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Abstract

The aim of this contribution is to present a tutorial on léagralgorithms for a single neural layer
whose connection matrix belongs to the orthogonal groupg.algorithms exploit geodesics appro-
priately connected as piece-wise approximate integraleo&xact differential learning equation.
The considered learning equations essentially arise fhrenRiemannian-gradient-based optimiza-
tion theory with deterministic and diffusion-type gradiefihe paper aims specifically at reviewing
the relevant mathematics (and at presenting it in as muaisgeaent way as possible in order to
make it accessible to readers that do not possess a backgrodiiferential geometry), at bring-
ing together modern optimization methods on manifolds amd@paring the different algorithms
on a common machine learning problem. As a numerical cashssive consider an application
to non-negative independent component analysis, althdugtould be recognized that Rieman-
nian gradient methods give rise to general-purpose algost by no means limited to ICA-related
applications.

Keywords: differential geometry, diffusion-type gradient, Lie gpsy non-negative independent
component analysis, Riemannian gradient

1. Introduction

From the scientific literature, it is known that a class of learning algorithmsifidficial neural
networks may be formulated in terms of matrix-type differential equations twfork’s learnable
parameters, which give rise to learning flows on parameters’ set. Oftelm differential equations
are defined over parameter spaces that may be endowed with a spemxifietge such as the general
linear group, the compact Stiefel manifold, the orthogonal group, thesBran manifold and the
manifold of FIR filters (Amari, 1998; Fiori, 2001, 2002; Liu et al., 2004; Zhang et al., 2002),
that describes the constraints that the network parameters should fulfithahis worth taking
into account properly. From a practical viewpoint, the mentioned diffexeequations should be
integrated (solved) properly through an appropriate numerical integratgthod that allows us
to preserve the underlying structure (up to reasonable precision).midyise viewed as defining
a suitable discretization method in the time domain that allows converting a différeatiaing
equation into a discrete-time algorithm.

1. Roughly speaking, the manifold of FIR filters may be regarded asethef sectangular matrices whose entries are
polynomials in a complex-valued variable.
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With the present contribution, we aim at studying and illustrating learningitthgos for a single
neural layer whose connection matrix belongs to the orthogonal graaipistthe group of square
orthogonal matrices. As an appropriate approximation of the exact lgafloius, the algorithms
exploit approximate geodesics suitably glued together, as formerly prbfysEiori (2002) and
Nishimori (1999).

As a case-study, we consider an application to geodesic-learning-basenegative indepen-
dent component analysis, as proposed by Plumbley (2003). We prbsea different learning
algorithms that are based on gradient-type optimization of a non-negatipdandent component
analysis criterion over the group of orthogonal matrices. The first tworititgns arise from the
direct application of Riemannian gradient optimization without and with geodiesicsearch, as
proposed by Plumbley (2003). The third algorithm relies on a randomizadiegtt optimization
based on diffusion-type Riemannian gradient, as proposed by Liu 0a4).

The contribution of the present tutorial may be summarized via the following&ays:

e It provides a clear and well-motivated introduction to the mathematics needeesenp the
geometry-based learning algorithms.

e It clearly states and illustrates the idea that, when we wish to implement a gradissd-
algorithm on a computer, it is necessary to discretize the differential lgpegnations in
some suitable way (the ‘gradient flow’ simply cannot be computed exacthaittipe).

e In order to effect such discretization, we may not employ standard tizatien methods
(such as the ones based on Euler forward-backward discretizatiah}jo not work as they
stand on curved manifolds. We should therefore resort to more soptesticéegration tech-
niques such as the one based on geodesics.

e In order to improve the numerical performances of the learning algorithnmigét ten-
tatively try adding some stochasticity to the standard gradient (throughalkechICMC
method) and try a geodesic search. It is not guaranteed that the abatiesrad improve-
ment works on a concrete application, therefore it is worth testing them An i@oblem.
The results on this sides are so far disappointing, because numericaltmakhown that
standard Riemannian gradient with no geodesic search nor stochastubéy adtperforms
the other methods on the considered Cgroblem.

Although in the machine learning community the presented differential georbassd learn-
ing algorithms have so far been primarily invoked in narrow contexts suphiraspal/independent
component analysis (interested readers might want to consult, for exdfiqrig2001), Celledoni
and Fiori (2004) and Plumbley (2003) for a wide review), it should lbegeized that differential-
geometrical methods provide a general-purpose way of designing lgaatgorithms, which is
profitable in those cases where a learning problem may be formulated mattedipatican opti-
mization problem over a smooth manifold. Some recent advances and appbaztitbese methods
are going to be described in the journal special issue whose contemhisasized in the editorial
by Fiori and Amari (2005).

The paper is organized as follows. The purpose of Section 2 is to brgfhllisome concepts
from algebra and differential geometry, which are instrumental in thelol@weent of the presented
learning algorithms. In particular, the concepts of algebraic groupgreéiftial manifolds and Lie
groups are recalled, along with the concepts of right-translation, Riemragradient and geodesic

744



QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

curves. Then, these results are customized to the case of the orthggaumalof concern in the
present paper. Geodesic-based approximations of gradient-typabpdifferential equations over
the orthogonal group are also explained. The Section 2 also presemsngxies on the stability
of such learning equations as well as on the relationship between thentgetdearning theory
and the well-known natural-gradient theory and information geometry yhe®ection 3 presents
two deterministic-gradient learning algorithms, one of which is based on tti@iration of the
learning stepsize via ‘geodesic search’. Next, the concept of difittsioe gradient on manifolds is
recalled in details and a third learning algorithm based on it is presentet.l&raing algorithm
also takes advantage of simulated annealing optimization technique combined avkbWwChain
Monte-Carlo sampling method, which are also recalled in the Section 3, alongavith of their
salient features. Section 4 deals with hon-negative independent cemtpamalysis. Its definition
and main properties are recalled and the orthogonal-group Riemanmidiegrof the associated
cost function is computed. Such computation allows customizing the threeig&iemannian-
gradient-based geodesic algorithms to the non-negative independgmticent analysis case. Also,
a fourth projection-based algorithm is presented for numerical compapispose. The details
of algorithms implementation and the results of computer-based experimergsnpedfon non-
negative independent component analysis of gray-level image mixtteesso illustrated in the
Section 4. Section 5 concludes the paper.

2. Learning Over the Orthogonal Group: Gradient-Based Differential Systemsand
Their Integration

The aims of the present section are to recall some basic concepts frenexifil geometry and to
derive the general form of gradient-based learning differentisd&ogpus over the orthogonal group.
We also discuss the fundamental issue of solving numerically such leariffieigitial equations
in order to obtain a suitable learning algorithm.

2.1 Basic Differential Geometry Preliminaries

In order to better explain the subsequent issues, it would be benefictalath some basic concepts
from differential geometry related to the orthogonal gra(p).

An algebraic grougG, m,i, e) is a sefG that is endowed with an internal operation G x G —
G, usually referred to as group multiplication, an inverse operatio® — G, and an identity
elemente with respect to the group multiplication. These objects are related in the follomayg
For every elements y,z € G, it holds that

m(x,i(x)) = m(i(x),X) = e, m(x,e) = m(e,X) =X
andm(x, m(y,z)) = m(m(x,y), z).

Note that, in general, the group multiplication is not commutative, that is, givenetarments
X,y € G, it holdsm(x,y) # m(y, x).

Two examples of algebraic groups &#, +, —,0) and (Gl(p),-, 1,1p). The first group is the
set of all integer numbers endowed with the standard addition as group maliighicIn this case,
the inverse is the subtraction operation and the identity is the null element. ladbedsexample,
we considered the set of non-singular matrices:

GI(p)E[X € RP*P| det(X) # 0}, )
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endowed with standard matrix multiplication as group multiplication operation. In this case, the
inverse is the standard matrix inverse and the identity is the identity miatrik is easy to show
that both groups operations/identity satisfy the above general conditidsis counterexample,
the set of the non-negative integer numb&gs(= IN) does not form a group under standard ad-
dition/subtraction. A remarkable difference between the two groups dbdkiat the first one is a
discrete group while the second one is a continuous group.

A useful concept for the economy of the paper is the one of differemizadifold. The formal
definition of a differential manifold is quite involved, because it requiresige definitions from
mathematical topology theory and advanced calculus (Olver, 2003). ptactically, a manifold
may be essentially regarded as a generalization of curves and surfdigh-dimensional space,
that is endowed with the noticeable property of being locally similar to a flatli@&an) space.
Let us consider a differential manifols’ and a poin€ on it. From an abstract point of vieg,is
an element of a set/ and does not necessarily possess any particular numerical featuralelr
to be able to make computations on manifolds, it is convenient to ‘coordinatiZg ithis aim, a
neighborhood (open sat) C M is considered, which belongs to, and a coordinate mgpU — E
is defined, wher& denotes a Euclidean space (as for example-lihe set ofp-dimensional real-
valued vectors — or IR‘P — the set of thep x p real-valued matrices —). The functignneeds to
be a one-to-one map (homeomorphism). In this way, we attach a coordinad€g) to the point
&. As Y is a homeomorphism, there is a one-to-one correspondence between anpaimanifold
and its corresponding coordinate-point, therefore normally the two ptmoeay be confused and
we may safely speak of a poire M. About these concepts, two short notes are in order:

e Borrowing terms from maritime terminology, a trip(@),U, p) is termedcoordinate chart
associated to the manifoldf. Such notation evidences that the elemanendU C M are
necessary to coordinatize a point on the manifold and that the coordirzete Isps dimension
p. If the dimension is clear from the context, the indicatiorpahay of course be dispensed
of.

¢ A main concept of differential geometry is thatery geometrical property is independent of
the choice of the coordinate systeias a safety note, it is important to remark that, when
we choose to express geometrical relationships in coordinates (as it is impdis#hymed
by the above-mentioned ‘confusion’ between a péimt M and its coordinat € £) we
are by no means abandoning this fundamental principle, but we are glieyiine practical
need of algorithm implementation on a computer that requires — of necessitye-eslicit
representation of the quantities of interest.

In general, it is impossible to cover a whole manifold with a unique coordinate mherefore,
the procedure for coordinatizing a manifold generally consists in covétringth a convenient
number of neighborhooddy, each of which is endowed with a coordinate mpp: Uy — ‘%,
with Z¢ being an Euclidean space of dimensipnwhich, by definition, denotes the dimension
of the manifold itself. Technically, the s¢ty} is termed abasisfor the manifold and it does
not need to be finite (but it is inherently countable). It is important to note thajeneral, the
neighborhood&Jy may be overlapping. In this case, the mapsneed to satisfy some constraints
termed ‘compatibility conditions’ which formalize the natural requirement thaketsbould be a
one-to-one smooth correspondence between any two differenticatgdystems. Technically, if
Uk NUp # 0 then the mapsp;l oy and qujl o ik, which are termed ‘transition functions’ and
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represent coordinate changes, should be diffeomorphisms, ti@it fsinctions endowed witle™
inverse.

A smooth manifold is by nature a continuous object. A simple example is the unit-eppere

Spd:ef{x € RPL|xTx = 1}. This is a smooth manifold of dimensignembedded in the Euclidean

space IR*1, in fact with only p coordinates we can identify any point on the sphere. Olver (2003)
shows how to coordinatize such manifold through for example, the steqgigrprojection, which
requires two coordinate maps applied to two convenient neighborhodtie ephere.

An interesting object we may think to on a differential manifilis a smooth curvg: [a,b] —
M. In coordinates,x = y(t) describes a curve on the manifald delimited by the endpointga)
andy(b). Here, the manifold is supposed to be immersed in a suitable ambient Euclidezysp
of suitable dimension (for instance, the sph&Pemay be though of as immersed in the ambient
spaceq = IRPHY).

Let us now suppose @ [a,b] and let us consider a curyepassing by a given pointe M,
namelyx = y(0). The smooth curve admits a tangent veetpat the pointx on the manifold, which
is defined by

0 €A.

Clearly, the vectowny does not belong to the curved manifald but is tangent to it in the point
X. Let us imagine to consider every possible smooth curve on a manifold of giomgmpassing
through the poink and to compute the tangent vectors to these curves in thexpdihe collection
of these vectors span a linear space of dimengiowhich is referred to atangent spacé¢o the
manifold M at the pointx, and is denoted witfiy M C 4.

As a further safety note, it might deserve to recall that, in differentiairgetny, the main way
to regard for example, tangent spaces and vector fields is based ereutifil operators (Olver,
2003). This means, for instance, that a tangent vec®MM of some smooth manifoldV/ is
defined in such a way that if denotes a smooth functional space then for instancé — IR,
namelyv(f) is a scalar forf € #. In this paper we chose not to invoke such notation. The reason
is that we are interested in a special matrix-type Lie group (the orthogomap) whose geometry
may be conveniently expressed in terms of matrix-type quantities/operatioashdoretical bridge
between the differential-operator-based representation and the masextbepresentation is given
by the observation that every differential operatofifi/ may be written as a linear combination of
elementary differential operators, that form a basis for the tangeoé sgraough some coefficients.
The structure of the tangent space is entirely revealed by the relatiorsh@y) these coefficients.
Therefore, we may choose to represent tangent vectors as algedwtiics/matrices of coefficients,
that is exactly what is implicitly done here.

It is now possible to give the definition of Riemannian manifold, which is a [E#irg) formed
by a differential manifoldM and an inner produdy(vy, Ux), locally defined in every poirt of
the manifold as a bilinear function fromM x TyM to IR. It is important to remark that the inner
productgx(-,-) acts on elements from the tangent space to the manifold at some given point, it
therefore depends (smoothly) on the point

On a Riemannian manifol@/, g), we can measure the length of a vectar TyM as

def
IVI=V/ge(v,v).

2. Itis worth remarking that a curve may interest different coordinhgets(Wy, Uk, p), therefore, it is generally neces-
sary to split a curve in as many branches (or segments) as coordzats it bypasses.
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Also, a remarkable property of Riemannian manifolds is that we can measuentith of a curve
y: [a,b] — M on the manifold through the local metric on its tangent spaces. In fact, thinlehg

the curvey(-) is, by definition,Lyd:Eff:ds, wheredsis the infinitesimal arc length. From geometry
we know thatds= ||y(t)||dt, therefore we have

b
Ly= [ /avo (0. 0)dt @

The net result of this argument is that, through a definition of an innewgtanh the tangent spaces
to a Riemannian manifold, we are able to measure the length of paths in the mangtb)aitd this
turns the manifold into a metric space

A vector fieldvyx on manifoldM specifies a vector belonging to the tangent spadé to the
manifold at every poink.

With the notions of vector field and curve on a manifold, we may define the imypartacept
of geodesics A geodesic on a smooth manifold may be intuitively looked upon in at least three
different ways:

e On a general manifold, the concept of geodesic extends the concsipaight line on a flat
space to a curved space. An informal interpretation of this property isatgabdesic is a
curve on a manifold that would resemble a straight line in an infinitesimal neigbbd of
any of its points. The formal counterpart of this interpretation is rathedvedobecause it
requires the notion of covariant derivative of a vector field with resfmeanother vector field
and leads to a second-order differential equation involving the Ches$gifuctural functions
of the manifold (Amari, 1989).

e On a Riemannian manifold, a geodesic among two points is locally defined ahadhtest
curveon the manifold connecting these endpoints. Therefore, once a mietrids specified,
the equation of the geodesic arises from the minimization of the functional (2jegfect to
y. In general, the obtained equation is difficult to solve in closed form.

e Another intuitive interpretation is based on the observation that a geodeaitaging from a
point x on the manifold coincides to the path followed by a particle sliding on the manifold
itself with constant scalar speed specified by the norm of the vegtdfor a manifold em-
bedded in a Euclidean space, this is equivalent to require that the aticelef the particle
is either zero or perpendicular to the tangent space to the manifold in eviety p

The concept of geodesic and geodesic equation are recalled herenfamiyially. Appendix A
provides a detailed account of these and related concepts just tousteedinch as the Christoffel
functions (or affine-connection coefficients).

An important vector field often considered in the literature of function optiminadiger man-
ifolds is thegradient vector field If we consider a smooth functioh: M — IR and define its
gradient gra@if, then a oft-considered differential equation is:

dx

gt = =orad’f, (3)

where the signs- or — denote maximization or minimization of the functiérover the manifold.
The solution of the above differential equation is referred tgraslient flowof f on M.
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Formally, the concept ajradienton a Riemannian manifold may be defined as follows. Let us
consider a Riemannian manifolé@/ ,g) and, for every poink, the tangent spacgM . Let us also
consider a smooth functioh: M — IR, the standard Euclidean inner prodgétin T, and the
Jacobian graff = % of the functionf with respect toc. The Riemannian gradient grﬁd of the
function f over the manifoldM in the pointx is uniquely defined by the following two conditions:

e Tangency conditionFor everyx € M, grad’ f € T,M.

 Compatibility condition For everyx e M and every € T,M, gy(grad f,v) = g% (gradf f,v).

The tangency condition expresses the fact that a gradient vector aysakangent to the base-
manifold, while the compatibility condition states that the inner product, under é&meata mani-
fold, of a gradient vector with any other tangent vector is invariant witlchitesen metric. However,
note that the gradiertoesdepend on the metric. The ‘reference’ inner product is assumed as the
Euclidean inner product that a flat space may be endowed with. For éestiithe base manifold
M has dimensiorp, then it may be assumefl = T,E = IRP in every pointx andg”(u,v) = vTu.
It is worth noting that such special metricugiform, in that it does not actually depend on the point
X.

In order to facilitate the use of the compatibility condition for gradient computaitismsome-
times useful to introduce the conceptrairmal spacef a Riemannian manifold in a given point
under a chosen metrig?:

NeM E'(n € 2|g(n,v) =0, Wv € M}

It represents the orthogonal complement of the tangent space witltrésa Euclidean ambient
spaceq that the manifoldM is embedded within.

With the notion of algebraic group and smooth manifold, we may now define akwedin
object of differential geometry, that is thée group A Lie group conjugates the properties of an
algebraic group and of a smooth manifold, as it is a set endowed with batip groperties and
manifold structure. An example of a Lie group that we are interested in withipdper is the

orthogonal group
def

O(p)={X € RP*PIXTX =1p}. (4)
It is easy to verify that it is a group (under standard matrix multiplication aneréiwn) and it is
also endowed with the structure of a smooth manifold.

Consequently, we may for instance consider the tangent 9pé&oef a Lie groupG at the point
X. A particular tangent space 1§G, namely the tangent at identity, which, properly endowed with
a binary operator termdde bracket has the structure oflae algebraand is denoted witly.

An essential peculiarity of the Lie groug&, m,i,e) is that the whole group may be always
brought back to a convenient neighborhood of the idemtizmd the same holds for every tangent
spacel,G, Vx € G, that may be brought back to the algebrd_et us consider, for instance, a curve
y(t) € G passing through the point with t € [a, b] such that G= [a, b] andx = y(0). We may define

the new curvé/(t)d:Efm(y(t),i(x)) that enjoys the property(0) = e; converselyy(t) = m(¥(t),x).
This operation closely resembles a translation of a curve into a convergggitbiorhood of the
group identity, so that we can define a special operator referredrighdgranslationas

Re: G — G, Re(y)Em(y,i(x)).
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It is clear that every tangent vecteg to the curvey at x is also translated to a tangent veclioof
the curvey(t) by a conveniently defined operator:

dR(: kG — ToG , ¥ = dR(V),

which is commonly referred to @angent mapassociated to the (right) translati®. Such map
is invertible and allows us to translate a vector belonging to a tangent spacgrofip to a vector
belonging to its algebra (and vice-versa).

From the above discussion, it is straightforward to see that, if the structyrés known for
a groupG, it might be convenient to coordinatize a neighborhood of the identité dfirough
elements of the associated algebra with the help of a conveniently-seleatedimorphism. Such
homeomorphism is known in the literature égponential ma@nd is denoted with expg — G.
It is important to recall that ‘exp’ is only a symbol and, even for matrix-tigmegroups,does not
necessarily denote matrix exponentiation

2.2 Gradient Flows on the Orthogonal Group

As mentioned, the orthogonal gro@{p) is a Lie group, therefore it is endowed with a manifold
structure. Consequently, we may use the above-recalled instrumentseintordefine gradient-
based learning equations of the kind (3) o@p) and to approximately solve them.

Some useful facts about the geometrical structure of the orthogong @) are:

e The standard group multiplication @ p) is non-commutative (fop > 3).

e The groupO(p) manifold structure has dimensio?ﬁpz;l). In fact, every matrix inO(p)
possessep’ entries which are constrained IBSPZL” orthogonality/normality restrictions.

e The inverse operatioiiX) = X~ coincides with the transposition, naméfx) = XT.

e The tangent space of the Lie gro@{p) has the structur@xO(p) = {V € IRP*P|VTX +
XTV = 0p}. This may be proven by differentiating a generic cuyg € O(p) passing
by X fort = 0. Every such curve satisfies the orthogonal-group characteristatiequ4),
namelyy" (t)y(t) =1, therefore, after differentiation, we ggt(0)y(0) +y' (0)y(0) = 0,. By
recalling that the tangent space is formed by the velocity veg{@)s the above-mentioned
result is readily achieved.

e The Lie algebra associated to the orthogonal group is the set of skemedyic matrices
5o(p)d:ef{\7 € IRP*PIV +VT =0p}. Infact, at the identityX =1 5), we haveTl; O(p) = so(p).

e The Lie algebrao(p) is a vector space of dimensi(ﬂ&”{—l).

First, it is necessary to compute the gradient of a functio®(p) — IR over the groug(p) in
view of computing the geodesic that emanates from a poiatO(p) with velocity proportional to
gracﬁ(p)f. In this derivation, we essentially follow the definition of Riemannian gradi@rgn in
Section 2.1.

3. This is the reason for which the Lie algebra of a Lie group is sometimegtkethe ‘generator’ of the group.

750



QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

Let the manifoldO(p) be equipped with the canonical induced megfie” , that isgg(p) (U,V)d:ef

trlUTV], for everyX € O(p) and everyJ,V € TxO(p). This metric coincides with the standard Eu-
clidean metrigR”” in IRP*P. Having endowed the manifold(p) with a metric, it is possible to
describe completely its normal space, provided the ambient spé&cendowed with the canonical
Euclidean metric. In fact, we have

NxO(p) = {N =XSe RP*P|trNTV] =0, YV € TxO(p)}.

The matrixS should have a particular structure. In fact, the normality condition, in this, eastes
0=tr[VT(XS)] = tr[SVTX] = tr[(XTV)ST]. The latter expression, thanks to the structure of tan-
gent vectors, is equivalent tetr[(VTX)ST], therefore the normality condition may be equivalently
rewritten as (V' X)(S— S™)] = 0. In order for this to be true, in the general case, it is necessary
and sufficient thaB= ST. Thus:

NxO(p) = {XS|S" = Se IRP*P}.

Let graq?(p)f be the gradient vector df at X € O(p) derived from the metrig®P). According to
the compatibility condition for the Riemannian gradient:

oK™ (v.gradd” " 1) = 7P (v, gra ™' 1),
for every tangent vecto¥ € TxO(p), therefore:
aR* (v, gradd” " f — gra'?’ f) = 0,

for all V € TxO(p). This implies that the quantity grﬁ&xpf — gracﬁ(p)f belongs toNxO(p).
Explicitly:

gradd” " f = gradl ™ f + XS, (5)
In order to determine the symmetric matBxwe may exploit the tangency condition on the Rie-

mannian gradient, name(gyracfz(p> f)TX4+XT (gracfz(p> ) = 0p. Let us first pre-multiply both sides
of the equation (5) b, which gives

XTgradd®"f = XTgrad” f +s.
The above equation, transposed hand-by-hand, becomes
(grad?” " £)TX = (grad) P f)TX +S.
Hand-by-hand summation of the last two equations gives
(grad®®”? £)TX + X (grady” " f) = 25,

that is: § .

(grad®®? £)TX + XT (grady” " f)
= 5 . (6)

By plugging the expression (6) into expression (5), we get the formeoRilemannian gradient in
the orthogonal group, which is:

pxp RPXP (T
(. gradd " f —X(gradd " f)TX
gracﬁ f= 5 .

S
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About the expression of the geodesic, as mentioned, in general it issypte@obtain in closed
form. In the present case, with the assumptions considered, the geod&{p) departing from
the identity with velocityV € so(p) has expressiofi(t) = exp(tV). (It is immediate to verify that
¥(0) =1, and % 0= V.) It might be useful to verify such essential result by the help of the
following argumen{E.

As already recalled in Section 2.1, when a manifold is embedded in a Eucligeas,she
second derivative of the geodesic with resepct to the parameter is edftteorzperpendicular to
the tangent space to the manifold in every point (see Appendix A). Tdrexed geodesig(t) on
the Riemannian manifoldO(p),g°(P)) embedded in the Euclidean ambient spdB&<P, gR**"),
departing from the identityy, should be such thaft) € Ni,O(p), therefore it should hold:

§it) = Y()S(t) , with ST (1) = S(0). )

Also, we known that any geodesic branch belongs entirely to the baseatdattiereforey" (t)j(t) =
I p. By differentiating two times such expression with respect to the parami¢isreasily gotten:

=T ~

V' (OF0) + 2 (©)F() + T () = 0p. (8)

By plugging equation (7) into equation (8), we fis@) = —y' (t){(t), which leads to the second-
order differential equation on the orthogonal group:

() = O O,
to be solved with initial conditiong(0) = I , andy(0) = V. Itis a straightforward task to verify that
the solution to this second-order differential equation is given by thepanameter curvg(t) =
exp(tV), where exp-) denotes matrix exponentiation.
The expression of the geodesic in the position of interest may be made ebxpliaking advan-
tage of the Lie-group structure of the orthogonal group endowed witbahenical metric. In fact,

let us consider the paX € O(p) and grag(p)f € TxO(p) as well as the geodesjtt) that emanates

from X with velocity V proportional to graﬁ(p)f, and let us suppose for simplicity thgD) = X.
Let us now consider the right-translated cui¥e = y(t)X'. The new curve enjoys the following
properties:

1. Itis such tha{(0) = |, therefore it passes through the identity of the grap).
2. The tangent vectdr to the curve aX is ‘transported’ into the tangent vector:
vV =VvXxT, )
at the identity, s&/ € so(p).
3. As the right-translation is an isometry, the cui¥®) is still a geodesic departing from the
identity matrix with velocity proportional t& = (gracﬁ(p) f)XT.

From these observations, we readily obtain the geodesic in the positionresitdte= O(p), namely
y(t) = exp(tV)X.

As this is an issue of prime importance, we deem it appropriate to verify thattirey(t) just
defined belongs to the orthogonal group at any time. This may be provesmigyuting the quantity
y' (t)y(t) and taking into account the identity éxV) = exp(—tV). Then we have

Y (©)y(t) = XT exp’ (tV) exp(tV)X = XT exp(—tV) exp(tV)X = XTX =1,
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2.3 Commentson Stability and the Relationship with Natural Gradient Theory

Some comments on the questions of the stability of gradient-based learninighafgoon the or-
thogonal group and on the relationship of Riemannian gradient-basethigaigorithms on the
orthogonal group with the well-known ‘natural’ gradient-based optimizatieory are in order.
When applied to the manifol@/ = O(p), the general gradient-based learning equation (3) has
the inherent property of keeping the connection maxriwithin the groupO(p) at any time. It is
very important to note that the discrete-time version of this learning equagsaoritied in Section 3,
also enjoys this noticeable property. When for example, learning algoritheegllon the manifold
Gl(p), defined in equation (1), are dealt with, one of the theoretical effogisimed to prove their
stability consists in showing that there exists a compact sub-manifold that igracter for the
learning system. The above observations reveal that the problem ofihenee of an orthogonal-
group-attractor for discrete-time learning systems based on the ortHdgemgoup does not arise
when a proper integration algorithm is exploited. Moreover, as oppostbe teuclidean space IR
and the general-linear groupl(p), the orthogonal grou®(p) is a compact space. This means
that no diverging trajectories exist for the learning system (3) or itselis¢ime counterpart. Such
effect may be easily recognized in the two-dimensiopa(2) case, through the parameterization

gt [~ — SO2):
cosl —sinf
X= [ sinB  cosB } ' (10)

It is worth noting that deéX) = 1, while, in general, the determinant of an orthonormal matrix
may be either-1 or +1, in fact 1= detXTX) = def(X) for X € O(p). This means that the
above parameterization spans one of the two components of the orthggonpltermedspecial
orthogonalgroup and denoted b$Q(p). (In the above notation, we easily recognize a coordinate
chart(y,SQ(2),1) associated t®(2).) Now, by singling out the columns of the matdix= [X1 x2],
we easily see thdx;|| = ||x2|| = 1, which proves the spa&((2) is compact. The same reasoning
may be repeated for the remaining componer®().

In its general formulation, the widely-known ‘natural gradient’ theomjiéarning may be sum-
marized as follows. The base-manifold for learning is the group of nayuinmatricessI (p) that
is endowed with a metrics based on the Fisher metric tensor which, in turesiérom a trun-
cated expansion of the Kullback-Leibler informational divergence (K{&nari, 1998). The latter
choice derives from the possibility — offered by the KLD — to induce a meitmitise abstract space
of neural networks having same topology but different connectioampeters, which is referred to
asneural manifold

In the independent component analysis case, a special structurewisaged by Yang and
Amari (1997) for the natural gradient by imposing a Riemannian structarthe Lie group of
non-singular matrice&l(p). We believe it could be useful to briefly recall this intuition here by
using the language of Lie groups recalled in Section 2.1. First, the tangace st identityl ,
to Gl(p) is denoted bygl(p), as usual. Such Lie algebra may be endowed with a scalar product
gﬁ'(p)(-, ) 1 gl(p) x gl(p) — IR. As there is no reason to weight in a different way the components

of the matrices il(p), itis assume@ﬁ)'(p)(U,V)":eftr[UTV]. The question is now how to define the

scalar product in a generic tangent sp&e€l(p), with X € Gl(p). Let us consider, to this purpose,

a curvey(t) € Gl(p) passing by the poinX att = 0, namelyy(0) = X. This curve may always

be translated into a neighborhood of the identity of the group by the Ieftlatans?(t)d:efX‘ly(t),
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in fact, the inverse&X—! surely exists becaug@l(p) is the set of all invertiblep x p matrices by
definition and nowy(0) = | ,. Therefore, itV € TxGl(p) denotes the tangent vector to the cuyite
att = 0 andV e gl(p) denotes the tangent vector to the cuj¥® att = 0, they are related by the
corresponding tangent map— V = X ~1V. This observation may be exploited to define an inner
product on the tangent spacesGif p) by imposingthe Riemannian-structure invariance property:

gx P (U, V)EGP P (x U, x ) = tr[UT (X)X v,

Having defined a general (non-uniform) metric in the tangent spac&} po, we may now compute
the Riemannian (natural) gradient on it, by invoking the tangency and coriipatdonditions
as stated in Section 2.1. Actually, the tangency condition does not prowdeoastraint in the
present case, because evEfl(p) is ultimately isomorphic to IR“P. The compatibility condition,
instead, writes, for a smooth functidn Gl(p) — IR:

I(p of
gx gradf f,V)=tr [<6X> \

, VW € TxGl(p).

This condition implies:

I(p 11 af\ '
gratf X~ ax \
T
= gradASI Il = <g—;>
of
oX’

=0, YV € TxGI(p)

= gradPf = (XXT)=

Of course, a different form for the natural gradient may be obtaigedhbosing the right-translation
\”/(t)‘]':e'(y(t)x—1 as a basis for invariance, as done for example, by Yang and Amarv)19he
‘natural gradient’ theory fo6l(p) and the Riemannian-gradient-theory for the gr@{jp) are thus
somewhat unrelated, even if ultimately the ‘natural gradient’ is a Riemanngategit on the group
Gl(p) arising from a specific metric. Some further details on the optimization problemntbe
general linear group (about for example, using the exponential m&j (qn) have been presented
by Akuzawa (2001).

Another interesting comparison is with the information-geometry theory fonilegf In the
spirit of information geometry, the natural gradient works on a manifoldav&meterized likeli-
hood. Now, in two dimensions, the Riemannian geometry of the orthogonap gdefined by the
parameterization (10) above, may be clearly related to the information geooh#ig/binomial dis-
tribution defined by the variablesg such that +q= 1, via the transform = co(B), q = sir’(p).
Whether such link exists in any dimensigm* 3) is not known to the author and would be worth
investigating in future works. The same holds for the relationship with seoothelr (Newton)
method, which is known for the natural gradient (see, for example,&alk (2000) and references
therein) but whose relationship with general Riemannian gradient thetopeselucidated.

4. This interesting connection was suggested by a reviewer.
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3. Learning Over the Orthogonal Group: Three Algorithms

In order to numerically integrate a continuous learning differential equatiammanifold, a proper
discretization method should be exploited. On a flat space, a possibletiditioa method is line
approximation based on Euler’s or trapezoidal technique (or some mphéssoated techniques
such as the Runge-Kutta method). However, if applied to differential equsakiased on curved
manifolds, such ordinary discretization methods produce updating rukdaimat satisfy the man-
ifold constraints. Following the general differential-geometric knowledgye, possible ways to
tackle the problem are:

e The projection methadlt consists in projecting the updated value to the manifold after each
iteration step. More formally, this method consists in embedding the mariolaf interest
into a Euclidean space of proper dimensidand to discretize the differential equation whose
variable is regarded as belongingActhrough any suitable ordinary method. Then, in each
iteration, the newly found approximated solution is projected back to the mattii@dgh a
suitableprojector : 4 — M. The next iteration starts from the projected putative solution.

e The geodesic method he principle behind the geodesic method is to replace the line approx-
imation to the original differential equation by the geodesic approximation in théfofdhn
From a geometrical point of view, this seems a natural approximation beeagesodesic
on a manifold is a counterpart of a line in the Euclidean space. Furthermgemdesic on
a Riemannian manifold is a length-minimizing curve between two points, which lagkes q
appealing if we regard an optimization process as connecting an initial salotostationary
point of a criterion function through the shortest path.

The viewpoint adopted in the present contribution is that the geodesicHzguproach is the
most natural one from a geometric perspective and the most capabtaref éxtensions to different
base-manifolds. The projection method will also be considered, for casopgpurposes only, in
the section devoted to simulation results.

In particular, we suppose to approximate the flow of the differential legreiuation (3)
through geodesic arcs properly connected, so as to obtain a piecgeuwidesic-type approxima-
tion of the exact gradient flow. If we denote By € O(p) the pattern to be learnt (for instance the
connection matrix of a one-layer neural network), the consideredsggmtiased learning algorithm
corresponding to the exact Riemannian gradient flow is implemented by eoingjdearning steps
of the form:

Whi1= eann((gradﬁlzxp fwy - Wn(gracl/F\ell,D]Xp £)))Wh, (11)

where the index € IN denotes a learning step counter angddenotes an integration or learning
stepsize (the fact@} may be safely absorbed i) usually termedlearning) scheduler step-size.
It deserves underlining that the integration step-size may change #erasi®ns because it may be
beneficial to vary the step-size according to the progress of learnirginitial solutionWg should
be selected i©(p). It should be noted that the mati¥ plays now the role of the general matrix
X used in the previous section.

The aim of the present section is to consider three Riemannian gradientraigoover the
Lie group of orthogonal matrices. All three algorithms ensure that thesunetwork-state matrix
remain within the orthogonal group:

e Algorithm 1 uses a fixed step-size in the general geodesic-based parquation (11).
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¢ Algorithm 2 uses a geodesic line search for optimizing the step-size in theajgeedesic-
based learning equation (11).

e Algorithm 3 introduces stochasticity in the Algorithm 1, using a Markov-Chaonid-Carlo
method, jointly with an annealing procedure.

3.1 Deterministic Algorithms

A learning algorithm based on the findings of Section 2 may be stated as folldvese it is sup-
posed that a constant learning step-size is employed.

o Learning algorithm 1:

1. Setn= 0, generate an initial solutioW and setfo = f(Wy) and define a constant step-size
n.

2. Compute a candidate solutidvi, 1 through the equation (11), incremenaind return to 2,
unlessn exceeds the maximum number of iteration permitted: In this case, exit.

Formally, as mentioned in Section 2.1, the concept of geodesic is essentiallyttuarefore
the discrete steps (11) on the orthogonal group should be extendsehédirvalues of),. Instead
of keepingn, constant or letting it progressively decreases through some ‘coollmse, as it
is customary in classical learning algorithms, it could allegedly be convenieptitoize it during
learning. It is worth underlining at this point that the numerical evaluatioth@fgeodesic curve
through the exponential map, as well as the effective movement alonglagiepcare computation-
ally expensive operations.

Step-size adaptation may be accomplished through a proper ‘line seas@xplained in what
follows. Let us first define the following quantities for the sake of notatmmciseness:

VoElgrad}) " H)WT —Wn(grad) )T, En(t)Eexp(t). (12)

Starting from a pointV, at iteration stem, according to equation (11), the next point would be

En(t)W, therefore the learning criterion function would descend fifghV,,) to fn(t)d:eff (En(t)Wh).

From the definition off, which is continuous and defined on a compact manifold, it follows that
the functionf,(t) admits a point of minimum for€ T C IR™, that may be denoted &s If we are
able to findt, in a computationally convenient way, we may then sefgct t,. The operation of
searching for a convenient value as close as possilileisotermedgeodesic searchs it closely
resembles the familiar concept of ‘line search’.

Basically, we may perform a geodesic search in two different ways:

e By sampling the interval through a sequence of discrete inditgsomputing the value of
fa(tk) and selecting the value that grants the smallest cost.

e By computing the derivativ% and looking for the value of the indéxor which it is equal
(or sufficiently close) to zero. This approach would look advantagéddhs expression of
such equation could be handled analytically in an straightforward wayoWelfit is not the
case and that this approach looks excessively cumbersome from atetiomal viewpoint,
therefore it will not be adopted in this paper.
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A second learning algorithm based on the above considerations may lakastditdiows.

o Learning algorithm 2:
Setn = 0, generate an initial solutioWo and setfo = f(Wy).

Compute the quantity,, in the equations (12).
Perform a geodesic-search for the optimal step+gize

Compute a candidate soluti@, 1 through the equation (11) and evaluéte; = f(Wn1).

a c w0 noE

If f,.1 < f, then accept the candidate solution, increnreaind return to 2, unlessexceeds
the maximum number of iteration permitted: In this case, exit,li > f,, then proceed to
6.

6. Generate a small random step-size

7. Compute the candidate solutiw,,, through the equation (11), evaluafig 1 = f(Wn1),
incrementn and return to 2.

The steps 6 and 7 in the above algorithm have been introduced in ordeki®ttae case in which

the geodesic search gives rise to a candidate solution that causes tbhekisstennection pattern to
ascend the cost functioninstead of making it descend. In this case, moving along the geodesic of a
small random quantity does not ensure monotonic decreasing of thaunotbh, but it might help
moving to another zone of the parameter space in which the geodesic leauigingbe effective.

3.2 Diffusion-Type Gradient Algorithm

In order to mitigate the known numerical convergence difficulties assodiatie plain gradient-
based optimization algorithms, it might be beneficial to perturb the standard Riésmagradient to
obtain a randomized gradient. In particular, following Liu et al. (2004)nveg replace the gradient-
based optimization steps with joisimulated annealingndMarkov-Chain Monte-CarlgMCMC)
optimization technigue, which gives rise to a so-terndétlision-type optimization proces§he
Markov-Chain Monte-Carlo method was proposed and developed in $&adapapers by Hastings
(1970) and Metropolis et al. (1953).

It is worth recalling that, in classical algorithms, perturbations are easilydated by sam-
pling each network input one by one and by exploiting only such instantasneformation at a
time. When used in conjunction with gradient-based learning algorithms, thieeimheproduces
a stochastic gradient optimization based on a random walk on the paranpetees $he two main
reasons for which such choice is not adopted here are:

e When statistical expectations are replaced by one-sample mean, as it imatigtalone,
for example, in on-line signal processing, part of the information corgertaining to past
samples is discarded from the learning system, and this might be a seriowfeitteon
learning capability.

e The annealed MCMC method offers the possibility of actuatytrolling the amount of
stochasticity introduced in the learning system by properly setting the metied’param-
eters such as the annealing temperature. Classical random-walk ledgarithens — as the
one based on sampling each network input one by one — do not seerartewafh possibility.
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A general discussion on the possible benefits owing to the introductionasfastticity in gradient-
based learning systems has been presented by Wilson and Martine (2003

It is understood that in a learning process having a Euclidean spaes@sianifold, each step
is simply proportional to the gradient computed in the departing point, theréierlearning steps
may be directly perturbed in order to exploit randomized parameter-spacehs In the present
context, however, the base manif@dp) is curved, therefore it is sensible to perturb the gradient
in the Lie algebra and then apply the formulas explained in the Section 2.2 to twthpassociated
step in the base-group.

In short, simulated annealing consists in adding to the deterministic gradieam@macompo-
nent whose amplitude is proportional to a parameter referred tenagerature This mechanism
may help the optimization algorithm to escape local solutions, but it has the alc&walb occasion-
ally leading to changes of the variable of interest toward the wrong diregthanis, it may lead to
intermediate solutions with higher values of the criterion function when its minimuwuighd for
or vice-versa). Such drawback may be gotten rid of by adopting a M@YYE simulated annealing
optimization strategy where the diffusion-type gradient is exploited to genarpossible candi-
date for the next intermediate solution which is accepted/rejected on the basisappropriate
probability distribution.

According to Liu et al. (2004), the diffusion-type gradient on the algeb(p) may be assumed
as
d Mk

Vit (t) = V(t) +\/_@ Z Lk T

(13)
where\7( ) is the gradient (9X L} is a basis of the Lie algebsa(p), orthogonal with respect to the

metric gI the Mk(t) are real-valued, independent standard Wiener processes anddheeper
©>0 denotes the aforementioned temperature, which proves useful for silgaanealing during
learning. It is worth recalling that a Wiener process is a continuous-timéastic procesgt/(t)
fort > 0, that satisfies the following conditions (Higham, 2001):

e W(0) =0 with probability 1.

e For 0< 1 <t the random variable given by the incremeii(t) — (1) is normally dis-
tributed with mean zero and variante 1. Equivalently, W(t) — W(1) ~ v/t —TtA(0,1),
whereA[(0,1) denotes a normally distributed random variable with zero mean and unit vari-
ance.

e For 0< 1t <t <u<y, the incrementsW(t) — W (1) and W(v) — W(u) are statistically
independent.

The learning differential equation on the orthogonal group associatéeé gradient (13) reads

dw

FTo ~Vair ()W (1), (14)

is aLangevin-type stochastic differential equati/DE).
By analogy with physical phenomena described by this equation, suck 8sdtvnian motion

of particles, the solution to the LDE is termedddfusion process Under certain conditions on
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the criterion functionf, the solution of equation (14) is a Markov process endowed withigque
stationaryprobability density function (Srivastava et al., 2002), described by
def

mDE(W)_ﬁexp(—f(W)/O), (15)

whereZ(@) denotes the density-function normalizer (partition functiom).other terms, the LDE
‘samples’ from the distributiomy pe(W): This is a main concept in the method of using the LDE
to generate random samples according to a given energy/cost function.

The choice of assuming the probabilitype inversely proportional to the value 6fW) serves
at discouraging network states corresponding to high values of theérngarost function. Also, it
deserves to note that care should be taken of the problem related to #isteocy of the above
definition: The problem of the existence mfpg, that is connected to the existence of the partition
functionZ(©), must be dealt with. To this aim, it is worth noting tHgV) is a continuous function
of the argument which belongs to a compact space, we may therefoeethegdi (W) is bounded
from above and from below. Thus, the function éxg(W)) is bounded and its integral over
the whole orthogonal group through a coordinate-invariant measwelaie, such as the Haar
measure (Srivastava et al., 2002), is surely existent.

In order to practically perform statistical sampling via the LDE, we can distitgbetween
rejectionandMCMC methods:

1. The rejection algorithm is designed to give an exact sample from the digirib Let us
denote byr(x) a density to sample from a s& We can sample from another distribution
H(X) (instrumental distribution) such that sampling from it is practically easier tharaby
sampling fronmi(x). Then, itis possible to generatefrom p(x) and accept it with probability

whereM is a constant such that(x)/p(x) < M for all x € X. If the generated sample is
not accepted, rejection is performed until acceptance. When accéptedonsidered to be

an exact sample from(x). A consequence of adopting this method is that the number of
necessary samplings fropfx) is unpredictable.

2. In MCMC, a Markov chain is formed by sampling from a conditional distidoup(x|y): The
algorithm starts fronxg and proceeds iteratively as follows: At stepsamplex” from p(x|xn)
and compute the acceptation (Metropolis-Hastings) probability as

def . TI(X")H(%a[X")
““—m'“{l’m}’ (16)

then accepkx* with probability a,. This means letting, 1 = X* with probability oy, other-
wisexn11 = Xn. This is the main difference with rejection method: If the candidate sample is
not accepted, then the previous value is retained.

5. The theory presented by Srivastava et al. (2002) deals with theakpase in which the base-manifold@§3). This
result is not related to the dimension of the orthogonal group of interelsted) therefore it may be extended without
difficulty to the general cas®(p) of concern in the present paper.
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In the MCMC method, the quantify(x|y) denotes dransition probabilityas it describes the prob-
ability of ‘jumping’ from statey to statex. The total probability of transition from staig to state
Xn+1 iS given by the combination of the instrumental distributigry) and the Metropolis-Hastings
acceptation probability: The transition kerm@lxn1|%n) is, in fact:

K (¥e21%0) E (K 11%0) + (1= )31 — Xn)-

In order to gain a physical interpretation of the instrumental probakilityy), it pays to take
for example a symmetric instrumentél|y). Under this hypothesis, the ratio in the definition (16)
would becomeat(x*)/1(Xx,): The chain jumps to the stasé if it is more plausible ¢, = 1) than
the previous statg,, otherwise (casea, < 1), the chain jumps to the generated state according to
the probabilitya,. As an example of symmetric instrumental conditional probabijlityly) may be
assumed as Gaussiandimwith meany.

If the Markov chain{x,}n—1,...n cOnverges to the true probabilityx), thenx, is asymptotically
drawn fromTi(X), SO X, iS not an exact sample as in the rejection method. However, there is a
powerful mathematical result that warrants that the empirical averagediersum)y , £(x») /N, for
a regular functiorf : X — IR, converges to IE(x)] if the chain converges asymptotically to the true
distribution. For example, iX is a zero-mean scalar random variable ane- IR, then/(x) = x?
for the variance and(x) = x* for the kurtosis of the variable. For this reason, MCMC methods are
considered to be preferable over rejection method because in this latteornkyxact sample is
obtained, while with the former we obtain a chain and are thus able to approxérpetations. In
order to perform MCMC, there is a great flexibility in choosing the instrumgmtdbability density
u(xly).

For a recent review of the MCMC method, interested readers may coosiitistance the sur-
veys by Kass et al. (1998) and Warnes (2001).

In order to numerically integrate the learning LDE, it is necessary to diserétiz Wiener
random process. Let us denote agaimithe chosen (constant) step-size: A time-discretization of
the stochastic gradient (13) may be written as

Vitin = Vn+ z Lka, (17)

where eaclvy is a independent, identically distributed normal random variable (Highani,) 200
the gradien¥/,, is given in equation (12).

Having defined the new diffusion-type gradient (and its time-discretizesior®, the associated
stochastic flow may be locally approximated through the geodesic learningtfahy@xplained in
Section 2.2. Also, at every learning stepthe temperatur®, may be decreased in order to make
the diffusive disturbance term peter out after the early stages of Igarfihis gives rise to the
following simulated-annealing/MCMC learning scheme.

o Learning algorithm 3:

1. Setn = 0, generate an initial solutiowy and setfg = f(Wo) select a constant learning
step-siza), select a temperature val@ and select @°(P)-orthonormal basé of the Lie
algebraso(p).

2. Generate a set of identically-distributed, independent standargi@aunandom variables;.
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3. Compute the diffusive gradient (17), compute a candidate solWign through the equa-
tion (11), where the deterministic gradient is replaced by the diffusivéigmg and evaluate
fn+1 = f(Wn+1)-

4. Compute the MCMC probabilitWCMcd:Efmin{l, exp(—(fnr1— fn)/Gn)}.

5. Accept the candidate solution with probabilityicmc (or reject the candidate solution with
probability 1— miycmc). Rejection corresponds to assuming. 1 = W,

6. Decrease the temperatdg to O, 1 following a pre-defined cooling scheme.

7. Increment and return to 2, unlegsexceeds the maximum number of iteration permitted: In
this case, exit.

4. Application to Non-Negative | ndependent Component Analysis. Algorithms
Implementation and Numerical Experiments

The aims of the present section are to recall the concept of non-regadiependent component
analysis (ICA") and the basic related results, to customize the general learning algorithtine on
orthogonal group to the case of ICAand to present and discuss some numerical cases related to
non-negative ICA applied to the separation of gray-level images.

4.1 Non-Negative | ndependent Component Analysis

Independent component analysis (ICA) is a signal/data processingidgaehtiat allows to re-
cover independent random processes from their unknown combiad@@ichocki and Amari, 2002;
Hyvarinen et al., 2001). In particular, standard ICA allows the decomposifiarrandom process
X(t) € IRP into the affine instantaneous model:

x(t) = As(t) +n(t), (18)

whereA € IRP*P is themixingoperators(t) € IRP is thesource streanandn(t) € IRP denotes the
disturbance affecting the measuremenk(@f or some nuisance parameters that are not taken into
account by the linear part of the model.
The classical hypotheses on the involved quantities are that the mixingtapisréull-rank,
that at most one among the source signals exhibit Gaussian statistics, atitethaurce signals
are statistically independent at any time. The latter condition may be formally stetecyh the
complete factorization principle, which ensures that the joint probabilityiyeiugmction of statisti-
cally independent random variables factorizes into the product of theginah probability density
functions. We also add the technical hypothesis that the sources davetdkgenerate (that is,
point-mass-like) joint probability density function. This implies that for examgble, probability
that the sources are simultaneously exactly zero is null. Under these bgpstlit is possible to re-
cover the sources up to (usually unessential) re-ordering and saingell as the mixing operator.
Neural ICA consists in training an artificial neural network describeg (by= W (t)x(t), with
y(t) € IRP andW/(t) € IRP*P, so that the network output signals become as statistically independent
as possible.
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Due to the difficulty of measuring the statistical independence of the netsvoutput signals,
several different techniques have been developed in order torpelf®A. The most common ap-
proaches to ICA are those based on working out the fourth-ordertstmiid the network outputs
and to the minimization of the (approximate) mutual information among the netwartgsits. The
existing approaches invoke some approximations or assumptions in someft@gealgorithm
development, most of which concern the (unavailable) structure of threessprobability distribu-
tion.

As it is well-known, a linear, full-ranknoiselessand instantaneous model may be always re-
placed by an orthogonal model, in which the mixing mafixs supposed to belong ©(p). This
result may be obtained by pre-whitening the observed signahich essentially consists in remov-
ing second-order statistical information from the observed signals. \Wieemixture is orthogonal,
the separating network’s connection matrix must also be orthogonal, so yvestsct the learning
process to searching the proper connection matrix witiip).

An interesting variant of standard ICA may be invoked when the additiomalledge on the
non-negativity of the source signals is considered. In some signa¢gsing situations, in fact,
it is a priori known that the sources to be recovered have non-negative vallugsb{By, 2002,
2003). This is the case, for instance, in image processing, where thes\althe luminance or the
intensity of the color in the proper channel are normally expressed thmamgnegative integer val-
ues. Another interesting potential application is spectral unmixing in remosingefiKeshava and
Mustard, 2002). The evolution of passive remote sensing has witntesedllection of measure-
ments with great spectral resolution, with the aim of extracting increasingéylel# information
from pixels in a scene for both civilian and military applications. Pixels of irstesee frequently a
combination of diverse components: In hyper-spectral imagery, pixela aixture of more than
one distinct substance. In fact, this may happen if the spatial resolutioserisor is so low that
diverse materials can occupy a single pixel, as well as when distinct matmgat®mbined into a
homogeneous mixture. Spectral demixing is the procedure with which the redapectrum is de-
composed into a set of component spectra and a set of correspobdimggaces, that indicate the
proportion of each component present in the pixels. The theoreticadifdions of thenon-negative
independent component analyfi€A ') have been given by Plumbley (2002), and then Plumbley
(2003) proposed an optimization algorithm for non-negative ICA basegeodesic learning and
applied it to the blind separation of three gray-level images. Furthertraeegrs on this topic have
been published by Plumbley (2004). In our opinion, non-negative I€fraposed by Plumbley
(2003) is an interesting task and, noticeably, it also gives rise to statisfipairamation-free and
parameter-free learning algorithms.

Under the hypotheses motivated by Plumbley (2002), a way to perforamegative indepen-
dent component analysis is to construct a cost funcfiBi) of the network connection matrix
that is identically zero if and only if the entries of network’s output signate non-negative with
probability 1. The criterion function chosen by Plumbley (2003) i<O(p) — IR§ defined by

(W)X~ W (W) ] (19

where I5[-] denotes statistical expectation with respect to the statistiks|of||» denotes the stan-
dardL, vector norm and the functiop(-) denotes the ‘rectifier’:

()d_ef u,ifu>0,
~ 1 0, otherwise
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In the definition (19), the rectifier acts component-wise on vectors. Frendéfinition (19), it is
clear that when all the network output signals have positive valuesuitsds= 0, otherwisef #£ 0.
The described cost function closely resembles a non-linear principgd@oent analysis criterion
designed on the basis of the minimum reconstruction error principlegtitysn et al., 2001). This
observation would be beneficial for future extensions to complex-welghéeiral networks, as
suggested by Fiori (2004).

In this case, learning a ICAnetwork may thus be accomplished by minimizing the criterion
function f.

In order to design a gradient-based learning algorithm over the ortabgooup according to
the general theory developed in the Section 2.2, it is necessary to compledidean gradient
of the function (19) with respect to the connection mathix After rewriting the learning criterion
function as

2f(W) = Ex[[IX|l2+ () ll2— 2y"p(¥)],

some lengthy but straightforward computations lead to the expression:

grady’ " f = IEx[((p(y) —y) o p'(y)Xx" —p(y)X'],

where the symbot denotes component-wise (Hadamard) product of two vectorp@ndienotes

the derivative of the rectifier, that is, the unit-step function. This is unddfin the origin. From a
practical point of view, this is a minor difficulty: In fact, thanks to the hypste®f non-degeneracy

of the joint probability density function of the source, the probability that thmmonents of the
networks output vector vanish to zero simultaneously is equal to zerondtwseasy to recognize
that the vectofp(y) —y)<p/(y) is identically zero (where it is defined), therefore the above gradient
reduces to the simple expression:

grady’ " f = —IEx[p(y)x"].

Following the notation introduced by Plumbley (2003), we find it conveniedefme the rec-

tified network output:
v €h(yn) , whereynZWx. (20)

With this convention, the Riemannian gradient and the associate learninghatg¢valid for ex-
ample, for the versions of Algorithms 1 and 2) write, respectively:

2grady” f = Ex[yn(yi)TWa] — Ex[(y#)x"],
W1 = expNn(Ex[Yn(Ys) ] — ExYnyn]))Whn
n=12 3, ..

The initial connection matrixVo may be randomly picked i®(p). Another practical choice is

4.2 Detailson the Used Data and on Algorithms Implementation

The gray-level images used in the experiments are illustrated in the FigureisLinportant to
note that, in general, real-world images are not completely statistically indeperieor instance,
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IMG 1

IMG 4

Figure 1: The nine gray-level images used in the experiments.

the images used in the present experiments are slightly statistically correlateal) ®e seen by
computing their 9< 9 covariance matrix (approximated to two decimal digis)=

[ 281 007 01 -005 -033 -055 029 -0.04 -0.127
0.07 452 0 -004 061 049 -016 001 -0.02
0.1 0 1505 033 014 006 -037 —-0.09 001
—-005 -004 033 232 017 038 -043 0 -0.09

10°x | —0.33 061 014 017 549 067 08 001 o002 |,
—-055 049 006 038 067 569 -0.63 —-0.04 —-0.04
029 -016 -037 -043 08 -063 153 -0.01 012
—-0.04 001 -0.09 0 Q01 -0.04 -0.01 089 -001

| -0.12 -0.02 001 -0.09 002 -004 012 -001 1533

which is not diagonal, but diagonal-dominated.
It is now necessary to explain in details the pre-whitening algorithm. We dissindpetween
the noiseless and noisy case.

¢ In the noiseless case (namatyt) = 0), the pre-whitening stage is based on the observation
that in the model (18) the square matAixmay be written through the singular value decom-
position (SVD) as1DFJ, whereF1,F, € O(p) andD < IRP*P is diagonal invertible. Then,

it is readily verified thatC,XIE,[XXT] = AIES[SST]AT, where the overline denotes centered

signals (for example‘gdﬁfx — [Ex[x].) In the (non-restrictive) hypothesis that[is'] = I, we
thus haveCy = AAT = F1D?F!. The factors=; andD may thus be computed through the
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standard eigenvalue decomposition of the covari@ycelrhe whitened observation signal is
then .

$€D-1FTx = Fls
It is now clear that the last rotatid® of the source signals cannot be removed by second-
order statistics, while orthogonal non-negative ICA may be effectiveefmmmte out the

independent/non-negative components.

¢ In the noisy case, when the model of the observed signal is given Byt{i8noise com-
ponent cannot be filtered out by using pre-whitening nor indepentamponent analysis
itself. However, pre-whitening still makes it possible to use orthogonaiiG#ovidedthe
additive noise affecting the observations is not too strandact, by hypothesizing the noise
componenn(t) is a zero-mean multivariate random sequence with covariance natrix
termed ‘spherical’ noise, the covariance of the observations wWeites AAT + 62 p- In case
of strong disturbance, it is therefore clear that, in general, pre-whgeinnot rely on eigen-
value decomposition dC. In any case, the difficulty due to the presence of strong additive
noise is theoretically unavoidable, even if pre-whitening is dispenseddofGé algorithms
that search il (p) are employed.

In order to compute a separation performance index, we consider thah\egrgence, the sepa-

ration produand:Ef\NanlFIA € IRP*P should ideally exhibit only one entry per row (or column)
different from zero, while the magnitude of non-zero values doesaret ¢n a real-word situation,
of course some residual interference should be tolerated. Therafeaéd separation index is

def1
" p

where|| - ||¢ denotes the Frobenius norm. The index above is based on the fact thily itie
matrix P,P! should be diagonal, therefo@, measures the total off-diagonality averaged over the
total number of network’s outputs. (As normally the ind@xassumes very low values, it is worth
normalizing it to its initial value, namely b®,/Qo.)

Another valid network-performance index is the criterion function (19)fitdeor easy com-

putation of the index, we note that by definiylgd:Ef\Nnx — p(Wnx), the value of the cost function
at then-th learning step computes &s= IE,[||y, ||2]. (The learning algorithm seeks for a neural
transformation that minimizes the negativity of its outputs, in fact.)

With regard to the computational complexity analysis of the described algorithenspnsider
the number of floating-point operations (flops) per iteration and the ggetm-time per iteration.
The codes were implemented inAviLAB on a 600 MHz, 128 MB platform.

With regard to the selection of the schednglg in the experiments we found it convenient to
write first the learning step-siag, asfin/||Va|r, whereV, denotes again the gradient on the Lie
algebra ofO(p) defined in the equations (12) and then to optimize the normalized stefrsiZais
convention keeps valid throughout the remaining part of the paper, staweontinue to use the
notationn, even for the normalized step-size without confusion.

In order to establish a numerically efficient geodesic search for the iigo2, we seek for
the optimaln,, in a suitable interval by sampling this interval at sub-intervals of proper Sihe
details on these quantities are given in the section dedicated to the numepiedairents for each
category of experiment.

IPaP} —diag(PaPy) [IF, (21)
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About the cooling scheme for the simulated-annealing/MCMC algorithm, aicgptd Liu et
al. (2004), we adopted the sched@lg,; = ©,/1.025.

As a general note, the ensemble average denoted by the statistical Bgpesparator IE| is
replaced everywhere by sample (empirical) mean.

4.3 Resultsof Numerical Experiments

The present part of the paper aims at presenting some numerical rdstaltsed with the above-
described learning algorithms applied to non-negative independent cemipanalysis. The nu-
merical analysis begins with the illustration of some toy experiments that aim wtrghthe con-

sistency of the adopted ‘non-negativity’ optimization principle. Then, trayais continues with
an investigation and a comparison of the behavior of the three algorithmstdesin the previous
sections.

4.3.1 RRELIMINARY EXPERIMENTS

As a case study, we consider the mixing of two images with a randomly genenatexd) matrix
A € IR?*2, As the orthogonal separation matki is of size 2x 2, it may be easily parameterized,

as in equation (10), by
~ | cosB —sinf
W(p) = [ sinB  cosB ]’

with B € [, 1 being the separation angle. As already underlined in Section 2.3, this garame
ization does not cover the whole gro@g2), but this problem is unessential for ICA purpose. By
properly sampling the intervél-Tt, 71, it is possible to give a graphical representation of the behav-
ior of the non-negative independent component analysis crité(f3)) defined in equation (19)
and of the separation indeQ(3) defined by equation (21) (which depends on varigbtarough
the separation produé.

The results of this analysis for a randomly generated mixing matrix, with sauagges number
1 and 2 of Figure 1, are shown in the Figure 2. The Figure 2 shows théage mixtures, the
behavior of the cost functiod and of the separation inde®Q as well as the separated images
obtained with the optimal separation angle, which is defined as the anglesmanding to the
minimal criterion function valueAs it clearly emerges from the above figure, the cost function has
a only minimum, which coincides with one of the minima of the separation index. The mimimhu
the cost function corresponds to a pair of well-separated network utpu

The result of the analysis with source images number 3 and 4 of Figure shaven in the
Figure 3. The Figure 3 shows the mixtures, the behavior of the cost faratid of the separation
index as well as the separated images. Again, the cost function exhibits anorimum that
coincides with one of the minima of the separation index, which, in turn, quorets to a pair
of well-separated non-negative independent components. Thisdseesult, compared with the
previous one, illustrates the dependency of the shape of the cost functithe mixing matrix as
well as on the mixed components.

To end the series of preliminary experiments, we consider here again thegnoiximages
1 and 2 with a randomly generated mixing mat#xin the noisy mixture caseln particular, as
anticipated in the Section 4.1, ‘spherical’ additive white Gaussian noise @sag to contaminate
the observations as in the original ICA model (18). The quantity that descthe relative weight
of the noise in the mixture is the signal-to-noise ratio (SNR), which, in this péaticase, may be
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Figure 2: Images 1 and 2 mixtures (M>and MIX;), behavior of cost functiori and separation
index Q (shown in dB scales) and separated images (NNI@ NNIG) obtained with
the optimal separation angle. The open circle denotes the value of the tdragtar
corresponding to the minimum criteridr{W (B)) value.

compactly defined as

SNREE10 log;o \/exp(trace[Iog[(diag(Cm)diag(Cn)*l)] b,

where diagC,) denotes the diagonal part of the 2 covariance matrix of the noiseless observation
(term As(t)) while diag Cn) denotes the diagonal part of the covariance matrix of the noise term
n(t), referred to the ICA model (18).

The results of this analysis are shown in the Figures 4 and 5, which illusteabetavior of the
cost functionf and of the separation ind€xas well as the separated images obtained with the opti-
mal separation angle, for two different noisy mixtures. In the experimetiéited in the Figure 4,
the value of the signal-to-noise ratio wablR= 11.64 dB. The Figure shows that the cost function
exhibits a only minimum that is quite close to one of the minima of the separation inéiéd,vin
turn, corresponds to a pair of well-separated non-negative independmponents. Of course, the
mixturesas well as the recovered componelotsk a little noisy. In the experiment illustrated in the
Figure 5, the value of the signal-to-noise ratio V&$R= 4.18 dB. In this experiment, the power of
the disturbance is close to the power of the source-images, therefore tiueenmay be considered
as rather noisy. The Figure 5 shows that the cost function exhibits a onignarimthat is quite far
from the minima of the separation index. The neural network outputs logknaisy and do not
resemble the original independent components. This result confirmsdbkevabions of Section 4.1
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Figure 3: Images 3 and 4 mixtures (M>and MIX;), behavior of cost functiori and separation
index Q (shown in dB scales) and separated images (NNI@ NNIG) obtained with
the optimal separation angle. The open circle denotes the value of the tdragtar
corresponding to the minimum criteridr{W (B)) value.

about the unavoidability of the problems related to the presence of strasg inahe mixture by
plain ICA.

In the next sections, we shall therefore take into account noiseless asixtuich also illustrate
the behavior of the algorithm in presencevegakdisturbances. It is in fact to be recognized that
the pre-whitening/sphering issue is a different problem from optimizatiod(gn: Noisy mixtures
cannot be pre-whitened, but if the noise is weak, its presence hasihblegéiffects on the separation
performances.

4.3.2 A FURTHER‘CONVENTIONAL A LGORITHM FORNUMERICAL COMPARISONPURPOSES

In order to gain incremental knowledge on the advantages offered kyrbigp methods via numer-
ical comparisons, it would be beneficial to consider a ‘conventionalhlagralgorithm in which
the ordinary gradient and explicit orthogonalization are empl&yda. this aim, we defined the
following non-Lie-group algorithm:

Whi1=Wo—nEfyix], (22)

~ 1
Why1 = (Wn+1WI+1)72 n+1, (23)

6. This comparison was suggested by a reviewer.
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Figure 4: Images 1 and 2 weakly-noisy mixtures (Mlxnd MIX5), behavior of cost functiorf
and separation indeQ (shown in dB scales) and separated images (NNl NNIG)
obtained with the optimal separation angle. The open circle denotes the Vaheetbe
parametef corresponding to the minimum criteridifW (B)) value.

where the rectified network output is defined as in equation (20) and withitied connection
patternWy € O(p) and the learning step-size< 0 being chosen according to the same rules used
with the Algorithms 1, 2 and 3. It is worth remarking that we again considerdhmalizationn =
ii/||EE[yxT]||, so the actual step-size to be selecte,ias previously assumed for the Algorithms
1,2 and 3.

The first line of the above algorithm moves the connection pattern ahgtem the matrixwp
over the orthogonal group toward the direction of the Euclidean gradfehe ICA" cost function
to the new pointV,,,1. However, the matrisV/,.1; does not belong to the orthogonal group so it
is necessary to project it back to the group with the help of a suitable profectwording to what
granted in Section 2.1). In this case, it is assuedRP*P — O(p) as

N(X)Z(xxT)"2x. (24)

(Itis straightforward to verify thafl T (X)I(X) =, for all X € GI(p).) In the case of the orthogonal-
group projector, the ambient space was assumed adRP*P. It is worth underlining that, from
a theoretical point of view, there is no guarantee that the partially updatetk M, 1 belongs to
Gl(p) C IRP*P and, therefore, there is no guarantee that the proj€timay be computed at every
iteration.
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Figure 5: Images 1 and 2 strongly-noisy mixtures (Midhd MIX5), behavior of cost functiori
and separation indeQ (shown in dB scales) and separated images (NNl NNIG)
obtained with the optimal separation angle. The open circle denotes the Vaheetbe
parametef corresponding to the minimum criteridifW (B)) value.

4.3.3 NUMERICAL ANALYSIS AND COMPARISON OF THEICA™ ALGORITHMS

The first experiment of this section aims at investigatingaCA* case tackled with the help of
the deterministic-gradient-based algorithm endowed with geodesic sédgciithm 2). In partic-
ular, in this case the optimal step-size is searched for within the intertal-0.1] partitioned into
10 bins and the random step-size generated in case of non-accejgtansmall random number
uniformly picked in[—0.1,0[. The maximum number of iterations has been fixed to 100 and the
used images are number 1, 2, 3 and 4 of Figure 1.
The results of this experiment are shown in the Figures 6, 7 and 8.
In particular, the Figure 6 shows the behavior of the (normalized) sepaiatiexQ,/Qo and
of the cost functionf,, versus the iteration index As these panels show, the separation index as
well as the cost function values decrease from initial values to lower sat@nfirming that the
separation behavior is good, in this experiment. The same Figure also #$teo®benius norm of
the Riemannian gradielt, defined in equation (12), which decreases to low values during iteration,
as well as the value of the ‘optimal’ learning step-sigeselected at each iteration.
The Figure 7 shows a picture of the cost function as seen by the ‘gead@sch’ procedure:
It shows, at each iteration, the shape of the cost fundiion) as a function of the step-sizeand
shows the numerical minimal value to be selected as ‘optimal’ learning stepAszexplained in
the description of the Algorithm 2, such value is actually selected only if theesponding value
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Figure 6: Four-source problem. Top-left: Normalized separation inéesusg the iteration index
n. Top-right: Cost functionf, versus the iteration indem. Bottom-left: Norm of the
Riemannian gradient of the ICAcost function versus the iteration index Bottom-
right: ‘Optimal’ learning step-sizg,, selected at each iteration.

of the cost function is smaller than the value of the cost function achievee iprévious iteration,
otherwise the result of the geodesic search is ignored and a small rastdprsize is selected.
From the picture, it clearly emerges that the functfgfm) exhibits a only minimum in the interval

of interest forn. Also, as the learning procedure progresses, the minimal value is almastsal
located at relatively low values ofbecause of the sharpness of the cost function around the optimal
separating solution evidenced by the Figures 2 and 3.

The Figure 8 shows the result of this analysis for a randomly generatddwixing matrix with
four source images. The de-mixing matrix is the optimal one as obtained by thintpprocedure.
The visual appearance of the obtained components confirms the qualitg ofitld recovering
procedure.

The second experiment of this section aims at investigating 8 8CA" case tackled with the
help of the deterministic-gradient-based algorithm endowed with geodeschg@lgorithm 2). In
particular, in this case the optimal step-size is searched for within the infer2at-0.1] partitioned
into 10 bins and the random step-size generated in case of non-a@eeigtarsmall random number
uniformly picked in[—0.1,0[. The maximum number of iterations has been fixed to 200. The results
of this experiment are shown in the Figures 9 and 10. In this experimengplaeasded images have
been recovered sufficiently faithfully.

The same separation problem was also tackled through the deterministiengiagised algo-
rithm without geodesic search (Algorithm 1). From the previous expetiniteemerges that the
‘optimal’ value of the step-size is almost always selected within the int¢n@tl, 0. Therefore,
in this experiment, the learning step-size was fixed-@05 and the number of iterations was set
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Figure 7: Four-source problem. Shape of the {C#ost function as seen by the ‘geodesic search’
procedure.

to 400. It is worth noting that, in this case, not only the learning step-sizesefa® a constant
value, but every move in the parameter manifold is accepted without che€kiagtually leads to
a decrease of the value of the learning criterion. The objective resuhgafxperiment are shown
in the Figure 11, while the resulting recovered components are not shevaude they are similar
to those illustrated in the Figure 10.

The nine-source separation problem was also tackled through theatiffiype gradient-based
algorithm (Algorithm 3). In this case, the learning step-size was se0t, the initial temperature
was set to®y = 0.5 and the number of iterations was set to 400. The objective results of this
experiment are shown in the Figure 12, while the resulting components sshaown because they
are similar to those illustrated in the Figure 10.

As mentioned in Section 4.3.2, the behavior of Algorithms 1, 2 and 3 may be cethfmathe
behavior of a non-Lie-group algorithm based on explicit orthogonalizatia projection. There-
fore, the nine-source separation problem was also tackled throughdjestmpn-based learning
algorithm. In this case, the number of iterations was set to 400. The obtaseltisrare not com-
forting about the suitability of this algorithm to non-negative independempoment analysis. In
spite that several values of the learning step-size were tried (rangimg-f0.5 to —0.005), no good
results were obtained, in this case. Two possible explanations of thevetiderhavior are that:

e The projection operation wastes the most part of the time in canceling outtigooent of

the Euclidean gradient that is normal to the manifold instead of advancingltites toward
the most appropriate direction.
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Figure 8: Four-source problem. Mixtures and separated images.

| ALGORITHM || AVERAGE RUN-TIME (SEC.S) | FLOPS PER ITERATION]|

Algorithm 1 0.27 5.46x 10°
Algorithm 2 1.83 3.69x 10’
Algorithm 3 0.27 4.76x 10P
Projection 0.29 5.48x 10°

Table 1: Nine-source problem. Computational complexity comparison of iigos 1, 2, 3 and
the projection-based learning algorithm (in terms of flops and run-time patiasj.

e The algorithm described by equations (22) and (23) looks essentialkeasgbint algorithm:
Such kind of algorithms may easily get trapped in non-converging or slewyly-converging
cycles if the operator that describes the fixed-point iteration is not aiviea However,
proving (or forcing) the convergence of such algorithms is far froindan easy task. A
short discussion on this topic has been recently presented by Fio2)(200

With regard to the computational complexity comparison of the algorithms on thesauree
separation problem, the number of flops per iteration and the averagememper iteration are
reported in the Table 1. It is worth underlining that both run-times and fbaps depend on the
platform and on the specific implementation of the algorithms, therefore onéreiiites than span
one or more magnitude orders should be retained as meaningful.

The conclusion of the above numerical analysis pertaining to the nineespuoblem is quite
straightforward: In the present problem, the adoption of the diffusipe-gradient is not beneficial
as the initial ‘burn-in’ stage due to MCMC is quite long and the final achieesdIt is completely
comparable to those exhibited by the other two algorithms. Among Algorithms 1, &imel2achieve
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Figure 9: Nine-source problem, Algorithm 2. Top-left: Normalized separatidex versus the
iteration indexn. Top-right: Cost functionf, versus the iteration index. Bottom-left:
Norm of the Riemannian gradient of the ICA&ost function versus the iteration index
Bottom-right: ‘Optimal’ learning step-size, selected at each iteration.

comparable separation results, but the Algorithm 1 is definitely lighter, in tefrosnoputational
complexity, than the Algorithm 2. The computational complexity pertaining to thie@ion-based
algorithm is comparable to the complexity exhibited by Algorithms 1 and 3.

5. Conclusion

The aim of the present tutorial was to illustrate learning algorithms based amaRi@an-gradient-
based criterion optimization on the Lie group of orthogonal matrices. Althahghpresented
differential-geometry-based learning algorithms have so far been maiplgied in narrow con-
texts they may aid the design of general-purpose learning algorithms in thesewhere a learning
task may be formulated as an optimization one over a smooth manifold. The aedsidigorithms
have been applied to non-negative independent component analysisitibe standard version
equipped with geodesic-line search and in the diffusion-type gradiesiove

The analytical developments evidenced the following advantages and sinslafitieeO( p)-
type learning algorithm with respect to the existi®@y p)-type algorithms:

¢ In the general case, the search for a connection pattern shouldfoemed in the Lie group
Gl(p), while in the second case the search is performed in the orthogonal Lip Q).
The groupO(p) is compact (that is, closed and limited) therefore the stability ©f p)-type
learning algorithm is inherently ensured (up to machine precision), while thistisue for
the Gl(p)-type learning algorithms.
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Figure 10: Nine-source problem, Algorithm 2. Separated images.

¢ In general, theGl(p)-type learning algorithms cannot avoid quasi-degeneracy of the neural
network, that is the case in which more than one neuron nearly happeoddesthe same
feature. In the context d(p)-type learning algorithms, this case is inherently impossible.

e The possible amplification of the additive noise in the noisy ICA case is notleddoy
the O(p)-type learning algorithms, even if care should be taken in this context plepso
computing the pre-whitening operator. Even i p)-type learning algorithms, that do not
require pre-whitening, cannot avoid the amplification of the disturbantkeoabservations.

The conclusions of the comparative analysis pertaining to the nine-st@Ac@roblem are
quite straightforward: The simple gradient adaptation, with a properlyechtesarning step-size,
is sufficient to achieve good separation performance at low computatondén. It deserves to
remark, however, that the ‘geodesic search’ procedure automaticaljdps a suitable value of
the learning step-size, which should be manually selected in absence tohamy procedure.

It is worth underlining that the Algorithm 1, which appears to be the solutiochofce in the
context of ICA problem, as well as Algorithms 2 and 3, has been derivedfiamework that is
more general than ICA, but has only been applied it to ICA in the presemtiseaipt. In the ICA
context, and with the chosen metric for the orthogonal group, the Algorithared12 essentially
coincide to the algorithms presented by Plumbley (2003). With respect to theoik®lumbley
(2003), the conclusion we draw from the presented numerical analydiSA" problems is that,
for general high-dimensional ICAproblems, the introduction of geodesic-search is not beneficial.
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Figure 11: Nine-source problem, Algorithm 1. Left panel: Normalizedsspon index versus the
iteration indexn. Middle panel: Cost functiorf, versus the iteration indei. Right:

Norm of the Riemannian gradient of the ICAost function versus the iteration index
n.

The same holds for the introduction of stochasticity under the form of arth&@MC, that does
not helped speeding up network learning convergence in the consiaeatysis.
About further and future efforts, we believe the following notes areghlvorentioning:

e As a general remark on the computational complexity of the discussed atgsriittis worth
noting that the most burdensome operation is the computation of the expomesyiah the
updating rule (11). In the present paper we employesirDMAB’s ‘expm’ primitive but, of
course, several ways are known in the scientific literature to compute@erpal maps. Two
examples are the Cayley transform and the canonical coordinates afstHarfd (interested
readers might consult, for example, Celledoni and Fiori (2004) anderdes therein). A
promising alternative solution would be to exploit the latest advancements ireth@finu-
merical calculus on manifold for exponential maps computation, which shdeggkdly lead
to a considerable saving of computational effort without detriment ofratipa effectiveness.

e As mentioned in the Section 2.1, learning algorithms based on the ordinaigmradd ex-
plicit orthogonalization (projection) are known in the scientific literature. iEsae whether
Lie-group methods are more advantageous, compared to methods bakedbanjection to
the feasible set by orthogonalization, is currently being investigated.

e As it also emerges from Section 2.1, all the learning equations/algorithmbgdedean this
manuscript are based on a particular choice of the metric that turns thégeleraassociated
to the Lie group of orthogonal matrices into a metric space. Although, in pl@che choice
of the metric may be shown not to affect the final result of learning, noulshit affect
the learning path over the base-manifold, preliminary experiments suggeshéhchoice
of metric indeed affects the behavior of discrete-time algorithms when implemented
computer due to accumulation of numerical errors (Fiori, 2005).
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Appendix A. Geodesic Equation and Relevant Properties

In the present appendix, we consider the problem of constructingdegeccurve on a Riemannian
manifold (M ,g) and illustrate some relevant properties of geodesics on Riemannian manifolds
embedded in a Euclidean ambient spac® IR'he result of the following calculation will be a
second-order differential equation in the componegtsf x (k=1, 2, ---, p).”

Before considering the problem of geodesic calculation, itis instrumentah&der the general
variational problem of minimizing the functional:

def

pdef [y (x,X)dt, (25)

to
whereH : IRP x IRP — IR is a potential functionx = x(t) is a curve onM with parametet €
[to, t1] andAis an integral functional of(t) (sometimes termeadction). In the above equation and
thereafter, overdots denote derivation with respect to the paratmeter
It is know that, under proper conditions, the solution of the above varatmmoblem is given
by the solution of the Euler-Lagrange equation:

oH dodH
& - aa_xk 0,k=12 ..., p.

By comparing the equation (25) and the curve-length equation (2), it dilyeseen that, in
order to set a curve-length minimization problem into an action minimization problenifites to
setH(x,X) = 1/0x(X,X) in the above setting. To this purpose, it is worth noting that, thanks to the
bi-linearity of the scalar product and according to the decompositiery i x;&, where{e } denotes
whatever basis of IR it holds gx(x,X) = ¥; ¥ ; gijXXj, where the functiongijCi:Eng(a,ej) denote
the components of the so-termextric tensorand specify completely the metric properties of the
manifold M. The components of the metric tensor are functions of the coordirates, x,. The
metric tensor is symmetric, that ig; = g;i for everyi, j € {1, 2, ..., p} and non-singular, that is
its inverse exists everywhere.

By replacing the above expression of the potential into the Euler-Lagraggation and calcu-
lating the required derivatives, we get

0gij . o
> 3 5 z -2 Gk =0,
Now, the following identities are of use:
AR K

because the indicéasand/ may be swapped in the second-last expression. Then the equation of
minimizing curve becomes:

T Okt 3 Gty Y Y G~ 5 3 Y ik =0

7. In the present paper, we do not make use of the standard cdi@oigra-variant notation for tensor indices nor of
the Einstein convention for summations.
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It is now worth introducing the inverse of the metric tensor, whose elemeatdearoted byg?®,
defined by the equatlonEbgabgbc 02, whered2 denotes the fundamental tensor (and may be
regarded as a Kronecker ‘delta’). By multiplying both sides of the abowatan by g’ and
summing with respect th, the result is

00ik agjk 9ij\..
3 Y o X'+2ZZZ (ax, % ox ) i=0
Let us further define the Christoffel (or affine connection) coeffities

rkdefl kg agl[ @_ag_u
; ax, aXi aX( ’

through which the geodesic equation assumes the classical expression:

%+y STl =0,k=1,2, -, p. (26)
]

As anticipated, it appears under the form of a set of second-orderatifial equations in the coor-
dinatesx, and needs therefore two boundary conditions. These may specifydtdesie endpoints:
X(to) = X0 € M andx(t1) = x1 € M, or the initial position and initial velocityx(to) = xo € M and
X(to) = Vo € TXOM.

A result we make use of in the paper is that, when a Riemannian manifold is eetbadd
an Euclidean space, the second derivative of the geodgsielongs to the normal space to the
embedded manifold a¢ Let us begin the proof of this important property by proving that, along
a geodesic, the quantity(x,X) is constant with respect to the parameter, equivalently, that
dgy(x,%) = 0. We have

d .. d .
agx(x,x) = ag%gabxaxb

B e : dgap .
= Z % GabXaXp + GabXa¥p 1~ ~Xa¥o

= Zz%gabxaxb—i'z%—xaxb

By replacing the expression &f from the geodesic equation (26) into the last expression, we get

d
G %) —ZZ%ZZgabF | XoXiX; +Zg—xaxb
Now, the following identity holds:
%ia | 09ja _ 09 >
r Ao |
%gab < oxj  0x 0%
thus it may be further written:

d SN %._._._ agja.‘._.
agx(x,X) = lezaxj XjXiXa ;Z; o Xika
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Itis readily recognized that, e.g; %%'fx, = %, therefore, all the sums in the above expression are

equal up to proper index re-ordering/renaming. As a consequemrckuhterms sum up to zero.

The last step consists in recalling that the manifold has been supposed tabedded in a
Euclidean ambient space and we assugRig, )'()d:efXTX. Its derivative is thu%gx(x X) =2X"x =0,
which proves that, under the specified conditions, the second deei%asworthogonal to the first
derivativex'in any point of the embedded geodesic.
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