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Abstract

A revision algorithm is a learning algorithm that identifige target concept, starting from an
initial concept. Such an algorithm is considered efficiéitsicomplexity (in terms of the measured
resource) is polynomial in the syntactic distance betwherirtitial and the target concept, but only
polylogarithmic in the number of variables in the univeréée give efficient revision algorithms in
the model of learning with equivalence and membership gaefiihe algorithms work in a general
revision model where both deletion and addition revisioarapors are allowed. In this model one
of the main open problems is the efficient revision of Hormrfalas. Two revision algorithms are
presented for special cases of this problem: for depth-tlaciiorn formulas, and for definite
Horn formulas with unique heads.

Keywords: theory revision, Horn formulas, query learning, exact learning, caatiomal learning
theory

1. Introduction

Computationally efficient learnability has been studied in the past two defadesnany angles.
For example, both the PAC and query learning models have been studiechraplexity has been
variously measured in terms of sample size, the number of queries, aridguime. Attribute-
efficient learning algorithms are required to be efficient (polynomial) in tivebrer of relevant
variables, and “super-efficient” (polylogarithmic) in the total number ofaldes (Blum et al., 1995;
Bshouty and Hellerstein, 1998).

A related notion,efficient revision algorithmshas been studied in machine learning, where
various approaches to building systems have been considered (sgeoppl et al., 1994; Lamma
et al., 2003; Ourston and Mooney, 1994; Richards and Mooney,; @@l and Shavlik, 1993).
Efficient revision algorithms have received some attention in learning theouyell. A revision
algorithm is applied in a situation where learning does not start from sciatcthere is an initial
concept available, which is a reasonable approximation of the targezporidhe standard example
is an initial version of an expert system provided by a domain expert. flibeeacy criterion in this
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case is to be efficient (polynomial) in tliéstancefrom the initial concept to the target (whatever
distance means; we get back to this in a minute), and to be “super-efficpiyidgarithmic) in
the total size of the initial formula. Again, it is argued that this is a realistic requent, since,
for many complex concepts, the only hope of learning those concepts isakamably good initial
approximation is available.

The notion of distance usually considered for efficient revision is a sjiotane: the number
of edit operations that need to be applied to the initial representation intordet a representation
of the target. The particular edit operations considered depend on ticepicclass. Intuitively,
attribute-efficient learning is a special case of efficient revision, wheninitial concept has an
empty representation. In machine learning, the study of revision algorithre$eised to as the-
ory revision; more detailed references to the literature are given in Wsaberviews of theory
revision (Wrobel, 1994, 1995) and also in our recent papers (Goldstnith, 2002, 2004b).

The theoretical study of revision algorithms was initiated by Mooney (1998)6#PAC frame-
work, and additional theoretical work was done by Greiner (1999aM8.have studied revision
algorithms in the model of learning with equivalence and membership querads@ith et al.,
2002, 2004b) and in the mistake-bound model (Sloan et al., 2003).

It is a general observation both in practice and in theory that those egfiatigns which delete
something from the initial representation are easier to handle than those addcsomething to
it. We have obtained efficient revision algorithms for monotoBesjunctive Normal Form (DNF)
with a bounded number of terms when both deletion and addition type revisma@ved, but for
the practically important case of Horn formulas we found an efficientigvigorithm only for the
deletions-only model. We also showed that efficient revision of generaen monotone) DNF
is not possible, even in the deletions-only model. Finding an efficient revadgorithm for Horn
formulas in the general revision model (deletions and additions) emergettzeps the main open
problem posed by our previous work on revision algorithms. One of theawudts presented here
extends that of Doshi (2003), who gave a revision algorithm for aisbesse of Horn sentences he
called “unique explanations,” which in the terminology presented below waeilthe special case
of depth-1 acyclic Horn sentences where the heads must all be distiecy, dause must have a
head, and the heads cannot be revised. The result we give in Sectimo@es all of his restrictions
concerning the heads.

1.1 Revision with Queries

In this paper, we consider revision guery-basedearning models, in particular, in the standard
model of learning withmembershignd equivalencegueries, denoted by MQ and EQ (Angluin,
1988). This is a very well-studied model (e.g., Angluin, 1987b, 1988;ldinget al., 1992; Auer
and Long, 1999; Bshouty and Hellerstein, 1998; Blum et al., 2004; l#gh&995), nearly as much
so as PAC learning. In an equivalence query, the learning algorithpopes ehypothesisthat

is, a theoryh, and the answer depends on whethet ¢, wherec is the target theory. If so, the
answer is “correct”, and the learning algorithm has succeeded in itoofjeakct identification of
the target theory. Otherwise, the answer oanterexampleany instancex such that(x) # h(x).

In a membership query, the learning algorithm gives an instanaed the answer is either 1 or 0,
depending ore(X).

1. A propositional logic formula isnonotonef it contains no negations.
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The query complexityf a learning algorithm is the number of queries it asks. Note that the
query complexity is a lower bound on the running time. For running time, waad@ount the
time required to answer the queries. From a formal, theoretical point of wievassume that there
are two oracles, one each to answer membership and equivalencesglrefeactice, membership
gueries would need to be answered by a domain expert, and equivajeeies could either be
answered by a domain expert, or by using the hypothesis and waitingitenee of an error in
classification.

One scenario for practical applications is that one starts with an initial theredya set of
(counter)examples, for which the initial theory gives an incorrect ilesson. The goal then is
to find a small modification of the initial theory that is consistent with the examptethig setup,
one can simulate an equivalence query by running through the exampies.fihd a counterex-
ample to the current hypothesis, then we continue the simulation of the algorittirarwise, we
terminate the learning process with the current hypothesis serving ashalrdvised theory. In
this way, an efficient equivalence and membership query algorithm cturiied into an efficient
practical revision algorithm.

Perhaps the most common case for practical applications of theory reiggiorix an initial
theory that is provided by an expert. It is reasonable to hope that tleetéx@ble to answer further
gueries about the classification of new instances. Consider the followsisgy &xpert oncologist
Dr. Jones is cooperating with the local computer scientists to build a modelludificacancer. She
gives long answers to the knowledge engineers’ initial open-endesiigng, and countless shorter
answers as they build and refine their model. These shorter questiomeargership questions:
“If the patient has this complex of symptoms, do you diagnose foobariecahc

Finally, in the model validation phase of the work, the knowledge engineers@mputer sci-
entists proudly present scenarios and diagnoses. And Dr. Jonkessdter head and says, “No,
that's not right at all. Your system will give the wrong diagnosis in thesengs; reliance on this
symptom is a red herring.”

These latter responses are equivalence queries, complete with caantples.

As an aside, even theory revision via queries for formal languages ene&ydome application.
Consider Professor Doe, who is teaching, say, Automata and Formglagas. Her difficult
student presents her with an incorrect finite automaton, and demandshabib is incorrect. She
provides a counterexample, some string that the presented automaton nfissldsbecomes clear
that the student has misunderstood the problem. String by string, he duerigsout membership
in the desired regular language, offering periodic updates to his automatibaither it is correct,
or Professor Doe discovers a prior appointment.

Note that an efficient revision algorithm is clearly in the student’s best sitérehis case.

1.2 Classes of Horn Formulas Considered

Horn revision is the problem that most practical theory revision systenressldit is to be noted
here that the notions of learning and revising Horn formulas are open tprietation, as discussed
by Goldsmith et al. (2004b); the kind of learnability result that we wish to ektemevision in this
paper is that of Angluin et al. (1992) for propositional Horn formulas.

In this paper we present results for the revision problem outlined alibeerevision of Horn
formulas in the general revision model allowing both deletions and additionse(precise defi-
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nitions are given in Section 2). We use the model of learning with membersHigguivalence
gueries.

We show that one can revise two subclasses of Horn formulas with tespkoth additions
and deletions of variables. The new algorithms make use of our previdesipds-only revision
algorithm for Horn formulas (Goldsmith et al., 2004b) and new techniqueshwould be useful
for the general question as well.

1.2.1 DEpTH-1 AcycCLIC HORN

Logic programming theories are often presented as Horn theories. Eaweavith a head, or
nonnegated variable, is interpreted as a potential justification for makingete ariable true in
some model of the program. These clauses are also called “definite”.

In computing stable models of logic programs, it is simplest if the logic programsteti-
fied (Apt et al., 1988; Chandra and Harel, 1985; Van Gelder, 1388g¢cyclic (Angluin, 1987a).
One begins by setting all “facts,” or heads without bodies, to frdeen iteratively, one sets all
consequences of the current true variables to true.

At each iteration, one considers only definite clauses, and only thoseslalnose heads do not
appear in the currently-true variables and all of whose variables @&dgitrue. These collections
of clauses, or strata of a program, are themselves depth-1 Horn théMadsegin by focusing on
theory revision for these simple theories.

One of our main results, Theorem 5, shows that this class can be regisedldist(¢, ) -
e - logn) queries, where is the number of variableg is the m-clause initial formulay is the
target formula, andistis the revision distance, which will be defined formally in Section 2.

1.2.2 DSTINCT HEADS/UNIQUE EXPLANATIONS

In life, and in many Horn theories, there may be multiple explanations of somethiriprn clauses
with the same head. Another simplification to Horn theories, other than comgjdadividual
strata, is to consider theories that provide unique explanations for eaicble; that is, theories
where clauses each have a distinct head. As in the stratified theoriedlawis model-building to
be accomplished in one pass through the theory. [Note that this definitiamifu'e explanation”
is simpler than that of Doshi (2003). We also refer to such theories @&sghalistinct heads.”]

But even such simple theories are subject to revision. The expert vavidps a theory may
fudge on explanations, including unnecessary preconditions or omittoessary ones. Thus, our
second topic in this paper is revision with queries for theories consistingigfie explanations.

We also give a revision algorithm for definite Horn formulas with distinct seatkaning that
no variable ever occurs as the head of more than one Horn clause. i-olass, we revise with
query complexityo(m* + dist(¢, ) - (m®+logn)), where again is the initial formula andp is the
target function (Theorem 8).

1.3 Overview of the Rest of the Paper

Preliminaries are given in Section 2, Horn formula revisions in Sections 3 gt open questions
in Section 5.

2. Acyclic Horn formulas have also been studied from various othetgofrview, including learning (Angluin, 1987a;
Arimura, 1997) and computational aspects (Hammer and Kogan).1995
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Figure 1: Graph of the Horn formulagiven by (1).

2. Preliminaries

We use standard notions from propositional logic such as variable, literai, (or conjunction),
clause (or disjunction), etc. The set of variables fievariable formulas and functions ¥, =
{X1,...,%}. (In this papern will always be the total number of variablesrstancer vectorsare
elementsx € {0,1}". In the vocabulary of propositional logic, an instance (or vector) is aainod
for the target theory. When convenient we trgas a subset din] or X,, corresponding to the
components, resp. the variables, which are set to true iBiven a sely C [n] = {1,...,n}, we
write Xy = (a1,...,0n) € {0,1}", wherea; = 1 if i € y anda; = 0 otherwise, for the characteristic
vector ofY. We writeX = (X1,...,%1) <y = (Y1,...,¥n) if ; <y foreveryi=1... n.

A Horn clauseis a disjunction with at most one unnegated variable; we will usually think of it
as an implication and call the clause’s unnegated variabfedd and its negated variables bisdy.
We write bodyc) and hea(kt) for the body and head @f respectively. When convenient, we treat
body(c) as the vector with 1’s in the positions where b@elyhas variables. A Horn clause with
an unnegated variable is callddfinite(or positive). If a definite clause contains only one variable,
then that clause is calledfact We will consider clauses with no unnegated variables to have head
F, and will sometimes write them dbody— F).

A Horn formulais a conjunction of Horn clauses. A Horn formula is definite if all its clauses
are definite. A Horn formula hasique head# no two clauses have the same head.

We define thgraph of a Horn formula to be a directed graph on the variables togetherfwith
with an edge from variable to variablev (resp.F) iff there is a clause with head(resp.F) having
uin its body. A Horn formula isacyclicif its graph is acyclic; thelepthof an acyclic Horn formula
is the maximum path length in its graph (Angluin, 1987a).

For example, the Horn formula

O = (X1 AX2 = X3) AXo A (X1 AXg — X5) A (Xa AXe — F) D

is depth-1 acyclic. Its graph, shown in Figure 1, has the e@gegs), (X2,X3), (X1,Xs5), (Xa,Xs),
(x4,F), and(xe,F) and this graph is acyclic with depth 1.
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If x satisfies the body of Horn clauseconsidered as a term, we sagovers ¢ Notice thatx
falsifies cif and only if x coversc and hea(kt) ¢ x. (By definition,F ¢ x.)

For Horn clause bodp (or any monotone term) and vector we useb N x for the monotone
term that has those variableshothat correspond to 1's ik. As an examplex;x4 N 1100= X;.

We use the standard model of membership and equivalence queries (witiei@xamples), de-
noted by MQ and EQ (Angluin, 1988). In an equivalence query, thaiegmlgorithm proposes a
hypothesisa formulah, and the answer depends on whether ¢, wherec is the target formula.
If so, the answer is “correct”, and the learning algorithm has succeiedés goal of exact identi-
fication of the target concept. Otherwise, the answerdsumterexampleany instancex such that
c(x) # h(x). If x is a counterexample argx) = 1 andh(x) = 0, then we refer tx as a positive
counterexample, and otherwise a negative counterexample.

2.1 Revision

Therevision distancédetween a formulg and a concept is defined to be the minimum number
of applications of a specified set of syntactic revision operato¢srteeded to obtain a formula for
C. The revision operators may depend on the concept class one is irda@redtisually, a revision
operator can either kaeletion-typeor addition-type

For disjunctive or conjunctive normal forms (including Horn sentendbs)deletion operation
can be formulated &&ing an occurrence of a variabia the formula to a constant. In tlgeneral
mode] studied in this paper, we also allow additions. The addition operatioraidda new literal
to one of the terms or clauses of the formuladding a new literal to open up a new clause or term
would be an even more general addition-type operator, which we haw®nsidered so far. Note
that in Algorithm 2, while we “add clauses” to a hypothesis, these are alalayses that are in the
given formula but not yet in the hypothesis.) In the algorithms given in thiepdhe new literals
must be added to the body of a clause.

We usedist(¢, ) to denote the revision distance fraprto Y whenever the revision operators
are clear from context. In general, the distance is not symmetric.

A revision algorithmfor a formula¢ has access to membership and equivalence oracles for
an unknown target concept and must return some representation ofgaedancept. Our goal is
to find revision algorithms whose query complexity is polynomiatia- dist(¢, ), but at most
polylogarithmicin n, the number of variables in the universe. For DNF (resp. CNF) formulas
allow polynomial dependence on the number of terms (resp. clausés)itiis impossible to do
better even for arbitrary monotone DNF in the deletions-only model of revigkmldsmith et al.,
2002).

We state only query bounds in this paper; all our revision algorithms arewaivip in polyno-
mial time, given the appropriate oracles.

2.2 Binary Search for New Variables

Our revision algorithms use a kind of binary search, of a general kiteh afsed in learning algo-
rithms involving membership queries, presented as Algorithm 1. The startingsd our binary
search are two instances, a negative instaregeand a positive instangeos such thapos < neg
The algorithm returns a variablgthat is critical in the sense that there is a (possibly empty$eét
variables fromneg\ possuch thanegmodified by setting the variables 8ito 0 is still a negative
instance, but additionally settingto O creates a positive instance.
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Algorithm 1 BINARY SEARCH(Neg, pos).
Require: MQ(neg) == 0 and MQpos) == 1 andpos< neg
1: neg, :=neg
2: while negandposdiffer in more than 1 positiodo
3:  Partitionneg\ posinto approximately equal-size setsandds.

4:  Putmid := negwith positions ind; switched to 1
5. if MQ(mid) == 0then
6: neg:= mid
7. else
8: pos:= mid
9. endif
10: end while
11: v:= the one variable on whichosandnegdiffer
12: return v

3. Depth-1 Acyclic Horn Formulas

We show here how to revise depth-1 acyclic Horn formulas. Depth-liadytorn formulas are
precisely those where each variable that occurs as a head eithes ascarfact (the head of an
empty-bodied clause) or never occurs in the body of any clause. Notitsubh formulas are a
class of unate CNF: variables that occur as facts are the only variabtezsathappear both negated
and unnegated, and we can always rewrite any Horn formula with factdogically equivalent
Horn formula where those fact variables do not appear in any clauelyousing resolution. For
exampled in Equation 1 is equivalent to

(X1 — X3) AXo A (X1 AXq — X5) A (Xa AXg — F).

Previously we gave a revision algorithm for unate DNF (which would duatizenate CNF)
that was presented as being able to revise specifically two clauses (Goldsalitt2002). It would
generalize to an algorithm whose query complexity is exponential in the nunhlstauses. Here
we give an algorithm for an important subclass of unate CNF that is polyhamtiae number of
clauses.

In the following subsection we give the algorithm and its analysis; then in $e8tibwe give
an example run of the algorithm. The reader may find it helpful to switch badKkath between
the two subsections.

3.1 Algorithm and Analysis

The general idea of the algorithm is to maintain a one-sided hypothesis, iartbe that all equiv-
alence gqueries using the hypothesis must return negative counterezamfpileéhe hypothesis is
correct.

Each negative counterexample can be associated with one particulanftbadarget clause,
or else with a headless target clause. We do this with a negative coumgiexaas follows.

Let us call those variables that occur as the head of a clause of the imitralfahead variables
For a head variable and instance;, we will use the notatiox" to refer tox modified by setting
all head variablesther than vto 1. Note thak" cannot falsify any clause with a head other tlvan

1925



GOLDSMITH AND SLOAN

Sincev will normally be the head of a Horn clause and we Ede denote the “head” of a headless
Horn clause, we will us&" to denotex modified to setll head variables to 1.
We will implicitly use the following fact often in our analysis of our algorithm.

Proposition 1 Let h be either a variable of. If x" falsifies a clause of the target depth-1 acyclic
Horn formula with head h, thex also falsifies that clause.

Proof Consider target clause— h, whereb is nonempty andb — h is falsified byx". It must be
thatx" coversh. If x" coversb, thenx coversb, since no head variables may occubirandx\ x
consists only of those head variables beshieEhus, changing those variables from Ixihto 0 in
x can only falsifymoreclauses. |

The algorithm begins with an assumption that the revision distance from the thitiaty to
the target theory igl. If the revision fails, therd is doubled and the algorithm is repeated. Since
the algorithm is later shown to be lineardnthis series of attempts does not affect the asymptotic
complexity. We give a brief overview of the algorithm, followed by somewhatent®tail. The
pseudocode is given as Algorithm 2.

We maintain a hypothesis that is, viewed as the set of its satisfying vectoesjsah superset
of the target. Thus each time we ask an equivalence query, if we ha¥eumat the target, we get
a negative counterexampke Then the first step is to ask a membership querx anodified to
turn onall of the head variables. If that returns 0, then the modiieauist falsify a headless target
clause. Otherwise, for each head varidbkbat is O in the originak, ask a membership query on
x". We stop when the first such membership query returns 0; we know fhisifies a clause with
headh. In our pseudocode, we refer to the algorithm just describedssOAIATE

Once a negative counterexamples associated with a head, we first try to uséo make
deletions from each existing hypothesis clause with the same head. Ifindaletions are possible,
then we use to add a new clause to the hypothesis. We find any necessary additionswetssld
a new clause.

If (body(c) Nx)" (or, equivalently, bodfc)"Nx") is a negative instance, which we can determine
by a membership query, then we can create a new smaller hypothesis classehedy is body) N
X. (Notice that bodyc) N x C body(c) because as a negatigeunterexamplex must satisfyc.
Furthermore, since MQ") = 1 and MQx") = 0, we know thah is not inx.)

To usex to add a new clause, we then use an idea from the revision algorithm fotomedNF
(Goldsmith et al., 2002). For each initial theory clause with the same head hawweassociated
(which for F is all initial theory clauses, since deletions of heads are allowed), use birarghs
from x intersect{the initial clause with the other heads set foup tox. If we get to something
negative with fewer thad additions, we update to this negative example.

Whether or nok is updated, we keep going, trying all initial theory clauses with the associated
head. This guarantees that in particular we try the initial theory clause withestigvision dis-
tance to the target clause thafalsifies. All necessary additions to this clause are found by the calls
to BINARY SEARCH,; later only deletions will be needed.

We now give a series of lemmas that will together prove the correctnesguang complexity
of HORNREVISEUPTOD(¢,d). The first two lemmas give qualitative information. The first shows
that the hypothesis is always one-sided (i.e., only negative counteréesaogm ever be received),
and the second says that newly added hypothesis clauses are mataretu

1926



NEW HORN REVISION ALGORITHMS

Algorithm 2 HORNREVISEUPTOD(¢,d). Revises depth-1 acyclic Horn formudaif possible
using< d revisions; otherwise returns failure.

1: Rewrite¢ to remove any facts from other clauses’ bodies

2: H := everywhere-true empty conjunction

3: while (x:=EQ(H)) # “Correct!”andd > 0 do

4. h:=ASSOCIATEX, )
5. if H has at least one clautieen
6: for all clauses € H with headh do
7: if MQ((body(c) Nx)") == 0then {delete vars fronc}
8: body(c) = body(c) Nx
9: d := d—number of variables removed
10: end if
11: end for
12:  endif
13: if no vars. were deleted from any clauken {find new clause to add
14: FoundAClause= false;min:=d
15: forall ce ¢ with headh (orallce ¢ if h==F) do
16: new= body(c)"Nx"
17: numAddedVars- 0 {# additions to body for this}
18: while MQ(new) == 1 and numAddedVars: d do
19: | := BINARY SEARCH(X", new)
20: new:=newU {l}
21: numAddedVars= numAddedVars 1
22: if MQ(x—{l})==0 then{(x—{l}) is a “pivot”}
23: x:=x—{I}
24: restart thefor all ¢ loop with thisx—go to Line 14 to reset other parameters
25: end if
26: end while
27: if MQ(new) == 0then
28: X = new
29: FoundAClause= true
30: min:= min(numAddedVarsnin)
31 end if
32: end for
33 if not FoundAClausehen
34: return “Failure”
35: else
36: Set all head variables afto 0
37 H :=H A (x— h) {treatingx as monotone disjunctign
38: d:=d—min
39: end if
40: endif
41: end while

42: return H is last EQ returned “Correct!”, otherwiseturn “Failure”
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Algorithm 3 ASSOCIATEX, §)

if MQ(xF) == 0then
return F
end if
. for each head variablethat is 0 inx do
if MQ(x") == 0then
return h
end if
end for

Lemma 1 Algorithm HORNREVISEUPTOD maintains the invariant that its hypothesis is true for
every instance that satisfies the target function.

Proof Formally the proof is by induction on number of changes to the hypothesista#ienitial-
ized. The base case is true, because the initial hypothesis is everywieere

For the inductive step, consider how we update the hypothesis, eithedbygaa new clause or
deleting variables from the body of an existing clause.

Before creating or updating a clause to have Headd bodyy, we have ensured (at Line 7 for
updates of existing hypothesis clauses and at Line 27 for adding neses)that MQy") = 0, that
is, thaty" is a negative instance. Because of tlyfitmust falsify some clause, and because of its
form and the syntactic form of the target, it must be a clause with helldne of the head variables
in y"\ y can be in any body, sp must indeed be a superset of the variables of some target clause
with headh, as claimed. |

Lemma 2 Let negative counterexamplebe associated with head h. X is not used to make
deletions, thex" falsifies any target clauses with head h whose body is coverad Byrther, if x
is used to add a new clause with head h to the hypothesis, then the body efitlstanse does not
cover any target clause body covered by any other hypothesis aldtisbead h.

Proof If x falsified the same target clause as an existing hypothesis clause body adth, ieen
the membership query at Line 7 would return 0, andould be used to delete variables from that
hypothesis clause body.

Now x may be changed from the value it had at Line 7 before it is used to actuallg agw
clause. However, those changes (made whéenupdated at Line 28) in fact change certain non-
head variables af from 1 to 0, so the updatedcan falsify only fewer clauses than the origimxal
Thus if and wherx is used to add a new clausegannot falsify the same target clause as any exist-
ing hypothesis clause with the same head. The newly added hypotheses<lady is a subset of
X, SO that clause body does not cover any other hypothesis clausevithdyeadh. |

The next lemma is the heart of the analysis @/NREVISEUPTOD.

Lemma 3 HORNREVISEUPTOD(¢,d) succeeds in finding the target Horn formujaif it has re-
vision distance at most d frofn
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Proof Let the initial formula be) = AT, c® and the target formula b = /\i”l1 c¢'. We will assume
throughout the analysis in this proof that the terms of the initial and targetuiess are numbered
so that they “line up” for calculating the revision distance fropro . That is, the revision distance
is

(m—m) +_idist(ci°,ci*),

wheredist(c?, ¢) is the revision distance from clausto ¢, and is equal to a “body distance” that
is the symmetric difference between the bodies of the two clauses, plusadistance” that is 1
if headc;) = F and hea(c?) # F, and 0 if hea(c}) = headc?) (and is infinite in any other case).
Note thatm— m' accounts for the clauses deleted and that m' because we cannot add entirely
new clauses.

Let d; be the value of the variablkat the start of theth iteration of the outewhile loop. We
argue by induction om both thatd; is an upper bound on the number of revisions required to get
from a formula made of those terms in the current hypothesis and the remtmmgjin the initial
formula to the target, and that tinth iteration does not fail.

More precisely, assume that at the start of rourttie hypothesisl; isci AC2 A --- Acy,. Part of
our inductive claim is that there is a mafi) (technically a relation) of hypothesis clauses to target
clauses such that

\wheado) o
(body(ci)) falsifies target clause;,. 2

Formallya is a relation because some hypothesis clauses may be mapped to more thagaine ta
clause; that will occur precisely when (2) holds for more than one tailgese. The relatioa
maps every indekof a hypothesis clause to at least one target clause index, and is one-tothe
sense that no two target clauses ever have the same hypothesis clapsd todpth of them. The
relationa evolves in only two ways: (1) whea(i) is more than one index, sometimes one of those
indices gets dropped, and (2) a negets added to the domain afeach time a clause is added to
the hypothesis. For convenience of notation, we will somewhat sloppigy tet:;m as if it were
one clause, when we mean that such statements hold for each of the tasstzeget clauses.

The rest of the inductive claim is that: (i) thén iteration of HORNREVISEUPTOD does not
fail, and (ii) at the start of iterationof HORNREVISEUPTOD,

d > ;‘bodxci)\bodxc;(i))’+ > distchc)) 3)

For the base caséd; = d, hypothesidH; has no terms, and Equation (3) is satisfied, since the
right hand side is the revision distance frgnto  less(m—nT).

To complete the base case, we must argue that the first iteration doed.ndtdastart with a
counterexample that is associated with hedd We need to show that a new clause is found using
X by at least one iteration of thier all c loop starting at Line 15.Let be a target clause with
headh or F thatx falsifies. At some point; will be used as the clause in tifier all ¢ € ¢ loop at
Line 15. As longx" falsifiesonly target clause;, then after at mosd calls to BNARY SEARCH, all
necessary additions tpwill have been found and a clause will be added, completing the base case.
(Even ifx" falsifies multiple target clauses, this still might happen.)

However, ifx" falsifies more than one target clause, then we may find a variable that appear
to be a necessary addition but is really a necessary addition to a difdaeise. Fortunately, this
requires only one query to verify (see Line 22 of the algorithm). Wheh suariable (a “pivot”)
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is found, we set that variable afto off so that the new value of” falsifies fewer clauses. Thus,
this can occur at mosh— 1 times before falsifies exactly one clause, and no more pivots may be
found. Once that happens, we must find a clause.

For the inductive step, there are two cases.

Case 1:x" is not used to delete any variables from any target clause. The argtimag¢his
iteration does not fail is the same as the corresponding argument forsbehse.

As in the base case, there may be some number of times that a pivot is fodirsdtato O
in Xx. Now consider the value of after any pivots have been found, and after the last tnie
updated at Line 27. By Lemma 2,does not cover any target clauses covered by clause bodies
in the hypothesis, so it must cover one or more new target clause<] betone of those target

clauses. The “body” revision distanddst(c?,c’j‘) is equal to the number of “necessary additions”,
body(cj) \ body(c?) , plus the number of “necessary deletior*skibdy(c?) \ body(cj)|. In the iter-

ation of thefor all cloop at Line 15 withc set toc?, all the necessary additions had to be found, and
the value ofnumAddedVarsor that iteration would have been the number of the necessary addi-
tions, so at most that number is subtracted fidpmAlso, x after that intersection contained at most
the variables in the body af; before the necessary deletions are made. In later revisions, all that
can happen is some of those necessary deletions might happen to be maglEqgUation (3) holds

at the end of theth iteration of the outewhile loop. To complete the inductive step for this case,
note that the relatioa can indeed be extended by relating the index of the new hypothesis clause to
the one or more target clauses whose body its body covers, so Equtlonids.

Case 2:x" is used to delete variables from at least one hypothesis clause. Say okt
made to hypothesis clause Now (body(c;) Nx)" can falsify only the same or fewer clauses than
body(c;) falsifies. By the inductive hypothesis (specifically Equation (2) couplét Rroposi-
tion 1), body(c;) falsifies target clause(sz(i). Thus the updated hypothesis clagse= (body(ci) N
x) must falsify some or all of the clause(eig(i), and the relatiora is either unchanged, or altered
by decreasing the range afi). Equation (3) still holds because we decredsby the number of
deletions we make, and we also decrefmely(ci) \ body(c;(i))| by the number of deletions we
make.

Clausec;(i) could be derived frong; by deletion edits; that is, bodg) falsifiesc;(i). By Propo-

sition 1, since MQ(body(c;) Nx)") = 0, it must be that body;) Nx falsifies a target clause with
headh. Further, using the numbering of the target clauses that makes thatdtagst correspond
to ¢; at the start of the round, the number of variables removed from(opdysubtracted from the
parameted, and Equation (3) still holds, completing the induction step.

We will find all the necessary additions to bddy using at most; calls to BNARY SEARCH
(in fact, using at mostbody(c') \ body(ci)|) calls. Furthermore, the clause added will have all the
variables in bod{c’) and no variables not in bodg) Ubody(c) (i.e., it will need at most only nec-
essary deletion revisions), and the parametawill be decreased by at most the number of added
variables. |

Lemma 4 The query complexity dlORNREVISEUPTOD(¢,d) is O(m®-d-logn), whered has m
clauses and there are n variables in the universe.

Proof If the variabled ever becomes nonpositive, then we terminate the algorithm.
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AssocIATEmakes at mosh equivalence queries per negative counterexample. Next we try to
use negative counterexampléo make deletions from an existing clause. This consumes exactly 1
equivalence query and at maatmembership queries. If any deletions are made, we decdlage
atleast 1.

There are at modd such counterexamples used for deletions. Each counterexample used fo
deletions uses. m+ 1 queries.

If a counterexample is not used for deletions, then we use it to add a nesecld/e can have
at mostm— 1 restarts (where we back up to Line 2) due to “pivots.” These occenwHalsifies
multiple clauses, and each time one is fouxnds modified so that it falsifies fewer clauses.

There are at mosh restarts, and ignoring the restarts, the nfaiall loop at Line 15 iterates
over at most alim initial theory clauses. For each one iteration, the inmbile loop iterates at
mostd times (once for each added literal). Each iteration of that imtele loop makes two direct
membership queries, and one call ttnNBRY SEARCH, which uses at most lagqueries.

Thus, each oK m (re)starts uses at most- d - logn queries, plus &1+ 1 queries to establish
that the particular counterexample should be used for the addition of a&claus

Thus the algorithm IBRNREVISEUPTOD(¢,d) correctly revises initial formulg usingO(d -
(m+1)+m-m?-d-logn) = O(m?-d-logn) queries. |

Theorem 5 There is a revision algorithm for depth-1 acyclic Horn formulas with quempglexity
O(d-m3-logn), where d is the revision distance, n is the number of variables in the usivansl
m is the number of clauses in the initial formula.

Proof Lemmas 3 and 4 together have shown the desired theorem. |

3.2 An Example Run of HORNREVISEUPTOD

We now give an example run of &#RNREVISEUPTOD. Suppose the variable set is
{X1,X2, X3, X4, X5, X6, X7, Xg} and the initial formulap and the target formuld are given by

b = XeA(Xe—X3) A (Xt AXa — X5) A (Xa AXe — F) (4)
Y = XAX1—=F)A(XaAXeAX7 AXg — X5).

The revision distance from to Y is 5: 1 for the deletion of heaxk from second clause, 1 for the
deletion of the third clause, and 3 for adding the litepalsxg, andxs to the fourth clause (i.e.,
addingx; andxg to the body of the fourth clause, arglto the head of the fourth clause).

For future reference, the head variables in the initial theorkane andxs.

Assume now that Algorithm BHRNREVISEUPTOD is called with inputsp and anyd > 5.
It initializes its hypothesidH to the everywhere true empty conjunction. Assume(HQre-
turnsx = 11101110, a negative counterexample. Now we cabACIATE ¢,11101110 to find
a candidate head for a clause negated by 11101110. siOAIATE we immediately find that
MQ(lllOlll('f) =MQ(11101110 =0, so ASSOCIATE ¢,11101110Q returnsF. (Recall that the
operatioan sets all head variables &fto 1.)
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HypothesisH currently has no clauses, so we will use 11101110 to add a new clad$e to
starting at Line 13. BecausesS&OCIATE returnedF, each of the four clauses df is consid-
ered. Say they're processed in the order they are written in EquationSi)ting withxp, we
setnew to be bodyx,)F 111101116 = 011010001 11101110= 01101000. That is a posi-
tive instance, so we begin making calls ofNBRY SEARCH from xF = 11101110 tonew. Now
BINARY SEARCH(1110111001101000 returns the positiox;. We turn positiornx; to 1 in new,
so nownew is 11101000, and incremenumbAddedVarso be 1 instead of 0. Turning position
X1 to 0 in 11101110 yields a positive instance, so wendbhave a pivot (Lines 22—-25). Now
MQ(new) = 0, so we update to be 11101000, and s€bundAClausdo true andmin to num-
bAddedVars which is 1.

Now we have to consider the next three clause#.ofHowever, when we intersest” =
11101000 with bod@c)F at Line 15 for each of the remaining three clauses ¢ we get back
X, SO no changes are made.

Thus in Lines 36—38, we updakkto be

H :(X1—>F),

and decremendl by 1, and begin the next iteration of the outehile loop by making another
equivalence query.

Say this time we receive the negative counterexampi®1110111. When we call 8$SOCIATE,
the instance 011101T1= 0111111 is positive, s& is not returned. The only head variable in
01110111 that is O iss, and MQ0111011%) = MQ(011101131 = 0, SO ASSOCIATE returns
h = xs. There is no clause Al with headxs, so we do not try to use instance 01110111 to delete
variables from any clause &f.

In the for loop starting at Line 13 we consider only clauses with hggdthere is exactly
one: c= (X3 AXs — X5). We setnew = body(c)*¢ 101110111 = 1001000¢r N 01110111 =
11110000101110111= 01110000, which is a positive example.

Again, we make calls of BIARY SEARCH from x" = 01110111 tanew. Assume that the first
call returns positiorxg. Then we updat@ew to 01110001, andhumAddedVardo 1. Sincenew
is still a positive instance, we callIBARY SEARCH again. Say this time it returns positioq.
We updatenew to 01110011, andiumAddedVargo 2. Instancenew remains positive; we call
BINARY SEARCH again; it returnss; we updatenewto 01110111 andumAddedVargo 3. Finally
new is a negative instance, so we update new= 01110111, sefoundAClauseo true andmin
to 3.

In Lines 36—38 we set all head variablesxdb 0 sox = 00010111 and add a new clause of the
form x — hto H; thus we updatél to be

H=(x1—F)A(XaAXs AX7 A\ Xg — X5),

and decremerd by 3, sod has now been reduced by 4 altogether.

We begin our next iteration of the outer loop by receiving the counterebeaxrp 00000000 in
response to EQH). When we call ASOCIATHX), it determines that 00000000= 01101000 is a
positive example, and so does not retirrand that 00000030= 00101000 is a negative example,
and so does retutm= x,. There is no clause iH with headx,, so we do not try to use to delete
variables from existing clauses Hf.
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Instead, we again execute tfug loop starting at Line 13. This time we consider only the one
clausec = xp with headx, (and empty body). We setew = body(x2)*2 N x*2 = 00000000& N
0000000& = 00101000, which is a negative instance. Thusvihée loop at Lines 18-26 is not
executed at all. We skip over it and set all head variablestof0; thusx = 00000000. We update
the hypothesis to

H=(x1 — F)A(Xa AXe A X7 AXg — X5) A Xo.

The variablenumAddedVarsvas 0; sanminwas 0, andl is not changed from its previous value (4
less than its initial value).

Now H is the target formula, so a final equivalence query returns “Corrdttis simple exam-
ple did not by any means exercise every path through the algorithm’s psmleddout it should give
the general idea.

4. Definite Horn Formulas with Unique Heads

We give here a revision algorithm for definite Horn formulas with uniquedbed\ revision of a
formula from clasg” must also be in clasg, so in particular, a revision of a definite Horn formula
also be a definite Horn formula. Thus head variables cannot be fixed\\eQuse the algorithm
for revising Horn formulas in the deletions-only model presented by Goldshih (2004b) as a
subroutine. Its query complexity ®(d - m® + n*), whered is the revision distance and is the
number of clauses in the initial formula.

For this algorithm we again first give the algorithm and its analysis, and thegciing 4.2 give
an example run of (the main part of) the algorithm.

Algorithm 4 DEFINITEHORNREVISE(¢). Revises), a definite Horn formula with unique heads
1. H := everywhere-true empty conjunction
2: for all clauses = (b— h) of ¢ do
3:  0n:=vector with 0 ath, 1's elsewhere
if MQ(0,) == 0then
X := vector with a 1 for every variable ih and every head of a clause ¢pfexcepth, and
0’s elsewhere
while MQ(x) # 0do
V= BINARY SEARCH(On,X)
Add variablev to clause bodyp
Set positionv/to 1 inx
10: end while
11: Add all heads ofh excepthto b
12: H:=HA(b—h)
13:  endif
14: end for
15: return DELETIONSONLY REVISE(H)

a kA

Our algorithm, DEFINITEHORNREVISE(¢), presented as Algorithm 4, has a first phase that
both deletes any clauses that need deleting in their entirety and finds allrihleles that need to
be added to the initial formula. That partially revised formula is then passed astial formula
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to the known algorithm (Goldsmith et al., 2004b) for revising Horn formulas énddletions-only
model of revision.

For each clause= (b — h), the check in Line 4 whether the vector thatis @ ahd 1 elsewhere
is a negative instance determines whether clawg®uld be deleted altogether.

To find all necessary additions to the bdagf clausec = (b — h), we use a constructed example
Xe. We initializex¢ to b" (the body variables frorh, plus all head variables except Notice that
the only way MQx.) can be 0 is ik covers the body of a clause but not its head. Siadacludes
all heads excef, it is clearwhichclause body is or is not covered Ry, the notion of “pivots” is
not needed in this algorithm.

Next, the query MQ@x.) is asked. If M@x¢) = 0, then no variables need to be added to the
body ofc, andb — his added to the hypothesis. If M& ) = 1, the necessary additions to the body
of c are found by repeated use ofNB\RY SEARCH. To begin the binary searckg is the known
positive instance that must satisfy the target clarisgerived fromc, and the assignment with a O
in positionh and a 1 everywhere else is the known negative instance that must alsify

Each variable returned byiBARY SEARCH is added to the body of the clause, aqds updated
by setting the corresponding position to 1. The process ends xglitomes a negative instance, a
clause with heatl and a body variable corresponding to each 2.in- his added to the hypothesis.

Once the necessary additions to every clause in the initial theory are,fauddrn formula
needing only deletions has been produced, and the deletions-only alg@#beTIONSONLY RE-
VISE from (Goldsmith et al., 2004b) is used to complete the revisions.

Notice that eaclx is generated, and each clause is added to the hypothesis, without any equ
alence queries being asked. Thus, all additions may be made beforelatigrts are considered.

4.1 Analysis

The key part of the analysis of the revision complexity of this algorithm is ttadyars of the
initial processing of each clause. First we show that any entire clalstodes are correct, then we
consider the addition of variables to an initial clause.

Lemma 6 AlgorithmDEFINITEHORNREVISE adds a clause that is either the initial formula clause
c itself, or a revision of initial clause ¢ made by adding variables to lfogyat Line 12 if and only
if some revision of ¢ appears in the target formula.

Proof Letc= (b— h). VectorQy is O at positiorh and 1 elsewhere. If any clause that is a revision
of c appears in the target (not counting the everywhere true clause, wdmdhecomitted from any
conjunction), ther0, must falsify this target clause. In this case, a revisior &f added to the
algorithm’s hypothesis.

Conversely, if0y, is a positive instance, then it must be that the target contains no clause with
headh, and hence, since the formulas are definite Horn formulas with unique headlause that
is a revision ofc. In this case, the algorithm does not add any clause that is a revisotoafs
hypothesis. [ |

Lemma 7 If any variable is added to the body of an initial clause c ¢fin Algorithm
DEFINITEHORNREVISE(¢), then some clause. ¢hat is derived from ¢ must be in the target for-
mula, and every variable added to c in the loop in Lines 6—-9 must be in ¢
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Proof If variables are added to the body of clausethen eventually a clause is added to the
hypothesis, and by Lemma 6, we know that this means that a clause dedwed hust be in the
target formula.

Variablev is added to bodi) in the loop at Lines 69 only if there is a point in the computation
where there are instance@ndx’ suchx is a positive instance and is a negative instance, amt
is X with positionv, and possibly some other positions that are not the head of any claasgech
from 0 to 1. Furthermorex’ with positionv set to 0 is a positive instance. By the construction, both
x andx’ must have a 1 in the position of every head except for the hezfct, sox’ must falsify
a target clause that is a revision@f Furthermore, sincg’ with v set to 0 is a positive instance,
must be in that target clause. |

From those two lemmas we can prove:

Theorem 8 There is a revision algorithm for definite Horn formulas with unique heads imgme
eral model of revision with query complexity(l® +d - m® +d-logn), where d is the revision
distance from the initial formula to the target formula, m is the number of clausése initial
formula, and n is the number of variables in the universe.

Proof By Lemmas 6 and 7, each variable added to a clause is necessary, arldumaydeleted in
thefor loop is unnecessary.

The query complexity for the necessary additions is at @gkign) per added variable, which
contributes a factor dd(dlogn).

Algorithm DELETIONSONLY REVISE has complexity(n* +d - m®) (Goldsmith et al., 2004b),
wherem is the number of clauses in the formula to be revised, @nsl the revision distance.
Now the formula to given to Algorithm BLETIONSONLY REVISE has revision distance at most
d+m(m— 1), where then(m— 1) comes from the up t;m— 1 heads added to the bodies of uprto
clauses. Combining this information, we get a final query complexi®(of® +d-m*+dlogn). B

4.2 An Example Run of DEFINITE HORNREVISE

We present an example run of EBINITEHORNREVISE. Suppose the variable set is
{X1,%2,%3,Xa, X5, X6 } @and the initial formulap and the target formule are given by

d = XeA(X5AXe — X2) A (X2 AXgAXg — X5) A (X2 — Xe) (5)
U = (= X)AXsAXe— X2) A (X3 AXg A Xg — X5)

The revision distance from to  is 4: 1 for addingxs to the body of the first clause, 2 for adding
one variable and deleting another from the body of the third clause, aoddekting the fourth
clause.

We process the four clausesdofn order:

1. Clause x: The vectoO,, = 011111 (i.e., O only at;) is a negative instance, so we retain this
clause. We set to 010011, which is a positive instance, so we enterthite loop of Algo-
rithm DEFINITEHORNREVISE at Lines 6-10. In the first iterationIBARY SEARCH(Oy, , X)
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returnsxs. Settingxz to 1 in x makesx = 011011, which is a negative instance, so we are
done with thewhile loop.

We insert the clause
(Xz/\Xg/\X5/\X6 — Xl)

into the hypothesis.

2. Clause(xs A Xs — X2): Vector Oy, = 101111 is negative, so we retain this clause. We set
x = 100011, which is a negative instance, so we do not need to ol SEARCH.

We insert the clause
(X1 A X5 A Xg — X2)

into the hypothesis.

3. Clause(xz A X3 AXs — Xs): VectorOy, = 111101 is negative, so we retain this clause. We set
x =111101, which is a negative instance, so we do not need to ol SEARCH.

We insert the clause
(XL AX2 AX3 AXg A Xg — X5)

into the hypothesis.

4. Clause(x; — xg): VectorOy, = 111110 is positive, so we do not put this clause in the hypoth-
esis (i.e., we delete this clause).

Our hypothesis is how
H=(XAX3AXsAXg — X1) A (X1 AXs AXg — X2) A (X1 AXo AX3 AXq AXg — Xs5).

We now have a hypothesis needing only deletion edits, and we pass thihésisoto the
deletions-only algorithm from Goldsmith et al. (2004b).

5. Conclusions and Open Questions

Horn formulas are ubiquitous in Computer Science, occurring in subfiedds éxpert systems to
databases. In all of these instances, the formulas or theories areddapen human expertise or
on potentially changing conditions. In many cases, “oracles” capablesviexing equivalence or
membership queries are far easier to come by than are direct sourdtles éarrect theories.

The problem of revising Horn formulas with queries remains open, but #imishas broken the
additions barrier. Open questions range from small to large improvemeth® osesults presented
here. For instance, we have presented a revision algorithm for aayepith-1 Horn formulas. Can
the techniques used here be extended to acyclic depth-2 or Kémtimulas? For acyclic formulas
with unbounded depth? How much harder is it to revise Horn formulas withuertigads if we
allow up to one occurrence &fas a head? Bounded or unbounded occurrences?

If we can revise acyclic deptk-Horn formulas for eack, how does the complexity depend on
k? Is the problem fixed-parameter tractable? Could the complexity of revigipend on a fixed
maximum number of occurrences as the head of a clause for each variable
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