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Abstract

The aim of this contribution is to present a tutorial on learning algorithms for a single neural layer
whose connection matrix belongs to the orthogonal group. The algorithms exploit geodesics appro-
priately connected as piece-wise approximate integrals ofthe exact differential learning equation.
The considered learning equations essentially arise from the Riemannian-gradient-based optimiza-
tion theory with deterministic and diffusion-type gradient. The paper aims specifically at reviewing
the relevant mathematics (and at presenting it in as much transparent way as possible in order to
make it accessible to readers that do not possess a background in differential geometry), at bring-
ing together modern optimization methods on manifolds and at comparing the different algorithms
on a common machine learning problem. As a numerical case-study, we consider an application
to non-negative independent component analysis, althoughit should be recognized that Rieman-
nian gradient methods give rise to general-purpose algorithms, by no means limited to ICA-related
applications.

Keywords: differential geometry, diffusion-type gradient, Lie groups, non-negative independent
component analysis, Riemannian gradient

1. Introduction

From the scientific literature, it is known that a class of learning algorithms forartificial neural
networks may be formulated in terms of matrix-type differential equations of network’s learnable
parameters, which give rise to learning flows on parameters’ set. Often, such differential equations
are defined over parameter spaces that may be endowed with a specific geometry, such as the general
linear group, the compact Stiefel manifold, the orthogonal group, the Grassman manifold and the
manifold of FIR filters1 (Amari, 1998; Fiori, 2001, 2002; Liu et al., 2004; Zhang et al., 2002),
that describes the constraints that the network parameters should fulfill and that is worth taking
into account properly. From a practical viewpoint, the mentioned differential equations should be
integrated (solved) properly through an appropriate numerical integration method that allows us
to preserve the underlying structure (up to reasonable precision). Thismay be viewed as defining
a suitable discretization method in the time domain that allows converting a differential learning
equation into a discrete-time algorithm.

1. Roughly speaking, the manifold of FIR filters may be regarded as the set of rectangular matrices whose entries are
polynomials in a complex-valued variable.
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With the present contribution, we aim at studying and illustrating learning algorithms for a single
neural layer whose connection matrix belongs to the orthogonal group, that is the group of square
orthogonal matrices. As an appropriate approximation of the exact learning flows, the algorithms
exploit approximate geodesics suitably glued together, as formerly proposed by Fiori (2002) and
Nishimori (1999).

As a case-study, we consider an application to geodesic-learning-based non-negative indepen-
dent component analysis, as proposed by Plumbley (2003). We present three different learning
algorithms that are based on gradient-type optimization of a non-negative independent component
analysis criterion over the group of orthogonal matrices. The first two algorithms arise from the
direct application of Riemannian gradient optimization without and with geodesicline search, as
proposed by Plumbley (2003). The third algorithm relies on a randomized gradient optimization
based on diffusion-type Riemannian gradient, as proposed by Liu et al. (2004).

The contribution of the present tutorial may be summarized via the following keypoints:

• It provides a clear and well-motivated introduction to the mathematics needed to present the
geometry-based learning algorithms.

• It clearly states and illustrates the idea that, when we wish to implement a gradient-based
algorithm on a computer, it is necessary to discretize the differential learning equations in
some suitable way (the ‘gradient flow’ simply cannot be computed exactly in practice).

• In order to effect such discretization, we may not employ standard discretization methods
(such as the ones based on Euler forward-backward discretization),that do not work as they
stand on curved manifolds. We should therefore resort to more sophisticated integration tech-
niques such as the one based on geodesics.

• In order to improve the numerical performances of the learning algorithm, wemight ten-
tatively try adding some stochasticity to the standard gradient (through annealed-MCMC
method) and try a geodesic search. It is not guaranteed that the above-mentioned improve-
ment works on a concrete application, therefore it is worth testing them on ICA+ problem.
The results on this sides are so far disappointing, because numerical simulations shown that
standard Riemannian gradient with no geodesic search nor stochasticity added outperforms
the other methods on the considered ICA+ problem.

Although in the machine learning community the presented differential geometry-based learn-
ing algorithms have so far been primarily invoked in narrow contexts such asprincipal/independent
component analysis (interested readers might want to consult, for example, Fiori (2001), Celledoni
and Fiori (2004) and Plumbley (2003) for a wide review), it should be recognized that differential-
geometrical methods provide a general-purpose way of designing learning algorithms, which is
profitable in those cases where a learning problem may be formulated mathematically as an opti-
mization problem over a smooth manifold. Some recent advances and applications of these methods
are going to be described in the journal special issue whose content is summarized in the editorial
by Fiori and Amari (2005).

The paper is organized as follows. The purpose of Section 2 is to briefly recall some concepts
from algebra and differential geometry, which are instrumental in the development of the presented
learning algorithms. In particular, the concepts of algebraic groups, differential manifolds and Lie
groups are recalled, along with the concepts of right-translation, Riemannian gradient and geodesic
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curves. Then, these results are customized to the case of the orthogonalgroup of concern in the
present paper. Geodesic-based approximations of gradient-type learning differential equations over
the orthogonal group are also explained. The Section 2 also presents some notes on the stability
of such learning equations as well as on the relationship between the presented learning theory
and the well-known natural-gradient theory and information geometry theory. Section 3 presents
two deterministic-gradient learning algorithms, one of which is based on the optimization of the
learning stepsize via ‘geodesic search’. Next, the concept of diffusion-type gradient on manifolds is
recalled in details and a third learning algorithm based on it is presented. Such learning algorithm
also takes advantage of simulated annealing optimization technique combined with Markov-Chain
Monte-Carlo sampling method, which are also recalled in the Section 3, along withsome of their
salient features. Section 4 deals with non-negative independent component analysis. Its definition
and main properties are recalled and the orthogonal-group Riemannian-gradient of the associated
cost function is computed. Such computation allows customizing the three generic Riemannian-
gradient-based geodesic algorithms to the non-negative independent component analysis case. Also,
a fourth projection-based algorithm is presented for numerical comparison purpose. The details
of algorithms implementation and the results of computer-based experiments performed on non-
negative independent component analysis of gray-level image mixtures are also illustrated in the
Section 4. Section 5 concludes the paper.

2. Learning Over the Orthogonal Group: Gradient-Based Differential Systems and
Their Integration

The aims of the present section are to recall some basic concepts from differential geometry and to
derive the general form of gradient-based learning differential equations over the orthogonal group.
We also discuss the fundamental issue of solving numerically such learning differential equations
in order to obtain a suitable learning algorithm.

2.1 Basic Differential Geometry Preliminaries

In order to better explain the subsequent issues, it would be beneficial torecall some basic concepts
from differential geometry related to the orthogonal groupO(p).

An algebraic group(G,m, i,e) is a setG that is endowed with an internal operationm : G×G→
G, usually referred to as group multiplication, an inverse operationi : G → G, and an identity
elemente with respect to the group multiplication. These objects are related in the followingway.
For every elementsx,y,z∈ G, it holds that

m(x, i(x)) = m(i(x),x) = e, m(x,e) = m(e,x) = x

andm(x,m(y,z)) = m(m(x,y),z).

Note that, in general, the group multiplication is not commutative, that is, given twoelements
x,y∈ G, it holdsm(x,y) 6= m(y,x).

Two examples of algebraic groups are(ZZ,+,−,0) and(Gl(p), ·,−1 ,Ip). The first group is the
set of all integer numbers endowed with the standard addition as group multiplication. In this case,
the inverse is the subtraction operation and the identity is the null element. In the second example,
we considered the set of non-singular matrices:

Gl(p)
def
={X ∈ IRp×p|det(X) 6= 0}, (1)
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endowed with standard matrix multiplication ‘·’ as group multiplication operation. In this case, the
inverse is the standard matrix inverse and the identity is the identity matrixIp. It is easy to show
that both groups operations/identity satisfy the above general conditions.As a counterexample,
the set of the non-negative integer numbersZZ+

0 (≡ IN) does not form a group under standard ad-
dition/subtraction. A remarkable difference between the two groups aboveis that the first one is a
discrete group while the second one is a continuous group.

A useful concept for the economy of the paper is the one of differentialmanifold. The formal
definition of a differential manifold is quite involved, because it requires precise definitions from
mathematical topology theory and advanced calculus (Olver, 2003). Morepractically, a manifold
may be essentially regarded as a generalization of curves and surfacesin high-dimensional space,
that is endowed with the noticeable property of being locally similar to a flat (Euclidean) space.
Let us consider a differential manifoldM and a pointξ on it. From an abstract point of view,ξ is
an element of a setM and does not necessarily possess any particular numerical feature. In order
to be able to make computations on manifolds, it is convenient to ‘coordinatize’ it.To this aim, a
neighborhood (open set)U ⊂M is considered, whichξ belongs to, and a coordinate mapψ :U →E

is defined, whereE denotes a Euclidean space (as for example, IRp – the set ofp-dimensional real-
valued vectors – or IRp×p – the set of thep× p real-valued matrices –). The functionψ needs to
be a one-to-one map (homeomorphism). In this way, we attach a coordinatex = ψ(ξ) to the point
ξ. As ψ is a homeomorphism, there is a one-to-one correspondence between a point on a manifold
and its corresponding coordinate-point, therefore normally the two concepts may be confused and
we may safely speak of a pointx∈ M . About these concepts, two short notes are in order:

• Borrowing terms from maritime terminology, a triple(ψ,U, p) is termedcoordinate chart
associated to the manifoldM . Such notation evidences that the elementsψ andU ⊂ M are
necessary to coordinatize a point on the manifold and that the coordinate space has dimension
p. If the dimension is clear from the context, the indication ofp may of course be dispensed
of.

• A main concept of differential geometry is thatevery geometrical property is independent of
the choice of the coordinate system. As a safety note, it is important to remark that, when
we choose to express geometrical relationships in coordinates (as it is implicitlyassumed
by the above-mentioned ‘confusion’ between a pointξ ∈ M and its coordinatex ∈ E ) we
are by no means abandoning this fundamental principle, but we are obeying to the practical
need of algorithm implementation on a computer that requires – of necessity – some explicit
representation of the quantities of interest.

In general, it is impossible to cover a whole manifold with a unique coordinate map. Therefore,
the procedure for coordinatizing a manifold generally consists in coveringit with a convenient
number of neighborhoodsUk, each of which is endowed with a coordinate mapψk : Uk → Ek,
with Ek being an Euclidean space of dimensionp, which, by definition, denotes the dimension
of the manifold itself. Technically, the set{Uk} is termed abasis for the manifold and it does
not need to be finite (but it is inherently countable). It is important to note that,in general, the
neighborhoodsUk may be overlapping. In this case, the mapsψk need to satisfy some constraints
termed ‘compatibility conditions’ which formalize the natural requirement that there should be a
one-to-one smooth correspondence between any two different coordinate systems. Technically, if
Uk ∩Uh 6= /0 then the mapsψ−1

k ◦ψh and ψ−1
h ◦ψk, which are termed ‘transition functions’ and
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represent coordinate changes, should be diffeomorphisms, that is,C∞ functions endowed withC∞

inverse.
A smooth manifold is by nature a continuous object. A simple example is the unit hyper-sphere

Spdef
={x ∈ IRp+1|xTx = 1}. This is a smooth manifold of dimensionp embedded in the Euclidean

space IRp+1, in fact with only p coordinates we can identify any point on the sphere. Olver (2003)
shows how to coordinatize such manifold through for example, the stereographic projection, which
requires two coordinate maps applied to two convenient neighborhoods onthe sphere.

An interesting object we may think to on a differential manifoldM is a smooth curveγ : [a,b]→
M . In coordinates,2 x = γ(t) describes a curve on the manifoldM delimited by the endpointsγ(a)
andγ(b). Here, the manifold is supposed to be immersed in a suitable ambient Euclidean spaceA

of suitable dimension (for instance, the sphereSp may be though of as immersed in the ambient
spaceA = IRp+1).

Let us now suppose 0∈ [a,b] and let us consider a curveγ passing by a given pointx ∈ M ,
namelyx= γ(0). The smooth curve admits a tangent vectorvx at the pointx on the manifold, which
is defined by

vx
def
= lim

t→0

γ(t)− γ(0)

t
∈ A .

Clearly, the vectorvx does not belong to the curved manifoldM but is tangent to it in the point
x. Let us imagine to consider every possible smooth curve on a manifold of dimension p passing
through the pointx and to compute the tangent vectors to these curves in the pointx. The collection
of these vectors span a linear space of dimensionp, which is referred to astangent spaceto the
manifoldM at the pointx, and is denoted withTxM ⊆ A .

As a further safety note, it might deserve to recall that, in differential geometry, the main way
to regard for example, tangent spaces and vector fields is based on differential operators (Olver,
2003). This means, for instance, that a tangent vectorv ∈ TxM of some smooth manifoldM is
defined in such a way that ifF denotes a smooth functional space then for instancev : F → IR,
namelyv( f ) is a scalar forf ∈ F . In this paper we chose not to invoke such notation. The reason
is that we are interested in a special matrix-type Lie group (the orthogonal group), whose geometry
may be conveniently expressed in terms of matrix-type quantities/operations. The theoretical bridge
between the differential-operator-based representation and the matrix-based representation is given
by the observation that every differential operator inTxM may be written as a linear combination of
elementary differential operators, that form a basis for the tangent space, through some coefficients.
The structure of the tangent space is entirely revealed by the relationshipsamong these coefficients.
Therefore, we may choose to represent tangent vectors as algebraicvectors/matrices of coefficients,
that is exactly what is implicitly done here.

It is now possible to give the definition of Riemannian manifold, which is a pair(M ,g) formed
by a differential manifoldM and an inner productgx(vx,ux), locally defined in every pointx of
the manifold as a bilinear function fromTxM ×TxM to IR. It is important to remark that the inner
productgx(·, ·) acts on elements from the tangent space to the manifold at some given point, it
therefore depends (smoothly) on the pointx.

On a Riemannian manifold(M ,g), we can measure the length of a vectorv ∈ TxM as

‖v‖def
=

√

gx(v,v).

2. It is worth remarking that a curve may interest different coordinatecharts(ψk,Uk, p), therefore, it is generally neces-
sary to split a curve in as many branches (or segments) as coordinate charts it bypasses.
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Also, a remarkable property of Riemannian manifolds is that we can measure the length of a curve
γ : [a,b] → M on the manifold through the local metric on its tangent spaces. In fact, the length of

the curveγ(·) is, by definition,Lγ
def
=

R b
a ds, whereds is the infinitesimal arc length. From geometry

we know thatds= ‖γ̇(t)‖dt, therefore we have

Lγ =
Z b

a

√

gγ(t)(γ̇(t), γ̇(t))dt. (2)

The net result of this argument is that, through a definition of an inner product on the tangent spaces
to a Riemannian manifold, we are able to measure the length of paths in the manifold itself, and this
turns the manifold into a metric space.

A vector fieldvx on manifoldM specifies a vector belonging to the tangent spaceTxM to the
manifold at every pointx.

With the notions of vector field and curve on a manifold, we may define the important concept
of geodesics. A geodesic on a smooth manifold may be intuitively looked upon in at least three
different ways:

• On a general manifold, the concept of geodesic extends the concept ofstraight line on a flat
space to a curved space. An informal interpretation of this property is thata geodesic is a
curve on a manifold that would resemble a straight line in an infinitesimal neighborhood of
any of its points. The formal counterpart of this interpretation is rather involved because it
requires the notion of covariant derivative of a vector field with respect to another vector field
and leads to a second-order differential equation involving the Christoffel structural functions
of the manifold (Amari, 1989).

• On a Riemannian manifold, a geodesic among two points is locally defined as theshortest
curveon the manifold connecting these endpoints. Therefore, once a metricg(·, ·) is specified,
the equation of the geodesic arises from the minimization of the functional (2) withrespect to
γ. In general, the obtained equation is difficult to solve in closed form.

• Another intuitive interpretation is based on the observation that a geodesic emanating from a
point x on the manifold coincides to the path followed by a particle sliding on the manifold
itself with constant scalar speed specified by the norm of the vectorvx. For a manifold em-
bedded in a Euclidean space, this is equivalent to require that the acceleration of the particle
is either zero or perpendicular to the tangent space to the manifold in every point.

The concept of geodesic and geodesic equation are recalled here onlyinformally. Appendix A
provides a detailed account of these and related concepts just touched here, such as the Christoffel
functions (or affine-connection coefficients).

An important vector field often considered in the literature of function optimization over man-
ifolds is thegradient vector field. If we consider a smooth functionf : M → IR and define its
gradient gradMx f , then a oft-considered differential equation is:

dx
dt

= ±gradM
x f , (3)

where the signs+ or − denote maximization or minimization of the functionf over the manifold.
The solution of the above differential equation is referred to asgradient flowof f on M .
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Formally, the concept ofgradienton a Riemannian manifold may be defined as follows. Let us
consider a Riemannian manifold(M ,g) and, for every pointx, the tangent spaceTxM . Let us also
consider a smooth functionf : M → IR, the standard Euclidean inner productgE in TxM and the
Jacobian gradEx f = ∂ f

∂x of the functionf with respect tox. The Riemannian gradient gradM
x f of the

function f over the manifoldM in the pointx is uniquely defined by the following two conditions:

• Tangency condition. For everyx∈ M , gradM
x f ∈ TxM .

• Compatibility condition. For everyx∈M and everyv∈TxM , gx(gradM
x f ,v)= gE(gradE

x f ,v).

The tangency condition expresses the fact that a gradient vector is always tangent to the base-
manifold, while the compatibility condition states that the inner product, under a metric on a mani-
fold, of a gradient vector with any other tangent vector is invariant with thechosen metric. However,
note that the gradientdoesdepend on the metric. The ‘reference’ inner product is assumed as the
Euclidean inner product that a flat space may be endowed with. For instance, if the base manifold
M has dimensionp, then it may be assumedE = TxE = IRp in every pointx andgE (u,v) = vTu.
It is worth noting that such special metric isuniform, in that it does not actually depend on the point
x.

In order to facilitate the use of the compatibility condition for gradient computation, it is some-
times useful to introduce the concept ofnormal spaceof a Riemannian manifold in a given point
under a chosen metricgA :

NxM
def
={n ∈ A |gA

x (n,v) = 0 , ∀v ∈ TxM }.

It represents the orthogonal complement of the tangent space with respect to an Euclidean ambient
spaceA that the manifoldM is embedded within.

With the notion of algebraic group and smooth manifold, we may now define a well-known
object of differential geometry, that is theLie group. A Lie group conjugates the properties of an
algebraic group and of a smooth manifold, as it is a set endowed with both group properties and
manifold structure. An example of a Lie group that we are interested in within thepaper is the
orthogonal group:

O(p)
def
={X ∈ IRp×p|XTX = Ip}. (4)

It is easy to verify that it is a group (under standard matrix multiplication and inversion) and it is
also endowed with the structure of a smooth manifold.

Consequently, we may for instance consider the tangent spaceTxG of a Lie groupG at the point
x. A particular tangent space isTeG, namely the tangent at identity, which, properly endowed with
a binary operator termedLie bracket, has the structure of aLie algebraand is denoted withg.

An essential peculiarity of the Lie groups(G,m, i,e) is that the whole group may be always
brought back to a convenient neighborhood of the identitye and the same holds for every tangent
spaceTxG, ∀x∈ G, that may be brought back to the algebrag. Let us consider, for instance, a curve
γ(t) ∈ G passing through the pointx, with t ∈ [a,b] such that 0∈ [a,b] andx = γ(0). We may define

the new curvẽγ(t)def
=m(γ(t), i(x)) that enjoys the propertỹγ(0) = e; conversely,γ(t) = m(γ̃(t),x).

This operation closely resembles a translation of a curve into a convenient neighborhood of the
group identity, so that we can define a special operator referred to asright translationas

Rx : G→ G ,Rx(γ)
def
=m(γ, i(x)).
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It is clear that every tangent vectorvx to the curveγ at x is also translated to a tangent vectorṽ of
the curvẽγ(t) by a conveniently defined operator:

dRx : TxG→ TeG , ṽ = dRx(v),

which is commonly referred to astangent mapassociated to the (right) translationRx. Such map
is invertible and allows us to translate a vector belonging to a tangent space ofa group to a vector
belonging to its algebra (and vice-versa).3

From the above discussion, it is straightforward to see that, if the structureof g is known for
a groupG, it might be convenient to coordinatize a neighborhood of the identity ofG through
elements of the associated algebra with the help of a conveniently-selected homeomorphism. Such
homeomorphism is known in the literature asexponential mapand is denoted with exp :g → G.
It is important to recall that ‘exp’ is only a symbol and, even for matrix-typeLie groups,does not
necessarily denote matrix exponentiation.

2.2 Gradient Flows on the Orthogonal Group

As mentioned, the orthogonal groupO(p) is a Lie group, therefore it is endowed with a manifold
structure. Consequently, we may use the above-recalled instruments in order to define gradient-
based learning equations of the kind (3) overO(p) and to approximately solve them.

Some useful facts about the geometrical structure of the orthogonal groupO(p) are:

• The standard group multiplication onO(p) is non-commutative (forp≥ 3).

• The groupO(p) manifold structure has dimensionp(p−1)
2 . In fact, every matrix inO(p)

possessesp2 entries which are constrained byp(p+1)
2 orthogonality/normality restrictions.

• The inverse operationi(X) = X−1 coincides with the transposition, namelyi(X) = XT .

• The tangent space of the Lie groupO(p) has the structureTXO(p) = {V ∈ IRp×p|VTX +
XTV = 0p}. This may be proven by differentiating a generic curveγ(t) ∈ O(p) passing
by X for t = 0. Every such curve satisfies the orthogonal-group characteristic equation (4),
namelyγT(t)γ(t) = Ip, therefore, after differentiation, we getγ̇T(0)γ(0)+γT(0)γ̇(0) = 0p. By
recalling that the tangent space is formed by the velocity vectorsγ̇(0), the above-mentioned
result is readily achieved.

• The Lie algebra associated to the orthogonal group is the set of skew-symmetric matrices

so(p)
def
={Ṽ∈ IRp×p|Ṽ+ṼT = 0p}. In fact, at the identity(X = Ip), we haveTIpO(p) = so(p).

• The Lie algebraso(p) is a vector space of dimensionp(p−1)
2 .

First, it is necessary to compute the gradient of a functionf : O(p)→ IR over the groupO(p) in
view of computing the geodesic that emanates from a pointX ∈ O(p) with velocity proportional to

gradO(p)
X f . In this derivation, we essentially follow the definition of Riemannian gradientgiven in

Section 2.1.

3. This is the reason for which the Lie algebra of a Lie group is sometimes termed the ‘generator’ of the group.
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Let the manifoldO(p) be equipped with the canonical induced metricgO(p), that isgO(p)
X (U,V)

def
=

tr[UTV], for everyX ∈ O(p) and everyU,V ∈ TXO(p). This metric coincides with the standard Eu-
clidean metricgIRp×p

in IRp×p. Having endowed the manifoldO(p) with a metric, it is possible to
describe completely its normal space, provided the ambient spaceA is endowed with the canonical
Euclidean metric. In fact, we have

NXO(p) = {N = XS ∈ IRp×p|tr[NTV] = 0 , ∀V ∈ TXO(p)}.

The matrixS should have a particular structure. In fact, the normality condition, in this case, writes
0 = tr[VT(XS)] = tr[SVTX] = tr[(XTV)ST ]. The latter expression, thanks to the structure of tan-
gent vectors, is equivalent to−tr[(VTX)ST ], therefore the normality condition may be equivalently
rewritten as tr[(VTX)(S−ST)] = 0. In order for this to be true, in the general case, it is necessary
and sufficient thatS = ST . Thus:

NXO(p) = {XS|ST = S ∈ IRp×p}.

Let gradO(p)
X f be the gradient vector off at X ∈ O(p) derived from the metricgO(p). According to

the compatibility condition for the Riemannian gradient:

gIRp×p

X (V,gradIRp×p

X f ) = gO(p)
X (V,gradO(p)

X f ),

for every tangent vectorV ∈ TXO(p), therefore:

gIRp×p

X (V,gradIRp×p

X f −gradO(p)
X f ) = 0,

for all V ∈ TXO(p). This implies that the quantity gradIRp×p

X f − gradO(p)
X f belongs toNXO(p).

Explicitly:
gradIRp×p

X f = gradO(p)
X f +XS. (5)

In order to determine the symmetric matrixS, we may exploit the tangency condition on the Rie-
mannian gradient, namely(gradO(p)

X f )TX+XT(gradO(p)
X f ) = 0p. Let us first pre-multiply both sides

of the equation (5) byXT , which gives

XTgradIRp×p

X f = XTgradO(p)
X f +S.

The above equation, transposed hand-by-hand, becomes

(gradIRp×p

X f )TX = (gradO(p)
X f )TX+S.

Hand-by-hand summation of the last two equations gives

(gradIRp×p

X f )TX+XT(gradIRp×p

X f ) = 2S,

that is:

S =
(gradIRp×p

X f )TX+XT(gradIRp×p

X f )
2

. (6)

By plugging the expression (6) into expression (5), we get the form of the Riemannian gradient in
the orthogonal group, which is:

gradO(p)
X f =

gradIRp×p

X f −X(gradIRp×p

X f )TX
2

.
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About the expression of the geodesic, as mentioned, in general it is not easy to obtain in closed
form. In the present case, with the assumptions considered, the geodesicon O(p) departing from
the identity with velocityṼ ∈ so(p) has expressioñγ(t) = exp(tṼ). (It is immediate to verify that

γ̃(0) = Ip and dγ̃(t)
dt

∣

∣

∣

t=0
= Ṽ.) It might be useful to verify such essential result by the help of the

following arguments.
As already recalled in Section 2.1, when a manifold is embedded in a Euclidean space, the

second derivative of the geodesic with resepct to the parameter is either zero or perpendicular to
the tangent space to the manifold in every point (see Appendix A). Therefore, a geodesic̃γ(t) on
the Riemannian manifold(O(p),gO(p)) embedded in the Euclidean ambient space(IRp×p,gIRp×p

),
departing from the identityIp, should be such that¨̃γ(t) ∈ NIpO(p), therefore it should hold:

¨̃γ(t) = γ̃(t)S(t) , with ST(t) = S(t). (7)

Also, we known that any geodesic branch belongs entirely to the base manifold, thereforẽγT(t)γ̃(t)=
Ip. By differentiating two times such expression with respect to the parametert it is easily gotten:

¨̃γT
(t)γ̃(t)+2˙̃γT

(t)˙̃γ(t)+ γ̃T(t)¨̃γ(t) = 0p. (8)

By plugging equation (7) into equation (8), we findS(t) = −˙̃γT
(t)˙̃γ(t), which leads to the second-

order differential equation on the orthogonal group:

¨̃γ(t) = −γ̃(t)(˙̃γT
(t)˙̃γ(t)),

to be solved with initial conditions̃γ(0) = Ip and˙̃γ(0) = Ṽ. It is a straightforward task to verify that
the solution to this second-order differential equation is given by the one-parameter curvẽγ(t) =
exp(tṼ), where exp(·) denotes matrix exponentiation.

The expression of the geodesic in the position of interest may be made explicitby taking advan-
tage of the Lie-group structure of the orthogonal group endowed with thecanonical metric. In fact,
let us consider the pairX ∈O(p) and gradO(p)

X f ∈ TXO(p) as well as the geodesicγ(t) that emanates

from X with velocity V proportional to gradO(p)
X f , and let us suppose for simplicity thatγ(0) = X.

Let us now consider the right-translated curveγ̃(t) = γ(t)XT . The new curve enjoys the following
properties:

1. It is such that̃γ(0) = Ip, therefore it passes through the identity of the groupO(p).

2. The tangent vectorV to the curve atX is ‘transported’ into the tangent vector:

Ṽ = VXT , (9)

at the identity, sõV ∈ so(p).

3. As the right-translation is an isometry, the curveγ̃(t) is still a geodesic departing from the

identity matrix with velocity proportional tõV = (gradO(p)
X f )XT .

From these observations, we readily obtain the geodesic in the position of interestX∈O(p), namely
γ(t) = exp(tṼ)X.

As this is an issue of prime importance, we deem it appropriate to verify that thecurveγ(t) just
defined belongs to the orthogonal group at any time. This may be proven bycomputing the quantity
γT(t)γ(t) and taking into account the identity expT(tṼ) = exp(−tṼ). Then we have

γT(t)γ(t) = XT expT(tṼ)exp(tṼ)X = XT exp(−tṼ)exp(tṼ)X = XTX = Ip.
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2.3 Comments on Stability and the Relationship with Natural Gradient Theory

Some comments on the questions of the stability of gradient-based learning algorithms on the or-
thogonal group and on the relationship of Riemannian gradient-based learning algorithms on the
orthogonal group with the well-known ‘natural’ gradient-based optimizationtheory are in order.

When applied to the manifoldM = O(p), the general gradient-based learning equation (3) has
the inherent property of keeping the connection matrixX within the groupO(p) at any time. It is
very important to note that the discrete-time version of this learning equation, described in Section 3,
also enjoys this noticeable property. When for example, learning algorithms based on the manifold
Gl(p), defined in equation (1), are dealt with, one of the theoretical efforts required to prove their
stability consists in showing that there exists a compact sub-manifold that is an attractor for the
learning system. The above observations reveal that the problem of the existence of an orthogonal-
group-attractor for discrete-time learning systems based on the orthogonal Lie group does not arise
when a proper integration algorithm is exploited. Moreover, as opposed tothe Euclidean space IRp

and the general-linear groupGl(p), the orthogonal groupO(p) is a compact space. This means
that no diverging trajectories exist for the learning system (3) or its discrete-time counterpart. Such
effect may be easily recognized in the two-dimensional (p = 2) case, through the parameterization
ψ−1 : [−π,π[→ SO(2):

X =

[

cosβ −sinβ
sinβ cosβ

]

. (10)

It is worth noting that det(X) = 1, while, in general, the determinant of an orthonormal matrix
may be either−1 or +1, in fact 1= det(XTX) = det2(X) for X ∈ O(p). This means that the
above parameterization spans one of the two components of the orthogonalgroup termedspecial
orthogonalgroup and denoted bySO(p). (In the above notation, we easily recognize a coordinate
chart(ψ,SO(2),1) associated toO(2).) Now, by singling out the columns of the matrixX = [x1 x2],
we easily see that‖x1‖ = ‖x2‖ = 1, which proves the spaceSO(2) is compact. The same reasoning
may be repeated for the remaining component ofO(2).

In its general formulation, the widely-known ‘natural gradient’ theory for learning may be sum-
marized as follows. The base-manifold for learning is the group of non-singular matricesGl(p) that
is endowed with a metrics based on the Fisher metric tensor which, in turn, derives from a trun-
cated expansion of the Kullback-Leibler informational divergence (KLD) (Amari, 1998). The latter
choice derives from the possibility – offered by the KLD – to induce a metricsin the abstract space
of neural networks having same topology but different connection parameters, which is referred to
asneural manifold.

In the independent component analysis case, a special structure was envisaged by Yang and
Amari (1997) for the natural gradient by imposing a Riemannian structure on the Lie group of
non-singular matricesGl(p). We believe it could be useful to briefly recall this intuition here by
using the language of Lie groups recalled in Section 2.1. First, the tangent space at identityIp

to Gl(p) is denoted bygl(p), as usual. Such Lie algebra may be endowed with a scalar product

gGl(p)
Ip

(·, ·) : gl(p)×gl(p) → IR. As there is no reason to weight in a different way the components

of the matrices ingl(p), it is assumedgGl(p)
Ip

(Ũ, Ṽ)
def
=tr[ŨTṼ]. The question is now how to define the

scalar product in a generic tangent spaceTXGl(p), with X ∈ Gl(p). Let us consider, to this purpose,
a curveγ(t) ∈ Gl(p) passing by the pointX at t = 0, namelyγ(0) = X. This curve may always

be translated into a neighborhood of the identity of the group by the left-translation γ̃(t)def
=X−1γ(t),
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in fact, the inverseX−1 surely exists becauseGl(p) is the set of all invertiblep× p matrices by
definition and now̃γ(0) = Ip. Therefore, ifV ∈ TXGl(p) denotes the tangent vector to the curveγ(t)
at t = 0 andṼ ∈ gl(p) denotes the tangent vector to the curveγ̃(t) at t = 0, they are related by the
corresponding tangent mapV → Ṽ = X−1V. This observation may be exploited to define an inner
product on the tangent spaces ofGl(p) by imposingthe Riemannian-structure invariance property:

gGl(p)
X (U,V)

def
=gGl(p)

Ip
(X−1U,X−1V) = tr[UT(XT)−1X−1V].

Having defined a general (non-uniform) metric in the tangent spaces toGl(p), we may now compute
the Riemannian (natural) gradient on it, by invoking the tangency and compatibility conditions
as stated in Section 2.1. Actually, the tangency condition does not provide any constraint in the
present case, because everyTXGl(p) is ultimately isomorphic to IRp×p. The compatibility condition,
instead, writes, for a smooth functionf : Gl(p) → IR:

gGl(p)
X (gradGl(p)

X f ,V) = tr

[

(

∂ f
∂X

)T

V

]

, ∀V ∈ TXGl(p).

This condition implies:

tr

[{

(gradGl(p)
X f )T(XT)−1X−1−

(

∂ f
∂X

)T
}

V

]

= 0 , ∀V ∈ TXGl(p)

⇒ (gradGl(p)
X f )T(XT)−1X−1 =

(

∂ f
∂X

)T

⇒ gradGl(p)
X f = (XXT)

∂ f
∂X

.

Of course, a different form for the natural gradient may be obtained by choosing the right-translation

γ̃(t)def
=γ(t)X−1 as a basis for invariance, as done for example, by Yang and Amari (1997). The

‘natural gradient’ theory forGl(p) and the Riemannian-gradient-theory for the groupO(p) are thus
somewhat unrelated, even if ultimately the ‘natural gradient’ is a Riemannian gradient on the group
Gl(p) arising from a specific metric. Some further details on the optimization problem over the
general linear group (about for example, using the exponential map onGl(p)) have been presented
by Akuzawa (2001).

Another interesting comparison is with the information-geometry theory for learning.4 In the
spirit of information geometry, the natural gradient works on a manifold of parameterized likeli-
hood. Now, in two dimensions, the Riemannian geometry of the orthogonal group, defined by the
parameterization (10) above, may be clearly related to the information geometryof the binomial dis-
tribution defined by the variablesr,q such thatr +q= 1, via the transformr = cos2(β), q= sin2(β).
Whether such link exists in any dimension (p≥ 3) is not known to the author and would be worth
investigating in future works. The same holds for the relationship with secondorder (Newton)
method, which is known for the natural gradient (see, for example, Parket al. (2000) and references
therein) but whose relationship with general Riemannian gradient theory isto be elucidated.

4. This interesting connection was suggested by a reviewer.
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3. Learning Over the Orthogonal Group: Three Algorithms

In order to numerically integrate a continuous learning differential equationon a manifold, a proper
discretization method should be exploited. On a flat space, a possible discretization method is line
approximation based on Euler’s or trapezoidal technique (or some more sophisticated techniques
such as the Runge-Kutta method). However, if applied to differential equations based on curved
manifolds, such ordinary discretization methods produce updating rules that do not satisfy the man-
ifold constraints. Following the general differential-geometric knowledge,two possible ways to
tackle the problem are:

• The projection method. It consists in projecting the updated value to the manifold after each
iteration step. More formally, this method consists in embedding the manifoldM of interest
into a Euclidean space of proper dimensionA and to discretize the differential equation whose
variable is regarded as belonging toA through any suitable ordinary method. Then, in each
iteration, the newly found approximated solution is projected back to the manifoldthrough a
suitableprojectorΠ : A → M . The next iteration starts from the projected putative solution.

• The geodesic method. The principle behind the geodesic method is to replace the line approx-
imation to the original differential equation by the geodesic approximation in the manifold.
From a geometrical point of view, this seems a natural approximation because a geodesic
on a manifold is a counterpart of a line in the Euclidean space. Furthermore, ageodesic on
a Riemannian manifold is a length-minimizing curve between two points, which looks quite
appealing if we regard an optimization process as connecting an initial solutionto a stationary
point of a criterion function through the shortest path.

The viewpoint adopted in the present contribution is that the geodesic-based approach is the
most natural one from a geometric perspective and the most capable of future extensions to different
base-manifolds. The projection method will also be considered, for comparison purposes only, in
the section devoted to simulation results.

In particular, we suppose to approximate the flow of the differential learning equation (3)
through geodesic arcs properly connected, so as to obtain a piece-wisegeodesic-type approxima-
tion of the exact gradient flow. If we denote byW ∈ O(p) the pattern to be learnt (for instance the
connection matrix of a one-layer neural network), the considered geodesic-based learning algorithm
corresponding to the exact Riemannian gradient flow is implemented by considering learning steps
of the form:

Wn+1 = exp(ηn((gradIRp×p

Wn
f )WT

n −Wn(gradIRp×p

Wn
f )))Wn, (11)

where the indexn ∈ IN denotes a learning step counter andηn denotes an integration or learning
stepsize (the factor12 may be safely absorbed inηn) usually termed(learning) scheduleor step-size.
It deserves underlining that the integration step-size may change acrossiterations because it may be
beneficial to vary the step-size according to the progress of learning. The initial solutionW0 should
be selected inO(p). It should be noted that the matrixW plays now the role of the general matrix
X used in the previous section.

The aim of the present section is to consider three Riemannian gradient algorithms over the
Lie group of orthogonal matrices. All three algorithms ensure that the current network-state matrix
remain within the orthogonal group:

• Algorithm 1 uses a fixed step-size in the general geodesic-based learning equation (11).
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• Algorithm 2 uses a geodesic line search for optimizing the step-size in the general geodesic-
based learning equation (11).

• Algorithm 3 introduces stochasticity in the Algorithm 1, using a Markov-Chain Monte-Carlo
method, jointly with an annealing procedure.

3.1 Deterministic Algorithms

A learning algorithm based on the findings of Section 2 may be stated as follows, where it is sup-
posed that a constant learning step-size is employed.

� Learning algorithm 1:

1. Setn = 0, generate an initial solutionW0 and setf0 = f (W0) and define a constant step-size
η.

2. Compute a candidate solutionWn+1 through the equation (11), incrementn and return to 2,
unlessn exceeds the maximum number of iteration permitted: In this case, exit.

Formally, as mentioned in Section 2.1, the concept of geodesic is essentially local, therefore
the discrete steps (11) on the orthogonal group should be extended forsmall values ofηn. Instead
of keepingηn constant or letting it progressively decreases through some ‘cooling scheme’, as it
is customary in classical learning algorithms, it could allegedly be convenient tooptimize it during
learning. It is worth underlining at this point that the numerical evaluation ofthe geodesic curve
through the exponential map, as well as the effective movement along a geodesic, are computation-
ally expensive operations.

Step-size adaptation may be accomplished through a proper ‘line search’,as explained in what
follows. Let us first define the following quantities for the sake of notation conciseness:

Ṽn
def
=(gradIRp×p

Wn
f )WT

n −Wn(gradIRp×p

Wn
f )T , En(t)

def
= exp(tṼn). (12)

Starting from a pointWn at iteration stepn, according to equation (11), the next point would be

En(t)Wn, therefore the learning criterion function would descend fromf (Wn) to fn(t)
def
= f (En(t)Wn).

From the definition off , which is continuous and defined on a compact manifold, it follows that
the functionfn(t) admits a point of minimum fort ∈ T ⊂ IR−, that may be denoted ast?. If we are
able to findt? in a computationally convenient way, we may then selectηn = t?. The operation of
searching for a convenient value as close as possible tot? is termedgeodesic searchas it closely
resembles the familiar concept of ‘line search’.

Basically, we may perform a geodesic search in two different ways:

• By sampling the intervalT through a sequence of discrete indicestk, computing the value of
fn(tk) and selecting the value that grants the smallest cost.

• By computing the derivatived fn(t)
dt and looking for the value of the indext for which it is equal

(or sufficiently close) to zero. This approach would look advantageousif the expression of
such equation could be handled analytically in an straightforward way. We found it is not the
case and that this approach looks excessively cumbersome from a computational viewpoint,
therefore it will not be adopted in this paper.
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A second learning algorithm based on the above considerations may be stated as follows.

� Learning algorithm 2:

1. Setn = 0, generate an initial solutionW0 and setf0 = f (W0).

2. Compute the quantitỹVn in the equations (12).

3. Perform a geodesic-search for the optimal step-sizeηn.

4. Compute a candidate solutionWn+1 through the equation (11) and evaluatefn+1 = f (Wn+1).

5. If fn+1 < fn then accept the candidate solution, incrementn and return to 2, unlessn exceeds
the maximum number of iteration permitted: In this case, exit. Iffn+1 ≥ fn, then proceed to
6.

6. Generate a small random step-sizeηn.

7. Compute the candidate solutionWn+1 through the equation (11), evaluatefn+1 = f (Wn+1),
incrementn and return to 2.

The steps 6 and 7 in the above algorithm have been introduced in order to tackle the case in which
the geodesic search gives rise to a candidate solution that causes the network’s connection pattern to
ascend the cost functionf instead of making it descend. In this case, moving along the geodesic of a
small random quantity does not ensure monotonic decreasing of the cost function, but it might help
moving to another zone of the parameter space in which the geodesic learningmight be effective.

3.2 Diffusion-Type Gradient Algorithm

In order to mitigate the known numerical convergence difficulties associatedto the plain gradient-
based optimization algorithms, it might be beneficial to perturb the standard Riemannian gradient to
obtain a randomized gradient. In particular, following Liu et al. (2004), wemay replace the gradient-
based optimization steps with jointsimulated annealingandMarkov-Chain Monte-Carlo(MCMC)
optimization technique, which gives rise to a so-termeddiffusion-type optimization process. The
Markov-Chain Monte-Carlo method was proposed and developed in the classical papers by Hastings
(1970) and Metropolis et al. (1953).

It is worth recalling that, in classical algorithms, perturbations are easily introduced by sam-
pling each network input one by one and by exploiting only such instantaneous information at a
time. When used in conjunction with gradient-based learning algorithms, this inherently produces
a stochastic gradient optimization based on a random walk on the parameters space. The two main
reasons for which such choice is not adopted here are:

• When statistical expectations are replaced by one-sample mean, as it is customarily done,
for example, in on-line signal processing, part of the information contentpertaining to past
samples is discarded from the learning system, and this might be a serious sideeffect on
learning capability.

• The annealed MCMC method offers the possibility of actuallycontrolling the amount of
stochasticity introduced in the learning system by properly setting the method’sfree param-
eters such as the annealing temperature. Classical random-walk learning algorithms – as the
one based on sampling each network input one by one – do not seem to offer such possibility.
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A general discussion on the possible benefits owing to the introduction of stochasticity in gradient-
based learning systems has been presented by Wilson and Martinez (2003).

It is understood that in a learning process having a Euclidean space as base-manifold, each step
is simply proportional to the gradient computed in the departing point, therefore the learning steps
may be directly perturbed in order to exploit randomized parameter-space search. In the present
context, however, the base manifoldO(p) is curved, therefore it is sensible to perturb the gradient
in the Lie algebra and then apply the formulas explained in the Section 2.2 to compute the associated
step in the base-group.

In short, simulated annealing consists in adding to the deterministic gradient a random compo-
nent whose amplitude is proportional to a parameter referred to astemperature. This mechanism
may help the optimization algorithm to escape local solutions, but it has the drawback of occasion-
ally leading to changes of the variable of interest toward the wrong direction(that is, it may lead to
intermediate solutions with higher values of the criterion function when its minimum is sought for
or vice-versa). Such drawback may be gotten rid of by adopting a MCMC-type simulated annealing
optimization strategy where the diffusion-type gradient is exploited to generate a possible candi-
date for the next intermediate solution which is accepted/rejected on the basis of an appropriate
probability distribution.

According to Liu et al. (2004), the diffusion-type gradient on the algebraso(p) may be assumed
as

Ṽdiff (t) = Ṽ(t)+
√

2Θ
p(p−1)/2

∑
k=1

Lk
dWk

dt
, (13)

whereṼ(t) is the gradient (9),{Lk} is a basis of the Lie algebraso(p), orthogonal with respect to the

metricgO(p)
Ip

, theWk(t) are real-valued, independent standard Wiener processes and the parameter
Θ > 0 denotes the aforementioned temperature, which proves useful for simulating annealing during
learning. It is worth recalling that a Wiener process is a continuous-time stochastic processW (t)
for t ≥ 0, that satisfies the following conditions (Higham, 2001):

• W (0) = 0 with probability 1.

• For 0≤ τ < t the random variable given by the incrementW (t)−W (τ) is normally dis-
tributed with mean zero and variancet − τ. Equivalently,W (t)−W (τ) ∼

√
t − τN (0,1),

whereN (0,1) denotes a normally distributed random variable with zero mean and unit vari-
ance.

• For 0≤ τ < t < u < v, the incrementsW (t)− W (τ) and W (v)− W (u) are statistically
independent.

The learning differential equation on the orthogonal group associated tothe gradient (13) reads

dW
dt

= −Ṽdiff (t)W(t), (14)

is aLangevin-type stochastic differential equation(LDE).
By analogy with physical phenomena described by this equation, such as the Brownian motion

of particles, the solution to the LDE is termed adiffusion process. Under certain conditions on
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the criterion functionf , the solution of equation (14) is a Markov process endowed with aunique
stationaryprobability density function (Srivastava et al., 2002), described by

πLDE(W)
def
=

1
Z(Θ)

exp(− f (W)/Θ), (15)

whereZ(Θ) denotes the density-function normalizer (partition function).5 In other terms, the LDE
‘samples’ from the distributionπLDE(W): This is a main concept in the method of using the LDE
to generate random samples according to a given energy/cost function.

The choice of assuming the probabilityπLDE inversely proportional to the value off (W) serves
at discouraging network states corresponding to high values of the learning cost function. Also, it
deserves to note that care should be taken of the problem related to the consistency of the above
definition: The problem of the existence ofπLDE, that is connected to the existence of the partition
functionZ(Θ), must be dealt with. To this aim, it is worth noting thatf (W) is a continuous function
of the argument which belongs to a compact space, we may therefore argue that f (W) is bounded
from above and from below. Thus, the function exp(− f (W)) is bounded and its integral over
the whole orthogonal group through a coordinate-invariant measure ofvolume, such as the Haar
measure (Srivastava et al., 2002), is surely existent.

In order to practically perform statistical sampling via the LDE, we can distinguish between
rejectionandMCMC methods:

1. The rejection algorithm is designed to give an exact sample from the distribution. Let us
denote byπ(x) a density to sample from a setX : We can sample from another distribution
µ(x) (instrumental distribution) such that sampling from it is practically easier than actually
sampling fromπ(x). Then, it is possible to generatex∗ from µ(x) and accept it with probability

αdef
=

π(x∗)
µ(x∗)M

,

whereM is a constant such thatπ(x)/µ(x) ≤ M for all x ∈ X . If the generated sample is
not accepted, rejection is performed until acceptance. When accepted,it is considered to be
an exact sample fromπ(x). A consequence of adopting this method is that the number of
necessary samplings fromµ(x) is unpredictable.

2. In MCMC, a Markov chain is formed by sampling from a conditional distribution µ(x|y): The
algorithm starts fromx0 and proceeds iteratively as follows: At stepn, samplex∗ from µ(x|xn)
and compute the acceptation (Metropolis-Hastings) probability as

αn
def
= min

{

1,
π(x∗)µ(xn|x∗)
π(xn)µ(x∗|xn)

}

, (16)

then acceptx∗ with probabilityαn. This means lettingxn+1 = x∗ with probabilityαn, other-
wisexn+1 = xn. This is the main difference with rejection method: If the candidate sample is
not accepted, then the previous value is retained.

5. The theory presented by Srivastava et al. (2002) deals with the special case in which the base-manifold isO(3). This
result is not related to the dimension of the orthogonal group of interest, indeed, therefore it may be extended without
difficulty to the general caseO(p) of concern in the present paper.
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In the MCMC method, the quantityµ(x|y) denotes atransition probabilityas it describes the prob-
ability of ‘jumping’ from statey to statex. The total probability of transition from statexn to state
xn+1 is given by the combination of the instrumental distributionµ(x|y) and the Metropolis-Hastings
acceptation probability: The transition kernelK(xn+1|xn) is, in fact:

K(xn+1|xn)
def
=αnµ(xn+1|xn)+(1−αn)δ(xn+1−xn).

In order to gain a physical interpretation of the instrumental probabilityµ(x|y), it pays to take
for example a symmetric instrumentalµ(x|y). Under this hypothesis, the ratio in the definition (16)
would becomeπ(x∗)/π(xn): The chain jumps to the statex∗ if it is more plausible (αn = 1) than
the previous statexn, otherwise (caseαn < 1), the chain jumps to the generated state according to
the probabilityαn. As an example of symmetric instrumental conditional probability,µ(x|y) may be
assumed as Gaussian inx with meany.

If the Markov chain{xn}n=1,...,N converges to the true probabilityπ(x), thenxn is asymptotically
drawn fromπ(x), so xn is not an exact sample as in the rejection method. However, there is a
powerful mathematical result that warrants that the empirical average (ergodic sum)∑n`(xn)/N, for
a regular functioǹ : X → IR, converges to IE[`(x)] if the chain converges asymptotically to the true
distribution. For example, ifx is a zero-mean scalar random variable andX = IR, then`(x) = x2

for the variance and̀(x) = x4 for the kurtosis of the variable. For this reason, MCMC methods are
considered to be preferable over rejection method because in this latter onlyone exact sample is
obtained, while with the former we obtain a chain and are thus able to approximateexpectations. In
order to perform MCMC, there is a great flexibility in choosing the instrumental probability density
µ(x|y).

For a recent review of the MCMC method, interested readers may consult for instance the sur-
veys by Kass et al. (1998) and Warnes (2001).

In order to numerically integrate the learning LDE, it is necessary to discretize the Wiener
random process. Let us denote again byη the chosen (constant) step-size: A time-discretization of
the stochastic gradient (13) may be written as

Ṽdiff ,n = Ṽn +

√

2Θ
η

p(p−1)/2

∑
k=1

Lkνk, (17)

where eachνk is a independent, identically distributed normal random variable (Higham, 2001) and
the gradient̃Vn is given in equation (12).

Having defined the new diffusion-type gradient (and its time-discretized version), the associated
stochastic flow may be locally approximated through the geodesic learning algorithm explained in
Section 2.2. Also, at every learning stepn, the temperatureΘn may be decreased in order to make
the diffusive disturbance term peter out after the early stages of learning. This gives rise to the
following simulated-annealing/MCMC learning scheme.

� Learning algorithm 3:

1. Setn = 0, generate an initial solutionW0 and setf0 = f (W0), select a constant learning
step-sizeη, select a temperature valueΘ0 and select agO(p)-orthonormal baseLk of the Lie
algebraso(p).

2. Generate a set of identically-distributed, independent standard Gaussian random variablesνk.
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3. Compute the diffusive gradient (17), compute a candidate solutionWn+1 through the equa-
tion (11), where the deterministic gradient is replaced by the diffusive gradient, and evaluate
fn+1 = f (Wn+1).

4. Compute the MCMC probabilityπMCMC
def
= min{1,exp(−( fn+1− fn)/Θn)}.

5. Accept the candidate solution with probabilityπMCMC (or reject the candidate solution with
probability 1−πMCMC). Rejection corresponds to assumingWn+1 = Wn.

6. Decrease the temperatureΘn to Θn+1 following a pre-defined cooling scheme.

7. Incrementn and return to 2, unlessn exceeds the maximum number of iteration permitted: In
this case, exit.

4. Application to Non-Negative Independent Component Analysis: Algorithms
Implementation and Numerical Experiments

The aims of the present section are to recall the concept of non-negative independent component
analysis (ICA+) and the basic related results, to customize the general learning algorithms onthe
orthogonal group to the case of ICA+, and to present and discuss some numerical cases related to
non-negative ICA applied to the separation of gray-level images.

4.1 Non-Negative Independent Component Analysis

Independent component analysis (ICA) is a signal/data processing technique that allows to re-
cover independent random processes from their unknown combinations (Cichocki and Amari, 2002;
Hyvärinen et al., 2001). In particular, standard ICA allows the decomposition of a random process
x(t) ∈ IRp into the affine instantaneous model:

x(t) = As(t)+n(t), (18)

whereA ∈ IRp×p is themixingoperator,s(t) ∈ IRp is thesource streamandn(t) ∈ IRp denotes the
disturbance affecting the measurement ofx(t) or some nuisance parameters that are not taken into
account by the linear part of the model.

The classical hypotheses on the involved quantities are that the mixing operator is full-rank,
that at most one among the source signals exhibit Gaussian statistics, and that the source signals
are statistically independent at any time. The latter condition may be formally statedthrough the
complete factorization principle, which ensures that the joint probability density function of statisti-
cally independent random variables factorizes into the product of their marginal probability density
functions. We also add the technical hypothesis that the sources do not have degenerate (that is,
point-mass-like) joint probability density function. This implies that for example,the probability
that the sources are simultaneously exactly zero is null. Under these hypotheses, it is possible to re-
cover the sources up to (usually unessential) re-ordering and scaling,as well as the mixing operator.

Neural ICA consists in training an artificial neural network described byy(t) = W(t)x(t), with
y(t) ∈ IRp andW(t) ∈ IRp×p, so that the network output signals become as statistically independent
as possible.
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Due to the difficulty of measuring the statistical independence of the network’s output signals,
several different techniques have been developed in order to perform ICA. The most common ap-
proaches to ICA are those based on working out the fourth-order statistics of the network outputs
and to the minimization of the (approximate) mutual information among the network’s outputs. The
existing approaches invoke some approximations or assumptions in some stageof ICA-algorithm
development, most of which concern the (unavailable) structure of the source’s probability distribu-
tion.

As it is well-known, a linear, full-rank,noiselessand instantaneous model may be always re-
placed by an orthogonal model, in which the mixing matrixA is supposed to belong toO(p). This
result may be obtained by pre-whitening the observed signalx, which essentially consists in remov-
ing second-order statistical information from the observed signals. Whenthe mixture is orthogonal,
the separating network’s connection matrix must also be orthogonal, so we may restrict the learning
process to searching the proper connection matrix withinO(p).

An interesting variant of standard ICA may be invoked when the additional knowledge on the
non-negativity of the source signals is considered. In some signal processing situations, in fact,
it is a priori known that the sources to be recovered have non-negative values (Plumbley, 2002,
2003). This is the case, for instance, in image processing, where the values of the luminance or the
intensity of the color in the proper channel are normally expressed through non-negative integer val-
ues. Another interesting potential application is spectral unmixing in remote sensing (Keshava and
Mustard, 2002). The evolution of passive remote sensing has witnessedthe collection of measure-
ments with great spectral resolution, with the aim of extracting increasingly detailed information
from pixels in a scene for both civilian and military applications. Pixels of interest are frequently a
combination of diverse components: In hyper-spectral imagery, pixels are a mixture of more than
one distinct substance. In fact, this may happen if the spatial resolution of asensor is so low that
diverse materials can occupy a single pixel, as well as when distinct materialsare combined into a
homogeneous mixture. Spectral demixing is the procedure with which the measured spectrum is de-
composed into a set of component spectra and a set of corresponding abundances, that indicate the
proportion of each component present in the pixels. The theoretical foundations of thenon-negative
independent component analysis(ICA+) have been given by Plumbley (2002), and then Plumbley
(2003) proposed an optimization algorithm for non-negative ICA based on geodesic learning and
applied it to the blind separation of three gray-level images. Further recent news on this topic have
been published by Plumbley (2004). In our opinion, non-negative ICA as proposed by Plumbley
(2003) is an interesting task and, noticeably, it also gives rise to statistical-approximation-free and
parameter-free learning algorithms.

Under the hypotheses motivated by Plumbley (2002), a way to perform non-negative indepen-
dent component analysis is to construct a cost functionf (W) of the network connection matrix
that is identically zero if and only if the entries of network’s output signaly are non-negative with
probability 1. The criterion function chosen by Plumbley (2003) isf : O(p) → IR+

0 defined by

f (W)
def
=

1
2

IEx[‖x−WTρ(Wx)‖2], (19)

where IEx[·] denotes statistical expectation with respect to the statistics ofx, ‖ · ‖2 denotes the stan-
dardL2 vector norm and the functionρ(·) denotes the ‘rectifier’:

ρ(u)
def
=

{

u , if u≥ 0 ,
0 , otherwise.
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In the definition (19), the rectifier acts component-wise on vectors. From the definition (19), it is
clear that when all the network output signals have positive values, it results f = 0, otherwisef 6= 0.
The described cost function closely resembles a non-linear principal component analysis criterion
designed on the basis of the minimum reconstruction error principle (Hyvärinen et al., 2001). This
observation would be beneficial for future extensions to complex-weighted neural networks, as
suggested by Fiori (2004).

In this case, learning a ICA+ network may thus be accomplished by minimizing the criterion
function f .

In order to design a gradient-based learning algorithm over the orthogonal group according to
the general theory developed in the Section 2.2, it is necessary to compute theEuclidean gradient
of the function (19) with respect to the connection matrixW. After rewriting the learning criterion
function as

2 f (W) = IEx[‖x‖2 +‖ρ(y)‖2−2yTρ(y)],

some lengthy but straightforward computations lead to the expression:

gradIRp×p

W f = IEx[((ρ(y)−y)�ρ′(y))xT −ρ(y)xT ],

where the symbol� denotes component-wise (Hadamard) product of two vectors andρ′(·) denotes
the derivative of the rectifier, that is, the unit-step function. This is undefined in the origin. From a
practical point of view, this is a minor difficulty: In fact, thanks to the hypothesis of non-degeneracy
of the joint probability density function of the source, the probability that the components of the
networks output vector vanish to zero simultaneously is equal to zero. It isnow easy to recognize
that the vector(ρ(y)−y)�ρ′(y) is identically zero (where it is defined), therefore the above gradient
reduces to the simple expression:

gradIRp×p

W f = −IEx[ρ(y)xT ].

Following the notation introduced by Plumbley (2003), we find it convenient todefine the rec-
tified network output:

y+
n

def
=ρ(yn) , whereyn

def
=Wnx. (20)

With this convention, the Riemannian gradient and the associate learning algorithm (valid for ex-
ample, for the versions of Algorithms 1 and 2) write, respectively:

2gradO(p)
Wn

f = IEx[yn(y+
n )TWn]− IEx[(y+

n )xT ],

Wn+1 = exp(ηn(IEx[yn(y+
n )T ]− IEx[y+

n yT
n ]))Wn ,

n = 1, 2, 3, ...

The initial connection matrixW0 may be randomly picked inO(p). Another practical choice is
W0 = Ip.

4.2 Details on the Used Data and on Algorithms Implementation

The gray-level images used in the experiments are illustrated in the Figure 1. It is important to
note that, in general, real-world images are not completely statistically independent. For instance,
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IMG 1 IMG 2 IMG 3

IMG 4 IMG 5 IMG 6

IMG 7 IMG 8 IMG 9

Figure 1: The nine gray-level images used in the experiments.

the images used in the present experiments are slightly statistically correlated, as can be seen by
computing their 9×9 covariance matrix (approximated to two decimal digits)Cs =

103×





























2.81 0.07 0.1 −0.05 −0.33 −0.55 0.29 −0.04 −0.12
0.07 4.52 0 −0.04 0.61 0.49 −0.16 0.01 −0.02
0.1 0 15.05 0.33 0.14 0.06 −0.37 −0.09 0.01

−0.05 −0.04 0.33 2.32 0.17 0.38 −0.43 0 −0.09
−0.33 0.61 0.14 0.17 5.49 0.67 0.8 0.01 0.02
−0.55 0.49 0.06 0.38 0.67 5.69 −0.63 −0.04 −0.04
0.29 −0.16 −0.37 −0.43 0.8 −0.63 15.3 −0.01 0.12
−0.04 0.01 −0.09 0 0.01 −0.04 −0.01 0.89 −0.01
−0.12 −0.02 0.01 −0.09 0.02 −0.04 0.12 −0.01 15.33





























,

which is not diagonal, but diagonal-dominated.
It is now necessary to explain in details the pre-whitening algorithm. We distinguish between

the noiseless and noisy case.

• In the noiseless case (namely,n(t) ≡ 0), the pre-whitening stage is based on the observation
that in the model (18) the square matrixA may be written through the singular value decom-
position (SVD) asF1DFT

2 , whereF1,F2 ∈ O(p) andD ∈ IRp×p is diagonal invertible. Then,

it is readily verified thatCx
def
=IEx[x̄x̄T ] = AIEs[s̄s̄T ]AT , where the overline denotes centered

signals (for example,̄xdef
=x− IEx[x].) In the (non-restrictive) hypothesis that IEs[s̄s̄T ] = Ip, we

thus haveCx = AAT = F1D2FT
1 . The factorsF1 andD may thus be computed through the
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standard eigenvalue decomposition of the covarianceCx. The whitened observation signal is
then

x̂def
=D−1FT

1 x = FT
2 s.

It is now clear that the last rotationFT
2 of the source signals cannot be removed by second-

order statistics, while orthogonal non-negative ICA may be effective to separate out the
independent/non-negative components.

• In the noisy case, when the model of the observed signal is given by (18), the noise com-
ponent cannot be filtered out by using pre-whitening nor independentcomponent analysis
itself. However, pre-whitening still makes it possible to use orthogonal ICA+, providedthe
additive noise affecting the observations is not too strong. In fact, by hypothesizing the noise
componentn(t) is a zero-mean multivariate random sequence with covariance matrixσ2Ip,
termed ‘spherical’ noise, the covariance of the observations writesCx = AAT +σ2Ip. In case
of strong disturbance, it is therefore clear that, in general, pre-whitening cannot rely on eigen-
value decomposition ofCx. In any case, the difficulty due to the presence of strong additive
noise is theoretically unavoidable, even if pre-whitening is dispensed of and ICA algorithms
that search inGl(p) are employed.

In order to compute a separation performance index, we consider that, atconvergence, the sepa-

ration productPn
def
=WnD−1FT

1 A ∈ IRp×p should ideally exhibit only one entry per row (or column)
different from zero, while the magnitude of non-zero values does not care. In a real-word situation,
of course some residual interference should be tolerated. Therefore, a valid separation index is

Qn
def
=

1
p
‖PnPT

n −diag(PnPT
n )‖F, (21)

where‖ · ‖F denotes the Frobenius norm. The index above is based on the fact that ideally the
matrix PnPT

n should be diagonal, thereforeQn measures the total off-diagonality averaged over the
total number of network’s outputs. (As normally the indexQn assumes very low values, it is worth
normalizing it to its initial value, namely byQn/Q0.)

Another valid network-performance index is the criterion function (19) itself. For easy com-

putation of the index, we note that by definingy−n
def
=Wnx−ρ(Wnx), the value of the cost function

at then-th learning step computes asfn = 1
2IEx[‖y−n ‖2]. (The learning algorithm seeks for a neural

transformation that minimizes the negativity of its outputs, in fact.)
With regard to the computational complexity analysis of the described algorithms,we consider

the number of floating-point operations (flops) per iteration and the average run-time per iteration.
The codes were implemented in MATLAB on a 600 MHz, 128 MB platform.

With regard to the selection of the scheduleηn, in the experiments we found it convenient to
write first the learning step-sizeηn asη̃n/‖Ṽn‖F, whereṼn denotes again the gradient on the Lie
algebra ofO(p) defined in the equations (12) and then to optimize the normalized step-sizeη̃n. This
convention keeps valid throughout the remaining part of the paper, so wecan continue to use the
notationηn even for the normalized step-size without confusion.

In order to establish a numerically efficient geodesic search for the Algorithm 2, we seek for
the optimalηn in a suitable interval by sampling this interval at sub-intervals of proper size. The
details on these quantities are given in the section dedicated to the numerical experiments for each
category of experiment.
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About the cooling scheme for the simulated-annealing/MCMC algorithm, according to Liu et
al. (2004), we adopted the scheduleΘn+1 = Θn/1.025.

As a general note, the ensemble average denoted by the statistical expectation operator IE[·] is
replaced everywhere by sample (empirical) mean.

4.3 Results of Numerical Experiments

The present part of the paper aims at presenting some numerical results obtained with the above-
described learning algorithms applied to non-negative independent component analysis. The nu-
merical analysis begins with the illustration of some toy experiments that aim at showing the con-
sistency of the adopted ‘non-negativity’ optimization principle. Then, the analysis continues with
an investigation and a comparison of the behavior of the three algorithms described in the previous
sections.

4.3.1 PRELIMINARY EXPERIMENTS

As a case study, we consider the mixing of two images with a randomly generatedmixing matrix
A ∈ IR2×2. As the orthogonal separation matrixW is of size 2×2, it may be easily parameterized,
as in equation (10), by

W(β) =

[

cosβ −sinβ
sinβ cosβ

]

,

with β ∈ [−π,π[ being the separation angle. As already underlined in Section 2.3, this parameter-
ization does not cover the whole groupO(2), but this problem is unessential for ICA purpose. By
properly sampling the interval[−π,π[, it is possible to give a graphical representation of the behav-
ior of the non-negative independent component analysis criterionf (W(β)) defined in equation (19)
and of the separation indexQ(β) defined by equation (21) (which depends on variableβ through
the separation productP).

The results of this analysis for a randomly generated mixing matrix, with sourceimages number
1 and 2 of Figure 1, are shown in the Figure 2. The Figure 2 shows the two-image mixtures, the
behavior of the cost functionf and of the separation indexQ as well as the separated images
obtained with the optimal separation angle, which is defined as the angle corresponding to the
minimal criterion function value. As it clearly emerges from the above figure, the cost function has
a only minimum, which coincides with one of the minima of the separation index. The minimum of
the cost function corresponds to a pair of well-separated network outputs.

The result of the analysis with source images number 3 and 4 of Figure 1 areshown in the
Figure 3. The Figure 3 shows the mixtures, the behavior of the cost function and of the separation
index as well as the separated images. Again, the cost function exhibits a onlyminimum that
coincides with one of the minima of the separation index, which, in turn, corresponds to a pair
of well-separated non-negative independent components. This second result, compared with the
previous one, illustrates the dependency of the shape of the cost function on the mixing matrix as
well as on the mixed components.

To end the series of preliminary experiments, we consider here again the mixing of images
1 and 2 with a randomly generated mixing matrixA in the noisy mixture case. In particular, as
anticipated in the Section 4.1, ‘spherical’ additive white Gaussian noise is supposed to contaminate
the observations as in the original ICA model (18). The quantity that describes the relative weight
of the noise in the mixture is the signal-to-noise ratio (SNR), which, in this particular case, may be
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Figure 2: Images 1 and 2 mixtures (MIX1 and MIX2), behavior of cost functionf and separation
indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2) obtained with
the optimal separation angle. The open circle denotes the value of the the parameterβ
corresponding to the minimum criterionf (W(β)) value.

compactly defined as

SNR
def
=10log10

√

exp(trace{log[(diag(Cm)diag(Cn)−1)]}),

where diag(Cm) denotes the diagonal part of the 2×2 covariance matrix of the noiseless observation
(term As(t)) while diag(Cn) denotes the diagonal part of the covariance matrix of the noise term
n(t), referred to the ICA model (18).

The results of this analysis are shown in the Figures 4 and 5, which illustrate the behavior of the
cost functionf and of the separation indexQ as well as the separated images obtained with the opti-
mal separation angle, for two different noisy mixtures. In the experiment illustrated in the Figure 4,
the value of the signal-to-noise ratio wasSNR= 11.64 dB. The Figure shows that the cost function
exhibits a only minimum that is quite close to one of the minima of the separation index, which, in
turn, corresponds to a pair of well-separated non-negative independent components. Of course, the
mixturesas well as the recovered componentslook a little noisy. In the experiment illustrated in the
Figure 5, the value of the signal-to-noise ratio wasSNR= 4.18 dB. In this experiment, the power of
the disturbance is close to the power of the source-images, therefore the mixture may be considered
as rather noisy. The Figure 5 shows that the cost function exhibits a only minimum that is quite far
from the minima of the separation index. The neural network outputs look very noisy and do not
resemble the original independent components. This result confirms the observations of Section 4.1
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Figure 3: Images 3 and 4 mixtures (MIX1 and MIX2), behavior of cost functionf and separation
indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2) obtained with
the optimal separation angle. The open circle denotes the value of the the parameterβ
corresponding to the minimum criterionf (W(β)) value.

about the unavoidability of the problems related to the presence of strong noise in the mixture by
plain ICA.

In the next sections, we shall therefore take into account noiseless mixtures, which also illustrate
the behavior of the algorithm in presence ofweakdisturbances. It is in fact to be recognized that
the pre-whitening/sphering issue is a different problem from optimization onO(p): Noisy mixtures
cannot be pre-whitened, but if the noise is weak, its presence has negligible effects on the separation
performances.

4.3.2 A FURTHER ‘CONVENTIONAL’ A LGORITHM FOR NUMERICAL COMPARISONPURPOSES

In order to gain incremental knowledge on the advantages offered by Lie-group methods via numer-
ical comparisons, it would be beneficial to consider a ‘conventional’ learning algorithm in which
the ordinary gradient and explicit orthogonalization are employed.6 To this aim, we defined the
following non-Lie-group algorithm:

W̃n+1 = Wn−ηIE[y+
n xT ], (22)

Wn+1 = (W̃n+1W̃T
n+1)

− 1
2 W̃n+1, (23)

6. This comparison was suggested by a reviewer.
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Figure 4: Images 1 and 2 weakly-noisy mixtures (MIX1 and MIX2), behavior of cost functionf
and separation indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2)
obtained with the optimal separation angle. The open circle denotes the value of the the
parameterβ corresponding to the minimum criterionf (W(β)) value.

where the rectified network output is defined as in equation (20) and with theinitial connection
patternW0 ∈ O(p) and the learning step-sizeη < 0 being chosen according to the same rules used
with the Algorithms 1, 2 and 3. It is worth remarking that we again consider the normalizationη =
η̃/‖IE[y+

n xT ]‖, so the actual step-size to be selected isη̃, as previously assumed for the Algorithms
1, 2 and 3.

The first line of the above algorithm moves the connection pattern at stepn from the matrixWn

over the orthogonal group toward the direction of the Euclidean gradientof the ICA+ cost function
to the new pointW̃n+1. However, the matrixW̃n+1 does not belong to the orthogonal group so it
is necessary to project it back to the group with the help of a suitable projector (according to what
granted in Section 2.1). In this case, it is assumedΠ : IRp×p → O(p) as

Π(X)
def
=(XXT)−

1
2 X. (24)

(It is straightforward to verify thatΠT(X)Π(X)= Ip for all X∈Gl(p).) In the case of the orthogonal-
group projector, the ambient space was assumed asA = IRp×p. It is worth underlining that, from
a theoretical point of view, there is no guarantee that the partially updated matrix W̃n+1 belongs to
Gl(p) ⊂ IRp×p and, therefore, there is no guarantee that the projectorΠ may be computed at every
iteration.
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Figure 5: Images 1 and 2 strongly-noisy mixtures (MIX1 and MIX2), behavior of cost functionf
and separation indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2)
obtained with the optimal separation angle. The open circle denotes the value of the the
parameterβ corresponding to the minimum criterionf (W(β)) value.

4.3.3 NUMERICAL ANALYSIS AND COMPARISON OF THEICA+ ALGORITHMS

The first experiment of this section aims at investigating a 4×4 ICA+ case tackled with the help of
the deterministic-gradient-based algorithm endowed with geodesic search (Algorithm 2). In partic-
ular, in this case the optimal step-size is searched for within the interval[−1,−0.1] partitioned into
10 bins and the random step-size generated in case of non-acceptanceis a small random number
uniformly picked in[−0.1,0[. The maximum number of iterations has been fixed to 100 and the
used images are number 1, 2, 3 and 4 of Figure 1.

The results of this experiment are shown in the Figures 6, 7 and 8.
In particular, the Figure 6 shows the behavior of the (normalized) separation indexQn/Q0 and

of the cost functionfn versus the iteration indexn. As these panels show, the separation index as
well as the cost function values decrease from initial values to lower values, confirming that the
separation behavior is good, in this experiment. The same Figure also showsthe Frobenius norm of
the Riemannian gradientṼn defined in equation (12), which decreases to low values during iteration,
as well as the value of the ‘optimal’ learning step-sizeηn selected at each iteration.

The Figure 7 shows a picture of the cost function as seen by the ‘geodesic search’ procedure:
It shows, at each iteration, the shape of the cost functionfn(η) as a function of the step-sizeη and
shows the numerical minimal value to be selected as ‘optimal’ learning step-size.As explained in
the description of the Algorithm 2, such value is actually selected only if the corresponding value
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Figure 6: Four-source problem. Top-left: Normalized separation index versus the iteration index
n. Top-right: Cost functionfn versus the iteration indexn. Bottom-left: Norm of the
Riemannian gradient of the ICA+ cost function versus the iteration indexn. Bottom-
right: ‘Optimal’ learning step-sizeηn selected at each iteration.

of the cost function is smaller than the value of the cost function achieved in the previous iteration,
otherwise the result of the geodesic search is ignored and a small randomstep-size is selected.
From the picture, it clearly emerges that the functionfn(η) exhibits a only minimum in the interval
of interest forη. Also, as the learning procedure progresses, the minimal value is almost always
located at relatively low values ofη because of the sharpness of the cost function around the optimal
separating solution evidenced by the Figures 2 and 3.

The Figure 8 shows the result of this analysis for a randomly generated 4×4 mixing matrix with
four source images. The de-mixing matrix is the optimal one as obtained by the learning procedure.
The visual appearance of the obtained components confirms the quality of the blind recovering
procedure.

The second experiment of this section aims at investigating a 9×9 ICA+ case tackled with the
help of the deterministic-gradient-based algorithm endowed with geodesic search (Algorithm 2). In
particular, in this case the optimal step-size is searched for within the interval[−2,−0.1] partitioned
into 10 bins and the random step-size generated in case of non-acceptance is a small random number
uniformly picked in[−0.1,0[. The maximum number of iterations has been fixed to 200. The results
of this experiment are shown in the Figures 9 and 10. In this experiment, the separated images have
been recovered sufficiently faithfully.

The same separation problem was also tackled through the deterministic-gradient-based algo-
rithm without geodesic search (Algorithm 1). From the previous experiment, it emerges that the
‘optimal’ value of the step-size is almost always selected within the interval[−0.1,0[. Therefore,
in this experiment, the learning step-size was fixed to−0.05 and the number of iterations was set
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Figure 7: Four-source problem. Shape of the ICA+ cost function as seen by the ‘geodesic search’
procedure.

to 400. It is worth noting that, in this case, not only the learning step-size wasset to a constant
value, but every move in the parameter manifold is accepted without checkingif it actually leads to
a decrease of the value of the learning criterion. The objective results ofthis experiment are shown
in the Figure 11, while the resulting recovered components are not shown because they are similar
to those illustrated in the Figure 10.

The nine-source separation problem was also tackled through the diffusion-type gradient-based
algorithm (Algorithm 3). In this case, the learning step-size was set to−0.1, the initial temperature
was set toΘ0 = 0.5 and the number of iterations was set to 400. The objective results of this
experiment are shown in the Figure 12, while the resulting components are not shown because they
are similar to those illustrated in the Figure 10.

As mentioned in Section 4.3.2, the behavior of Algorithms 1, 2 and 3 may be compared to the
behavior of a non-Lie-group algorithm based on explicit orthogonalization via projection. There-
fore, the nine-source separation problem was also tackled through the projection-based learning
algorithm. In this case, the number of iterations was set to 400. The obtained results are not com-
forting about the suitability of this algorithm to non-negative independent component analysis. In
spite that several values of the learning step-size were tried (ranging from−0.5 to−0.005), no good
results were obtained, in this case. Two possible explanations of the observed behavior are that:

• The projection operation wastes the most part of the time in canceling out the component of
the Euclidean gradient that is normal to the manifold instead of advancing the solution toward
the most appropriate direction.
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Figure 8: Four-source problem. Mixtures and separated images.

ALGORITHM AVERAGE RUN-TIME (SEC.S) FLOPS PER ITERATION

Algorithm 1 0.27 5.46×106

Algorithm 2 1.83 3.69×107

Algorithm 3 0.27 4.76×106

Projection 0.29 5.48×106

Table 1: Nine-source problem. Computational complexity comparison of Algorithms 1, 2, 3 and
the projection-based learning algorithm (in terms of flops and run-time per iteration).

• The algorithm described by equations (22) and (23) looks essentially as fixed-point algorithm:
Such kind of algorithms may easily get trapped in non-converging or very-slowly-converging
cycles if the operator that describes the fixed-point iteration is not contractive. However,
proving (or forcing) the convergence of such algorithms is far from being an easy task. A
short discussion on this topic has been recently presented by Fiori (2002).

With regard to the computational complexity comparison of the algorithms on the nine-source
separation problem, the number of flops per iteration and the average run-times per iteration are
reported in the Table 1. It is worth underlining that both run-times and flop-counts depend on the
platform and on the specific implementation of the algorithms, therefore only differences than span
one or more magnitude orders should be retained as meaningful.

The conclusion of the above numerical analysis pertaining to the nine-source problem is quite
straightforward: In the present problem, the adoption of the diffusion-type gradient is not beneficial
as the initial ‘burn-in’ stage due to MCMC is quite long and the final achieved result is completely
comparable to those exhibited by the other two algorithms. Among Algorithms 1 and 2, they achieve
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Figure 9: Nine-source problem, Algorithm 2. Top-left: Normalized separation index versus the
iteration indexn. Top-right: Cost functionfn versus the iteration indexn. Bottom-left:
Norm of the Riemannian gradient of the ICA+ cost function versus the iteration indexn.
Bottom-right: ‘Optimal’ learning step-sizeηn selected at each iteration.

comparable separation results, but the Algorithm 1 is definitely lighter, in terms of computational
complexity, than the Algorithm 2. The computational complexity pertaining to the projection-based
algorithm is comparable to the complexity exhibited by Algorithms 1 and 3.

5. Conclusion

The aim of the present tutorial was to illustrate learning algorithms based on Riemannian-gradient-
based criterion optimization on the Lie group of orthogonal matrices. Althoughthe presented
differential-geometry-based learning algorithms have so far been mainly exploited in narrow con-
texts they may aid the design of general-purpose learning algorithms in those cases where a learning
task may be formulated as an optimization one over a smooth manifold. The considered algorithms
have been applied to non-negative independent component analysis both in the standard version
equipped with geodesic-line search and in the diffusion-type gradient version.

The analytical developments evidenced the following advantages and similarities of theO(p)-
type learning algorithm with respect to the existingGl(p)-type algorithms:

• In the general case, the search for a connection pattern should be performed in the Lie group
Gl(p), while in the second case the search is performed in the orthogonal Lie group O(p).
The groupO(p) is compact (that is, closed and limited) therefore the stability of aO(p)-type
learning algorithm is inherently ensured (up to machine precision), while this isnot true for
theGl(p)-type learning algorithms.
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Figure 10: Nine-source problem, Algorithm 2. Separated images.

• In general, theGl(p)-type learning algorithms cannot avoid quasi-degeneracy of the neural
network, that is the case in which more than one neuron nearly happen to encode the same
feature. In the context ofO(p)-type learning algorithms, this case is inherently impossible.

• The possible amplification of the additive noise in the noisy ICA case is not avoided by
the O(p)-type learning algorithms, even if care should be taken in this context of properly
computing the pre-whitening operator. Even theGl(p)-type learning algorithms, that do not
require pre-whitening, cannot avoid the amplification of the disturbance onthe observations.

The conclusions of the comparative analysis pertaining to the nine-sourceICA problem are
quite straightforward: The simple gradient adaptation, with a properly chosen learning step-size,
is sufficient to achieve good separation performance at low computationalburden. It deserves to
remark, however, that the ‘geodesic search’ procedure automatically provides a suitable value of
the learning step-size, which should be manually selected in absence of anytuning procedure.

It is worth underlining that the Algorithm 1, which appears to be the solution ofchoice in the
context of ICA problem, as well as Algorithms 2 and 3, has been derived ina framework that is
more general than ICA, but has only been applied it to ICA in the present manuscript. In the ICA+

context, and with the chosen metric for the orthogonal group, the Algorithms 1and 2 essentially
coincide to the algorithms presented by Plumbley (2003). With respect to the work of Plumbley
(2003), the conclusion we draw from the presented numerical analysis on ICA+ problems is that,
for general high-dimensional ICA+ problems, the introduction of geodesic-search is not beneficial.
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Figure 11: Nine-source problem, Algorithm 1. Left panel: Normalized separation index versus the
iteration indexn. Middle panel: Cost functionfn versus the iteration indexn. Right:
Norm of the Riemannian gradient of the ICA+ cost function versus the iteration index
n.

The same holds for the introduction of stochasticity under the form of annealed MCMC, that does
not helped speeding up network learning convergence in the considered analysis.

About further and future efforts, we believe the following notes are worth mentioning:

• As a general remark on the computational complexity of the discussed algorithms, it is worth
noting that the most burdensome operation is the computation of the exponentialmap in the
updating rule (11). In the present paper we employed MATLAB ’s ‘expm’ primitive but, of
course, several ways are known in the scientific literature to compute exponential maps. Two
examples are the Cayley transform and the canonical coordinates of the first kind (interested
readers might consult, for example, Celledoni and Fiori (2004) and references therein). A
promising alternative solution would be to exploit the latest advancements in the field of nu-
merical calculus on manifold for exponential maps computation, which should allegedly lead
to a considerable saving of computational effort without detriment of separation effectiveness.

• As mentioned in the Section 2.1, learning algorithms based on the ordinary gradient and ex-
plicit orthogonalization (projection) are known in the scientific literature. Theissue whether
Lie-group methods are more advantageous, compared to methods based onthe projection to
the feasible set by orthogonalization, is currently being investigated.

• As it also emerges from Section 2.1, all the learning equations/algorithms developed in this
manuscript are based on a particular choice of the metric that turns the Lie-algebra associated
to the Lie group of orthogonal matrices into a metric space. Although, in principle, the choice
of the metric may be shown not to affect the final result of learning, nor should it affect
the learning path over the base-manifold, preliminary experiments suggest that the choice
of metric indeed affects the behavior of discrete-time algorithms when implementedon a
computer due to accumulation of numerical errors (Fiori, 2005).
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Figure 12: Nine-source problem, Algorithm 3. Top-left: Normalized separation index versus the
iteration indexn. Top-right: Cost functionfn versus the iteration indexn. Bottom-
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Simulated-annealing temperatureΘn versus the iteration indexn.
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Appendix A. Geodesic Equation and Relevant Properties

In the present appendix, we consider the problem of constructing a geodesic curve on a Riemannian
manifold (M ,g) and illustrate some relevant properties of geodesics on Riemannian manifolds
embedded in a Euclidean ambient space IRp. The result of the following calculation will be a
second-order differential equation in the componentsxk of x (k = 1, 2, · · · , p).7

Before considering the problem of geodesic calculation, it is instrumental to consider the general
variational problem of minimizing the functional:

A
def
=

Z t1

t0
H(x, ẋ)dt, (25)

whereH : IRp × IRp → IR is a potential function,x = x(t) is a curve onM with parametert ∈
[t0 , t1] andA is an integral functional ofx(t) (sometimes termedaction). In the above equation and
thereafter, overdots denote derivation with respect to the parametert.

It is know that, under proper conditions, the solution of the above variational problem is given
by the solution of the Euler-Lagrange equation:

∂H
∂xk

− d
dt

∂H
∂ẋk

= 0 , k = 1, 2, . . . , p.

By comparing the equation (25) and the curve-length equation (2), it is readily seen that, in
order to set a curve-length minimization problem into an action minimization problem, itsuffices to
setH(x, ẋ) =

√

gx(ẋ, ẋ) in the above setting. To this purpose, it is worth noting that, thanks to the
bi-linearity of the scalar product and according to the decomposition ˙x= ∑i ẋiei , where{ei} denotes

whatever basis of IRp, it holds gx(ẋ, ẋ) = ∑i ∑ j gi j ẋi ẋ j , where the functionsgi j
def
=gx(ei ,ej) denote

the components of the so-termedmetric tensorand specify completely the metric properties of the
manifoldM . The components of the metric tensor are functions of the coordinatesx1, · · · , xp. The
metric tensor is symmetric, that is,gi j = g ji for everyi, j ∈ {1, 2, . . . , p} and non-singular, that is
its inverse exists everywhere.

By replacing the above expression of the potential into the Euler-Lagrange equation and calcu-
lating the required derivatives, we get

∑
i

∑
j

∂gi j

∂xk
ẋi ẋ j −2∑

i

dgik

dt
ẋi −2∑

i

gikẍi = 0.

Now, the following identities are of use:

∑
i

dgik

dt
ẋi = ∑

i
∑̀ ∂gik

∂x`
ẋi ẋ` = ∑

i
∑̀ ∂g`k

∂xi
ẋi ẋ`,

because the indicesi and` may be swapped in the second-last expression. Then the equation of
minimizing curve becomes:

∑
i

gikẍi +
1
2 ∑

i
∑

j

∂gik

∂x j
ẋi ẋ j +

1
2 ∑

i
∑

j

∂g jk

∂xi
ẋi ẋ j −

1
2 ∑

i
∑

j

∂gi j

∂xk
ẋi ẋ j = 0.

7. In the present paper, we do not make use of the standard covariant/contra-variant notation for tensor indices nor of
the Einstein convention for summations.
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It is now worth introducing the inverse of the metric tensor, whose elements are denoted bygab,
defined by the equations∑bgabgbc = δa

c, whereδa
c denotes the fundamental tensor (and may be

regarded as a Kronecker ‘delta’). By multiplying both sides of the above equation byg`k and
summing with respect tok, the result is

∑
k

∑
i

gikgk`ẍi +
1
2 ∑

k
∑

i
∑

j

gk`
(

∂gik

∂x j
+

∂g jk

∂xi
− ∂gi j

∂xk

)

ẋi ẋ j = 0.

Let us further define the Christoffel (or affine connection) coefficients as

Γk
i j

def
=

1
2 ∑̀gk`

(

∂gi`

∂x j
+

∂g j`

∂xi
− ∂gi j

∂x`

)

,

through which the geodesic equation assumes the classical expression:

ẍk +∑
i

∑
j

Γk
i j ẋi ẋ j = 0 , k = 1 ,2 , · · · , p. (26)

As anticipated, it appears under the form of a set of second-order differential equations in the coor-
dinatesxk and needs therefore two boundary conditions. These may specify the geodesic endpoints:
x(t0) = x0 ∈ M andx(t1) = x1 ∈ M , or the initial position and initial velocity:x(t0) = x0 ∈ M and
ẋ(t0) = v0 ∈ Tx0M .

A result we make use of in the paper is that, when a Riemannian manifold is embedded into
an Euclidean space, the second derivative of the geodesic ( ¨x) belongs to the normal space to the
embedded manifold atx. Let us begin the proof of this important property by proving that, along
a geodesic, the quantitygx(ẋ, ẋ) is constant with respect to the parametert or, equivalently, that
d
dtgx(ẋ, ẋ) = 0. We have

d
dt

gx(ẋ, ẋ) =
d
dt ∑a ∑

b

gabẋaẋb

= ∑
a

∑
b

(

gabẍaẋb +gabẋaẍb +
dgab

dt
ẋaẋb

)

= 2∑
a

∑
b

gabẍaẋb +∑
a

∑
b

dgab

dt
ẋaẋb.

By replacing the expression of ¨xa from the geodesic equation (26) into the last expression, we get

d
dt

gx(ẋ, ẋ) = −2∑
a

∑
b

∑
i

∑
j

gabΓa
i j ẋbẋi ẋ j +∑

a
∑
b

dgab

dt
ẋaẋb.

Now, the following identity holds:

∑
b

gabΓb
i j =

1
2

(

∂gia

∂x j
+

∂g ja

∂xi
− ∂gi j

∂xa

)

,

thus it may be further written:

d
dt

gx(ẋ, ẋ) = −∑
a

∑
i

∑
j

∂gia

∂x j
ẋ j ẋi ẋa−∑

a
∑

i
∑

j

∂g ja

∂xi
ẋi ẋ j ẋa

+ ∑
a

∑
i

∑
j

∂gi j

∂xa
ẋaẋi ẋ j +∑

a
∑
b

dgab

dt
ẋaẋb.
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It is readily recognized that, e.g.,∑ j
∂gia
∂x j

ẋ j =
dgia
dt , therefore, all the sums in the above expression are

equal up to proper index re-ordering/renaming. As a consequence, the four terms sum up to zero.
The last step consists in recalling that the manifold has been supposed to be embedded in a

Euclidean ambient space and we assumegx(ẋ, ẋ)
def
= ẋT ẋ. Its derivative is thusd

dtgx(ẋ, ẋ) = 2ẍT ẋ = 0,
which proves that, under the specified conditions, the second derivative ẍ is orthogonal to the first
derivativeẋ in any point of the embedded geodesic.
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