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Abstract
Reinforcement learning aims to determine an optimal control policy from interaction with a system
or from observations gathered from a system. In batch mode, it can be achieved by approximating
the so-calledQ-function based on a set of four-tuples(xt ,ut , rt ,xt+1) wherext denotes the sys-
tem state at timet, ut the control action taken,rt the instantaneous reward obtained andxt+1 the
successor state of the system, and by determining the control policy from this Q-function. The
Q-function approximation may be obtained from the limit of a sequence of (batch mode) super-
vised learning problems. Within this framework we describethe use of several classical tree-based
supervised learning methods (CART, Kd-tree, tree bagging)and two newly proposed ensemble al-
gorithms, namelyextremelyandtotally randomized trees. We study their performances on several
examples and find that the ensemble methods based on regression trees perform well in extracting
relevant information about the optimal control policy fromsets of four-tuples. In particular, the to-
tally randomized trees give good results while ensuring theconvergence of the sequence, whereas
by relaxing the convergence constraint even better accuracy results are provided by the extremely
randomized trees.

Keywords: batch mode reinforcement learning, regression trees, ensemble methods, supervised
learning, fitted value iteration, optimal control

1. Introduction

Research in reinforcement learning (RL) aims at designing algorithms by which autonomous agents
can learn to behave in some appropriate fashion in some environment, from their interaction with
this environment or from observations gathered from the environment (see e.g. Kaelbling et al.
(1996) or Sutton and Barto (1998) for a broad overview). The standard RL protocol considers a
performance agent operating in discrete time, observing at timet the environment statext , taking an
actionut , and receiving back information from the environment (the next statext+1 and the instan-
taneous rewardrt). After some finite time, the experience the agent has gathered from interaction
with the environment may thus be represented by a set of four-tuples(xt ,ut , rt ,xt+1).

In on-line learning the performance agent is also the learning agent whichat each time step can
revise its control policy with the objective of converging as quickly as possible to an optimal control
policy. In this paper we consider batch mode learning, where the learning agent is in principle not
directly interacting with the system but receives only a set of four-tuples and is asked to determine
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from this set a control policy which is as close as possible to an optimal policy.Inspired by the
on-lineQ-learning paradigm (Watkins, 1989), we will approach this batch mode learning problem
by computing from the set of four-tuples an approximation of the so-calledQ-function defined on
the state-action space and by deriving from this latter function the control policy.

When the state and action spaces are finite and small enough, theQ-function can be represented
in tabular form, and its approximation (in batch and in on-line mode) as well as thecontrol policy
derivation are straightforward. However, when dealing with continuousor very large discrete state
and/or action spaces, theQ-function cannot be represented anymore by a table with one entry for
each state-action pair. Moreover, in the context of reinforcement learning an approximation of the
Q-function all over the state-action space must be determined from finite and generally very sparse
sets of four-tuples.

To overcome this generalization problem, a particularly attractive frameworkis the one used by
Ormoneit and Sen (2002) which applies the idea of fitted value iteration (Gordon, 1999) to kernel-
based reinforcement learning, and reformulates theQ-function determination problem as a sequence
of kernel-based regression problems. Actually, this framework makes it possible to take full advan-
tage in the context of reinforcement learning of the generalization capabilities of any regression
algorithm, and this contrary to stochastic approximation algorithms (Sutton, 1988; Tsitsiklis, 1994)
which can only use parametric function approximators (for example, linear combinations of feature
vectors or neural networks). In the rest of this paper we will call this framework thefitted Q iteration
algorithmso as to stress the fact that it allows to fit (using a set of four-tuples) any(parametric or
non-parametric) approximation architecture to theQ-function.

The fittedQ iteration algorithm is a batch mode reinforcement learning algorithm which yields
an approximation of theQ-function corresponding to an infinite horizon optimal control problem
with discounted rewards, by iteratively extending the optimization horizon (Ernst et al., 2003):

• At the first iteration it produces an approximation of aQ1-function corresponding to a 1-step
optimization. Since the trueQ1-function is the conditional expectation of the instantaneous
reward given the state-action pair (i.e.,Q1(x,u) = E[rt |xt = x,ut = u]), an approximation of
it can be constructed by applying a (batch mode) regression algorithm to a training set whose
inputs are the pairs(xt ,ut) and whose target output values are the instantaneous rewardsrt

(i.e.,q1,t = rt).

• The Nth iteration derives (using a batch mode regression algorithm) an approximation of a
QN-function corresponding to anN-step optimization horizon. The training set at this step
is obtained by merely refreshing the output values of the training set of the previous step by
using the “value iteration” based on the approximateQN-function returned at the previous
step (i.e.,qN,t = rt + γmaxuQ̂N−1(xt+1,u), whereγ ∈ [0,1) is the discount factor).

Ormoneit and Sen (2002) have studied the theoretical convergence andconsistency properties of
this algorithm when combined with kernel-based regressors. In this paper, we study within this
framework the empirical properties and performances of several tree-based regression algorithms
on several applications. Just like kernel-based methods, tree-based methods are non-parametric
and offer a great modeling flexibility, which is a paramount characteristic for the framework to be
successful since the regression algorithm must be able to model anyQN-function of the sequence,
functions which are a priori totally unpredictable in shape. But, from a practical point of view these
tree-based methods have a priori some additional advantages, such as their high computational
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efficiency and scalability to high-dimensional spaces, their fully autonomouscharacter, and their
recognized robustness to irrelevant variables, outliers, and noise.

In addition to good accuracy when trained with finite sets of four-tuples, one desirable feature of
the regression method used in the context of the fittedQ iteration algorithm is to ensure convergence
of the sequence. We will analyze under which conditions the tree-based methods share this property
and also what is the relation between convergence and quality of approximation. In particular, we
will see that ensembles of totally randomized trees (i.e., trees built by selecting their splits randomly)
can be adapted to ensure the convergence of the sequence while leadingto good approximation
performances. On the other hand, another tree-based algorithm named extremely randomized trees
(Geurts et al., 2004), will be found to perform consistently better than totallyrandomized trees even
though it does not strictly ensure the convergence of the sequence ofQ-function approximations.

The remainder of this paper is organized as follows. In Section 2, we formalize the reinforce-
ment learning problem considered here and recall some classical resultsfrom optimal control theory
upon which the approach is based. In Section 3 we present thefitted Q iteration algorithmand in
Section 4 we describe the different tree-based regression methods considered in our empirical tests.
Section 5 is dedicated to the experiments where we apply the fittedQ iteration algorithm used with
tree-based methods to several control problems with continuous state spaces and evaluate its perfor-
mances in a wide range of conditions. Section 6 concludes and also provides our main directions for
further research. Three appendices collect relevant details about algorithms, mathematical proofs
and benchmark control problems.

2. Problem Formulation and Dynamic Programming

We consider a time-invariant stochastic system in discrete time for which a closed loop stationary
control policy1 must be chosen in order to maximize an expected discounted return over an infinite
time horizon. We formulate hereafter the batch mode reinforcement learning problem in this context
and we restate some classical results stemming from Bellman’s dynamic programming approach to
optimal control theory (introduced in Bellman, 1957) and from which the fittedQ iteration algorithm
takes its roots.

2.1 Batch Mode Reinforcement Learning Problem Formulation

Let us consider a system having adiscrete-time dynamicsdescribed by

xt+1 = f (xt ,ut ,wt) t = 0,1, · · · , (1)

where for allt, the statext is an element of the state spaceX, the actionut is an element of the action
spaceU and the random disturbancewt an element of the disturbance spaceW. The disturbancewt

is generated by the time-invariant conditional probability distributionPw(w|x,u).2

To the transition fromt to t + 1 is associated an instantaneousreward signal rt = r(xt ,ut ,wt)
wherer(x,u,w) is the reward function supposed to be bounded by some constantBr .

Let µ(·) : X → U denote a stationary control policy andJµ
∞ denote the expected return ob-

tained over an infinite time horizon when the system is controlled using this policy (i.e., when

1. Indeed, in terms of optimality this restricted family of control policies is as good as the broader set of all non-
anticipating (and possibly time-variant) control policies.

2. In other words, the probabilityP(wt = w|xt = x,ut = u) of occurrence ofwt = w given that the current statext and
the current controlut arex andu respectively, is equal toPw(w|x,u),∀t = 0,1, · · · .
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ut = µ(xt),∀t). For a given initial conditionx0 = x, Jµ
∞ is defined by

Jµ
∞(x) = lim

N→∞
E
wt

t=0,1,··· ,N−1

[
N−1

∑
t=0

γtr(xt ,µ(xt),wt)|x0 = x], (2)

whereγ is a discount factor (0≤ γ < 1) that weights short-term rewards more than long-term ones,
and where the conditional expectation is taken over all trajectories starting with the initial condi-
tion x0 = x. Our objective is to find an optimal stationary policyµ∗, i.e. a stationary policy that
maximizesJµ

∞ for all x.
The existence of an optimal stationary closed loop policy is a classical resultfrom dynamic

programming theory. It could be determined in principle by solving the Bellman equation (see
below, Eqn (6)) given the knowledge of the system dynamics and rewardfunction. However, the sole
information that we assume available to solve the problem is the one obtained from the observation
of a certain number of one-step system transitions (fromt to t +1). Each system transition provides
the knowledge of a new four-tuple(xt ,ut , rt ,xt+1) of information. Since, except for very special
conditions, it is not possible to determine exactly an optimal control policy froma finite sample of
such transitions, we aim at computing an approximation of such aµ∗ from a set

F = {(xl
t ,u

l
t , r

l
t ,x

l
t+1), l = 1, · · · ,#F }

of such four-tuples.
We do not make any particular assumptions on the way the set of four-tuplesis generated. It

could be generated by gathering the four-tuples corresponding to one single trajectory (or episode)
as well as by considering several independently generated one or multi-step episodes.

We call this problem thebatch modereinforcement learning problem because the algorithm is
allowed to use a set of transitions of arbitrary size to produce its control policy in a single step. In
contrast, anon-linealgorithm would produce a sequence of policies corresponding to a sequence of
four-tuples.

2.2 Results from Dynamic Programming Theory

For a temporal horizon ofN steps, let us denote by

πN(t,x) ∈U, t ∈ {0, · · · ,N−1};x∈ X

a (possibly time-varying)N-step control policy (i.e.,ut = πN(t,xt) ), and by

JπN
N (x) = E

wt
t=0,1,··· ,N−1

[
N−1

∑
t=0

γtr(xt ,πN(t,xt),wt)|x0 = x] (3)

its expected return overN steps. AnN-step optimal policyπ∗N is a policy which among all possible
such policies maximizesJπN

N for anyx. Notice that under mild conditions (see e.g. Hernández-Lerma
and Lasserre, 1996, for the detailed conditions) such a policy always does indeed exist although it
is not necessarily unique.

Our algorithm exploits the following classical results from dynamic programmingtheory (Bell-
man, 1957):
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1. The sequence ofQN-functions defined onX×U by

Q0(x,u) ≡ 0 (4)

QN(x,u) = (HQN−1)(x,u), ∀N > 0, (5)

converges (in infinity norm) to theQ-function, defined as the (unique) solution of the Bellman
equation:

Q(x,u) = (HQ)(x,u) (6)

whereH is an operator mapping any functionK : X×U → R and defined as follows:3

(HK)(x,u) = E
w
[r(x,u,w)+ γmax

u′∈U
K( f (x,u,w),u′)]. (7)

Uniqueness of solution of Eqn (6) as well as convergence of the sequence ofQN-functions
to this solution are direct consequences of the fixed point theorem and ofthe fact thatH is a
contraction mapping.

2. The sequence of policies defined by the two conditions4

π∗N(0,x) = argmax
u′∈U

QN(x,u′),∀N > 0 (8)

π∗N(t +1,x) = π∗N−1(t,x),∀N > 1, t ∈ {0, . . . ,N−2} (9)

areN-step optimal policies, and their expected returns overN steps are given by

J
π∗N
N (x) = max

u∈U
QN(x,u).

3. A policy µ∗ that satisfies
µ∗(x) = argmax

u∈U
Q(x,u) (10)

is an optimal stationary policy for the infinite horizon case and the expected return ofµ∗N(x)
.
=

π∗N(0,x) converges to the expected return ofµ∗:

lim
N→∞

J
µ∗N∞ (x) = Jµ∗

∞ (x) ∀x∈ X. (11)

We have also limN→∞ J
π∗N
N (x) = Jµ∗

∞ (x) ∀x∈ X.

Equation (5) defines the so-calledvalue iteration algorithm5 providing a way to determine iter-
atively a sequence of functions converging to theQ-function and hence of policies whose return
converges to that of an optimal stationary policy, assuming that the system dynamics, the reward
function and the noise distribution are known. As we will see in the next section, it suggests also a
way to determine approximations of theseQN-functions and policies from a sampleF .

3. The expectation is computed by usingP(w) = Pw(w|x,u).
4. Actually this definition does not necessarily yield a unique policy, but anypolicy which satisfies these conditions is

appropriate.

5. Strictly, the term “value iteration” refers to the computation of thevaluefunctionJµ∗
∞ and corresponds to the iteration

J
π∗N
N = max

u∈U
E
w
[r(x,u,w)+ γJ

π∗N−1
N−1( f (x,u,w))],∀N > 0 rather than Eqn (5).
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3. Fitted Q Iteration Algorithm

In this section, we introduce the fittedQ iteration algorithm which computes from a set of four-
tuples an approximation of the optimal stationary policy.

3.1 The Algorithm

A tabular version of the fittedQ iteration algorithm is given in Figure 1. At each step this algorithm
may use the full set of four-tuples gathered from observation of the system together with the function
computed at the previous step to determine a new training set which is used by asupervised learning
(regression) method to compute the next function of the sequence. It produces a sequence of̂QN-
functions, approximations of theQN-functions defined by Eqn (5).

Inputs: a set of four-tuplesF and a regression algorithm.
Initialization:
SetN to 0 .
Let Q̂N be a function equal to zero everywhere onX×U .
Iterations:
Repeat until stopping conditions are reached

- N← N+1 .

- Build the training setT S = {(i l ,ol ), l = 1, · · · ,#F } based on the the function̂QN−1 and on
the full set of four-tuplesF :

i l = (xl
t ,u

l
t) , (12)

ol = r l
t + γmax

u∈U
Q̂N−1(x

l
t+1,u) . (13)

- Use the regression algorithm to induce fromT S the functionQ̂N(x,u).

Figure 1: FittedQ iteration algorithm

Notice that at the first iteration the fittedQ iteration algorithm is used in order to produce an
approximation of the expected rewardQ1(x,u) = Ew[r(x,u,w)]. Therefore, the considered training
set uses input/output pairs (denoted(i l ,ol )) where the inputs are the state-action pairs and the outputs
the observed rewards. In the subsequent iterations, only the output values of these input/output pairs
are updated using the value iteration based on theQ̂N-function produced at the preceding step and
information about the reward and the successor state reached in each tuple.

It is important to realize that the successive calls to the supervised learningalgorithm are totally
independent. Hence, at each step it is possible to adapt the resolution (orcomplexity) of the learned
model so as to reach the best bias/variance tradeoff at this step, given the available sample.

3.2 Algorithm Motivation

To motivate the algorithm, let us first consider the deterministic case. In this case the system dy-
namics and the reward signal depend only on the state and action at timet. In other words we have
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xt+1 = f (xt ,ut) andrt = r(xt ,ut) and Eqn (5) may be rewritten

QN(x,u) = r(x,u)+ γmax
u′∈U

QN−1( f (x,u),u′). (14)

If we suppose that the functionQN−1 is known, we can use this latter equation and the set of four-
tuplesF in order to determine the value ofQN for the state-action pairs(xl

t ,u
l
t), l = 1,2, · · · ,#F .

We have indeedQN(xl
t ,u

l
t) = r l

t + γmax
u′∈U

QN−1(xl
t+1,u

′), sincexl
t+1 = f (xl

t ,u
l
t) andr l

t = r(xl
t ,u

l
t).

We can thus build a training setT S = {((xl
t ,u

l
t),QN(xl

t ,u
l
t)), l = 1, · · · ,#F } and use a regression

algorithm in order to generalize this information to any unseen state-action pairor, stated in another
way, tofit a function approximator to this training set in order to get an approximationQ̂N of QN over
the whole state-action space. If we substituteQ̂N for QN we can, by applying the same reasoning,
determine iterativelyQ̂N+1, Q̂N+2, etc.

In the stochastic case, the evaluation of the right hand side of Eqn (14) for some four-tuples
(xt ,ut , rt ,xt+1) is no longer equal toQN(xt ,ut) but rather is the realization of a random variable
whose expectation isQN(xt ,ut). Nevertheless, since a regression algorithm usually6 seeks an ap-
proximation of the conditional expectation of the output variable given the inputs, its application
to the training setT S will still provide an approximation ofQN(x,u) over the whole state-action
space.

3.3 Stopping Conditions

The stopping conditions are required to decide at which iteration (i.e., for which value ofN) the
process can be stopped. A simple way to stop the process is to define a priori a maximum number
of iterations. This can be done for example by noting that for a sequence of optimal policiesµ∗N, an
error bound on the sub-optimality in terms of number of iterations is given by thefollowing equation

‖Jµ∗N∞ −Jµ∗
∞ ‖∞ ≤ 2

γNBr

(1− γ)2 . (15)

Given the value ofBr and a desired level of accuracy, one can then fix the maximum number of
iterations by computing the minimum value ofN such that the right hand side of this equation is
smaller than the tolerance fixed.7

Another possibility would be to stop the iterative process when the distance betweenQ̂N and
Q̂N−1 drops below a certain value. Unfortunately, for some supervised learning algorithms there is
no guarantee that the sequence ofQ̂N-functions actually converges and hence this kind of conver-
gence criterion does not necessarily make sense in practice.

3.4 Control Policy Derivation

When the stopping conditions - whatever they are - are reached, the finalcontrol policy, seen as an
approximation of the optimal stationary closed loop control policy is derived by

µ̂∗N(x) = argmax
u∈U

Q̂N(x,u). (16)

6. This is true in the case of least squares regression, i.e. in the vast majority of regression methods.
7. Equation (15) gives an upper bound on the suboptimality ofµ∗N and not ofµ̂∗N. By exploiting this upper bound

to determine a maximum number of iterations, we assume implicitly that ˆµ∗N is a good approximation ofµ∗N (that

‖Jµ̂∗N∞ −J
µ∗N∞ ‖∞ is small).
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When the action space is discrete, it is possible to compute the valueQ̂N(x,u) for each value
of u and then find the maximum. Nevertheless, in our experiments we have sometimes adopted
a different approach to handle discrete action spaces. It consists of splitting the training samples
according to the value ofu and of building the approximation̂QN(x,u) by separately calling for
each value ofu∈U the regression method on the corresponding subsample. In other words,each
such model is induced from the subset of four-tuples whose value of theaction isu, i.e.

Fu = {(xt ,ut , rt ,xt+1) ∈ F |ut = u}.

At the end, the action at some pointx of the state space is computed by applying to this state each
modelQ̂N(x,u),u∈U and looking for the value ofu yielding the highest value.

When the action space is continuous, it may be difficult to compute the maximum especially
because we can not make any a priori assumption about the shape of theQ-function (e.g. convex-
ity). However, taking into account particularities of the models learned by a particular supervised
learning method, it may be more or less easy to compute this value (see Section 4.5for the case of
tree-based models).

3.5 Convergence of the FittedQ Iteration Algorithm

The fittedQ iteration algorithm is said to converge if there exists a functionQ̂ : X×U → R such
that∀ε > 0 there exists an∈ N such that:

‖Q̂N− Q̂‖∞ < ε ∀N > n.

Convergence may be ensured if we use a supervised learning method which given a sampleT S =
{(i1,o1), . . . ,(i#T S ,o#T S )} produces at each call the model (proof in Appendix B):

f (i) =
#T S

∑
l=1

kT S (i l , i)∗ol
, (17)

with the kernelkT S (i l , i) being the same from one call to the other within the fittedQ iteration
algorithm8 and satisfying the normalizing condition:

#T S

∑
l=1

|kT S (i l , i)|= 1, ∀i. (18)

Supervised learning methods satisfying these conditions are for example thek-nearest-neighbors
method, partition and multi-partition methods, locally weighted averaging, linear, and multi-linear
interpolation. They are collectively referred to as kernel-based methods(see Gordon, 1999; Or-
moneit and Sen, 2002).

3.6 Related Work

As stated in the Introduction, the idea of trying to approximate theQ-function from a set of four-
tuples by solving a sequence of supervised learning problems may alreadybe found in Ormoneit and

8. This is true when the kernel does not depend on the output values of the training sample and when the supervised
learning method is deterministic.

510



TREE-BASED BATCH MODE REINFORCEMENTLEARNING

Sen (2002). This work however focuses on kernel-based methods for which it provides convergence
and consistency proofs, as well as a bias-variance characterization.While in our formulation state
and action spaces are handled in a symmetric way and may both be continuous or discrete, in their
work Ormoneit and Sen consider only discrete action spaces and use a separate kernel for each value
of the action.

The work of Ormoneit and Sen is related to earlier work aimed to solve large-scale dynamic pro-
gramming problems (see for example Bellman et al., 1973; Gordon, 1995b; Tsitsiklis and Van Roy,
1996; Rust, 1997). The main difference is that in these works the variouselements that compose
the optimal control problem are supposed to be known. We gave the namefitted Q iterationto our
algorithm given in Figure 1 to emphasize that it is a reinforcement learning version of thefitted
value iterationalgorithm whose description may be found in Gordon (1999). Both algorithms are
quite similar except that Gordon supposes that a complete generative model isavailable,9 which is
a rather strong restriction with respect to the assumptions of the present paper.

In his work, Gordon characterizes a class of supervised learning methods referred to as averagers
that lead to convergence of his algorithm. These averagers are in fact aparticular family of kernels
as considered by Ormoneit and Sen. In Boyan and Moore (1995), serious convergence problems
that may plague the fitted value iteration algorithm when used with polynomial regression, back-
propagation, or locally weighted regression are shown and these also apply to the reinforcement
learning context. In their paper, Boyan and Moore propose also a way toovercome this problem
by relying on some kind of Monte-Carlo simulations. In Gordon (1995a) andSingh et al. (1995)
on-line versions of the fitted value iteration algorithm used with averagers are presented.

In Moore and Atkeson (1993) and Ernst (2003), several reinforcement learning algorithms
closely related to the fittedQ iteration algorithm are given. These algorithms, known as model-
based algorithms, build explicitly from the set of observations a finite MarkovDecision Process
(MDP) whose solution is then used to adjust the parameters of the approximation architecture used
to represent theQ-function. When the states of the MDP correspond to a finite partition of the
original state space, it can be shown that these methods are strictly equivalent to using the fittedQ
iteration algorithm with a regression method which consists of simply averaging the output values
of the training samples belonging to a given cell of the partition.

In Boyan (2002), the Least-Squares Temporal-Difference (LSTD) algorithm is proposed. This
algorithm uses linear approximation architectures and learns the expected return of a policy. It is
similar to the fittedQ iteration algorithm combined with linear regression techniques on problems
for which the action space is composed of a single element. Lagoudakis and Parr (2003a) intro-
duce the Least-Squares Policy Iteration (LSPI) which is an extension of LSTD to control problems.
The model-based algorithms in Ernst (2003) that consider representative states as approximation
architecture may equally be seen as an extension of LSTD to control problems.

Finally, we would like to mention some recent works based on the idea of reductions of rein-
forcement learning to supervised learning (classification or regression) with various assumptions
concerning the available a priori knowledge (see e.g. Kakade and Langford, 2002; Langford and
Zadrozny, 2004, and the references therein). For example, assumingthat a generative model is
available,10 an approach to solve the optimal control problem by reformulating it as a sequence of

9. Gordon supposes that the functionsf (·, ·, ·), r(·, ·, ·), andPw(·|·, ·) are known and considers training sets composed of

elements of the type(x,max
u∈U

E
w
[r(x,u,w)+ γĴ

π∗N−1
N−1( f (x,u,w))]).

10. A generative model allows simulating the effect of any action on the system at any starting point; this is less restrictive
than thecompletegenerative model assumption of Gordon (footnote 9, page 511).
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standard supervised classification problems has been developed (see Lagoudakis and Parr, 2003b;
Bagnell et al., 2003), taking its roots from the policy iteration algorithm, another classical dynamic
programming algorithm. Within this “reductionist” framework, the fittedQ iteration algorithm can
be considered as areductionof reinforcement learning to a sequence of regression tasks, inspiredby
the value iteration algorithm and usable in the rather broad context where theavailable information
is given in the form of a set of four-tuples. Thisbatch modecontext incorporates indeed both the
on-line context (since one can always store data gathered on-line, at least for a finite time interval) as
well as the generative context (since one can always use the generative model to generate a sample
of four-tuples) as particular cases.

4. Tree-Based Methods

We will consider in our experiments five different tree-based methods all based on the same top-
down approach as in the classical tree induction algorithm. Some of these methods will produce
from the training set a model composed of onesingleregression tree while the others build anen-
sembleof regression trees. We characterize first the models that will be produced by these tree-based
methods and then explain how the different tree-based methods generate these models. Finally, we
will consider some specific aspects related to the use of tree-based methods with the fittedQ itera-
tion algorithm.

4.1 Characterization of the Models Produced

A regression tree partitions the input space into several regions and determines a constant prediction
in each region of the partition by averaging the output values of the elements of the training setT S

which belong to this region. LetS(i) be the function that assigns to an inputi (i.e., a state-action pair)
the region of the partition it belongs to. A regression tree produces a modelthat can be described
by Eqn (17) with the kernel defined by the expression:

kT S (i l , i) =
IS(i)(i

l )

∑(a,b)∈T S IS(i)(a)
(19)

whereIB(·) denotes the characteristic function of the regionB (IB(i) = 1 if i ∈ B and 0 otherwise).
When a tree-based method builds an ensemble of regression trees, the model it produces av-

erages the predictions of the different regression trees to make a final prediction. Suppose that a
tree-based ensemble method producesp regression trees and gets as input a training setT S . Let
T Sm

11 be the training set used to build themth regression tree (and therefore themth partition) and
Sm(i) be the function that assigns to eachi the region of themth partition it belongs to. The model
produced by the tree-based method may also be described by Eqn (17) withthe kernel defined now
by the expression:

kT S (i l , i) =
1
p

p

∑
m=1

ISm(i)(i
l )

∑(a,b)∈T Sm
ISm(i)(a)

. (20)

It should also be noticed that kernels (19) and (20) satisfy the normalizingcondition (18).

11. These subsets may be obtained in different ways from the original training set, e.g. by sampling with or without
replacement, but we can assume that each element ofT Sm is also an element ofT S .
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4.2 The Different Tree-Based Algorithms

All the tree induction algorithms that we consider are top-down in the sense that they create their
partition by starting with a single subset and progressively refining it by splitting its subsets into
pieces. The tree-based algorithms that we consider differ by the number of regression trees they
build (one or an ensemble), the way they grow a tree from a training set (i.e.,the way the different
tests inside the tree are chosen) and, in the case of methods that produce an ensemble of regression
trees, also the way they derive from the original training setT S the training setT Sm they use to
build a particular tree. They all consider binary splits of the type[i j < t], i.e. “if i j smaller thant go
left else go right” wherei j represents thejth input (or jth attribute) of the input vectori. In what
follows the split variablest andi j are referred to as the cut-point and the cut-direction (or attribute)
of the split (or test)[i j < t].

We now describe the tree-based regression algorithms used in this paper.

4.2.1 KD-TREE

In this method the regression tree is built from the training set by choosing thecut-point at the local
median of the cut-direction so that the tree partitions the local training set into twosubsets of the
same cardinality. The cut-directions alternate from one node to the other: if the direction of cut is
i j for the parent node, it is equal toi j+1 for the two children nodes ifj +1 < n with n the number
of possible cut-directions andi1 otherwise. A node is a leaf (i.e., is not partitioned) if the training
sample corresponding to this node contains less thannmin tuples. In this method the tree structure is
independent of the output values of the training sample, i.e. it does not change from one iteration to
another of the fittedQ iteration algorithm.

4.2.2 PRUNED CART TREE

The classical CART algorithm is used to grow completely the tree from the training set (Breiman
et al., 1984). This algorithm selects at a node the test (i.e., the cut-direction and cut-point) that
maximizes the average variance reduction of the output variable (see Eqn (25) in Appendix A). The
tree is pruned according to the cost-complexity pruning algorithm with error estimate by ten-fold
cross validation. Because of the score maximization and the post-pruning, the tree structure depends
on the output values of the training sample; hence, it may change from one iteration to another.

4.2.3 TREE BAGGING

We refer here to the standard algorithm published by Breiman (1996). An ensemble ofM trees is
built. Each tree of the ensemble is grown from a training set by first creatinga bootstrap replica
(random sampling with replacement of the same number of elements) of the training set and then
building an unpruned CART tree using that replica. Compared to the PrunedCART Tree algorithm,
Tree Bagging often improves dramatically the accuracy of the model produced by reducing its
variance but increases the computing times significantly. Note that during the tree building we also
stop splitting a node if the number of training samples in this node is less thannmin. This algorithm
has therefore two parameters, the numberM of trees to build and the value ofnmin.
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One single

regression tree is built

An ensemble of

regression trees is built

Testsdo dependon the output

values (o) of the(i,o) ∈ T S
CART

Tree Bagging

Extra-Trees

Testsdo not dependon the output

values (o) of the(i,o) ∈ T S
Kd-Tree Totally Randomized Trees

Table 1: Main characteristics of the different tree-based algorithms usedin the experiments.

4.2.4 EXTRA-TREES

Besides Tree Bagging, several other methods to build tree ensembles havebeen proposed that often
improve the accuracy with respect to Tree Bagging (e.g. Random Forests, Breiman, 2001). In
this paper, we evaluate our recently developed algorithm that we call “Extra-Trees”, for extremely
randomized trees (Geurts et al., 2004). Like Tree Bagging, this algorithm works by building several
(M) trees. However, contrary to Tree Bagging which uses the standard CART algorithm to derive
the trees from a bootstrap sample, in the case of Extra-Trees, each tree isbuilt from the complete
original training set. To determine a test at a node, this algorithm selectsK cut-directions at random
and for each cut-direction, a cut-point at random. It then computes a score for each of theK tests and
chooses among theseK tests the one that maximizes the score. Again, the algorithm stops splitting
a node when the number of elements in this node is less than a parameternmin. Three parameters are
associated to this algorithm: the numberM of trees to build, the numberK of candidate tests at each
node and the minimal leaf sizenmin. The detailed tree building procedure is given in Appendix A.

4.2.5 TOTALLY RANDOMIZED TREES

Totally Randomized Trees corresponds to the case of Extra-Trees whenthe parameterK is chosen
equal to one. Indeed, in this case the tests at the different nodes are chosen totally randomly and
independently from the output values of the elements of the training set. Actually, this algorithm is
equivalent to an algorithm that would build the tree structure totally at randomwithout even looking
at the training set and then use the training set only to remove the tests that leadto empty branches
and decide when to stop the development of a branch (Geurts et al., 2004). This algorithm can
therefore be degenerated in the context of the usage that we make of it in this paper by freezing the
tree structure after the first iteration, just as the Kd-Trees.

4.2.6 DISCUSSION

Table 1 classifies the different tree-based algorithms considered according to two criteria: whether
they build one single or an ensemble of regression trees and whether the tests computed in the trees
depend on the output values of the elements of the training set. We will see in theexperiments that
these two criteria often characterize the results obtained.

Concerning the value of parameterM (the number of trees to be built) we will use the same
value for Tree Bagging, Extra-Trees and Totally Randomized Trees andset it equal to 50 (except in
Section 5.3.6 where we will assess its influence on the solution computed).
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For the Extra-Trees, experiments in Geurts et al. (2004) have shown that a good default value for
the parameterK in regression is actually the dimension of the input space. In all our experiments,
K will be set to this default value.

While pruning generally improves significantly the accuracy of single regression trees, in the
context of ensemble methods it is commonly admitted that unpruned trees are better. This is sug-
gested from the bias/variance tradeoff, more specifically because pruning reduces variance but in-
creases bias and since ensemble methods reduce very much the variance without increasing too
much bias, there is often no need for pruning trees in the context of ensemble methods. However, in
high-noise conditions, pruning may be useful even with ensemble methods. Therefore, we will use
a cross-validation approach to automatically determine the value ofnmin in the context of ensemble
methods. In this case, pruning is carried out by selecting at random two thirds of the elements of
T S , using the particular ensemble method with this smaller training set and determining for which
value ofnmin the ensemble minimizes the square error over the last third of the elements. Then,
the ensemble method is run again on the whole training set using this value ofnmin to produce the
final model. In our experiments, the resulting algorithm will have the same name as the original
ensemble method preceded by the termPruned(e.g. Pruned Tree Bagging). The same approach
will also be used to prune Kd-Trees.

4.3 Convergence of the FittedQ Iteration Algorithm

Since the models produced by the tree-based methods may be described by an expression of the type
(17) with the kernelkT S (i l , i) satisfying the normalizing condition (18), convergence of the fittedQ
iteration algorithm can be ensured if the kernelkT S (i l , i) remains the same from one iteration to the
other. This latter condition is satisfied when the tree structures remain unchanged throughout the
different iterations.

For the Kd-Tree algorithm which selects tests independently of the output values of the elements
of the training set, it can be readily seen that it will produce at each iterationthe same tree structure
if the minimum number of elements to split a leaf (nmin) is kept constant. This also implies that the
tree structure has just to be built at the first iteration and that in the subsequent iterations, only the
values of the terminal leaves have to be refreshed. Refreshment may be done by propagating all the
elements of the new training set in the tree structure and associating to a terminalleaf the average
output value of the elements having reached this leaf.

For the totally randomized trees, the tests do not depend either on the output values of the
elements of the training set but the algorithm being non-deterministic, it will not produce the same
tree structures at each call even if the training set and the minimum number of elements (nmin) to
split a leaf are kept constant. However, since the tree structures are independent from the output, it
is not necessary to refresh them from one iteration to the other. Hence, inour experiments, we will
build the set of totally randomized trees only at the first iteration and then only refresh predictions
at terminal nodes at subsequent iterations. The tree structures are therefore kept constant from one
iteration to the other and this will ensure convergence.

4.4 No Divergence to Infinity

We say that the sequence of functionsQ̂N diverges to infinity if lim
N→∞
‖Q̂N‖∞→ ∞.

With the tree-based methods considered in this paper, such divergence toinfinity is impossible
since we can guarantee that, even for the tree-based methods for which the tests chosen in the tree
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depend on the output values (o) of the input-output pairs ((i,o)), the sequence of̂QN-functions
remains bounded. Indeed, the prediction value of a leaf being the average value of the outputs of the
elements of the training set that correspond to this leaf, we have‖Q̂N(x,u)‖∞≤Br +γ‖Q̂N−1(x,u)‖∞
whereBr is the bound of the rewards. And, sincêQ0(x,u) = 0 everywhere, we therefore have
‖Q̂N(x,u)‖∞ ≤ Br

1−γ ∀N ∈ N.
However, we have observed in our experiments that for some other supervised learning meth-

ods, divergence to infinity problems were plaguing the fittedQ iteration algorithm (Section 5.3.3);
such problems have already been highlighted in the context of approximate dynamic programming
(Boyan and Moore, 1995).

4.5 Computation ofmaxu∈UQ̂N(x,u) when u Continuous

In the case of a single regression tree,Q̂N(x,u) is a piecewise-constant function of its argumentu,
when fixing the state valuex. Thus, to determine max

u∈U
Q̂N(x,u), it is sufficient to compute the value

of Q̂N(x,u) for a finite number of values ofU , one in each hyperrectangle delimited by the values
of discretization thresholds found in the tree.

The same argument can be extended to ensembles of regression trees. However, in this case, the
number of discretization thresholds might be much higher and this resolution scheme might become
computationally inefficient.

5. Experiments

Before discussing our simulation results, we first give an overview of our test problems, of the
type of experiments carried out and of the different metrics used to assess the performances of the
algorithms.

5.1 Overview

We consider five different problems, and for each of them we use the fitted Q iteration algorithm
with the tree-based methods described in Section 4 and assess their ability to extract from different
sets of four-tuples information about the optimal control policy.

5.1.1 TEST PROBLEMS

The first problem, referred to as the “Left or Right” control problem, has a one-dimensional state
space and a stochastic dynamics. Performances of tree-based methods are illustrated and compared
with grid-based methods.

Next we consider the “Car on the Hill” test problem. Here we compare our algorithms in
depth with other methods (k-nearest-neighbors, grid-based methods, a gradient version of the on-
line Q-learning algorithm) in terms of accuracy and convergence properties. We also discuss CPU
considerations, analyze the influence of the number of trees built on the solution, and the effect of
irrelevant state variables and continuous action spaces.

The third problem is the “Acrobot Swing Up” control problem. It is a four-dimensional and de-
terministic control problem. While in the first two problems the four-tuples are generated randomly
prior to learning, here we consider the case where the estimate ofµ∗ deduced from the available
four-tuples is used to generate new four-tuples.
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The two last problems (“Bicycle Balancing” and “Bicycle Balancing and Riding”) are treated
together since they differ only in their reward function. They have a stochastic dynamics, a seven-
dimensional state space and a two-dimensional control space. Here we look at the capability of our
method to handle rather challenging problems.

5.1.2 METRICS TOASSESSPERFORMANCES OF THEALGORITHMS

In our experiments, we will use the fittedQ iteration algorithm with several types of supervised
learning methods as well as other algorithms likeQ-learning or Watkin’sQ(λ) with various ap-
proximation architectures. To rank performances of the various algorithms, we need to define some
metrics to measure the quality of the solution they produce. Hereafter we review the different met-
rics considered in this paper.
Expected return of a policy. To measure the quality of a solution given by a RL algorithm, we can
use the stationary policy it produces, compute the expected return of this stationary policy and say
that the higher this expected return is, the better the RL algorithm performs. Rather than computing
the expected return for one single initial state, we define in our examples a set of initial states named
Xi , chosen independently from the set of four-tuplesF , and compute the average expected return of
the stationary policy over this set of initial states. This metric is referred to as the scoreof a policy
and is the most frequently used one in the examples. Ifµ is the policy, its score is defined by:

score ofµ=
∑x∈Xi Jµ

∞(x)
#Xi (21)

To evaluate this expression, we estimate, for every initial statex∈ Xi , Jµ
∞(x) by Monte-Carlo sim-

ulations. If the control problem is deterministic, one simulation is enough to estimateJµ
∞(x). If the

control problem is stochastic, several simulations are carried out. For the“Left or Right” control
problem, 100,000 simulations are considered. For the “Bicycle Balancing” and “Bicycle Balancing
and Riding” problems, whose dynamics is less stochastic and Monte-Carlo simulations computa-
tionally more demanding, 10 simulations are done. For the sake of compactness, thescore of µis
represented in the figures byJµ

∞.
Fulfillment of a specific task. The score of a policy assesses the quality of a policy through its
expected return. In the “Bicycle Balancing” control problem, we also assess the quality of a policy
through its ability to avoid crashing the bicycle during a certain period of time. Similarly, for the
“Bicycle Balancing and Riding” control problem, we consider a criterion ofthe type “How often
does the policy manage to drive the bicycle, within a certain period of time, to a goal ?”.
Bellman residual. While the two previous metrics were relying on the policy produced by the
RL algorithm, the metric described here relies on the approximateQ-function computed by the
RL algorithm. For a given function̂Q and a given state-action pair(x,u), the Bellman residual is
defined to be the difference between the two sides of the Bellman equation (Baird, 1995), theQ-
function being the only function leading to a zero Bellman residual for everystate-action pair. In
our simulation, to estimate the quality of a functionQ̂, we exploit the Bellman residual concept by
associating toQ̂ the mean square of the Bellman residual over the setXi ×U , value that will be
referred to as theBellman residual ofQ̂. We have

Bellman residual ofQ̂ =
∑(x,u)∈Xi×U(Q̂(x,u)− (HQ̂)(x,u))2

#(Xi×U)
. (22)
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Figure 2: The “Left or Right” control problem.

This metric is only used in the “Left or Right” control problem to compare the quality of the solu-
tions obtained. A metric relying on the score is not discriminant enough for thiscontrol problem,
since all the algorithms considered can easily learn a good approximation of the optimal stationary
policy. Furthermore, for this control problem, the term(HQ̂)(x,u) in the right side of Eqn (22) is
estimated by drawing independently and for each(x,u) ∈ Xi×U , 100,000 values ofw according to
Pw(.|x,u) (see Eqn (7)).
In the figures, the Bellman residual ofQ̂ is represented byd(Q̂,HQ̂).

5.2 The “Left or Right” Control Problem

We consider here the “Left or Right” optimal control problem whose precise definition is given in
Appendix C.1.

The main characteristics of the control problem are represented on Figure 2. A point travels in
the interval[0,10]. Two control actions are possible. One tends to drive the point to the right(u= 2)
while the other to the left (u =−2). As long as the point stays inside the interval, only zero rewards
are observed. When the point leaves the interval, a terminal state12 is reached. If the point goes out
on the right side then a reward of 100 is obtained while it is twice less if it goes out on the left.

Even if going out on the right may finally lead to a better reward,µ∗ is not necessarily equal to 2
everywhere since the importance of the reward signal obtained aftert steps is weighted by a factor
γ(t−1) = 0.75(t−1).

5.2.1 FOUR-TUPLESGENERATION

To collect the four-tuples we observe 300 episodes of the system. Each episode starts from an initial
state chosen at random in[0,10] and finishes when a terminal state is reached. During the episodes,
the actionut selected at timet is chosen at random with equal probability among its two possible
valuesu =−2 andu = 2. The resulting setF is composed of 2010 four-tuples.

5.2.2 SOME BASIC RESULTS

To illustrate the fittedQ iteration algorithm behavior we first use “Pruned CART Tree” as supervised
learning method. Elements of the sequence of functionsQ̂N obtained are represented on Figure 3.
While the first functions of the sequence differ a lot, they gain in similarities when N increases
which is confirmed by computing the distance onF between functionŝQN andQ̂N−1 (Figure 4a).
We observe that the distance rapidly decreases but, due to the fact that the tree structure is refreshed
at each iteration, never vanishes.

12. A terminal state can be seen as a regular state in which the system is stuckand for which all the future rewards
obtained in the aftermath are zero. Note that the value ofQN(terminal state,u) is equal to 0∀N ∈ N and∀u∈U .
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Figure 3: Representation of̂QN for different values ofN. The setF is composed of 2010 elements and the
supervised learning method used is Pruned CART Tree.
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Figure 4: Figure (a) represents the distance betweenQ̂N andQ̂N−1. Figure (b) provides the average return
obtained by the policy ˆµ∗N while starting from an element ofXi . Figure (c) represents the Bellman
residual ofQ̂N.
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From the functionQ̂N we can determine the policy ˆµN. Statesx for whichQ̂N(x,2)≥ Q̂N(x,−2)
correspond to a value of ˆµN(x) = 2 while µ̂N(x) = −2 if Q̂N(x,2) < Q̂N(x,−2). For example, ˆµ∗10
consists of choosingu = −2 on the interval[0,2.7[ andu = 2 on [2.7,10]. To associate a score to
each policyµ̂∗N, we define a set of statesXi = {0,1,2, · · · ,10}, evaluateJµ̂N

∞ (x) for each element of
this set and average the values obtained. The evolution of the score of ˆµ∗N with N is drawn on Figure
4b. We observe that the score first increases rapidly to become finally almost constant for values of
N greater than 5.

In order to assess the quality of the functionsQ̂N computed, we have computed the Bellman
residual of thesêQN-functions. We observe in Figure 4c that even if the Bellman residual tendsto
decrease whenN increases, it does not vanish even for large values ofN. By observing Table 2, one
can however see that by using 6251 four-tuples (1000 episodes) rather than 2010 (300 episodes),
the Bellman residual further decreases.

5.2.3 INFLUENCE OF THETREE-BASED METHOD

When dealing with such a system for which the dynamics is highly stochastic, pruning is necessary,
even for tree-based methods producing an ensemble of regression trees. Figure 5 thus represents the
Q̂N-functions for different values ofN with the pruned version of the Extra-Trees. By comparing
this figure with Figure 3, we observe that the averaging of several treesproduces smoother functions
than single regression trees.

By way of illustration, we have also used the Extra-Trees algorithm with fully developed trees
(i.e.,nmin = 2) and computed thêQ10-function with the fittedQ iteration using the same set of four-
tuples as in the previous section. This function is represented in Figure 6. As fully grown trees are
able to match perfectly the output in the training set, they also catch the noise andthis explains the
chaotic nature of the resulting approximation.

Table 2 gathers the Bellman residuals ofQ̂10 obtained when using different tree-based methods
and this for different sets of four-tuples. Tree-based ensemble methods produce smaller Bellman
residuals and among these methods, Extra-Trees behaves the best. We can also observe that for any
of the tree-based methods used, the Bellman residual decreases with the size of F .

Note that here, the policies produced by the different tree-based algorithms offer quite similar
scores. For example, the score is 64.30 when Pruned CART Tree is applied to the 2010 four-tuple
set and it does not differ from more than one percent with any of the other methods. We will see
that the main reason behind this, is the simplicity of the optimal control problem considered and the
small dimensionality of the state space.

5.2.4 FITTED Q ITERATION AND BASIS FUNCTION METHODS

We now assess performances of the fittedQ iteration algorithm when combined with basis function
methods. Basis function methods suppose a relation of the type

o =
nbBasis

∑
j=1

c jφ j(i) (23)

between the input and the output wherec j ∈ R and where the basis functionsφ j(i) are defined on
the input space and take their values onR. These basis functions form the approximation architec-
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Figure 5: Representation of̂QN for different values ofN. The setF is composed of 2010 elements and the
supervised learning method used is the Pruned Extra-Trees.
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Figure 6: Representation ofQ̂10 when Extra-
Trees is used with no pruning

Tree-based
method

#F

720 2010 6251
Pruned CART Tree 2.62 1.96 1.29

Pruned Kd-Tree 1.94 1.31 0.76
Pruned Tree Bagging 1.61 0.79 0.67
Pruned Extra-Trees 1.29 0.60 0.49

Pruned Tot. Rand. Trees1.55 0.72 0.59

Table 2: Bellman residual ofQ̂10. Three different
sets of four-tuples are used. These sets
have been generated by considering 100,
300 and 1000 episodes and are composed
respectively of 720, 2010 and 6251 four-
tuples.

ture. The training set is used to determine the values of the differentc j by solving the following
minimization problem:13

13. This minimization problem can be solved by building the(#T S× nbBasis) Y matrix with Yl j = φ j (i l ). If YTY
is invertible, then the minimization problem has a unique solutionc = (c1,c2, · · · ,cnbBasis) given by the following
expression:c = (YTY)−1YTb with b∈ R

#T S such thatbl = ol . In order to overcome the possible problem of non-
invertibility of YTY that occurs when solution of (24) is not unique, we have added toYTY the strictly definite positive
matrixδI , whereδ is a small positive constant, before inverting it. The value ofc used in our experiments as solution
of (24) is therefore equal to(YTY +δI)−1YTb whereδ has been chosen equal to 0.001.
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Figure 7: FittedQ iteration with basis function methods. Two different typesof approximation architectures
are considered: piecewise-constant and piecewise-lineargrids. 300 episodes are used to generate
F .

argmin
(c1,c2,··· ,cnbBasis)∈RnbBasis

#T S

∑
l=1

(
nbBasis

∑
j=1

c jφ j(i
l )−ol )2

. (24)

We consider two different sets of basis functionsφ j . The first set is defined by partitioning the
state space into a grid and by considering one basis function for each gridcell, equal to the indicator
function of this cell. This leads to piecewise constantQ̂-functions. The other type is defined by
partitioning the state space into a grid, triangulating every element of the grid and considering that
Q̂(x,u) = ∑v∈Vertices(x)W(x,v)Q̂(v,u) whereVertices(x) is the set of vertices of the hypertrianglex
belongs to andW(x,v) is the barycentric coordinate ofx that corresponds tov. This leads to a set of
overlapping piecewise linear basis functions, and yields a piecewise linearand continuous model.
In this paper, these approximation architectures are respectively referred to aspiecewise-constant
grid andpiecewise-linear grid. The reader can refer to Ernst (2003) for more information.

To assess performances of fittedQ iteration combined with piecewise-constant and piecewise-
linear grids as approximation architectures, we have used several grid resolutions to partition the
interval [0,10] (a 5 grid, a 6 grid,· · · , a 50 grid). For each grid, we have used fittedQ iteration
with each of the two types of approximation architectures and computedQ̂10. The Bellman resid-
uals obtained by the different̂Q10-functions are represented on Figure 7a. We can see that basis
function methods with piecewise-constant grids perform systematically worse than Extra-Trees, the
tree-based method that produces the lowest Bellman residual. This type of approximation archi-
tecture leads to the lowest Bellman residual for a 28 grid and the corresponding Q̂10-function is
sketched in Figure 7b. Basis function methods with piecewise-linear grids reach their lowest Bell-
man residual for a 7 grid, Bellman residual that is smaller than the one obtainedby Extra-Trees.
The corresponding smootherQ̂10-function is drawn on Figure 7b.

Even if piecewise-linear grids were able to produce on this example better results than the tree-
based methods, it should however be noted that it has been achieved by tuning the grid resolution
and that this resolution strongly influences the quality of the solution. We will see below that, as the
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state space dimensionality increases, piecewise-constant or piecewise-linear grids do not compete
anymore with tree-based methods. Furthermore, we will also observe that piecewise-linear grids
may lead to divergence to infinity of the fittedQ iteration algorithm (see Section 5.3.3).

5.3 The “Car on the Hill” Control Problem

We consider here the “Car on the Hill” optimal control problem whose precise definition is given in
Appendix C.2.

A car modeled by a point mass is traveling on a hill (the shape of which is givenby the func-
tion Hill (p) of Figure 8b). The actionu acts directly on the acceleration of the car (Eqn (31),
Appendix C) and can only assume two extreme values (full acceleration (u = 4) or full deceleration
(u =−4)). The control problem objective is roughly to bring the car in a minimum time to the top
of the hill (p = 1 in Figure 8b) while preventing the positionp of the car to become smaller than
−1 and its speeds to go outside the interval[−3,3]. This problem has a (continuous) state space of
dimension two (the positionp and the speeds of the car) represented on Figure 8a.

Note that by exploiting the particular structure of the system dynamics and the reward function
of this optimal control problem, it is possible to determine with a reasonable amount of computation
the exact value ofJµ∗

∞ (Q) for any statex (state-action pair(x,u)).14
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(a)X \{terminal state} (b)
Representation ofHill (p) (shape of the hill) and

of the different forces applied to the car.

Figure 8: The “Car on the Hill” control problem.

5.3.1 SOME BASIC RESULTS

To generate the four-tuples we consider episodes starting from the same initial state corresponding
to the car stopped at the bottom of the hill (i.e.,(p,s) = (−0.5,0) ) and stopping when the car leaves
the region represented on Figure 8a (i.e., when a terminal state is reached). In each episode, the
actionut at each time step is chosen with equal probability among its two possible valuesu = −4
andu= 4. We consider 1000 episodes. The corresponding setF is composed of 58090 four-tuples.
Note that during these 1000 episodes the rewardr(xt ,ut ,wt) = 1 (corresponding to an arrival of the
car at the top of the hill with a speed comprised in[−3,3]) has been observed only 18 times.

14. To computeJµ∗
∞ (x), we determine by successive trials the smallest value ofk for which one of the two following

conditions is satisfied (i) at least one sequence of actions of lengthk leads to a reward equal to 1 whenx0 = x (ii) all
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Figure 9: (a)-(e): Representation of ˆµ∗N for different values ofN. (f): Trajectory whenx0 = (−0.5,0) and
when the policy ˆµ∗50 is used to control the system.
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(c) d(Q̂N,F) =
∑Xi×U (Q̂N(x,u)−F(x,u))2

#(Xi×U)

F = QorHQ̂N

Figure 10: Figure (a) represents the distance betweenQ̂N andQ̂N−1. Figure (b) provides the average return
obtained by the policy ˆµ∗N while starting from an element ofXi . Figure (c) represents the distance
betweenQ̂N andQ as well as the Bellman residual ofQ̂N as a function ofN (distance between
Q̂N andHQ̂N).

We first use Tree Bagging as the supervised learning method. As the actionspace is binary, we
again model the functionŝQN(x,−4) andQ̂N(x,4) by two ensembles of 50 trees each, andnmin = 2.
The policy µ̂∗1 so obtained is represented on Figure 9a. Black bullets represent states for which
Q̂1(x,−4) > Q̂1(x,4), white bullets states for whicĥQ1(x,−4) < Q̂1(x,4) and grey bullets states for
which Q̂1(x,−4) = Q̂1(x,4). Successive policies ˆµ∗N for increasingN are given on Figures 9b-9e.

On Figure 9f, we have represented the trajectory obtained when starting from (s, p) = (−0.5,0)
and using the policy ˆµ∗50 to control the system. Since, for this particular state the computation ofJµ∗

∞

gives the same value asJ
µ̂∗50∞ , the trajectory drawn is actually an optimal one.

Figure 10a shows the evolution of distance betweenQ̂N andQ̂N−1 with N. Notice that while a
monotonic decrease of the distance was observed with the “Left or Right” control problem (Figure
4a), it is not the case anymore here. The distance first decreases andthen fromN = 5 suddenly
increases to reach a maximum forN = 19 and to finally redecrease to an almost zero value. Actually,
this apparently strange behavior is due to the way the distance is evaluated and to the nature of
the control problem. Indeed, we have chosen to use in the distance computation the state-action
pairs (xl

t ,u
l
t) l = 1, · · · ,#F from the set of four-tuples. Since most of the statesxl

t are located
around the initial state(p,s) = (−0.5,0) (see Figure 11), the distance is mostly determined by
variations between̂QN and Q̂N−1 in this latter region. This remark combined with the fact that
the algorithm needs a certain number of iterations before obtaining values ofQ̂N around(p,s) =
(−0.5,0) different from zero explains this sudden increase of the distance.15

To compute policy scores, we consider the setXi : Xi = {(p,s) ∈ X \ {xt}|∃i, j ∈ Z|(p,s) =

(0.125∗ i,0.375∗ j)} and evaluate the average value ofJ
µ̂∗N∞ (x) over this set. The evolution of the

the sequences of actions of lengthk lead to a reward equal to−1 whenx0 = x. Let kmin be this smallest value ofk.
ThenJµ∗

∞ (x) is equal toγkmin−1 if condition (i) is satisfied whenk = kmin and−γkmin−1 otherwise.
15. The reason for̂QN being equal to zero around(p,s) = (−0.5,0) for small values ofN is that when the system starts

from (−0.5,0) several steps are needed to observe non zero rewards whatever thepolicy used.
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Figure 11: Estimation of thext distribution while using episodes starting from(−0.5,0) and choosing ac-
tions at random.
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Figure 12: Representation of theQ-function and ofQ̂50. Q̂50 is computed by using fittedQ iteration together
with Tree Bagging.

score for increasing values ofN is represented in Figure 10b. We see that the score rapidly increases
to finally oscillate slightly around a value close to 0.295. The score ofµ∗ being equal to 0.360, we
see that the policies ˆµ∗N are suboptimal. To get an idea of how different is theQ̂50-function computed
by fittedQ iteration from the trueQ-function, we have represented both functions on Figure 12. As
we may observe, some significant differences exist between them, especially in areas were very few
information has been generated, like the state space area aroundx = (−1,3).
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Figure 13: Influence of the supervised learning method on the solution.For each supervised learning
methodQ̂N(x,−4) and Q̂N(x,4) are modeled separately. For Tree Bagging, Extra-Trees, and
Totally Randomized Trees, the trees are developed completely (nmin = 2). The distance used in
the nearest neighbors computation is the Euclidean distance.

5.3.2 INFLUENCE OF THETREE-BASED METHOD AND COMPARISON WITH kNN.

Figure 13a sketches the scores obtained by the policies ˆµ∗N when using different tree-based methods
which use the output values (o) of the input-output pair ((i,o)) of the training set to compute the
tests. It is clear that Tree Bagging and Extra-Trees are significantly superior to Pruned CART
Tree. Figure 13b compares the performances of tree-based methods for which the tests are chosen
independently of the output values. We observe that even when using thevalue ofnmin leading to
the best score, Kd-Tree does not perform better than Totally Randomized Trees. On Figure 13c, we
have drawn the scores obtained with ak-nearest-neighbors (kNN) technique.

Notice that the score curves corresponding to thek-nearest-neighbors, Totally Randomized
Trees, and Kd-Tree methods stabilize indeed after a certain number of iterations.

To compare more systematically the performances of all these supervised learning algorithms,
we have computed for each one of them and for several sets of four-tuples the score of ˆµ∗50. Results
are gathered in Table 3. A first remark suggested by this table and which holds for all the supervised
learning methods is that the more episodes are used to generate the four-tuples, the larger the score
of the induced policy. Compared to the other methods, performances of Tree Bagging and Extra-
Trees are excellent on the two largest sets. Extra-Trees still gives good results on the smallest set but
this is not true for Tree Bagging. The strong deterioration of Tree Bagging performances is mainly
due to the fact that when dealing with this set of four-tuples, information about the optimal solution
is really scarce (only two four-tuples correspond to a reward of 1) and, since a training instance
has 67% chance of being present in a bootstrap sample, Tree Bagging often discards some critical
information. On the other hand, Extra-Trees and Totally Randomized Treeswhich use the whole
training set to build each tree do not suffer from this problem. Hence, these two methods behave
particularly well compared to Tree Bagging on the smallest set.

One should also observe from Table 3 that even when used with the value of k that produces the
largest score,kNN is far from being able to reach for example the performances of the Extra-Trees.
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Supervised learning
method

Nb of episodes used
to generateF

1000 300 100
Kd-Tree (Bestnmin) 0.17 0.16 -0.06
Pruned CART Tree 0.23 0.13 -0.26

Tree Bagging 0.30 0.24 -0.09
Extra-Trees 0.29 0.25 0.12

Totally Randomized Trees 0.18 0.14 0.11
kNN (Bestk) 0.23 0.18 0.02

Table 3:Score ofµ̂∗50 for different set of four-tuples and supervised learning methods.

5.3.3 FITTED Q ITERATION AND BASIS FUNCTION METHODS

In Section 5.2.4, when dealing with the “Left or Right” control problem, basisfunction methods
with two types of approximation architectures, piecewise-constant or piecewise-linear grids, have
been used in combination with the fittedQ iteration algorithm.

In this section, the same types of approximation architectures are also considered and, for each
type of approximation architecture, the policy ˆµ∗50 has been computed for different grid resolutions
(a 10×10 grid, a 11×11 grid, · · · , a 50×50 grid). The score obtained by each policy is repre-
sented on Figure 14a. The horizontal line shows the score previously obtained on the same sample
of four-tuples by Tree Bagging. As we may see, whatever the grid considered, both approximation
architectures lead to worse results than Tree Bagging, the best performing tree-based method. The
highest score is obtained by a 18×18 grid for the piecewise-constant approximation architecture
and by a 14×14 grid for the piecewise-linear approximation architecture. These two highest scores
are respectively 0.21 and 0.25, while Tree Bagging was producing a score of 0.30. The two cor-
responding policies are sketched in Figures 14b and 14c. Black polygons represent areas where
Q̂(x,−4) > Q̂(x,4), white polygons areas wherêQ(x,−4) < Q̂(x,4) and grey polygons areas where
Q̂(x,−4) = Q̂(x,4).

When looking at the score curve corresponding to piecewise-linear grids as approximation ar-
chitectures, one may be surprised to note its harsh aspect. For some grids,this type of approximation
architecture leads to some good results while by varying slightly the grid size, the score may strongly
deteriorate. This strong deterioration of the score is due to fact that for some grid sizes, the fittedQ
iteration actually diverges to infinity while it is not the case for other grid sizes. Divergence to in-
finity of the algorithm is illustrated on Figures 15a and 15c where we have drawn for a 12×12 grid
the distance between̂QN andQ̂N−1, Q̂N andQ, andQ̂N andHQ̂N. Remark that a logarithmic scale
has been used for the y-axis. When using Tree Bagging in the inner loop of the fittedQ iteration,
similar graphics have been drawn (Figure 10) and the reader may refer tothem for comparison.

5.3.4 COMPARISON WITH Q-LEARNING

In this section we use a gradient descent version of the standardQ-learning algorithm to compute
thec j parameters of the approximation architectures of Section 5.3.3. The degreeof correctionα
used inside this algorithm is chosen equal to 0.1 and the estimate of theQ-function is initialized
to 0 everywhere. This latter being refreshed by this algorithm on a four-tuple by four-tuple basis,
we have chosen to use each element ofF only once to refresh the estimate of theQ-function. The
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Figure 14: FittedQ iteration with basis function methods. Two different typesof approximation architecture
are considered: piecewise-constant and piecewise-lineargrids.F is composed of the four-tuples
gathered during 1000 episodes.
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Figure 16: Q-learning with piecewise-constant and piecewise-linear grids as approximation architectures.
Each element ofF is used once to refresh the estimate of theQ-function. The setF is composed
of the four-tuples gathered during 1000 episodes.

main motivation for this is to compare the performances of the fittedQ iteration algorithm with an
algorithm that does not require to store the four-tuples.16

The scores obtained byQ-learning for the two types of approximation architectures and for
different grid sizes are reported on Figure 16a. Figure 16b (16c) represents the policies that have
led, by screening different grid sizes, to the highest score when piecewise-constant grids (piecewise-
linear grids) are the approximation architectures considered. By comparing Figure 16a with Figure
14a, it is obvious that fittedQ iteration exploits more effectively the set of four-tuples thanQ-
learning. In particular, the highest score is 0.21 for fittedQ iteration while it is only of 0.04 for Q-
learning. If we compare the score curves corresponding to piecewise-linear grids as approximation
architectures, we observe also that the highest score produced by fitted Q iteration (over the different
grids), is higher than the highest score produced byQ-learning. However, when fittedQ iteration is
plagued with some divergence to infinity problems, as illustrated on Figure 15,it may lead to worse
results thanQ-learning.

Observe that even when considering 10,000 episodes withQ-learning, we still obtain worse
scores than the one produced by Tree Bagging with 1000 episodes. Indeed, the highest score pro-

16. Performances of the gradient descent version of theQ-learningalgorithm could be improved by processing several
times each four-tuple to refresh the estimate of theQ-function, for example by using the experience replay technique
of Lin (1993). This however requires to store the four-tuples.

It should also be noted that if a piecewise-constant grid is the approximation architecture considered, if each
element ofF is used an infinite number of times to refresh the estimate of theQ-function and if the sequence of
αs satisfies the stochastic approximation condition (i.e.,∑∞

k=1 αk→ ∞ and∑∞
k=1 α2

k < ∞, αk being the value ofα
thekth times the estimate of theQ-function is refreshed), then theQ-function estimated by theQ-learning algorithm
would be the same as the one estimated by fittedQ iteration using the same piecewise-constant grid as approximation
architecture. This can be seen by noting that in such conditions, theQ-function estimated byQ-learning would be
the same as the one estimated by a model-based algorithm using the same grid(see Ernst (2003), page 131 for the
proof) which in turn can be shown to be equivalent to fittedQ iteration (see Ernst et al., 2005).
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Figure 17: Score ofµ̂∗50 when four-tuples are gathered during 1000 episodes and somevariables that do not
contain any information about the position and the speed of the car are added to the state vector.

duced byQ-learning with 10,000 episodes and over the different grid sizes, is 0.23 if piecewise-
constant grids are considered as approximation architectures and 0.27 for piecewise-linear grids,
compared to a score of 0.30 for Tree Bagging with 1000 episodes.

At this point, one may wonder whether the poor performances ofQ-learning are due to the fact
that it is used without eligibility traces. To answer this question, we have assessed the performances
of Watkin’sQ(λ) algorithm (Watkins, 1989) that combinesQ-learning with eligibility traces.17 The
degree of correctionα is chosen, as previously, equal to 0.1 and the value ofλ is set equal to
0.95. This algorithm has been combined with piecewise-constant grids and 1000 episodes have
been considered. The best score obtained over the different grids isequal to−0.05 while it was
slightly higher (0.04) forQ-learning.

5.3.5 ROBUSTNESS WITHRESPECT TOIRRELEVANT VARIABLES

In this section we compare the robustness of the tree-based regression methods andkNN with re-
spect to the addition of irrelevant variables. Indeed, in many practical applications the elementary
variables which compose the state vector are not necessarily all of the sameimportance in deter-
mining the optimal control action. Thus, some variables may be of paramount importance, while
some others may influence only weakly or even sometimes not at all the optimal control.

On Figure 17, we have drawn the evolution of the score when using four-tuples gathered during
1000 episodes and adding progressively irrelevant variables to the state-vector.18 It is clear that
not all the methods are equally robust to the introduction of irrelevant variables. In particular, we
observe that the three methods for which the approximation architecture is independent of the output
variable are not robust: thekNN presents the fastest deterioration, followed by Kd-Tree and Totally
Randomized Trees. The latter is more robust because it averages out several trees, which gives the
relevant variables a better chance to be taken into account in the model.

17. In Watkin’sQ(λ), accumulating traces are considered and eligibility traces are cut when a non-greedy action is
chosen. Remark that by not cutting the eligibility traces when a non-greedyaction is selected, we have obtained
worse results.

18. See Section C.2 for the description of the irrelevant variables dynamics.
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On the other hand, the methods which take into account the output variables intheir approxima-
tion architecture are all significantly more robust than the former ones. Among them, Tree Bagging
and Extra-Trees which are based on the averaging of several trees are almost totally immune, since
even with 10 irrelevant variables (leading to the a 12-dimensional input space) their score decrease
is almost insignificant.

This experiment shows that the regression tree based ensemble methods which adapt their kernel
to the output variable may have a strong advantage in terms of robustness over methods with a kernel
which is independent of the output, even if these latter have nicer convergence properties.

5.3.6 INFLUENCE OF THENUMBER OF REGRESSIONTREES IN AN ENSEMBLE

In this paper, we have chosen to build ensembles of regression trees composed of 50 trees (M = 50,
Section 4.2), a number of elements which, according to our simulations, is largeenough to ensure
that accuracy of the models produced could not be improved significantly by increasing it. In order
to highlight the influence ofM on the quality of the solution obtained, we have drawn on Figure
18, for the different regression tree based ensemble methods, the qualityof the solution obtained
as a function ofM. We observe that the score grows rapidly withM, especially with Extra-Trees
and Tree Bagging in which cases a value ofM = 10 would have been sufficient to obtain a good
solution.

Note that since the CPU times required to compute the solution grow linearly with the number
of trees built, computational requirements of the regression tree based ensemble methods could be
adjusted by choosing a value ofM.

302010 40

0.25

0.2

0.15

0.1

0.05

0.0

−0.1

−0.05

J
µ̂∗50∞ Tree Bagging

built (M)
Nb of trees

Totally Randomized Trees

Extra-Trees

Figure 18: Evolution of the score of ˆµ∗50 with the number of trees built.F is composed of the four-tuples
gathered during 300 episodes.

5.3.7 CAR ON THE HILL WITH CONTINUOUS ACTION SPACE

To illustrate the use of the fittedQ iteration algorithm with continuous action spaces we consider
hereU = [−4,4] rather than{−4,4}. We use one-step episodes with(x0,u0) drawn at random with
uniform probability inX×U to generate a setF of 50,000 four-tuples and use Tree Bagging with 50
trees as supervised learning method. We have approximated the maximization over the continuous
action space needed during the training sample refreshment step (see Eqn(13), Figure 1) by an
exhaustive search overu∈ {−4,−3, · · · ,3,4}. The policyµ̂∗50 thus obtained by our algorithm after
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Figure 19: Car on the Hill with continuous action space. Tree Bagging isused on one-step episodes with
(x0,u0) drawn at random inX×U are used to generate the four-tuples.

50 iterations is represented on Figure 19a, where black bullets are used torepresent statesx for
which µ̂∗50(x) is negative, white ones when ˆµ∗50(x) is positive. The size of a bullet is proportional to
the absolute value of the control signal|µ̂∗50(x)|. We see that the control policy obtained is not far
from a “bang-bang” policy.

To compare these results with those obtained in similar conditions with a discrete action space,
we have made two additional experiments, where the action space is restrictedagain to the extreme
values, i.e.u∈ {−4,4}. The two variants differ in the way theQN-functions are modeled. Namely,
in the first case one single model is learned whereu is included in the input variables whereas in the
second case one model is learned per possible value ofu, i.e. one model forQN(x,−4) and one for
QN(x,4). All experiments are carried out for an increasing number of samples anda fixed number
of iterations (N = 50) and bagged trees (M = 50). The three curves of Figure 19b show the resulting
scores. The two upper curves correspond to the score of the policy ˆµ∗50 obtained when considering a
discrete action spaceU = {−4,4}. We observe that both curves are close to each other and dominate
the “Continuous action space” scores. Obviously the discrete approachis favored because of the
“bang-bang” nature of the problem; nevertheless, the continuous actionspace approach is able to
provide results of comparable quality.19

5.3.8 COMPUTATIONAL COMPLEXITY AND CPU TIME CONSIDERATIONS

Table 4 gathers the CPU times required by the fittedQ iteration algorithm to carry out 50 iterations
(i.e., to computeQ̂50(x,u)) for different types of supervised learning methods and different sets F .
We have also given in the same table the repartition of the CPU times between the twotasks the
algorithm has to perform, namely the task which consists of building the training sets (evaluation
of Eqns (12) and (13) for alll ∈ {1,2, · · · ,#F }) and the task which consists of building the models
from the training sets. These two tasks are referred to hereafter respectively as the “Training Set

19. The bang-bang nature was also observed in Smart and Kaelbling (2000), where continuous and a discrete action
spaces are treated on the “Car on the Hill” problem, with qualitatively the sameresults.
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Building” (TSB) task and the “Model Building” (MB) task. When Kd-Tree or Totally Randomized
Trees are used, each tree structure is frozen after the first iteration and only the value of its terminal
nodes are refreshed. The supervised learning technique referredto in the table as “kNN smart” is a
smart implementation the fittedQ iteration algorithm when used withkNN in the sense that thek
nearest neighbors ofxl

t+1 are determined only once and not recomputed at each subsequent iteration
of the algorithm.

Supervised
learning

algorithm

CPU times consumed by the Models Building (MB)
and Training Sets Building (TSB) tasks

#F = 5000 #F = 10000 #F = 20000
MB TSB Total MB TSB Total MB TSB Total

Kd-Tree (nmin=4) 0.01 0.39 0.40 0.04 0.91 0.95 0.06 2.05 2.11
Pruned CART Tree16.6 0.3 16.9 42.4 0.8 43.2 95.7 1.6 97.3

Tree Bagging 97.8 54.0 151.8 219.7 142.3 362.0 474.4 333.7 808.1
Extra-Trees 24.6 55.5 80.1 51.0 145.8 196.8 105.72 337.48 443.2

Totally Rand. Trees 0.4 67.8 68.2 0.8 165.3 166.2 1.7 407.5 409.2
kNN 0.0 1032.2 1032.2 0.0 4096.2 4096.2 0.0 16537.7 16537.7

kNN smart 0.0 21.0 21.0 0.0 83.0 83.0 0.0 332.4 332.4

Table 4: CPU times (in seconds on a Pentium-IV, 2.4GHz, 1GB, Linux) required to computêQ50. For each
of the supervised learning method̂QN(x,−4) andQ̂N(x,4) have been modeled separately. 50 trees
are used with Tree Bagging, Extra-Trees and Totally Randomized Trees and the value ofk for kNN
is 2.

By analyzing the table, the following remarks apply:

• CPU times required to build the training sets are non negligible with respect to CPUtimes for
building the models (except for Pruned CART Tree which produces only one single regression
tree). In the case of Extra-Trees, Totally Randomized Trees andkNN, training set update is even
the dominant task in terms of CPU times.

• Kd-Tree is (by far) the fastest method, even faster than Pruned CART Tree which produces also
one single tree. This is due to the fact that the MB task is really inexpensive.Indeed, it just
requires building one single tree structure at the first iteration and refresh its terminal nodes in
the aftermath.

• Concerning Pruned CART Tree, it may be noticed that tree pruning by ten-fold cross validation
requires to build in total eleven trees which explains why the CPU times for building 50 trees
with Tree Bagging is about five times greater than the CPU times required for Pruned CART
Tree.

• The MB task is about four times faster with Extra-Trees than with Tree Bagging, because Extra-
Trees only computes a small number (K) of test scores, while CART searches for an optimal
threshold for each input variable. Note that the trees produced by the Extra-Trees algorithm
are slightly more complex, which explains why the TSB task is slightly more time consuming.
On the two largest training sets, Extra-Trees leads to almost 50 % less CPU timesthan Tree
Bagging.
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• The MB task for Totally Randomized Trees is much faster than the MB task for Extra-Trees,
mainly because the totally randomized tree structures are built only at the firstiteration. Note
that, when totally randomized trees are built at the first iteration, branch development is not
stopped when the elements of the local training set have the same value, because it can not
be assumed that these elements would still have the same value in subsequent iterations. This
also implies that totally randomized trees are more complex than trees built by Extra-Trees and
explains why the TSB task with Totally Randomized Trees is more time consuming.

• Full kNN is the slowest method. However, its smart implementation is almost 50 times (the
number of iterations realized by the algorithm) faster than the naive one. In the present case, it is
even faster than the methods based on regression trees ensembles. However, as its computational
complexity (in both implementations) is quadratic with respect to the size of the training set
while it is only slightly super-linear for tree-based methods, its advantage quickly vanishes when
the training set size increases.

5.4 The “Acrobot Swing Up” Control Problem

M1g

u

M2g

L1

θ2

L2

θ1

Figure 20: Representation of the Acrobot.

We consider here the “Acrobot Swing Up” control problem whose precise definition is given in
Appendix C.3.

The Acrobot is a two-link underactuated robot, depicted in Figure 20. Thesecond joint applies
a torque (represented byu), while the first joint does not. The system has four continuous state
variables: two joint positions (θ1 andθ2) and two joint velocities (̇θ1 andθ̇2). This system has been
extensively studied by control engineers (e.g. Spong, 1994) as well as machine learning researchers
(e.g. Yoshimoto et al., 1999).

We have stated this control problem so that the optimal stationary policy bringsthe Acrobot
quickly into a specified neighborhood of its unstable inverted position, and ideally as close as pos-
sible to this latter position. Thus, the reward signal is equal to zero except when this neighborhood
is reached, in which case it is positive (see Eqn (44) in Appendix C.3). The torqueu can only take
two values:−5 and 5.
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5.4.1 FOUR-TUPLESGENERATION

To generate the four-tuples we have considered 2000 episodes startingfrom an initial state chosen at
random in{(θ1,θ2, θ̇1, θ̇2)∈R

4| θ1∈ [−π+1,π−1],θ2 = θ̇1 = θ̇2 = 0} and finishing whent = 100
or earlier if the terminal state is reached before.20

Two types of strategies are used here to control the system, leading to two different sets of four-
tuples. The first one is the same as in the previous examples: at each instantthe system is controlled
by using a policy that selects actions fully at random. The second strategy however interleaves the
sequence of four-tuples generation with the computation of an approximateQ-function from the
four-tuples already generated and uses a policy that exploits thisQ̂-function to control the system
while generating additional four-tuples. More precisely, it generates thefour-tuples according to the
following procedure:21

• Initialize Q̂ to zero everywhere andF to the empty set;

• Repeat 20 times:

– use anε-greedy policy fromQ̂ to generate 100 episodes and add the resulting four-tuples
to F ;

– use the fittedQ iteration algorithm to build a new approximation̂QN from F and setQ̂
to Q̂N.

whereε = 0.1 and where the fittedQ iteration algorithm is combined with the Extra-Trees (nmin = 2,
K = 5, M = 50) algorithm and iterates 100 times.

The random policy strategy produces a set of four-tuples composed of193,237 elements while
154,345 four-tuples compose the set corresponding to theε-greedy policy.

Note that since the states(θ1,θ2, θ̇1, θ̇2) and(θ1 +2k1π,θ2 +2k2π, θ̇1, θ̇2) k1,k2 ∈ Z are equiv-
alent from a physical point of view, we have, before using the four-tuples as input of the fittedQ
iteration algorithm, added or subtracted to the values ofθ1 andθ2 a multiple of 2π to guarantee that
these values belong to the interval[−π,π]. A similar transformation is also carried out on each state
(θ1,θ2, θ̇1, θ̇2) before it is used as input of a policy ˆµ∗N(x).

5.4.2 SIMULATION RESULTS

First, we consider the set of four-tuples gathered when using theε-greedy policy to control the
system. We have represented on Figure 21 the evolution of the Acrobot starting with zero speed in
a downward position and being controlled by the policy ˆµ100 when the fittedQ iteration algorithm is
used with Extra-Trees. As we observe, the control policy computed manages to bring the Acrobot
close to its unstable equilibrium position.

In order to attribute a score to a policy ˆµN, we define a set

Xi = {(θ1,θ2, θ̇1, θ̇2) ∈ R
4|θ1 ∈ {−2,−1.9, · · · ,2},θ2θ̇1 = θ̇2 = 0},

evaluateJµ̂N
∞ (x) for each elementx of this set and average the values obtained. The evolution of

the score of ˆµ∗N with N for different tree-based methods is drawn on Figure 22. Extra-Treesgives

20. We say that a terminal state is reached when the Acrobot has reached the target neighborhood of the unstable equi-
librium set.

21. The ε-greedy policy chooses with probability 1− ε the control actionut at random in the set{u ∈ U |u =
argmaxu∈U Q̂(xt ,u)}) and with probabilityε at random inU .

536



TREE-BASED BATCH MODE REINFORCEMENTLEARNING

u = 5
u =−5

Figure 21: A typical control sequence with a learned policy. The Acrobot starts with zero speed in a down-
ward position. Its position and the applied control action are represented at successive time steps.
The last step corresponds to a terminal state.
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Figure 22: Score ofµ̂∗N when using the set gen-
erated by theε-greedy policy.

Tree-based
method

Policy which generatesF
ε-greedy Random

Pruned CART Tree 0.0006 0.
Kd-Tree (Bestnmin) 0.0004 0.

Tree Bagging 0.0417 0.0047
Extra-Trees 0.0447 0.0107

Totally Rand. Trees 0.0371 0.0071

Table 5: Score ofµ̂∗100 for the two sets of four-
tuples and different tree-based meth-
ods.

the best score while the score of Tree Bagging seems to oscillate around thevalue of the score
corresponding to Totally Randomized Trees.

The score obtained by ˆµ∗100 for the different tree-based methods and the different sets of four-
tuples is represented in Table 5. One may observe, once again, that methods which build an en-
semble of regression trees perform much better. Surprisingly, Totally Randomized Trees behaves
well compared to Tree Bagging and to a lesser extent to Extra-Trees. On the other hand, the single
tree methods offer rather poor performances. Note that for Kd-Tree,we have computed ˆµ∗100 and its
associated score for each value ofnmin∈ {2,3,4,5,10,20, · · · ,100} and reported in the Table 5 the
highest score thus obtained.

We can also observe from this table that the scores obtained while using the set of four-tuples
corresponding to the totally random policy are much worse than those obtained when using an
ε-greedy policy. This is certainly because the use of a totally random policy leads to very little
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information along the optimal trajectories starting from elements ofXi . In particular, out of the
2000 episodes used to generate the set of four-tuples, only 21 manage toreach the goal region. Note
also that while Extra-Trees remains superior, Tree Bagging offers this timepoorer performances
than Totally Randomized Trees.

5.5 The Bicycle

We consider two control problems related to a bicycle which moves at constant speed on a horizontal
plane (Figure 23). For the first problem, the agent has to learn how to balance the bicycle. For the
second problem, he has not only to learn how to balance the bicycle but alsohow to drive it to a
specific goal. The exact definitions of the two optimal control problems related to these two tasks
are given in Appendix C.4.22

These two optimal control problems have the same system dynamics and differonly by their
reward function. The system dynamics is composed of seven variables. Four are related to the
bicycle itself and three to the position of the bicycle on the plane. The state variables related to the
bicycle areω (the angle from vertical to the bicycle),ω̇, θ (the angle the handlebars are displaced
from normal) anḋθ. If |ω| becomes larger than 12 degrees, then the bicycle is supposed to have
fallen down and a terminal state is reached. The three state variables relatedto the position of
the bicycle on the plane are the coordinates(xb,yb) of the contact point of the back tire with the
horizontal plane and the angleψ formed by the bicycle frame and the x-axis. The actions are
the torqueT applied to the handlebars (discretized to{−2,0,2}) and the displacementd of the
rider (discretized to{−0.02,0,0.02}). The noise in the system is a uniformly distributed term in
[−0.02,0.02] added to the displacement component actiond.

As is usually the case when dealing with these bicycle control problems, we suppose that the
state variablesxb andyb cannot be observed. Since these two state variables do not intervene in the
dynamics of the other state variables nor in the reward functions considered, they may be taken as
irrelevant variables for the optimal control problems and, therefore, their lack of observability does
not make the control problem partially observable.

The reward function for the “Bicycle Balancing” control problem (Eqn (56), page 553) is such
that zero rewards are always observed, except when the bicycle has fallen down, in which case
the reward is equal to -1. For the “Bicycle Balancing and Riding” control problem, a reward of
−1 is also observed when the bicycle has fallen down. However, this time, non-zero rewards are
also observed when the bicycle is riding (Eqn (57), page 553). Indeed, the rewardrt when the
bicycle is supposed not to have fallen down, is now equal tocreward(dangle(ψt)−dangle(ψt+1)) with

22. Several other papers treat the problems of balancing and/or balancing and riding a bicycle (e.g. Randløv and Alstrøm,
1998; Ng and Jordan, 1999; Lagoudakis and Parr, 2003b,a). Thereader can refer to them in order to put the perfor-
mances of fittedQ iteration in comparison with some other RL algorithms. In particular, he couldrefer to Randløv
and Alstrøm (1998) to get an idea of the performances of SARSA(λ), an on-line algorithm, on these bicycle control
problems and to Lagoudakis and Parr (2003b) to see how the Least-Square Policy Iteration (LSPI), a batch mode
RL algorithm, performs. If his reading of these papers and of the simulation results reported in Sections 5.5.1 and
5.5.2 is similar to ours, he will conclude that fittedQ iteration combined with Extra-Trees performs much better
than SARSA(λ) in terms of ability to extract from the information acquired from interaction with the system, a good
control policy. He will also conclude that LSPI and fittedQ iteration combined with Extra-Trees are both able to
produce good policies with approximately the same number of episodes. Moreover, the reader will certainly notice
the obvious strong dependence of performances of LSPI and SARSA(λ) on the choice of the parametric approxi-
mation architecture these algorithms use to approximate theQ-function, which makes extremely difficult any strict
comparison with them.
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Figure 23: Figure (a) represents the bicycle seen from behind. The thick line represents the bicycle. CM
is the center of mass of the bicycle and the cyclist.h represents the height of the CM over the
ground. ω represents the angle from vertical to bicycle. The angleϕ represents the total angle
of tilt of the center of mass. Actiond represents how much the agent decides to displace the
center of mass from the bicycle’s plan andw is the noise laid on the choice of displacement, to
simulate imperfect balance. Figure (b) represents the bicycle seen from above.θ is the angle
the handlebars are displaced from normal,ψ the angle formed by the bicycle frame and the x-
axis andψgoal the angle between the bicycle frame and the line joining the back - wheel ground
contact and the center of the goal.T is the torque applied by the cyclist to the handlebars.(xb,yb)

is the contact point of the backwheel with the ground.

creward = 0.1 anddangle(ψ) = min
k∈Z

|ψ + 2kπ| (dangle(ψ) represents the “distance” between an angle

ψ and the angle 0). Positive rewards are therefore observed when the bicycle frame gets closer to
the positionψ = 0 and negative rewards otherwise. With such a choice for the reward function, the
optimal policyµ∗ tends to control the bicycle so that it moves to the right with its frame parallel
to the x-axis. Such an optimal policy or a good approximate ˆµ∗ of it can then be used to drive the
bicycle to a specific goal. Ifψgoalt represents the angle between the bicycle frame and a line joining
the point(xb,yb) to the center of the goal(xgoal,ygoal) (Figure 23b), this is achieved by selecting at
time t the actionµ̂∗(ωt , ω̇t ,θt , θ̇t ,ψgoalt ), rather than ˆµ∗(ωt , ω̇t ,θt , θ̇t ,ψt). In this way, we proceed
as if the line joining(xb,yb) to (xgoal,ygoal) were the x-axis when selecting control actions, which
makes the bicycle moving towards the goal.23 Note that in our simulations,(xgoal,ygoal) = (1000,0)
and the goal is a ten meter radius circle centered on this point. Concerning thevalue of the decay

23. The reader may wonder why, contrary to the approach taken by other authors (Lagoudakis, Parr, Randløv, Alstrøm,
Ng, Jordan),

• we did not consider in the state signal available during the four-tuples generation phaseψgoal rather thanψ (which
would have amounted here to consider(ω, ω̇,θ, θ̇,ψgoal) as state signal when generating the four-tuples)
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factorγ, it has been chosen for both problems equal to 0.98. The influence ofγ andcreward on the
trajectories for the “Bicycle Balancing and Riding” control problem will be discussed later.

All episodes used to generate the four-tuples start from a state selected at random in

{(ω, ω̇,θ, θ̇,xb,yb,ψ) ∈ R
7|ψ ∈ [−π,π]andω = ω̇ = θ = θ̇ = xb = yb = 0},

and end when a terminal state is reached, i.e. when the bicycle is supposed tohave fallen down. The
policy considered during the four-tuples generation phase is a policy thatselects at each instant an
action at random inU .

For both optimal control problems, the setXi considered for the score computation (Section
5.1.2) is:

Xi = {(ω, ω̇,θ, θ̇,xb,yb,ψ) ∈ R
7|ψ ∈ {−π,−3π

4
, · · · ,π}andω = ω̇ = θ = θ̇ = xb = yb = 0}.

Sinceψ andψ+2kπ (k∈Z) are equivalent from a physical point of view, in our simulations we
have modified each value ofψ observed by a factor 2kπ in order to guarantee that it always belongs
to [−π,π].

5.5.1 THE “B ICYCLE BALANCING ” CONTROL PROBLEM

To generate the four-tuples, we have considered 1000 episodes. Thecorresponding setF is com-
posed of 97,969 four-tuples. First, we discuss the results obtained by Extra-Trees (nmin = 4, K = 7,
M = 50)24 and then we assess the performances of the other tree-based methods.

Figure 24a represents the evolution of the score of the policies ˆµ∗N with N when using Extra-
Trees. To assess the quality of a policyµ, we use also another criterion than the score. For this
criterion, we simulate for eachx0 ∈ Xi ten times the system with the policyµ, leading to a total of
90 trajectories. If no terminal state has been reached beforet = 50,000, that is if the policy was able
to avoid crashing the bicycle during 500 seconds (the discretization time step is0.01 second), we say
that the trajectory has been successful. On Figure 24c we have represented for the different policies
µ̂∗N the number of successful trajectories among the 90 simulated. Remark that if from N = 60
the score remains really close to zero, polices ˆµ∗60 and µ̂∗70 do not produce as yet any successful
trajectories, meaning that the bicycle crashes for large values oft even if these are smaller than

• the reward function for the bicycle balancing and riding control problem does not give directly information about
the direction to the goal (which would have led here to observe att + 1 the rewardcreward(dangle(ψgoalt )−
dangle(ψgoalt+1))).

We did not choose to proceed like this becauseψgoalt+1 depends not only onψgoalt andθt but also onxbt andybt .
Therefore, since we suppose that the coordinates of the back tire cannot be observed, the optimal control problems
would have been partially observable if we had replacedψ by ψgoal in the state signal and the reward function.
Although in our simulations this does not make much difference sinceψ ' ψgoal during the four-tuples generation
phases, we prefer to stick with fully observable systems in this paper.

24. When considering ensemble methods (Extra-Trees, Totally Randomized Trees, Tree Bagging) we always keep con-
stant the value of these parameters. Since we are not dealing with a highly stochastic system, as for the case of the
“Left or Right” control problem, we decided not to rely on the pruned version of these algorithms. However, we
found out that by developing the trees fully (nmin = 2), variance was still high. Therefore, we decided to use a larger
value fornmin. This value is equal to 4 and was leading to a good bias-variance tradeoff. Concerning the value of
K = 7, it is equal to the dimension of the input space, that is the dimension of the state signal(ω, ω̇,θ, θ̇,ψ) plus the
dimension of the action space.
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Tree-based method
Control problem

Bicycle
Balancing

Bicycle
Balancing and Riding

Pruned CART Tree -0.02736 -0.03022
Kd-Tree (Bestnmin∈ {2,3,4,5,10,20, · · · ,100}) -0.02729 -0.10865

Tree Bagging (nmin = 4, M = 50) 0 0.00062
Extra-Trees (nmin = 4, K = 7, M = 50 ) 0 0.00157

Totally Randomized Trees (nmin = 4, M = 50) -0.00537 -0.01628

Table 6: Score ofµ̂∗300 for the “Balancing” and “Balancing and Riding” problems. Different tree-based
methods are considered, with a 1000 episode based set of four-tuples.

50,000. Figure 24b gives an idea of the trajectories of the bicycle on the horizontal plane when
starting from the different elements ofXi and being controlled by ˆµ∗300.

To assess the influence of the number of four-tuples on the quality of the policy computed, we
have drawn on Figure 24d the number of successful trajectories when different number of episodes
are used to generateF . As one may see, by using Extra-Trees, from 300 episodes (' 10,000
four-tuples) only successful trajectories are observed. Tree Bagging and Totally Randomized Trees
perform less well. It should be noted that Kd-Tree and Pruned CART Tree were not able to pro-
duce any successful trajectories, even for the largest set of four-tuples. Furthermore, the fact that
we obtained some successful trajectories with Totally Randomized Trees is only because we have
modified the algorithm to avoid selection of tests according toψ, a state variable that plays for this
“Bicycle Balancing” control problem the role of an irrelevant variable (ψ does not intervene in the
reward function and does not influence the dynamics ofω, ω̇, θ, θ̇) (see also Section 5.3.5). Note
that the scores obtained by ˆµ∗300 for the different tree-based methods when considering the 97,969
four-tuples are reported in the second column of Table 6.

5.5.2 THE “B ICYCLE BALANCING AND RIDING” CONTROL PROBLEM

To generate the four-tuples, we considered 1000 episodes that led to a set F composed of 97,241
elements. First, we study the performances of Extra-Trees (nmin = 4, K = 7, M = 50). Figure 25a
represents the evolution of the score of ˆµ∗N with N. The final value of the score (score of ˆµ∗300) is
equal to 0.00157.

As mentioned earlier, with the reward function chosen, the policy computed byour algorithm
should be able to drive the bicycle to the right, parallel to the x-axis, provided that the policy is a
good approximation of the optimal policy. To assess this ability, we have simulated, for eachx0∈Xi ,
the system with the policy ˆµ∗300 and have represented on Figure 25b the different trajectories of the
back tire. As one may see, the policy tends indeed to drive the bicycle to the right, parallel to the
x-axis. The slight shift that exists between the trajectories and the x-axis (the shift is less than 10
degrees) could be reduced if more four-tuples were used as input of the fittedQ iteration algorithm.

Now, if rather than using the policy ˆµ∗300 with the state signal(ω, ω̇,θ, θ̇,ψ) we consider the state
signal (ω, ω̇,θ, θ̇,ψgoal), whereψgoal is the angle between the bicycle frame and the line joining
(xb,yb) with (xgoal,ygoal), we indeed observe that the trajectories converge to the goal (see Figure
25c). Under such conditions, by simulating from eachx0 ∈ Xi ten times the system over 50,000
time steps, leading to a total of 90 trajectories, we observed that every trajectory managed to reach
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Figure 24: The “Bicycle Balancing” control problem. Figure (a) represents the score of ˆµ∗N with Extra-
Trees and 1000 episodes used to generateF . Figure (b) sketches trajectories of the bicycle on
the xb− yb plane when controlled by ˆµ∗300. Trajectories are drawn fromt = 0 till t = 50,000.
Figure (c) represents the number of times (out of 90 trials) the policy µ̂∗N (Extra-Trees, 1000
episodes) manages to balance the bicycle during 50,000 timesteps, i.e. 500 s. Figure (d) gives
for different numbers of episodes and for different tree-based methods the number of times ˆµ∗300

leads to successful trajectories.
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a 2 meter neighborhood of(xgoal,ygoal). Furthermore, every trajectory was able to reach the goal in
less that 47,000 time steps. Note that, since the bicycle rides at constant speedv = 10

3.6 ' 2.77ms−1

and since the time discretization step is 0.01s, the bicycle does not have to cover a distance of more
that 1278mbefore reaching the goal while starting from any element ofXi .

It is clear that these good performances in terms of the policy ability to drive the bicycle to the
goal depend on the choice of the reward function. For example, if the sameexperience is repeated
with creward chosen equal to 1 rather than 0.1 in the reward function, the trajectories lead rapidly
to a terminal state. This can be explained by the fact that, in this case, the largepositive rewards
obtained for moving the frame of the bicycle parallel to the x-axis lead to a control policy that
modifies too rapidly the bicycle riding direction which tends to destabilize it. If now, the coefficient
creward is taken smaller than 0.1, the bicycle tends to turn more slowly and to take more time to
reach the goal. This is illustrated on Figure 25d where a trajectory corresponding tocreward = 0.01
is drawn together with a trajectory corresponding tocreward = 0.1. On this figure, we may also
clearly observe that after leaving the goal, the control policies tend to drive again the bicycle to it.
It should be noticed that the policy corresponding tocreward = 0.1 manages at each loop to bring
the bicycle back to the goal while it is not the case with the policy corresponding to creward = 0.01.
Note that the coefficientγ influences also the trajectories obtained. For example, by takingγ = 0.95
instead ofγ = 0.98, the bicycle crashes rapidly. This is due to the fact that a smaller value ofγ tends
to increase the importance of short-term rewards over long-term ones, which favors actions that turn
rapidly the bicycle frame, even if they may eventually lead to a fall of the bicycle.

Rather than relying only on the score to assess the performances of a policy, let us now associate
to a policy a value that depends on its ability to drive the bicycle to the goal within acertain time
interval, when(ω, ω̇,θ, θ̇,ψgoal) is the state signal considered. To do so, we simulate from each
x0∈Xi ten times the system over 50,000 time steps and count the number of times the goal has been
reached. Figure 25e represents the “number of successful trajectories” obtained by ˆµ∗N for different
values ofN. Observe that 150 iterations of fittedQ iteration are needed before starting to observe
some successful trajectories. Observe also that the “number of successful trajectories” sometimes
drops whenN increases, contrary to intuition. These drops are however not observed on the score
values (e.g. forN = 230, all 90 trajectories are successful and the score is equal to 0.00156, while
for N = 240, the number of successful trajectories drops to 62 but the score increases to 0.00179).
Additional simulations have shown that these sudden drops tend to disappear when using more
four-tuples.

Figure 25f illustrates the influence of the size ofF on the number of successful trajectories when
fitted Q iteration is combined with Extra-Trees. As expected, the number of successful trajectories
tends to increase with the number of episodes considered in the four-tuplesgeneration process.
It should be noted that the other tree-based methods considered in this paper did not manage to
produce successful trajectories when only 1000 episodes are used togenerate the four-tuples. The
different scores obtained by ˆµ∗300 when 1000 episodes are considered and for the different tree-based
methods are gathered in Table 6, page 541. Using this score metric, Extra-Trees is the method
performing the best, which is in agreement with the “number of successful trajectories” metric,
followed successively by Tree Bagging, Totally Randomized Trees, Pruned CART Tree and Kd-
Tree.
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Figure 25: The “Bicycle Balancing and Riding” control problem. Figure(a) represents the score of
µ̂∗N (Extra-Trees, 1000 episodes). Figure (b) sketches trajectories when ˆµ∗300 (Extra-Trees,
1000 episodes) controls the bicycle (trajectories drawn from t = 0 till t = 50,000). Figure
(c) represents trajectories when ˆµ∗300 (Extra-Trees, 1000 episodes) controls the bicycle with
(ωt , ω̇t ,θt , θ̇t ,ψgoalt ) used as input signal for the policy (trajectories drawn fromt = 0 till
t = 50,000). Figure (d) represents the influence oncreward on the trajectories (ˆµ∗300, Extra-Trees,
1000 episodes and trajectories drawn fromt = 0 till t = 100,000). Figure (e) lists the number of
times the policy ˆµ∗N manages to bring the bicycle to the goal in less than 50,000 time steps (high-
est possible value for “Number of successful trajectories”is 90). Figure (f) gives for different
number of episodes the number of times ˆµ∗300 leads to successful trajectories.
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5.6 Conclusion of the Experiments

We discuss in this section the main conclusions that may be drawn from the simulation results
previously reported.

5.6.1 INFLUENCE OF THETREE-BASED METHODS

Let us analyze the results of our experiments in the light of the classification given in Table 1.

Single trees vs ensembles of trees.Whatever the set of four-tuples used, the top score has always
been reached by a method building an ensemble of regression trees, and furthermore, the larger the
state space, the better these regression tree ensemble methods behave compared to methods building
only one single tree. These results are in agreement with previous work in reinforcement learning
which suggests that multi-partitioning of the state space is leading to better function approxima-
tors than single partitioning.25 They are also in agreement with the evaluation of these ensemble
algorithms on many standard supervised learning problems (classification and regression), where
tree-based ensemble methods typically significantly outperform single trees (Geurts et al., 2004).

However, from the viewpoint of computational requirements, we found that ensemble methods
are clearly more demanding, both in terms of computing times and memory requirements for the
storage of models.

Kernel-based vs non kernel-based methods.Among the single tree methods, Pruned CART
Tree, which adapts the tree structure to the output variable, offers typically the same performances
as Kd-Tree, except in the case of irrelevant variables where it is significantly more robust. Among
the tree-based ensemble methods, Extra-Trees outperforms Totally Randomized Trees in all cases.
On the other hand, Tree Bagging is generally better than the Totally Randomized Trees, except
when dealing with very small numbers of samples, where the bootstrap resampling appears to be
penalizing. These experiments thus show that tree-based methods that adapt their structure to the
new output at each iteration usually provide better results than methods that do not (that we name
kernel-based). Furthermore, the non kernel-based tree-based algorithms are much more robust to
the presence of irrelevant variables thanks to their ability to filter out tests involving these variables.

A drawback of non kernel-based methods is that they do not guarantee convergence. However,
with the Extra-Trees algorithm, even if the sequence was not converging,the policy quality was
oscillating only moderately around a stable value and even when at its lowest, itwas still superior
to the one obtained by the kernel-based methods ensuring the convergence of the algorithm. Fur-
thermore, if really required, convergence to a stable approximation may always be provided in an
ad hoc fashion, for example by freezing the tree structures after a certain number of iterations and
then only refreshing predictions at terminal nodes.

5.6.2 PARAMETRIC VERSUSNON-PARAMETRIC SUPERVISEDLEARNING METHOD

FittedQ iteration has been used in our experiments with non-parametric supervised learning meth-
ods (kNN, tree-based methods) and parametric supervised learning methods (basis function methods
with piecewise-constant or piecewise-linear grids as approximation architectures).

25. See e.g. Sutton (1996); Sutton and Barto (1998), where the authors show that by overlaying several shifted tilings
of the state space (type of approximation architecture known as CMACs),good function approximators could be
obtained.

545



ERNST, GEURTS AND WEHENKEL

It has been shown that the parametric supervised learning methods, compared to the non-
parametric ones, were not performing well. The main reason is the difficulty toselect a priori the
shape of the parametric approximation architecture that may lead to some good results. It should
also be stressed that divergence to infinity of the fittedQ iteration has sometimes been observed
when piecewise-linear grids were the approximation architectures considered.

5.6.3 FITTED Q ITERATION VERSUSON-L INE ALGORITHMS

An advantage of fittedQ iteration over on-line algorithms is that it can be combined with some non-
parametric function approximators, shown to be really efficient to generalize the information. We
have also compared the performances of fittedQ iteration andQ-learning for some a priori given
parametric approximation architectures. In this context, we found out that when the approximation
architecture used was chosen so as to avoid serious convergence problems of the fittedQ iteration
algorithm, then this latter was also performing much better thanQ-learning on the same architecture.

6. Conclusions and Future Work

In this paper, we have considered a batch mode approach to reinforcement learning, which consists
of reformulating the reinforcement learaning problem as a sequence of standard supervised learning
problems. After introducing thefitted Q iteration algorithmwhich formalizes this framework, we
have studied the properties and performances of the algorithm when combined with three classical
tree-based methods (Kd-Trees, CART Trees, Tree Bagging) and two newly proposed tree-based
ensemble methods namely Extra-Trees and Totally Randomized Trees.

Compared with grid-based methods on low-dimensional problems, as well as with kNN and
single tree-based methods in higher dimensions, we found out that the fittedQ iteration algorithm
was giving excellent results when combined with any one of the consideredtree-based ensemble
methods (Extra-Trees, Tree Bagging and Totally Randomized Trees). Onthe different cases studied,
Extra-Treeswas the supervised learning method able to extract at best information froma set of four-
tuples. It is also faster than Tree Bagging and was performing significantlybetter than this latter
algorithm, especially on the higher dimensional problems and on low-dimensional problems with
small sample sizes. We also found out that fittedQ iteration combined with tree-based methods
was performing much better thanQ-learning combined with piecewise-constant or piecewise-linear
grids.

Since Extra-Trees and Tree Bagging, the two best performing supervised learning algorithms,
readjust their approximation architecture to the output variable at each iteration, they do not en-
sure the convergence of the fittedQ iteration algorithm. However, and contrary to many parametric
approximation schemes, they do not lead to divergence to infinity problems. The convergence prop-
erty is satisfied by theTotally Randomized Treesbecause their set of trees is frozen at the beginning
of the iteration. They perform however less well than Extra-Trees and Tree Bagging, especially in
the presence of irrelevant variables. They are nevertheless better than some other methods that also
ensure the convergence of the sequence, likekNN kernel methods and piecewise-constant grids, in
terms of performances as well as scalability to large numbers of variables and four-tuples. Within
this context, it would be worth to study versions of Extra-Trees and Tree Bagging which would
freeze their trees at some stage of the iteration process, and thus recover the convergence property.

From a theoretical point of view, it would certainly be very interesting to further study the con-
sistency of the fittedQ iteration algorithm, in order to determine general conditions under which the
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algorithm converges to an optimal policy when the number of four-tuples collected grows to infinity.
With this in mind, one could possibly seek inspiration in the work of Ormoneit and Sen (2002) and
Ormoneit and Glynn (2002), who provide consistency conditions for kernel-based supervised learn-
ing methods within the context of fittedQ iteration, and also in some of the material published in the
supervised learning literature (e.g. Lin and Jeon, 2002; Breiman, 2000). More specifically, further
investigation in order to characterize ensembles of regression trees with respect to consistency is
particularly wishful, because of their good practical performances.

In this paper, the score associated to a test node of a tree was the relativevariance reduction.
Several authors who adapted regression trees in other ways to reinforcement learning have sug-
gested the use of other score criteria for example based on the violation of the Markov assumption
(McCallum, 1996; Uther and Veloso, 1998) or on the combination of several error terms like the
supervised, the Bellman, and the advantage error terms (Wang and Diettrich, 1999). Investigating
the effect of such score measures within the fittedQ iteration framework is another interesting topic
of research.

While the fittedQ iteration algorithm used with tree-based ensemble methods reveals itself to
be very effective to extract relevant information from a set of four-tuples, it has nevertheless one
drawback: with increasing number of four-tuples, it involves a superlinear increase in computing
time and a linear increase in memory requirements. Although our algorithms offera very good
accuracy/efficiency tradeoff, we believe that further research should explore different ways to try to
improve the computational efficiency and the memory usage, by introducing algorithm modifica-
tions specific to the reinforcement learning context.
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Appendix A. Extra-Trees Induction Algorithm

The procedure used by the Extra-Trees algorithm to build a tree from a training set is described in
Figure 26. This algorithm has two parameters:nmin, the minimum number of elements required to
split a node andK, the maximum number of cut-directions evaluated at each node. IfK = 1 then
at each test node the cut-direction and the cut-point are chosen totally at random. If in addition
the condition (iii) is dropped, then the tree structure is completely independentof the output values
found in theT S , and the algorithm generatesTotally Randomized Trees.
The score measure used is the relative variance reduction. In other words, if T S l (resp. T S r )
denotes the subset of cases fromT S such that[i j < t] (resp. [i j ≥ t]), then the Score is defined as
follows:

Score([i j < t],T S) =
var(o|T S)− #T S l

#T S
var(o|T S l )− #T S r

#T S
var(o|T S r)

var(o|T S)
, (25)
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Build a tree(T S )
Input: a training setT S

Output: a treeT;

• If

(i) #T S < nmin, or

(ii) all input variables are constant inT S , or

(iii) the output variable is constant over theT S ,

return a leaf labeled by the average value1#T S ∑l o
l .

• Otherwise:

1. Let [i j < t j ] = Find a test(T S).

2. SplitT S into T S l andT S r according to the test[i j < t].

3. Build Tl = Build a tree(T S l ) andTr = Build a tree(T S r) from these subsets;

4. Create a node with the test[i j < t j ], attachTl andTr as left and right subtrees of this
node and return the resulting tree.

Find a test(T S )
Input: a training setT S

Output: a test[i j < t j ]:

1. SelectK inputs,{i1, ..., iK}, at random, without replacement, among all (non constant) input
variables.

2. Fork going from 1 toK:

(a) Compute the maximal and minimal value ofik in T S , denoted respectivelyiT S
k,min and

iT S
k,max.

(b) Draw a discretization thresholdtk uniformly in ]iT S
k,min, i

T S
k,max]

(c) Compute the scoreSk = Score([ik < tk],T S)

3. Return a test[i j < t j ] such thatSj = maxk=1,...,K Sk.

Figure 26: Procedure used by the Extra-Trees algorithm to build a tree. The Totally Randomized
Treesalgorithm is obtained from this algorithm by settingK = 1 and by dropping the
stopping condition (iii).
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wherevar(o|X ) is the variance of the outputo in the training setX .

Appendix B. Convergence of the Sequence of̂QN-Functions

Theorem 1 If the fitted Q iteration algorithm is combined with a supervised learning method which
produces a model of the type (17) with the kernel kT S being the same from one iteration to the other
and satisfying the normalizing condition (18), then the sequence ofQ̂N-functions converges.

Proof The proof is adapted in a straightforward way from Ormoneit and Sen (2002) to the fact that
the kernelkT S((x

l
t ,u

l
t),(x,u)) may not be decomposed here into the productk′(xl

t ,x)δ(ul
t ,u).

Let us first observe that in such conditions, the sequence of functionscomputed by the fittedQ
iteration algorithm is determined by the recursive equation:

Q̂N(x,u) =
#F

∑
l=1

kT S ((xl
t ,u

l
t),(x,u))[r l

t + γmax
u′∈U

Q̂N−1(x
l
t+1,u

′)], ∀N > 0 (26)

with Q̂0(x,u) = 0 ∀(x,u) ∈ X×U . Equation (26) may be rewritten:

Q̂N = ĤQ̂N−1 (27)

whereĤ is an operator mapping any functionK : X×U → R and defined as follows:

(ĤK)(x,u) =
#F

∑
l=1

kT S ((xl
t ,u

l
t),(x,u))[r l

t + γmax
u′∈U

K(xl
t+1,u

′)]. (28)

This operator is a contraction on the Banach space of functions defined over X×U and the supre-
mum norm. Indeed, we have:

‖ĤK− ĤK‖∞ = γ max
(x,u)∈X×U

|
#F

∑
l=1

kT S ((xl
t ,u

l
t),(x,u))[max

u′∈U
K(xl

t+1,u
′)−max

u′∈U
K(xl

t+1,u
′)]|

≤ γ max
(x,u)∈X×U

|[
#F

∑
l=1

kT S((x
l
t ,u

l
t),(x,u))max

u′∈U
[K(xl

t+1,u
′)−K(xl

t+1,u
′)]|

≤ γ max
(x,u)∈X×U

|K(x,u)−K(x,u)|

= γ‖K−K‖∞

< ‖K−K‖∞.

By virtue of the fixed-point theorem (Luenberger, 1969) the sequence converges, independently
of the initial conditions, to the function̂Q : X×U → R which is unique solution of the equation
Q̂ = ĤQ̂.

Appendix C. Definition of the Benchmark Optimal Control Probl ems

We define in this section the different optimal control problems used in our experiments. Simulators,
additional documentation and sets of four-tuples are available upon request.
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C.1 The “Left or Right” Control Problem

System dynamics:

xt+1 = xt +ut +wt

wherew is drawn according the standard (zero mean, unit variance) Gaussian distribution.
If xt+1 is such that|xt+1|> 10 or|xt+1|< 0 then a terminal state is reached.
State space:The state spaceX is composed of{x∈ R|x∈ [0,10]} and of a terminal state.
Action space:The action spaceU = {−2,2}.
Reward function: The reward functionr(x,u,w) is defined through the following expression:

r(xt ,ut ,wt) =











0 if xt+1 ∈ [0,10]

50 if xt+1 < 0

100 if xt+1 > 10.

(29)

Decay factor: The decay factorγ is equal to 0.75.

C.2 The “Car on the Hill” Control Problem

System dynamics:The system has a continuous-time dynamics described by these two differential
equations:

ṗ = s (30)

ṡ =
u

m(1+Hill ′(p)2)
− gHill ′(p)

1+Hill ′(p)2 −
s2Hill ′(p)Hill ′′(p)

1+Hill ′(p)2 (31)

wheremandg are parameters equal respectively to 1 and 9.81 and whereHill (p) is a function ofp
defined by the following expression:

Hill (p) =







p2 + p if p < 0
p√

1+5p2
if p≥ 0.

(32)

The discrete-time dynamics is obtained by discretizing the time with the time betweent andt + 1
chosen equal to 0.100s.
If pt+1 andst+1 are such that|pt+1|> 1 or |st+1|> 3 then a terminal state is reached.
State space:The state spaceX is composed of{(p,s) ∈ R

2| |p| ≤ 1and|s| ≤ 3} and of a terminal
state.X \{terminal state} is represented on Figure 8a.
Action space:The action spaceU = {−4,4}.
Reward function: The reward functionr(x,u) is defined through the following expression:

r(xt ,ut) =











−1 if pt+1 <−1 or |st+1|> 3

1 if pt+1 > 1 and |st+1| ≤ 3

0 otherwise.

(33)

Decay factor: The decay factorγ has been chosen equal to 0.95.
Integration: The dynamical system is integrated by using an Euler method with a 0.001s integra-
tion time step.
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Remark: This “Car on the Hill” problem is similar to the one found in Moore and Atkeson (1995)

except that the term− s2Hill ′(p)Hill ′′(p)
1+Hill ′(p)2 is not neglected here in the system dynamics.

Variants of the control problem: In our experiments, we have also considered two other variants
of this problem:

• The “Car on the Hill” with irrelevant variables:some irrelevant variables are added to the
state vector. The value of an irrelevant variable at timet is determined by drawing at random
a number in[−2,2] with a uniform probability (used in Section 5.3.5).

• The “Car on the Hill” with continuous action space:the action space is not yet discrete
anymore. It is continuous and equal to[−4,4] (used in Section 5.3.7).

C.3 The “Acrobot Swing Up” Control Problem

System dynamics:The system has a continuous-time dynamics described by these two second-
order differential equations (taken from Yoshimoto et al., 1999):

d11θ̈1 +d12θ̈2 +c1 +φ1 = −µ1θ̇1 (34)

d12θ̈1 +d22θ̈2 +c2 +φ2 = u−µ2θ̇2 (35)

(36)

where

d11 = M1L2
1 +M2(L

2
1 +L2

2 +2L1L2cos(θ2)) (37)

d22 = M2L2
2 (38)

d12 = M2(L
2
2 +L1L2cos(θ2)) (39)

c1 = −M2L1L2θ̇2(2θ̇1 + θ̇2sin(θ2)) (40)

c2 = M2L1L2θ̇1
2
sin(θ2) (41)

φ1 = (M1L1 +M2L1)gsin(θ1)+M2L2gsin(θ1 +θ2) (42)

φ2 = M2L2gsin(θ1 +θ2). (43)

M1 (M2), L1 (L2) andµ1 (µ2) are the mass, length, and friction, respectively, of the first (second)
link. θ1 is the angle of the first link from a downward position andθ2 is the angle of the second
link from the direction of the first link (Figure 20).̇θ1 andθ̇2 are the angular velocities of the first
and second links, respectively. The system has four continuous state variablesx = (θ1,θ2, θ̇1, θ̇2).
The physical parameters have been chosen equal toM1 = M2 = 1.0, L1 = L2 = 1.0, µ1 = µ2 = 0.01,
g = 9.81.
The discrete-time dynamics is obtained by discretizing the time with the time betweent andt + 1
chosen equal to 0.100s.
Let us denote byO the set composed of the statesx = ((2∗k+1)∗π,0,0,0) k∈ Z and byd(x,O)
the value min

o∈O
‖x−o‖.

If xt+1 is such thatd(xt+1,O) < 1 then a terminal state is reached.
State space:The state space is composed of{x∈ R

4|d(x,O)≥ 1} and of a terminal state.
Action space:The action spaceU = {−5,5}.
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Reward function: The reward functionr(x,u) is defined through the following expression:

r(xt ,ut) =

{

0 if d(xt+1,O)≥ 1

1−d(xt+1,O) if d(xt+1,O) < 1.
(44)

Decay factor: The decay factorγ has been chosen equal to 0.95.
Integration: The dynamical system is integrated by using an Euler method with a 0.001s integra-
tion time step.

C.4 The “Bicycle Balancing” and “Bicycle Balancing and Riding” Control Problems

We define hereafter the “Bicycle Balancing” and the “Bicycle Balancing and Riding” control prob-
lems. These optimal control problems differ only by their reward functions.
System dynamics: The system studied has the following dynamics:

ωt+1 = ωt +∆tω̇t (45)

ω̇t+1 = ω̇t +∆t(
1

Ibicycle and cyclist
(Mhgsin(ϕt)−cos(ϕt) (46)

(Idcσ̇θ̇t +sign(θt)v
2(Mdr(invr ft + invrbt )+MhinvrCMt ))))

θt+1 =

{

θt +∆tθ̇t if |θt +∆tθ̇t | ≤ 80
180π

sign(θt +∆tθ̇t)
80
180π if |θt +∆tθ̇t |> 80

180π
(47)

θ̇t+1 =

{

θ̇t +∆t T−Idvσ̇ω̇t
Idl

if |θt +∆tθ̇t | ≤ 80
180π

0 if |θt +∆tθ̇t |> 80
180π

(48)

xbt+1 = xbt +∆t vcos(ψt) (49)

ybt+1 = ybt +∆t vsin(ψt) (50)

ψt+1 = ψt +∆t sign(θt)v invrbt (51)

with

ϕt = ωt +
arctan(dt +wt)

h
(52)

invr ft =
|sin(θt)|

l
(53)

invrbt =
| tan(θt)|

l
(54)

invrCMt =







1√
((l−c)2+( 1

invrbt
)2)

if θt 6= 0

0 otherwise
(55)

wherewt is drawn according to a uniform distribution in the interval[−0.02,0.02]. The different
parameters are equal to the following values:∆t = 0.01, v = 10

3.6, g = 9.82, dCM = 0.3, c = 0.66,
h = 0.94, Mc = 15, Md = 1.7, Mp = 60.0, M = (Mc + Mp), r = 0.34, σ̇ = v

r , Ibicycle and cyclist=
(13

3 Mch2 +Mp(h+dCM)2), Idc = (Mdr2), Idv = (3
2Mdr2), Idl = (1

2Mdr2) andl = 1.11. This dynam-
ics holds valid if|ωt+1| ≤ 12

180π. When|ωt+1| > 12
180π, the bicycle is supposed to have fallen down

and aterminal stateis reached.
State space:The state space for this control problem is{(ω, ω̇,θ, θ̇,xb,yb,ψ)∈R

7|θ∈ [− 80
180π,

80
180π] andω∈
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[− 12
180π,

12
180π]} plus aterminal state.

Action space:The action spaceU = {(d,T) ∈ {−0.02,0,0.02}×{−2,0,2}}. U is composed of 9
elements.
Reward functions: The reward function for the “Bicycle Balancing” control problem is defined
hereafter:

r(xt ,ut ,wt) =

{

−1 if |ωt+1|> 12
180π

0 otherwise.
(56)

The reward function for “Bicycle Balancing and Riding” control problemis:

r(xt ,ut ,wt) =

{

−1 if |ωt+1|> 12
180π

creward(dangle(ψt)−dangle(ψt+1)) otherwise
(57)

wherecreward = 0.1 anddangle : R→ R such thatdangle(ψ) = min
k∈Z

|ψ+2kπ|.
Decay factor: The decay factorγ is equal to 0.98.
Remark: The bicycle dynamics is based on the one found in Randløv and Alstrøm (1998) and in
their corresponding simulator available athttp://www.nbi.dk/∼randlov/bike.html.
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