
Journal of Machine Learning Research 6 (2005) 1919–1938 Submitted 10/04; Revised 9/05; Published 12/05

New Horn Revision Algorithms

Judy Goldsmith GOLDSMIT@CS.UKY.EDU

Department of Computer Science
University of Kentucky
773 Anderson Tower
Lexington, KY 40506-0046

Robert H. Sloan SLOAN@UIC.EDU

University of Illinois at Chicago
Department of Computer Science
851 South Morgan Street, Room 1120
Chicago, IL 60607-7053

Editor: Stefan Wrobel

Abstract

A revision algorithm is a learning algorithm that identifiesthe target concept, starting from an
initial concept. Such an algorithm is considered efficient if its complexity (in terms of the measured
resource) is polynomial in the syntactic distance between the initial and the target concept, but only
polylogarithmic in the number of variables in the universe.We give efficient revision algorithms in
the model of learning with equivalence and membership queries. The algorithms work in a general
revision model where both deletion and addition revision operators are allowed. In this model one
of the main open problems is the efficient revision of Horn formulas. Two revision algorithms are
presented for special cases of this problem: for depth-1 acyclic Horn formulas, and for definite
Horn formulas with unique heads.

Keywords: theory revision, Horn formulas, query learning, exact learning, computational learning
theory

1. Introduction

Computationally efficient learnability has been studied in the past two decadesfrom many angles.
For example, both the PAC and query learning models have been studied, and complexity has been
variously measured in terms of sample size, the number of queries, and running time. Attribute-
efficient learning algorithms are required to be efficient (polynomial) in the number of relevant
variables, and “super-efficient” (polylogarithmic) in the total number of variables (Blum et al., 1995;
Bshouty and Hellerstein, 1998).

A related notion,efficient revision algorithms, has been studied in machine learning, where
various approaches to building systems have been considered (see, e.g., Koppel et al., 1994; Lamma
et al., 2003; Ourston and Mooney, 1994; Richards and Mooney, 1995; Towell and Shavlik, 1993).
Efficient revision algorithms have received some attention in learning theoryas well. A revision
algorithm is applied in a situation where learning does not start from scratch, but there is an initial
concept available, which is a reasonable approximation of the target concept. The standard example
is an initial version of an expert system provided by a domain expert. The efficiency criterion in this

c©2005 Judy Goldsmith and Robert H. Sloan.

GOLDSMITH AND SLOAN

case is to be efficient (polynomial) in thedistancefrom the initial concept to the target (whatever
distance means; we get back to this in a minute), and to be “super-efficient” (polylogarithmic) in
the total size of the initial formula. Again, it is argued that this is a realistic requirement, since,
for many complex concepts, the only hope of learning those concepts is if a reasonably good initial
approximation is available.

The notion of distance usually considered for efficient revision is a syntactic one: the number
of edit operations that need to be applied to the initial representation in orderto get a representation
of the target. The particular edit operations considered depend on the concept class. Intuitively,
attribute-efficient learning is a special case of efficient revision, whenthe initial concept has an
empty representation. In machine learning, the study of revision algorithms is referred to as the-
ory revision; more detailed references to the literature are given in Wrobel’s overviews of theory
revision (Wrobel, 1994, 1995) and also in our recent papers (Goldsmithet al., 2002, 2004b).

The theoretical study of revision algorithms was initiated by Mooney (1995) inthe PAC frame-
work, and additional theoretical work was done by Greiner (1999a,b).We have studied revision
algorithms in the model of learning with equivalence and membership queries (Goldsmith et al.,
2002, 2004b) and in the mistake-bound model (Sloan et al., 2003).

It is a general observation both in practice and in theory that those edit operations which delete
something from the initial representation are easier to handle than those whichadd something to
it. We have obtained efficient revision algorithms for monotone1 Disjunctive Normal Form (DNF)
with a bounded number of terms when both deletion and addition type revisions are allowed, but for
the practically important case of Horn formulas we found an efficient revision algorithm only for the
deletions-only model. We also showed that efficient revision of general (or even monotone) DNF
is not possible, even in the deletions-only model. Finding an efficient revision algorithm for Horn
formulas in the general revision model (deletions and additions) emerged asperhaps the main open
problem posed by our previous work on revision algorithms. One of the tworesults presented here
extends that of Doshi (2003), who gave a revision algorithm for a special case of Horn sentences he
called “unique explanations,” which in the terminology presented below wouldbe the special case
of depth-1 acyclic Horn sentences where the heads must all be distinct, every clause must have a
head, and the heads cannot be revised. The result we give in Section 3removes all of his restrictions
concerning the heads.

1.1 Revision with Queries

In this paper, we consider revision inquery-basedlearning models, in particular, in the standard
model of learning withmembershipandequivalencequeries, denoted by MQ and EQ (Angluin,
1988). This is a very well-studied model (e.g., Angluin, 1987b, 1988; Angluin et al., 1992; Auer
and Long, 1999; Bshouty and Hellerstein, 1998; Blum et al., 2004; Bshouty, 1995), nearly as much
so as PAC learning. In an equivalence query, the learning algorithm proposes ahypothesis, that
is, a theoryh, and the answer depends on whetherh = c, wherec is the target theory. If so, the
answer is “correct”, and the learning algorithm has succeeded in its goalof exact identification of
the target theory. Otherwise, the answer is acounterexample: any instancex such thatc(x) 6= h(x).
In a membership query, the learning algorithm gives an instancex, and the answer is either 1 or 0,
depending onc(x).

1. A propositional logic formula ismonotoneif it contains no negations.

1920

NEW HORN REVISION ALGORITHMS

The query complexityof a learning algorithm is the number of queries it asks. Note that the
query complexity is a lower bound on the running time. For running time, we donot count the
time required to answer the queries. From a formal, theoretical point of view, we assume that there
are two oracles, one each to answer membership and equivalence queries. In practice, membership
queries would need to be answered by a domain expert, and equivalencequeries could either be
answered by a domain expert, or by using the hypothesis and waiting for evidence of an error in
classification.

One scenario for practical applications is that one starts with an initial theoryand a set of
(counter)examples, for which the initial theory gives an incorrect classification. The goal then is
to find a small modification of the initial theory that is consistent with the examples. In this setup,
one can simulate an equivalence query by running through the examples. If we find a counterex-
ample to the current hypothesis, then we continue the simulation of the algorithm. Otherwise, we
terminate the learning process with the current hypothesis serving as our final revised theory. In
this way, an efficient equivalence and membership query algorithm can beturned into an efficient
practical revision algorithm.

Perhaps the most common case for practical applications of theory revisionis to fix an initial
theory that is provided by an expert. It is reasonable to hope that the expert is able to answer further
queries about the classification of new instances. Consider the following case: Expert oncologist
Dr. Jones is cooperating with the local computer scientists to build a model of foobaric cancer. She
gives long answers to the knowledge engineers’ initial open-ended questions, and countless shorter
answers as they build and refine their model. These shorter questions aremembership questions:
“If the patient has this complex of symptoms, do you diagnose foobaric cancer?”

Finally, in the model validation phase of the work, the knowledge engineers and computer sci-
entists proudly present scenarios and diagnoses. And Dr. Jones shakes her head and says, “No,
that’s not right at all. Your system will give the wrong diagnosis in these settings; reliance on this
symptom is a red herring.”

These latter responses are equivalence queries, complete with counterexamples.

As an aside, even theory revision via queries for formal languages may have some application.
Consider Professor Doe, who is teaching, say, Automata and Formal Languages. Her difficult
student presents her with an incorrect finite automaton, and demands proof that it is incorrect. She
provides a counterexample, some string that the presented automaton misclassifies. It becomes clear
that the student has misunderstood the problem. String by string, he queriesher about membership
in the desired regular language, offering periodic updates to his automaton until either it is correct,
or Professor Doe discovers a prior appointment.

Note that an efficient revision algorithm is clearly in the student’s best interest in this case.

1.2 Classes of Horn Formulas Considered

Horn revision is the problem that most practical theory revision systems address. It is to be noted
here that the notions of learning and revising Horn formulas are open to interpretation, as discussed
by Goldsmith et al. (2004b); the kind of learnability result that we wish to extend to revision in this
paper is that of Angluin et al. (1992) for propositional Horn formulas.

In this paper we present results for the revision problem outlined above:the revision of Horn
formulas in the general revision model allowing both deletions and additions (more precise defi-

1921

GOLDSMITH AND SLOAN

nitions are given in Section 2). We use the model of learning with membership and equivalence
queries.

We show that one can revise two subclasses of Horn formulas with respect to both additions
and deletions of variables. The new algorithms make use of our previous, deletions-only revision
algorithm for Horn formulas (Goldsmith et al., 2004b) and new techniques which could be useful
for the general question as well.

1.2.1 DEPTH-1 ACYCLIC HORN

Logic programming theories are often presented as Horn theories. Each clause with a head, or
nonnegated variable, is interpreted as a potential justification for making the head variable true in
some model of the program. These clauses are also called “definite”.

In computing stable models of logic programs, it is simplest if the logic programs are strati-
fied (Apt et al., 1988; Chandra and Harel, 1985; Van Gelder, 1988),or acyclic (Angluin, 1987a).
One begins by setting all “facts,” or heads without bodies, to true.2 Then iteratively, one sets all
consequences of the current true variables to true.

At each iteration, one considers only definite clauses, and only those clauses whose heads do not
appear in the currently-true variables and all of whose variables are already true. These collections
of clauses, or strata of a program, are themselves depth-1 Horn theories. We begin by focusing on
theory revision for these simple theories.

One of our main results, Theorem 5, shows that this class can be revised using O(dist(ϕ,ψ) ·
m3 · logn) queries, wheren is the number of variables,ϕ is them-clause initial formula,ψ is the
target formula, anddist is the revision distance, which will be defined formally in Section 2.

1.2.2 DISTINCT HEADS/UNIQUE EXPLANATIONS

In life, and in many Horn theories, there may be multiple explanations of something, or Horn clauses
with the same head. Another simplification to Horn theories, other than considering individual
strata, is to consider theories that provide unique explanations for each variable; that is, theories
where clauses each have a distinct head. As in the stratified theories, this allows model-building to
be accomplished in one pass through the theory. [Note that this definition of “unique explanation”
is simpler than that of Doshi (2003). We also refer to such theories as having “distinct heads.”]

But even such simple theories are subject to revision. The expert who provides a theory may
fudge on explanations, including unnecessary preconditions or omitting necessary ones. Thus, our
second topic in this paper is revision with queries for theories consisting of unique explanations.

We also give a revision algorithm for definite Horn formulas with distinct heads, meaning that
no variable ever occurs as the head of more than one Horn clause. For this class, we revise with
query complexityO(m4+dist(ϕ,ψ) · (m3+ logn)), where againϕ is the initial formula andψ is the
target function (Theorem 8).

1.3 Overview of the Rest of the Paper

Preliminaries are given in Section 2, Horn formula revisions in Sections 3 and4, and open questions
in Section 5.

2. Acyclic Horn formulas have also been studied from various other points of view, including learning (Angluin, 1987a;
Arimura, 1997) and computational aspects (Hammer and Kogan, 1995).

1922

NEW HORN REVISION ALGORITHMS

Figure 1: Graph of the Horn formulaϕ given by (1).

2. Preliminaries

We use standard notions from propositional logic such as variable, literal,term (or conjunction),
clause (or disjunction), etc. The set of variables forn-variable formulas and functions isXn =
{x1, . . . ,xn}. (In this paper,n will always be the total number of variables.)Instancesor vectorsare
elementsx ∈ {0,1}n. In the vocabulary of propositional logic, an instance (or vector) is a model
for the target theory. When convenient we treatx as a subset of[n] or Xn, corresponding to the
components, resp. the variables, which are set to true inx. Given a setY ⊆ [n] = {1, . . . ,n}, we
write χY = (α1, . . . ,αn) ∈ {0,1}n, whereαi = 1 if i ∈ y andαi = 0 otherwise, for the characteristic
vector ofY. We writex = (x1, . . . ,xn) ≤ y = (y1, . . . ,yn) if xi ≤ yi for everyi = 1, . . . ,n.

A Horn clauseis a disjunction with at most one unnegated variable; we will usually think of it
as an implication and call the clause’s unnegated variable itshead, and its negated variables itsbody.
We write body(c) and head(c) for the body and head ofc, respectively. When convenient, we treat
body(c) as the vector with 1’s in the positions where body(c) has variables. A Horn clause with
an unnegated variable is calleddefinite(or positive). If a definite clause contains only one variable,
then that clause is called afact. We will consider clauses with no unnegated variables to have head
F, and will sometimes write them as(body→ F).

A Horn formula is a conjunction of Horn clauses. A Horn formula is definite if all its clauses
are definite. A Horn formula hasunique headsif no two clauses have the same head.

We define thegraphof a Horn formula to be a directed graph on the variables together withF,
with an edge from variableu to variablev (resp.F) iff there is a clause with headv (resp.F) having
u in its body. A Horn formula isacyclic if its graph is acyclic; thedepthof an acyclic Horn formula
is the maximum path length in its graph (Angluin, 1987a).

For example, the Horn formula

ϕ = (x1∧x2 → x3)∧x2∧ (x1∧x4 → x5)∧ (x4∧x6 → F) (1)

is depth-1 acyclic. Its graph, shown in Figure 1, has the edges(x1,x3), (x2,x3), (x1,x5), (x4,x5),
(x4,F), and(x6,F) and this graph is acyclic with depth 1.

1923

GOLDSMITH AND SLOAN

If x satisfies the body of Horn clausec, considered as a term, we sayx covers c. Notice thatx
falsifies cif and only if x coversc and head(c) 6∈ x. (By definition,F 6∈ x.)

For Horn clause bodyb (or any monotone term) and vectorx, we useb∩ x for the monotone
term that has those variables ofb that correspond to 1’s inx. As an example,x1x4∩1100= x1.

We use the standard model of membership and equivalence queries (with counterexamples), de-
noted by MQ and EQ (Angluin, 1988). In an equivalence query, the learning algorithm proposes a
hypothesis, a formulah, and the answer depends on whetherh≡ c, wherec is the target formula.
If so, the answer is “correct”, and the learning algorithm has succeeded in its goal of exact identi-
fication of the target concept. Otherwise, the answer is acounterexample, any instancex such that
c(x) 6= h(x). If x is a counterexample andc(x) = 1 andh(x) = 0, then we refer tox as a positive
counterexample, and otherwise a negative counterexample.

2.1 Revision

The revision distancebetween a formulaϕ and a conceptC is defined to be the minimum number
of applications of a specified set of syntactic revision operators toϕ needed to obtain a formula for
C. The revision operators may depend on the concept class one is interested in. Usually, a revision
operator can either bedeletion-typeor addition-type.

For disjunctive or conjunctive normal forms (including Horn sentences), the deletion operation
can be formulated asfixing an occurrence of a variablein the formula to a constant. In thegeneral
model, studied in this paper, we also allow additions. The addition operation is toadd a new literal
to one of the terms or clauses of the formula. (Adding a new literal to open up a new clause or term
would be an even more general addition-type operator, which we have not considered so far. Note
that in Algorithm 2, while we “add clauses” to a hypothesis, these are always clauses that are in the
given formula but not yet in the hypothesis.) In the algorithms given in this paper, the new literals
must be added to the body of a clause.

We usedist(ϕ,ψ) to denote the revision distance fromϕ to ψ whenever the revision operators
are clear from context. In general, the distance is not symmetric.

A revision algorithmfor a formulaϕ has access to membership and equivalence oracles for
an unknown target concept and must return some representation of the target concept. Our goal is
to find revision algorithms whose query complexity is polynomial ind = dist(ϕ,ψ), but at most
polylogarithmicin n, the number of variables in the universe. For DNF (resp. CNF) formulas, we
allow polynomial dependence on the number of terms (resp. clauses) inϕ; it is impossible to do
better even for arbitrary monotone DNF in the deletions-only model of revision (Goldsmith et al.,
2002).

We state only query bounds in this paper; all our revision algorithms are computable in polyno-
mial time, given the appropriate oracles.

2.2 Binary Search for New Variables

Our revision algorithms use a kind of binary search, of a general kind often used in learning algo-
rithms involving membership queries, presented as Algorithm 1. The starting points of our binary
search are two instances, a negative instancenegand a positive instancepossuch thatpos< neg.
The algorithm returns a variablev that is critical in the sense that there is a (possibly empty) setSof
variables fromneg\ possuch thatnegmodified by setting the variables inS to 0 is still a negative
instance, but additionally settingv to 0 creates a positive instance.

1924

NEW HORN REVISION ALGORITHMS

Algorithm 1 BINARY SEARCH(neg,pos).
Require: MQ(neg) == 0 and MQ(pos) == 1 andpos< neg

1: neg0 := neg
2: while negandposdiffer in more than 1 positiondo
3: Partitionneg\pos into approximately equal-size setsd1 andd2.
4: Putmid := negwith positions ind1 switched to 1
5: if MQ(mid) == 0 then
6: neg:= mid
7: else
8: pos:= mid
9: end if

10: end while
11: v := the one variable on whichposandnegdiffer
12: return v

3. Depth-1 Acyclic Horn Formulas

We show here how to revise depth-1 acyclic Horn formulas. Depth-1 acyclic Horn formulas are
precisely those where each variable that occurs as a head either occurs as a fact (the head of an
empty-bodied clause) or never occurs in the body of any clause. Notice that such formulas are a
class of unate CNF: variables that occur as facts are the only variables that can appear both negated
and unnegated, and we can always rewrite any Horn formula with facts to alogically equivalent
Horn formula where those fact variables do not appear in any clause body by using resolution. For
example,ϕ in Equation 1 is equivalent to

(x1 → x3)∧x2∧ (x1∧x4 → x5)∧ (x4∧x6 → F).

Previously we gave a revision algorithm for unate DNF (which would dualizeto unate CNF)
that was presented as being able to revise specifically two clauses (Goldsmithet al., 2002). It would
generalize to an algorithm whose query complexity is exponential in the numberof clauses. Here
we give an algorithm for an important subclass of unate CNF that is polynomial in the number of
clauses.

In the following subsection we give the algorithm and its analysis; then in Section 3.2 we give
an example run of the algorithm. The reader may find it helpful to switch back and forth between
the two subsections.

3.1 Algorithm and Analysis

The general idea of the algorithm is to maintain a one-sided hypothesis, in the sense that all equiv-
alence queries using the hypothesis must return negative counterexamples until the hypothesis is
correct.

Each negative counterexample can be associated with one particular headof the target clause,
or else with a headless target clause. We do this with a negative counterexamplex as follows.

Let us call those variables that occur as the head of a clause of the initial formulahead variables.
For a head variablev and instancex, we will use the notationxv to refer tox modified by setting
all head variablesother than vto 1. Note thatxv cannot falsify any clause with a head other thanv.

1925

GOLDSMITH AND SLOAN

Sincev will normally be the head of a Horn clause and we useF to denote the “head” of a headless
Horn clause, we will usexF to denotex modified to setall head variables to 1.

We will implicitly use the following fact often in our analysis of our algorithm.

Proposition 1 Let h be either a variable orF. If xh falsifies a clause of the target depth-1 acyclic
Horn formula with head h, thenx also falsifies that clause.

Proof Consider target clauseb→ h, whereb is nonempty andb→ h is falsified byxh. It must be
thatxh coversb. If xh coversb, thenx coversb, since no head variables may occur inb, andxh \x
consists only of those head variables besidesh. Thus, changing those variables from 1 inxh to 0 in
x can only falsifymoreclauses.

The algorithm begins with an assumption that the revision distance from the initialtheory to
the target theory isd. If the revision fails, thend is doubled and the algorithm is repeated. Since
the algorithm is later shown to be linear ind, this series of attempts does not affect the asymptotic
complexity. We give a brief overview of the algorithm, followed by somewhat more detail. The
pseudocode is given as Algorithm 2.

We maintain a hypothesis that is, viewed as the set of its satisfying vectors, always a superset
of the target. Thus each time we ask an equivalence query, if we have notfound the target, we get
a negative counterexamplex. Then the first step is to ask a membership query onx modified to
turn onall of the head variables. If that returns 0, then the modifiedx must falsify a headless target
clause. Otherwise, for each head variableh that is 0 in the originalx, ask a membership query on
xh. We stop when the first such membership query returns 0; we know thatx falsifies a clause with
headh. In our pseudocode, we refer to the algorithm just described as ASSOCIATE.

Once a negative counterexamplex is associated with a head, we first try to usex to make
deletions from each existing hypothesis clause with the same head. If no such deletions are possible,
then we usex to add a new clause to the hypothesis. We find any necessary additions when we add
a new clause.

If (body(c)∩x)h (or, equivalently, body(c)h∩xh) is a negative instance, which we can determine
by a membership query, then we can create a new smaller hypothesis clause whose body is body(c)∩
x. (Notice that body(c)∩ x ⊂ body(c) because as a negativecounterexample, x must satisfyc.
Furthermore, since MQ(xF) = 1 and MQ(xh) = 0, we know thath is not inx.)

To usex to add a new clause, we then use an idea from the revision algorithm for monotone DNF
(Goldsmith et al., 2002). For each initial theory clause with the same head as wehave associated
(which for F is all initial theory clauses, since deletions of heads are allowed), use binary search
from x intersect{the initial clause with the other heads set to 1} up to x. If we get to something
negative with fewer thand additions, we updatex to this negative example.

Whether or notx is updated, we keep going, trying all initial theory clauses with the associated
head. This guarantees that in particular we try the initial theory clause with smallest revision dis-
tance to the target clause thatx falsifies. All necessary additions to this clause are found by the calls
to BINARY SEARCH; later only deletions will be needed.

We now give a series of lemmas that will together prove the correctness andquery complexity
of HORNREVISEUPTOD(ϕ,d). The first two lemmas give qualitative information. The first shows
that the hypothesis is always one-sided (i.e., only negative counterexamples can ever be received),
and the second says that newly added hypothesis clauses are not redundant.

1926

NEW HORN REVISION ALGORITHMS

Algorithm 2 HORNREVISEUPTOD(ϕ,d). Revises depth-1 acyclic Horn formulaϕ if possible
using≤ d revisions; otherwise returns failure.

1: Rewriteϕ to remove any facts from other clauses’ bodies
2: H := everywhere-true empty conjunction
3: while (x := EQ(H)) 6= “Correct!” and d > 0 do
4: h :=ASSOCIATE(x,ϕ)
5: if H has at least one clausethen
6: for all clausesc∈ H with headh do
7: if MQ((body(c)∩x)h) == 0 then {delete vars fromc}
8: body(c) = body(c)∩x
9: d := d−number of variables removed

10: end if
11: end for
12: end if
13: if no vars. were deleted from any clausethen {find new clause to add}
14: FoundAClause:= false;min := d
15: for all c∈ ϕ with headh (or all c∈ ϕ if h == F) do
16: new= body(c)h∩xh

17: numAddedVars= 0 {# additions to body for thisc}
18: while MQ(new) == 1 and numAddedVars< d do
19: l := BINARY SEARCH(xh,new)
20: new := new∪{l}
21: numAddedVars:= numAddedVars+1
22: if MQ(x−{l}) == 0 then {(x−{l}) is a “pivot”}
23: x := x−{l}
24: restart thefor all c loop with thisx—go to Line 14 to reset other parameters
25: end if
26: end while
27: if MQ(new) == 0 then
28: x := new
29: FoundAClause:= true
30: min := min(numAddedVars,min)
31: end if
32: end for
33: if not FoundAClausethen
34: return “Failure”
35: else
36: Set all head variables ofx to 0
37: H := H ∧ (x→ h) {treatingx as monotone disjunction}
38: d := d−min
39: end if
40: end if
41: end while
42: return H is last EQ returned “Correct!”, otherwisereturn “Failure”

1927

GOLDSMITH AND SLOAN

Algorithm 3 ASSOCIATE(x,ϕ)

1: if MQ(xF) == 0 then
2: return F
3: end if
4: for each head variableh that is 0 inx do
5: if MQ(xh) == 0 then
6: return h
7: end if
8: end for

Lemma 1 Algorithm HORNREVISEUPTOD maintains the invariant that its hypothesis is true for
every instance that satisfies the target function.

Proof Formally the proof is by induction on number of changes to the hypothesis after it is initial-
ized. The base case is true, because the initial hypothesis is everywheretrue.

For the inductive step, consider how we update the hypothesis, either by adding a new clause or
deleting variables from the body of an existing clause.

Before creating or updating a clause to have headh and bodyy, we have ensured (at Line 7 for
updates of existing hypothesis clauses and at Line 27 for adding new clauses) that MQ(yh) = 0, that
is, thatyh is a negative instance. Because of that,yh must falsify some clause, and because of its
form and the syntactic form of the target, it must be a clause with headh. None of the head variables
in yh \ y can be in any body, soy must indeed be a superset of the variables of some target clause
with headh, as claimed.

Lemma 2 Let negative counterexamplex be associated with head h. Ifx is not used to make
deletions, thenxh falsifies any target clauses with head h whose body is covered byx. Further, if x
is used to add a new clause with head h to the hypothesis, then the body of the new clause does not
cover any target clause body covered by any other hypothesis clausewith head h.

Proof If x falsified the same target clause as an existing hypothesis clause body with headh, then
the membership query at Line 7 would return 0, andx would be used to delete variables from that
hypothesis clause body.

Now x may be changed from the value it had at Line 7 before it is used to actually add a new
clause. However, those changes (made whenx is updated at Line 28) in fact change certain non-
head variables ofx from 1 to 0, so the updatedx can falsify only fewer clauses than the originalx.
Thus if and whenx is used to add a new clause,x cannot falsify the same target clause as any exist-
ing hypothesis clause with the same head. The newly added hypothesis clause’s body is a subset of
x, so that clause body does not cover any other hypothesis clause bodywith headh.

The next lemma is the heart of the analysis of HORNREVISEUPTOD.

Lemma 3 HORNREVISEUPTOD(ϕ,d) succeeds in finding the target Horn formulaψ if it has re-
vision distance at most d fromϕ.

1928

NEW HORN REVISION ALGORITHMS

Proof Let the initial formula beϕ =
Vm

i=1c0
i and the target formula beψ =

Vm′

i=1c∗i . We will assume
throughout the analysis in this proof that the terms of the initial and target formulas are numbered
so that they “line up” for calculating the revision distance fromϕ to ψ. That is, the revision distance
is

(m−m′)+
m′

∑
i=1

dist(c0
i ,c

∗
i),

wheredist(c0
i ,c

∗
i) is the revision distance from clausec0

i to c∗i , and is equal to a “body distance” that
is the symmetric difference between the bodies of the two clauses, plus a “head distance” that is 1
if head(c∗i) = F and head(c0

i) 6= F, and 0 if head(c∗i) = head(c0
i) (and is infinite in any other case).

Note thatm−m′ accounts for the clauses deleted and thatm≥ m′ because we cannot add entirely
new clauses.

Let dr be the value of the variabled at the start of therth iteration of the outerwhile loop. We
argue by induction onr both thatdr is an upper bound on the number of revisions required to get
from a formula made of those terms in the current hypothesis and the remainingterms in the initial
formula to the target, and that therth iteration does not fail.

More precisely, assume that at the start of roundr, the hypothesisHr is c1∧c2∧·· ·∧c`r . Part of
our inductive claim is that there is a mapa(i) (technically a relation) of hypothesis clauses to target
clauses such that

(body(ci))
head(ci) falsifies target clausec∗a(i). (2)

Formallya is a relation because some hypothesis clauses may be mapped to more than one target
clause; that will occur precisely when (2) holds for more than one targetclause. The relationa
maps every indexi of a hypothesis clause to at least one target clause index, and is one-to-one in the
sense that no two target clauses ever have the same hypothesis clause mapped to both of them. The
relationa evolves in only two ways: (1) whena(i) is more than one index, sometimes one of those
indices gets dropped, and (2) a newi gets added to the domain ofa each time a clause is added to
the hypothesis. For convenience of notation, we will somewhat sloppily refer toc∗a(i) as if it were
one clause, when we mean that such statements hold for each of the associated target clauses.

The rest of the inductive claim is that: (i) therth iteration of HORNREVISEUPTOD does not
fail, and (ii) at the start of iterationr of HORNREVISEUPTOD,

dr ≥ ∑
ci∈H

∣

∣

∣
body(ci)\body(c∗a(i))

∣

∣

∣
+ ∑

c j 6∈H

dist(c0
j ,c

∗
j). (3)

For the base case,d1 = d, hypothesisH1 has no terms, and Equation (3) is satisfied, since the
right hand side is the revision distance fromϕ to ψ less(m−m′).

To complete the base case, we must argue that the first iteration does not fail. We start with a
counterexamplex that is associated with headh. We need to show that a new clause is found using
x by at least one iteration of thefor all c loop starting at Line 15.Letc∗i be a target clause with
headh or F thatx falsifies. At some pointci will be used as the clause in thefor all c∈ ϕ loop at
Line 15. As longxh falsifiesonly target clausec∗i , then after at mostd calls to BINARY SEARCH, all
necessary additions toci will have been found and a clause will be added, completing the base case.
(Even ifxh falsifies multiple target clauses, this still might happen.)

However, ifxh falsifies more than one target clause, then we may find a variable that appears
to be a necessary addition but is really a necessary addition to a differentclause. Fortunately, this
requires only one query to verify (see Line 22 of the algorithm). When such a variable (a “pivot”)

1929

GOLDSMITH AND SLOAN

is found, we set that variable ofx to off so that the new value ofxh falsifies fewer clauses. Thus,
this can occur at mostm−1 times beforex falsifies exactly one clause, and no more pivots may be
found. Once that happens, we must find a clause.

For the inductive step, there are two cases.
Case 1:xh is not used to delete any variables from any target clause. The argumentthat this

iteration does not fail is the same as the corresponding argument for the base case.
As in the base case, there may be some number of times that a pivot is found and set to 0

in x. Now consider the value ofx after any pivots have been found, and after the last timex is
updated at Line 27. By Lemma 2,x does not cover any target clauses covered by clause bodies
in the hypothesis, so it must cover one or more new target clauses. Letc∗j be one of those target
clauses. The “body” revision distancedist(c0

j ,c
∗
j) is equal to the number of “necessary additions”,

∣

∣

∣
body(c∗j)\body(c0

j)
∣

∣

∣
, plus the number of “necessary deletions”,

∣

∣

∣
body(c0

j)\body(c∗j)
∣

∣

∣
. In the iter-

ation of thefor all c loop at Line 15 withc set toc0
j , all the necessary additions had to be found, and

the value ofnumAddedVarsfor that iteration would have been the number of the necessary addi-
tions, so at most that number is subtracted fromdr . Also,x after that intersection contained at most
the variables in the body ofc∗j before the necessary deletions are made. In later revisions, all that
can happen is some of those necessary deletions might happen to be made. Thus Equation (3) holds
at the end of therth iteration of the outerwhile loop. To complete the inductive step for this case,
note that the relationa can indeed be extended by relating the index of the new hypothesis clause to
the one or more target clauses whose body its body covers, so Equation (2) holds.

Case 2:xh is used to delete variables from at least one hypothesis clause. Say deletions are
made to hypothesis clauseci . Now (body(ci)∩x)h can falsify only the same or fewer clauses than
body(ci) falsifies. By the inductive hypothesis (specifically Equation (2) coupled with Proposi-
tion 1), body(ci) falsifies target clause(s)c∗a(i). Thus the updated hypothesis clauseci := (body(ci)∩

x) must falsify some or all of the clause(s)c∗a(i), and the relationa is either unchanged, or altered
by decreasing the range ofa(i). Equation (3) still holds because we decreasedr by the number of
deletions we make, and we also decrease|body(ci)\body(c∗a(i))| by the number of deletions we
make.

Clausec∗a(i) could be derived fromci by deletion edits; that is, body(ci) falsifiesc∗a(i). By Propo-

sition 1, since MQ((body(ci)∩ x)h) = 0, it must be that body(ci)∩ x falsifies a target clause with
headh. Further, using the numbering of the target clauses that makes that targetclause correspond
to ci at the start of the round, the number of variables removed from body(c) is subtracted from the
parameterd, and Equation (3) still holds, completing the induction step.

We will find all the necessary additions to body(ci) using at mostdr calls to BINARY SEARCH

(in fact, using at most|body(c∗i)\body(ci)|) calls. Furthermore, the clause added will have all the
variables in body(c∗i) and no variables not in body(ci)∪body(c∗i) (i.e., it will need at most only nec-
essary deletion revisions), and the parameterdr will be decreased by at most the number of added
variables.

Lemma 4 The query complexity ofHORNREVISEUPTOD(ϕ,d) is O(m3 ·d · logn), whereϕ has m
clauses and there are n variables in the universe.

Proof If the variabled ever becomes nonpositive, then we terminate the algorithm.

1930

NEW HORN REVISION ALGORITHMS

ASSOCIATEmakes at mostm equivalence queries per negative counterexample. Next we try to
use negative counterexamplex to make deletions from an existing clause. This consumes exactly 1
equivalence query and at mostm membership queries. If any deletions are made, we decreased by
at least 1.

There are at mostd such counterexamples used for deletions. Each counterexample used for
deletions uses≤ m+1 queries.

If a counterexample is not used for deletions, then we use it to add a new clause. We can have
at mostm−1 restarts (where we back up to Line 2) due to “pivots.” These occur whenx falsifies
multiple clauses, and each time one is found,x is modified so that it falsifies fewer clauses.

There are at mostm restarts, and ignoring the restarts, the mainforall loop at Line 15 iterates
over at most allm initial theory clauses. For each one iteration, the innerwhile loop iterates at
mostd times (once for each added literal). Each iteration of that innerwhile loop makes two direct
membership queries, and one call to BINARY SEARCH, which uses at most logn queries.

Thus, each of≤ m (re)starts uses at mostm·d · logn queries, plus 2m+ 1 queries to establish
that the particular counterexample should be used for the addition of a clause.

Thus the algorithm HORNREVISEUPTOD(ϕ,d) correctly revises initial formulaϕ usingO(d ·
(m+1)+m·m2 ·d · logn) = O(m3 ·d · logn) queries.

Theorem 5 There is a revision algorithm for depth-1 acyclic Horn formulas with query complexity
O(d ·m3 · logn), where d is the revision distance, n is the number of variables in the universe, and
m is the number of clauses in the initial formula.

Proof Lemmas 3 and 4 together have shown the desired theorem.

3.2 An Example Run of HORNREVISEUPTOD

We now give an example run of HORNREVISEUPTOD. Suppose the variable set is
{x1,x2,x3,x4,x5,x6,x7,x8} and the initial formulaϕ and the target formulaψ are given by

ϕ = x2∧ (x1 → x3)∧ (x1∧x4 → x5)∧ (x4∧x6 → F) (4)

ψ = x2∧ (x1 → F)∧ (x4∧x6∧x7∧x8 → x5).

The revision distance fromϕ to ψ is 5: 1 for the deletion of headx3 from second clause, 1 for the
deletion of the third clause, and 3 for adding the literals ¯x7, x̄8, andx5 to the fourth clause (i.e.,
addingx7 andx8 to the body of the fourth clause, andx5 to the head of the fourth clause).

For future reference, the head variables in the initial theory arex2, x3 andx5.
Assume now that Algorithm HORNREVISEUPTOD is called with inputsϕ and anyd ≥ 5.

It initializes its hypothesisH to the everywhere true empty conjunction. Assume EQ(H) re-
turnsx = 11101110, a negative counterexample. Now we call ASSOCIATE(ϕ,11101110) to find
a candidate head for a clause negated by 11101110. In ASSOCIATE we immediately find that
MQ(11101110F) = MQ(11101110) = 0, so ASSOCIATE(ϕ,11101110) returnsF. (Recall that the
operationxF sets all head variables ofx to 1.)

1931

GOLDSMITH AND SLOAN

HypothesisH currently has no clauses, so we will use 11101110 to add a new clause toH
starting at Line 13. Because ASSOCIATE returnedF, each of the four clauses ofϕ is consid-
ered. Say they’re processed in the order they are written in Equation (4). Starting withx2, we
set new to be body(x2)

F ∩ 11101110F = 01101000∩ 11101110= 01101000. That is a posi-
tive instance, so we begin making calls of BINARY SEARCH from xF = 11101110 tonew. Now
BINARY SEARCH(11101110,01101000) returns the positionx1. We turn positionx1 to 1 in new,
so nownew is 11101000, and incrementnumbAddedVarsto be 1 instead of 0. Turning position
x1 to 0 in 11101110 yields a positive instance, so we donot have a pivot (Lines 22–25). Now
MQ(new) = 0, so we updatex to be 11101000, and setFoundAClauseto true andmin to num-
bAddedVars, which is 1.

Now we have to consider the next three clauses ofϕ. However, when we intersectxF =

11101000 with body(c)F at Line 15 for each of the remaining three clausesc in ϕ we get back
x, so no changes are made.

Thus in Lines 36–38, we updateH to be

H = (x1 → F),

and decrementd by 1, and begin the next iteration of the outerwhile loop by making another
equivalence query.

Say this time we receive the negative counterexamplex = 01110111. When we call ASSOCIATE,
the instance 01110111F = 0111111 is positive, soF is not returned. The only head variable in
01110111 that is 0 isx5, and MQ(01110111x5) = MQ(01110111) = 0, so ASSOCIATE returns
h = x5. There is no clause inH with headx5, so we do not try to use instance 01110111 to delete
variables from any clause ofH.

In the for loop starting at Line 13 we consider only clauses with headx5; there is exactly
one: c = (x1 ∧ x4 → x5). We setnew = body(c)x5 ∩ 01110111x5 = 10010000x5 ∩ 01110111x5 =
11110000∩01110111= 01110000, which is a positive example.

Again, we make calls of BINARY SEARCH from xh = 01110111 tonew. Assume that the first
call returns positionx8. Then we updatenew to 01110001, andnumAddedVarsto 1. Sincenew
is still a positive instance, we call BINARY SEARCH again. Say this time it returns positionx7.
We updatenew to 01110011, andnumAddedVarsto 2. Instancenew remains positive; we call
BINARY SEARCH again; it returnsx6; we updatenew to 01110111 andnumAddedVarsto 3. Finally
new is a negative instance, so we updatex = new= 01110111, setFoundAClauseto true andmin
to 3.

In Lines 36–38 we set all head variables ofx to 0 sox = 00010111 and add a new clause of the
form x → h to H; thus we updateH to be

H = (x1 → F)∧ (x4∧x6∧x7∧x8 → x5),

and decrementd by 3, sod has now been reduced by 4 altogether.
We begin our next iteration of the outer loop by receiving the counterexample x = 00000000 in

response to EQ(H). When we call ASSOCIATE(x), it determines that 00000000F = 01101000 is a
positive example, and so does not returnF, and that 00000000x2 = 00101000 is a negative example,
and so does returnh = x2. There is no clause inH with headx2, so we do not try to usex to delete
variables from existing clauses ofH.

1932

NEW HORN REVISION ALGORITHMS

Instead, we again execute thefor loop starting at Line 13. This time we consider only the one
clausec = x2 with headx2 (and empty body). We setnew = body(x2)

x2 ∩ xx2 = 000000000x2 ∩
00000000x2 = 00101000, which is a negative instance. Thus thewhile loop at Lines 18–26 is not
executed at all. We skip over it and set all head variables ofx to 0; thusx = 00000000. We update
the hypothesis to

H = (x1 → F)∧ (x4∧x6∧x7∧x8 → x5)∧x2.

The variablenumAddedVarswas 0; somin was 0, andd is not changed from its previous value (4
less than its initial value).

Now H is the target formula, so a final equivalence query returns “Correct!”This simple exam-
ple did not by any means exercise every path through the algorithm’s pseudocode, but it should give
the general idea.

4. Definite Horn Formulas with Unique Heads

We give here a revision algorithm for definite Horn formulas with unique heads. A revision of a
formula from classC must also be in classC , so in particular, a revision of a definite Horn formula
also be a definite Horn formula. Thus head variables cannot be fixed to 0.We use the algorithm
for revising Horn formulas in the deletions-only model presented by Goldsmithet al. (2004b) as a
subroutine. Its query complexity isO(d ·m3 + m4), whered is the revision distance andm is the
number of clauses in the initial formula.

For this algorithm we again first give the algorithm and its analysis, and then in Section 4.2 give
an example run of (the main part of) the algorithm.

Algorithm 4 DEFINITEHORNREVISE(ϕ). Revisesϕ, a definite Horn formula with unique heads
1: H := everywhere-true empty conjunction
2: for all clausesc = (b→ h) of ϕ do
3: 0h := vector with 0 ath, 1’s elsewhere
4: if MQ(0h) == 0 then
5: x := vector with a 1 for every variable inb and every head of a clause ofϕ excepth, and

0’s elsewhere
6: while MQ(x) 6= 0 do
7: v := BINARY SEARCH(0h,x)
8: Add variablev to clause bodyb
9: Set positionv to 1 inx

10: end while
11: Add all heads ofϕ excepth to b
12: H := H ∧ (b→ h)
13: end if
14: end for
15: return DELETIONSONLY REVISE(H)

Our algorithm, DEFINITEHORNREVISE(ϕ), presented as Algorithm 4, has a first phase that
both deletes any clauses that need deleting in their entirety and finds all the variables that need to
be added to the initial formula. That partially revised formula is then passed asan initial formula

1933

GOLDSMITH AND SLOAN

to the known algorithm (Goldsmith et al., 2004b) for revising Horn formulas in the deletions-only
model of revision.

For each clausec= (b→ h), the check in Line 4 whether the vector that is 0 ath and 1 elsewhere
is a negative instance determines whether clausec should be deleted altogether.

To find all necessary additions to the bodyb of clausec= (b→ h), we use a constructed example
xc. We initializexc to bh (the body variables fromb, plus all head variables excepth). Notice that
the only way MQ(xc) can be 0 is ifx covers the body of a clause but not its head. Sincexc includes
all heads excepth, it is clearwhichclause body is or is not covered byxc; the notion of “pivots” is
not needed in this algorithm.

Next, the query MQ(xc) is asked. If MQ(xc) = 0, then no variables need to be added to the
body ofc, andb→ h is added to the hypothesis. If MQ(xc) = 1, the necessary additions to the body
of c are found by repeated use of BINARY SEARCH. To begin the binary search,xc is the known
positive instance that must satisfy the target clausec∗ derived fromc, and the assignment with a 0
in positionh and a 1 everywhere else is the known negative instance that must falsifyc∗.

Each variable returned by BINARY SEARCH is added to the body of the clause, andxc is updated
by setting the corresponding position to 1. The process ends whenxc becomes a negative instance, a
clause with headh and a body variable corresponding to each 1 inxc → h is added to the hypothesis.

Once the necessary additions to every clause in the initial theory are found, a Horn formula
needing only deletions has been produced, and the deletions-only algorithm DELETIONSONLY RE-
VISE from (Goldsmith et al., 2004b) is used to complete the revisions.

Notice that eachxc is generated, and each clause is added to the hypothesis, without any equiv-
alence queries being asked. Thus, all additions may be made before any deletions are considered.

4.1 Analysis

The key part of the analysis of the revision complexity of this algorithm is the analysis of the
initial processing of each clause. First we show that any entire clause deletions are correct, then we
consider the addition of variables to an initial clause.

Lemma 6 AlgorithmDEFINITEHORNREVISE adds a clause that is either the initial formula clause
c itself, or a revision of initial clause c made by adding variables to body(c), at Line 12 if and only
if some revision of c appears in the target formula.

Proof Let c = (b→ h). Vector0h is 0 at positionh and 1 elsewhere. If any clause that is a revision
of c appears in the target (not counting the everywhere true clause, which can be omitted from any
conjunction), then0h must falsify this target clause. In this case, a revision ofc is added to the
algorithm’s hypothesis.

Conversely, if0h is a positive instance, then it must be that the target contains no clause with
headh, and hence, since the formulas are definite Horn formulas with unique heads, no clause that
is a revision ofc. In this case, the algorithm does not add any clause that is a revision ofc to its
hypothesis.

Lemma 7 If any variable is added to the body of an initial clause c ofϕ in Algorithm
DEFINITEHORNREVISE(ϕ), then some clause c∗ that is derived from c must be in the target for-
mula, and every variable added to c in the loop in Lines 6–9 must be in c∗.

1934

NEW HORN REVISION ALGORITHMS

Proof If variables are added to the body of clausec, then eventually a clause is added to the
hypothesis, and by Lemma 6, we know that this means that a clause derived from c must be in the
target formula.

Variablev is added to body(c) in the loop at Lines 6–9 only if there is a point in the computation
where there are instancesx andx′ suchx is a positive instance andx′ is a negative instance, andx′

is x with positionv, and possibly some other positions that are not the head of any clause, changed
from 0 to 1. Furthermore,x′ with positionv set to 0 is a positive instance. By the construction, both
x andx′ must have a 1 in the position of every head except for the headh of c, sox′ must falsify
a target clause that is a revision ofc. Furthermore, sincex′ with v set to 0 is a positive instance,v
must be in that target clause.

From those two lemmas we can prove:

Theorem 8 There is a revision algorithm for definite Horn formulas with unique heads in thegen-
eral model of revision with query complexity O(m5 + d ·m3 + d · logn), where d is the revision
distance from the initial formula to the target formula, m is the number of clausesin the initial
formula, and n is the number of variables in the universe.

Proof By Lemmas 6 and 7, each variable added to a clause is necessary, and anyclause deleted in
thefor loop is unnecessary.

The query complexity for the necessary additions is at mostO(logn) per added variable, which
contributes a factor ofO(d logn).

Algorithm DELETIONSONLY REVISE has complexity(m4 + d ·m3) (Goldsmith et al., 2004b),
wherem is the number of clauses in the formula to be revised, andd is the revision distance.
Now the formula to given to Algorithm DELETIONSONLY REVISE has revision distance at most
d+m(m−1), where them(m−1) comes from the up tom−1 heads added to the bodies of up tom
clauses. Combining this information, we get a final query complexity ofO(m5+d ·m3+d logn).

4.2 An Example Run of DEFINITE HORNREVISE

We present an example run of DEFINITEHORNREVISE. Suppose the variable set is
{x1,x2,x3,x4,x5,x6} and the initial formulaϕ and the target formulaψ are given by

ϕ = x1∧ (x5∧x6 → x2)∧ (x2∧x3∧x4 → x5)∧ (x2 → x6) (5)

ψ = (x3 → x1)∧ (x5∧x6 → x2)∧ (x3∧x4∧x6 → x5)

The revision distance fromϕ to ψ is 4: 1 for addingx3 to the body of the first clause, 2 for adding
one variable and deleting another from the body of the third clause, and 1 for deleting the fourth
clause.

We process the four clauses ofϕ in order:

1. Clause x1: The vector0x1 = 011111 (i.e., 0 only atx1) is a negative instance, so we retain this
clause. We setx to 010011, which is a positive instance, so we enter thewhile loop of Algo-
rithm DEFINITEHORNREVISE at Lines 6–10. In the first iteration BINARY SEARCH(0x1,x)

1935

GOLDSMITH AND SLOAN

returnsx3. Settingx3 to 1 in x makesx = 011011, which is a negative instance, so we are
done with thewhile loop.

We insert the clause
(x2∧x3∧x5∧x6 → x1)

into the hypothesis.

2. Clause(x5 ∧ x6 → x2): Vector 0x2 = 101111 is negative, so we retain this clause. We set
x = 100011, which is a negative instance, so we do not need to call BINARY SEARCH.

We insert the clause
(x1∧x5∧x6 → x2)

into the hypothesis.

3. Clause(x2∧x3∧x4 → x5): Vector0x5 = 111101 is negative, so we retain this clause. We set
x = 111101, which is a negative instance, so we do not need to call BINARY SEARCH.

We insert the clause
(x1∧x2∧x3∧x4∧x6 → x5)

into the hypothesis.

4. Clause(x2 → x6): Vector0x6 = 111110 is positive, so we do not put this clause in the hypoth-
esis (i.e., we delete this clause).

Our hypothesis is now

H = (x2∧x3∧x5∧x6 → x1)∧ (x1∧x5∧x6 → x2)∧ (x1∧x2∧x3∧x4∧x6 → x5).

We now have a hypothesis needing only deletion edits, and we pass this hypothesis to the
deletions-only algorithm from Goldsmith et al. (2004b).

5. Conclusions and Open Questions

Horn formulas are ubiquitous in Computer Science, occurring in subfields from expert systems to
databases. In all of these instances, the formulas or theories are dependent on human expertise or
on potentially changing conditions. In many cases, “oracles” capable of answering equivalence or
membership queries are far easier to come by than are direct sources forthe correct theories.

The problem of revising Horn formulas with queries remains open, but this paper has broken the
additions barrier. Open questions range from small to large improvements onthe results presented
here. For instance, we have presented a revision algorithm for acyclic,depth-1 Horn formulas. Can
the techniques used here be extended to acyclic depth-2 or depth-k formulas? For acyclic formulas
with unbounded depth? How much harder is it to revise Horn formulas with unique heads if we
allow up to one occurrence ofF as a head? Bounded or unbounded occurrences?

If we can revise acyclic depth-k Horn formulas for eachk, how does the complexity depend on
k? Is the problem fixed-parameter tractable? Could the complexity of revision depend on a fixed
maximum number of occurrences as the head of a clause for each variable?

1936

NEW HORN REVISION ALGORITHMS

Acknowledgments

This work was partially supported by NSF grants CCR-0100040 and ITR-0325063 to the first au-
thor, and NSF grants CCR-0100336 and CCF-0431059 to the second author. The authors also thank
Jignesh Doshi for inspiring this work, and Balázs Sz̈orényi and Gÿorgy Tuŕan for publishing their
results with a preliminary version of the results given here, in a joint ALT’04paper (Goldsmith
et al., 2004a).

References

Dana Angluin. Learning propositional Horn sentences with hints. Technical Report
YALEU/DCS/RR-590, Department of Computer Science, Yale University, December 1987a.

Dana Angluin. Learning regular sets from queries and counterexamples. Inform. Comput., 75(2):
87–106, November 1987b.

Dana Angluin. Queries and concept learning.Machine Learning, 2(4):319–342, April 1988.

Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctionsof Horn clauses.Machine
Learning, 9:147–164, 1992.

Krzysztof R. Apt, Howard Blair, and Adrian Walker. Towards a theory of declarative knowledge. In
J. Minker, editor,Foundations of Deductive Databases and Logic Programming, pages 193–216.
Morgan Kaufmann, Los Altos, CA, 1988.

Hiroki Arimura. Learning acyclic first-order Horn sentences from entailment. InAlgorithmic Learn-
ing Theory, 8th International Workshop, ALT ’97, Sendai, Japan, October 1997, Proceedings,
volume 1316 ofLecture Notes in Artificial Intelligence, pages 432–445. Springer, 1997.

Peter Auer and Philip M. Long. Structural results about on-line learning models with and without
queries.Machine Learning, 36(3):147–181, 1999.

Avrim Blum, Lisa Hellerstein, and Nick Littlestone. Learning in the presence offinitely or infinitely
many irrelevant attributes.J. of Comput. Syst. Sci., 50(1):32–40, 1995. Earlier version in 4th
COLT, 1991.

Avrim Blum, Jeffrey Jackson, Tuomas Sandholm, and Martin Zinkevich. Preference elicitation and
query learning.Journal of Machine Learning Research, 5:649–667, 2004.

Nader Bshouty. Exact learning Boolean function via the monotone theory.Information and Com-
putation, 123:146–153, 1995.

Nader Bshouty and Lisa Hellerstein. Attribute-efficient learning in query and mistake-bound mod-
els. J. of Comput. Syst. Sci., 56(3):310–319, 1998.

Ashok K. Chandra and David Harel. Horn clause queries and generalizations. Journal of Logic
Programming, 2:1–15, 1985.

Jignesh Umesh Doshi. Revising Horn formulas. Master’s thesis, Dept. of Computer Science, Uni-
versity of Kentucky, 2003.

1937

GOLDSMITH AND SLOAN

Judy Goldsmith, Robert H. Sloan, and György Tuŕan. Theory revision with queries: DNF formulas.
Machine Learning, 47(2/3):257–295, 2002.

Judy Goldsmith, Robert H. Sloan, Balázs Sz̈orényi, and Gÿorgy Tuŕan. New revision algorithms.
In Algorithmic Learning Theory, 15th International Conference, ALT 2004, Padova, Italy, Octo-
ber 2004, Proceedings, volume 3244 ofLecture Notes in Artificial Intelligence, pages 395–409.
Springer, 2004a.

Judy Goldsmith, Robert H. Sloan, Balázs Sz̈orényi, and Gÿorgy Tuŕan. Theory revision with
queries: Horn, read-once, and parity formulas.Artificial Intelligence, 156:139–176, 2004b.

Russell Greiner. The complexity of theory revision.Artificial Intelligence, 107:175–217, 1999a.

Russell Greiner. The complexity of revising logic programs.J. Logic Programming, 40:273–298,
1999b.

Peter L. Hammer and Alexander Kogan. Quasi-acyclic propositional Hornknowledge bases: opti-
mal compression.IEEE Trans. Knowl. Data Eng., 7:751–762, 1995.

Moshe Koppel, Ronen Feldman, and Alberto Maria Segre. Bias-driven revision of logical domain
theories.Journal of Artificial Intelligence Research, 1:159–208, 1994.

Evelina Lamma, Fabrizio Riguzzi, and Luı́s Moniz Pereira. Belief revision via Lamarckian evolu-
tion. New Generation Computing, 21:247–275, 2003.

Raymond J. Mooney. A preliminary PAC analysis of theory revision. In Thomas Petsche, edi-
tor, Computational Learning Theory and Natural Learning Systems, volume III: Selecting Good
Models, chapter 3, pages 43–53. MIT Press, 1995.

Dirk Ourston and Raymond J. Mooney. Theory refinement combining analytical and empirical
methods.Artificial Intelligence, 66:273–309, 1994.

Bradley L. Richards and Raymond J. Mooney. Automated refinement of first-order Horn-clause
domain theories.Machine Learning, 19:95–131, 1995.

Robert H. Sloan, Balázs Sz̈orényi, and Gÿorgy Tuŕan. Projective DNF formulae and their revision.
In Learning Theory and Kernel Machines, 16th Annual Conference on Learning Theory and 7th
Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings,
volume 2777 ofLecture Notes in Artificial Intelligence, pages 625–639. Springer, 2003.

Geoffrey G. Towell and Jude W. Shavlik. Extracting refined rules fromknowledge-based neural
networks.Machine Learning, 13:71–101, 1993.

Allen Van Gelder. Negation as failure using tight derivations for generallogic programs. In
J. Minker, editor,Foundations of Deductive Databases and Logic Programming, pages 149–176.
Morgan Kaufmann, Los Altos, CA, 1988.

Stefan Wrobel. First order theory refinement. In L. De Raedt, editor,Advances in ILP, pages 14–33.
IOS Press, Amsterdam, 1995.

Stefan Wrobel.Concept Formation and Knowledge Revision. Kluwer, 1994.

1938

