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Abstract

We study the problem of learning many related tasks simetiasly using kernel methods and
regularization. The standard single-task kernel methedsh as support vector machines and
regularization networks, are extended to the case of rtagk-learning. Our analysis shows that
the problem of estimating many task functions with regakion can be cast as a single task
learning problem if a family of multi-task kernel function® define is used. These kernels model
relations among the tasks and are derived from a novel forragaflarizers. Specific kernels that
can be used for multi-task learning are provided and exparially tested on two real data sets.
In agreement with past empirical work on multi-task leagpithe experiments show that learning
multiple related tasks simultaneously using the propoggdiaach can significantly outperform
standard single-task learning particularly when therenzaay related tasks but few data per task.
Keywords: multi-task learning, kernels, vector-valued functioregularization, learning algo-
rithms

1. Introduction

Past empirical work has shown that, when there are multiple related learskwyitas beneficial

to learn them simultaneously instead of independently as typically done in prgBtédker and
Heskes, 2003; Caruana, 1997; Heskes, 2000; Thrun and Prai). 18lowever, there has been
insufficient research on the theory of multi-task learning and on devejapiniti-task learning
methods. A keygoal of this paper is to extend the single-task kernel learning methods which
have been successfully used in recent years to multi-task learning n@ysis establishes that the
problem of estimating many task functions with regularization can be linked tgkedask learning
problem provided a family of multi-task kernel functions we define is usex.tlis purpose, we
use kernels for vector-valued functions recently developed by Micared Pontil (2005). We
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elaborate on these ideas within a practical context and present expesiofiéme proposed kernel-
based multi-task learning methods on two real data sets.

Multi-task learning is important in a variety of practical situations. For examnipléinance
and economics forecasting predicting the value of many possibly relate@iodicsimultaneously
is often required (Greene, 2002); in marketing modeling the preferesfaesiny individuals, for
example with similar demographics, simultaneously is common practice (Allenby@ssl, R999;
Arora, Allenby, and Ginter, 1998); in bioinformatics, we may want to studyduprediction from
multiple micro—array data sets or analyze data from mutliple related diseases.

It is therefore important to extend the existing kernel-based learning nmetkadh as SVM
and RN, that have been widely used in recent years, to the case of multetasing. In this
paper we shall demonstrate experimentally that the proposed multi-task-kasesl methods lead
to significant performance gains.

The paper is organized as follows. In Section 2 we briefly review the atdrfdamework for
single-task learning using kernel methods. We then extend this framewankltdtask learning
for the case of learning linear functions in Section 3. Within this frameworklexelop a general
multi-task learning formulation, in the spirit of SVM and RN type methods, anggse some
specific multi-task learning methods as special cases. We describe expisroomparing two of
the proposed multi-task learning methods to their standard single-task qmandein Section 4.
Finally, in Section 5 we discuss extensions of the results of Section 3 to rear-Imodels for
multi-task learning, summarize our findings, and suggest future resdiaections.

1.1 Past Related Work

The empirical evidence that multi-task learning can lead to significant peafoce improvement
(Bakker and Heskes, 2003; Caruana, 1997; Heskes, 2000n Bmd Pratt, 1997) suggests that
this area of machine learning should receive more development. The sinmultaestimation of
multiple statistical models was considered within the econometrics and statistics teg@taene,
2002; Zellner, 1962; Srivastava and Dwivedi, 1971) prior to the isterim multi-task learning in
the machine learning community.

Task relationships have been typically modeled through the assumption thatréhegerms
(noise) for the regressions estimated simultaneously—often called “Seervingdiated Regressions”—
are correlated (Greene, 2002). Alternatively, extensions of ragateom type methods, such as
ridge regression, to the case of multi-task learning have also been ptbpesr example, Brown
and Zidek (1980) consider the case of regression and proposdearsiex of the standard ridge
regression to multivariate ridge regression. Breiman and Friedman (peg&)se the curds&whey
method, where the relations between the various tasks are modeled in aposssmng fashion.

The problem of multi-task learning has been considered within the statisticaingaand ma-
chine learning communities under the name “learning to learn” (see Bax&f; Caruana, 1997,
Thrun and Pratt, 1997). An extension of the VC-dimension notion and dfdki& generalization
bounds of SLT for single-task learning (Vapnik, 1998) to the case of nagk-learning has been
developed in (Baxter, 1997, 2000) and (Ben-David and SchulleB3)200 (Baxter, 2000) the prob-
lem of bias learning is considered, where the goal is to choose an optipath®gis space from a
family of hypothesis spaces. In (Baxter, 2000) the notion of the “extMie dimension” (for a
family of hypothesis spaces) is defined and it is used to derive gend¢i@libmunds on the average
error of T tasks learned which is shown to decrease at be%t ds (Baxter, 1997) the same setup
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was used to answer the question “how much information is needed per tasleiri@learnT tasks”
instead of “how many examples are needed for each task in order tolldasks”, and the theory
is developed using Bayesian and information theory arguments instead dinvéhsion ones. In
(Ben-David and Schuller, 2003) the extended VC dimension was usedive tighter bounds that
hold for each task (not just the average error among tasks as catside{Baxter, 2000)) in the
case that the learning tasks are related in a particular way defined. Bastrwork considers
learning multiple tasks in a semi-supervised setting (Ando and Zhang, 2684ha problem of
feature selection with SVM across the tasks (Jebara, 2004).

Finally, a number of approaches for learning multiple tasks are Bayeslareva probability
model capturing the relations between the different tasks is estimated simuls§nedth the mod-
els’ parameters for each of the individual tasks. In (Allenby and R@8819; Arora, Allenby, and
Ginter, 1998) a hierarchical Bayes model is estimated. First, it is assunraatighmt the parame-
ters of theT functions to be learned are all sampled from an unknown Gaussian distmibihen,
an iterative Gibbs sampling based approach is used to simultaneously estithatiecbindividual
functions and the parameters of the Gaussian distribution. In this modeldmdate between the
tasks is captured by this Gaussian distribution: the smaller the variance oftlssi@n the more
related the tasks are. Finally, (Bakker and Heskes, 2003; Heska®), 2@ggest a similar hierarchi-
cal model. In (Bakker and Heskes, 2003) a mixture of Gaussians faugper level” distribution
instead of a single Gaussian is used. This leads to clustering the taskjsirefor each Gaussian
in the mixture.

In this paper we will not follow a Bayesian or a statistical approach. ldstear goal is to
develop multi-task learning methods and theory as an extension of widelykeseel learning
methods developed within SLT or Regularization Theory, such as SVM anilRhow that using
a particular type of kernels, the regularized multi-task learning method v®geds equivalent to
a single-task learning one when such a multi-task kernel is used. Thehemekmproves upon the
ideas discussed in (Evgeniou and Pontil, 2004; Micchelli and Pontil, 2005b

One of our aims is to show experimentally that the multi-task learning methods wkogddwere
significantly improve upon their single-task counterpart, for example S\idrdfore, to emphasize
and clarify this point we only compare the standard (single-task) SVM wittopgsed multi-task
version of SVM. Our experiments show the benefits of multi-task learning aficaite that multi-
task kernel learning methods are superior to their single-task courtefypaexhaustive comparison
of anysingle-task kernel methods with their multi-task version is beyond the scapesafork.

2. Background and Notation

In this section, we briefly review the basic setup for single-task learningyusigularization in

a reproducing kernel Hilbert space (RHKSk with kernelK. For more detailed accounts (see
Evgeniou, Pontil, and Poggio, 2000; Shawe-Taylor and Cristianini, ;280ilkopf and Smola,
2002; Vapnik, 1998; Wahba, 1990) and references therein.

2.1 Single-Task Learning: A Brief Review

In the standard single-task learning setup we are giwemamples{(X,yi) :i € Nm} C X x 9 (we
use the notatiofNy, for the set{1,...,m}) sampled.i.d. from an unknown probability distribution
Pon.x x . The input spacg is typically a subset dRY, thed dimensional Euclidean space, and
the output spacg’ is a subset oR. For example, in binary classificatioriis chosen to b¢—1,1}.
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The goal is to learn a functioh with small expected errdg[L(y, f(x))], where the expectation is
taken with respect t& andL is a prescribed loss function such as the square éyrerf (x))2. To
this end, a common approach within SLT and regularization theory is to feasrthe minimizer in
Hy of the functional

1
m%mL(ijf(Xj)HVIIfllﬁ 1)
where|| f ||% is the norm off in Hg. When# consists of linear functions(x) = w'x, withw, x € R,
we minimize
S Ly W) @)

j€Nm

where all vectors are column vectors and we use the notatifor the transpose of matri&, and
wis ad x 1 matrix.

The positive constantis called the regularization parameter and controls the trade off between
the error we make on the examples (the training error) and the complexity (smoothness) of the
solution as measured by the norm in the RKHS. Machines of this form harerbetivated in the
framework of statistical learning theory (Vapnik, 1998). Learning metsath as RN and SVM
are particular cases of these machines for certain choices of the lat®fun (Evgeniou, Pontil,
and Poggio, 2000).

Under rather general conditions (Evgeniou, Pontil, and Poggio, 20@&;helli and Pontil,
2005b; Wahba, 1990) the solution of Equation (1) is of the form

fO) =% cjK(x;,x) 3)
j€Nm
where{c; : j € Ny} is a set of real parameters alkds a kernel such as an homogeneous polynomial
kernel of degree, K(x,t) = (xt)", x,t € RY. The kerneK has the property that, forc X, K(x,-) €
Hy and, forf € Hg¢ (f,K(x,-))x = f(X), where(-,-), is the inner product itk (Aronszajn, 1950).
In particular, forx,t € X, K(x,t) = (K(x,-),K(t,-))x implying that them x m matrix (K(x;,X;) :
i, j € Ny) is symmetric and positive semi-definite famyset of inputs{x; : j € Nm} C X.

The result in Equation (3) is known as tlepresenter theorenflthough it is simple to prove, it
is remarkable as it makes the variational problem (1) amenable for computdtigregticular, ifL
is convex, the unique minimizer of functional (1) can be found by replatibgthe right hand side
of Equation (3) in Equation (1) and then optimizing with respect to the parasi@er j € Nm}.

A popular way to define the spacké is based on the notion of f@ature mapd : X — W,
where W/ is a Hilbert space with inner product denoted (py),,,. Such a feature map gives rise
to the linear space of all functiorfs: X — R defined forx € X andw € W asf(x) = (W, ®(X)) 4,
with norm (w,w),,,. It can be shown that this space is (modulo an isometry) the REKkISvith
kernelK defined, forx,t € X, asK(x,t) = (P(x), P(t)),,. Therefore, the regularization functional
(1) becomes

1
EJ;N L(Yj, (W, D(X])) gp) + YW W) gy 4
Again, any minimizer of this functional has the form
w= > ¢®(x) 5)
j€Nm
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which is consistent with Equation (3).

2.2 Multi-Task Learning: Notation

For multi-task learning we havetasks and corresponding to theth task there are availabla
exampleq (X, Vi) : 1 € N} sampled from a distributioR, on X; x 97. Thus, the total data available
is {(Xi¢,Yi¢) 11 € Nm,¢ € Np}. The goal it to learn alh functionsf, : X; — 97 from the available
examples. In this paper we mainly discuss the case that the tasks have a copui@pace, that
is X, = X for all £ and briefly comment on the more general case in Section 5.1.

There are various special cases of this setup which occur in pracyipially, the input space
X; is independent of. Even more so, the input data may be independent dffor every sample
i. This happens in marketing applications of preference modeling (AllenthyRassi, 1999; Arora,
Allenby, and Ginter, 1998) where the same choice panel questionsva tgi many individual
consumers, each individual provides his/her own preferencesywarassume that there is some
commonality among the preferences of the individuals. On the other hamd,afepractical cir-
cumstances where the output dgtais independent of. For example, this occurs in the problem
of integrating information from heterogeneous databases (Ben-Dagttk&, and Schuller, 2002).

In other cases one does not have either possibilities, that is, the spac@sg are different. This
is for example the machine vision case of learning to recognize a face tigérsing to recognize
parts of the face, such as eyes, mouth, and nose (Heisele et al., Ha@®) of these tasks can be
learned using images of different size (or different representations)

We now turn to the extension of the theory and methods for single-task lgawmsing the
regularization based kernel methods briefly reviewed above to the tamdtbtask learning. In the
following section we will consider the case that functidipsare all linear functions and postpone
the discussion of non-linear multi-task learning to Section 5.

3. A Framework for Multi-Task Learning: The Linear Case

Throughout this section we assume that= RY, 9 = R and that the function§ are linear, that is,
fo(x) = ux with u, € RY. We propose to estimate the vector of parameters(u; : £ € Np) € R"
as the minimizer of a regularization function

R(u) := %%ZN j%mL(yjz, UyXje) +yd(u) (6)

wherey is a positive parametel,is a homogeneous quadratic functionupthat is,
J(u) =UEu (7)

andE adnx dn matrix which captures the relations between the tasks. From now on we assume
that matrixE is symmetric angositive definiteunless otherwise stated. We briefly comment on
the case thédk is positive semidefinite below.

For a certain choice af (or, equivalently, matribe), the regularization function (6) learns the
tasks independently using the regularization method (1). In particulad(@r= ¥ ;. [|uc||? the
function (6) decouples, that iR(u) = 1 5,y re(uy) wherer (ug) = 2 5 jen,, L(Yje, UXje) + ] ue ||,
meaning that the task parameters are leamaependentlyOn the other hand, if we choogéu) =
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S r.qen, ||Ue — Ug||%, we can “force” the task parameters to be close to each other: task ftarsme
are learnegointly by minimizing (6).

Note that function (6) depends am parameters whose number can be very large if the num-
ber of taska is large. Our analysis below establishes that the multi-task learning method (6) is
equivalent to a single-task learning method as in (2) for an appropriateecbf a multi-task ker-
nel in Equation (10) below. As we shall see, the input space of this kdepends is the original
d—dimensional space of the data plus an additional dimension which recortskhihe data be-
longs to. For this purpose, we take the feature space point of view aredalffunctionsf, in terms
of thesamefeature vectow € RP for somep € N, p > dn. That is, for each, we write

f,(x) =WBix, xeRY, (eN, (8)

or, equivalently,
u =Bw, (€N, 9)

for somep x d matrix By yet to be specified. We also define the dn feature matrix B=[B,: { €
Ny] formed by concatenating thematricesBy, ¢ € N,.

Note that, since the vectar in Equation (9) is arbitrary, to ensure that there exists a solution
w to this equation it is necessary that the maBijxs of full rankd for each? € N,. Moreover, we
assume that the feature matBxs of full rankdnas well. If this is not the case, the functiohsare
linearly related. For example, if we chodBg= By for every/ € Ny, whereBy is a prescribegh x d
matrix, Equation (8) tells us that all tasks are the same task, thiatisf, = --- = f. In particular
if p=d andBy = I the function (11) (see below) implements a single-task learning problem, as in
Equation (2) with all thenndata from then tasks as if they all come from the same task.

Said in other words, we view the vector-valued functibe- (f; : ¢ € N;) as the real-valued
function

(X, £) — WBX

on the input spac®&Y x N, whose squared norm w. The Hilbert space of all such real-valued
functions has the reproducing kernel given by the formula

K((x,£),(t,q)) =XB,Bqt, x,tcRY, ¢,qec Ny (10)

We call this kernel dinear multi-task kernesince it is bilinear inx andt for fixed £ andgq.
Using this linear feature map representation, we wish to convert the rizgilan function (6)
to a function of the form (2), namely,

1
Sw) = — L(Yje, WBXjr) + yww, we RP. (11)
”mée%nje%m J !

This transformation relates matrix defining the homogeneous quadratic functiomaefe used in
(6), J(u), and the feature matri®. We describe this relationship in the proposition below.

Proposition 1 If the feature matrix B is full rank and we define the matrix E in Equation (7) as to
be E= (B'B)~! then we have that

S(w) = R(B'w), we RY. (12)

Conversely, if we choose a symmetric and positive definite matrix E in Egu@jcand T is a
squared root of E then for the choice oBT’E ! Equation (12) holds true.
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PrRoOOR We first prove the first part of the proposition. Since Equation (Q)ireq that the feature
vectorw is commonto all vectorsu, and those are arbitrary, the feature maBixnust be of full
rankdn and, so, the matrig above is well defined. This matrix has the property BEB = I,
this being thep x p identity matrix. Consequently, we have that

ww=J(B'w), weRP (13)

and Equation (12) follows.
On the other direction, we have to find a mat8isuch thaBEB = Ip. To this end, we express
E in the form
E=TT

whereT is adnx p matrix, p > dn. This maybe done in various ways siri€ds positive definite.
For example, wittp = dnwe can find alnx dnmatrix T by using the eigenvalues and eigenvectors
of E. With this representation & we can choose our features to be

B=VTE!

whereV is anarbitrary p x p orthogonal matrix. This fact follows becauB&B = I,,. In particular,
if we chooseV = |, the result follows.
O

Note that this proposition requires thatis of full rank becausé is positive definite. As an
example, consider the case tigatis adn x d matrix all of whosed x d blocks are zero except for
the/—th block which is equal tdy. This choice means that we are learning all tasks independently,
that is,J(u) = ¥ scn, ||U¢||? and proposition (1) confirms th&t = Iqp.

We conjecture that if the matri® is not full rank, the equivalence between function (11) and
(6) stated in proposition 1 still holds true provided matiis given by the pseudoinverse of matrix
(B'B) and we minimize the latter function on the linear subspacspanned by the eigenvectors
of E which have a positive eigenvalue. For example, in the above case BheteBy for all
¢ € N we have thats = {(uy: £ € Npy) : up = up = --- = U }. This observation would also extend
to the circumstance where there are arbitrary linear relations amongst khfeitasons. Indeed,
we can impose such linear relations on the features directly to achieve thisrredmongst the
task functions. We discuss a specific example of this set up in Section 3.dvaVver, we leave a
complete analysis of the positive semidefinite case to a future occasion.

The main implication of proposition 1 is the equivalence between function @)H&L) when
E is positive definite. In particular, this proposition implies that when marandE are linked as
stated in the proposition, the unique minimizersof (11) andu* of (6) are related by the equations
u* = B'w.

Since functional (11) is like a single task regularization functional (2Jhbyepresenter theorem—
see Equation (5)—its minimizer has the form

W = z z Cj¢BeXje.
JENQLEN,

This implies that the optimal task functions are

f;(X): Z Z ijK((Xjfvg)a(qu))v XERdvqun (14)
JENpR LEN,

621



EVGENIOU, MICCHELLI AND PONTIL

where the kernel is defined in Equation (10). Note that these equatitchgon@ny choice of the
matricesBy, ¢ € Ny,

Having defined the kernel for (10), we can now use standard singjtel¢éarning methods to
learn multiple tasks simultaneously (we only need to define the appropriat karthe input data
(x,¢)). Specific choices of the loss functitrin Equation (11) lead to different learning methods.

Example 1 In regularization networks (RN) we choose the square l4gg) = (y—2)?, y,z€ R
(see, for example, Evgeniou, Pontil, and Poggio, 2000). In this casgatiaeneters;, in Equa-
tion (14) are obtained by solving the system of linear equations

> K((Xjg,a), (%ie, £))Cjg = Yie, 1€ Nm, £ € Np. (15)
9eNp jeNm

When the kerneK is defined by Equation (10) this is a form of multi-task ridge regression.

0

Example 2 In support vector machines (SVM) for binary classification (Vapnilg&)9ve choose
the hinge loss, namely(y,z) = (1—yz) where(x) = max(0,x) andy € {—1,1}. In this case, the
minimization of function (11) can be rewritten in the usual form

Problem 3.1

min{ Sy Em—l—V’W]z} (16)

(€N iEN,

subject, for all ie Ny, and/ € Np, to the constraints that

YieW ByXig
&iv

1-& (17)

>
> 0.

Following the derivation in Vapnik (1998) the dual of this problem is givgn b

Problem 3.2
1
max Y Y Ci—3 > > CYieCiaYigK((Xie,0), (Xjg,9)) (18)
i€l | 1ER,i€Nm £,0eNni,|ENp
subject, for all ie N, and{ € Ny, to the constrains that
0<cy< i
2y

We now study particular examples some of which we also test experimentallgtioiss.
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3.1 Examplesof Linear Multi-Task Kernels

We discuss some examples of the above framework which are valuablpdiications. These
cases arise from different choices of matri@zghat we used above to model task relatedness or,
equivalently, by directly choosing the functidrin Equation (6).

Notice that a particular case of the regularidémn Equation (7) is given by

Jw= 3 UGy (19)
£,0eNy

whereG = (G q: ¢,q € Ny) is a positive definite matrix. Proposition (1) implies that the kernel has
the form
K((%,0),(t,q)) =XtGq" (20)

Indeed,J can be written agu, Eu) whereE is then x n block matrix whosé, q block is thed x d
matrix Gyqlg and the result follows. The examples we discuss are with kernels of time( ).

3.1.1 A USEFUL EXAMPLE

In our first example we chood® to be the(n+ 1)d x d matrix whosed x d blocks are all zero
except for the st and(¢+ 1)—th block which are equal te/1—Alg and VvAnly respectively,
whereA € (0,1) andlq is thed—dimensional identity matrix. That is,

B, = [v/1—Alg,0,...,0,VAnlg,0,...,0] (21)

/-1 n—/¢

where here 0 stands for tltex d matrix all of whose entries are zero. Using Equation (10) the
kernel is given by

K((x,£),(t,q)) = (1—=A+Andyq)Xt, £,q€ Ny, x,t € R". (22)

A direct computation shows that

_ 1/ 1—-A
Eeq = ((B,B) 1)€q = ﬁ <Tq - W) lq

whereEq is the(¢,q)—th d x d block of matrixE. By proposition 1 we have that

1 1-A 1
xw:ﬁQszF+—;}zuw—ﬁzuwﬂ. (23)
€Np /€Np

geN,

This regularizer enforces a trade—off between a desirable small sipefetask parameters and
closeness of each of these parameters to their average. This trasieaftrolled by the coupling
parametel. If A is small the tasks parameters agtated(closed to their average) wheread i 1
the task are learned independently.

The model of minimizing (11) with the regularizer (24) was proposed by Begeand Pontil
(2004) in the context of support vector machines (SVM’s). In this tlas@bove regularizer trades
off large margin of each per—task SVM with closeness of each SVM to #irmge SVM. In Section
4 we will present numerical experiments showing the good performanttesomulti-task SVM
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compared to both independent per—task SVM’s (that is,1 in Equation (22)) and previous multi—
task learning methods.
We note in passing that an alternate form for the funciia

] 1 5 1 5 d
= Sl - = : RY S . 24
J(u) mm{)\ngeanHue Uol| —I—l_)\HUoH U € } (24)
It was this formula which originated our interest in multi-task learning in the cowferegulariza-
tion, see (Evgeniou and Pontil, 2004) for a discussion. Moreover, fiepkace the identity matrix
lq in Equation (21) by a (anyd x d matrix A we obtain the kernel

K((X,E), (ta q)) = (l_ A +)\n6€Q)X,Qt7 E:q € Nm X7t € Rn (25)
whereQ = A'A. In this case the norm in Equation (23) and (24) is replacef-tjy-1.

3.1.2 TASK CLUSTERING REGULARIZATION

The regularizer in Equation (24) implements the idea that the task parametesall related to
each other in the sense that eaghs close to an “average parameteg. Our second example
extends this idea to different groups of tasks, that is, we assume thasthpaemeters can be
put together in different groups so that the parameters ik-tttk group are all close to an average
parametetig. More precisely, we consider the regularizer

J(u) :min{ S ( > p,(f)||u(g—u0k||2+p\|u0k|]2> :UOKGRd,keNC} (26)

keNe \LeNp

wherep,(f) >0, p > 0, andc is the number of clusters. Our previous example correspontls-tb,

p= & andp” = L. A direct computation shows that

Jw= 3 UG
£,0eNp

where the elements of the mat&= (G : £,q € Np) are given by

(OINC))
Pk P
G = % <P|(f)5éq—4k ‘ <r)>'
keN¢ p+ XreNn Px
(0)

If p’ has the property that given arythere is a clustek such thatpl(f) > 0 thenG is positive
definite. ThenJ is positive definite and by Equation (20) the kernel is giverkigyx, ¢), (t,q)) =
G;qlx’t. In particular, ifpff) = Onir) With K(¢) the cluster task belongs to, matrixG is invertible

and takes the simple form
1
qul = 6£q + Befq (27)

wheref,q = 1 if tasks/ andq belong to the same cluster and zero otherwise. In particulef-if
and we sep = % the kerneK((x,¢), (t,0)) = (8¢q+ %)x’t is the same (modulo a constant) as the
kernel in Equation (22).
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3.1.3 (RAPH REGULARIZATION

In our third example we choose anx n symmetric matrixA all of whose entries are in the unit
interval, and consider the regularizer

1
Ju) =35 lue—UglPAg =5 Uplgleg (28)
£,0eN, £,0eNp

wherelL = D — Awith Dyq = &/q Y hen, Ach- The matrixA could be the weight matrix of a graph with
nvertices and. the graph Laplacian (Chung, 1997). The equafi@i= 0 means that tasksandq
are not related, where#@gy = 1 means strong relation.

The quadratic function (28) is only positive semidefinite sidgg = O whenever all the com-
ponents ofu, are independent of. To identify those vectora for which J(u) = O we express the
LaplacianL in terms of its eigenvalues and eigenvectors. Thus, we have that

Lig= > OkVkeVig (29)
keNp

where the matri¥ = (v ) is orthogonalg; = --- = 0; < 0,41 < --- < 0, are the eigenvalues af
andr > 1 is the multiplicity of the zero eigenvalue. The numbeman be expressed in terms of the
number of connected components of the graph, see, for example,dCH@®v). Substituting the
expression (29) fok in the right hand side of (28) we obtain that

J(u) = % Ok % UpVie
ke n le n

Therefore, we conclude thatis positive definite on the space

2

S = UZUERdn,ZUnggZO,kENr .
(€N,

Clearly, the dimension of isd(n—r). $ gives us a Hilbert space of vector-valued linear functions
H = {fu(x) = (Ux:LeNp) 1 UES}
and the reproducing kernel gf is given by
K((%.0), (t,q)) = L xt. (30)
whereL™ is the pseudoinverse &f that is,
n
Liq= Y o NieVikg:
k=r+1

The verification of these facts is straightforward and we do not elaboratee details. We can
use this observation to assert that on the spatiee regularization function (6) corresponding to
the Laplacian has aniqgueminimum and it is given in the form of a representer theorem for kernel
(30).
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4. Experiments

As discussed in the introduction, we conducted experiments to compardahdgsl) single-task
version of a kernel machine, in this case SVM, to a multi-task version desglapove. We tested
two multi-task versions of SVM: a) we considered the simple case that the r@dtri€quation (25)
is the identity matrix, that is, we use the multi-task kernel (22), and b) we estimatadtrixQ in
(25) by running PCA on the previously learned task parameters. Spdlgifige first initializeQ to
be the identity matrix. We then iterate as follows:

1. We estimate parameteus using (25) and the current estimate of mat@xwhich, for the
first iteration is the identity matrix).

2. We run PCA on these estimates, and select only the top principal comp{rammnesponding
to the largest eigenvalues of the empirical correlation matrix of the estinugteth partic-
ular, we only select the eigenvectors so that the sum of the corresgogidienvalues (total
“energy” kept) is at least 90% of the sum of all the eigenvalues (nogusia remaining
eigenvalues once we reach this 90% threshold). We then use the coeasfahese principal
components as our estimate of matfhin (25) for the next iteration.

We can repeat steps (1) and (2) until all eigenvalues are needectothen90% energy threshold

— typically in 4-5 iterations for the experiments below. We can then pick the estimatdter the
iteration that lead to the best validation error. We emphasize, that this is simplyriatic. We do

not have a theoretical justification for this heuristic. Developing a theowyedisas other methods
for estimating matrixQ is an open question. Notice that instead of using PCA we could directly
use for matrixQ simply the covariance of the estimatedof the previous iteration. However doing
S0 is sensitive to estimation errorswfand leads (as we also observed experimentally — we don't
show the results here for simplicity) to poorer performance.

One of the key guestions we consideredhew does multi-task learning perform relative to
single-task as the number of data per task and as the number of taskgadtEhis question is also
motivated by a typical situation in practice, where it may be easy to have datanfiany related
tasks, but it may be difficult to have many data per task. This could oftenrtexample the case
in analyzing customer data for marketing, where we may have data aboutausiomers (tens
of thousands) but only a few samples per customer (only tens) (AllenthyRassi, 1999; Arora,
Allenby, and Ginter, 1998). It can also be the case for biological daterevwe may have data
about many related diseases (for example, types of cancer), but dely samples per disease
(Rifkin et al., 2003). As noted by other researchers in (Baxter, 12Q00; Ben-David, Gehrke, and
Schuller, 2002; Ben-David and Schuller, 2003), one should expatinthlti-task learning helps
more, relative to single task, when we have many tasks but only few datagker while when we
have many data per task then single-task learning may be as good.

We performed experiments with two real data sets. One was on customee daté; and the
other was on school exams used by (Bakker and Heskes, 2003¢4$1&800) which we use here
also for comparison with (Bakker and Heskes, 2003; Heskes, 20@®yliscuss these experiments
next.
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4.1 Customer Data Experiments

We tested the proposed methods using a real data set capturing choices @nowucts made by
many individuals: The goal is to estimate a function for each individual modeling the prefesenc
of the individual based on the choices he/she has made. This functioedsrugractice to predict
what product each individual will choose among future choices. Weeteddthis problem as a
classification one along the lines of (Evgeniou, Boussios, and ZacB@afa). Therefore, the goal
is to estimate a classification function for each individual.

We have data from 200 individuals, and for each individual we haGedb2a points. The data
are three dimensional (the products were described using three attrgutbsas color, price, size,
etc.) each feature taking only discrete values (for example, the colorecani blue, or black, or
red, etc.). To handle the discrete valued attributes, we transformed thefmnaty ones, having
eventually 20-dimensional binary data. We consider each individuadiéfeeent “task”. Therefore
we have 200 classification tasks and 120 20-dimensional data pointscfotask — for a total of
24000 data points.

We consider a linear SVM classification for each task — trials with non-linealytomial of
degree 2 and 3) SVM did notimprove performance for this data set. Todestnulti-task compares
to single task as the number of data per task and/or the number of taskeshargan experiments
with varying numbers of data per task and number of tasks. In particuaconsidered 50, 100,
and 200 tasks, splitting the 200 tasks into 4 groups of 50 or 2 groups dibt@de group of 200),
and then taking the average performance among the 4 groups, the 2 gaodpthe 1 group). For
each task we split the 120 points into 20, 30, 60, 90 training points, and0060, 30 test points
respectively.

Given the limited number of data per task, we chose the regularization parayrfetrethe
single-task SVM among only a few values (0.1, 1, 10) using the actual tesfeOn the other
hand, the multi-task learning regularization paramet@nd parametex in (22) were chosen using
a validation set consisting of one (training) data point per task which weitlsirded back to the
training data for the final training after the parameter selection. The panaheiady used when
we estimated matrix Q through PCA were the same as when we used the identity rm&rix\e
note that one of the advantages of multi-task learning is that, since the dagpiaadly from many
tasks, parameters such as regularization paramyetan be practically chosen using only a few,
proportionally to all the data available, validation data without practically “ldsingny data for
parameter selection — which may be a further important practical reasonuitirtask learning.
Parameteh was chosen among values (0, 0.2, 0.4, 0.6, 0.8) — value 1 correspaadiaging one
SVM per task. Below we also record the results indicating how the testrpeafice is affected by
parameteh.

We display all the results in Table 4.1. Notice that the performance of the demiteSVM does
not change as the number of tasks increases — as expected. We alsisahetben we use one
SVM for all the tasks—treating the data as if they come from the same task—veevgey poor
performance: between 38 and 42 percent test error for the {dt#aks) cases considered.

From these results we draw the following conclusions:

1. The data are proprietary were provided to the authors by Reserechdtional Inc. and are available upon request.
2. This lead to some overfitting of the single task SVM, however it only gawvecompetitor an advantage over our
approach.
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Tasks| Data| One SVM | Indiv SVM | Identity | PCA
50 20 41.97 29.86 28.72 | 29.16
100 | 20 41.41 29.86 28.30 | 29.26
200 | 20 40.08 29.86 27.79 | 28.53
50 30 40.73 26.84 25.53 | 25.65
100 | 30 40.66 26.84 25.25 | 24.79
200 | 30 39.43 26.84 25.16 | 24.13
50 60 40.33 22.84 22.06 | 21.08
100 | 60 40.02 22.84 22.27 | 20.79
200 | 60 39.74 22.84 21.86 | 20.00
50 90 38.51 19.84 19.68 | 18.45
100 | 90 38.97 19.84 19.34 | 18.08
200 | 90 38.77 19.84 19.27 | 17.53

Table 1: Comparison of Methods as the number of data per task and the moftdieks changes.
“One SVM" stands for training one SVM with all the data from all the taskdinSVM”
stands for training for each task independently, “Identity” stands fonthki-task SVM
with the identity matrix, and “PCA” is the multi-task SVM using the PCA approach - Mis
classification errors are reported. Best performance(s) at the S¥ficagce level is in
bold.

e When there are few data per task (20, 30, or 60), both multi-task SVM#isaily outper-
form the single-task SVM.

e Asthe number of tasks increases the advantage of multi-task learningsesreéor example
for 20 data per task, the improvement in performance relative to singlestebkis 1.14,
1.56, and 2.07 percent for the 50, 100, and 200 tasks respectively.

e When we have many data per task (90), the simple multi-task SVM does natiprany
advantage relative to the single-task SVM. However, the PCA based mdtstad signifi-
cantly outperforms the other two methods.

e When there are few data per task, the simple multi-task SVM performs bettethin&CA
multi-task SVM. It may be that in this case the PCA multi-task SVM overfits the data.

The last two observations indicate that it is important to have a good estimatetrof Qan
(25) for the multi-task learning method that uses magriXAchieving this is currently an open ques-
tions that can be approached, for example, using convex optimizatioriqaeknsee, for example,
(Lanckriet et al., 2004; Micchelli and Pontil, 2005b)

To explore the second point further, we show in Figure 1 the change farpemce for the
identity matrix based multi-task SVM relative to the single-task SVM in the case ofa28 per
task. We usa = 0.6 as before. We notice the following:

e When there are only a few tasks (for example, less than 20 in this case) tasiltan hurt
the performance relative to single-task. Notice that this depends on tametarA used.
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For example, setting close to 1 leads to using a single-task SVM. Hence our experimental
findings indicate thator few tasks one should use either a single-task SVM or a multi-task
one with parametek selected near.1

e As the number of tasks increases, performance improves — surpassimgrtbrmance of the
single-task SVM after 20 tasks in this case.

As discussed in (Baxter, 1997, 2000; Ben-David, Gehrke, andligch?2002; Ben-David and
Schuller, 2003), an important theoretical question is to study the effeatikiirig additional tasks on
the generalization performance (Ben-David, Gehrke, and Schulleg; Ben-David and Schuller,
2003). What our experiments show is that, for few tasks it may be inapateo follow a multi-
task approach if a smaN is used, but as the number of tasks increases performance relative to
single-task learning improves. Therefore one should choose paraxgeending on the number
of tasks, much like one should choose regularization parametegsending on the number of data.
We tested the effects of paramedein Equation (22) on the performance of the proposed ap-
proach. In Figure 2 we plot the test error for the simple multi-task learningodetting the identity
matrix (kernel (22)) for the case of 20 data per task when there ar¢a2@6 (third row in Table
4.1), or 10 tasks (for which single-task SVM outperforms multi-task SVM\fer 0.6 as shown in
Figure 1). Parameteéx varies from 0 (one SVM for all tasks) to 1 (one SVM per task). Notice that
for the 200 tasks the error drops and then increases, having a flat minewweernA = 0.4 and
0.6. Moreover, for any between 0.2 and 1 we get a better performance than the single-task SVM.
The same behavior holds for the 10 tasks, except that now the spasdafwhich the multi-task
approach outperforms the single-task one is smaller — onl) foetween 0.7 and 1. Hencler a
few tasks multi-task learning can still help if a large enougb used However, as we noted above,
it is an open question as to how to choose paranieirepractice — other than using a validation set.

Figure 1: The horizontal axis is the number of tasks used. The verticabkakis total test misclas-
sification error among the tasks. There are 20 training points per taskls@stow the
performance of a single-task SVM (dashed line) which, of course tishranging as the
number of tasks increases.
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Figure 2: The horizontal axis is the parametdor the simple multi-task method with the identity
matrix kernel (22). The vertical axis is the total test misclassification emamg the
tasks. There are 200 tasks with 20 training points and 100 test points ket édisis for
10 tasks, and right is for 200 tasks.

40

Figure 3: Performance on the school data. The horizontal axis is tlenpgerA for the simple
multi-task method with the identity matrix while the vertical is the explained variance
(percentage) on the test data. The solid line is the performance of thesgappproach
while the dashed line is the best performance reported in (Bakker arkg$]&003).

4.2 School Data Experiment

We also tested the proposed approach using the “school data” fromrke Llondon Education
Authority available atmultilevel.ioe.ac.uk/intro/datasets.htmThis experiment is also discussed
in (Evgeniou and Pontil, 2004) where some of the ideas of this paper wstefesented. We
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selected this data set so that we can also compare our method directly withrihef\Bakker and
Heskes (2003) where a number of multi-task learning methods are applied wata set. This
data consists of examination records of 15362 students from 139 segsuhools. The goal is to
predict the exam scores of the students based on the following inputfitba exam, gender, VR
band, ethnic group, percentage of students eligible for free schodd mebe school, percentage of
students in VR band one in the school, gender of the school (i.e. male, famaézl), and school
denomination. We represented the categorical variables using binamyr{gluvariables, so the total
number of inputs for each student in each of the schools was 27. Singeahés to predict the
exam scores of the students we ran regression using thess\égs function (Vapnik, 1998) for the
multi—-task learning method proposed. We considered each school to &¢dski. Therefore, we
had 139 tasks in total. We made 10 random splits of the data into training (75% déth, hence
around 70 students per school on average) and test (the remainingf2G&odata, hence around
40 students per school on average) data and we measured the gatierafizrformance using the
explained variance of the test data as a measure in order to have a dirgrreson with (Bakker
and Heskes, 2003) where this error measure is used. The explamacesais defined in (Bakker
and Heskes, 2003) to be the total variance of the data minus the sum-esquareon the test set
as a percentage of the total data variance, which is a percentage vefrsimnstandardR® error
measure for regression for the test data. Finally, we used a simple limeat far each of the tasks.

The results for this experiment are shown in Figure 3. We set regulanzatiametey to be
1 and used a linear kernel for simplicity. We used the simple multi-task learningothptbposed
with the identity matrix. We let the parametkivary to see the effects. For comparison we also
report on the performance of the task clustering method described ikéBakd Heskes, 2003) —
the dashed line in the figure.

The results show again the advantage of learning all tasks (for all sjrsdmultaneously in-
stead of learning them one by one. Indeed, learning each task s&pardtes case hurts perfor-
mance a lot. Moreover, even the simple identity matrix based approach sigtijficatperforms
the Bayesian method of (Bakker and Heskes, 2003), which in turn in lie#terother methods as
compared in (Bakker and Heskes, 2003). Note, however, that foddltésset one SVM for all tasks
performs the best, which is also similar to using a small endugany A between 0 and 0.7 in
this case). Hence, it appears that the particular data set may come fiagieatask (despite this
observation, we use this data set for direct comparison with (Bakkefiaskes, 2003)). This result
also indicates that when the tasks are the same task, using the proposedskldizitaing method
does not hurt as long as a small enoagh used. Notice that for this data set the performance does
not change significantly fox between 0 and 0.7, which shows that, as for the customer data above,
the proposed method is not very sensitiva té\ theoretical study of the sensitivity of our approach
to the choice of the parametkris an open research direction which may also lead to a better un-
derstanding of the effects of increasing the number of tasks on thealigaion performance as
discussed in (Baxter, 1997, 2000; Ben-David and Schuller, 2003).

5. Discussion and Conclusions

In this final section we outline the extensions of the ideas presented aboga-limear functions,
discuss some open problems on multi-tasks learning and draw our conslusion
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5.1 Nonlinear Multi-Task Kernels

We discuss a non-linear extension of the multi-task learning methods preésdrttee. This gives
us an opportunity to provide a wide variety of multi-task kernels which may bilor applica-
tions. Our presentation builds upon earlier work on learning vector-¢diluretions (Micchelli and
Pontil, 2005) which developed the theory of RKHS of functions whosgeasa Hilbert space.

As in the linear case we view the vector-valued functioe- (f, : £ € Nj) as a real-valued
function on the input spack x N,. We expresd in terms of the feature magg, : X — W, ¢ € N,
whereW is a Hilbert space with inner produ¢t -). That is, we have that

fr(x) = (W,P((X)), XE X, £ €Ny,
The vectomw is computed by minimizing the single-task functional
1
Sw)i=— % % L(Yje: (W, ®e(Xje))) +y{Ww), we W. (31)
nmEENnjE m

By the representer theorem, the minimizer of functiddhhs the form in Equation (14) where the
multi-task kernel is given by the formula

K((x,2), (t,q)) = (Pe(X), Pq(t)) Xt e X, ¢,q€ Ny. (32)

In Section 3 we have discussed this approach in the cas@iths finite dimensional Euclidean
space andb, the linear mapb,(x) = Byx, thereby obtaining the linear multi-task kernel (10). In
order to generalize this case it is useful to recall a result of Schur vetétls that the elementwise
product of two positive semidefinite matrices is also positive semidefiniten&eagn, 1950, p. 358).
This implies that the elementwise product of two kernels is a kernel. Consiéguee conclude
that, for anyr € N,

K((X’€)7(taq)) = (X,B%Bqt)r (33)

is a polynomial multi-task kernel.
More generally we have the following lemma.

Lemma?2 If Gis akernel onZ x 7 and, for every € N, there are prescribed mappings:zx —
T such that

K((%,£),(t,q)) = G(z(x),Z(t)), xteX, {,qe Ny (34)
then K is a multi-task kernel.

PROOF We note that for everyci; :i € Nm, £ € N} C Rand{xy; :i € Ny, £ € Ny} C X we have

> CirCiaG(z(%ir), 24(Xjq)) = 2 > GiCiqG(Zr,Zjq) = 0
i,JjENm(,0eNy L6 19

where we have defined, = z/(x;;) and the last inequality follows by the hypothesis tfats a
kernel. O

For the special case thd@t=RP, z(x) = B;x with B, a p x d matrix, ¢ € Ny, andG: RP x RP — R
is the homogeneous polynomial kern@lt,s) = (t's)", the lemma confirms that the function (33)
is a multi-task kernel. Similarly, whe@ is chosen to be a Gaussian kernel, we conclude that

K((x,0), (t,a)) = exp(—B||Bx— Bqt||*)
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is a multi-task kernel for everg > 0.
Lemma 2 also allows us to generalize multi-task learning to the case that eachrteséirf f,
has adifferentinput domainX, a situation which is important in applications, see, for example,
(Ben-David, Gehrke, and Schuller, 2002) for a discussion. To tldswa specify setsy, ¢ € Ny,
functionsg, : Xy — R, and note that multi—task learning can be placed in the above framework by
defining the input space
X=X X XoX -+ X Xp.

We are interested in the functiofigx) = g,(P,x), wherex= (Xy,...,%,) andP, : X — Xy is defined,

for everyx € X by P,(X) = x,. LetG be a kernel orZ’ x 7" and choose,(-) = @/(P:(-)) where

@ : Xy — T are some prescribed functions. Then by lemma 2 the kernel defined layi@&y(34)
can be used to represent the functignsIn particular, in the case of linear functions, we choose
X, =R%, whered; € N, T =RP, pe N, G(s,t) = St andz = D,P, whereDy is ap x d, matrix. In
this case, the multi-task kernel is given by

K((x,0), (t,0)) = XP,D}DqPyt

which is of the form in Equation (10) fd8, = D,P;, £ € Nj,.
We note that ideas related to those presented in this section appear in (B8,

5.2 Conclusion and Future Work

We developed a framework for multi-task learning in the context of regaitoiz in reproducing
kernel Hilbert spaces. This naturally extends standard single-tasklkearning methods, such as
SVM and RN. The framework allows to model relationships between the task®aearn the task
parameters simultaneously. For this purpose, we showed that multi-taskntgaem be seen as
single-task learning if a particular family of kernels, that we called multi-taskeds, is used. We
also characterized the non-linear multi-task kernels.

Within the proposed framework, we defined particular linear multi-task kethat correspond
to particular choices of regularizers which model relationships betweduartbgon parameters. For
example, in the case of SVM, appropriate choices of this kernel/regulamipdemented a trade—
off between large margin of each per—task individual SVM and closeoksach SVM to linear
combinations of the individual SVMs such as their average.

We tested some of the proposed methods using real data. The experiresultslshow that the
proposed multi-task learning methods can lead to significant performanceviempents relative to
the single-task learning methods, especially when many tasks with few dataredearned.

A number of research questions can be studied starting from the fraknewdrmethods we
developed here. We close with commenting on some issues which stem outnodithéheme of
this paper.

e Learning a multi-task kernelThe kernel in Equation (22) is perhaps the simplest nontrivial
example of a multi-task kernel. This kernel is a convex combination of twoekerthe first
of which corresponds to learning independent tasks and the secerid amank one kernel
which corresponds to learning all tasks as the same task. Thus this lkeeagly combines
two opposite models to form a more flexible one. Our experimental result® abdicate
the value of this approach provided the paramatés chosen for the application at hand.
Recent work by Micchelli and Pontil (2004) shows that, under ratheeige conditions,
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the optimal convex combination of kernels can be learned by minimizing the fuatfio
Equation (1) with respect t§ and f € %k, whereK is a kernel in the convex set of kernels,
see also (Lanckriet et al., 2004). Indeed, in our specific case wehtan—along the lines in
(Micchelli and Pontil, 2004)—that the regularizer (24) is convex endu. This approach is
rather general and can be adapted also for learning the nGaimixhe kernel in Equation (25)
which in our experiment we estimated by our “ad hoc” PCA approach.

Bounds on the generalization erroiYet another important question is how to bound the
generalization error for multi-task learning. Recently developed bowglgisg on the notion

of algorithmic stability or Rademacher complexity should be easily applicable toomext.
This should highlight the role played by the matrid®sin Equation (10). Intuitively, if
B, = By we should have a simple (low-complexity) model whereas ifBhare orthogonal

a more complex model. More specifically, this analysis should say how thealigagon
error, when using the kernel (22), depends\on

Computational considerationg drawback of our proposed multi-task kernel method is that
its computational complexity time 3( p(mn)) which is worst than the complexity of solving

n independent kernel methods, this bem@(p(m)). The functionp depends on the loss
function used and, typicallyp(m) = m? with a a positive constant. For example for the
square losa = 3. Future work will focus on the study of efficient decomposition methods fo
solving the multi-task SVM or RN. This decomposition should exploit the strugitoeided

by the matrice®, in the kernel (10). For example, if we use the kernel (22) and the tasks
share the same input examples it is possible to show that the linear systemEojuations

(15) can be reduced to solvimg+ 1 systems om equations, which is essentially the same as
solvingn independent ridge regression problems.

Multi-task feature selectionContinuing on the discussion above, we observe that if we re-
strict the matrixQ to be diagonal then learning corresponds to a form of feature selection
across tasks. Other feature selection formulations where the tasks nmayoghasome of
their features should also be possible. See also the recent work b J2684) for related
work on this direction.

Online multi-task learningAn interesting problem deserving of investigation is the question
of how to learn a set of tasks online where at each instance of time a setropkes for anew
taskis sampled. This problem is valuable in applications where an environmenlisrect
and new data/tasks are provided during this exploration. For examplejtherenent could

be a market of customers in our application above, or a set of scenesjputer vision which
contains different objects we want to recognize.

Multi-task learning extensiong=inally it would be interesting to extent the framework pre-
sented here to other learning problems beyond classification and iegre$s/o example
which come to mind are kernel density estimation, see, for example, (Va@4B) lor one-
class SVM (Tax and Duin, 1999).
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