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Abstract

AdaBoost.M2 is a boosting algorithm designed for multislpsoblems with weak base classifiers.
The algorithm is designed to minimize a very loose bound entithining error. We propose two
alternative boosting algorithms which also minimize bosimeh performance measures. These
performance measures are not as strongly connected topiketed error as the training error, but
the derived bounds are tighter than the bound on the traarireg of AdaBoost.M2. In experiments
the methods have roughly the same performance in minimthigraining and test error rates. The
new algorithms have the advantage that the base classifiafdsiminimize the confidence-rated
error, whereas for AdaBoost.M2 the base classifier shoutdmize the pseudo-loss. This makes
them more easily applicable to already existing base ¢iassi The new algorithms also tend to
converge faster than AdaBoost.M2.
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1. Introduction

Most papers about boosting theory consider two-class problems. Msétiplablems can be either
reduced to two-class problems using error-correcting codes (Allwteih,e2000; Dietterrich and
Bakiri, 1995; Guruswami and Sahai, 1999) or treated more directly usisg tlassifiers for multi-
class problems. Freund and Schapire (1996 and 1997) proposdddhthan AdaBoost.M1 which
is a straightforward generalization of AdaBoost using multiclass basdfidess An exponential
decrease of an upper bound of the training error rate is guarantéelgaas the error rates of the
base classifiers are less than 1/2. For more than two labels this conditioe tam testrictive for
weak classifiers like decision stumps which we use in this paper. Freun8dagpire overcame
this problem with the introduction of the pseudo-loss of a clasdifiet x Y — [0,1] :

1 1
Stzi(l—ht<xiayi)+m—_l ht(x.,y)>
Y7Vi

In the algorithm AdaBoost.M2, each base classifier has to minimize the psessimstead of the
error rate. As long as the pseudo-loss is less than 1/2, which is easilyatdador weak base
classifiers as decision stumps, an exponential decrease of an upperdothe training error rate
is guaranteed.

In this paper, we will derive two new direct algorithms for multiclass problerntls decision
stumps as base classifiers. The first one is called GrPloss and has itsrotiggrgradient descent
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framework of Mason et al. (1998, 1999). Combined with ideas of FramddSchapire (1996, 1997)
we get an exponential bound on a performance measure which weaadig$oss error. The second
algorithm was motivated by the attempt to make AdaBoost.M1 work for weakdiassifiers. We
introduce the maxlabel error rate and derive bounds on it. For bothithlignay, the bounds on the
performance measures decrease exponentially under conditions wigasy to fulfill by the base
classifier. For both algorithms the goal of the base classifier is to minimize tlieleoce-rated
error rate which makes them applicable for a wide range of already exisisgclassifiers.

Throughout this pape= {(xi,Vi); i = 1,...,N)} denotes the training set where eachelongs
to some instance or measurement spaead each label; is in some label set. In contrast to the
two-class casey can haveY| > 2 elements. A boosting algorithm calls a given weak classification
algorithmh repeatedly in a series of rountls= 1,...,T. In each round, a sample of the original
training setSis drawn according to the weighting distributi@a and used as training set for the
weak classification algorithrh. Dy (i) denotes the weight of exampief the original training set
S The final classifieH is a weighted majority vote of th& weak classifiersy, wherea; is the
weight assigned tb;. Finally, the elements of a skt that maximize and minimize a functidnare
denoted arg g']/laf((m) and argmrenl\ilnf (m) respectively.

2. Algorithm GrPloss

In this section we will derive the algorithm GrPloss. Mason et al. (199891@mbedded Ad-
aBoost in a more general theory which sees boosting algorithms as draeseent methods for the
minimization of a loss function in function space. We get GrPloss by applyingrémient descent
framework especially for minimizing the exponential pseudo-loss. We farssider slightly more
general exponential loss functions. Based on the gradient desaerévfork, we derive a gradient
descent algorithm for these loss functions in a straight forward waydtid®e?.1. In contrast to the
general framework, we can additionally derive a simple update rule faampling distribution as
it exists for AdaBoost.M1 and AdaBoost.M2. Gradient descent doepnostde a special choice
for the “step size'ti;. In Section 2.2, we define the pseudo-loss error and dayig minimization
of an upper bound on the pseudo-loss error. Finally, the algorithm is sinddlifi¢he special case
of decision stumps as base classifiers.

2.1 Gradient Descent for Exponential Loss Functions

First we briefly describe the gradient descent framework for the tasscase witly = {—1, +1}.
As usual a training sé8= {(x,yi); i =1,...,N)} is given. We are considering a function space
F =lin(#) consisting of functions : X — R of the form

. T

f(xa,B) = Zla‘h‘(X;Bt)’ he : X — {+1}
t=

with @ = (0y,...,a7) € RT, B= (B1,...,Br) andh; € H. The parameter; uniquely determine
h; therefored and3 uniquely determind. We choose a loss function

L(F) = Bl (FOO. W] = BBy [Iyf())]] 1R —Rxo
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where for example the choice ff (x),y) = e Y leads to

LS it
i=

The goal is to findf* = argfm;pL(f).
€
The gradient in function space is defined as:

oL(f +el .
oL = HEE o im

where for two arbitrary tupleg andv'we denote

1 V=V
1 Vi =
/(9) {o V£V,
A gradient descent method always makes a step in the “direction” of the¢inegradient-OL( f)(x).
However—[L(f)(x) is not necessarily an element @f, so we replace it by an elementof F

which is as parallel te-OL( f)(x) as possible. Therefore we need an inner product 7 x ¥ — R,
which can for example be chosen as

. 1N -
ﬁﬁ>=5¢;fW0Hm)

This inner product measures the agreemerft afd f on the training set. Using this inner product
we can set

B :=arg rréaX—DL(ft,l),h(. i B))

andh; :=h(-; ;). The inequality—OL(fi_1),h(Bt)) <0 means that we can not find a good “direc-
tion” h(B), so the algorithm stops, when this happens. The resulting algorithm isigi¥égure 1.

Input: training setS, loss function, inner product, ) : ¥ x ¥ — R, starting valuefy.
t:=1
Loop: while (—OL(fi—1),h(Bt)) > 0

o Bii= argrréaX—DL(ft—l)vh(B)>
o g :=argminL(fi-1+ah(R)))

o fr="fi_1+ah(B)
Output: fi, L(f)

Figure 1: Algorithm gradient descent in function space

Now we go back to the multiclass case and modify the gradient descent foaknenorder to
treat classifierd of the formf : X xY — R, wheref(x,y) is a measure of the confidence, that an

191



EIBL AND PFEIFFER

object with measuremenishas the labey. We denote the set of possible classifiers with For
gradient descent we need a loss function and an inner prodygt dve choose

N Y|

lef x,Y) f(x.y)

which is a straightforward generalization of the definition for the two-clasec The goal of the
classification algorithm GrPloss is to minimize the special loss function

f)::%IZI(f,i) with I(f,i)_exp[ ( f(Xi, i)+ ;M )] (1)

T f(x,y)
P

The term

compares the confidence to label the exampt®rrectly with the mean confidence of choosing one
of the wrong labels. Now we consider slightly more general exponentsflmgtions

[(f,i) =exp[v(f,i)] with exponent-lossv(f,i)=vy+ ZVy(i)f(Xi,y) ,
y

where the choice
1

vo::—Landvy(i):{_z1 Y=y

2 AR # Vi

leads to the loss function (1). This choice of the loss function leads to thathlgagiven in Fig-
ure 2. The properties summarized in Theorem 1 can be shown to hold oigtiihan.

Input: training setS, maximum number of boosting roundls
Initialisation: fo:=0,t:=1,Vi: Dy(i):= &.
Loop: Fort=1,...,T do

e hy=arg nﬂ]ing Di(i)v(h,i)

o If 3iDi(i)v(ht,i) > vo: T :=t—1, goto output.

e Chooseay;.

e Updatef; = f_; +aihy andDy4(i) :% c(D) (aghy, i)
Output: fr, L(fr)

Figure 2: Gradient descent for exponential loss functions
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Theorem 1 For the inner product

N 1Y
21 Zlf(xi,y)h(m y)

and any exponential loss functiond i) of the form

I(f,1) =exp[v(f,i)] with v(f,i)=vo+ > w(i)f(x,y)
y

where ¢ and v (i) are constants, the following statements hold:
(i) The choice of hthat maximizes the projection on the negative gradient

he = argmax—0L(fi-1),h)
is equivalent to that minimizing the weighted exponent-loss

h = arg mhinlz Dy (i)v(h,i)

with respect to the sampling distribution

(fad) _ 1(fead)

Dy (i) := iZ/'(ft—l,i/) = 7,

(if) The stopping criterion of the gradient descent method

(=0OL(ft-1),h(Br)) <O

leads to a stop of the algorithm, when the weighted exponent-loss gets positive
Z Dt > \o.
(iif) The sampling distribution can be updated in a similar way as in AdaBoasgube rule
. 1_ . :
Drra(i) = o Di(i)l (ach, i),
{
where we defineiAs a normalization constant

Z Dt (i)l (ahy, i)

which ensures that the update.D is a distribution.

In contrast to the general framework, the algorithm uses a simple updat®rihe sampling
distribution as it exists for the original boosting algorithms. Note that the algouiies not specify
the choice of the step sizg, because gradient descent only provides an upper bouiog. dWe
will derive a special choice fam; in the next section.
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Proof. The proof basically consists of three steps: the calculation of the gtattiercthoice for base
classifierh; together with the stopping criterion and the update rule for the sampling distributio
(i) First we calculate the gradient, which is defined by

L(f +KLy) —L(F)
k

DL(f)(va) = II<ILnO

_ 1 xy=(xy
for Ly (X,Y) = {0 Em ?ég:,’y,g .
So we get fox = x;:

L(f+Kklgy) = % exp

vo+;vv(i)f(xi,y')+kvy(i)] = %I(f,i)ek"y(”.

Substitution in the definition dflL(f) leads to

I(f,1)(ew — 1)

OL()06.y) = lim {EETEZD 1 )
" ey = { - @
Y= hiw) x=x

Now we insert (2) intod —OL(fi_1),h) and get
1 o 1 . .
<_|:|L(ftfl)a h[> = _N Z Z I (ftfb')Vy(')h(XiaY) = _N Z I (ftflal)(v(hal) _VO)' (3)
Ty [
If we define the sampling distributidd; up to a positive constak_; by

Di(i) :=G_1l(fi—1,i), (4)

we can write (3) as

(~OL(a)h) =~ 3 DD —v0) = — = (z Dy(iyv(h,i) —vO> NG

Since we requir€;_1 to be positive, we get the choice lafof the algorithm
h = arg rr;]aX—DL(ft_l), h) =arg rrp]inz Di(i)v(h,i).
|
(ii) One can verify the stopping criterion of Figure 2 from (5)

(~OL(fi1),h) <0 ¥ D(iv(h,i) > Vo.

(i) Finally, we show that we can calculate the update rule for the sampling distiD.
Dera(i) = Cl(f,i) =Gl (fog+agh,i)
= C['(ft_l, I)l (Gtht,i) = %Dt(l)l (Gth[,i).
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This means that the new weight of exampis a constant multiplied witl; (i)l (a:h;,i). By com-
paring this equation with the definition df we can determin€;

G

G = Z
Sincel is positive and the weights are positive one can show by induction, thaCaisgositive,
which we required before. |

2.2 Choice ofa; and Resulting Algorithm GrPloss

The algorithm above leaves the step lengithwhich is the weight of the base classifier unspec-
ified. In this section we define the pseudo-loss error and dexiley minimization of an upper
bound on the pseudo-loss error.

Definition: A classifierf : X x Y — R makes a pseudo-loss error in classifying an exampiéh

labelk, if L

The corresponding training error rate is denotegl®yr:

1
plerr = N Z ( leyl ‘Y|_1y ) f(X|,y)> .

The pseudo-loss error counts the proportion of elements in the trainifgrsehich the confi-
dencef(x,k) in the right label is smaller than theverageconfidence in the remaining labels

Sy f(x,y)/([Y|—1). Thus it is a weak measure for the performance of a classifier in the sense
Zk

f(x,k) <

that it can be much smaller than the training error.
Now we consider the exponential pseudo-loss. The constant term p$éuelo-loss leads to a
constant factor which can be put into the normalizing constant. So with thetabefi

u(f,i):= f(XiA/i)—ﬁ > fx.y)

Y#Yi
the update rule can be written in the shorter form
. 1. .
Dia(i) = ZDI(I) —agu(h, Wlth Z = ZD e—otu(hei)/2

We present our next algorithm, GrPloss, in Figure 3, which we will deaive justify in what
follows.
(i) Similar to Schapire and Singer (1999) we first bowidrr by the product of the normalization
constants

—

plerr < [1%. (6)
N
To prove (6), we first notice that
1 fT7
plerr < N IZ (7)
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Input: training setS= {(x1,y1),..., (XN, YN); % € X, ¥ € Y},
Y ={1,...,]Y|}, weak classification algorithm with outplat X xY — [0, 1]
Optionally T: maximal number of boosting rounds

Initialization: Dy(i) = &.
Fort=1,...,T:

e Train the weak classification algorithhg with distribution D;, whereh; should maximize

Ut = Zi Dt(l)U(h[,l)
e If Uy <0: goto output withl :=t —1

ot =1In 1+U
A

N S
De1(i) = 7 De(i)e deu(hei)/2,

e Set

e Update D:

whereZ; is a normalization factor (chosen so tiiat ;1 is a distribution)

Output: final classifieH (x):

ye

_
H() = argmaxi (xy) = arg mgx(zlath«x, y))
t

Figure 3: Algorithm GrPloss

Now we unravel the update rule

. 1 i .
DT+1(|) _ Ze—uTu(hT,l)/ZDT(I)

1 autriva : .
— —_— e TU(hT,I)/Ze GT,]_LI(hT,]_,I)/ZD _
It 1 r-1()
T

vy
= ... =Dy(i)[]euhi/2 >
tI:! 4

where the last equation uses the property thatlinear inh. Since
1 NP |

1=5SD =N e ufni/2rm —

Z Y ZNe tElZT
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we get Equation (6) by using (7) and the equation above

e utiy2_
plerr < = § e Uf/2— M z.
N2 1

(i) Derivation of a:
Now we derivea; by minimizing the upper bound (6). First, we plug in the definitiorZof

-y (3oume ).

Now we get an upper bound on this product using the convexity of thetibme %" between—1
and +1 (fromh(x,y) € [0, 1] it follows thatu € [—1,+-1]) for positiveay:

nz<N (Z -
Now we choose; in order to minimize this upper bound by setting the first derivative with réspec
to o to zero. To do this, we define

I\)IH

— u(hy,i))et 2% +<1+u<n,i>>e-%“f1> . ®)

= ZDt(i)U(ht )

Since eachu; occurs in exactly one factor of the bound (8) the resultfoonly depends ok); and
not onUs, s+#t, more specifically
o = In (1Y
TU\1—u )

Note thatJ; has its values in the interval1, 1], becausex € [—1,+1] andD; is a distribution.
(iii) Derivation of the upper bound of the theorem:
Now we substituter; back in (8) and get after some straightforward calculations

=M

Using the inequality/1—x < (1— %x) < e/2for x € [0,1] we can get an exponential bound on

Mz ) ]
tuzt <exp [tZL_UtZ/Z] .

If we assume that each classifrerfulfills U; > 8, we finally get

T
rlzt S e—BZT/Z

(iv) Stopping criterion:

The stopping criterion of the slightly more general algorithm directly resultsemtw stopping
criterion to stop, wheb); < 0. However, note that the bound depends on the squasgin§tead of
U; leading to a formal decrease of the bound even when 0.
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We summarize the foregoing argument as a theorem.

Theorem 2If for all base classifiersft X xY — [0, 1] of the algorithm GrPloss given in Figure 3

Ui .= ZDt(I)U(ht,l) >0

holds ford > 0 then the pseudo-loss error of the training set fulfills

;
plerr < r!\/l— U2 <e¥T/2, (9)
=

2.3 GrPloss for Decision Stumps

So far we have considered classifiers of the fowrnX x Y — [0,1]. Now we want to consider base
classifiers that have additionally the normalization property

Z( h(x,y)=1 (10)
ye

which we did not use in the previous section for the derivation;ofThe decision stumps we used
in our experiments find an attribuéeand a values which are used to divide the training set into two
subsets. If attributa is continuous and its value onis at mostv thenx belongs to the first subset;
otherwisex belongs to the second subset. If attribates categorical the two subsets correspond
to a partition of all possible values afinto two sets. The predictioh(x,y) is the proportion of
examples with labey belonging to the same subsetasSince proportions are in the intenjal 1]
and for each of the two subsets the sum of proportions is one our destsimps have both the
former and the latter property (10). Now we use these properties to minimizetartigpund on the
pseudo-loss error and further simplify the algorithm.

(i) Derivation ofay:
To geta; we can start with

plerr < |-lzt ﬂ(ZDt eowh )

which was derived in part (i) of the proof of the previous section. Rivetsimplify u(h,i) using the
normalization property and get

1
(h I) ’Y“ ‘ h(xivyi) - W (11)
In contrast to the previous sectiarth,i) € [_W 1] for h(x;,yi) € [0, 1], which we will take into
account for the convexity argument:
plerr < I_llet ) (N0 y1) €7/2 4 (1 he (g, ) €/ M2 (12)
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Setting the first derivative with respectdgto zero leads to

_2v=y Y=
= Y| In< 1—r t)’

where we defined

(i) Upper bound on the pseudo-loss error:
Now we pluga; in (12) and get

T 1or (VDAY (Y] = D\
p'errét[l(“(‘rtuvr—l)) ra-o(MEH) ) a9

(iii) Stopping criterion:

As expected for; = 1/|Y| the corresponding factor is 1. The stopping criterign< O can be
directly translated into; > 1/|Y|. Looking at the first and second derivative of the bound one can
easily verify that it has a unique maximumrat= 1/|Y|. Therefore, the bound drops as long as
r. > 1/|Y|. Note again that since = 1/|Y| is a unique maximum we get a formal decrease of the
bound even when > 1/|Y|.

(iv) Update rule:

Now we simplify the update rule using (11) and insert the new choicg ahd get

D) = 2W ganixan-1M) o g, - pn (=D
Z 1—r¢
Also the goal of the base classifier can be simplified, because maxinigzisgquivalent to maxi-
mizing ry.

We will see in the next section, that the resulting algorithm is a special cabe @figorithm
BoostMA of the next chapter witb=1/|Y]|.

3. BoostMA

The aim behind the algorithm BoostMA was to find a simple modification of AdaBddsn order
to make it work for weak base classifiers. The original idea was influebgea frequently used
argument for the explanation of ensemble methods. Assuming that the iraividssifiers are
uncorrelated, majority voting of an ensemble of classifiers should lead to bettdts than using
one individual classifier. This explanation suggests that the weight sdifilers that perform better
than random guessing should be positive. This is not the case for AdaBido In AdaBoost.M1
the weight of a base classifiaris a function of the error rate, so we tried to modify this function
so that it gets positive, if the error rate is less than the error rate of nagdessing. The resulting
classifier AdaBoost.M1W showed good results in experiments (Eibl aritfePf002). Further
theoretical considerations led to the more elaborate algorithm which we cadt8 which uses
confidence-rated classifiers and also compares the base classifierentthiiformative rule.

In AdaBoost.M2, the sampling weights are increased for instances fohwinécpseudo-loss
exceeds 1/2. Here we want to increase the weights for instances, tieebmase classifiehn :
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X xY — [0,1] performs worse than the uninformative or what we call the maxlabel rutee T
maxlabel rule labels each instance as the most frequent label. As a caefidded classifier, the
uninformative rule has the form

maxlabel rule X xY — [0,1] : h(x,y) := %,
whereNy is the number of instances in the training set with lab&o it seems natural to investigate
a modification where the update of the sampling distribution has the form

et (ht(%i.yi)—c)

Diea(i) = Du(i) =5 —— with 1= ZlDt (hx)—€).

wherec measures the performance of the uninformative rule. Later we will set

=3 (%)

and justify this setting. But up to that point we let the choice open and just requiree (0,1).
We now define a performance measure which plays the same role as tde-sesierror.

Definition 1 Let ¢ be a number if0,1). A classifier f: X xY — [0,1] makes a maxlabel error in
classifying an example x with label k, if

f(x,k) <c.

The maxlabel error for the training set is called mxerr:

1 N
mxerr:= N;I (f(x,yi) <c).

The maxlabel error counts the proportion of elements of the training setiioh the confidence
f(x,k) in the right label is smaller tham The number must be chosen in advance. The higbés,
the higher is the maxlabel error for tkameclassifierf; therefore to get a weak error measure we
setc very low. For BoostMA we chooseas the accuracy for the uninformative rule. When we use
decision stumps as base classifiers we have the prapexty) € [0,1]. By normalizingay, ..., dr,
so that they sum to one, we ensure,y) € [0, 1] (Equation 15).

We present the algorithm BoostMA in Figure 4 and in what follows we justify astablish
some properties about it. As for GrPloss the modus operandi consistslimitfian upper bound on
mxerrand minimizing the bound with respectdo
() Bound of mxerrin terms of the normalization constaras
Similar to the calculations used to bound the pseudo-loss error we begimbglibhgmxerrin terms
of the normalization constank: We have

1 = ZDH-l ZDt
1 ! 1o -
easth|Y| - e

)| gzswz

Zs

e a (he (%i,yi)—c)

0]
Zle=
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Input: training setS= {(x1,y1),..., (XN, YN); % € X, i € Y},
Y ={1,...,|Y|}, weak classification algorithm of the forhnt X x Y — [0, 1].
Optionally T: number of boosting rounds

Initialization: Dy(i) = &.
Fort=1,...,T:

e Train the weak classification algorithimwith distributionDy, whereh; should maximize

=Y Du(ih . 0)

e If ry <c: goto output withT :=t—1

e Set 10
. —C)I't
ai=1In (c(l—rt))'
e Update D:
) e (e (xiy)—0)
D (i) = Di(i) = ——

whereZ; is a normalization factor (chosen so tliat 1 is a distribution)

Output: Normalizeay,...,or and set the final classifiéf(x):

.
H(x) = arg maxd (xy)=arg 523X<t;atht (%, y)>

Figure 4: Algorithm BoostMA

So we get
_ 1 (few)—exay
m Z = N IZe : (14)
Using
3 A —(f(x ) —
LC) B UL EOR0 LN (15)
3o
and (14) we get
mxerr < [ Z. (16)
t

(i) Choice ofa;:

Now we bound[] Z: and then we minimize it, which leads us to the choiceofFirst we use the
t

definition ofZ; and get

Zi = D (i)e %t ((xiy)—c) | 17
[1% U(Ztme ) an
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Now we use the convexity @ %("%.¥)=0) for hy(x;,y;) between 0 and 1 and the definition
re:= Ith(i)ht(XiaYi)
and get
mxerr < D ZDt(i) (ht(Xi,Yi)e_G‘(l_C) +(1- ht(Xi,yi))ea‘C>
= U (rte*‘“(l*c) +(1—rt)e°“°>.
We minimize this by setting the first derivative with respeatitdo zero, which leads to

B (1—o)rt
O(t—ln <7C(1—|’t) .
(iii) First bound onmxerr.

To get the bound omxerrwe substitute our choice far; in (17) and get

(1—o)re ) (1 —rp)\ o)
e D ((c(l—rt;> ,ZDt(I) ((1—c)trt) > (18)

he (%,¥1) . .
Now we bound the ternﬁ fgl_;;trf) by use of the inequality

x*<1l-a+ax forx>0andac[0,1],

which comes from the convexity of for a between 0 and 1 and get

c(l—r)

B he (xi,¥i)
(c(l rt)) < 1—he(Xi,¥i)+ b (%, Vi)

(1—c)ry (1—o)r¢
Substitution in (18) and simplifications lead to
ré(1—ry)t=c
mxerr < U (m . (19)

The factors of this bound are symmetric aroung ¢ and take their maximum of 1 there. Therefore
if re > cis valid the bound omxerrdecreases.

(iv) Exponential decrease afxerr.

To prove the second bound we set= ¢+ d with & € (0,1 — c¢) and rewrite (19) as

1-c c
mxerr < |_| (1 %) (1+g> )
. _

We can bound both terms using the binomial series: all terms of the series fafsthierm are
negative, we stop after the terms of first order and get

6 1-c
-2 ) <1-a
() s
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The series of the second term has both positive and negative terms,paagftetothe positive term

of first order and get .
<1+ g) <1+6.

mxerr< [(1-&).
t

Thus

Using 1+ x < e forx< 0 leads to

2.
mxerr<e 9T,

We summarize the foregoing argument as a theorem.
Theorem 3If all base classifiers fwith h(x,y) € [0, 1] fulfill
It .= ZDt(l)hl(th') >c+90
|

for & € (0,1—c) (and the condition & (0,1)) then the maxlabel error of the training set for the
algorithm in Figure 4 fulfills

rf(1—ryte —5°T
mxerr < D (m <e . (20)

Remarks: 1.) Choice affor BoostMA: since we use confidence-rated base classification algwrith
we choose the training accuracy for the confidence-rated uninforenati® forc, which leads to

N N 2
iy Ene g ) >

2.) For base classifiers with the normalization property (10) we can get ¢éesiexypression for the
pseudo-loss error. From

y;(f(x,y) :y;(Zatht(x,y) = Zat(l—ht(x,k)) = Zat — f(xk)

f

we get
W 1
v [Y]

1 (X
fx k)< —- Y f - 22
y T
That means that if we choose= 1/|Y| for BoostMA the maxlabel error is the same as the pseudo-
loss error. For the choice (21) othis is the case when the group proportions are balanced, because

then
1

-3 (%) -3 (%) M-

For this choice ot the update rule of the sampling distribution for BoostMA gets

Dt+1(i) = DtT(I)e_qt(ht(XiM)—l/Y) and o;=In <(’Yl’ - 1)rt> ,
£ — It
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which is just the same as the update rule GrPloss for decision stumps. Summtrégadwo re-
sults we can say that for base classifiers with the normalization propertghthiee (21) forc of
BoostMA and data sets with balanced labels, the two algorithms GrPloss astMBoand their
error measures are the same.

3.) In contrast to GrPloss the algorithm does not change when the bas#ietadditionally fulfills
the normalization property (10) because the algorithm only bhg&sy; ).

4. Experiments

In our experiments we focused on the derived bounds and the prgmtidalmance of the algo-
rithms.

4.1 Experimental Setup

To check the performance of the algorithms experimentally we performestiengnts with 12 data
sets, most of which are available from the UCI repository (Blake and M&28). To get reliable
estimates for the expected error rate we used relatively large data setstiognof about 1000
cases or more. The expected classification error was estimated eitherdbgaderate or 10-fold
cross-validation. A short overview of the data sets is given in Table 1.

| Database | N | fLabels| 4 Variables| Error Estimation| Labels \
car* 1728 4 6 10-CV unbalanced
digitbreiman | 5000 10 7 test error balanced
letter 20000 26 16 test error balanced
nursery * 12960 4 8 10-CV unbalanced
optdigits 5620 10 64 test error balanced
pendigits 10992 10 16 test error balanced
satimage * 6435 6 34 test error unbalanced
segmentation 2310 7 19 10-CV balanced
waveform 5000 3 21 test error balanced
vehicle 846 4 18 10-CV balanced
vowel 990 11 10 test error balanced
yeast * 1484 10 9 10-CV unbalanced

Table 1: Properties of the databases

For all algorithms we used boosting by resampling with decision stumps as laasdiers.
We used AdaBoost.M2 by Freund and Schapire (1997), BoostMA auitiy ..y (Ny/N)2 and the
algorithm GrPloss for decision stumps of Section 2.3 which correspondsdsti@8 with ¢ =
1/|Y|. For only four databases the proportions of the labels are significantiglamced so that
GrPloss and BoostMA should have greater differences only for tlesedfitabases (marked with
a*). As discussed by Bauer and Kohavi (1999) the individual sampligightsD; (i) can get very
small. Similar to was done there, we set the weights of instances which weve 1@lé° to 1019,
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We also set a maximum number of 2000 boosting rounds to stop the algorithm stapping
criterion is not satisfied.

4.2 Results

The experiments have two main goals. From the theoretical point of view antissted in the
derived bounds. For the practical use of the algorithms, it is important todbthe training and
test error rates and the speed of the algorithms.

4.2.1 DERIVED BOUNDS

First we look at the bounds on the error measures. For the algorithmdsda®12, Freund and
Schapire (1997) derived the upper bound

-
(Y| —1)2"1 r!\/et(l— &) (23)
t=
on the training error. We have three different bounds on the psewsdaetoor of Grploss: the term
Mz (24)
t

which was derived in the first part of the proof of Theorem 2, the tightemd (9) of Theorem
2 and the bound (13) for the special case of decision stumps as basiierkasIn Section 3, we
derived two upper bounds on the maxlabel error for BoostMA: term &4 the tighter bound (20)
of Theorem 3.

For all algorithms their respective bounds hold for all time steps and forasdl sets. Bound
(23) on the training error of AdaBoost.M2 is very loose — it even excédds eight of the 12 data
sets, which is possible due to the factéf — 1 (Table 2). In contrast to the bound on the training
error of AdaBoost.M2, the bounds on the pseudo-loss error of GsRlnd the maxlabel error of
BoostMA are below 1 for all data sets and all boosting rounds. In thaesehey are tighter than
the bounds on the training error of AdaBoost.M2.

As expected, bound (13) derived for the special case of decisiompstas base classifiers on
the pseudo-loss error is smaller than bound (9) of Theorem 2 whiclndose the normalization
property (10) of the decision stumps.

For both GrPloss and BoostMA, bound (24) is the smallest bound sincetaios the fewest
approximations. For BoostMA, term (24) is a bound on the maxlabel endrfa GrPloss term
(24) is a bound on the pseudo-loss error. For unbalanced data satsgattabel error is the “harder”
error measure than the pseudo-loss error, so for these data sets(Bdyis higher for BoostMA
than for GrPloss. For balanced data sets the maxlabel error and trdogess error are the same.
Bound (9) for GrPloss is higher for these data sets than bound (20 astBIA. This suggests that
bound (9) for GrPloss could be improved by more sophisticated calculations

4.2.2 GOMPARISON OF THEALGORITHMS

Now we wish to compare the algorithms with one another. Since GrPloss arstiNBddliffer only
for the four unbalanced data sets, we focus on the comparison of GnRitbsAdaBoost.M2 and
make only a short comparison of GrPloss and BoostMA. For the subsecumparisons we take
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AdaBoost.M2 GrPloss BoostMA
training error [%] pseudo-loss error [%] maxlabel error [%0]
Database trerr BD23 | plerr | BD24 | BD13 | BD9 | mxerr | BD24 | BD20
car* 0 33.9 0 34| 11.1| 319 78| 63.1| 719
digitbreiman | 25.5 3274 05 3.7| 19.9| 81.0 10| 119| 356
letter 46.1 1013.1| 0.4 72| 27.8| 94.3 0.4 8.1| 295
nursery * 14.2 78.7 0 0 05| 111 0 0.8 7.6
optdigits 0 421.1 0 0 20| 514 0 0 0.1
pendigits 13.8 190.2 0 0 0.1| 42.6 0 0 0.1
satimage * | 15.9 118.5| 0.1 1.8 13.2| 62.3 3.8| 26.0| 50.1
segmentation 7.5 96.2 0 0.4 2.8| 30.5 0 0.4 35
vehicle 26.5 101.2| 0.1 28| 14.7| 50.0 0.1 3.3| 16.5
vowel 30.9 273.8 0 0 0.1| 40.4 0 0.1 3.0
waveform 12.5 48.4 0 0.5 6.3| 23.3 0 0.4 6.0
yeast * 60.2 365.0/ 0.4 6.6 26.0| 83.6| 49.2| 99.2| 99.6

Table 2: Performance measures and their bounds in percent at thengaosind with minimal
training error. trerr, BD23: training error of AdaBoost and its bou28){ plerr, BD24
,BD13 ,BD9: pseudo-loss error of GrPloss and its bounds (24), (iB8j9; mxerr, BD24,
BD20: maxlabel error of BoostMA and its bounds (24) and (20).

all error rates at the boosting round with minimal training error rate as was lopEibl and Pfeiffer
(2002).

First we look at the minimum achieved training and test error rates. Theytsaggests Ad-
aBoost.M2 to work best in minimizing the training error. However, GrPlosmsde have roughly
the same performance with maybe AdaBoost.M2 leading by a slight edge §Tabled 4, Figure
5). The difference in the training error mainly carries over to the diffeeen the test error. Only
for the data sets digitbreiman and yeast do the training and the test ewodffierent algorithms
(Table 4). Both the training and the test error favor AdaBoost.M2 for ata dets and GrPloss for
four data sets with two draws (Table 4).

While GrPloss and AdaBoost.M2 were quite close for the training and test rates, this is
not the case for the pseudo-loss error. Here, GrPloss is the cleagvegainst AdaBoost.M1 with
eight wins and four draws (Table 4). The reason for this might be thetHat bound (13) on the
pseudo-loss error of GrPloss is tighter than bound (23) on the traimogarAdaBoost.M2 (Table
2). For the data set nursery, bound (13) on the pseudo-loss é@Ptoss (0.5%) is smaller than
the pseudo-loss error of AdaBoost.M2 (1.9%). So for this data set,do(iB) can explain the
superiority of GrPloss in minimizing the pseudo-loss error.

Due to the fact that only four data sets are significantly unbalanced, it sasy to assess the
difference between GrPloss and BoostMA. GrPloss seems to have &gading the training and
test error rates (Tables 3 and 5). For the experiments, the corstdBoostMA was chosen as
the training accuracy for the confidence-rated uninformative rule @&i)the unbalanced data sets,
this c exceeds 1]Y|, which is the corresponding choice for GrPloss (22). A change-ofmaybe
even adaptively during the run — could possibly improve the performaiieavish to make further
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training error test error
Database AdaM2 | GrPloss| BoostMA | AdaM2 | GrPloss| BoostMA
car* 0 0 7.75 0 0 7.75
digitoreiman | 25.49| 25.63 25.63| 27.51| 27.13 27.38
letter 46.07| 40.02 40.14| 47.18| 41.70 41.70
nursery * 14.16| 12.37 12.63| 14.27| 12.35 12.67
optdigits 0 0 0 0 0 0
pendigits 13.82| 17.17 17.20| 18.61| 20.44 20.75
satimage * 15.85| 15.69 16.87| 18.25| 17.80 18.90
segmentation 7.49 9.05 8.90 8.40 9.31 9.48
vehicle 26.46| 30.15 30.19| 35.34| 38.16 36.87
vowel 30.87| 41.67 42.23| 54.33| 67.32 67.32
waveform 12.45| 14.55 14.49| 16.63| 18.17 17.72
yeast * 60.18| 59.31 60.61| 60.65| 61.99 62.47

Table 3: Training and test error at the boosting round with minimal training;evmdd and italic
numbers correspond to high%%) and medium¢ 1.5%) differences to the smallest of the
three error rates

GrPloss vs. AdaM2
Database trerr | testerr| plerr | speed
car* 0 0 0 +
digitbreiman -
letter
nursery *
optdigits
pendigits - -
satimage * +
segmentation
vehicle - -
vowel - -
waveform - -
yeast * + -
total 4-2-6 | 4-2-6

+ + +

+
+
+
o

+ 1 0 + +

++0+0 + +0 + + +
+ 4+ + + 4+

-0 | 10-0-2

e
I

Table 4. Comparison of GrPloss with AdaBoost.M2: win-loss-table for theitrgerror, test error,
pseudo-loss error and speed of the algorithm (+/0/-: win/draw/loss Rlo&s)

investigations about a systematic choicecdbr BoostMA. Both algorithms seem to be better in
the minimization of their corresponding error measure (Table 5). The smidretites between
GrPloss and BoostMA occurring for the nearly balanced data sets tanlga@ome from the small
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Figure 5: Training error curves: solid: AdaBoost.M2, dashed: G ldstted: BoostMA

differences in the group proportions, but also from differences imeébhampling step and from the
partition of a balanced data set into unbalanced training and test sets duoasgvalidation.

Performing a boosting algorithm is a time consuming procedure, so the spaadalgorithm
is an important topic. Figure 5 indicates that the training error rate of Gri¥a=creasing faster
than the training error rate of AdaBoost.M2. To be more precise, we lathleatumber of boosting
rounds needed to achieve 90% of the total decrease of the trainingaeofFor 10 of the 12 data
sets, AdaBoost.M2 needs more boosting rounds than GrPloss, so Gs&4wss to lead to a faster
decrease in the training error rate (Table 4). Besides the humber difgposunds, the time for
the algorithm is also heavily influenced by the time needed to construct a lasdier. In our
program, it took longer to construct a base classifier for AdaBoost.Mause the minimization of
the pseudo-loss which is required for AdaBoost.M2 is not as straighdfdras the maximization
of ry required for GrPloss and BoostMA. However, the time needed to cohstroase classifier
strongly depends on programming details, so we do not wish to over-emglhiaisiaspect.
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GrPloss vs. BoostMA
Database | trerr | testerr| plerr | mxerr | speed
car* + + + o -
nursery * + + o] o] +
satimage *| + + + - o]
yeast * + + + - -
total 4-0-0| 4-0-0 | 3-1-0| 0-2-2 | 1-0-2

Table 5: Comparison of GrPloss with BoostMA for the unbalanced data waétstoss-table for
the training error, test error, pseudo-loss error, maxlabel erbspaed of the algorithm
(+/o/-: win/draw/loss for GrPloss)

5. Conclusion

We proposed two new algorithms GrPloss and BoostMA for multiclass probléthsmeak base
classifiers. The algorithms are designed to minimize the pseudo-loss edrtieamaxlabel error
respectively. Both have the advantage that the base classifier minimizemfidence-rated error
instead of the pseudo-loss. This makes them easier to use with alreadygekistim classifiers.
Also the changes to AdaBoost.M1 are very small, so one can easily getuwhalgerithms by

only slight adaption of the code of AdaBoost.M1. Although they are noigded to minimize

the training error, they have comparable performance as AdaBoost.Mdriexperiments. As
a second advantage, they converge faster than AdaBoost.M2. AdaR@ominimizes a bound
on the training error. The other two algorithms have the disadvantage of mingrboinnds on

performance measures which are not connected so strongly to thetexkmeor. However the
bounds on the performance measures of GrPloss and BoostMA are tigdwtethe bound on the
training error of AdaBoost.M2, which seems to compensate for this distayan
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