1 2

| (xg;yG) & E_Zzlpi(i)Py(i)ﬁi,J-
i=1j=
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3.1.4 KERNEL DENSITY ESTIMATES OF THEGAUSSIAN MUTUAL INFORMATION

In this section, we describe a kernel density estimate of the approximate nmiitcwadation in (18):

this is the point at which our reasoning diverges from the approachct Bnd Jordan (2002a). Be-
fore proceeding, we motivate this discussion with a short overview of éinecR window estimate
and its properties, as drawn from Silverman (1986); Duda et al. (200i$)discussion pertains to
the general case of multivariake although our application requires only univariate random vari-
ables). Given a sampleof sizem, each point; of which is assumed generated i.i.d. according to
some unknown distribution with densipy, the associated Parzen window estimate of this density
is written

B(x) = %Iixm %),

The kernel functiof? k (x, —x) must be a legitimate probability density function, in that it should
be correctly normalised,

/ K(x)dx=1, (19)
X

andk (x) > 0. We may rescale the kernel accordingvjsa (oix) where the ternVy is needed to

preserve (19). Denoting & m the normalisation for a sample size then we are guaranteed that
the Parzen window estimate converges to the true probability density as long as

||m Vx7m — 0,
m—oco
lim mVyy,m = oo,
m—oo
This method requires an initial choice®f for the sample size we start with, which can be obtained
by cross validation.

We return now to the problem of empirically estimating the mutual information destiib
Sections 3.1.2 and 3.1.3. Our estimate is described in the following definition.

Definition 13 (Parzen window estimate of the Gaussian mutual informaon) A Parzen window
estimate of the Gaussian mutual information in (18) is defined as

R min(ly,ly)
(5%9) = —%log( 1l <1+f>i><1—m>, (20)

wherep; are the singular values of
—-1/2 -1/2
(o) " (kiHwnT) (o) (21)

Of the four matrices in this definitiorDI(X) is a diagonal matrix of unnormalised Parzen window
estimates op, at the grid points,
1 S K@ —x) ... 0

D = 1 , (22)

0 ZrllK(dlx—Xl)

12. The reader should not confuse the present kernel with the RieH®Is introduced earlier. That said, we shall see
later that the two kernels are linked
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Dl(y) is the equivalent diagonal matrix fqr,,'2 and
K(OL—X1) ... K(0L—Xm) K(frt—y1) ... K(ri—ym)
Kj = , L= . (23)
K (q|x.— X1) K(q|xl— Xm) K (r|y.— y1) K (r|y.—ym)
where we write the above in such a manner as to indigate m and |, > m.

Details of how we obtained this definition are given in Appendix A.4. The maiaddsntage
in using this approximation to the mutual information is that it is exceedingly compuoédlyo
inefficient, in that it requires a kernel density estimate at each point in agfide In the next
section, we show that it is possible to eliminate this grid altogether when we takgpan bound.

3.1.5 THE KMI: AN UPPERBOUND ON THE MUTUAL INFORMATION

We now define the kernel mutual information, and show is both a valid depeeccriterion (The-
orem 15), and an upper bound on the Parzen GMI in Lemma 13 (Thedem 1

Definition 14 (The kernel mutual information) The kernel mutual information is defined as

KMI (ZF,G) = —%Iog (‘I —v;2RED

1 (1 Yi
——2Iog< i < _V_§)>’
wherey; are the non-zero solutiotto

[EOR ROEHHZV‘HEHH’ 24

the centred Gram matriceé andL are defined using RKHS kernels obtained via convolution of the
associated Parzen windows,

k(xi,xj):/xK(xi—q)K(xj—q)dq and I(yi,yj):/yK(yi—r)K(yj—r)dr,

and
m m
vz =min min K(X —Xj), min K(Yi—Yj)
je{l...m} i= je{l...m} i=

13. Asin our Section 3.1.3 definition @& (x) and&;(y), we use the notatiok(x) andk (y) to denote the Parzen windows
for the estimatep, (x) andﬁy(y), respectively, even though these may not be identical kernel fuisctidre argument
again indicates which kernel is used.

14. Compare with (4).

15. Recall thak(x —g) may be different fronk(y —r), and that the identity of the Parzen window is specified by its
argument.
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We note that the above definition bears some similarity to the estimate of Phan).(Z0@2 said,
we approximate the mutual information, rather than the entropy; in addition, Miéskcomputed
in the limit of infinitely small grid size, which removes the need for binning. Thusretain our
original kernel, rather than using a spline kernel in all cases. This allmagreater freedom to
choose a kernel density appropriate to the characteristics of the source

The KMI inherits the following important property from the constrained ciavece.

Theorem 15 (The KMl is zero if and only if the empirical COCO is zero) The KMl is zero,
KMI (z, ¥, G) = 0, if and only if the empirical constrained covariance is zero,
COCO(zF,G) =0.

Proof This theorem follows from the constrained covariance being the largestaluey; of (24).
|

The relation of the KMI to the mutual information is given by the following theoraich is the
main result of Section 3.

Theorem 16 (The KMI upper bounds the GMI) Assume thak x 9" is chosen to be the support
of p,,, thatp, , is bounded away from zero, and that

m m
mny K(x—x) = min K(x—Xj) and
Xexi; je{l..m} = J

m m
min% K(y—y) ~  min K(Yi —Yj)
YEYiS je{l...m} i

(the expressions above are alternative, unnormalised estimatesefx p, (x) and minycy p, (),
respectively; the right hand expressions are used so as to obtain theeKfifély in terms of the
samplezj. Then

KMI(z F,G) Z1(%9). (25)

This theorem is proved in Appendix A.5. In particular, the approximate eatithe inequality (25)
arises from our use of empirical estimates for lower boundp,gr) andp, (y) (see the proof for
details).

3.1.6 THE KGV: AN ALTERNATIVE UPPERBOUND ON THEMUTUAL INFORMATION

Bach and Jordan (2002a) propose two related quantities as indepenigctionals: the ker-
nel canonical correlation (KCC), as discussed in Section 2.4, and thellgeneralised variance
(KGV). In this section, we demonstrate that the latter quantity is an uppedomuthe KMI under
certain conditions. This approach is different to the proof of Bach andah, who employ a limit
as the RKHS kernels become infinitely small, and do not make use of Parzéowsnin any event,
there may be some problems with this limiting argument: see Appendix B.2 for fuligmrssion.
We begin by recalling the definition of the KGV.

Definition 17 (The kernel generalised variance)The empirical KGV is defined as

KGV(Z,?,Q,G)Z—%lOQ(H (1_plz)>7 (26)
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wherep; are the solutions to the generalised eigenvalue probtem

0 KL G BK2 4 v5(1—0)K 0 G
[EK 0 Hdi]:p‘ 0 et2+vz(1e)E] [di } @7
and@ € [0,1].
Next, we demonstrate the link between the KGV and the KMI.
Theorem 18 (The KGV upper bounds the KMI) For all 6 € [0, 1],
KGV(z ¥,G,6) >KMI ( F,G),
with equality only ab = 0, subject to the conditions
VJd =K =0 and vil—L>0. (28)

This theorem is proved in Appendix A.6. The requirements (28) shoulchbeked at the point
of implementation to guarantee a bound, but we are assured of being abiitotoeethem: for
example, wherk is the convolution of (properly normalised) Gaussian kerrai§sizea, then

1 1
00) = s oxp( ~ 5735105 102

which is a Gaussian with twice the variance and/2 the peak amplitude of. An upper bound
on the spectral norm ok is max 3™, k(x,x;), which follows from Horn and Johnson (1985,
Corollary 6.1.5)7 In other words, even by this conservative estimate, we are assuredetists

a g > 0 small enough for (28) to hold (the requirements (28) are also suffitbegiiarantee the
existence of the KMI, since they cause the argument of the logarithm inib&fiti4 to be positive).

3.2 Multivariate COCO and KMI

We now describe how our dependence functionals may be generalisedaahaa two random
variables. Let us define the continuous univariate random variables,x, on Xi,..., Xn, with
joint distributionP, ... We also define the associated feature sp&Ges . ., Fx,, each with its
corresponding kernel (as in the 2 variable case, the kernels may beedif. We begin with a
generalisation of the concept of constrained covariance. Our esipnesikes a similar form to that
of Bach and Jordan (2002a, Appendix A.3), although they deal witbrieal correlations rather
than constrained covariances, which changes the discussion in sgaetses

Definition 19 (Empirical multivariate COCO) Letz:= {x;,...,X,} be an i.i.d. sample of size m
from the joint distributiorP,, .. The multivariate COCO is defined as

)

16. See (5). Note that Bach and Jordan (2002a) handle the scaliegediff/: they replace the right hand matrix in (27)

S

K ch Ezicf for a regularisation scale We shall see that the form in (27) guarantees the KGV to
upper bound the KMI (and hen¢&, y) in (20)).

17. Bearing in mind Lemma 27, and thathas singular values ifil, 0}.

.....

COCO(zFy,,...,Fx,) = max(|A;
j

with
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whereA; are the solutions to the generalised eigenvalue problem

~0~ K1R2 glgn C1,j |Z1 ~0 ... 0 C1,j
S B IEPVS B Il IR
Kan RnRZ 0 Cn,j 0 0 Rn Cn,j

Ri = HKH, andK; is the uncentred Gram matrix of the observatigndrawn fromP,,.

This expression is obtained using reasoning analogous to the bivariateécahfpOCO in Section
2. The following result justifies using the multivariate COCO as an indepeedaeasure.

Lemma 20 (The multivariate COCO measures pairwise independence)he multivariate con-
strained covariance is zero if and only if all the empirical pairwise corietrd covariances are
zero:

COCO(z;Fy,;, .., Fx,) = 0iff COCO(x;,Xj; Fx,Fx;) =O0foralli # j.

We note that although the multivariate COCO only verifies pairwise indeperd#is is nonethe-
less sufficient to recover mutually independent sources in the contéireaf ICA: see Theorem
24. ltis instructive to compare with the KCC-based dependence funtfamaore than two vari-
ables, which uses the smallest eigenvalue of a matrix of correlations (witardiatgrms equal to
one, rather than zero), where this correlation matrix has only positivevsgees.

We next introduce a generalisation of the kernel mutual information to mongweavariables.
By analogy with the 2-variable case in Definition 14, we propose the follod&fipition.

Definition 21 (Multivariate KMI)  The kernel mutual information for more than two random vari-
ables is defined as

1 mn o
KMI (Z Fxs - ., ) .:—élogq(l—i—)\j), (30)
Jf
whereszj =Aj,and
Vz = _ min vy, where (32)
ie{1,...,n}
m
Vx, = min K(Xi1—Xij)-
je{l...m} IZI

For (30) to be defined, it is necessary thaﬁlj > 0 for all j, which is true near independence. The
following lemma describes the sense in which the multivariate KMI measuresdndepce.

Lemma 22 (The multivariate KMI measures pairwise independence)The multivariate KMI is
zero if and only if the empirical constrained covariance is zero for epeiy of random variables:
in other words,

KMI (Z, fxl, .. .,f]"xn) =0

if and only if
COCO(X| , Xjs FX. , F.Xj) =0
foralli # j.
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The proof is in Appendix A.7. We now briefly outline how the dependennetfanal in (30) relates

to the KL divergence. In the case of a Gaussian random vegfowhich can be segmented as
xGi=[xg; - xg,n ], the KL divergence between the joint distributionxef and the product

of the marginal distributions of thes; can be written in terms of the relevant covariance matrices

as
d 1 C| )
D ( py v | =—Zlog( =)
L(p(; Il:lp G,l) 2 g<|_|in_1Cii|

C = Ex <xGxg) —Eyx (x6) Exg (xg) ,
Ci = Ex <XG,ixg,i) — Exq; (XG,i) EXG,i (xai) .

These results should allow us to generalise the reasoning in Section 3stifudiny the kernel
density estimates

where

~

Py(X) = (Xu—Xu)

3 HM3

1
m,
1

Py (X1, Xn) = Zrl (X1 —%)

and applying the bounding technique of Section 3.1.5 to obtain the quantity)irtligdis a reason
for our choosingv; to scale)\j.18 The details of this generalisation are beyond the scope of the
present work.

4. Implementation and Application to ICA

Any practical validation of the independence measures described a&blogst conducted with re-
spect to some ground truth, in which genuinely independent randonblesiare tested using the
proposed functionals (COCO, KMI). Thus, one test of performanicelependent component anal-
ysis (ICA): this entails separating independent random variables thablegn linearly mixed, using
only their property of independence (specifically, we recover thdicasits that describe the linear
mixing).

An ICA algorithm using COCO and the KMI comprises two components: the efticempu-
tation of COCO and the KMI, using low rank approximations of the Gram mairaes gradient
descent on the space of linear mixing matrices. These results are sumnfiemsdte more de-
tailed discussion by Bach and Jordan (2002a) (although the low ramkmbesition is in our case
made easier by the absence of the variance term used in the KCC and KGV).

4.1 Efficient Computation of Kernel Dependence Functionals

We note that COCO requires us to determine the eigenvalue of maximum magoitaeetnx mn
matrix (see (29)), and the KMI is a determinant ofranx mnmatrix, as specified in (30). For any

18. On a more pragmatic note, the factgrgenerally causeF\j’ < |)\j \ which results in KM(z; Fy, ..., Fx,) being
defined further from independence. This is not the only such scalatgrfanowever.
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reasonable sample sime the cost of these computations is prohibitive. We now describe how the
computational complexity of this problem may be substantially reduced. Firshoteethat any
positive (semi)definite matrix can be writt&n = Z;Z;", wherez; is lower triangular: this is known

as the Cholesky decomposition. If the eigenvalues of the Gram nigtdecay sufficiently rapidly,
however, we may make the approximation

Ki~ 22 (32)

to the Gram matriX;, whereZ; is anmx d; matrix; the error due to this approach may be measured
via the maximum eigenvalug of K; — Z;Z,". TheZz; are determined via aimcompleteCholesky
decomposition, in which the smaller pivots are skipped; symmetric permutatiore asb¥ts and
columns ofK; is used in the course of this process to increase the accuracy and ralrsiility
of the approximation. This method is applied by Fine and Scheinberg (20@Ectease the stor-
age and computational requirements of interior point methods in SVMs, aBadly and Jordan
(2002a) for faster computation of the KGV and KCC (pseudocode algasithay be found in both
references). Once the incomplete Cholesky decomposition is accomphgbadn compute the
approximatecentredGram matrices according #; := HKiH = (HZ;) (HZ{") = ZiZ]".

We now show how this low rank decomposition may be used to more efficiently wtentipe
constrained covariance in (29). Substituting

dij=Zcj,
we get
0 ZiZ{Z, ... Z:Z]Z, dyj Zy 0 ... 0 dy,j
Y2yAVA) 0 o 22237, da,j \ 0 z, ... 0 da |
. . . : =Ail . : :
202071 70207, ... 0 dn,j 0 0 .. Z, dn,j
We may premultiply both sides Eﬁ/diagq ZI ZI D without increasing the nullspace of
this generalised eigenvalue problem, and we then eIiminate@i@IZl ZnTZn D from
both sides. Making these changes, we are left with
~T0~ Z1Z, ... ZE” dy | dy |
Z;Z, 0 ... Z]Z, da j da2j
Z;Zl ZIZZ 0 dn.,j dn,j

which is a much more tractable eigenvalue problem, having dimeiysigr;. The same procedure
may easily be used to recast (30) as the determinant 0§ an di) x (3, di) matrix. We now
briefly consider how to choose the ragikfor a given precisiom;: this depends on both the density

19. The notation diaé[ ZI ZnT ]) defines a matrix with blockgiT along the diagonal, and zeros elsewhere.

The matrix needwnot be square, however, and the diagonal is in thiddefired in a manner consistent with the
asymmetry of the".
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p,, and the kernek(x;,x). For Gaussian kernels and densities with exponential decay rates, Bach
and Jordan (2002a) show the required precision relates to the ramkiacrtod;, = O (log (M/W)),

which demonstrates the slow increase in rank with sample size. In the cagekKBihand KCC,
however, the form of the empirical estimate causes eigenvalues less firaniagately 103mk /2

to be discarded, which thus serves as a target precision to ensuterétain constant rank regard-
less ofm. We also adopt this threshold in our simulations with the Gaussian kernel, gltloow
motivation is purely a reduction of computational cost.

4.2 Independent Component Analysis

We describe the goal of instantaneous independent component arfilysisdrawing on the nu-
merous existing surveys of ICA and related methods, including those biirkiyan et al. (2001);
Lee et al. (2000); Cichocki and Amari (2002); Haykin (1998); adl we the review by Comon
(1994) of older literature on the topic. We are giversampled := (t1,...,tm) of then dimen-

sional random vectot, which are drawn independently and identically from the distribugn

The vectott is related to the random vects(also of dimensiom) by the linear mixing process

t =Bs, (34)

whereB is a matrix with full rank. We refer to our ICA problem as beingtantaneouss a way of
describing the dual assumptions that any observatt@pends only on the samat that instant,
and that the samplesare drawn independently and identically.

The components of s are assumed to be mutually independent: this model codifies the assump-
tion that the sources are generated by unrelated phenomena (for @ystarccomponent might be
an EEG signal from the brain, while another could be due to electrical frmisenearby equip-
ment). Mutual independence (in the case where the random variables adbabjity densities)
has the following definition (Papoulis, 1991):

Definition 23 (Mutual independence) Suppose we have a random veatof dimension n. We say
that the components are mutuallyindependent if and only if

pe(9) = [0 ). (35)

It follows easily that the random variables gpairwiseindependent if they amnutually indepen-
dent; i.e.p; (S)Ps; (Sj) = Ps 5, (S, Sj) foralli # j. The reverse doesot hold, however: pairwise
independence does not guarantee mutual independence.

Our goal is to recoves via an estimat&V of the inverse of the matriB, such that the recovered
vectorx = WBs has mutually independent componefitszor the purpose of simplifying our dis-
cussion, we will assume thBt(and henc&V) is anorthogonal matrixin the case of arbitrari, the
observations must first be decorrelated before an orthodrialapplied (Hyvéarinen et al., 2001).
In our experiments, however, we will deal with general mixing matrices.

20. It turns out that the problem described above is indeterminate inrceespects. For instance, our measure of
independence does not change when the ordering of elements 8wapped, or when componentsxodre scaled
by different constant amounts. Thus, source recovery takes pfatethese invariances.
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Mutual independence is generally difficult to determine. In the case ofrlméedng, however,
we are able to find a unique optimal unmixing matvik using only thepairwise independence
between elements of which is equivalent to recovering tmsutuallyindependent terms af (up
to permutation and scalingJ his is due to the following theorem (Comon, 1994, Theorem 11).

Theorem 24 (Mutual independence in linear ICA) Lets be a vector of dimension n with mutu-
ally independent components, of which at most one is Gaussian, andhfoh the underlying
densities do not contain delta functions. kdie a random vector related saccording tox = As,
whereA is an orthogonal < n matrix?* Then the properties

e The components afare pairwise independent
e The components afare mutually independent
e A =PS whereP is a permutation matrix, an8 a diagonal matrix

are equivalent.

We acknowledge that the application of a general dependence funcliordo ICA is not guaran-
teed to be an optimal non-parametric approach to the problem of estimatingtties @mB—for
instance, Samarov and Tsybakov (2004) provide a method that gussgfiteconsistent estimates
of the columns oB under certain smoothness assumptions on the source densities, which & a mor
natural goal in view of the mixing model (34). Indeed, most specialised dg/arithms exploit
the linear mixing structure of the problem to avoid having to employ a generaureaf indepen-
dence, which makes the task of recoverhgasier. That said, ICA is in general a good benchmark
for dependence measures, in that it applies to a problem with a knoworfgriouth”, and tests
that the dependence measures approach zero gracefully as depemdom variables are made
to approach independence (through optimisation of the unmixing matrix). diti@d the kernel
methods yield better experimental performance than other specialised i@8aapes (including
recent state-of-the-art algorithms) in our tests of outlier resistance asgtahgource separation
(see Section 5).

We also note at this point that if elememist; in the samplé arenotdrawn independently for
i # j (for instance, if they are generated by a random process with noneperelation between
the outputs at different times), then an entirely different set of appesacan be brought to bear
(see for instance Belouchrani et al., 1997; Pham and Garat, #99¥though the present study
concentrates entirely on the i.i.d. case, we will briefly address randocegses with time depen-
dencies in Section 6, when describing possible extensions to our woedlyi-ime draw attention to
an alternative ICA setting, as described by Cardoso (1998b); The@&)2in whichs is partitioned
into mutually independent vectors (which might each have internal depeadémnicture): we wish
to recover these vectors following linear mixing. As pointed out by Bachlandian (2002a), kernel
dependence functionals are well suited to this problem, since they alsostimithtforwardly to
multivariate random variables: it suffices to define appropriate Gram rastric

21. For the purposes of ICA combines both the mixing and unmixing processes,A = WB.
22. In particular, it becomes possible to separate Gaussian proodsseshey are correlated over time.
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4.3 Gradient Descent on the Stiefel Manifold

We now describe the method used to minimise our kernel dependence fafstover possible
choices of the orthogonal demixing matiX. The manifold described by x p matricesA for
which ATA = I, wheren > p, is known as theStiefel manifold Gradient descent for functions
defined on this manifold is described by Edelman et al. (1998), and Backoadan (2002a) applied
this technique to kernel ICA. A clear and intuitive explanation of this praoeds also given by
Hyvarinen and Plumbley (2002). Lé{W,t) be the particular dependence functional (COCO or
KMI) on which we wish to do gradient descent, wheére= (ti,...,ty) are the whitened, mixed
observations. A naive gradient descent algorithm would involve compthimderivative

_af(W,t)
T aw

updatingW according toW — W + pG (wherep is chosen to minimisd (W + uG,t)), and pro-
jecting the resulting matrix back onto the Stiefel manifold. This might not be péatlgiefficient,
however, in that the update can largely be cancelled by the subseqogsttion operation. In-
stead, we attempt to find the direction of steepest descent on the Stiefebluaaifd to perform
our update with the constraint that we remain on this manifold. To achieve thif;stdescribe the
set of perturbations t@V that retain the orthogonality &, then choose the direction of steepest
descent/ascent within this set, and finally give the expression that pars®etbe shifts along the
geodesié® in this direction.

LetA be a perturbation with small norm to the orthogonal matvixsuch thatV + A remains
on the Stiefel manifold. For this constraint to hold, we require

G:

(W+A)" (W+A) = I, whichimplies (36)
WIA+A™W =~ O0; (37)
in other wordsW " A is skew-symmetric. To find the particulArthat gives the direction of steepest

change off (W,t), we solve
Anax = arg nlaxf (W+A),

subject to tfATA) = const and (37). This yields
Amax - G - WGTW,

where the proof is provided by Edelman et al. (1998); Hyvarinen anchisliy (2002). Finally, if
we useq to parameterise displacement along a geodesic in the dirgktigrfrom an initial matrix
W (0), then the resultingV(q) is given by

W(a) = W(0) exp( QW (0) "Armax)

As in the implementation of Bach and Jordan (2002a), we determine an apptimn of the gradi-
ent of f (W,t) by making small perturbations W about each possible Jacobi rotation, and recom-
puting f for each such perturbation. Gradient descent is then accomplishepau€inlden search
along this direction of steepest descent.

23. A geodesic represents the shortest path on a manifold betweenitv; pouivalently, the acceleration involved in
moving between two points along a geodesic is perpendicular to the manifel gonstant velocity is maintained.
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Finally, we note that procedures are given by Edelman et al. (1998 npute the Hessian on
the Stiefel manifold, as are implementations of Newton’s method and conjugaliergjrdescent.
In addition, an adaptive algorithm for gradient descent on the Stiefeifoféiis proposed by Zhu
and Zhang (2002). The application of these methods to improve the perfoermépur algorithm
is beyond the scope of the present work.

4.4 Computational Cost

We conclude this section with a summary of the overall computational costob&Sed on COCO
and the KMI: this analysis draws directly from the assessment of Baclamdn (2002a, Sec-
tion 6), since COCO and the KMI cost effectively the same as the KCC and, kK&spectively.
The first step in ICA, which is not discussed here, is the decorrelatitimea$ources (as described
for instance by Hyvérinen et al., 2001), which has a cogh@). We next consider the cost of
computing the multivariate COCO and KMI. In both approaches, each of soeirces requires an
estimate of itsn x m Gram matrix using incomplete Cholesky decomposition, which cogts),
whered is the largest rank retained in the computation ofZhén (32): the net cost is @nndf).
TheseZ; are then centred and assembled into the matrix in (33), which entails1) /2 operations
each costing Qnd?), for an overall cost @nr?d?). COCO is given by the largest eigenvalue of
this matrix, and costs @?d?); the KMl is a determinant, and costg18d3).

We compute the gradient of the kernel dependence measures using thoel roefinite dif-
ferences (as described in the previous section), which necessitatesl)/2 evaluations of the
measure used. In each evaluation, we need only compute two incompletskyaddeompositions
(we cache the remainder); the assembly of the matrix in (33) then entals32natrix products,
for an overall cost (Cholesky + matrix assembly for all the Jacobi rotstioh O(mn*d?). The
eigenvalue computations used to obtain the gradient of COCO doétl®), and the determinants
used in the KMI gradient cost @°d3).

5. Experimental Results on ICA

In this section, we examine the performance of our independence fualstig@OCO, KMI) as it
compares to the KGV and KCC, when used to address the problem of lirstantaneous ICA.
Since the objective is to find an estimaté of the inverseof the mixing matrixB (the reader is
referred to Section 4.2 for a description of the ICA problem), we requingeasure of distance
between our approximation and the true inverse: this is given byAthari divergencewhich
is introduced in Section 5.1. Next, in Section 5.2, we present results obtainea separating
a range of artificial signals mixed using randomly generated matrices, ingladises in which
the observations are corrupted by noise. Finally, we describe our attetrgeipaaating artificial
mixtures of audio signals representing a number of musical genres. Remilt®mpared with
those obtained using standard methods (FastICA, Jade, Infomax)cemd séate-of-the-art methods
(RADICAL, CFICA), as well as the KCC and KGV.

5.1 Measurement of Performance

We use the Amari divergence, defined by Amari et al. (1996), as axioflICA algorithm per-
formance: this is an adaptation and simplification of a criterion proposedrdayli@omon (1994).
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Note that the properties of this quantity in Lemma 26 were not described byi &trar (1996), but
follow from the proof of Comon (1994).

Definition 25 (Amari divergence) Let B and W be two nx n matrices, wheré is the mixing

matrix andW the estimated unmixing matrix (these need not be orthogonal here), EDH&VB.
Then the Amari divergence betwemandW is

100 N 2?:1]di7j\ 1 L[ Yilqldijl
PWB) = -1 (maxj dhjl 1) (- 1] le <max il 1> |

Although this measure is not, strictly speaking, a distance metric for genetdtesd, W, it
nonetheless possesses certain useful properties, as shown below.

Lemma 26 (Properties of the Amari divergence) The Amari divergenc® (WB) between the r
n matricesB, W has the following properties:

e 0<D(WB) <100 The factor of 100 is not part of the original definition of Amari et al.
(1996), who defined the Amari divergence|0ri]. In our experiments, however, the Amari
divergence was generally small, and we scaled it by 100 to make the réshiks more
readable.

e LetP be an arbitrary permutation matrix (a matrix with a singlén each row and column,
and with remaining entrie6), andS be a diagonal matrix of non-zero scaling factors. Then
W =B~lifand only if D (WB) = 0, or equivalentlyD (WBSP) = 0 or D (SPWB) = 0.

The final property in the above Lemma is particularly useful in the conteKLAf since it causes
our performance measure to be invariant to output ordering ambiguitytbec®urces have been
demixed (see Theorem 24).

5.2 Experiments and Performance Assessment

Since our main purpose is to compare the performance with that reportecdyy d&d Jordan
(2002a), we generated our test distributions independently followingdbeariptions. A list of the
distributions used in our experiments, and their respective kurtoseseisigi Table 3. While these
distributions represent a broad range of behaviours, we note thativeegurtoses predominate,
which should be borne in mind when evaluating performance. We used theali@ KCC Matlab
implementations downloadable from (Bach and Jordan) (thus, we employGikeds originally
defined by Bach and Jordan (2002a), and not the version desamilseattion 3.1.6). The precision
of the incomplete Cholesky decompaosition, used to approximate the Gram méatrites kernel
dependence functionals, was sehjat €n; our choice of represents a tradeoff between accuracy
and computation speed. Unless otherwise specified, the kernel algoesiultsrwere refined in a
“polishing step”, in which the kernel size was halved upon convergeara the gradient descent
procedure recommenced with this smaller kernel. This polishing was camurtesince the larger
kernel size results in the kernel dependence measures being a snfaatiiiem of the estimated
unmixing matrix, making it easier to find the global minimum; but making the location of this
global minimum less precise than obtained with a smaller kernel. The polishingstajly caused

a measurable improvement in our results.
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As well as the kernel algorithms, we compare with three standard ICA metRad8CA (Hyvéri-
nen et al., 2001), Jade (Cardoso, 1998a), and Infomax (Bell gndv@&ski, 1995); and two more
sophisticated methods, neither of them based on kernels: RADICAL rfedavliller and Fisher
I11, 2003), which uses order statistics to obtain entropy estimates; amdatbestic function based
ICA (CFICA) (Chen and Bickel, 2004 It was recommended to run the CFICA algorithm with a
good initialising guess; we used RADICAL for this purpose. All kernebalipms were initialised
using Jade (except for the 16 source case, where FastICA waslused its more stable output).
RADICAL is based on an exhaustive grid search over all the Jactdtisas, and does not require
an initial guess. In the case of FastICA, we used the nonlinearity mosigte to the signal char-
acteristics: this was generally the kurtosis based contrast, since theninaaitly negative kurtoses
in Table 3 made this a good choice (see Hyvarinen et al., 2001). In soregragpts, however, the
kurtosis was unsuited to the source characteristics, in which case w¢ @igraternative choice
of nonlinearity. The Infomax algorithm selects its contrast automatically basdtie super- or
sub-Gaussianity of the signal, and does not require manual contmsgchikewise Jade uses only
a kurtosis-based contrast, and thus does not require the user t@@demixing function.

We begin with a brief investigation into the form taken by the various kerngdiagence func-
tionals for a selection of the data in Table 3. Contours of the KGV, COCO,,kddl Amari di-
vergence are plotted in Figure 1, which describes the demixing of sampiagtree distributions,
combined using a product of known Jacobi rotations. All kernel funefi®in this demonstration
were computed with a Gaussian RBF kernel,

Kelx ) = 7 exp( 5o X X?). 8)

We observe that each of the functionals exhibits local minima at locations distam indepen-
dence, but that each possesses a “basin of attraction” in the vicinity abtihect answer. More-
over, we note that each of the functionals is smooth (given the choicamélkgze), and that the
global minima are fairly symmetric. For these reasons, the gradient dedgerithm described in
Section 4.3 should converge rapidly to the global optimum, given a reasdnélaksation point.
Our solution method differs from that of Bach and Jordan (2002a)eheryin that we generally
use Jade (unless specified otherwise) to initialise the kernel functiom@BQCKCC, KGV, KMI),
whereas Bach and Jordan only do this when separating large numbsiggals (in most cases,
they initialise using a one-unit kernel dependence functional with def|adioeh with a less costly
polynomial kernel). For more than two signals, this process is repeatethstines, starting from
different initialising matrices. While Jade is less computationally costly as an initialisaethod,
it might be less reliable in certain cases (where the sources are nessi@guwor when a large
number of outliers exist due to noise, both of which can cause Jade to wesgeh

5.3 General Mixtures of Artificial Data

We now describe the ICA experiments performed with the distributions in Tallb&e the Amari
divergence is used to measure the closeness of the estimated mixing matrix toetmeatrix.

24. We are aware that Chen and Bickel propose an alternative algotéfficient ICA’. We did not include results from
this algorithm in our experiments, since it is unsuited to mixtures of Gaus@idrich have fast decaying tails) and
discontinuous densities (such as the uniform density on a finite intervathuwbth occur in our benchmark set.
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Amari divergence Kernel mutual information

1 2
Est. -6
z

Kernel generalised variance

Est. -6

1 2 1
Est. -6 Est. -0
z z

Contour plots of kernel independence functionals. Top leftardivergence. Top right:
kernel mutual information. Bottom left: constrained covariance. Bottont:rigérnel
generalised variance. Three signals of length 1000 and with respdigivieutionsg, K,
andq (this choice was random) were combined using-a33orthogonal rotation matrix.
This matrix was expressed as a product of Jacobi rotaf®rasR,(6;)Ry(8y)Rx(6y),
where 6, = —11/6, 6, = —T1/4, andB, = —11/3; the subscript denotes the axis about
which the rotation occurs. An estimaté = Ry(—6x)Ry(8y)R,(8;) of B~ was made, in
which éy and®, took values in the rangi®, 1. The red “x” in each plot is located at the
coordinateg—6,, —6y) corresponding to the optimal estimateBfA Gaussian kernel of
sizea? = 1 was used in all cases, ard= 102 for the KGV.
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| Label | Definition | Kurtosis

a Student’s t distribution, 3 DOF 00

b Double exponential 3.00
C Uniform -1.20
d Students’d distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
i Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
I Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o] Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

Table 3: Labels of distributions used, and their respective kurtosesdigtibutions have zero
mean and unit variance.

2104



KERNEL METHODS FORMEASURING INDEPENDENCE

Kernels used include the Gaussian RBF kernel in (38), and the Laptaselk
A
ke (X) = 2 exp(=Allx—x]|).

We combined the independent sources using random mixing matrices, wihicomumbers be-
tween 1 and 2, and then whitened the resulting observations before estitmatiaoghogonal de-
mixing matrix2°

Our first experiment consisted in de-mixing data drawn independentlyZr@sources chosen
at random with replacement from Table 3. Results are given in Table ¢. KMI with Gaussian
kernel matches or exceeds KGV performance in the final four expeténand, with the Laplace
kernel, in five of the seven experiments. Moreover, the KMI yields perémce statistically in-
distinguishable from RADICAL in four of the seven experime#ft<On the other hand, the KGV
outperforms the KMI in the first and third case, where the numief samples is small (although
in then=4,m= 1000 case, the difference is not statistically significant). The supernifarpgance
of the Laplace kernel compared with the Gaussian may be due to its slowayimgspectrum,
which allows dependence encoded at higher frequencies in the sbemsity to induce a greater
departure of COCO from zero (making this dependence easier to dateetpBretton et al. (2005b,
Section 4.2). The Laplace kernel has a greater computational costyémpsiace the eigenvalues of
the associated Gram matrices decay more slowly than for the Gaussiah keoessitating the use
of a higher rank in the incomplete Cholesky decomposition to maintain good'perfice. Finally,
the extended Infomax algorithm seems unable to separate the signals im336,s2signal case:
the Amari divergence was spread almost uniformly over the réhdeqQ.

5.4 Performance on Difficult Artificial Problems

In our next experiment, we investigated the effect of outlier noise add#dtetobservations. We
selected two generating distributions from Table 3, randomly and with repkde After combin-
ing these signals with a randomly generated matrix with condition number betwaed 2, we
generated a varying number of outliers by addirg (with equal probability) tdooth signals at
random locations. All kernels used were Gaussian with@izel; Laplace kernels resulted in de-
creased performance for this noisy data. In the case of COCO, thiseplained by functions in
the Laplace RKHS having less penalisation at high frequencies, causifigrnittions attaining the
supremum in Definition 2 to adapt to (and be affected by) outliers to a grbegeee than functions
in the Gaussian RKHS (the KMI is also subject to this effect). Results argrshothe left hand
plot in Figure 2. Note that we used= 0.11 for the KGV and KCC in this plot, which is an order of
magnitude above the level recommended by Bach and Jordan (2002agsthliied in an improve-
ment in performance (broadly speaking, an increagedauses the KGV to approach the KMI, and

25. We did not use simple orthogonal matrices to mix our sources, sifcevdlild have lowered the variance in our
estimate ofW/, making the problem (slightly) easier than that of estimating a truly randormgniratrix (Cardoso,
1998a).

26. The mean performance of the various methods, both kernethadhise, is affected in some experiments by a small
number of misconverged results with large Amari divergence (althonigconvergence of the kernel methods does
not always correspond to misconvergence of the Jade initialisatiogs€eTtesults may arise from diversion to local
minima, causing an increase in the overall mean Amari divergenceldlestnot reflect the typical behaviour of the
kernel algorithms. Such outliers occur less often, or not at all, atlaagaple sizes, as can be seen by the decreased
variance in these cases.
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the KCC to approach COCG].ltis clear that the kernel methods substantially outperform both the
standard and recent alternatives in outlier resistance (we omitted the regnstanmdard methods,
since their performance was worse than FastICA).

An additional experiment was also carried out on the same data, to testniigviy of the
KCC and KGV to the choice of the regularisation constaniVe observe in the right hand plot
of Figure 2 that too small & can cause severe underperformance for the KCC and KGV. On the
other handk is required to be small for good performance at large sample sizes in Tabde 4
major advantage of COCO and the KMI is that these do not require any additiming beyond
the selection of a kernel.

Our third experiment addresses the effects of low kurtosis, since mangnkEhods rely (some-
times implicitly, through their choice of nonlinearity) on the kurtosis as an indeigoial indepen-
dence. Two samples were drawn from a single distribution, consisting oftamaif two Gaussians
with means+5 and—5 and unit variance, with a selection of mixture weights chosen such that, fol-
lowing normalisation of the overall sample to zero mean and unit variancegigrical) kurtosis
took on a range of positive, near-zero, and negative values. Resaligiven in Figure 3. All
kernel based methods were unaffected by near-zero kurtosis,rasGHCA and RADICAL; the
remaining ICA methods do less well (Infomax was omitted since it performedantban Jade).

27. The results presented here for the KCC and KGV also improve oe tifdsearned-Miller and Fisher 11l (2003);
Bach and Jordan (2002a) since they include a polishing step for the K@®@V, which was not carried out in
these earlier studies.
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| n | m | Rep. | Fica | Jade | Imax | CFICA | RAD | KCC | COCO(g)| COCO(l) [ KGV ‘ KMI(g) | KMI(l) ‘
2| 250 | 1000 | 1054+04 | 95+04 | 444+1 72+03 | 54+02 | 7.0£03 | 78+£03 | 7.0+03 | 53+02 | 6.0£02 | 57+0.2
2 | 1000 | 1000 | 6.0+03 | 51+02 | 11.3+06 | 3.2+0.1 | 24+01 | 33+01 | 35+01 | 29+01 | 23+01 | 26+01 | 23401
4 | 1000| 100 | 57+04 | 56+04 | 133x1 33£02 | 25+01 | 45+04 | 42+03 | 46+06 | 3.1+06 | 40+07 | 35+£07
4| 4000| 100 | 31+£02 | 23£01 | 59+0.7 15+01 | 1.3+01 | 24+£05 | 1.9+£01 | 1.6+01 | 1.4+01 | 1.4+0.05| 1.2+0.05
8 | 2000 | 50 41+02 | 36+02 | 93+09 | 24+01 | 1.8+01 | 48+09 | 3.7+09 | 52+13 | 26+03 | 21+01 | 1.9+0.1
8 | 4000 | 50 32+02 | 27+£01 | 6.4+09 | 16+01 | 1.3+£0.05| 21+02 | 20+01 | 1.9+01 | 1.7+£02 15+01 | 1.3+£0.05
16| 5000 | 25 29+0.1 | 31+£03 | 94+11 17+01 | 1.2+005| 3.7£06 | 24+01 | 26+02 | 1.7+01 | 1.5£01 | 1.5+01

Table 4: lllustration of the demixing af randomly chosen signals of length drawn independently with replacement from Table 3. For
COCO and the KMI, we used a Gaussian kernel of gizel in the experiments labelled (g), and a Laplace kernel of’size3 for
those experiments labelled (1). In the case of the KCC and KGV, we mised andk = 2 x 10~2 for signals of lengthm < 1000,
ando = 0.5 andk = 2 x 103 for the remaining signals. In all cases, we used 1 x 10 for the Gaussian kernels, and= 0.01
for the Laplace kernels. We initialised the kernel methods with Jade in ab tase = 16, for which we used FastICA (due to its
more stable output). The performance figures are an averag®epandependent runs. The best results are shown in boldface, as
are those results statistically indistinguishable from the best according tel®18% left-tailed paired difference t-test.

[n [Fica [ Jade [ Tmax [ CFICA [RADICAL | KGV [ KMI |
2 0.92£007 | 0.99+0.07 107+£010 | 0.84+£0.06 1.02+0.07 065£005 | 051+0.13
4 093£003 | 0.87+003 109+006 | 0.89+£0.03 091£003 | 062+002 | 068+0.03

Table 5: lllustration of the demixing af music segments of lengtin = 55272, taken from the collection of 17 music samples at (Pearl-
mutter). Then = 2 case represents an average over 136 samples, andtHecase is an average over 120 samples. Details of
the KGV and KMI parameters may be found in Section 5.5. The best resalshawn in boldface, as those results statistically
indistinguishable from the best according to a lev8Hleft-tailed paired difference t-test.
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Figure 2: Left: Effect of outliers on the performance of the ICA algorithms, for two sesrof
lengthm = 1000, drawn independently with replacement from Table 3, and codupte
at random observations with outliers-86 (where each sign has probabilitys. Each
point represents an average over 100 independent experimentsufiiber of corrupted
observations irboth signals is given on the horizontal axis. The kernel methods used
0=1,e6=2x10"°, andk = 0.11 (KCC and KGV only). The tanh nonlinearity was
used for the FastICA algorithm, since this is more resistant to outliers than ttee ku
sis (Hyvarinen, 1997)Right. Performance of the KCC and KGV as a functiornkafor
two sources of sizen= 1000, where 25 outliers were added to each source following the
mixing procedure.

5.5 Audio Signal Demixing

Our final experiment involved demixing brief extracts from various musioakces, which were
combined using a randomly generated matrix (in the same manner as the ariitidd slescribed
in the previous section). A total of 17 different extracts were taken ttweriCA benchmark set at
(Pearlmutter). These consist of 5 second segments sampled at 11 kHz prébigion of 8 bits,
and represent a wide variety of musical genres. While samples of a megjoal are certainly
not generated independently and identically in time, many ICA algorithms hawetimeless been
applied successfully to this problem, which is why we investigate this benchrvadked, many
practical applications of ICA are in a context where complete indeperdsribe unmixed signals
is nota goal, in theory or in practice: rather, the objective of the linear unmixingabtain signals
that are relatively “more independent” than the original observationsgiholpe that these will be
physically interpretable in the light of the system generating the data.

A summary of our results is given in Table 5: the KMI, KGV, and CFICA asdistically in-
distinguishable for two extracts, and the KGV does best with four extriattsywed by the KMI.
In then = 2 case, every possible combination of two different extracts was invesdigéor a to-
tal of 136 experiments), and the results averaged. We kise@ x 103, 0 = 0.5, £ = 1x 1075,
and a Gaussian kernel for the KGV; ahd= 3, € = 1 x 0.01, and a Laplace kernel for the KMI.
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Figure 3: Effect of near-zero kurtosis on the performance of therigthgas, for two signals of
length 1000 drawn from a range of mixtures of two Gaussians. Each qgpirdsents an
average over 100 independent experiments. We used a Gaussiahwithro = 1 and
precisione = 2 x 10~° for all kernel dependence functionals, ae= 2 x 102 for the
KCC and KGV.

In both cases, a polishing step was applied to refine the result. For epehne&nt withn = 4,
music segments were drawn randomly and without replacement from theildlde extracts, and
the results averaged over 120 repetitions. All kernel algorithm parasnetee the same as in the
n = 2 case besides the Laplace kernel size, which was increaged tb In addition, no polishing
step was applied to the KGV or KMI, since it caused a drop in performanbetim case$® Our
use of the Laplace kernel in the KMI was motivated by music generally beipgrsGaussian (Bell
and Sejnowski, 1995). Random permutation of time indices was used tceréuristatistical de-
pendence of adjacent samples in the music, since this was found to impréser@ace (note that
this permutation was carried out on the mixed signals, and was the same licofehe observed
mixtures). It is notable that RADICAL, which performs best in the caseoigarfree artificial data,
does not improve on standard methods in the case of musical sources.

Although the results in Table 5 are quite similar for the KGV and KM, it is instugcto
compare the distribution of the outcomes obtained in each experiment. Gertbal{GV results
are more tightly grouped about their mean, whereas the KMI yields morksessmaller Amari
divergences, but a larger number of outliers with greater error.

6. Conclusions and Outlook

To conclude this study, we provide a summary of our main results in Sectioradlexplore
directions for future research in Section 6.2.

28. This is perhaps surprising, given that the polishing step causedaiminease in performance in the= 2 case. On
the other hand, the larger dimension of the 4 problem makes the global minimum harder to find, and diversion to
local minima more likely.
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6.1 Conclusions

We have introduced two novel functionals to measure independencepitiseained covariance
(COCO), which is the spectral norm of the covariance operator betregeaducing kernel Hilbert
spaces, and the kernel mutual information (KMI), which is a function okthtee spectrum of the
empirical estimate of this covariance operator. The first quantity is anaddgale kernel canonical
correlation (KCC), which is the spectral norm of the correlation operéttersecond is analogous
to the kernel generalised variance (KGV), which is a function of the enagpiciorrelation operator
spectrum (see Table 1 in the introduction). We prove two main results. Fesigacribe the class
of all reproducing kernel Hilbert spaces for which these four functioneierchine independence:
the RKHSs must be universal. Second, we link the KMI and the KGV with the ahirtformation,
proving the KMI is an upper bound near independence on the Parzelowigstimate of the mutual
information, and the KGV is a looser upper bound under certain conditiasemphasise that the
KMI and KGV do not require the space partitioning or binning approximatimswally associated
with estimates of the mutual information (Paninski, 2003).

Our experiments demonstrate the effectiveness of kernel algorithms ina€éompared with
both standard methods (Jade, Fast ICA, and Extended Infomax); ashefmapproaches (CFICA,
RADICAL). We emphasise that kernel methods (the KMI and KGV in partigudee clearly supe-
rior to the alternatives when outlier noise is present in the observatiothgaramlso best at unmixing
real (musical) signals. In addition, all modern methods are unaffectedebsatlrces having zero
kurtosis, which is not true of earlier algorithms.

Our experiments also point to the superiority of the KMI and KGV over the K@@ COCO
in measuring independence. Since independence of two random variiadplies that the entire
spectrum of the associated covariance (or correlation) operatoroisizeomes as no surprise that
measures using the whole spectrum are more robust than those usingedalgést singular value.
This intuition remains to be formalised, however.

The choice between the KGV and KMI (or, alternatively, COCO and the Ki€@iore compli-
cated. The methods proposed by Bach and Jordan (2002a) appeavétl dihen there is little data
available, as in the = 2, m= 250 andn = 4,m = 1000 cases in Table 4, although the mechanism
by which this is achieved remains unclear. On the other hand, the KCC andik@ss well when
the sample size/number of sources are large. The KGV and KCC can afsorbesusceptible to
noise in the observations, which is particularly apparent wheecomes smalf (and the bound on
mutual information provided by the KGV is looser). Indeed, in our outlieistaace experiments,
the KMI and COCO achieve by default the optimal performance of the KGQIKaB\V with model
selection ovek. The absence of a separate regularisation parameter in our keraibhats there-
fore greatly simplifies model selection, especially if the observations angrkimbe corrupted by
outliers.

6.2 Directions for Future Study

A number of extensions to this work are readily apparent. For instandeetiaiour of the KMI has
not been studied in detail for more than two univariate random variatésg]és the discussion in
Section 3.2 which guarantees it to be zero when the empirical COCO is megyarticular, it would
be of interest to prove that (30) in Section 3.2 is an upper bound on thes@aumutual information,
in the manner described in Section 3.1.5 for two random variables. This waittentally require

29.K is the regularisation scaling factor for these dependence functionals.
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the link between the Gaussian mutual information and the discrete mutual infonpagscribed in

Section 3.1 for the two variable case, to be extended to a greater numlbedoim variables. The
optimisation procedure we use for ICA might also be made faster, for irestayp@nplementing

Newton’s method or conjugate gradient descent on the Stiefel manifoltb&sibed by Edelman
et al. (1998)), rather than simple gradient descent.

We also need to ensure that both the KMI and COCO approach their poputagimessions
as the sample size increases. In the case of COCO, Gretton et al. (2008b give probabilistic
bounds for deviations from the expected value using standard toolsuindorm convergence the-
ory. The application of these results to the empirical KMI is less clear, hexveince the KMI is
a productof multiple COCO-type quantities, and we do not know what expression ibappes
in the population limit. More generally, it is necessary to further investigate rdstfar model
selection (i.e., for choosing the kernel size and type) in COCO and the KN4l.not presently
known whether performance is most effectively tuned by simple crdgatian, using bounds de-
rived from concentration inequalities, or via the properties of Parzedawirestimates described
by Silverman (1986).

Many real life problems do not fit neatly into the linear ICA framework: wevrmutline ways
in which our kernel dependence functionals might be used to improverpafce in these more
difficult signal separation problems. First, let us consider the separatiandom processes, as
opposed to random variables. It is rare in practice to encounter sigaalddmot depend on their
previous outputs. Rather, most real signals exhibit statistical depepddratween the observations
at different times (this is obviously true of music, for example). Thesearmnprocesses may be
stationary, meaning that their statistical properties (for instance the meacoemethtion) do not
change over time; or they may be nonstationary. In both cases, howevgme dependence greatly
assists in separating signals into independent components, the idea beihg thdependence of
different random processes should hold not only between samplea diahe same time, but also
between samples drawndifferenttimes. Approaches to this problem include that of Belouchrani
etal. (1997), who separate the signals using decorrelation betweenutices at any time shift, and
the more general approach of Belouchrani and Amin (1998), who akergs class time-frequency
kernels to transform the signal and facilitate source separation. Tinef@pproach is limited since
it breaks down when the sources have overlapping spectra, due tanigsardy a second order
dependence measure. Thus, it would be interesting to generalise tlaetppf Belouchrani et al.
(1997) using kernel measures of dependence, rather than comel@lis generalisation has been
investigated, using the mutual information as a dependence measure, ba&ttgt al. (2004).

Another generalisation of ICA is the separation of sources when mixing inean This is
considerably more difficult than linear ICA, due to the increased complekitiyeomixing model.
One simplification, which makes the problem more tractable, ipdst-nonlinearmodel: theith
component of the observation vectas

ti = fi(bis), (39)

where f; is theith (unknown) nonlinearity, and; is theith row of the mixing matrixB. This
situation corresponds for instance to the observations being distorte@ Isgmisors. Approaches
to this problem include the methods of Taleb and Jutten (1999); Achard &0fl1, 2003)—a
comparison of these techniques with COCO and the KMI would thereforéib&ecest (this would
require an efficient optimisation algorithm for our dependence measndes the setting (39)).
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Various efforts have also been made to solve the more general case
t=f(s).

This problem requires additional constraints fanto avoid a trivial solution via the Darmois de-
composition (Hyvarinen and Pajunen, 1999) (even then, it is generallyaeethat each soursge
can only be recovered up to a nonlinear distortion; this is the analogue sfaling indeterminacy
(Theorem 24) in the linear mixing case). It may also be necessary fob#e\@tions to arise from
random processes, rather than being i.i.d. For instance, accordingsteiland Jutten (2003),
enforcing temporal decorrelation over a single time step is sufficient to testher the recovered
independent processes are simply the result of a Darmois decompositivle. tis does not rule
out other transforms that return independent signals unrelated to theespit suggests that time
dependencies have a crucial role to play in general nonlinear mixing.elsdfieme suggested by
Harmeling et al. (2003), demixing is achieved by mapping the observationgepr@ducing kernel
Hilbert space, finding a low dimensional basis in the feature space whparxamately spans the
subspace formed by the observations, and enforcing the secomdesrgeral decorrelation of pro-
jections onto this basis. The applicability of the KMl is less clear than in the dgsestnonlinear
mixtures, although this might follow from a better understanding of the tecknidiHarmeling
et al. (2003) and its relation to our work.

Finally, Bach and Jordan (2002b) propose using kernel depeadanasures in representing
probability distributions as tree structured graphical models. Fitting theselsnedgires in partic-
ular that the mutual information between pairs of random variables be maxintisesj Bach and
Jordan compare the KGV to a Parzen window estimate of the mutual informatiois icathtext.
Although the Parzen window approach generally performs better, the K@lso very effective.
We have shown, however, that the KGV is an upper bound (near indepee) on the mutual in-
formation: thus the KGV performance is a possible indication of the tightnetsssafipper bound.
Given that the KMI is in theory a tighter upper bound than the KGV, it wouldrberesting to
compare its performance with the KGV in this setting.
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Appendix A. Proofs

This appendix contains derivations of the main results in the present sidiyding our discussion
of the original proofs of Bach and Jordan (2002a) (which are in AgpeB).
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A.1 COCO, kernel PCA, and Kernel Target Alignment

In this appendix, we show that COCO is the quantity optimised when obtainingsherincipal
component in the kernel principal component analysis (kPCA) methodluslsopf et al. (1998).
This can be seen as follows: kPCA satisfies the eigenvalue problem

maxy 'Ky = A
lyll<1

(an inequality is used to keep the constraint set convex). This is rewritten

maxy'Ky = maxtr (Kny>
lyll<1 lyl<1
= max HKny‘ ,
lyl<1

where the norm in the final line is the largest singular value. The finaksgjon is just COC@np,
with feature space; := R and inner produéf I(yi,Yj) = Yiyj- The difference with respect to the
dependence measurement framework described previously is thatwwaaramise over the mem-
bersy; of G, rather than being given them in advance. This last argument also shatSOCO is
optimised in the spectral clustering/kernel target alignment frameworkisti&rini et al. (2002).

A.2 Ratio of Determinants

In this appendix, we prove Theorem 11. First, we note that BoséindC must be positive definite,
since they are submatrices of the positive definite matrix (8). Then

22 [22]
L
o e g

Al/2 0 A1/2 0
o e[ ol

A2 0 A B A2 0
o eller e e

| A-1/2BC-1/2
Cfl/ZBTAfl/Z | :

—
o
=

| _A—l/ZBC—lBTA—l/Z‘

| — Cfl/ZBTAlecfl/Z‘

—

C

= []@-e?)

NEX

30. Note that the linear kernel used heradd universal, and thus COCO is not a general dependence functionds in th
context: see Section 2.3.
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where (a) requires th#t andC be positive definité! (b) uses the relation between the determinant
of a matrix and that of its Schur complement from Horn and Johnson (922), and (c) uses The-
orem 7.3.7 of Horn and Johnson (1985) to determineghatte the singular values éf/2BC~1/2,
Note that since (8) has only positive eigenvalues, and the determinamsiyafraetric matrix is the
product of the eigenvalues, we are guaranteed

[11-ef)>0.

From Horn and Johnson (1985, Theorem 7.3.7), we can rites the positive solutions of the
eigenvalue problem
0 A71/28C71/2
|: c-1/2gTa-1/2 0 :| bi = pibi,

bearing in mind that these solutions come in pairs with equal magnitude anditepgiga. Rear-
ranging and making an appropriate change of variables yields the iseem@igenvalue problem

0 B A O
A.3 Determinant Form of the Gaussian Mutual Information

In this section, we give a derivation of (18) in Section 3.1.3, which statés tha

) . (40)

This result was given without proof by Bach and Jordan (2002agAgix B). We begin with the
mutual information betweexg andyg, which is written

1 L .
| (xaiye) = —5log ( hy,— (ny_ ppr) D, * (PXY_ pprT> Dy *

1
| (xG:¥G) = —5109 (Fil(l— pi2>> ) (41)
wherep; are the positive solutions to the generalised eigenvalue problem
0 ny—pxIOJ [ G } [ Dx — PxPy. 0 ] [ Ci ]
=P 42
(Py— poDT 0 d & 0 Dy—pypy || d (42)

(this can be found by substituting the covariances (15)-(17) into (M)Je that botrDy — pxp,
andDy — ppr have ranky — 1 andly — 1 respectively, and are not invertible To see this, we make
the expansions

Dy — pxp;(r = Dx (I Ix _1lxp)—(r> = D«Ex,

31. A matrix has a square root if and only if it is positive definite.
32. This is why we use (41) as our expression for the mutual informatimer than the ratio of determinants (7) (which
would be undefined here).
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whereEy := 1), —1;,p,; andEy = i, — 1|yp)7 have zero eigenvalues corresponding to the eigenvec-

tors %1& andﬁhy, respectively. In addition, we note that
X y

(ny— pxp;> Ey = (ny_ pxp;) (' ly — 1Ipr>
Puy— PxPy — Py, Py +PxPy 1,Py
= Py —DPxPy —PxPy + PxPy
= Py—Pupy,

with an analogous result fqPxy — pxpy )T Ex. We may therefore write (42) as

0 (Pxy—pxPy ) Ey [ci ]_ '[DXEX 0 Hq}
(Poy—PxPy ) Ex 0 d | =P o DgE ||d]

from which we obtain a generalised eigenvalue problem with identical edysesp;,

b o 3]0 g ][]
(Poy— ey )| 0 i ]7Plo oy fl6]

SinceDy andDy have full rank, we may now apply Theorem 11 to obtain (40).

A.4 Details of Definition 13

In this section, we derive the Parzen window estimate of the Gaussian mutwrahatfon provided
in Definition 13. The kernel density (Parzen window) estimategpfgrand its marginals, on the
basis of the sample are

P00 = S3KKN. BOI= S KO-,

Pry(Xy) = KX =XKW —Y),

3l 3l

M3 M3

where the kernel argument indicates which kernel is used, to simplify notatie require approx-
imations to the terms in the Gaussian mutual information, as described in (18) eY&éotte define
the vectorgy, py, and the matriﬁxy, using the expectations in (12)-(14) computed with these kernel
expressions;

E., (in) = Py, (43)
E«(X) = P (44)
E, (xxT) — Dy (45)

In the limit whereAy, Ay are small (and thus, by implicatiol,> m, ly > m, oy >> Ay, anday > Ay,
whereoy andoy define the kernel sizes), we make the approximations

() = P() = 1 [ 3 ks 3 kn =),
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DAy <m i i
Ex <(XX )i,j) - { 0 otherwise ’

and

m

~ T 5 B C].JrAx/l’pLAy
Ex,y<(xy )m) =Pz (i,i) = 3 K4 =2k (3 —y) dxdy

AXAy

%

ZK X — 0K —Tj).

Before proceeding further, we define two matrices of kernel innetyrts to simplify our notation.
Namely,

K(Qi—X1) ... K(01—Xm) K(ri—y1) ... K(r1—ym)
Ky = . L= . (46)
K(qlx'_xl) K(QIXI_Xm) (r|y y1) (r|y Ym)

where we write the above in such a manner as to indigatem andly, > m. We now use the above
results to re-write (43)-(45) as respectively

DU W.\ 1 AW
Poy— Dby ~ — V<K.L|T——K|1m1;|_ﬁ> = 2K HL |,
m m
5 Dy e
Dy ~ Exdlag(Kﬂm) =: EXDIX,
and ,
~ A A
Dy ~ ~diag(Lilm) = —~D”
y m iag(L11m) m-!
where we introduce the terms
[ Emk@—x) ..o
D=+ 5 ; (47)
"l 0 o TR K(a—X)
and )
1 YLiK(ri=y) ... 0
DY =1 5 : . (48)
Y
I 0 e YimaK(ny —w)

With these substitutions, we can rewrite

(0" (P08 (5) 7~ (08) " (e ”) (o)

which results in our definition.
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A.5 Proof of Theorem 16

Our proof of Theorem 16 requires the following lemma.

Lemma 27 (Singular values of a matrix product) Let A, B be mx n matrices, g= min(m,n),
andA have singular values(A),...,0q(A) (ordered from largest to smallest). Thsm(ABT) <
01(A)o1(B) and

0g(ABT) < min{oq(A)o1(B),01(A)0q(B)}.

This is a special case of a result of Horn and Johnson (1985, p. #2&)now proceed with the
proof. The principle we will follow is straightforward: we want to upperubd the Gaussian
mutual information in (20) by upper boundiegchof the p; that define it. Indeed, if we can find a
matrix to replace (21) with singular values > p; for all i, it follows that—3log ([7; (1—0?)) >
—2log (i (1—p?)). First, we note that-p; are the eigenvalues of the matrix

(DI(X))il 0 0 KiH (L))"
0 (ny))fl [ LiH(K)" 0

D1

According to (22),D|(X) is a diagonal matrix withjth entryA—lx >M1K(x —qj), which is an unnor-

malised Parzen window estimatepfat grid pointg; (an analogous result holds fbfy)). It follows
thatD is diagonal, and we denote ith largest value ag; (i.e., d; is the overall maximum); we also
defineg; to be theth singular value oE. We may obtain a new matrix with singular valugs> p;
by replacing the diagonal entries Bfwith their smallest valué?

D — min(di)l

|

_ Ve
= 2. (49)

wherevz = min{vy, vy} and
m
Vx 1= min —qj) Vy = min K(Yi—Tj). (50)
jedl... X}Zl ' jefl...1) 2,10

The singular values; of (31)~1E satisfy**

~

. indd-1 g g-1
Pi < mm{d, +Iy0'vdlx+lyfi+101}

1
< d i

A
—0j = (j
Vz

33. We assume without loss of generality that= Ay = A, since this simplifies notation.
34. Bear in mind that due to the ordering of the singular values,; d]T’:l]X: d|:41.|y; and thed]-’l are sorted in reverse
order to thed;.
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for all i, where the first inequality derives from Lemma 27. Rather than computingithiena in
(50) over the grid, however, we may simply use

m

m
Vxi=  min K(X —Xj), V= min ZiK(yi_yj)’
jefl..m} i= je{l..m} S

which are respectively the smallest (unnormalised) Parzen window estiofgtesand p, at any
sample point these approach the smallest valueppobn X, and ofp, on %, as the sample size
increases (the densities are bounded away from zero by assumption).

Having made the replacement in (49), it is straightforward to take a limit in whiehgtid
becomes infinitely fine. We begin by rearranging the Lemma 13 definition as

- (2) () (e |
- (%>Z(HK|TK|H> (HLLiH)

~

I (%;9)

IN

1Io
2 g

= 1Io

We then have the limiting result

(A 1y <
I|m <—XK|TK|> = \)zl“m Ax Z K(Xi_qp)K(Xj_qp)
ly—co \ Vz ]

i
= vz‘lfo(m —g)K(x; —g)dg
= v k0%, X)),
where we recover our RKHS kernel as the convolution of the kerneitjefunctions at each pair
of data points.

A.6 Proof of Theorem 18

In this section, we prove that the KGV upper bounds the KMI when condit{28) hold. We recall
the definition of theunregularisedKGV,3® which occurs a8 = 1. It follows from Lemma 9 that

KGV (ZF,G,1) = o,

since the associated eigenvalge (27) are all either 1-1, or O (given we use universal kernels,

there will be at least one pair of non-zero eigenvalues). Conversan0 = 0, we recover the

KMLI. It remains to show that increasirfrom 0 to 1 causes the KGV to increase monotonically.
We may rearrange the eigenvalue problem in (27) as

| <9R+(1—e)v|)flf a1 . s
(9E+(1—e)v|) K | [ c ] =(d+m) [ di }

35. We emphasise that only the regularised KGV is used in practice.
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Then

| (R +(1-0va) T

KGV (zF,G,6) = —log _ 1
(6L+(1—e)vzl) K |

— _logll - <9IZ+(1—9)VZI>71E <9E+(1—e)vz|>lR‘.

We now use the result thatA’ = A - 0 andB’ - B - 0, thenA’B’ - AB (this is a straightforward
corollary to Theorem 7.7.3 of Horn and Johnson, 1985). The desisdtithen holds as long as

O'K + (1—6')vzl < 6K + (1—8)v,l
when® > 6 (as well as the analogous result fir + (1—0)v,l), which means
(0—0)K+(0—0)vl =0 and  (B—6)L +(6' —B)v,l =0,
or
VJd —K =0 and vi—L>0. (51)

A.7 Proof of Lemma 22

In this section, we show that the multivariate KMI is zero if and only if the emgi@@CO be-
tween each pair of random variables is zero. This may be shown via a ndaptadion of the
corresponding proof of Bach and Jordan (2002a, Appendix Aig3t, ve may rewrite each factor
Aj+1in (30) as the solution to

v;1K3%KY | v KYRY daj | (5\-+1) doj
. . . . . = i y
v7IKYKI? VIR Y? L ! dnj dnj

wherekvil/zci,j = d; j, bearing in mind that the determinant of the left hand matrix is the product
of these eigenvalues. Since the left hand matrix is symmetric, the trace istedbalsum of the
eigenvalues, and

szr;(;\j—i-l) =mn (52)
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Assuming without loss of generality that the timeth eigenvalue correspondsigax = Amax/Vz,
we rewrite (30) as

mn-1

_% |Og(1+5\maX) — % log B <1+Xi>

—ilogﬁ(l—ﬁ\j)

1 v mn—1m-1t 1 <
= —5l0g(1+Ana) —— lemn_llog(lJr)\J)

mn—1

1 N mn—1 1 N
~5109(1+Amax) — —5—log <—mn—l gl (1+)\j))

1 < mn—1 [ mn—Amax—1
= —§|09(1+)\max)_ > Iog<w>,

v

where the penultimate line uses Jensen’s inequality, and we substitute (52)finahline. The
resulting expression is strictly convex with respecttgux (its second derivative is everywhere
positive), and has a global minimum &Bax = 0. It follows that (30) is likewise minimised at
KMI (Z, %x,, - - -, Fx,) = 0 (at which poinfA; = 0 for all j), and that this corresponds to the point at
which all pairs of empirical constrained covariances are zero, usifigifean 19 and Lemma 20.

Appendix B. Discussion of Bach and Jordan’s Derivation of the KV

This appendix contains a demonstration of the need for regularisationeglierating the canonical
correlation in high dimensional spaces, and a discussion of the origindld€@vation of Bach and
Jordan (2002a).

B.1 Computation of the Unregularised Kernel Canonical Correlatiors

In this section, we prove Lemma 9, which is used to show a regularised erhpstoaate for the
kernel canonical correlates is needed when the associated RKHSsigavdimension. We begin
with (5), which we restate below for reference;

This is equivalent to
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where we use the pseudoinverses since the Gram matrices do not heaelfulf we recall thatH
is the centring matrix, then the solutiopscorrespond to the solutions of

- (k)KL
()R —p
_ yp||’p|;<E>ZEK(R>2RE

1
= |pl||pl — =H
!p!’p 0 ’

which hasm—1 roots+1, m— 1 roots—1, and 2 roots 0. To avoid this problem, a regularised
empirical estimate is used, as shown by Bach and Jordan (2002a); Fuketraiz (2005); Leurgans
et al. (1993).

B.2 Discussion of the KGV Proof of Bach and Jordan (2002a)

In this section, we describe a possible problem in the derivation by Batld@dan (2002a, Ap-
pendix B) of the kernel generalised variance (KGV). We begin with alkgsicnmary of the steps
from Section 3 needed to get us to the point where the proof bégiAssume thatx and?” are
both bounded intervals dR. In Section 3.1.2, we recall the standard result from Cover and Thomas
(1991) that the mutual informatiol(x,y) between two real-valued, univariate random variables
x € X andy € 9 can be approximated by imposing a uniform grid of dige Iy over X x %, and
defining a multinomial distribution over the discrete valued random variabteg?®,...,Ix} and

y € {1,...,ly} using the probability mass in the resulting bins (this multinomial distribution is de-
scribed by the matri®yy of joint probabilities, with marginal distribution vectops andpy).3” We
denote the resulting discrete mutual informatiot @sy). In Section 3.1.3, we approximaltéx;y)
using theGaussiammutual informatiorl (xg;yg) between vectorsg; yg, defined to have the same
covariance ag andy, wherex'=i is equivalent tax); = 1 and(i()j:j7éi = 0 (likewise fory). Bach

and Jordan (2002a, Appendix B.1) show this approximation holds wheratitlom variables are
close to independence, in which case

1 (y) ~ 1 (xciye) = —%Iog (ﬂ(l—p?)> ,

wherep; are the positive solutions to the generalised eigenvalue problem

0 Pxy — PxPy [ G ]:p_ [ Dy — PxPy 0 } [ > }
(Pay—PxPy ) 0 d ! 0 Dy—pypy || di |’

andDy = diag(px), Dy = diag(py) (see (41) in Appendix A.3).

36. The reader is strongly advised to consult Sections 3.1.1-3.fafeh@oceeding, since the following discussion might
not otherwise make much sense.
37. The approximation becomes exact in the limit of an infinitely fine grid
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We are now at the point where we can describe the reasoning of Baclicadan (2002a,
Appendix B.3) in establishing a link betweé(k;y) and the KGV. Rather than replacir@hdy by
xg andyg, we may instead replace them with tsrmoothed approximations

ki=O[ k(,an) - kooa,) ] and h=Ay[ I(y,r1) ... ly,m,) |0 (53)

to xg andyg, respectively, wherd(-,-) andl(-,-) are the RKHS kernels fof and G, and the
grid coordinatesq) := (,...,q,) andr := (ry,...,r,) are defined in Section 3.1%. We can of
course specify the Gaussian mutual informati¢k ;1)) between these smoothed vectors, using
the appropriate log ratio of determinants. Two questions then arise. Fiest,this smoothed ap-
proximationl (k; 1) approach the Gaussian mutual informatigrg;yc) as the kernel size drops?
Second, under what conditions does the empirical estimdtgpol;) correspond to the KGV? We
now describe the approach of Bach and Jordan (2002a) to solvingshguestion, and postpone
discussion of the second question to the end of the section.

The link between the Gaussian approximation to the discrete mutual informatich@KGV
could be shown by demonstrating

? ? ?
Pry ~ OlyEry (il ), D AZE, (kik ), px OEx (ki) (54)

under appropriate conditions, with similar results for the termg ilVe consider the case where
both kernels are Gaussian; that is,

_q)2
k(x—q) = \/%exp<—(ngg) )

N (y=rj)?
I(y_rl) - \/TT[()_;eXp<_ 20.)2/J ) )

bearing in mind that the impulse function is a limiting case (Bracewell, 1986);

\2
exp(—(xz_og') ) = lim k(x—g;). (55)

ox—0

8, () = lim

1
0x—0 4/ 2T02

To compute the covariance structure of the vectors in (53), we requiressions for the expecta-
tions

Exy (ki ), Ex(k),  Ex(kik/),
E,(117). E ).

The expectation of individual entries in the matkit' is

Ecyka0l1y)] = [ [ Koy —rp)p, (xy)dxdy

= [kO)IY) *Pxy (% Y)] (@i, 1),

38. We use a sans-serif font to defineandl,, to indicate that these are random vectors. In addition, Bach and Jordan
(2002a) define these quantities without multiplyinggyandAy, but we believe these scalings to be necessary: see
below.
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which is the convolution of the product of kernels with the underlying (umkm)adensityp, , (X,Y)
of the random variables y, evaluated atjj,r;. Since the kernels are normalised, the above expec-
tation is also a probability density, smoothedKgy)! (y). Similarly,

Ex [k(G0k(@ 0] = [ Ko a)k(x—a;)p,(dx
= [R0xp 9] (@)  i=]
0 otherwise’
where the above assumes< Ay < 1. Note, however, that
20y o\ 1 _(X—qi)2
kix—q) = 2107 exp o (56)
1 1 (x—qi)2
= X exp| — , 57
20-x\/ﬁ \/T[O')z( p( 0-3 (57)
and thusk?(x) is nota probability density (the integral ovis equal to;=—~ ) Finally,
Ek(@.x)] = [ kx=g)p,(9dx

= [k(¥)*p(x)] ()
In the light of these observations, it might seem that the relations in (54)ta@adhold in the

limit as Ay, Ay — 0 andoy, 0y — 0, so long amy < Ay anday < Ay: the grid size must be small to
allow us to make the approximations

. Gi+4x
Pe()= [ .00 dx~ A, (0)
and
L. 0 +Ax rj +Ay
PigiD) = [ [ by bojdxdy~ Bubyp (ar)),
i ]

and the kernel size is made small so that the kernel functions approtefuthetions (although the
squared kernel functions do not do so). In other words, the limit in thegksize is takeibeforethe
limit in the grid size. We can then write population expression for the kermedrgdised variance,
in the limit of small kernel size, as

lim |(k|;||)

Oy, Oy—)

- GX'LIILO‘% log ( |~ (Ey ()~ Eck)E, (7)) (Ex (i)~ Eclk)Ec (7))
X (Ex,y <k|I|T) —E(k))E, (lﬁ)) (Ey <I|I|T> —E, (I)E, (lﬁ))lD
Gx[gy[o—%log ( | - (ny— PxPy )T ( o \f — PP, ) B

x (Poy—pepy ) (20 Dy |oy|oy>1 )

Q
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where we use the expression for the squared kernel in (57). In wthrels, | (k;;1;) doesnot ap-
proachl (x;y) as the kernel size decreases. This problem reveals the need toeethi®r@pposite
assumption to that made above, namsly> A, andoy > A, (see Section 3.1.4

We conclude this section with a brief discussion of the link between the empastizhate
of I(ki;l) and the KGV. As described by Bach and Jordan (2002a) and by Gr@@@18, Sec-
tion 9.2.3, Appendix D.5.2), an empirical estimatel g; 1) is obtained via the usual expression
(9), wherep; are the solutions to the generalised eigenvalue problem

andK; andL, are defined in Section 3.1.4 (replacing the Parzen windows with the appeopria
RKHS kernels). This is simply the kernel CCA problem, but with the solutiopsessed in terms

of linear combinations of the grid poingsandr mapped into# and G, respectively. As the grid
becomes infinitely fine, and assumikg,-) andl(-,-) to be continuous, we recover the standard
kernel CCA formulatiorf©

39. Also bear in mind that the expression for the KGV used in practice isatkin the limit of infinitely small grid size,
but with finite kernel size, rather than vice versa. That said, the r@si(amd% suggest a possible resolution of this
convergence problem might be to decrease the kernel size and thepgdihg at the same time, as the number of
samples rises.

40. This is not a proof - we would need to formally establish both convesgef the kernel CCA solutions in the limit of
an infinitely fine grid size, and to demonstrate that the converged solutianghie span of the mapped data. These
details fall outside the scope of the present study.
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