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Abstract

Reinforcement learning aims to determine an optimal coptiticy from interaction with a system

or from observations gathered from a system. In batch méodanibe achieved by approximating
the so-calledQ-function based on a set of four-tuplés,u,ry,%1) wherex denotes the sys-
tem state at time, u; the control action takerr; the instantaneous reward obtained and the
successor state of the system, and by determining the ¢@atlioy from this Q-function. The
Q-function approximation may be obtained from the limit ofexjgence of (batch mode) super-
vised learning problems. Within this framework we desctlreuse of several classical tree-based
supervised learning methods (CART, Kd-tree, tree baggind)two newly proposed ensemble al-
gorithms, namelextremelyandtotally randomized trees. We study their performances on several
examples and find that the ensemble methods based on regraess perform well in extracting
relevant information about the optimal control policy fraets of four-tuples. In particular, the to-
tally randomized trees give good results while ensuringctirerergence of the sequence, whereas
by relaxing the convergence constraint even better acguestilts are provided by the extremely
randomized trees.

Keywords: batch mode reinforcement learning, regression treesymreemethods, supervised
learning, fitted value iteration, optimal control

1. Introduction

Research in reinforcement learning (RL) aims at designing algorithms lmpnatitonomous agents
can learn to behave in some appropriate fashion in some environment, feanmtleraction with
this environment or from observations gathered from the environmestdg). Kaelbling et al.
(1996) or Sutton and Barto (1998) for a broad overview). The stanB& protocol considers a
performance agent operating in discrete time, observing attttheeenvironment state, taking an
actionu, and receiving back information from the environment (the next stateand the instan-
taneous reward;). After some finite time, the experience the agent has gathered from imerac
with the environment may thus be represented by a set of four-t(gles, re, % 1).

In on-line learning the performance agent is also the learning agent whézch time step can
revise its control policy with the objective of converging as quickly asipies$o an optimal control
policy. In this paper we consider batch mode learning, where the leargerg & in principle not
directly interacting with the system but receives only a set of four-tupldssasasked to determine
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from this set a control policy which is as close as possible to an optimal pdhspired by the
on-line Q-learning paradigm (Watkins, 1989), we will approach this batch modaileaproblem
by computing from the set of four-tuples an approximation of the so-cHaahction defined on
the state-action space and by deriving from this latter function the cordliol/p

When the state and action spaces are finite and small enoudbsfthrection can be represented
in tabular form, and its approximation (in batch and in on-line mode) as well aottteol policy
derivation are straightforward. However, when dealing with continwougry large discrete state
and/or action spaces, tligfunction cannot be represented anymore by a table with one entry for
each state-action pair. Moreover, in the context of reinforcementitepam approximation of the
Q-function all over the state-action space must be determined from finiteearedtajly very sparse
sets of four-tuples.

To overcome this generalization problem, a particularly attractive frameiwadnie one used by
Ormoneit and Sen (2002) which applies the idea of fitted value iteration (8pi®99) to kernel-
based reinforcement learning, and reformulate€tienction determination problem as a sequence
of kernel-based regression problems. Actually, this framework makeséilge to take full advan-
tage in the context of reinforcement learning of the generalization capabitifiany regression
algorithm, and this contrary to stochastic approximation algorithms (Sutton; T8&8iklis, 1994)
which can only use parametric function approximators (for example, lirabinations of feature
vectors or neural networks). In the rest of this paper we will call tiswork thditted Q iteration
algorithm so as to stress the fact that it allows to fit (using a set of four-tuplesjmarametric or
non-parametric) approximation architecture to @éunction.

The fittedQ iteration algorithm is a batch mode reinforcement learning algorithm which yields
an approximation of th€-function corresponding to an infinite horizon optimal control problem
with discounted rewards, by iteratively extending the optimization horizomsttt al., 2003):

e At the first iteration it produces an approximation dafunction corresponding to a 1-step
optimization. Since the tru®:-function is the conditional expectation of the instantaneous
reward given the state-action pair (i.84(X,u) = E[r¢|% = X, = u]), an approximation of
it can be constructed by applying a (batch mode) regression algorithmaimidy set whose
inputs are the pairé, ) and whose target output values are the instantaneous rewards

(i.e.,qut =ry).

e The Nth iteration derives (using a batch mode regression algorithm) an approxinedta
Qn-function corresponding to aN-step optimization horizon. The training set at this step
is obtained by merely refreshing the output values of the training set ofréwiops step by
using the “value iteration” based on the approxim@gfunction returned at the previous
step (i.e.gnt = It +ymax, QN,l(le, u), wherey € [0,1) is the discount factor).

Ormoneit and Sen (2002) have studied the theoretical convergenamasidtency properties of
this algorithm when combined with kernel-based regressors. In this,papestudy within this
framework the empirical properties and performances of severabtieed regression algorithms
on several applications. Just like kernel-based methods, tree-baskeddsiare non-parametric
and offer a great modeling flexibility, which is a paramount characteristithis framework to be
successful since the regression algorithm must be able to mod&yafiynction of the sequence,
functions which are a priori totally unpredictable in shape. But, from atjwal point of view these
tree-based methods have a priori some additional advantages, sudhirdsigh computational
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efficiency and scalability to high-dimensional spaces, their fully autonorobasacter, and their
recognized robustness to irrelevant variables, outliers, and noise.

In addition to good accuracy when trained with finite sets of four-tuplesgdesirable feature of
the regression method used in the context of the fi@éeration algorithm is to ensure convergence
of the sequence. We will analyze under which conditions the tree-bagéddseshare this property
and also what is the relation between convergence and quality of appteambn particular, we
will see that ensembles of totally randomized trees (i.e., trees built by seleaingytlits randomly)
can be adapted to ensure the convergence of the sequence while leadimgd approximation
performances. On the other hand, another tree-based algorithm natreedady randomized trees
(Geurts et al., 2004), will be found to perform consistently better than tatatigomized trees even
though it does not strictly ensure the convergence of the sequefEéuoiction approximations.

The remainder of this paper is organized as follows. In Section 2, we fiaertae reinforce-
ment learning problem considered here and recall some classical fesutgptimal control theory
upon which the approach is based. In Section 3 we preseffittéu Q iteration algorithmand in
Section 4 we describe the different tree-based regression methaiderea in our empirical tests.
Section 5 is dedicated to the experiments where we apply the @ttertation algorithm used with
tree-based methods to several control problems with continuous staés spratevaluate its perfor-
mances in a wide range of conditions. Section 6 concludes and also ovidmain directions for
further research. Three appendices collect relevant details algauitams, mathematical proofs
and benchmark control problems.

2. Problem Formulation and Dynamic Programming

We consider a time-invariant stochastic system in discrete time for which aldlose stationary
control policy* must be chosen in order to maximize an expected discounted return ovédings in
time horizon. We formulate hereafter the batch mode reinforcement leantibgm in this context
and we restate some classical results stemming from Bellman’s dynamic progmappioach to
optimal control theory (introduced in Bellman, 1957) and from which the fifié&dration algorithm
takes its roots.

2.1 Batch Mode Reinforcement Learning Problem Formulation

Let us consider a system havingliscrete-time dynamiaescribed by
Xt+1:f(Xt,Ut,Wt) tzoala"'v (1)

where for allt, the state is an element of the state spagthe actiony; is an element of the action
spacdJ and the random disturbaneg an element of the disturbance sp&éeThe disturbancex
is generated by the time-invariant conditional probability distribuBg(w|x, u).?

To the transition front to t + 1 is associated an instantaneaeward signal f = r(x, U, W)
wherer (X, u,w) is the reward function supposed to be bounded by some coigtant

Let p(-) : X — U denote a stationary control policy ad¥ denote the expected return ob-
tained over an infinite time horizon when the system is controlled using this paley \When

1. Indeed, in terms of optimality this restricted family of control policies is asdgas the broader set of all non-
anticipating (and possibly time-variant) control policies.

2. In other words, the probability(w; = w|x; = x,us = u) of occurrence ofwy = w given that the current state and
the current controly arex andu respectively, is equal tBy(w|x,u),vt =0,1,---.
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U = U(x ), vt). For a given initial conditiorxy = x, J& is defined by

N-1
Js(x) = lim V% [ijtr(xtvl'l(xt),wtﬂxozx], @
t:o,l,--t.N,l t=

N—o0

wherey is a discount factor (& y < 1) that weights short-term rewards more than long-term ones,
and where the conditional expectation is taken over all trajectories startihghe initial condi-

tion xg = x. Our objective is to find an optimal stationary poligy, i.e. a stationary policy that
maximizesJt for all x.

The existence of an optimal stationary closed loop policy is a classical fesuitdynamic
programming theory. It could be determined in principle by solving the Bellmamtémn (see
below, Egn (6)) given the knowledge of the system dynamics and rduaction. However, the sole
information that we assume available to solve the problem is the one obtainethiembservation
of a certain number of one-step system transitions (fréort + 1). Each system transition provides
the knowledge of a new four-tuples, ui, e, % 1) of information. Since, except for very special
conditions, it is not possible to determine exactly an optimal control policy fxdmite sample of
such transitions, we aim at computing an approximation of sychfiimm a set

F= {(X’I(’u'lwr{vxlt—&-l)’l =1 ’#'{]:}

of such four-tuples.

We do not make any particular assumptions on the way the set of four-iggiesnerated. It
could be generated by gathering the four-tuples corresponding tdrayie sajectory (or episode)
as well as by considering several independently generated one or teplegfEsodes.

We call this problem théatch modeeinforcement learning problem because the algorithm is
allowed to use a set of transitions of arbitrary size to produce its contliclypo a single step. In
contrast, aon-linealgorithm would produce a sequence of policies corresponding to aisegof
four-tuples.

2.2 Results from Dynamic Programming Theory

For a temporal horizon dfl steps, let us denote by
Tn(t,x) eU,t €{0,--- ,N—1};xe X

a (possibly time-varyingiN-step control policy (i.e: = Tiy(t, %) ), and by

N—-1
N= E [Z}vtr(xt,m(t,xt),wt)Ionx} 3)
=

t=01, N—1

its expected return oveé steps. AnN-step optimal policyrg is a policy which among all possible
such policies maximize¥" for anyx. Notice that under mild conditions (see e.g. Herdez-Lerma
and Lasserre, 1996, for the detailed conditions) such a policy aw@gsiddeed exist although it
is not necessarily unique.

Our algorithm exploits the following classical results from dynamic programitiiegry (Bell-
man, 1957):
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1. The sequence @y-functions defined oX x U by

Qo(x,u) = 0 4
QN(X, U) = (HQN_1>(X7 U), VN > O, (5)
converges (in infinity norm) to th@-function, defined as the (unique) solution of the Bellman
equation:
Q(x,u) = (HQ)(x,u) (6)
whereH is an operator mapping any functiéh: X x U — R and defined as follows:
(HK)(u) = E[r(xu.w) + ymaxK ( (x,uw),u)]. (7)
ue

Uniqueness of solution of Egn (6) as well as convergence of the seguEQn-functions
to this solution are direct consequences of the fixed point theorem ghd Gdct thaH is a
contraction mapping.

2. The sequence of policies defined by the two condifions

R(0,x) = argmaQn(x,u),¥N >0 8
uel
mNt+1x) = m_1(t,x),YN>1te{0,...,N-2} 9)

areN-step optimal policies, and their expected returns dVsteps are given by
I (x) = maxQu(x, u).
ueyU

3. A policy i that satisfies
W' (x) = argmaxQ(x, u) (10)

ueu

is an optimal stationary policy for the infinite horizon case and the expediguh i&f by (X) =
1 (0,X) converges to the expected returrudf

lim 3 (x) =¥ (x) Wxe X. (11)

N—oo

We have also lif_«J (x) = ¥ (x)  Vxe X.

Equation (5) defines the so-calledlue iteration algorithr providing a way to determine iter-
atively a sequence of functions converging to @éunction and hence of policies whose return
converges to that of an optimal stationary policy, assuming that the systeamitys, the reward
function and the noise distribution are known. As we will see in the next sedtisuggests also a
way to determine approximations of the3g-functions and policies from a sampfe.

3. The expectation is computed by usiag@v) = Py(w|x, u).

4. Actually this definition does not necessarily yield a unique policy, butpatizy which satisfies these conditions is
appropriate.

5. Strictly, the term “value iteration” refers to the computation oftbefunctiond? and corresponds to the iteration

J,IF‘ = m%vav[r(x,u,W) +me’f(f(x,u,W))],VN > 0 rather than Eqn (5).
ue
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3. Fitted Q Iteration Algorithm

In this section, we introduce the fittéd iteration algorithm which computes from a set of four-
tuples an approximation of the optimal stationary policy.

3.1 The Algorithm

A tabular version of the fitte@ iteration algorithm is given in Figure 1. At each step this algorithm
may use the full set of four-tuples gathered from observation of themyt®gether with the function
computed at the previous step to determine a new training set which is usedipgraised learning
(regression) method to compute the next function of the sequence. lige®d sequence Q-
functions, approximations of th@y-functions defined by Egn (5).

Inputs: a set of four-tuplesr and a regression algorithm.
Initialization:

SetNtoO.

Let Oy be a function equal to zero everywhereXx U.
Iterations:

Repeat until stopping conditions are reached

-N—N+1.

- Build the training se’S = {(i',0'),1 = 1,--- ,#7 } based on the the functicd@y_1 and on
the full set of four-tuplegf:

= (W), (12)
o = ri+ymaQu-1(;,U). (13)

- Use the regression algorithm to induce frafs the functionQy (x,u).

Figure 1: FittedQ iteration algorithm

Notice that at the first iteration the fitte@ iteration algorithm is used in order to produce an
approximation of the expected rewa@d(x,u) = Ey[r(x,u,w)]. Therefore, the considered training
set uses input/output pairs (denotédo')) where the inputs are the state-action pairs and the outputs
the observed rewards. In the subsequent iterations, only the outpes\d these input/output pairs
are updated using the value iteration based orQipdunction produced at the preceding step and
information about the reward and the successor state reached in ekech tup

It is important to realize that the successive calls to the supervised lealgmgthm are totally
independent. Hence, at each step it is possible to adapt the resolutamplexity) of the learned
model so as to reach the best bias/variance tradeoff at this step, givavatitable sample.

3.2 Algorithm Motivation

To motivate the algorithm, let us first consider the deterministic case. In thistbasystem dy-
namics and the reward signal depend only on the state and action at timgther words we have
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X+1 = (%, W) andry =r(x,w) and Egn (5) may be rewritten
Qn (X, u) = r(x,u) +yEp€z;l1J>QN_1(f(x, u),u). (14)

If we suppose that the functid@y_1 is known, we can use this latter equation and the set of four-
tuples # in order to determine the value @y for the state-action paired,ul),l = 1,2, .- #¢F.
We have indee@y (X, u}) =r! +pr€%>QN_1(X{+1,u’), sincex; = f(x,u}) andr! =r(x,ul).

We can thus build a training s€ts = {((x,u}),Qu(¥,u)),I =1,--- ,#F } and use a regression
algorithm in order to generalize this information to any unseen state-actioarpsiated in another
way, tofit a function approximator to this training set in order to get an approxim&ipaf Qy over
the whole state-action space. If we substit@efor Qu we can, by applying the same reasoning,
determine iterativelfDy 1, On.2, etc.

In the stochastic case, the evaluation of the right hand side of Eqn (d.4pfoe four-tuples
(%, W, rt,%+1) iS no longer equal t®Qn (X, W) but rather is the realization of a random variable
whose expectation iQn(x, ). Nevertheless, since a regression algorithm ustiakyeks an ap-
proximation of the conditional expectation of the output variable given thetsits application
to the training setZ’ S will still provide an approximation ofy(x,u) over the whole state-action
space.

3.3 Stopping Conditions

The stopping conditions are required to decide at which iteration (i.e., fatwialue ofN) the
process can be stopped. A simple way to stop the process is to defineia pniaximum number
of iterations. This can be done for example by noting that for a sequémimal policiesty, an
error bound on the sub-optimality in terms of number of iterations is given bipHogving equation

Y'Br
(1-y)*
Given the value oB; and a desired level of accuracy, one can then fix the maximum number of
iterations by computing the minimum value Mfsuch that the right hand side of this equation is
smaller than the tolerance fixéd.

Another possibility would be to stop the iterative process when the distaneedeQy and
On_1 drops below a certain value. Unfortunately, for some supervised lepafhjorithms there is
no guarantee that the sequenceQf-functions actually converges and hence this kind of conver-
gence criterion does not necessarily make sense in practice.

|98 — 9| < 2

(15)

3.4 Control Policy Derivation

When the stopping conditions - whatever they are - are reached, thedimabl policy, seen as an
approximation of the optimal stationary closed loop control policy is deriyed b

04, (x) = argmasdy (x,u). (16)

ueu

6. This is true in the case of least squares regression, i.e. in the jasitynaf regression methods.
7. Equation (15) gives an upper bound on the suboptimalityypfind not ofji,. By exploiting this upper bound
to determine a maximum number of iterations, we assume implicitlyjthas a good approximation qiy; (that

[ 9B — 34|, is small).
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When the action space is discrete, it is possible to compute the Qw(»e u) for each value
of u and then find the maximum. Nevertheless, in our experiments we have sometioptsdad
a different approach to handle discrete action spaces. It consispéittihg the training samples
according to the value af and of building the approximatio@N(x, u) by separately calling for
each value ofi € U the regression method on the corresponding subsample. In other waaolfs,
such model is induced from the subset of four-tuples whose value efttian isu, i.e.

fu = {(Xt7ut7rtaxt+l) € ’[]'—‘Ut = U}.

At the end, the action at some poinbf the state space is computed by applying to this state each
modelQn (x,u),u € U and looking for the value ai yielding the highest value.

When the action space is continuous, it may be difficult to compute the maximusuiakhp
because we can not make any a priori assumption about the shape@fuhetion (e.g. convex-
ity). However, taking into account particularities of the models learned bgriicplar supervised
learning method, it may be more or less easy to compute this value (see Secfiontdescase of
tree-based models).

3.5 Convergence of the Fitted) Iteration Algorithm

The fittedQ iteration algorithm is said to converge if there exists a func@nX x U — R such
thatve > O there exists a € N such that:

IOn—Qllw <& YN>n.

Convergence may be ensured if we use a supervised learning methddgitgn a sampl€ § =
{(i*,0Y),..., (i*7%,0%75)} produces at each call the model (proof in Appendix B):

#TS
f(l): Z k‘TS(ilvi)*olv (17)
I=1

with the kernelk;4(i',i) being the same from one call to the other within the fit@dteration
algorithn? and satisfying the normalizing condition:

H#HTS

I;|kr[5(i',i)| =1, Vi. (18)

Supervised learning methods satisfying these conditions are for examftendagest-neighbors
method, partition and multi-partition methods, locally weighted averaging, linednraulti-linear
interpolation. They are collectively referred to as kernel-based mettsegsGordon, 1999; Or-
moneit and Sen, 2002).

3.6 Related Work

As stated in the Introduction, the idea of trying to approximateQHenction from a set of four-
tuples by solving a sequence of supervised learning problems may abreéaiynd in Ormoneit and

8. This is true when the kernel does not depend on the output values trithing sample and when the supervised
learning method is deterministic.
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Sen (2002). This work however focuses on kernel-based methodsich it provides convergence
and consistency proofs, as well as a bias-variance characterizgfiwie in our formulation state
and action spaces are handled in a symmetric way and may both be contindisete, in their
work Ormoneit and Sen consider only discrete action spaces and ysarateekernel for each value
of the action.

The work of Ormoneit and Sen is related to earlier work aimed to solve la@e-dynamic pro-
gramming problems (see for example Bellman et al., 1973; Gordon, 199&iklisand Van Roy,
1996; Rust, 1997). The main difference is that in these works the vaglensents that compose
the optimal control problem are supposed to be known. We gave the fittedeQ iterationto our
algorithm given in Figure 1 to emphasize that it is a reinforcement learnirgloveof thefitted
value iterationalgorithm whose description may be found in Gordon (1999). Both algoritliens a
quite similar except that Gordon supposes that a complete generative madailadle? which is
a rather strong restriction with respect to the assumptions of the pregest pa

In his work, Gordon characterizes a class of supervised learning nsetbiedred to as averagers
that lead to convergence of his algorithm. These averagers are ingadieular family of kernels
as considered by Ormoneit and Sen. In Boyan and Moore (199%)useronvergence problems
that may plague the fitted value iteration algorithm when used with polynomiassign, back-
propagation, or locally weighted regression are shown and these algotaghe reinforcement
learning context. In their paper, Boyan and Moore propose also a wayetaome this problem
by relying on some kind of Monte-Carlo simulations. In Gordon (1995a)%indh et al. (1995)
on-line versions of the fitted value iteration algorithm used with averagengrasented.

In Moore and Atkeson (1993) and Ernst (2003), several reiefoent learning algorithms
closely related to the fitte@ iteration algorithm are given. These algorithms, known as model-
based algorithms, build explicitly from the set of observations a finite Matxeeision Process
(MDP) whose solution is then used to adjust the parameters of the approxiraatittecture used
to represent th&-function. When the states of the MDP correspond to a finite partition of the
original state space, it can be shown that these methods are strictlyleqtitieausing the fitted)
iteration algorithm with a regression method which consists of simply averagingutiput values
of the training samples belonging to a given cell of the partition.

In Boyan (2002), the Least-Squares Temporal-Difference (LST@»rithm is proposed. This
algorithm uses linear approximation architectures and learns the expetied of a policy. It is
similar to the fittedQ iteration algorithm combined with linear regression techniques on problems
for which the action space is composed of a single element. Lagoudakisaan(2B03a) intro-
duce the Least-Squares Policy Iteration (LSPI) which is an extensioBDDLto control problems.
The model-based algorithms in Ernst (2003) that consider represenssdites as approximation
architecture may equally be seen as an extension of LSTD to control preble

Finally, we would like to mention some recent works based on the idea oftredsi©f rein-
forcement learning to supervised learning (classification or regr@ssaitim various assumptions
concerning the available a priori knowledge (see e.g. Kakade anddran@002; Langford and
Zadrozny, 2004, and the references therein). For example, asstimaing generative model is
available'® an approach to solve the optimal control problem by reformulating it asweseg of

9. Gordon supposes that the functidits -,-), r(-,-,-), andRy(:|-,-) are known and considers training sets composed of
elements of the typex, maxe [r (x,u,w) +yj,z¢fll(f(x, u,w))]).
ue

10. A generative model allows simulating the effect of any action on thesyat any starting point; this is less restrictive
than thecompletegenerative model assumption of Gordon (footnote 9, page 511).
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standard supervised classification problems has been developedagaedbakis and Parr, 2003b;
Bagnell et al., 2003), taking its roots from the policy iteration algorithm, amatlassical dynamic
programming algorithm. Within this “reductionist” framework, the fitt@dteration algorithm can
be considered asraductionof reinforcement learning to a sequence of regression tasks, ingyired
the value iteration algorithm and usable in the rather broad context wheagdhable information

is given in the form of a set of four-tuples. THistch modecontext incorporates indeed both the
on-line context (since one can always store data gathered on-linastfdea finite time interval) as
well as the generative context (since one can always use the geaenatilel to generate a sample
of four-tuples) as particular cases.

4. Tree-Based Methods

We will consider in our experiments five different tree-based methodsaa#don the same top-
down approach as in the classical tree induction algorithm. Some of thesedmetiibproduce
from the training set a model composed of @iregleregression tree while the others build em
sembleof regression trees. We characterize first the models that will be prddhyadbese tree-based
methods and then explain how the different tree-based methods genessearthdels. Finally, we
will consider some specific aspects related to the use of tree-based meittodwvittedQ itera-
tion algorithm.

4.1 Characterization of the Models Produced

A regression tree partitions the input space into several regions anchitete a constant prediction
in each region of the partition by averaging the output values of the elenfehts tvaining setZ S
which belong to this region. L&(i) be the function that assigns to an inp(ite., a state-action pair)
the region of the patrtition it belongs to. A regression tree produces a riwtetan be described
by Egn (17) with the kernel defined by the expression:

lsiy (i)

ks (i) = =00
7s(1) Y ab)erslsi)(@)

(19)

wherelg(-) denotes the characteristic function of the redofig(i) = 1 if i € B and O otherwise).
When a tree-based method builds an ensemble of regression trees, tHdtrpootuces av-
erages the predictions of the different regression trees to make a fethtion. Suppose that a
tree-based ensemble method produgesgression trees and gets as input a trainingZsget Let
T Sm*t be the training set used to build théh regression tree (and therefore thi partition) and
Sn(i) be the function that assigns to edadhe region of themth partition it belongs to. The model
produced by the tree-based method may also be described by Eqn (1M evirnel defined now
by the expression:

e

Py Y (ab)etsmlsai (@)

(20)

It should also be noticed that kernels (19) and (20) satisfy the normabpingition (18).

11. These subsets may be obtained in different ways from the origaining set, e.g. by sampling with or without
replacement, but we can assume that each elemensgfis also an element af §.
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4.2 The Different Tree-Based Algorithms

All the tree induction algorithms that we consider are top-down in the sensththacreate their
partition by starting with a single subset and progressively refining it bitisg its subsets into
pieces. The tree-based algorithms that we consider differ by the nurhbegression trees they
build (one or an ensemble), the way they grow a tree from a training settfeenay the different
tests inside the tree are chosen) and, in the case of methods that produsemble of regression
trees, also the way they derive from the original training‘gstthe training set’l’ S, they use to
build a particular tree. They all consider binary splits of the type: t], i.e. “if i; smaller thart go

left else go right” where; represents thgth input (or jth attribute) of the input vectar In what
follows the split variables andij are referred to as the cut-point and the cut-direction (or attribute)
of the split (or test]i; <t].

We now describe the tree-based regression algorithms used in this paper.

4.2.1 Kb-TREE

In this method the regression tree is built from the training set by choosirayuth@oint at the local
median of the cut-direction so that the tree partitions the local training set intsubsets of the
same cardinality. The cut-directions alternate from one node to the othee dliriction of cut is

ij for the parent node, it is equal tp,; for the two children nodes if +1 < n with n the number

of possible cut-directions arigl otherwise. A node is a leaf (i.e., is not partitioned) if the training
sample corresponding to this node contains lessthgrtuples. In this method the tree structure is
independent of the output values of the training sample, i.e. it does nogelieom one iteration to
another of the fitte® iteration algorithm.

4.2.2 RRUNED CART TREE

The classical CART algorithm is used to grow completely the tree from the tgpgeh(Breiman
et al.,, 1984). This algorithm selects at a node the test (i.e., the cut-directibnud-point) that
maximizes the average variance reduction of the output variable (se&qgn Appendix A). The
tree is pruned according to the cost-complexity pruning algorithm with estimate by ten-fold
cross validation. Because of the score maximization and the post-prurerigedistructure depends
on the output values of the training sample; hence, it may change from osi@oiteto another.

4.2.3 TREEBAGGING

We refer here to the standard algorithm published by Breiman (1996).néengble oM trees is

built. Each tree of the ensemble is grown from a training set by first creatimgptstrap replica
(random sampling with replacement of the same number of elements) of thedraetiand then
building an unpruned CART tree using that replica. Compared to the P@#Bd Tree algorithm,

Tree Bagging often improves dramatically the accuracy of the model peddiog reducing its
variance but increases the computing times significantly. Note that duringethbuilding we also
stop splitting a node if the number of training samples in this node is lesighanT his algorithm

has therefore two parameters, the numidesf trees to build and the value of,.
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One single An ensemble of
regression tree is built  regression trees is built
Testsdo dependon the output CART Tree Bagging
values 0) of the (i,0) € 7§ Extra-Trees
Testsdo not dependon the output
values 0) of the(i,0) € 7§

Kd-Tree Totally Randomized Trees

Table 1: Main characteristics of the different tree-based algorithmsingbkd experiments.

4.2.4 XTRA-TREES

Besides Tree Bagging, several other methods to build tree ensembldsdesvproposed that often
improve the accuracy with respect to Tree Bagging (e.g. Random ForBstsman, 2001). In
this paper, we evaluate our recently developed algorithm that we calld‘Hx&es”, for extremely
randomized trees (Geurts et al., 2004). Like Tree Bagging, this algorithmksvioy building several
(M) trees. However, contrary to Tree Bagging which uses the standaRT @#gorithm to derive
the trees from a bootstrap sample, in the case of Extra-Trees, each lirgk isom the complete
original training set. To determine a test at a node, this algorithm séemis-directions at random
and for each cut-direction, a cut-point at random. It then computesafmaach of th& tests and
chooses among thegetests the one that maximizes the score. Again, the algorithm stops splitting
a node when the number of elements in this node is less than a paramgtdhree parameters are
associated to this algorithm: the numb&of trees to build, the numbét of candidate tests at each
node and the minimal leaf sizg,n. The detailed tree building procedure is given in Appendix A.

4.2.5 TOTALLY RANDOMIZED TREES

Totally Randomized Trees corresponds to the case of Extra-Treesthdn@arameteK is chosen
equal to one. Indeed, in this case the tests at the different nodesaenctotally randomly and
independently from the output values of the elements of the training set. If¢cthes algorithm is
equivalent to an algorithm that would build the tree structure totally at randitimout even looking
at the training set and then use the training set only to remove the tests that &agty branches
and decide when to stop the development of a branch (Geurts et al.,. 206i) algorithm can
therefore be degenerated in the context of the usage that we make ofis pager by freezing the
tree structure after the first iteration, just as the Kd-Trees.

4.2.6 DSCUSSION

Table 1 classifies the different tree-based algorithms considereddaug o two criteria: whether
they build one single or an ensemble of regression trees and whetherttheoteputed in the trees
depend on the output values of the elements of the training set. We will seegrpgbements that
these two criteria often characterize the results obtained.

Concerning the value of paramefdr (the number of trees to be built) we will use the same
value for Tree Bagging, Extra-Trees and Totally Randomized Treesetridequal to 50 (except in
Section 5.3.6 where we will assess its influence on the solution computed).
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For the Extra-Trees, experiments in Geurts et al. (2004) have shotangbad default value for
the parameteK in regression is actually the dimension of the input space. In all our expetsme
K will be set to this default value.

While pruning generally improves significantly the accuracy of single ssjpa trees, in the
context of ensemble methods it is commonly admitted that unpruned trees are Dhitds sug-
gested from the bias/variance tradeoff, more specifically becaussngneduces variance but in-
creases bias and since ensemble methods reduce very much the varidwoce wcreasing too
much bias, there is often no need for pruning trees in the context of efesemathods. However, in
high-noise conditions, pruning may be useful even with ensemble methbdeefdre, we will use
a cross-validation approach to automatically determine the valog;oin the context of ensemble
methods. In this case, pruning is carried out by selecting at random tvas thiithe elements of
TS, using the particular ensemble method with this smaller training set and determoningith
value ofny,, the ensemble minimizes the square error over the last third of the elements, Then
the ensemble method is run again on the whole training set using this vatyg, ¢6 produce the
final model. In our experiments, the resulting algorithm will have the same nartlfeariginal
ensemble method preceded by the tétraned(e.g. Pruned Tree Bagging). The same approach
will also be used to prune Kd-Trees.

4.3 Convergence of the Fitted) Iteration Algorithm

Since the models produced by the tree-based methods may be descrilbezkpyession of the type
(17) with the kernek(i',i) satisfying the normalizing condition (18), convergence of the fied
iteration algorithm can be ensured if the kerkgl(i',i) remains the same from one iteration to the
other. This latter condition is satisfied when the tree structures remain wgeghémoughout the
different iterations.

For the Kd-Tree algorithm which selects tests independently of the outiugtssaf the elements
of the training set, it can be readily seen that it will produce at each iterditeosame tree structure
if the minimum number of elements to split a leaf(,) is kept constant. This also implies that the
tree structure has just to be built at the first iteration and that in the sulrsieitrations, only the
values of the terminal leaves have to be refreshed. Refreshment mapdéylpropagating all the
elements of the new training set in the tree structure and associating to a tdeafrthe average
output value of the elements having reached this leaf.

For the totally randomized trees, the tests do not depend either on the oatpes wf the
elements of the training set but the algorithm being non-deterministic, it will ramtyze the same
tree structures at each call even if the training set and the minimum numblenodres (min) to
split a leaf are kept constant. However, since the tree structures aeindent from the output, it
is not necessary to refresh them from one iteration to the other. Henmay;, @xperiments, we will
build the set of totally randomized trees only at the first iteration and then efrlysh predictions
at terminal nodes at subsequent iterations. The tree structures @f®tadept constant from one
iteration to the other and this will ensure convergence.

4.4 No Divergence to Infinity

We say that the sequence of functi&g diverges to infinity if,\llimHQNHoo — 00,

With the tree-based methods considered in this paper, such divergeinéeity is impossible
since we can guarantee that, even for the tree-based methods for whiglsthchosen in the tree
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depend on the output values) (of the input-output pairs({,0)), the sequence oDn-functions
remains bounded. Indeed, the prediction value of a leaf being the aseahg of the outputs of the
elements of the training set that correspond to this leaf, we [FAM€X, U) [|e < Br + ]| On—1(X, U)]|oo
wbereBr is the bound of the rewards. And, sin(‘@@(x, u) = 0 everywhere, we therefore have
IQN(XU) [l < £5 YN €N,

However, we have observed in our experiments that for some otherva&gublearning meth-
ods, divergence to infinity problems were plaguing the fitReiteration algorithm (Section 5.3.3);
such problems have already been highlighted in the context of approxiyrzdenit programming

(Boyan and Moore, 1995).

4.5 Computation ofmaxJeUQN(x,u) when u Continuous

In the case of a single regression trég,(x, u) is a piecewise-constant function of its argument
when fixing the state value Thus, to determine ry@(\,(x, u), it is sufficient to compute the value
ue

of QN(X, u) for a finite number of values df, one in each hyperrectangle delimited by the values
of discretization thresholds found in the tree.

The same argument can be extended to ensembles of regression theeseiim this case, the
number of discretization thresholds might be much higher and this resolutiemgomight become
computationally inefficient.

5. Experiments

Before discussing our simulation results, we first give an overview oftest problems, of the
type of experiments carried out and of the different metrics used tosaseperformances of the
algorithms.

5.1 Overview

We consider five different problems, and for each of them we use the @tigeration algorithm
with the tree-based methods described in Section 4 and assess their abilivatd eam different
sets of four-tuples information about the optimal control policy.

5.1.1 TESTPROBLEMS

The first problem, referred to as the “Left or Right” control problens haone-dimensional state
space and a stochastic dynamics. Performances of tree-based me¢hitidsteated and compared
with grid-based methods.

Next we consider the “Car on the Hill"” test problem. Here we compare ouwrighgns in
depth with other methodk{nearest-neighbors, grid-based methods, a gradient version ohthe o
line Q-learning algorithm) in terms of accuracy and convergence propertieaals discuss CPU
considerations, analyze the influence of the number of trees built on ltt@apand the effect of
irrelevant state variables and continuous action spaces.

The third problem is the “Acrobot Swing Up” control problem. It is a falimensional and de-
terministic control problem. While in the first two problems the four-tuples anegded randomly
prior to learning, here we consider the case where the estimated#duced from the available
four-tuples is used to generate new four-tuples.
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The two last problems (“Bicycle Balancing” and “Bicycle Balancing and Ritlirare treated
together since they differ only in their reward function. They have a ssta@hdynamics, a seven-
dimensional state space and a two-dimensional control space. Herelknat the capability of our
method to handle rather challenging problems.

5.1.2 METRICS TOASSESSPERFORMANCES OF THEALGORITHMS

In our experiments, we will use the fittgd iteration algorithm with several types of supervised
learning methods as well as other algorithms Kiéearning or Watkin’sQ(A) with various ap-
proximation architectures. To rank performances of the various algoritienseed to define some
metrics to measure the quality of the solution they produce. Hereafter wevrthaalifferent met-
rics considered in this paper.

Expected return of a policy. To measure the quality of a solution given by a RL algorithm, we can
use the stationary policy it produces, compute the expected return of tiimats policy and say
that the higher this expected return is, the better the RL algorithm perforatiseRhan computing
the expected return for one single initial state, we define in our exampléstisiéial states named
X!, chosen independently from the set of four-tugfesand compute the average expected return of
the stationary policy over this set of initial states. This metric is referred toessctireof a policy
and is the most frequently used one in the examplgsidthe policy, its score is defined by:

score ofy = er;;;l =(X) (21)

To evaluate this expression, we estimate, for every initial stateX', J*(x) by Monte-Carlo sim-
ulations. If the control problem is deterministic, one simulation is enough to estiféte If the
control problem is stochastic, several simulations are carried out. FOLdfieor Right” control
problem, 100000 simulations are considered. For the “Bicycle Balancing” and “Bicyeluicing

and Riding” problems, whose dynamics is less stochastic and Monte-Carltagons computa-
tionally more demanding, 10 simulations are done. For the sake of compadtreessore of pis
represented in the figures BY.

Fulfilment of a specific task. The score of a policy assesses the quality of a policy through its
expected return. In the “Bicycle Balancing” control problem, we alsessthe quality of a policy
through its ability to avoid crashing the bicycle during a certain period of time. Simifar the
“Bicycle Balancing and Riding” control problem, we consider a criterionhef type “How often
does the policy manage to drive the bicycle, within a certain period of time, talefo

Bellman residual. While the two previous metrics were relying on the policy produced by the
RL algorithm, the metric described here relies on the approxir@afienction computed by the
RL algorithm. For a given functiof and a given state-action pdix,u), the Bellman residual is
defined to be the difference between the two sides of the Bellman equatiod, (B295), theQ-
function being the only function leading to a zero Bellman residual for es&te-action pair. In
our simulation, to estimate the quality of a functi@nwe exploit the Bellman residual concept by
associating t€) the mean square of the Bellman residual over thexéetU, value that will be
referred to as thBellman residual of). We have

Z(x,u)exi xU (Q(X, u) — (HQ) (X, u))Z.

Bellman residual of) = XU

(22)
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Figure 2: The “Left or Right” control problem.

This metric is only used in the “Left or Right” control problem to compare thaliguof the solu-

tions obtained. A metric relying on the score is not discriminant enough foctmgol problem,

since all the algorithms considered can easily learn a good approximatioa gptimal stationary
policy. Furthermore, for this control problem, the te(hh@)(x, u) in the right side of Eqn (22) is
estimated by drawing independently and for eacl) € X' x U, 100,000 values of according to

Pu(.|X,u) (see Eqn (7)).

In the figures, the Bellman residual Qfis represented bgt(Q,HQ).

5.2 The “Left or Right” Control Problem

We consider here the “Left or Right” optimal control problem whose igeedefinition is given in
Appendix C.1.

The main characteristics of the control problem are represented oreRguy point travels in
the interval[0, 10]. Two control actions are possible. One tends to drive the point to the(tigh®)
while the other to the lefti= —2). As long as the point stays inside the interval, only zero rewards
are observed. When the point leaves the interval, a terminal%tateached. If the point goes out
on the right side then a reward of 100 is obtained while it is twice less if it goesrothe left.

Even if going out on the right may finally lead to a better rewaids not necessarily equal to 2

everywhere since the importance of the reward signal obtainecdt afteps is weighted by a factor
yt=b = 0.75t-1),

5.2.1 FOUR-TUPLES GENERATION

To collect the four-tuples we observe 300 episodes of the system. R&ctile starts from an initial
state chosen at random|idy 10| and finishes when a terminal state is reached. During the episodes,
the actionu; selected at timé is chosen at random with equal probability among its two possible
valuesu = —2 andu = 2. The resulting sef is composed of 2010 four-tuples.

5.2.2 ME BASIC RESULTS

To illustrate the fitted iteration algorithm behavior we first use “Pruned CART Tree” as supetv
learning method. Elements of the sequence of functidg®btained are represented on Figure 3.
While the first functions of the sequence differ a lot, they gain in similaritiesrmi¥hencreases
which is confirmed by computing the distance $rbetween functionéN andQN,l (Figure 4a).
We observe that the distance rapidly decreases but, due to the facethaiglstructure is refreshed
at each iteration, never vanishes.

12. A terminal state can be seen as a regular state in which the system isastuédr which all the future rewards
obtained in the aftermath are zero. Note that the valu@dterminal stateu) is equal to OvN € N andVu e U.
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Figure 3: Representation oy for different values oN. The setf is composed of 2010 elements and the

supervised learning method used is Pruned CART Tree.
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Figure 4: Figure (a) represents the distance betw@randQy_1. Figure (b) provides the average return
obtained by the policyy while starting from an element of . Figure (c) represents the Bellman
residual ofQy.
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From the functiorQy we can determine the poligy States< for which Qy(x,2) > Qn(x, —2)
correspond to a value @ix) = 2 while fiy(x) = —2 if Qn(x,2) < Qn(x,—2). For examplep,
consists of choosing = —2 on the interval0,2.7[ andu = 2 on[2.7,10]. To associate a score to
each policyy,, we define a set of state€ = {0,1,2,---,10}, evaluatel (x) for each element of
this set and average the values obtained. The evolution of the sqqyenat™N is drawn on Figure
4b. We observe that the score first increases rapidly to become finallgtadorastant for values of
N greater than 5.

In order to assess the quality of the functidds computed, we have computed the Bellman
residual of thes@y-functions. We observe in Figure 4c that even if the Bellman residual tends
decrease wheN increases, it does not vanish even for large valué$. &y observing Table 2, one
can however see that by using 6251 four-tuples (1000 episodesy tadn 2010 (300 episodes),
the Bellman residual further decreases.

5.2.3 INFLUENCE OF THETREE-BASED METHOD

When dealing with such a system for which the dynamics is highly stochastiitingris necessary,
even for tree-based methods producing an ensemble of regressimrHigae 5 thus represents the
On-functions for different values dfl with the pruned version of the Extra-Trees. By comparing
this figure with Figure 3, we observe that the averaging of severalgredsices smoother functions
than single regression trees.

By way of illustration, we have also used the Extra-Trees algorithm with fudlyetbped trees
(i.e.,Nmin = 2) and computed thélo—function with the fittedQ iteration using the same set of four-
tuples as in the previous section. This function is represented in Figure fulbA grown trees are
able to match perfectly the output in the training set, they also catch the noiskisedplains the
chaotic nature of the resulting approximation.

Table 2 gathers the Bellman residual<af, obtained when using different tree-based methods
and this for different sets of four-tuples. Tree-based ensemble ngetiroduce smaller Bellman
residuals and among these methods, Extra-Trees behaves the besh Méoabserve that for any
of the tree-based methods used, the Bellman residual decreases witletbEsiz

Note that here, the policies produced by the different tree-basedthlgeroffer quite similar
scores. For example, the score is#when Pruned CART Tree is applied to the 2010 four-tuple
set and it does not differ from more than one percent with any of the ateéhods. We will see
that the main reason behind this, is the simplicity of the optimal control problesidsned and the
small dimensionality of the state space.

5.2.4 ATTED Q ITERATION AND BASIS FUNCTION METHODS

We now assess performances of the fitfeideration algorithm when combined with basis function
methods. Basis function methods suppose a relation of the type

nbBasis

o= 3 cio(i) (23)

=1

between the input and the output whegje= R and where the basis functiogg(i) are defined on
the input space and take their valuesRinThese basis functions form the approximation architec-
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Figure 5: Representation chN for different values oN. The setf is composed of 2010 elements and the
supervised learning method used is the Pruned Extra-Trees.

Tree-based #T
method 720 | 2010 | 6251
Qo Pruned CART Tree | 2.62| 1.96 | 1.29

100

Pruned Kd-Tree 194| 1.31| 0.76
Pruned Tree Bagging | 1.61| 0.79 | 0.67
Pruned Extra-Trees | 1.29 | 0.60 | 0.49
Pruned Tot. Rand. Trees1.55| 0.72 | 0.59

75.

50.

25.

Table 2: Bellman residual of)1o. Three different

00 sets of four-tuples are used. These sets
00 255 750 x have been generated by considering 100,
300 and 1000 episodes and are composed
Figure 6: Representation 0610 when Extra- respectively of 720, 2010 and 6251 four-
Trees is used with no pruning tuples.

ture. The training set is used to determine the values of the diffefemy solving the following
minimization problemt3

13. This minimization problem can be solved by building (W& S x nbBasi$ Y matrix with Yjj = @ (i"). 1 YTY
is invertible, then the minimization problem has a unique solutien(cy,Cy, - - -, Chpaasid given by the following
expressionc = (YTY)~1YTb with b € R*7S such thaby = o'. In order to overcome the possible problem of non-
invertibility of YTY that occurs when solution of (24) is not unique, we have add¥d Yothe strictly definite positive
matrix &I, whered is a small positive constant, before inverting it. The value v$ed in our experiments as solution
of (24) is therefore equal ¥ TY + 81 ) ~1YTb whered has been chosen equal t®01.
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Figure 7: FittedQ iteration with basis function methods. Two different typéapproximation architectures
are considered: piecewise-constant and piecewise-lgrés. 300 episodes are used to generate
F.

#7'S nbBasis
argmin SO cj@i(i)—d)2. (24)

(C1,C2,+ CnbBasig ERMPBASIS|I=1 (=1

We consider two different sets of basis functiaps The first set is defined by partitioning the
state space into a grid and by considering one basis function for eaatedjrilqual to the indicator
function of this cell. This leads to piecewise const@afunctions. The other type is defined by
partitioning the state space into a grid, triangulating every element of the gtidasidering that
Q(x,u) = Y veverticegx) W (X, v)Q(v,u) whereVerticegx) is the set of vertices of the hypertriangle
belongs to antlV(x, V) is the barycentric coordinate gfthat corresponds ta This leads to a set of
overlapping piecewise linear basis functions, and yields a piecewise Ane€larontinuous model.
In this paper, these approximation architectures are respectivelyeefier aspiecewise-constant
grid andpiecewise-linear gridThe reader can refer to Ernst (2003) for more information.

To assess performances of fit@®dteration combined with piecewise-constant and piecewise-
linear grids as approximation architectures, we have used severakgdllitions to partition the
interval [0,10] (a 5 grid, a 6 grid,--, a 50 grid). For each grid, we have used fit@dteration
with each of the two types of approximation architectures and com@ﬁ@dT he Bellman resid-
uals obtained by the differei@io-functions are represented on Figure 7a. We can see that basis
function methods with piecewise-constant grids perform systematicallyewioas Extra-Trees, the
tree-based method that produces the lowest Bellman residual. This typeroikanation archi-
tecture leads to the lowest Bellman residual for a 28 grid and the corr@isgo@lo—function is
sketched in Figure 7b. Basis function methods with piecewise-linear gids their lowest Bell-
man residual for a 7 grid, Bellman residual that is smaller than the one obtaynEdtra-Trees.
The corresponding smooth@o-function is drawn on Figure 7b.

Even if piecewise-linear grids were able to produce on this example bedtdtsréhan the tree-
based methods, it should however be noted that it has been achievediry the grid resolution
and that this resolution strongly influences the quality of the solution. We veilbséow that, as the
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state space dimensionality increases, piecewise-constant or piecewiediids do not compete
anymore with tree-based methods. Furthermore, we will also observeititaiyise-linear grids
may lead to divergence to infinity of the fitt€diteration algorithm (see Section 5.3.3).

5.3 The “Car on the Hill” Control Problem

We consider here the “Car on the Hill” optimal control problem whose peeésinition is given in
Appendix C.2.

A car modeled by a point mass is traveling on a hill (the shape of which is fgiyehe func-
tion Hill (p) of Figure 8b). The actiom acts directly on the acceleration of the car (Eqn (31),
Appendix C) and can only assume two extreme values (full acceleratisr@] or full deceleration
(u= —4)). The control problem objective is roughly to bring the car in a minimum timeeddp
of the hill (p =1 in Figure 8b) while preventing the positignof the car to become smaller than
—1 and its speedto go outside the interval-3, 3]. This problem has a (continuous) state space of
dimension two (the positiop and the speedof the car) represented on Figure 8a.

Note that by exploiting the particular structure of the system dynamics andwaed function
of this optimal control problem, it is possible to determine with a reasonable @mbcwmputation
the exact value al¥ (Q) for any statex (state-action paix, u)).1*

S
3.

2 Hill (p)

1 O4Resistance
00 02 u
-1 mg

-0.2

-1 -5 0.0 05 1 p

Representation dflill (p) (shape of the hill) and

(2) X\ {terminal statg (b) of the different forces applied to the car.

Figure 8: The “Car on the Hill” control problem.

5.3.1 ME BASIC RESULTS

To generate the four-tuples we consider episodes starting from the séialestate corresponding
to the car stopped at the bottom of the hill (i{g,s) = (—0.5,0) ) and stopping when the car leaves
the region represented on Figure 8a (i.e., when a terminal state is reathedch episode, the
actionuy; at each time step is chosen with equal probability among its two possible waides4
andu = 4. We consider 1000 episodes. The corresponding dstcomposed of 58090 four-tuples.
Note that during these 1000 episodes the rewéxdu;, w;) = 1 (corresponding to an arrival of the
car at the top of the hill with a speed comprised-i8, 3]) has been observed only 18 times.

14. To compute]g (x), we determine by successive trials the smallest valuie fof which one of the two following
conditions is satisfied (i) at least one sequence of actions of lérigdds to a reward equal to 1 whehn= x (ii) all
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when the policyg, is used to control the system.
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Figure 10: Figure (a) represents the distance betw@grandQy_1. Figure (b) provides the average return
obtained by the policyy; while starting from an element of . Figure (c) represents the distance
betweerQy andQ as well as the Bellman residual @ as a function ofN (distance between
Qn andH Q).

We first use Tree Bagging as the supervised learning method. As the sgtioe is binary, we
again model the functior@y (x, —4) andQy (x, 4) by two ensembles of 50 trees each, apgh = 2.
The policy |} so obtained is represented on Figure 9a. Black bullets represent statebich
Qu1(x, —4) > Q1(X 4), white bullets states for whioB: (x, —4) < Q1(x,4) and grey bullets states for
which Ql(x, —4) = Ql(x, 4). Successive policigg, for increasingN are given on Figures 9b-9e.

On Figure 9f, we have represented the trajectory obtained when stadingd, p) = (—0.5,0)
and using the policyZ, to control the system. Since, for this particular state the computatidf) of
gives the same value éﬁo, the trajectory drawn is actually an optimal one.

Figure 10a shows the evolution of distance betw&grandQy_1 with N. Notice that while a
monotonic decrease of the distance was observed with the “Left or Rightfat problem (Figure
4a), it is not the case anymore here. The distance first decreasdisesnffomN = 5 suddenly
increases to reach a maximum foe= 19 and to finally redecrease to an almost zero value. Actually,
this apparently strange behavior is due to the way the distance is evaluated thre nature of
the control problem. Indeed, we have chosen to use in the distance coimptite state-action
pairs (X,u) | = 1,--- ,#F from the set of four-tuples. Since most of the statesre located
around the initial stat¢p,s) = (—0.5,0) (see Figure 11), the distance is mostly determined by
variations betwee@N and QN_l in this latter region. This remark combined with the fact that
the algorithm needs a certain number of iterations before obtaining valu@g afound(p,s) =
(—0.5,0) different from zero explains this sudden increase of the dist&hce.

To compute policy scores, we consider the Xet X' = {(p,s) € X\ {X}|3i,j € Z|(p,s) =
(0.125%i,0.375% j)} and evaluate the average vaIueJ@‘f( X) over this set. The evolution of the

the sequences of actions of lenggtfead to a reward equal tel whenxg = x. Let kyin be this smallest value &
ThenJ¥ (x) is equal toymn—1 if condition (i) is satisfied whek = knyin and—y<mn—1 otherwise.

15. The reason foQy being equal to zero arour{g,s) = (—0.5,0) for small values oN is that when the system starts
from (—0.5,0) several steps are needed to observe non zero rewards whatepelithieised.
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Figure 12: Representation of th@-function and 0fs0. Os0is computed by using fitte@ iteration together
with Tree Bagging.

score for increasing values Nfis represented in Figure 10b. We see that the score rapidly increases
to finally oscillate slightly around a value close t295. The score gfi* being equal to (860, we

see that the policigs"are suboptimal. To get an idea of how different is@re-function computed

by fitted Q iteration from the tru&-function, we have represented both functions on Figure 12. As
we may observe, some significant differences exist between themjabpiecareas were very few
information has been generated, like the state space area ateufidl, 3).
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Figure 13: Influence of the supervised learning method on the solutibor each supervised learning
methonN(x, —4) and QN(X, 4) are modeled separately. For Tree Bagging, Extra-Trees, and
Totally Randomized Trees, the trees are developed conpletgin = 2). The distance used in
the nearest neighbors computation is the Euclidean distanc

5.3.2 INFLUENCE OF THETREE-BASED METHOD AND COMPARISON WITHKNN.

Figure 13a sketches the scores obtained by the po|iiegen using different tree-based methods
which use the output values)(of the input-output pair({,0)) of the training set to compute the
tests. It is clear that Tree Bagging and Extra-Trees are significantlgrisugo Pruned CART
Tree. Figure 13b compares the performances of tree-based methedsdh the tests are chosen
independently of the output values. We observe that even when usingltheofny,, leading to
the best score, Kd-Tree does not perform better than Totally Randdmigzes. On Figure 13c, we
have drawn the scores obtained witk-aearest-neighbor&IiIN) technique.

Notice that the score curves corresponding to khreearest-neighbors, Totally Randomized
Trees, and Kd-Tree methods stabilize indeed after a certain number tibitsra

To compare more systematically the performances of all these superviseiddealgorithms,
we have computed for each one of them and for several sets of fpl@stthe score gi,. Results
are gathered in Table 3. A first remark suggested by this table and wHathfooall the supervised
learning methods is that the more episodes are used to generate the fesyttuplarger the score
of the induced policy. Compared to the other methods, performances @Bbgging and Extra-
Trees are excellent on the two largest sets. Extra-Trees still givekrgsolts on the smallest set but
this is not true for Tree Bagging. The strong deterioration of Tree Bagggnformances is mainly
due to the fact that when dealing with this set of four-tuples, informationtabe optimal solution
is really scarce (only two four-tuples correspond to a reward of 1) simde a training instance
has 67% chance of being present in a bootstrap sample, Tree Bagginglisicards some critical
information. On the other hand, Extra-Trees and Totally Randomized Wieiet use the whole
training set to build each tree do not suffer from this problem. Hencee tlvas methods behave
particularly well compared to Tree Bagging on the smallest set.

One should also observe from Table 3 that even when used with the ¥dttlead produces the
largest scorekNN is far from being able to reach for example the performances of the-Hxé&es.
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Nb of episodes used
to generatef
1000 | 300 100
Kd-Tree (BeShmin) 0.17 | 0.16| -0.06
Pruned CART Tree 0.23 | 0.13| -0.26

Supervised learning
method

Tree Bagging 0.30 | 0.24| -0.09
Extra-Trees 0.29 | 0.25| 0.12
Totally Randomized Trees 0.18 | 0.14 | 0.11
kNN (Bestk) 0.23 | 0.18| 0.02

Table 3:Score ofi, for different set of four-tuples and supervised learninghods.

5.3.3 HTTED Q ITERATION AND BASIS FUNCTION METHODS

In Section 5.2.4, when dealing with the “Left or Right” control problem, basietion methods
with two types of approximation architectures, piecewise-constant orvpigedinear grids, have
been used in combination with the fitt€riteration algorithm.

In this section, the same types of approximation architectures are also@musahd, for each
type of approximation architecture, the poligy, has been computed for different grid resolutions
(a 10x 10 grid, a 11x 11 grid,---, a 50x 50 grid). The score obtained by each policy is repre-
sented on Figure 14a. The horizontal line shows the score previouslined on the same sample
of four-tuples by Tree Bagging. As we may see, whatever the grid cemrsidboth approximation
architectures lead to worse results than Tree Bagging, the best peanedbased method. The
highest score is obtained by a 488 grid for the piecewise-constant approximation architecture
and by a 14 14 grid for the piecewise-linear approximation architecture. These tweaigicores
are respectively @1 and 025, while Tree Bagging was producing a score (00 The two cor-
responding policies are sketched in Figures 14b and 14c. Black palygpnesent areas where
Q(x —4) > Q(x 4), white polygons areas whe€¥x, —4) < Q(x,4) and grey polygons areas where
Q(x, —4) = Q(x,4).

When looking at the score curve corresponding to piecewise-lineas gsiipproximation ar-
chitectures, one may be surprised to note its harsh aspect. For soménigitige of approximation
architecture leads to some good results while by varying slightly the grid ses¢tiie may strongly
deteriorate. This strong deterioration of the score is due to fact thabifoe grid sizes, the fitte@
iteration actually diverges to infinity while it is not the case for other grid sib#gergence to in-
finity of the algorithm is illustrated on Figures 15a and 15c where we havendia a 12x 12 grid
the distance betweeQy andQn_1, On andQ, andQy andHQy. Remark that a logarithmic scale
has been used for the y-axis. When using Tree Bagging in the inner fabp &ttedQ iteration,
similar graphics have been drawn (Figure 10) and the reader may reéfemtofor comparison.

5.3.4 (OMPARISON WITHQ-LEARNING

In this section we use a gradient descent version of the sta@drning algorithm to compute
the c; parameters of the approximation architectures of Section 5.3.3. The d#gregectiona
used inside this algorithm is chosen equal tb 8nd the estimate of th@-function is initialized
to O everywhere. This latter being refreshed by this algorithm on a f@le-toy four-tuple basis,
we have chosen to use each elemenfabnly once to refresh the estimate of efunction. The
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Figure 14: FittedQ iteration with basis function methods. Two different typéapproximation architecture
are considered: piecewise-constant and piecewise-lgrets. 7 is composed of the four-tuples
gathered during 1000 episodes.
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Figure 15: Fitted Q iteration algorithm with basis function methods. A122 piecewise-linear grid is the
approximation architecture considered. The sequen@dtinctionsdiverges to infinity
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Figure 16: Q-learning with piecewise-constant and piecewise-lineatsgas approximation architectures.
Each element off is used once to refresh the estimate of@xtinction. The seff is composed
of the four-tuples gathered during 1000 episodes.

main motivation for this is to compare the performances of the fifiération algorithm with an
algorithm that does not require to store the four-tupfes.

The scores obtained b@-learning for the two types of approximation architectures and for
different grid sizes are reported on Figure 16a. Figure 16b (1fcesents the policies that have
led, by screening different grid sizes, to the highest score whenpiss€onstant grids (piecewise-
linear grids) are the approximation architectures considered. By corgdagare 16a with Figure
14a, it is obvious that fitte® iteration exploits more effectively the set of four-tuples th@n
learning. In particular, the highest score i2 Dfor fittedQ iteration while it is only of 004 for Q-
learning. If we compare the score curves corresponding to piecéwese-grids as approximation
architectures, we observe also that the highest score produced th@fiteration (over the different
grids), is higher than the highest score produce@Hgarning. However, when fitte@ iteration is
plagued with some divergence to infinity problems, as illustrated on Figuiierh8y lead to worse
results tharQ-learning.

Observe that even when considering Q@0 episodes witlQ-learning, we still obtain worse
scores than the one produced by Tree Bagging with 1000 episode=dinthe highest score pro-

16. Performances of the gradient descent version oftearningalgorithm could be improved by processing several
times each four-tuple to refresh the estimate of@hkinction, for example by using the experience replay technique
of Lin (1993). This however requires to store the four-tuples.

It should also be noted that if a piecewise-constant grid is the approximatéhitecture considered, if each
element of F is used an infinite number of times to refresh the estimate of}fenction and if the sequence of
as satisfies the stochastic approximation condition (5¢.,; o — % and zleaﬁ < o, Ok being the value oft
thekth times the estimate of tH@-function is refreshed), then tlig-function estimated by th@-learning algorithm
would be the same as the one estimated by fifié@ration using the same piecewise-constant grid as approximation
architecture. This can be seen by noting that in such condition®Q-flo@ction estimated by-learning would be
the same as the one estimated by a model-based algorithm using the safsee#iuinst (2003), page 131 for the
proof) which in turn can be shown to be equivalent to fit@gderation (see Ernst et al., 2005).
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Figure 17: Score ofit, when four-tuples are gathered during 1000 episodes and samables that do not
contain any information about the position and the speetetar are added to the state vector.

duced byQ-learning with 10000 episodes and over the different grid sizes,. 230f piecewise-
constant grids are considered as approximation architectures.2ndod piecewise-linear grids,
compared to a score of 3D for Tree Bagging with 1000 episodes.

At this point, one may wonder whether the poor performancég-lgfarning are due to the fact
that it is used without eligibility traces. To answer this question, we havassd¢he performances
of Watkin’s Q(A) algorithm (Watkins, 1989) that combin€slearning with eligibility traces.” The
degree of correctiom is chosen, as previously, equal tdlGand the value ol is set equal to
0.95. This algorithm has been combined with piecewise-constant grids @t effisodes have
been considered. The best score obtained over the different gridgiad to—0.05 while it was
slightly higher (004) for Q-learning.

5.3.5 ROBUSTNESS WITHRESPECT TOIRRELEVANT VARIABLES

In this section we compare the robustness of the tree-based regressimusnanckNN with re-
spect to the addition of irrelevant variables. Indeed, in many practicdicappns the elementary
variables which compose the state vector are not necessarily all of theirs@meance in deter-
mining the optimal control action. Thus, some variables may be of paramounttanpe, while
some others may influence only weakly or even sometimes not at all the optintedico

On Figure 17, we have drawn the evolution of the score when usingtiples gathered during
1000 episodes and adding progressively irrelevant variables to teevstztor® It is clear that
not all the methods are equally robust to the introduction of irrelevanthlaga In particular, we
observe that the three methods for which the approximation architecturejsindent of the output
variable are not robust: tHe&NN presents the fastest deterioration, followed by Kd-Tree and Totally
Randomized Trees. The latter is more robust because it averagevenat $ees, which gives the
relevant variables a better chance to be taken into account in the model.

17. In Watkin’sQ(A), accumulating traces are considered and eligibility traces are cut when-greedy action is
chosen. Remark that by not cutting the eligibility traces when a non-graetityn is selected, we have obtained
worse results.

18. See Section C.2 for the description of the irrelevant variables dgeam
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On the other hand, the methods which take into account the output variabiesriapproxima-
tion architecture are all significantly more robust than the former ones. 4ii@m, Tree Bagging
and Extra-Trees which are based on the averaging of several teeelsrenst totally immune, since
even with 10 irrelevant variables (leading to the a 12-dimensional inpoe¥plaeir score decrease
is almost insignificant.

This experiment shows that the regression tree based ensemble methddaddamttheir kernel
to the output variable may have a strong advantage in terms of robusteessatthods with a kernel
which is independent of the output, even if these latter have nicer canagroperties.

5.3.6 INFLUENCE OF THENUMBER OF REGRESSIONTREES IN AN ENSEMBLE

In this paper, we have chosen to build ensembles of regression treeessuhgf 50 treed = 50,
Section 4.2), a number of elements which, according to our simulations, isdacggyh to ensure
that accuracy of the models produced could not be improved significanthckeasing it. In order
to highlight the influence oM on the quality of the solution obtained, we have drawn on Figure
18, for the different regression tree based ensemble methods, the auidhigy solution obtained
as a function oM. We observe that the score grows rapidly wilh especially with Extra-Trees
and Tree Bagging in which cases a valuevbt= 10 would have been sufficient to obtain a good
solution.

Note that since the CPU times required to compute the solution grow linearly withuthbar
of trees built, computational requirements of the regression tree basedtdasaethods could be
adjusted by choosing a value lgf.

o Extra-Trees  Tree Bagging
0.25]
0.2]

0.15|

0.1
0.0s| Totally Randomized Trees

0.0

10 2 %0 4 Nb of trees
built (M)

—0.05|

—0.1]

Figure 18: Evolution of the score ofif, with the number of trees built7 is composed of the four-tuples
gathered during 300 episodes.

5.3.7 CAR ON THE HILL WiITH CONTINUOUSACTION SPACE

To illustrate the use of the fitte@ iteration algorithm with continuous action spaces we consider
hereU = [—4,4] rather than{ —4,4}. We use one-step episodes Wik, Up) drawn at random with
uniform probability inX x U to generate a seff of 50,000 four-tuples and use Tree Bagging with 50
trees as supervised learning method. We have approximated the maximizaidhegontinuous
action space needed during the training sample refreshment step (sé&3rgRigure 1) by an
exhaustive search overe {—4,-3,---,3,4}. The policy|i, thus obtained by our algorithm after
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Figure 19: Car on the Hill with continuous action space. Tree Baggingsisd on one-step episodes with
(X0, Up) drawn at random iX x U are used to generate the four-tuples.

50 iterations is represented on Figure 19a, where black bullets are useprégent states for
which [I5,(x) is negative, white ones whei(x) is positive. The size of a bullet is proportional to
the absolute value of the control signgad,(x)|. We see that the control policy obtained is not far
from a “bang-bang” policy.

To compare these results with those obtained in similar conditions with a disctiete sigace,
we have made two additional experiments, where the action space is resigeiado the extreme
values, i.eu € {—4,4}. The two variants differ in the way th@y-functions are modeled. Namely,
in the first case one single model is learned wheigeincluded in the input variables whereas in the
second case one model is learned per possible valug.ef one model foQy(x, —4) and one for
Qn(x,4). All experiments are carried out for an increasing number of samplea &red number
of iterations N = 50) and bagged treebl(= 50). The three curves of Figure 19b show the resulting
scores. The two upper curves correspond to the score of the pgliopfained when considering a
discrete action spaté = {—4,4}. We observe that both curves are close to each other and dominate
the “Continuous action space” scores. Obviously the discrete appedatored because of the
“bang-bang” nature of the problem; nevertheless, the continuous asgame approach is able to
provide results of comparable qualify.

5.3.8 GOMPUTATIONAL COMPLEXITY AND CPU TiIME CONSIDERATIONS

Table 4 gathers the CPU times required by the fi@ateration algorithm to carry out 50 iterations
(i.e., to computeég)o(x, u)) for different types of supervised learning methods and differemst®e
We have also given in the same table the repartition of the CPU times between thesksdhe
algorithm has to perform, namely the task which consists of building the traieiisg(evaluation
of Eqns (12) and (13) for alle {1,2,--- ,#7 }) and the task which consists of building the models
from the training sets. These two tasks are referred to hereafterctegbeas the “Training Set

19. The bang-bang nature was also observed in Smart and Kaelb008)(2vhere continuous and a discrete action
spaces are treated on the “Car on the Hill” problem, with qualitatively the sesoidts.
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Building” (TSB) task and the “Model Building” (MB) task. When Kd-Tree Totally Randomized
Trees are used, each tree structure is frozen after the first iteratimménthe value of its terminal
nodes are refreshed. The supervised learning technique referirethe table askNN smart” is a
smart implementation the fitte@ iteration algorithm when used witkNN in the sense that the
nearest neighbors thl are determined only once and not recomputed at each subsequentriteratio
of the algorithm.

CPU times consumed by the Models Building (MB)

S;Z?rr]\i/rl]zed and Training Sets Building (TSB) tasks
algorithm #J = 5000 #¢ = 10000 #F — 20000

MB | TSB | Total | MB | TSB | Total | MB TSB Total
Kd-Tree Qmin=4) [0.01] 0.39 | 0.40 | 0.04| 091 | 095 | 0.06 | 2.05 2.11
Pruned CART Treel16.6| 0.3 | 16.9 | 424 | 0.8 | 43.2 | 95.7 1.6 97.3
Tree Bagging |97.8| 54.0 | 151.8|219.7| 142.3| 362.0| 474.4| 333.7 | 808.1
Extra-Trees |24.6| 55.5 | 80.1 | 51.0| 145.8| 196.8|105.72| 337.48| 443.2
Totally Rand. Trees0.4 | 67.8 | 68.2 | 0.8 | 165.3| 166.2| 1.7 | 407.5 | 409.2
kNN 0.0 11032.211032.2] 0.0 |4096.2 4096.21 0.0 |16537.7 16537.7

KNN smart 00| 210 | 21.0| 00 | 83.0| 83.0| 0.0 | 3324 | 3324

Table 4: CPU times (in seconds on a Pentium-1V, 2.4GHz, 1GB, Linuglieed to comput€so. For each
of the supervised learning methcﬁf{.(x, —4) andQN(x7 4) have been modeled separately. 50 trees
are used with Tree Bagging, Extra-Trees and Totally Randediirees and the value lofor KNN
is 2.

By analyzing the table, the following remarks apply:

e CPU times required to build the training sets are non negligible with respect toti@feld for
building the models (except for Pruned CART Tree which produces amysingle regression
tree). In the case of Extra-Trees, Totally Randomized Tree&ldNg training set update is even
the dominant task in terms of CPU times.

e Kd-Tree is (by far) the fastest method, even faster than Pruned CA&EWhich produces also
one single tree. This is due to the fact that the MB task is really inexpenbideed, it just
requires building one single tree structure at the first iteration and heifteterminal nodes in
the aftermath.

e Concerning Pruned CART Tree, it may be noticed that tree pruning bfotdreross validation
requires to build in total eleven trees which explains why the CPU times for bgibntrees
with Tree Bagging is about five times greater than the CPU times required fae®ICART
Tree.

e The MB task is about four times faster with Extra-Trees than with Tree Bggbacause Extra-
Trees only computes a small numb&?) (of test scores, while CART searches for an optimal
threshold for each input variable. Note that the trees produced by ttie-Esees algorithm
are slightly more complex, which explains why the TSB task is slightly more time caingu
On the two largest training sets, Extra-Trees leads to almost 50 % less CPUtliame$ree

Bagging.
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e The MB task for Totally Randomized Trees is much faster than the MB taskxXwaHrees,
mainly because the totally randomized tree structures are built only at thiefiegton. Note
that, when totally randomized trees are built at the first iteration, brancélafevent is not
stopped when the elements of the local training set have the same valuesdécean not
be assumed that these elements would still have the same value in subseqatonste This
also implies that totally randomized trees are more complex than trees built by TEg#s and
explains why the TSB task with Totally Randomized Trees is more time consuming.

e Full kNN is the slowest method. However, its smart implementation is almost 50 times (the
number of iterations realized by the algorithm) faster than the naive onee préisent case, itis
even faster than the methods based on regression trees ensemblegeitHasviés computational
complexity (in both implementations) is quadratic with respect to the size of the gasein
while it is only slightly super-linear for tree-based methods, its advantaigklgwanishes when
the training set size increases.

5.4 The “Acrobot Swing Up” Control Problem

Figure 20: Representation of the Acrobot.

We consider here the “Acrobot Swing Up” control problem whoseipeedefinition is given in
Appendix C.3.

The Acrobot is a two-link underactuated robot, depicted in Figure 20.s€hend joint applies
a torque (represented ly), while the first joint does not. The system has four continuous state
variables: two joint positiong9¢ and6,) and two joint veIocitiesQl andéz). This system has been
extensively studied by control engineers (e.g. Spong, 1994) as svelaahine learning researchers
(e.g. Yoshimoto et al., 1999).

We have stated this control problem so that the optimal stationary policy bitiegacrobot
quickly into a specified neighborhood of its unstable inverted position, aallydas close as pos-
sible to this latter position. Thus, the reward signal is equal to zero excegt this neighborhood
is reached, in which case it is positive (see Egn (44) in Appendix C.3).tdigqueu can only take
two values:—5 and 5.
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5.4.1 FOUR-TUPLES GENERATION

To generate the four-tuples we have considered 2000 episodes sftaniman initial state chosen at
random in{(61,05,01,08,) € R4| 8; € [T+ 1, 11— 1],08, = 6; = 6, = 0} and finishing whet = 100
or earlier if the terminal state is reached beféfte.

Two types of strategies are used here to control the system, leading to terewlifsets of four-
tuples. The first one is the same as in the previous examples: at eachtinstsydtem is controlled
by using a policy that selects actions fully at random. The second strateggvhr interleaves the
sequence of four-tuples generation with the computation of an approxi@iftaction from the
four-tuples already generated and uses a policy that exploitQthisiction to control the system
while generating additional four-tuples. More precisely, it generatetiveuples according to the
following proceduré?!

e Initialize Q to zero everywhere and to the empty set;
e Repeat 20 times:

— use are-greedy policy fronQ to generate 100 episodes and add the resulting four-tuples
to F;

— use the fittedQ iteration algorithm to build a new approximati(ﬁ.u from 7 and se
to QN .

wheree = 0.1 and where the fitte@ iteration algorithm is combined with the Extra-Treagif = 2,
K =5, M = 50) algorithm and iterates 100 times.

The random policy strategy produces a set of four-tuples composE2B#37 elements while
154, 345 four-tuples compose the set corresponding ta-tipeeedy policy.

Note that since the stat¢8;,0,,01,6,) and (61 + 2kiTt, 02 + 2koTt, 81, 82) ki, ko € Z are equiv-
alent from a physical point of view, we have, before using the fopleias input of the fitte®
iteration algorithm, added or subtracted to the value®; @nd6, a multiple of 2tto guarantee that
these values belong to the interyalrt, 17. A similar transformation is also carried out on each state
(61,02,01,6,) before it is used as input of a poligg (X).

5.4.2 SMULATION RESULTS

First, we consider the set of four-tuples gathered when using-tireedy policy to control the
system. We have represented on Figure 21 the evolution of the Acrobtrigtaith zero speed in
a downward position and being controlled by the poligyoWhen the fitted iteration algorithm is
used with Extra-Trees. As we observe, the control policy computed reaniagring the Acrobot
close to its unstable equilibrium position.

In order to attribute a score to a polipy, we define a set

Xi = {(91762761762) S R4’el € {—2, —:I.g7 v ,2},9261 = 62 = 0}’

evaluateJi (x) for each elemenx of this set and average the values obtained. The evolution of
the score off, with N for different tree-based methods is drawn on Figure 22. Extra-gees

20. We say that a terminal state is reached when the Acrobot has dethehirget neighborhood of the unstable equi-
librium set.

21. The e-greedy policy chooses with probability 1€ the control actionw; at random in the sef{u € Uju =
arg maxcu Q(xh u)}) and with probabilitye at random irlJ.
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Figure 21: A typical control sequence with a learned policy. The Acttodtarts with zero speed in a down-
ward position. Its position and the applied control actiomrapresented at successive time steps.
The last step corresponds to a terminal state.
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Figure 22: Score ofi, when using the set gen-

"10 "30 "50 "70 " 90 N

erated by the-greedy policy.

Table 5: Score of}f;,, for the two sets of four-

tuples and different tree-based meth-

ods.

the best score while the score of Tree Bagging seems to oscillate aroundltleeof the score
corresponding to Totally Randomized Trees.

The score obtained by, for the different tree-based methods and the different sets of four-
tuples is represented in Table 5. One may observe, once again, that methiocti build an en-
semble of regression trees perform much better. Surprisingly, Totallgd®aized Trees behaves
well compared to Tree Bagging and to a lesser extent to Extra-Trees.e(hér hand, the single
tree methods offer rather poor performances. Note that for Kd-Wedave computef;,,and its
associated score for each valuengf, € {2,3,4,5,10,20,---,100} and reported in the Table 5 the
highest score thus obtained.

We can also observe from this table that the scores obtained while usingttbifeur-tuples
corresponding to the totally random policy are much worse than those aibtaimen using an
e-greedy policy. This is certainly because the use of a totally random pokadslto very little
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information along the optimal trajectories starting from elementX'ofIn particular, out of the
2000 episodes used to generate the set of four-tuples, only 21 marragetidhe goal region. Note
also that while Extra-Trees remains superior, Tree Bagging offers thispoueer performances
than Totally Randomized Trees.

5.5 The Bicycle

We consider two control problems related to a bicycle which moves at casgieed on a horizontal
plane (Figure 23). For the first problem, the agent has to learn how todeathe bicycle. For the
second problem, he has not only to learn how to balance the bicycle buth@isto drive it to a
specific goal. The exact definitions of the two optimal control problems retat¢hese two tasks
are given in Appendix C.42

These two optimal control problems have the same system dynamics andodiffdoy their
reward function. The system dynamics is composed of seven variabtes. aFe related to the
bicycle itself and three to the position of the bicycle on the plane. The statblarielated to the
bicycle arew (the angle from vertical to the bicycled, 8 (the angle the handlebars are displaced
from normal) and. If |w| becomes larger than 12 degrees, then the bicycle is supposed to have
fallen down and a terminal state is reached. The three state variables teldted position of
the bicycle on the plane are the coordinatesyy,) of the contact point of the back tire with the
horizontal plane and the angle formed by the bicycle frame and the x-axis. The actions are
the torqueT applied to the handlebars (discretized{te2,0,2}) and the displacement of the
rider (discretized td —0.02,0,0.02}). The noise in the system is a uniformly distributed term in
[—0.02,0.02] added to the displacement component action

As is usually the case when dealing with these bicycle control problems, ppose that the
state variables, andy, cannot be observed. Since these two state variables do not interveee in th
dynamics of the other state variables nor in the reward functions congjdbey may be taken as
irrelevant variables for the optimal control problems and, thereforé, &k of observability does
not make the control problem partially observable.

The reward function for the “Bicycle Balancing” control problem (E§6), page 553) is such
that zero rewards are always observed, except when the bicysl&alen down, in which case
the reward is equal to -1. For the “Bicycle Balancing and Riding” controbfem, a reward of
—1 is also observed when the bicycle has fallen down. However, this timezeronrewards are
also observed when the bicycle is riding (Eqn (57), page 553). Indbedrewardr; when the
bicycle is supposed not to have fallen down, is now equaleifird(dangle(Pt) — dangle(Pi+1)) with

22. Several other papers treat the problems of balancing and/ochmgjamd riding a bicycle (e.g. Randlgv and Alstrgm,
1998; Ng and Jordan, 1999; Lagoudakis and Parr, 2003b,a)teBder can refer to them in order to put the perfor-
mances of fitted iteration in comparison with some other RL algorithms. In particular, he ceai@t to Randlgv
and Alstrgm (1998) to get an idea of the performances of SARBA( on-line algorithm, on these bicycle control
problems and to Lagoudakis and Parr (2003b) to see how the LeaateSRalicy Iteration (LSPI), a batch mode
RL algorithm, performs. If his reading of these papers and of the stioolaesults reported in Sections 5.5.1 and
5.5.2 is similar to ours, he will conclude that fitt€literation combined with Extra-Trees performs much better
than SARSAR) in terms of ability to extract from the information acquired from interactidgtinthe system, a good
control policy. He will also conclude that LSPI and fitt€diteration combined with Extra-Trees are both able to
produce good policies with approximately the same number of episodeoMer, the reader will certainly notice
the obvious strong dependence of performances of LSPI and SB&R®A the choice of the parametric approxi-
mation architecture these algorithms use to approximat®thenction, which makes extremely difficult any strict
comparison with them.
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front wheel ——»

contact

back wheel - ground frame of the bike

CMd W\ Feen
h
Mg o goal
W
center of goal (coord. Xgoal, Ygoal))
(a) (b)

Figure 23: Figure (a) represents the bicycle seen from behind. Thé tiie represents the bicycle. CM
is the center of mass of the bicycle and the cyclistepresents the height of the CM over the
ground. w represents the angle from vertical to bicycle. The agtepresents the total angle
of tilt of the center of mass. Actiod represents how much the agent decides to displace the
center of mass from the bicycle’s plan ands the noise laid on the choice of displacement, to
simulate imperfect balance. Figure (b) represents thecldcgeen from abovef is the angle
the handlebars are displaced from normiathe angle formed by the bicycle frame and the x-
axis andjigea the angle between the bicycle frame and the line joining ek b wheel ground
contact and the center of the goalis the torque applied by the cyclist to the handlebéxs.yp)
is the contact point of the backwheel with the ground.

Creward = 0.1 anddangie(P) = T(r;ig\w + 2k11 (dangle(P) represents the “distance” between an angle

Y and the angle 0). Positive rewards are therefore observed whercjlodelframe gets closer to
the positiony = 0 and negative rewards otherwise. With such a choice for the rewactidn, the
optimal policyu* tends to control the bicycle so that it moves to the right with its frame parallel
to the x-axis. Such an optimal policy or a good approximétef’it can then be used to drive the
bicycle to a specific goal. ifigoa, represents the angle between the bicycle frame and a line joining
the point(xp, y») to the center of the godkgoar, Ygoal) (Figure 23b), this is achieved by selecting at
timet the actionp™ (wx, &, 8, 6, Pgoat ), rather tharu®(ax, ax, 6, 6, r). In this way, we proceed

as if the line joining(Xo, Yb) t0 (Xgoal, Ygoal) Were the x-axis when selecting control actions, which
makes the bicycle moving towards the géaNote that in our simulation$Xgoal; Ygoal) = (100Q0)

and the goal is a ten meter radius circle centered on this point. Concerniugltigeof the decay

23. The reader may wonder why, contrary to the approach taken by atithors (Lagoudakis, Parr, Randlgv, Alstrgm,
Ng, Jordan),

» we did not consider in the state signal available during the four-tuplesg@rephaseyoq rather thanp (which
would have amounted here to considex w, 8,8, Pg0a) as state signal when generating the four-tuples)
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factory, it has been chosen for both problems equal.880 The influence of andciewarg ON the
trajectories for the “Bicycle Balancing and Riding” control problem will hgcdssed later.
All episodes used to generate the four-tuples start from a state selectadiom in

{(@,60,0,0,%,Yb, ) € R’|Y € [T T andw= @ =0 =0 =X, = y, = 0},

and end when a terminal state is reached, i.e. when the bicycle is suppbsee fallen down. The
policy considered during the four-tuples generation phase is a policgéleits at each instant an
action at random . _

For both optimal control problems, the €t considered for the score computation (Section
5.1.2)is:

X = {(m,d),e,é,xb,yb,w) 6R7|we {—n,—%n,m ,n}and(u:(bzezé:xb:yb:O}.

Sincey andy + 2kmt (k € Z) are equivalent from a physical point of view, in our simulations we
have modified each value gfobserved by a factorkZrin order to guarantee that it always belongs
to [—T1T, 7.

5.5.1 THE “BICYCLE BALANCING” CONTROL PROBLEM

To generate the four-tuples, we have considered 1000 episodesoffeeponding seF is com-
posed of 97969 four-tuples. First, we discuss the results obtained by Extra-Tnggs<£4,K =7,
M = 50§* and then we assess the performances of the other tree-based methods.

Figure 24a represents the evolution of the score of the poligjesith N when using Extra-
Trees. To assess the quality of a polijgywe use also another criterion than the score. For this
criterion, we simulate for eacky € X' ten times the system with the poligy leading to a total of
90 trajectories. If no terminal state has been reached befef®, 000, that is if the policy was able
to avoid crashing the bicycle during 500 seconds (the discretization time §t€d isecond), we say
that the trajectory has been successful. On Figure 24c we haveaemedor the different policies
{§ the number of successful trajectories among the 90 simulated. Remark thamifNf= 60
the score remains really close to zero, polipgs and i, do not produce as yet any successful
trajectories, meaning that the bicycle crashes for large valueswén if these are smaller than

o the reward function for the bicycle balancing and riding control probleescot give directly information about
the direction to the goal (which would have led here to observetat the rewardCreward(dangle(Wgoat) —
dangle(‘“goahﬂ))-

We did not choose to proceed like this becaygga,,, depends not only oigea, and6; but also orx, andyy, .
Therefore, since we suppose that the coordinates of the back tiretdamobserved, the optimal control problems
would have been partially observable if we had replagelly Ygo4 in the state signal and the reward function.
Although in our simulations this does not make much difference sineeyiyo, during the four-tuples generation
phases, we prefer to stick with fully observable systems in this paper.

24. When considering ensemble methods (Extra-Trees, Totally Raneldfrees, Tree Bagging) we always keep con-
stant the value of these parameters. Since we are not dealing with a Higtthastic system, as for the case of the
“Left or Right” control problem, we decided not to rely on the prunedsian of these algorithms. However, we
found out that by developing the trees fully i, = 2), variance was still high. Therefore, we decided to use a larger
value fornmin. This value is equal to 4 and was leading to a good bias-variance trademfterning the value of
K =7, itis equal to the dimension of the input space, that is the dimension ofateesignalw, @, 8,8, ) plus the
dimension of the action space.
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Tree-based method . Control proplem
Bicycle Bicycle
Balancing | Balancing and Riding
Pruned CART Tree -0.02736 -0.03022
Kd-Tree (Besthnmin € {2,3,4,5,10,20,---,100}) | -0.02729 -0.10865
Tree Baggingtfmin = 4, M = 50) 0 0.00062
Extra-Treestimin=4,K=7,M =50) 0 0.00157
Totally Randomized Treesigin =4, M =50) | -0.00537 -0.01628

Table 6: Score of(,, for the “Balancing” and “Balancing and Riding” problems. fi@rent tree-based
methods are considered, with a 1000 episode based set effues.

50,000. Figure 24b gives an idea of the trajectories of the bicycle on thedmbgizplane when
starting from the different elements ¥f and being controlled byy,.

To assess the influence of the number of four-tuples on the quality of tloy pomputed, we
have drawn on Figure 24d the number of successful trajectories wieredt number of episodes
are used to generatg. As one may see, by using Extra-Trees, from 300 episode$( 000
four-tuples) only successful trajectories are observed. TreeiBgggd Totally Randomized Trees
perform less well. It should be noted that Kd-Tree and Pruned CARE Were not able to pro-
duce any successful trajectories, even for the largest set otdplas. Furthermore, the fact that
we obtained some successful trajectories with Totally Randomized Treelyibemause we have
modified the algorithm to avoid selection of tests according),ta state variable that plays for this
“Bicycle Balancing” control problem the role of an irrelevant variahjedpes not intervene in the
reward function and does not influence the dynamics,ab, 6, 0) (see also Section 5.3.5). Note
that the scores obtained Ip§, for the different tree-based methods when considering th@e®7
four-tuples are reported in the second column of Table 6.

5.5.2 THE “BICYCLE BALANCING AND RIDING” CONTROL PROBLEM

To generate the four-tuples, we considered 1000 episodes that le@tgFacemposed of 97,241
elements. First, we study the performances of Extra-Tnegs € 4, K = 7, M = 50). Figure 25a
represents the evolution of the scorepfwith N. The final value of the score (score |0f,) is
equal to 000157.

As mentioned earlier, with the reward function chosen, the policy computeaibglgorithm
should be able to drive the bicycle to the right, parallel to the x-axis, prdvidat the policy is a
good approximation of the optimal policy. To assess this ability, we have simpfateghchxg € X',
the system with the policps,, and have represented on Figure 25b the different trajectories of the
back tire. As one may see, the policy tends indeed to drive the bicycle to tite payallel to the
x-axis. The slight shift that exists between the trajectories and the xtaeiskift is less than 10
degrees) could be reduced if more four-tuples were used as inpw fiftéul Q iteration algorithm.

Now, if rather than using the poligyg, with the state signakw, @, 6, 0, ) we consider the state
signal (w, @, 0,8, Pgoar), Wheregyoq is the angle between the bicycle frame and the line joining
(X0, Yb) With (Xgoal, Ygoal), We indeed observe that the trajectories converge to the goal (see Figur
25c¢). Under such conditions, by simulating from eaghe X' ten times the system over 50,000
time steps, leading to a total of 90 trajectories, we observed that everytdrgjetanaged to reach

541



ERNST, GEURTS AND WEHENKEL

IR
0.0
—0.01
—0.02
—0.03
—0.04
—0.05
—0.06
50 100 150 200 250 N
@

Nb of

Nb of succ.

succ. traj.
traj. 90|
80|
70)
60
50)
40)
30
20)
10)
0

50 100 150 200 250 |\
(c)

80)
70
60
50
40|
30
20

10)

Yo
1000
Wo=13 ~— W=7
_ 3
Yo=7 0
Yo=0
~1000_~=500 500 1000 g,
Yo=T10
~500
Wo=-%
Wo=-m ~1000 Wo=-3
Yo =— 3}[
(b)
Extra-Trees Bagging

Tree

S A

__;’:Totally Randomized Trees
...t (attributey never selected)

100 "300 500 700 " 900 ND of

episodes

(d)

Figure 24: The “Bicycle Balancing” control problem. Figure (a) repeasts the score ofiyj with Extra-
Trees and 1000 episodes used to genefaté-igure (b) sketches trajectories of the bicycle on
the xy — ¥ plane when controlled by, Trajectories are drawn from= 0 till t = 50,000.
Figure (c) represents the number of times (out of 90 tridis) golicy i, (Extra-Trees, 1000
episodes) manages to balance the bicycle during 50,000stieps, i.e. 500 s. Figure (d) gives
for different numbers of episodes and for different tresduhmethods the number of timgs,;

leads to successful trajectories.
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a 2 meter neighborhood @Xgoal, Ygoal). Furthermore, every trajectory was able to reach the goal in
less that 47000 time steps. Note that, since the bicycle rides at constant spe%@ ~277ms?

and since the time discretization step i8I, the bicycle does not have to cover a distance of more
that 1278n before reaching the goal while starting from any elemen¢'of

It is clear that these good performances in terms of the policy ability to drevéittycle to the
goal depend on the choice of the reward function. For example, if the sapagience is repeated
with crewarqg Chosen equal to 1 rather tharilOn the reward function, the trajectories lead rapidly
to a terminal state. This can be explained by the fact that, in this case, thetzsijge rewards
obtained for moving the frame of the bicycle parallel to the x-axis lead to aalgmdticy that
modifies too rapidly the bicycle riding direction which tends to destabilize it. If,lbevcoefficient
Creward IS taken smaller than.0, the bicycle tends to turn more slowly and to take more time to
reach the goal. This is illustrated on Figure 25d where a trajectory comdsp toCewarg = 0.01
is drawn together with a trajectory correspondingct@arg = 0.1. On this figure, we may also
clearly observe that after leaving the goal, the control policies tend te dgain the bicycle to it.

It should be noticed that the policy correspondingctqarg = 0.1 manages at each loop to bring
the bicycle back to the goal while it is not the case with the policy correspgnditiewarg = 0.01.
Note that the coefficientinfluences also the trajectories obtained. For example, by taking.95
instead ofy = 0.98, the bicycle crashes rapidly. This is due to the fact that a smaller vajuerds
to increase the importance of short-term rewards over long-term ohés) favors actions that turn
rapidly the bicycle frame, even if they may eventually lead to a fall of the bicycle

Rather than relying only on the score to assess the performances ofya ledlis now associate
to a policy a value that depends on its ability to drive the bicycle to the goal witbartain time
interval, when(w, m,e,e, Wgoal) IS the state signal considered. To do so, we simulate from each
Xo € X! ten times the system over 30 time steps and count the number of times the goal has been
reached. Figure 25e represents the “number of successful trégstiobtained by, for different
values ofN. Observe that 150 iterations of fitt€literation are needed before starting to observe
some successful trajectories. Observe also that the “number of stiddesjectories” sometimes
drops wherN increases, contrary to intuition. These drops are however not @iservthe score
values (e.g. foN = 230, all 90 trajectories are successful and the score is equad@d%6, while
for N = 240, the number of successful trajectories drops to 62 but the scoeagas to @0179).
Additional simulations have shown that these sudden drops tend to disappea using more
four-tuples.

Figure 25f illustrates the influence of the sizefobn the number of successful trajectories when
fitted Q iteration is combined with Extra-Trees. As expected, the number of sdiattragectories
tends to increase with the number of episodes considered in the four-ggiesation process.

It should be noted that the other tree-based methods considered in teisdidmot manage to
produce successful trajectories when only 1000 episodes are ugeddmte the four-tuples. The
different scores obtained Ipg,, when 1000 episodes are considered and for the different tree-base
methods are gathered in Table 6, page 541. Using this score metric, Eg#s-§ the method
performing the best, which is in agreement with the “number of successjakttories” metric,
followed successively by Tree Bagging, Totally Randomized Trees)d@rCART Tree and Kd-
Tree.
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Figure 25: The “Bicycle Balancing and Riding” control problem. Figu(a) represents the score of
§ (Extra-Trees, 1000 episodes). Figure (b) sketches tmjest when|s,, (Extra-Trees,
1000 episodes) controls the bicycle (trajectories dravamft = O till t = 50,000). Figure
(c) represents trajectories whe#,, (Extra-Trees, 1000 episodes) controls the bicycle with
(w[,d)t,et,ét,q.ugoak) used as input signal for the policy (trajectories drawn froes O till
t = 50,000). Figure (d) represents the influencecayarg ON the trajectoriegiy,, Extra-Trees,
1000 episodes and trajectories drawn friomO till t = 100,000). Figure (e) lists the number of
times the policyy, manages to bring the bicycle to the goal in less thai®80 time steps (high-
est possible value for “Number of successful trajectorieg0). Figure (f) gives for different
number of episodes the number of timgg,leads to successful trajectories.

544



TREE-BASED BATCH MODE REINFORCEMENTLEARNING

5.6 Conclusion of the Experiments

We discuss in this section the main conclusions that may be drawn from the simulegialts
previously reported.

5.6.1 INFLUENCE OF THETREE-BASED METHODS

Let us analyze the results of our experiments in the light of the classificatien o Table 1.

Single trees vs ensembles of treesWhatever the set of four-tuples used, the top score has always
been reached by a method building an ensemble of regression treearthediore, the larger the
state space, the better these regression tree ensemble methods behavedtmpethods building
only one single tree. These results are in agreement with previous wagkhfoncement learning
which suggests that multi-partitioning of the state space is leading to better fugtoxima-
tors than single partitioning? They are also in agreement with the evaluation of these ensemble
algorithms on many standard supervised learning problems (classificatioregression), where
tree-based ensemble methods typically significantly outperform single Geesté et al., 2004).
However, from the viewpoint of computational requirements, we foundehsemble methods
are clearly more demanding, both in terms of computing times and memory requisciviethe
storage of models.

Kernel-based vs non kernel-based methods.Among the single tree methods, Pruned CART
Tree, which adapts the tree structure to the output variable, offers liypica same performances
as Kd-Tree, except in the case of irrelevant variables where it is signify more robust. Among
the tree-based ensemble methods, Extra-Trees outperforms TotallyrRiaaddirees in all cases.
On the other hand, Tree Bagging is generally better than the Totally Randbifiiges, except
when dealing with very small numbers of samples, where the bootstrap résgquappears to be
penalizing. These experiments thus show that tree-based methods thiathedastructure to the
new output at each iteration usually provide better results than methodsthat ¢hat we name
kernel-based). Furthermore, the non kernel-based tree-basedragoare much more robust to
the presence of irrelevant variables thanks to their ability to filter out testtving these variables.

A drawback of non kernel-based methods is that they do not guaramtgergence. However,
with the Extra-Trees algorithm, even if the sequence was not converi@agyolicy quality was
oscillating only moderately around a stable value and even when at its lowess &till superior
to the one obtained by the kernel-based methods ensuring the conveejehe algorithm. Fur-
thermore, if really required, convergence to a stable approximation maysillae provided in an
ad hoc fashion, for example by freezing the tree structures after arcettiamber of iterations and
then only refreshing predictions at terminal nodes.

5.6.2 RARAMETRIC VERSUSNON-PARAMETRIC SUPERVISEDLEARNING METHOD

Fitted Q iteration has been used in our experiments with non-parametric supenaseshéemeth-
ods kNN, tree-based methods) and parametric supervised learning methsigg(bation methods
with piecewise-constant or piecewise-linear grids as approximation artthiés).

25. See e.g. Sutton (1996); Sutton and Barto (1998), where the awhow that by overlaying several shifted tilings
of the state space (type of approximation architecture known as CMAGs}] function approximators could be
obtained.
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It has been shown that the parametric supervised learning methods, ediripathe non-
parametric ones, were not performing well. The main reason is the difficuligléxt a priori the
shape of the parametric approximation architecture that may lead to someeguidtd.r It should
also be stressed that divergence to infinity of the fitfederation has sometimes been observed
when piecewise-linear grids were the approximation architectures coadide

5.6.3 HTTED Q ITERATION VERSUSON-LINE ALGORITHMS

An advantage of fitte iteration over on-line algorithms is that it can be combined with some non-
parametric function approximators, shown to be really efficient to genertdie information. We
have also compared the performances of fitfeileration andQ-learning for some a priori given
parametric approximation architectures. In this context, we found out theh the approximation
architecture used was chosen so as to avoid serious convergebtEmB @f the fitted) iteration
algorithm, then this latter was also performing much better @dearning on the same architecture.

6. Conclusions and Future Work

In this paper, we have considered a batch mode approach to reinfarcieaming, which consists

of reformulating the reinforcement learaning problem as a sequentanofesd supervised learning
problems. After introducing théitted Q iteration algorithmwhich formalizes this framework, we
have studied the properties and performances of the algorithm when ankith three classical

tree-based methods (Kd-Trees, CART Trees, Tree Bagging) and éwly proposed tree-based
ensemble methods namely Extra-Trees and Totally Randomized Trees.

Compared with grid-based methods on low-dimensional problems, as weittagNN and
single tree-based methods in higher dimensions, we found out that theJittechtion algorithm
was giving excellent results when combined with any one of the considerehased ensemble
methods (Extra-Trees, Tree Bagging and Totally Randomized TreesheQ@iifferent cases studied,
Extra-Treesvas the supervised learning method able to extract at best informatiomafsetof four-
tuples. It is also faster than Tree Bagging and was performing significhettgr than this latter
algorithm, especially on the higher dimensional problems and on low-dimehgiaidems with
small sample sizes. We also found out that fit@dteration combined with tree-based methods
was performing much better th@tlearning combined with piecewise-constant or piecewise-linear
grids.

Since Extra-Trees and Tree Bagging, the two best performing supdnéarning algorithms,
readjust their approximation architecture to the output variable at eaclidaterthey do not en-
sure the convergence of the fitt€dteration algorithm. However, and contrary to many parametric
approximation schemes, they do not lead to divergence to infinity problemescdnvergence prop-
erty is satisfied by th&otally Randomized Tredmcause their set of trees is frozen at the beginning
of the iteration. They perform however less well than Extra-Trees aed Bagging, especially in
the presence of irrelevant variables. They are nevertheless bettesainee other methods that also
ensure the convergence of the sequence kINg kernel methods and piecewise-constant grids, in
terms of performances as well as scalability to large numbers of varialde®antuples. Within
this context, it would be worth to study versions of Extra-Trees and TeggiBg which would
freeze their trees at some stage of the iteration process, and thusrrdsgogenvergence property.

From a theoretical point of view, it would certainly be very interesting tthierr study the con-
sistency of the fitte@ iteration algorithm, in order to determine general conditions under which the
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algorithm converges to an optimal policy when the number of four-tuplesatetleyrows to infinity.
With this in mind, one could possibly seek inspiration in the work of Ormoneit amd(3002) and
Ormoneit and Glynn (2002), who provide consistency conditions faréddsased supervised learn-
ing methods within the context of fittegiteration, and also in some of the material published in the
supervised learning literature (e.g. Lin and Jeon, 2002; Breiman, 280&e specifically, further
investigation in order to characterize ensembles of regression trees gfictdo consistency is
particularly wishful, because of their good practical performances.

In this paper, the score associated to a test node of a tree was the redai@rece reduction.
Several authors who adapted regression trees in other ways to ceimi@nt learning have sug-
gested the use of other score criteria for example based on the violatiom dattkov assumption
(McCallum, 1996; Uther and Veloso, 1998) or on the combination of skeerar terms like the
supervised, the Bellman, and the advantage error terms (Wang and Djet889). Investigating
the effect of such score measures within the fiQeiteration framework is another interesting topic
of research.

While the fittedQ iteration algorithm used with tree-based ensemble methods reveals itself to
be very effective to extract relevant information from a set of foyptds, it has nevertheless one
drawback: with increasing number of four-tuples, it involves a supetingrease in computing
time and a linear increase in memory requirements. Although our algorithmseoffery good
accuracy/efficiency tradeoff, we believe that further researchldrexplore different ways to try to
improve the computational efficiency and the memory usage, by introducingtafganodifica-
tions specific to the reinforcement learning context.
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Appendix A. Extra-Trees Induction Algorithm

The procedure used by the Extra-Trees algorithm to build a tree fronnintyaset is described in
Figure 26. This algorithm has two parametaigj,, the minimum number of elements required to
split a node and, the maximum number of cut-directions evaluated at each nod€ =fl then

at each test node the cut-direction and the cut-point are chosen totadlydam. If in addition
the condition (iii) is dropped, then the tree structure is completely indepenéiédre output values
found in theZ S, and the algorithm generat@stally Randomized Trees

The score measure used is the relative variance reduction. In othdswbfZ S (resp. 7.5y)
denotes the subset of cases frans such thati; < t] (resp.[i; > t]), then the Score is defined as
follows:

_ var(o|7$) - %Zhvar(o| T.8)) — 453tvar(o| 751

var(o|75) ’

Scordlij <t],7.5) (25)
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Build _a_tree(7'5)
Input: a training se’ S
Output: a tredl;

o If

(i) #7S < Nmin, OF
(i) all input variables are constant iAS, or
(iii) the output variable is constant over thes,

return a leaf labeled by the average vajje 5, 0'.
e Otherwise:

1. Let[ij <tj] = Find.a_tes(‘7.S).
Split 7§ into 7.5, and7 S, according to the test; < t].
Build T) = Build_a.treg7.$|) andT, = Build_a.treg 7 .$,) from these subsets;

Create a node with the tef$f < tj], attachT; andT; as left and right subtrees of this
node and return the resulting tree.

AN

Find_a_test(7 5)
Input: a training se’ S
Output: atesfij < t;]:

1. SelecK inputs{is,...,ix }, at random, without replacement, among all (non constant) input
variables.

2. Fork going from 1 toK:

(a) Compute the maximal and minimal valueipfin 7§, denoted respectiveli)er1in and

i‘TS
k,max
(b) Draw a discretization threshalgduniformly in i3 i/

(c) Compute the scor§ = Scord]|ix < t],Z.5)

3. Return a tesfi; < tj] such thatS; = maX—1,..k S.

Figure 26: Procedure used by the Extra-Trees algorithm to build a tteeTolally Randomized
Treesalgorithm is obtained from this algorithm by settidg= 1 and by dropping the
stopping condition (iii).
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wherevar(o|X) is the variance of the outpuotin the training sefx.

Appendix B. Convergence of the Sequence &jy-Functions

Theorem 1 If the fitted Q iteration algorithm is combined with a supervised learning mettnbchw
produces a model of the type (17) with the kerng] keing the same from one iteration to the other
and satisfying the normalizing condition (18), then the sequen@g dfinctions converges.

Proof The proofis adapted in a straightforward way from Ormoneit and SEIBQQZO the fact that
the kernekzs((x,u), (x,u)) may not be decomposed here into the prod((ef, x)d(u}, u).

Let us first observe that in such conditions, the sequence of funcctmnputed by the fitte@
iteration algorithm is determined by the recursive equation:

Gn(x.u) zkm Ao, W)+ ymadu 1, W), NS0 (26)

with Qo(x,u) = 0V(x,u) € X x U. Equation (26) may be rewritten:

A A

Qv = HOn-1 (27)
whereH is an operator mapping any functih: X x U — R and defined as follows:
A 2 I [ |
(HK)(x,u) = 2&m@&%%&ﬁMﬁ+m§%Wwak (28)
I=

This operator is a contraction on the Banach space of functions defieeXX o« U and the supre-
mum norm. Indeed, we have:

#F

Y, max |3 ks (0, W), (6 W) MK (1, U) — MK (.1, L)

IHK — HK e
(xu)eXxU

IN

max Zlkqs Xu)ma){K(XHla ) =K% q,U)]]

xu )eXxU

max |K K(x
Y, max 1K o) K cu)

= YIK=K]w
< K =K]e.

IN

By virtue of the fixed-point theorem (Luenberger, 1969) the sequienaverges, independently
of the initial conditions, to the functio® : X x U — R which is unique solution of the equation

QO=HO. ]

Appendix C. Definition of the Benchmark Optimal Control Probl ems

We define in this section the different optimal control problems used in @ararents. Simulators,
additional documentation and sets of four-tuples are available uponsteque
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C.1 The “Left or Right” Control Problem

System dynamics:

X1 =X + U+ W

wherew is drawn according the standard (zero mean, unit variance) Gausstiabution.

If X1 is such thatx.1| > 10 or|x1| < O then a terminal state is reached.

State space:The state spack¥ is composed ofx € R|x € [0,10]} and of a terminal state.
Action space: The action space = {—2,2}.

Reward function: The reward functiom(x,u,w) is defined through the following expression:

O |f XH_]_ S [O, 10]
r(%, U, W) =< 50 if X41<0 (29)
100  if X1 > 10.

Decay factor: The decay factoyis equal to 075.

C.2 The “Car on the Hill" Control Problem

System dynamics:The system has a continuous-time dynamics described by these two differen
equations:

p = s (30)
u gHill’(p) SHill’(p)Hill " (p)
m(1+Hill’(p)2) 1+Hill’/(p2  1+Hill/(p)2

wheremandg are parameters equal respectively to 1 ai®d @ind wherddill (p) is a function ofp
defined by the following expression:

(31)

_ P>+ p if p<O
Hill (p) = p it p>0 (32)
\/1+5p2 -

The discrete-time dynamics is obtained by discretizing the time with the time betveset + 1
chosen equal to.000s.

If pr+1 ands.y1 are such thafpy 1| > 1 or|s.+1| > 3 then a terminal state is reached.

State space:The state spack is composed of (p,s) € R?||p| < 1ands| < 3} and of a terminal
state.X \ {terminal staté is represented on Figure 8a.

Action space: The action space = {—4,4}.

Reward function: The reward functiom(x,u) is defined through the following expression:

-1 if py1<-1 or |s41/>3
rx,u)=4q 1 if pya>1 and [s41] <3 (33)
0 otherwise

Decay factor: The decay factoy has been chosen equal t®5.
Integration: The dynamical system is integrated by using an Euler method witbCGidfintegra-
tion time step.
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Remark: This “Car on the Hill” problem is similar to the one found in Moore and Atkes@98)
except that the termszHl"Lg'ﬁ—W is not neglected here in the system dynamics.
Variants of the control problem: In our experiments, we have also considered two other variants

of this problem:

e The “Car on the Hill” with irrelevant variables:some irrelevant variables are added to the
state vector. The value of an irrelevant variable at tirreedetermined by drawing at random
a number inN—2,2] with a uniform probability (used in Section 5.3.5).

e The “Car on the Hill” with continuous action spacethe action space is not yet discrete
anymore. It is continuous and equal[te4, 4] (used in Section 5.3.7).

C.3 The “Acrobot Swing Up” Control Problem

System dynamics: The system has a continuous-time dynamics described by these two second-
order differential equations (taken from Yoshimoto et al., 1999):

dibr +diBr o+ = —bs (34)

ioB1 + doobo+Co+ @ = U— 6, (35)

(36)

where

diy = MiLf+My(LE+ L3+ 2L1loc096,)) (37)
dyy = Myl3 (38)
dip = Ma(L3+LiLocog8,)) (39)
C1 = —MslLiL,60,(26; +6;sin(6y)) (40)
¢ = MoLiL,6:sin(6y) (41)
@ = (MiL1+Mayli)gsin(B1) + MaLogsin(B1+62) (42)
@ = Mszgsin(91+62). (43)

M1 (M2), L1 (L2) andp (M) are the mass, length, and friction, respectively, of the first (second)
link. 8, is the angle of the first link from a downward position adis the angle of the second
link from the direction of the first link (Figure 20B; and®8, are the angular velocities of the first
and second links, respectively. The system has four continuous sréblesx = (61,62,91,92).
The physical parameters have been chosen eqiiéd toM, =1.0,L1 =L, =1.0, 3 = pp = 0.01,
g=9.81.

The discrete-time dynamics is obtained by discretizing the time with the time betvesett + 1
chosen equal t0.Q00s.

Let us denote by the set composed of the states: ((2xk+ 1) x1,0,0,0) k € Z and byd(x,O)
the valueorenoirﬂx— 0.

If X1 is such thatl(x1,0) < 1 then a terminal state is reached.

State spaceThe state space is composed{gfc R*|d(x,0) > 1} and of a terminal state.

Action space: The action space = {—5,5}.

551



ERNST, GEURTS AND WEHENKEL

Reward function: The reward functiom(x,u) is defined through the following expression:

r(Xt’ Ut) a {1_ d(xt+17o) if d(xt+17o) <l (44)

Decay factor: The decay factoy has been chosen equal t®85.
Integration: The dynamical system is integrated by using an Euler method witGGlintegra-
tion time step.

C.4 The “Bicycle Balancing” and “Bicycle Balancing and Riding” Control Problems

We define hereafter the “Bicycle Balancing” and the “Bicycle BalancirgdjRitding” control prob-
lems. These optimal control problems differ only by their reward functions.
System dynamics The system studied has the following dynamics:

W1 = x+At@ (45)
T - (Mhgsin(:) — cos(¢) (46)
bicycle and cyclist
(14c08; + sign(8; )V2(Mgr (invr¢, +invry, ) +Mhinvicy,))))
eH_l _ 6; + At If |et +At6t| < 180T[ (47)
S|gn(6t+At9t)180T[ if |9t+At9t| > 1801‘[
T—Igo&x
0 if 16 +At9t\ > 8n
Xo,, = Xp +Atvcogyy) (49)
Yoi = Yo +HAtvsin(W) (50)
W1 = Y+ Atsign(6;)vinvry, (51)
with
arctar{dy +w
b = oy OGN (52)
invry, = |S'”|(9t)| (53)
invry, = m (54)
L1 —  if §#0
inVrCM = \/((l C)2+(|nvrbt )2) (55)
0 otherwise

wherew; is drawn according to a uniform distribution in the inter{aD.02,0.02]. The different
parameters are equal to the following valuds:= 0.01,v = 36, g=9.82, dCM =0.3,c=0.66,
h=0.94, M = 15, Mg = 1.7, Mp = 60.0, M = (MC+ Mp), r = 0.34, 6 = ¥, lbicycle and cyclist=

(BMch? +Mp(h+dem)?), |dc (Mar?), lgy= (3 Mdr 2), lgi = (3Mgr?) andl = 1.11. This dynam-

ics holds valid if|ax 11| < o” When|oy1| > 18011 the blcycle is supposed to have fallen down
and aterminal statds reached

State space:The state space for this control probler (&, w, 8, 0, Xp, Yo, U W) eR’|Be [~ 1801'[, 18011] andwe
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[~ 21 2217} plus aterminal state

Action space: The action spacd = {(d, T) € {—0.02,0,0.02} x {—2,0,2}}. U is composed of 9
elements.

Reward functions: The reward function for the “Bicycle Balancing” control problem is defin
hereafter:

-1 if 12
(X, U, W) = Tl > ggon (56)
0 otherwise.
The reward function for “Bicycle Balancing and Riding” control problem
-1 if 12
r(%,U,w) = Tl > g5 (57)
Creward(Gangle(Wt) — dangle(Wt+1)) otherwise

S

Decay factor: The decay factoy is equal to 098.
Remark: The bicycle dynamics is based on the one found in Randlgv and Alstrgm)(48e8n
their corresponding simulator availabletretp://www.nbi.dkfrandlov/bike.html

References

D. Bagnell, S. Kakade, A. Y. Ng, and J. Schneider. Policy searchybarmic programming. In
Proceedings of Neural Information Processing Sysi&t@83.

L. C. Baird. Residual algorithms: reinforcement learning with functiorraximation. In Armand
Prieditis and Stuart Russell, editokachine Learning: Proceedings of the Twelfth International
Conferencepages 9—-12, San Francisco, CA, July 1995. Morgan Kaufman.

R. Bellman.Dynamic ProgrammingPrinceton University Press, 1957.

R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation - a new contipnt technique
in dynamic programming: allocation processktathematical Computatigri7:155-161, 1973.

J. A. Boyan. Technical update: least-squares temporal differenoding. Machine Learning49
(2-3):233-246, 2002.

J. A. Boyan and A. W. Moore. Generalization in reinforcement learnsadely approximating the
value function.Advances in Neural Information Processing Systen69-376, 1995.

L. Breiman. Bagging predictordMachine Learning24(2):123-140, 1996.

L. Breiman. Some infinity theory for predictor ensembles. Technical Rdgp@f, University of
California, Department of Statistics, 2000.

L. Breiman. Random forest84achine Learning45(1):5-32, 2001.

L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stofassification and Regression Trees
Wadsworth International (California), 1984.

553



ERNST, GEURTS AND WEHENKEL

D. Ernst. Near Optimal Closed-Loop Control. Application to Electric Power Systdpd thesis,
University of Liege, Belgium, March 2003.

D. Ernst, P. Geurts, and L. Wehenkel. Iteratively extending time horigioiarcement learning. In
N. Lavra, L. Gamberger, and L. Todorovski, editdPspceedings of the 14th European Confer-
ence on Machine Learningages 96—107, Dubrovnik, Croatia, September 2003. Spring&ever
Heidelberg.

D. Ernst, M. Glavic, P. Geurts, and L. Wehenkel. Approximate value iterdatiche reinforce-
ment learning context. Application to electrical power system conffolappear in Intelligent
Automation and Soft Computing005.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Suthri@4.
G. J. Gordon. Online fitted reinforcement learning VIFA workshop at ML-951995a.

G. J. Gordon. Stable function approximation in dynamic programmingPréiteedings of the
Twelfth International Conference on Machine Learnimgges 261-268, San Francisco, CA,
1995b. Morgan Kaufmann.

G. J. Gordon Approximate Solutions to Markov Decision Procesg$e&isD thesis, Carnegie Mellon
University, June 1999.

O. Herrandez-Lerma and B. LasserrBiscrete-Time Markov Control ProcesseSpringer, New-
York, 1996.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learningsuavey. Journal of
Artificial Intelligence Researcht:237-285, 1996.

S. Kakade and J. Langford. Approximately optimal approximate reinfioece learning. IrPro-
ceedings of the Nineteenth International Conference on Machine Leapages 267-274, 2002.

M. G. Lagoudakis and R. Parr. Least-squares policy iteratimurnal of Machine Learning Re-
search 4:1107-1149, 2003a.

M. G. Lagoudakis and R. Parr. Reinforcement learning as classificdegraging modern classi-
fiers. InProceedings of ICML 20Q3ages 424-431, 2003b.

J. Langford and B. Zadrozny. Reducing T-step reinforcementilegto classification. Submitted,
2004.

L. J. Lin. Reinforcement Learning for Robots Using Neural NetwoRttD thesis, Carnegie Mellon
University, Pittsburgh, USA, 1993.

Y. Lin and Y. Jeon. Random forests and adaptive nearest neighechnical Report 1005, De-
partment of Statistics, University of Wisconsin, 2002.

D. G. LuenbergerOptimization by Vector Space Methoiley, N.Y., 1969.

A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden.SRate thesis,
University of Rochester, Rochester, New-York, 1996.

554



TREE-BASED BATCH MODE REINFORCEMENTLEARNING

A. W. Moore and C. G. Atkeson. Prioritized sweeping: reinforcememniag with less data and
less real timeMachine Learning13:103-130, 1993.

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variableluti®n reinforcement
learning in multidimensional state-spacétachine Learning21(3):199-233, 1995.

A. Y. Ng and M. Jordan. PEGASUS: a policy search method for large Ma&il POMDPSs. In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intaliggoages 406—
415, 1999.

D. Ormoneit and P. Glynn. Kernel-based reinforcement learning irageecost problemslEEE
Transactions on Automatic Contrel7(10):1624-1636, 2002.

D. Ormoneit and S. Sen. Kernel-based reinforcement learriif@chine Learning49(2-3):161—
178, 2002.

J. Randlgv and P. Alstram. Learning to drive a bicycle using reinforcefeaaming and shaping.
In Proceedings of the Fifteenth International Conference on Machine lisg@rpages 463471,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

J. Rust. Using randomization to break the curse of dimension&itgnometrica65(3):487-516,
1997.

S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learnithgsaft state aggregation. In
G. Tesauro, D. S. Touretzky, and T. Leen, editéxdyances in Neural Information Processing
Systems : Proceedings of the 1994 Conferepegies 359-368, Cambridge, MA, 1995. MIT
press.

W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in caotis spaces. IRro-
ceedings of the Sixteenth International Conference on Machine Leapaggs 903-910, 2000.

M. W. Spong. Swing up control of the Acrobot. 1994 IEEE International Conference on Robotics
and Automationpages 2356-2361, San Diego, CA, May 1994.

R. S. Sutton. Learning to predict by the method of temporal differendeshine Learning3(1):
9-44, 1988.

R. S. Sutton. Generalization in reinforcement learning: successfot@ra using sparse coarse
coding. Advances in Neural Information Processing Syste81038—-1044, 1996.

R. S. Sutton and A. G. Bartd&reinforcement Learning, an IntroductioNlI T Press, 1998.

J. N. Tsitsiklis. Asynchronous stochastic approximation @ddarning.Machine Learning16(3):
185-202, 1994.

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large-sgatndc programming.
Machine Learning22:59-94, 1996.

W. T. B. Uther and M. M. Veloso. Tree based discretization for contisugate space reinforcement
learning. InProceedings of AAAI-9®ages 769—-774, 1998.

555



ERNST, GEURTS AND WEHENKEL

X. Wang and T. G. Diettrich. Efficient value function approximation usirgyession trees. IRro-
ceedings of IJCAI-99 Workshop on Statistical Machine Learning fogé&cale Optimizatign
Stockholm, Sweden, 1999.

C. J. C. H. Watkins.Learning from Delayed Reward$?hD thesis, Cambridge University, Cam-
bridge, England, 1989.

J. Yoshimoto, S. Ishii, and M. Sato. Application of reinforcement learningaiancing Acrobot.
In Proceedings of the 1999 IEEE International Conference on Systemns,alld Cybernetigs
pages 516-521, 1999.

556



