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Abstract

We extend existing theory on stability, namely how much g¢iearin the training data influence the
estimated models, and generalization performance ofrdetgstic learning algorithms to the case
of randomized algorithms. We give formal definitions of gisbfor randomized algorithms and
prove non-asymptotic bounds on the difference betweenrtipgrizal and expected error as well
as the leave-one-out and expected error of such algorithaigiepend on their random stability.
The setup we develop for this purpose can be also used forajyrgtudying randomized learning
algorithms. We then use these general results to study teet®bf bagging on the stability of
a learning method and to prove non-asymptotic bounds onrtédigtive performance of bagging
which have not been possible to prove with the existing thebstability for deterministic learning
algorithms!

Keywords: stability, randomized learning algorithms, sensitivityalysis, bagging, bootstrap
methods, generalization error, leave-one-out error.

1. Introduction

The stability of a learning algorithm, namely how changes to the training datano#ube result of
the algorithm, has been used by many researchers to study the generafizafivmance of several
learning algorithms (Devroye and Wagner, 1979; Breiman, 1996briseard Ron, 1999; Bousquet
and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004). Desgertain difficulties with
theories about stability, such as the lack so far of tight bounds as welvas lmunds (Bousquet
and Elisseeff, 2002), the study of learning methods using notions of stabiptpmising although
it is still at its infancy. For example, recently Poggio et al. (2004) havevahmnditions for the
generalization of learning methods in terms of a stability notion that have possifieations for
new insights on diverse learning problems.

1. This work was done while A.E. was at the Max Planck Institute for BiolaigBybernetics in Tuebingen, Germany.
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The existing theory, however, is developed only for deterministic learrliggyithms (Bous-
quet and Elisseeff, 2002), therefore it cannot be used to studyetamber of algorithms which
are randomized, such as bagging (Breiman, 1996a), neural netveorgsrtain Bayesian learning
methods. Theoal of this papeiis to improve upon this analysis. To this end, we present a nat-
ural generalization of the existing theory to the case of randomized algorithereby extending
the results of (Bousquet and Elisseeff, 2002), and formally provedeon the performance of
randomized learning algorithms using notions of randomized stability that weedefio prove
our results we have also extended the results of (Bousquet and Hlig862j that hold only for
symmetric learning algorithms to the case of asymmetric ones. We then prove agglecation
of our results, new non-asymptotic bounds for bagging (Breiman, }986andomized learning
method. Finally, we note that our work also provides an approach thdteased for extending
other studies, for example other results on stability, done for deterministidgthlgs to the case of
randomized learning algorithms.

The paper is organized as follows. For completeness and comparisorswwepiicate in Sec-
tion 2 the key notions of stability and the generalization bounds we extena:ddar deterministic
methods in the literature. We then extend these notions — Definitions 7, 10,3anddnd gen-
eralization bounds — Theorems 9, 12 and 15 — to the case of randomizedds@th®ection 3.
Finally, in Section 4 we present an analysis of bagging within the stability tHifesmework.

2. Stability and Generalization for Deterministic Algorithms

In this section we briefly review the results in (Devroye and Wagner 18&8rns and Ron, 1999;
Bousquet and Elisseeff, 2002) that show that stability is linked to genatializfor deterministic
learning methods. We assume here that all algorithms are symmetric, that isuticeime does not
change when the elements in the training set are permuted. In the next seetionil extend sta-
bility concepts to the case of randomized learning methods and remove this syrasmtmption.

2.1 Basic Notation

In the following, calligraphic font is used for sets and capital letters tefeumbers unless explic-
itly defined. LetX be a set))” a subset of a Hilbert space and defiie= X x . X is identified
as the input space ard as the output space. Given a learning algorithmve definef,, to be the
solution of the algorithm when the training sbt= {z = (x,yi), i =1,...,m} € Z™ drawn i.i.d.
from a distributior? is used. AlgorithmA is thus interpreted as a function fraBf" to (9)*, the set
of all functions fromx to 9, and we use the notatiok(D) = f,. We denote byD\' the training
setD\ {z} obtained by removing poir{k;,yi). More formally, point is replaced by the empty set
which we assume the learning method treats as having this point simply removedv weed
this for our analysis below. We denote By the training set obtained by changing pofmt,y;)
from DintoZ = (X,y'), that is the setD\ {z})UZ.

For any pointz = (x,y) and functionf (real valued or binary) we denote l8yf,z) the loss
(error) whenf (x) is predicted instead of (¢ is the loss function). We define the expected errof of
also known agieneralization errotby the equation

Rygen[f] = Ez [((f,2)].
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We also define thempirical erroras

F\)emp Zlg (f,z)

and theleave—one—out erroas
RIOO Ze f@\l 5 Z|

Note that the last two errors are functions®f For the case of classification we ue-yf(x))

as the loss functiord, where®(-) is the Heavyside function. The analysis we will do concerns
classification as well as regression. For the latter we will mainly focus ondbe that is a
Lipschitzian loss function, that is, we assume that there exists a positigtacdB such that, for
every fy, f; € (9)* andz= (x,y) € Z, there holds the inequality( f1,2) — ¢(f2,2)| < Bly1 —Ya|.
Note that the absolute value satisfies this condition Bith 1, whereas the square loss satisfies the
condition provided the sé&Y is compact.

2.2 Hypothesis Stability

The first notion of stability we consider has been stated in (Bousquet arské&ffis2002) and is
inspired by the work of Devroye and Wagner (1979). It is very closetat Kearns and Ron
(1999) defined as hypothesis stability:

Definition 1 (Hypothesis Stability) An algorithm A hasiypothesis stabilit¥3y, w.r.t. the loss func-
tion £ if the following holds:

Vi€ {L..,m}, Enz (10102 — £(fp1,2)]] < B

It can be shown (Bousquet and Elisseeff, 2002) that when an algohi#ts hypothesis stabilif§,
and forall training setsD we have, for everg € Z, that 0< /(fp,z) < M, M being a positive
constant, then the following relation between the leave-one-out errdharekpected error holds:

Theorem 2 (Hypothesis stability leave-one-out error bound)Let f; be the outcome of a learn-
ing algorithm with hypothesis stabilim (w.r.t. a loss functiorf such thatd < ¢(f,z) < M). Then
with probability 1 — & over the random draw of the training sé,

M2+ 6MmBm,
2m ’

Ryen| fn] < Rioo fp] + \/5_1 (1)
The proof consists of first bounding the second order momenR@f| o] — Rioo| fp]) and then
applying Chebychev's inequality. A similar bound ¢Rgen| ] — Rioo[fp])? holds. Theorem 2
holds for any loss functions as long as stability can be proved w.r.t. thisuassdn.

In the following, we will say that an algorithm is stable when its stability scales lfkg, ih which
case the difference between the generalization and leave-one-outseof the ordetO(1/\/m).
Many algorithms are stable according to this definition, see (Devroye et8lg; Bousquet and
Elisseeff, 2002) for a discussion. For example, with respect to theifidation loss,k-Nearest
Neighbor k—NN) is k/m stable. This is discussed in the next example.
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Example 1 (Hypothesis Stability ofk-Nearest Neighbor k-NN)) With respect to the classifica-

tion loss, k-NN is at Ieag%—] stable. This can be seen via symmetrization arguments. For the sake of
simplicity we give here the proof for tHeNN only. Let ybe the neighborhood of such that the
closest point in the training set to any point ¢isz. Thel—NN algorithm computes its output via

the following equation (we assume here that the probability thapgears twice in the training set

is negligible):

fp(X) = _iYi Ixevi (X)

wherels is the indicator function of set S. The difference between the |666gsz) and /(f,),2)
is then defined by the sat ¥Here we assume théts the classification loss. We then have that

Eol[t(fn,,2) — L(Fpi, )] < P(w).

Note that ydepends orD. Now averaging ove® we need to computey, [P(v;)] which is the same
for all i because thejzare drawn i.i.d. from the same distribution. But, we have,

] = Eﬂ),z [‘ilxevi (X)] .

The last equality comes from the fact that for fix@dnd z, only ond,cy, (X) is non-zero. We also
have that

1=Egp;[|fo(X)]] =Enp; [ __iYi Ixev, (X)

1=Ep, [i Lew (x)] = MEo [P(V})].

Consequenthyg [P(v;)] = % and thel-NN has hypothesis stability bounded abové iy.

A bound similar to Equation (1) can be derived for the empirical error vehglightly different
notion of stability is used (Bousquet and Elisseeff, 2002).

Definition 3 (Pointwise hypothesis stability) An algorithm A haspointwise hypothesis stability
Bm w.r.t. the loss functiod if the following holds :

Vie {17 . 'am}v EfD,Z HE( f@vzi) _E( f@\iuzazi)H < Bm~

Note that we adopted the same notatanfor all notions of stability since it should always be
clear from the context which is the referred notion. As for the case pdtinesis stability and leave-
one-out error above, it can also be shown (Bousquet and Elis286#) that when an algorithm has
pointwise hypothesis stabilityi, and if for all training set®, 0 < ¢(f,z) < M, then the following
relation between the empirical error and the expected error holds:

Theorem 4 (Pointwise hypothesis stability empirical error bound) Let fp be the outcome of a
learning algorithm with pointwise hypothesis stabilfiy, (w.r.t. a loss functiory such thatO <
¢(fp,z) <M). Then with probabilityl — d over the random draw of the training s&X,

M2+ 12MmBy,
2m '

Rgen[fZ)] < Remp[fl)} + \/6

2. We slightly changed the definition to correct one mistake that has beetegout by Poggio et al., (2004): the
difference of losses is taken here between two outcomes trained optdaifisqual sizes.

(2)
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2.3 Uniform Stability

The application of bound (1) to different algorithris ..., fg with stabilitiesph, q=1,...,Q, is
usually done by using the union bound (Vapnik, 1998). Applying Thed2&) times, we get with
probability 1— 9,

M2 4+ 6MmBrh
2m '

\V/q € {17 LR Q}7 Rgen[ fq] S RZoo[fq] + \/6_1Q (3)

In such situations, we would like to have a dependence ifQpgo that we can have large values of
Q without increasing the bound too much. To this end, we need a strongen ndttability called
uniform stability (Bousquet and Elisseeff, 2002).

Definition 5 (Uniform Stability) An algorithm A hasiniform stability 3, w.r.t. the loss functiod
if the following holds

VD e ZM Vie {1,....m}, [|6(fn,.) — (fpi, )]l < P 4)

It is easily seen that the uniform stability is an upper bound on hypothedip@intwise hy-
pothesis stability (Bousquet and Elisseeff, 2002). Uniform stability candeel in the context of
regression to get bounds as follows (Bousquet and Elisseeff, 2002)

Theorem 6 Let f; be the outcome of an algorithm with uniform stabi[By w.r.t. a loss functior
such that0 < ¢(fp,z) < M, for all ze Z and all setsD. Then, for any n¥» 1, and anyd € (0,1),
each of the following bounds holds with probability- d over the random draw of the training set
D,

Roe o] < R ]+ 2B+ (4B + M) 1/ 29L/0) ©
and
Roer ] < Reo[fo] + B + (4B + M) 250 ©

The dependence aomis 4/log(1/8) which is better than the bounds given in terms of hypothesis
and pointwise hypothesis stability.

It is important to note that these bounds hold only for regression. Uniébaiility can also be
used for classification with margin classifiers to get similar bounds, but wetpursue this here
for simplicity. In the next section, for simplicity we also consider random umifetability only for
regression. Classification can be treated with appropriate changes likeusquet and Elisseeff,
2002).

Example 2 (Uniform Stability of regularization methods) Regularization-based learning algo-
rithms such as Regularization Networks (RN’s) (Poggio and Girosi, 1880 Support Vector Ma-
chines (SVM’s), see, for example, (Vapnik, 1998), are obtainedrigniming the functional

m
0(f,2) + Al
2
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whereA > Ois a regularization parameter anff ||« is the norm of f in a reproducing kernel Hilbert
space associated to a symmetric and positive definite kern KX — R. A typical example is
the Gaussian, Kx,t) = exp(—||x —t]|?/202), wherea is a parameter controlling the width of the
kernel. Depending on the loss function used, we obtain different learnitigosls. RN’s use the
square loss while SVM’s regression uses the {0$sz) = | (X) —yle, WherelE|e = |§| — € if [E| > &,
and zero otherwisg.

It can be shown (Bousquet and Elisseeff, 2002) that for Lipschitzflmedions, the uniform
stability of these regularization methods scalesl@s. This results is in agreement with the fact
that for smallA, the solution tends to fit perfectly the data and Theorem 6 does not give eesiitlg
bound. On the contrary, whexis large the solution is more stable and Theorem 6 gives a tight
bound. Hence, there is a trade-off between stability and deviation betgemeralization and
empirical error that is illustrated here by the role of the regularization pasterA.

Finally, we note that the notion of uniform stability may appear a little restrictiveesthe
inequality in Equation (4) has to hold over all training s&tsA weaker notion of stability has been
introduced by Kutin and Niyogi (2002) with related exponential bounds d& not discuss this
issue here for simplicity, and we conjecture that the analysis we do belobecganerally adapted
for other notions of stability.

3. Stability and Generalization for Randomized Algorithms

The results summarized in the previous section concern only deterministimgafgorithms. For
example they cannot be applied to certain neural networks as well asmbagegthods. In this
section we generalize the theory to include randomized learning algorithms.

3.1 Informal Reasoning

Let A be a randomized learning algorithm, that is a function frgfhx ® onto (9)* whereRg_is

a space containing elementshat model the randomization of the algorithm and is endowed with
a probability measurg;. For notational convenience, we will use the shorthépg to denote the
outcome of the algorithn& applied on a training seD with a random parameter. We should
distinguish between two types of randomness that are exemplified by theifajlexamples.

Example 3 (Bootstrapping once)Let R = {1,...,m}P, p<m, and definé,, forr € ®, to be a
multinomial distribution with m parametefd/m,...,1/m). This random process models the sub-
sampling with replacement of p elements from a set of m distinct elemenislgdithm A that
takes as input a training sa®, performs a sub-sampling with replacement and runs a method such
as a decision tree on the sub-sampled training set is typically modeled awlamazed algorithm
taking as inputs a training set and an elememt X _just described.

In this first example we see that the randomness depenaiswhich is different from what the
second example describes.

3. Note that in the statistical learning theory literature (Vapnik, 1998), SvMusually presented in term of mathe-
matical programming problems and the paramates replaced byC = 1/(2\) which now appears in front of the
empirical error.
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Example 4 (Initialization weights) Let ® = [0,1]% and defineP, to be the uniform distribution
overR. Such a random process appear in the initialization procedure of Néegdlkorks when the
initial weights are chosen randomly. In the latter case, a multi-layer péroapvith k weights can
be understood as an algorithm A taking a training set and a random ve&aR_as inputs.

We consider the following issues for the definitions of stability for randomagdrithms be-
low.

e We give stability definitions that reduce to deterministic stability concepts whea ih&o
randomness, that i%_is reduced to one element with probability 1.

e We assume that the randomness of an algorithm (randomnegsioindependent of the
training set?, althoughr may depend on the size of this set, There are two main reasons
for this: first, it simplifies the calculations; second, the randomnes$ia$ generally nothing
to do with the randomness of the training d&t Most of the time our knowledge about the
distribution over is known perfectly, like in the examples above, and we would like to take
advantage of that. Adding some dependencies betwaad? reduces this knowledge since
nothing is assumed about the distribution ogZeirom which 2 is drawn.

e We also consider the general case that the randomization paranet®l’ is decomposed
as a vector of independent random paramatets(ry,...,rt) where each; is drawn from
the distributionP} . For example, this model can be used to model the randomization of
bagging (Breiman, 1996a), where eagltorresponds to one random subsampling from the
data, and th@ subsamples are all drawn independently. To summarize, we will make use of
the following assumption:

Assumption 1: We assume that= (rq,...,rt) wherery, t =1,..., T are random elements
drawn independently from the same distribution and write R to indicate the product
nature ofr.

e Finally we assume that we can re-use a draw foir different training set sizes, for example
for mandm— 1. We need this assumption for the definitions of stability below to be well
defined as well as for the leave-one-out error definition we use fdormized methods.

To develop the last issue further, let us consider how to compute a le&vett error estimate
when the algorithm depends on a random vecttbrat changes with the number of training exam-
ples. One way is to sample a new random vect@vhich in this case will concern onlgpn— 1
training points) for each fold/iteration. This is done, for example, by Keamd Ron (1999) when
they introduce the notion of the random error stability. However, this inteslimore instabilities
to the algorithms whose behavior can be different not only becausanges in the training set but
also because of changes in the random paft more stable leave-one-out procedure for a random-
ized algorithm would be to fix and to apply the leave-one-out method only on the sampling of the
training set — a deterministic leave-one-out error (Evgeniou et al., 20bwrefore for each leave-
one-out iteration, when we leave one point out — which is replaced, alissassed in Section 2.1,
with an empty set which we assume the learning method does not use — we saenéefor the
remainingm— 1 points. For instance, in Example 3.1 we would use the same bootstrap samples
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that we used when having atl points, with the point left out replaced by the empty set that is not

used for training, for each leave-one-out iteration. In that case,on# deed to re-sample and

the leave-one-out estimate concerns an algorithm that is closer to whansieler onm points.
Therefore, in what follows, keeping in mind Example 3, we assume the folgpwin

Assumption 2: The same& can be applied to 4 and f, where D\ is the setD where point i
is replaced by the empty set. We also consider the deterministic leavaeisbeerar computed as
described above.

Note that this assumption is not restrictive about the kind of learning methedamconsider. For
example both in Example 3.1 and 3.2 the sar(iee. subsamples or initialization of neural network
weights) can be used fonandm— 1 training points.

3.2 Random Hypothesis Stability
The first definition we consider is inspired by the hypothesis stability forahétéstic algorithms.

Definition 7 (Random Hypothesis Stability) A randomized algorithm A hasndom hypothesis
stability B, w.r.t. the loss functio# if the following holds:

vie{1,....mEpyr [

f( f@,r,z) _f( f@\i7raz)‘:| < Bm- (7)

Note that the value in the left hand side (l.h.s.) of Equation (7) can varyiffereht indexes
i. If r is fixed then the random hypothesis stability is exactly the same as the hypdctadsiisy
except that the resulting algorithm need not be symmetric anymore: if we sémegi@ining data
using a fixed, permuting two data points might lead to different samplings and hence to eediffe
outcome. This means that we cannot apply the results for the case of désdmailgorithms and
we have to consider other bounds on the variance of the differenceéetive generalization and
empirical (or leave-one-out) errors. We prove in the appendix the foilplemma.

Lemma 8 For any (hon-symmetric) learning algorithm A and loss functisoch thaD < /(f,z) <
M we have for the leave-one-out error:

2 m
€ [(Ren~Roo)?] < S0+ 01 3 Enall(f2) (11,2 ®)

Using Chebychev’s inequality, this lemma leads to the inequality

Utp,s,2) —z(f@\iﬁr,z)’ , r}
rn€2

2M2 12M Zln;l ED,Z
Pp (Rgen[f@,r] —Reol o r] > €] I’) < — + [

., 9)

where we use the notatidjX,Y] for the expectation oX conditioned orY, andP].|r] for the condi-
tional probability. By integrating Equation (9) with respect tand using the properiy [Ex[g(X,Y)|Y]] =
Ex v[g(X,Y)] we derive the following theorem about the generalization and leavesonerrors of
randomized learning methods:
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Theorem 9 Let f5, be the outcome of a randomized algorithm with random hypothesis stability
Bm w.r.t. a loss functiorf such thatd < ¢(f,z) <M, forally € 9, r € R and all setsD. Then with
probability 1 — & with respect to the random draw of tde@andr,

2M2 -+ 12MmBy,

= (10)

Rgen( f@,r) < Rfoo[fﬂr] + \/6_1

Notice that in the case that we make Assumption 1 nothing changes since thatintegf (9)
w.r.t.r does not depend on the decomposition naturerofde in Assumption 1.

As in the deterministic case, it is possible to define a different notion of stabilitgrive bounds
on the deviation between the empirical error and the generalization emamadmized algorithms:

Definition 10 (Random Pointwise Hypothesis Stability) A randomized algorithm A hagandom
pointwise hypothesis stabilif§, w.r.t. the loss functiod if the following holds:

Vie {17 .- '7m}7EQ)m7I’7Z E(f@JyZi) _E(fﬂ)\iuzﬂ’azi) < Bm' (11)

Using the following lemma proved in the appendix,

Lemma 11 For any (non-symmetric) learning algorithm A and loss functisnch thad < ¢(f,z) <
M we have for the empirical error,

2M?2 M I
€ [(Roen— Remd?] < 10+ 7S Ena[(fn.2) (U Epupn)]. (12)

we can derive as before the theorem:
Theorem 12 Let fp, be the outcome of a random algorithm with random pointwise hypothesis

stability Bm w.r.t. a loss functior? such thatd < ¢(f,z) <M, forally € 9, r € R and all setsD.
Then with probabilityl —  with respect to the random draw of tlie andr,

2M2 + 12MmBy,

- (13)

Ryen(fo,r) < Remp for] + \/51

We note that both for Theorems 9 and 12 (Lemmas 8 and 11) one can furtheve the
constants of the bounds — as is typically the case with bounds in the literature.

The parallel with the deterministic case is striking. However when we consigardom space
R reduced to only one element, then the bounds we obtain here are worsevgirassume non-
symmetric learning algorithms.
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3.3 Random Uniform Stability

The uniform stability definition (Definition 5) for deterministic algorithms can bieeded as fol-
lows:

Definition 13 (Uniform Stability of Randomized Algorithms) We say that a randomized learn-
ing algorithm has uniform stabilit3,, w.r.t. the loss functiod if, for every i=1,...,m

SUp[E; [£(foy2)] ~ ¢ [(1p1,.2)]| <Bm (14)

Note that this definition is consistent with Definition 5 which holds for determinigtizrsetric
learning algorithms.

To link uniform stability to generalization, the following result by McDiarmid (298see also
(Devroye et al., 1996), is central.

Theorem 14 (Bounded Difference Inequality) Letr = (r4,...,rt) € ® be T independent random
variables ¢; can be vectors, as in Assumption 1, or scalars) drawn from the santmlpfity
distributionP,. Assume that the function @& " — R satisfies

sup |G(r17"'7rT)_G(r17'"art—lar{7rt+l7"'7rT)‘ <G, t= 17"'7T' (15)
TR & N g

where ¢ is a nonnegative function of t. Then, for every 0

P[G(ry,...,r7) —E [G(ry,...,r1)] > €] < exp{—Zez/ ic[z} . (16)

For the next theorem we replace Bef Theorem 14 with/(f,, z) and require that, for every
D e zMandze Z, {(fp,,z) satisfies the inequality in Equation (15). This is a mild assumption but
the bounds below will be interesting only if, fér— oo, ¢ goes to zero at least agT. We usep
as the supremum of thegs of Theorem 14.

Theorem 15 Let fy be the outcome of a randomized learning algorithm satisfying Assumptions 1
and 2 with uniform stability3, w.r.t. the loss functioid. Letp be such that for all t

sup Sup‘é( f@,(rl,...,rT)>Z) _E( f@,(r17...,rt,l,r{,rt+1,.4.,rT)az)‘ < P,
F1,.f1,rf Z

as in Equation (15) for G being(fp,,z) andr = (ry,...,rt). The following bound holds with
probability at leastl — 6 with respect to the random draw of tlieandr,

Reenl frr) < Romed frr) + 2B+ (%ﬂmnﬁm + Jﬁp) (\/1092/%). 17)

and,

Reer( o) < Roo( s ) + Brn-+ (M - 2”‘@%* 2B ﬁp) (ViogZ/®).  (18)
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Furthermore, assuming thf,_1, the random uniform stability for training sets of size-, is
greater thanB,, we can simplify Equation (18) to:

Reenl f) < Rioof ) + B+ (%”:ﬁml VT p) (V/109(2/3)). (19)

Notice that the assumption for the simplification we make in the theorenfghatis greater
thanB, is natural: when points are added to the training set, the outcome of a lealpamighsn
is usually more stable. Moreover, boundsfncan be used here so that the condifian 1 > Bm
can be replaced by a condition on these bounds: we would require thadthels o3, are non-
increasing irm.

We note thatp may depend both on the number of random variablesnd the number of
training datam. In the bagging example below we estimate a boung @mt depends only om,
the number of subsamples we do for the bagging process — it may or mag posbible to show
thatp depends omn, too, but this is an open question. We do not know of an example where
also depends om or, alternatively, of a case where it can be shown that it is not possiblavep
depend omm. The latter case would imply that for fixédthe empirical (leave-one-out) error does
not converge to the expected erromamcreases. This is, however, an open question and potentially
a weakness for the framework we develop here.

Finally note that, as in the deterministic case discussed in Section 2, results sintilaséan
Theorem 15 can be given for classification following the same line as ins@aei and Elisseeff,
2002).

4. Stability of Bagging and Subbagging

In this section we discuss an application of the results derived above ginga@@reiman, 1996a)
and subbagging, see, for example, (Andonova et al., 2002), twomngirdd algorithms which work
by averaging the solutions of a learning algorithm trained a number of timesnoilom subsets of
the training set. We will analyze these methods within the stability frameworkezsabove. To
this end, we need to study how bagging and subbagging “affect” the stalbilitg base (underlying)
learning algorithm. First we present more formally what we mean by bagging.

4.1 Bagging

Bagging consists of training the same learning algorithm on a numleédifferent bootstrap sets
of a training setD and by averaging the obtained solutions. We denote these bootstrap g&ts py
fort=1,...,T, where the; € R = {1,...,m}™ are instances of a random variable corresponding
to samplingwith replacement o elements from the training sé (recall the notation in Example
3). Such random variables have a multinomial distribution with paramgderts., ). The overall
bagging model can thus be written as:

1 T
F@,r = ?t; f@(n)- (20)

65



ELISSEEFF, EVGENIOU AND PONTIL

Here we assume that the base learning mettigdl {feats multiple copies of a training point
(for example when many copies of the same point are sampled) as oné poirending the results
below to the case where multiple copies of a point are treated as such israqusgstion.

The reader should also keep in mind that the base learning algorithm maylbeaitsemized
with random parametex When trained on the-th bootstrap setD(r¢), this algorithm will output
the solutionfy ;) 5. However, to simplify the notation, we suppress the synspiol our discussion
below.

In what follows, we compute an upper bound on the random hypothesisitgtidy bagging.
For regression, we have then the following proposition:

Proposition 4.1 (Random hypothesis stability of bagging for regressn) Assume that the logs
is B—lipschitzian w.rt. its first variable. Letf, r € R, be the outcome of a bagging algorithm
whose base machine#¥ has (pointwise) hypothesis stabiligy w.r.t. the/s loss function. Then the
random (pointwise) hypothesis stabilfty, of Fp, with respect ta/ is bounded by

m kyk
Bm < Bkzlﬁpr [d(l’) = k] )
where dr), r € R, is the number of distinct sampled points in one bootstrap iteration.

Proof
We first focus on hypothesis stability. Let us assume first #ha fixed andz too. We would

like to bound:
T tE D(rt)7 T tE D\'(rt)7

wherer,,...,rr are i.i.d. random variables modeling the random sampling of bagging andghavin
the same distribution as Sincel is B—lipschitzian, and the; are i.i.d.,| (D, z) can be bounded as:

i (fﬂ)(rt) (x) — f@\i(n) (X)> u

t

B
|(Q),Z) < _El'l ,fT[

-t

To simplify the notation we denote y(D(r),x) the difference betweefi,(x) and fp)(x).
We have that

fory (%) = Tty (9] = BEr [|foe) 00 = T (9] ]

E[JAD(r), 3] = Er[IAMD(r),X)] (Lier + Ligr)]
= E [IA(D(r), )| Lier] + Er [[A(D(r), X)| Ligg]

Note that the second part of the last line is equal to zero becauseivgheot inr, pointz does not
belong toD(r) and, thusD(r) = D\i(r). We conclude that

|(D,2) < BE; [|A(D(r),X)| Lir] .

4. This means that if for example the underlying learning algorithm is aahaatwork, this algorithm is modified by a
preprocessing step so that the training set consists only of distinct data.po
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We now take the average w.ri andz
Ep2[I(D,2)] < BE; px[|A(D(r),X)|Lier] =

= BE, [ED,X[|A(@(r)7X)‘] 1ier] = BE, [Vd(r)lier] ) (21)

where the last equality follows by noting tha, « [|A(D(r),X)|] is bounded by the hypothesis sta-
bility yqr) of a training set of sizel(r). We now note that when averaging w.r.t.the important
variable about is the sized(r):

m
Er [Vd(r)lier] = z Pr [d(r) = K YEr [Lier;d(r) = K].
K=1
Now note that, by symmetng; [1ic;d(r) = k| = k/m. This concludes the proof for hypothesis
stability. The proof for pointwise stability is exactly the same except that in fitmué21) there is
no expectation w.r.zandzis replaced by,. [ |

The bounds we just proved depend on the quantitiéd(r) = k|, where, we recall thed(r),
r € R, is the number of distinct sampled points in one bootstrap iteration. It candvensifior
example by applying Theorem 14, that the random varidfi¢ is sharply concentrated around its
mode which is fok = (1— %)m ~ 0.632m. For that reason, in what follows we will assume that the
previous bounds can be approximately rewritten as:

Bm < .632BY 632m.

For example iB = 1 andy, scales appropriately witin the bounds on the random (pointwise)
hypothesis stability of the bagging predictor are better than those on thdwjsah hypothesis
stability of a single predictor trained on the whole training set. Notice alsogBatis the probability
that the bootstrapped set will contain a specific (any) point, also usedtify jihe .632 bootstrap
error estimates (Efron and Tibshirani, 1997).

Similar results can be shown for the random (pointwise) hypothesis stabiligfessification.
In particular:

Proposition 4.2 (Random hypothesis stability of bagging for classificain) Let Fp, be the out-
come of a bagging algorithm whose base machine has (pointwise) hgsositabilityym, w.r.t. the
classification loss function. Then, the (pointwise) random hypothesis stddility Fp , w.r.t. the
/1 loss function is bounded by

< Kyk
<2y TP [d(r) =K.

Proof The proof is the same as in the above proposition except that the lossiagpkarein is the
/1 loss and, soB = 1. The functionsf ) being{+1,—1} valued, the term:

Epz[|fo(X) — fpi(X)]]

is equal to the term
2Ep 2 [8(—yfp(X)) —B(=yfpi(X))]-
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So that stability w.r.t. thé; loss function can be replaced by stability w.r.t. the classification loss,
and the proof can be transposed directly. [ |

Example 5 k-NN) As previously seen, k-NN has hypothesis stability equﬁlSoch that bagging
k-NN has stability with respect to classification loss bounded by

< 1B o k
2§1W’]P’r[d() jj=2 n’]IPr[ P ZR =2

=1
So bagging does not improve stability, which is also experimentally veri&tdiman (1996a).
The next proposition establishes the link between the uniform stability ofibggmd that of

the base learning algorithm for regression. As before, classificatiolbedreated similarly, see
(Bousquet and Elisseeff, 2002).

Proposition 4.3 (Random uniform stability of bagging for regression) Assume that the logsis
B-lipschitzian with respect to its first variable. Lep F be the outcome of a bagging algorithm
whose base machine has uniform stabijityw.r.t. the/; loss function. Then the random uniform
stability B, of Fp, with respect to is bounded by

Bm<Bzf1P>r (r) =K. (22)
Proof The random uniform stability of bagging is given by

14 14
Er, =S f 2l =4 = T2 .
; M0t TtZl D(ry) TtZl D\i(ry)

Bm = sup
Q)a

This can be bound by taking the absolute valued inside the expectation, fohewing the same
lines as in the proof of Proposition 4.1 we have:

Bm < Bsup{E; [A(D(r),xX)Lic]}

DX

where, we recalld(D(r),X) = | fp() — fpu()| and functionlic, is equal to one if pointis sampled
during bootstrapping and zero otherW|se We then have

Bm <BE, !SUp{A(@(r)7X)}1ier] .
DX
Now we observe that

SUp{A(D(r),x)} = sup {A(D(r),X)} = Yu(r)

DX D(r),x

Placing this bound in the previous one gives

Bm < Er [Vd(r)lier] .

The proof is now exactly the same as in the final part of Proposition 4.1. |
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Example 6 (SVM regression) We have seen in Example 2 that the uniform stability of a SVM w.r.t.
the /1 loss is bounded bg/A. The uniform stability of bagging SVM is then roughly bounded by
0.632/\ if the SVM is trained on all bootstrap sets with the s&m8&o that the bound on the random
uniform stability of a bagged SVM is better than the bound on the uniform stabilitydimgle SVM
trained on the whole training set with the same

4.2 Subbagging

Subbagging is a variation of bagging where the $@¢s;),t = 1,...,T are obtained by sampling
p < mpoints from? withoutreplacement. Like in bagging, a base learning algorithm is trained on
each setD(r) and the obtained solutiorfs, ) are combined by average.

The proofs above can then be used here directly which gives the fojowgper bounds on
stability for subbagging:

Proposition 4.4 (Stability of subbagging for regression)Assume that the logsis

B-lipschitzian w.r.t. its first variable. Let#; be the outcome of a subbagging algorithm whose base
machine is symmetric and has uniform (resp. hypothesis or pointwis¢h®gis) stabilityy, w.r.t.
the¢; loss function, and subbagging is done by sampling p points without repéaterfihen the
random uniform (resp. hypothesis or pointwise hypothesis) staBilityf Fp, w.r.t. £ is bounded

by

p
Bm < Bypa-

For classification, we have also the following proposition, again only fpothesis or pointwise
hypothesis stability as in Section 2:

Proposition 4.5 ((P.) Hypothesis stability of subbagging for classificain) Let Fp, be the out-
come of a subbagging algorithm whose base machine is symmetric ahgiathesis (resp. point-
wise hypothesis) stability, with respect to classification loss, and subbagging is done by sampling
p points without replacement. Then the random hypothesis (resp. partypsthesis) stabilit@,

of Fp, with respect to thé; loss function is bounded by

Bm < 2Vp£-

4.3 Bounds on the Performance of Subbagging

We can now prove bounds on the performance of bagging and subbayge present the following
theorems for subbagging but the same statements hold true for baggirg imlte@e bounds below,
% is replaced by ! %]P} [d(r) = k] which is roughly equal to 832y, 32m whenmis sufficiently
large.

Theorem 16 Assume that the logds B-lipschitzian w.r.t. its first variable. LetJ; be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of sigesampled without
replacement from» and the base learning algorithm has hypothesis stabyiityand pointwise
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hypothesis stability;,,, both stabilities being w.r.t. théloss. The following bounds hold separately
with probability at leastL — &

2M2+12MB

Rgen( Fﬂ),r) < RZOO(F@J) + \/5_1 m PYo (23)
2MZ2 + 12MBpy;,

Rgen(For) < RemgFor) + \/61 m P, (24)

Proof The inequalities follow directly from plugging the result of Proposition 4.4 irediems 9
and 12 respectively. [ |

Note that, as in Proposition 4.2, the same result holds for classification if W@ se2 and
M=1.

The following theorem holds for regression. The extension to the caglasdification can be
done again as in (Bousquet and Elisseeff, 2002).

Theorem 17 Assume that the logds B-lipschitzian w.r.t. its first variable. LetJ; be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of sigesampled without
replacement fron® and the base learning algorithm has uniform stabiltyw.r.t. the/ loss. The
following bounds hold separately with probability at ledst o in the case of regression

Roen(For) < Rioo(Fos) + Br‘:’p + (M +AB(m/m—1)pVp ﬁBM) V09278, (25)

v2m VT

and

Bpy M+4Bpy, +/2BM
Ryen(Fo,r) < Remp(Fo,r) +2 mp + < Jom Py T ) V109 2/6. (26)

Proof We recall that = (ry,...,rt) and introducethe notation

t

rY=(ry,...,re1,r rees, ..o r).

Note that

[0(Fpyr,2) — U(Fpyi,2)| =

T T
l (21 f@(rs),2> -/ ( Z f@(rs) + f@(r/),Z
S= s=1,s+#t

Thus, the constam in Theorem 15 is bounded as

(Fos.2)~ ((Foe2)| < 2M.

p=sup

r,re

The result then follows by using this theorem and Proposition 4.4. |

We comment on some characteristics of the above bounds for subbagging:
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e In Theorem 16 if, asn — oo, % — 0 then the empirical or leave-one-out error converge to
the expected error. In particular, if= O(1) asm — o the empirical or leave-one-out error
converge to the expected one@g&l//m). This convergence is in probability as opposed to

the convergence provided by Theorem 17 which is almost surely.

¢ Although we can derive bounds for bagging using our theory in secttbat3vere not possi-
ble to derive with the existing theory summarized in Section 2, our results figilgdo not
show that bagging actually improves performance. Indeed, for exaropiparing Theorems
17 and 6, it is not clear which bound is tighter as that depends on the nts&ay.M, B, and
other constants) and the behaviorygfas p increases. Developing tighter bounds or lower
bounds within our analysis for bagging is needed for this purpose. Tarsapen problem.

e Theorem 17 indicates that the effects of the number of subsampkesf the form%, SO
there is no need for a larde, as also observed in practice (Breiman, 1996a). For example,
it is sufficient thatT scales as/m. This result improves upon the analysis of (Evgeniou et
al., 2004) where in order to have convergence of the empirical or lea@esur error to the
expected error it was required thits infinite.

e The bounds provided by Theorem 17 imply that the empirical or leavesaherror converge
to the expected error provided, as— oo, that'\oim"1 — 0 and T — o. The latter condition is

not a problem in practice, for example one could chobse O(,/m) to get convergence,
but it indicates a weak point of the uniform stability analysis as opposed thyipethesis
stability analysis above. As we discussed above, it may be possible to shopatameter

p appearing in Theorem 15 dependsroifior the case of bagging, or to show that this is not
possible in which case it will be a limitation of our approach. This is an opellgm

5. Conclusions

We presented a theory of random stability for randomized learning methads¢halso applied to
study the effects of bagging on the stability of a learning method. This is angéateof the existing
theory about the stability and generalization performance of deterministiengsyric) learning
methods (Bousquet and Elisseeff 2002). We note that the setup thavelemed for this analysis,
such as the issues and assumptions that we considered in Section 3, may bsed for other
studies of randomized learning algorithms — such as extensions of otheetha@oout stability from
deterministic to randomized learning methods. The bounds we proved shoallipthe relation
of the generalization error to the stability of the (random) algorithm. Thereriemily no lower
bound hence we cannot practically use the bounds when the numbeaaiidesmall (e.g., several
hundreds or thousands, which is the case in many current applicatibms)issue concerns both
the deterministic (Bousquet and Elisseeff, 2002) as well as the randsen €eveloping tighter
bounds as well as lower bounds in order to be able to use the theory pleddiere in practice is an
open question.
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Appendix A. Proofs of Lemmas 3.1 and 3.2

The proofs of Lemmas 3.1 and 3.2 follow directly the proof that has beamgiv(Bousquet and
Elisseeff, 2002). We reproduce the proof here with the changes thatquired to handle non
symmetric algorithms. Before entering the core of the calculations, let us ute@bme convenient
notation. We will denote by

Eij(Z,Z’,Z’/) :E(fﬂj(zz),z”) (27)

the loss of an algorithm trained on
Q)I,j(zazl) = (217"'7Zi—lazvzi+17"'7Zj—l7zlvzj+l7"'7zm)

which represents the training sétwherez andz; have been replaced lyandz. Wheni = j,
it is required thaz = Z. Note that the position of andz; matters here since the algorithm is not
symmetric. Since we hav®, j(z,zj) = Dk (%, z) for anyi, j andk,! in {1,...,m}, we use the
notation/(z) to denotetij(z,zj,z) for alli andj in {1,...,m}. According to these notations we
have

4ij(0.2),7) = {(fpi,2),
that is, we replace by the empty set when it is removed from the training set. Si)¢®,z;,z)
does not depend opy we will denote it by¥;.

Different tricks such as decomposing sums, renaming and permuting leariaitl be used in
the following calculations. Since the proofs are very technical and mostiydio we explain here
more precisely what these steps are. Decomposing sums is the main stepaittiations. The
idea is to transform a differenee-b into a suma—b = zik:la; —a;11 (@ =aandax 1 = b) so that
the quantities; — a1 in the sum can be bounded by terms of the fdm, [|4ij (z,zj,z) — £(z)]].
the latter being directly related to the notion of stability we defined. Renamingblesigorre-
sponds to simply changing the name of one variable into another one. Mtistepfthis change
will be done betweem, z andz; using the fact that and thez’s are independently and identically
distributed so that averaging w.iztis the same as w.r%.. The last technigue we use is symmetriza-
tion. The following simple lemma will allow us to perform some symmetrization withouhgimey
significantly the outcome of a (stable) learning algorithm.

Lemma 18 Let A be a (non-symmetric) algorithm and fdie as defined in Equation (27), we have
Wi, j) € {1,...,m}?2

ED,Z HE(Z) _Eij (Zj,Zi,Z)H < g (ED,Z,Z’ HEIJ (Z’,ZJ’,Z) _E(Z)H +ED.,Z,Z’ Hglj (Zi,Z,,Z) _E(Z)H) . (28)

Proof We have

Bz [|0(2) — 4} (z).3,2)[] <Epaz [[((2) —4ij(Z,7,2)|]
+Eop2z[|6j(Z,2,2) - 4j(Z.2,2)|] + Enzz [|6i(Z.2,2) — 4j(zj,2,2)|] (29)
Since the distribution oveD is i.i.d., integrating with respect tg is the same as integrating w.r.t.

zj or Z, and we can swap the role Bfandz in the second term of the r.h.s. , andzpfndz; in the
last term.

Epzz [|0i(Z,2,2) = 4ij(Z,2,2)|] = Eopzz[|l(2)—4j(z,Z,2)|]
Enzz[[6i(Z.2,2) ~ ij(z,2,2)|] = Ensz[|6j(Z,2,2-4(2)]],
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which gives the following result:

Eo.[|0(2) - 4ij(z,2.2)|] < 2Eop.[|6j(Z,7.2)—L(2)|] + Eon.[|6j(z.Z,2—€(2)|] (30)
If instead of (29) we used the following decomposition,
Ep. [|0(2) —4i(2),2,2)|] <Eop,z [[0(2) —4ij(z,Z,2)]]
+Eop.z [6i(2,2,2) - 0(2,Z,2)|| + Ep 2 [|0(2.Z,2) — i (2),2,2)|],
it would have led to
Ep. [[0(2) —4ij(zj,2,2)|] <Eop.[|6j(Z.21,2) = £(2)|] + 2B, [|6ij(z,.Z,2) — £(2)]] -

Averaging this inequality with (30), we get the final result. |

Note that the quantity appearing in the r.h.s. of Equation (28) can be bobydkifierent quantities
related to pointwise hypothesis stability or to hypothesis stability. We have indeed

Enz[|0(2) - 4ij(2,7,2)|] <3(Enz[|ti(22,2)—0(z)|] +En.|[|6i(z.27)—t(z)]]). (31)

which is related to the definition of pointwise hypothesis stability and will be udeshvihe focus
is on empirical error. We have also

Eo. [[0(2) —4i(2),7,2)|] <3(Ep[|6j(0,2),2) —£(2)|] +Eo[|6ij(z,0,2)—4(2)]]),

which is related to bounds on the leave-one-out error. Both boundsthawsame structure and it
will turn out that the following calculations are almost identical for leave-oneerror and empirical
error. We can now start the main part of the proofs. The notations dieuttifo digest but the ideas
are simple and use only the few formal steps we have described beferirst\étate the following
lemma as in (Bousquet and Elisseeff, 2002):

Lemma 19 For any (non-symmetric) learning algorithm A, we have
2 1 2 0

Ep [(Rgen— Remp)?] < -~ ;E@,z,z’ [6(2)0(Z)] - 2 Z Epz[l(2)((z)]
i) i#]

+ % ; Ep[0(z)0(z)] + % i (Epzz [€(2)0(Z)] — 2Ep,[0(2)0(z)] +Ep [g(zi)z])
iZ] i=
and
Ep [(Rgen— Réoo)z} < % i; Epzz [f(Z)f(Z,)] — % i% Ep, [0(2)4]
+ % ; Ep[6ilij(z,0,7)]
iZ]
1 m

+ Zl (Epzz [€(2)0(2)] — 2Ep, [6(2)6] +Exp [67]) .
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Proof We have

E@[RSen] = Eop |:EZ£(Z)2:|
= Ep.z [((2)((Z)]
_ rizi JEDZZ[e(z)e(z)anziE@,Lz [L(2)e(2)],
and also
E@[RgenRemd = E@ [Rgen%ig(zi)]
_ %iiE@[Rgené(z)]
= S Esula)
- %i#JE@z[é(Z)K(Z.)]+%iiE@z[£(Z)g(z|)]
and also
Ep[RgerRioo] = En !Rgenn%_ifi]
_ nl]iiE@{Rgenei]
= %'iEa)z[f(Z)m
= %lijsz[ﬁ(Z)E.]—I—%iiE@zWZ)m

Also we have

and

Eop [R[%oo]

which concludes the proof.
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iE@ €] + % ; Ex[4itij(z,0,2)],
i= iZ]

3+
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Continuing the proof of Lemma 3.2, we now formulate the first inequality of Leménasl

Eop [(Rgen— Remp)z] < % ; Eﬂz,z’ [E(Z)K(Z,)} - Eﬂz w(Z)g(Zi)]
iZ]

~~

+ % iiEﬂ,zz [(2U2)] - 2B, [(2)0(2)] +Ep [£(2)] .
K

Using the fact that the loss is boundedMywe have
K = Epaz [l(2) (U(Z)~z))] +En,[l(z) (U(z) —£(2)]
< 2M2

Now we rewritel as
Epzz [E(z)é(z’)] —Ep [l(2)l(z)] =
= EQ),Z,Z’ [E(Z)E(z’) — Eij (Z’,Zj,Z)eij (Z’, Zj,Z,)] R
where we renameg asZ in the second term. We have then
| = Epzz [(£(2) —4}(27,2)0(Z)]
+Ep2z [(6j(22),2) - ij(Z,2,2)0(Z)]
+Enpzz [(U(Z)—1ij(Z.2,2))ti(Z,2,2)] -

Thus,
1| <3MEp .z [[6j(22,2) - (2)]] - (32)

Next we rewrite] as
Ep[0(z)0(2))] — En[t(D)0(2)] = En a7 [6i(2Z,2)4§(22,2) — £(2)((7)]
where we renameq} asZ andz aszin the first term. We have also
J=En,7 [6i(2Z,2)6j(2Z,7) - 4ij(Z,2,2)6i(Z,2,2)]
where we renamer] asZ andz; asz in the second term. Using Equation 31, we have
J<Ep,z[6j(zZ,2)6i(2Z,2) - tij(z,Z,2)4:i(Z,7,2Z)]

J
+3M (Ep[|6ij(z.2,2) —(z)|] +En.[|j(z,22)—€(z)]]). (33)

Let us focus on);, we have

h=Eop,, [(tij(zZ,2)-tj(z2,2)tij(zZ,2)
+Epzz [(4j(22,2) — 4ij(2,2,2)tij (2 2,2)]
+Eop.z [(bj(22,2) - 4ij(Z,2,2))(z,Z,2)]
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and

N =Eop.7((4j(z,2,2) — 4ij(z.2,2)) 4 (Z,Z),7)]
+Ep 2z [(4)(2,2),2) — 4ij(2,2),2)) 4 (Z,2,)]
+Ep27((4ij(2,2,2) — 4ij(z,2),2))j (2,2, 2)]

where we replacedby z, z by zandZ by z; in the first term, and by z andZ by z; andz by zin
the second term and, in the last term, we renamést z andz by z;. Thus,

31| < 2MEon, [|6ij(2,2j,2) — €(z)|] + MEp .z [|6ij(z,2,7) — £(z))]] - (34)
Summing Equation (32) with the inequality drderived from Equations (34) and (33), we obtain
1+J < 8MEq,[|tj(z2,2)—(z)|] +4MEos, [|4j(z,2.2) — £(z)|] -

To boundl + J, we can swap the role éfand j (note thati and j are under a sum and that we can
permute the role afandj in this sum without changing anything). In that case, we obtain

| +J < AMEy, [|6j(2,2,2) — £(z)|] + BMEp . |4 (z,2,2) — £(z;)]] -
Averaging over this bound and the previous one, we finally obtain
| +J3<6M (En[|lij(z2,2)—(z)|] +Eo.[|tj(z.22)—4(z)|])-

The above concludes the proof of the bound for the empirical erraniha 3.2).

The bound for the leave-one-out error (Lemma 3.1) can be obtainediinilarsvay. Indeed,
we notice that if we rewrite the derivation for the empirical error, we simpleha remove from
the training set the point at which the loss is computed. That is, we simply haeplaxe all the
quantities of the fornti; (z,Z,z) by ¢;(0,Z,2). Itis easy to see that the above results are modified
in a way that gives the correct bound for the leave-one-out error.

Appendix B. Proof of Theorem 3.4

Proof We first prove Equation (17) and then show how to derive Equation @8)h proofs are
very similar except for some calculations.

LetK(D,r) = Rgen(fn) — Remd fn,) the random variable which we would like to bound. For
this purpose, we first show thHtis close to its expectation w.rit.and then show how this average
algorithm is controlled by its stability.

For everyr,se R, andT € N, we have

K(D.6)~K(D,9)| =
= [Eeltln 2 ~t(1p02] = 1 3 ((1r.2)~H(1152)

< Eo[|(fper2) ~ Ufns2)]] + %i}ﬁ(fﬂr,a) U(tpea)].
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Thus, using the definition o, this equation implies (when ands differ only in one of theT
coordinates) that

sup |K(D,ry,....r1) —K(D,ra,... 1 1,1, g1, 1) < 2p
Iyl T,0F

and applying Theorem 14 we obtain (note tiais independent af)
]P)r [K<Q)7r) - EI’ [K(Q)7r)] > € ’ Q)] < eXp{_Ez/Zsz} .

We also have
E@[Pr [K(Q),I’) —EK(D,r) > SH —
=Ep[P; [K(D,r) —EK(D,r) > €| D]] < exp{—€?/2Tp?}.

Setting the r.h.s. equal @and writinge as a function od we have that with probability at least
1—dw.r.t. the random sampling @ andr:

K(D,r)—E/K(D,r) <+v2Tp+/log(1/d). (35)
We first bound the expectation Ef( D,r). We defineG(D, z) := E; [((fp,,2)]. We have

E@,r [K(Q),r)] = EQ) E,

6(D.2) - %iemm”

= Ep,[G(D,2)] - %_iE@ (G(D,2)]

IN®

2+ Epy,[6(01.2)] - & ZlE 6(0".2)]

—
Nl

= 2Bnm (36)

where(a) is derived from the fact that the algorithm has random uniform stafflifythat is,

sup
D,z

G(0,2)~G(D".2)| <Bm,

and (b) comes fromEy, [G(DV,7)] = E i, [G(DV,2)] (it amounts to changing into 2). We
would like now to apply Theorem 14 &, [K(D,r)]. To this aim, we bound (recall thap' =
D\'UZ):

|Er [Er [K(D,1)—K(D',1)]]| =

1
m

(Er [g(ffDi,Hzl)} —Er [g(f@,hzi)})—i_%; Er[g(fﬂ)\i7razj>] —E [e(f@,l’azj)]
17]
() (b)

~~

+;; Er [((fpir.2Z)] —Erll(f i, Z)]+Er [Ez [U(fpr.2) —(fpi,2)]]| (37)
i#]
© (d)
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where(a) is bounded byM (b), (c) are bounded bfm and(d) is similarly bounded by . So
that sup, , , |Er [K(D,1)] - E; [K(D',1)]| < M + 4B, and we derive that

2me?
o e <o 2L

which implies that with probability at least-10 w.r.t. the random sampling @b andr

M +4mBn,
v2m

Observe that the inequalities in Equations (35) and (38) hold simultaneoitblyprmbability at
least 1— 26. The result follows by combining those inequalities and setirgd/2.

The proof of Equation (19) follows the same reasoning except that tie ohEquations (36)
and (37) are different. We have

Er [K(D.1)] < 2B+ l0g(1/3). (38)

EfD,r[K(@’r)] = Eop

E.[G(D,2)] - n%ie(@\i,a)]

~ Epal6(02] 3 Epa[6(0" 2)
B

and denotingh\"I the setD wherez andz; have been removed, arf\} the setD' wherez; has
been removed (foj # i),

IN

|E¢ [K(D,1)] —Er [K(D,1)]| =

%(Er [f(f@\ipzi)} —E V( D\ ra ;Ef fopi r’ZJ —Er [(( f@\i~j,r’zj)}

(@) (b)

+— ;Er @\IJ rvz] } Er [g(f@i\i‘razj)} +Er [Ez [e(f@,ﬂz) _g(fl)i,rvz)” .
© @

Finally, note tha{a) is bounded b)}ﬂm, (b) and(c) are bounded b1 and(d) by 2B, [ |
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