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Abstract
AdaBoost.M2 is a boosting algorithm designed for multiclass problems with weak base classifiers.
The algorithm is designed to minimize a very loose bound on the training error. We propose two
alternative boosting algorithms which also minimize bounds on performance measures. These
performance measures are not as strongly connected to the expected error as the training error, but
the derived bounds are tighter than the bound on the trainingerror of AdaBoost.M2. In experiments
the methods have roughly the same performance in minimizingthe training and test error rates. The
new algorithms have the advantage that the base classifier should minimize the confidence-rated
error, whereas for AdaBoost.M2 the base classifier should minimize the pseudo-loss. This makes
them more easily applicable to already existing base classifiers. The new algorithms also tend to
converge faster than AdaBoost.M2.
Keywords: boosting, multiclass, ensemble, classification, decisionstumps

1. Introduction

Most papers about boosting theory consider two-class problems. Multiclass problems can be either
reduced to two-class problems using error-correcting codes (Allwein et al., 2000; Dietterrich and
Bakiri, 1995; Guruswami and Sahai, 1999) or treated more directly using base classifiers for multi-
class problems. Freund and Schapire (1996 and 1997) proposed the algorithm AdaBoost.M1 which
is a straightforward generalization of AdaBoost using multiclass base classifiers. An exponential
decrease of an upper bound of the training error rate is guaranteed aslong as the error rates of the
base classifiers are less than 1/2. For more than two labels this condition can be too restrictive for
weak classifiers like decision stumps which we use in this paper. Freund andSchapire overcame
this problem with the introduction of the pseudo-loss of a classifierh : X×Y → [0,1] :

εt =
1
2

(

1−ht(xi ,yi)+
1

|Y|−1 ∑
y6=yi

ht(xi ,y)

)

.

In the algorithm AdaBoost.M2, each base classifier has to minimize the pseudo-loss instead of the
error rate. As long as the pseudo-loss is less than 1/2, which is easily reachable for weak base
classifiers as decision stumps, an exponential decrease of an upper bound on the training error rate
is guaranteed.

In this paper, we will derive two new direct algorithms for multiclass problems with decision
stumps as base classifiers. The first one is called GrPloss and has its originin the gradient descent
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framework of Mason et al. (1998, 1999). Combined with ideas of Freundand Schapire (1996, 1997)
we get an exponential bound on a performance measure which we call pseudo-loss error. The second
algorithm was motivated by the attempt to make AdaBoost.M1 work for weak baseclassifiers. We
introduce the maxlabel error rate and derive bounds on it. For both algorithms, the bounds on the
performance measures decrease exponentially under conditions which are easy to fulfill by the base
classifier. For both algorithms the goal of the base classifier is to minimize the confidence-rated
error rate which makes them applicable for a wide range of already existingbase classifiers.

Throughout this paperS= {(xi ,yi); i = 1, . . . ,N)} denotes the training set where eachxi belongs
to some instance or measurement spaceX and each labelyi is in some label setY. In contrast to the
two-class case,Y can have|Y| ≥ 2 elements. A boosting algorithm calls a given weak classification
algorithmh repeatedly in a series of roundst = 1, . . . ,T. In each round, a sample of the original
training setS is drawn according to the weighting distributionDt and used as training set for the
weak classification algorithmh. Dt(i) denotes the weight of examplei of the original training set
S. The final classifierH is a weighted majority vote of theT weak classifiersht whereαt is the
weight assigned toht . Finally, the elements of a setM that maximize and minimize a functionf are
denoted argmax

m∈M
f (m) and arg min

m∈M
f (m) respectively.

2. Algorithm GrPloss

In this section we will derive the algorithm GrPloss. Mason et al. (1998, 1999) embedded Ad-
aBoost in a more general theory which sees boosting algorithms as gradient descent methods for the
minimization of a loss function in function space. We get GrPloss by applying thegradient descent
framework especially for minimizing the exponential pseudo-loss. We first consider slightly more
general exponential loss functions. Based on the gradient descent framework, we derive a gradient
descent algorithm for these loss functions in a straight forward way in Section 2.1. In contrast to the
general framework, we can additionally derive a simple update rule for thesampling distribution as
it exists for AdaBoost.M1 and AdaBoost.M2. Gradient descent does notprovide a special choice
for the “step size”αt . In Section 2.2, we define the pseudo-loss error and deriveαt by minimization
of an upper bound on the pseudo-loss error. Finally, the algorithm is simplified for the special case
of decision stumps as base classifiers.

2.1 Gradient Descent for Exponential Loss Functions

First we briefly describe the gradient descent framework for the two-class case withY = {−1,+1}.
As usual a training setS= {(xi ,yi); i = 1, . . . ,N)} is given. We are considering a function space
F = lin(H ) consisting of functionsf : X → R of the form

f (x;~α,~β) =
T

∑
t=1

αtht(x;βt), ht : X →{±1}

with ~α = (α1, . . . ,αT) ∈ R
T , ~β = (β1, . . . ,βT) andht ∈ H . The parametersβt uniquely determine

ht therefore~α and~β uniquely determinef . We choose a loss function

L( f ) = Ey,x[l( f (x),y)] = Ex[Ey[l(y f(x))]] l : R → R≥0
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where for example the choice ofl( f (x),y) = e−y f(x) leads to

L( f ) =
1
N

N

∑
i=1

eyi f (xi).

The goal is to findf ∗ = argmin
f∈F

L( f ).

The gradient in function space is defined as:

∇L( f )(x) :=
∂L( f +e1x)

∂e
|e=0 = lim

e→0

L( f +e1x)−L( f )
e

where for two arbitrary tuplesv andṽ we denote

1v(ṽ) =

{

1 ṽ = v
0 ṽ 6= v.

A gradient descent method always makes a step in the “direction” of the negative gradient−∇L( f )(x).
However−∇L( f )(x) is not necessarily an element ofF , so we replace it by an elementht of F

which is as parallel to−∇L( f )(x) as possible. Therefore we need an inner product〈 , 〉 : F ×F →R,
which can for example be chosen as

〈 f , f̃ 〉 =
1
N

N

∑
i=1

f (xi) f̃ (xi).

This inner product measures the agreement off and f̃ on the training set. Using this inner product
we can set

βt := argmax
β

〈−∇L( ft−1),h(· ; β)〉

andht := h(· ; βt). The inequality〈−∇L( ft−1),h(βt)〉 ≤ 0 means that we can not find a good “direc-
tion” h(βt), so the algorithm stops, when this happens. The resulting algorithm is givenin Figure 1.

————————————————————————————————–
Input: training setS, loss functionl , inner product〈 , 〉 : F ×F → R, starting valuef0.

t := 1
Loop: while 〈−∇L( ft−1),h(βt)〉 > 0

• βt := argmax
β

〈−∇L( ft−1),h(β)〉

• αt := argmin
α

(L( ft−1 +αht(βt)))

• ft = ft−1 +αtht(βt)

Output: ft , L( ft)
————————————————————————————————–

Figure 1: Algorithm gradient descent in function space

Now we go back to the multiclass case and modify the gradient descent framework in order to
treat classifiersf of the form f : X×Y → R, where f (x,y) is a measure of the confidence, that an
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object with measurementsx has the labely. We denote the set of possible classifiers withF . For
gradient descent we need a loss function and an inner product onF . We choose

〈 f , f̂ 〉 :=
1
N

N

∑
i=1

|Y|

∑
y=1

f (xi ,y) f̂ (xi ,y),

which is a straightforward generalization of the definition for the two-class case. The goal of the
classification algorithm GrPloss is to minimize the special loss function

L( f ) :=
1
N ∑

i

l( f , i) with l( f , i) := exp

[

1
2

(

1− f (xi ,yi)+ ∑
y6=yi

f (xi ,y)
|Y|−1

)]

. (1)

The term

− f (xi ,yi)+ ∑
y6=yi

f (xi ,y)
|Y|−1

compares the confidence to label the examplexi correctly with the mean confidence of choosing one
of the wrong labels. Now we consider slightly more general exponential loss functions

l( f , i) = exp[v( f , i)] with exponent− lossv( f , i) = v0 +∑
y

vy(i) f (xi ,y) ,

where the choice

v0 =
1
2

andvy(i) =

{

−1
2 y = yi

1
2(|Y|−1) y 6= yi

leads to the loss function (1). This choice of the loss function leads to the algorithm given in Fig-
ure 2. The properties summarized in Theorem 1 can be shown to hold on this algorithm.

————————————————————————————–
Input: training setS, maximum number of boosting roundsT

Initialisation: f0 := 0, t := 1,∀i : D1(i) := 1
N .

Loop: For t = 1, . . . ,T do

• ht = argmin
h

∑i Dt(i)v(h, i)

• If ∑i Dt(i)v(ht , i) ≥ v0 : T := t −1, goto output.

• Chooseαt .

• Updateft = ft−1 +αtht andDt+1(i) = 1
Zt

Dt(i)l(αtht , i)

Output: fT , L( fT)
————————————————————————————–

Figure 2: Gradient descent for exponential loss functions
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Theorem 1 For the inner product

〈 f ,h〉 =
1
N

N

∑
i=1

|Y|

∑
y=1

f (xi ,y)h(xi ,y)

and any exponential loss functions l( f , i) of the form

l( f , i) = exp[v( f , i)] with v( f , i) = v0 +∑
y

vy(i) f (xi ,y)

where v0 and vy(i) are constants, the following statements hold:
(i) The choice of ht that maximizes the projection on the negative gradient

ht = argmax
h

〈−∇L( ft−1),h〉

is equivalent to that minimizing the weighted exponent-loss

ht = argmin
h

∑
i

Dt(i)v(h, i)

with respect to the sampling distribution

Dt(i) :=
l( ft−1, i)

∑
i′

l( ft−1, i′)
=

l( ft−1, i)
Z′

t−1
.

(ii) The stopping criterion of the gradient descent method

〈−∇L( ft−1),h(βt)〉 ≤ 0

leads to a stop of the algorithm, when the weighted exponent-loss gets positive

∑
i

Dt(i)v(ht , i) ≥ v0.

(iii) The sampling distribution can be updated in a similar way as in AdaBoost using the rule

Dt+1(i) =
1
Zt

Dt(i)l(αtht , i),

where we define Zt as a normalization constant

Zt := ∑
i

Dt(i)l(αtht , i),

which ensures that the update Dt+1 is a distribution.
In contrast to the general framework, the algorithm uses a simple update rule for the sampling

distribution as it exists for the original boosting algorithms. Note that the algorithm does not specify
the choice of the step sizeαt , because gradient descent only provides an upper bound onαt . We
will derive a special choice forαt in the next section.
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Proof. The proof basically consists of three steps: the calculation of the gradient, the choice for base
classifierht together with the stopping criterion and the update rule for the sampling distribution.
(i) First we calculate the gradient, which is defined by

∇L( f )(x,y) := lim
k→0

L( f +k1(x,y))−L( f )

k

for 1(x,y)(x
′,y′) =

{

1 (x,y)=(x′,y′)
0 (x,y)6=(x′,y′) .

So we get forx = xi :

L( f +k1xiy) =
1
N

exp

[

v0 +∑
y′

vy′(i) f (xi ,y
′)+kvy(i)

]

=
1
N

l( f , i)ekvy(i).

Substitution in the definition of∇L( f ) leads to

∇L( f )(xi ,y) = lim
k→0

l( f , i)(ekvy(i)−1)

k
= l( f , i)vy(i).

Thus

∇L( f )(x,y) =

{

0 x 6= xi

l( f , i)vy(i) x = xi
. (2)

Now we insert (2) into〈−∇L( ft−1),ht〉 and get

〈−∇L( ft−1),ht〉 = − 1
N ∑

i
∑
y

l( ft−1, i)vy(i)h(xi ,y) = − 1
N ∑

i

l( ft−1, i)(v(h, i)−v0). (3)

If we define the sampling distributionDt up to a positive constantCt−1 by

Dt(i) := Ct−1l( ft−1, i), (4)

we can write (3) as

〈−∇L( ft−1),ht〉 = − 1
Ct−1N ∑

i

Dt(i)(v(h, i)−v0) = − 1
Ct−1N

(

∑
i

Dt(i)v(h, i)−v0

)

. (5)

Since we requireCt−1 to be positive, we get the choice ofht of the algorithm

ht = argmax
h

〈−∇L( ft−1),h〉 = argmin
h

∑
i

Dt(i)v(h, i).

(ii) One can verify the stopping criterion of Figure 2 from (5)

〈−∇L( ft−1),ht〉 ≤ 0⇔ ∑
i

Dt(i)v(ht , i) ≥ v0.

(iii) Finally, we show that we can calculate the update rule for the sampling distributionD.

Dt+1(i) = Ct l( ft , i) = Ct l( ft−1 +αtht , i)

= Ct l( ft−1, i)l(αtht , i) =
Ct

Ct−1
Dt(i)l(αtht , i).
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This means that the new weight of examplei is a constant multiplied withDt(i)l(αtht , i). By com-
paring this equation with the definition ofZt we can determineCt

Ct =
Ct−1

Zt
.

Sincel is positive and the weights are positive one can show by induction, that alsoCt is positive,
which we required before.

2.2 Choice ofαt and Resulting Algorithm GrPloss

The algorithm above leaves the step lengthαt , which is the weight of the base classifierht , unspec-
ified. In this section we define the pseudo-loss error and deriveαt by minimization of an upper
bound on the pseudo-loss error.

Definition: A classifier f : X×Y → R makes a pseudo-loss error in classifying an examplex with
labelk, if

f (x,k) <
1

|Y|−1 ∑
y6=k

f (x,y).

The corresponding training error rate is denoted byplerr:

plerr :=
1
N

N

∑
i=1

I

(

f (xi ,yi) <
1

|Y|−1 ∑
y6=yi

f (xi ,y)

)

.

The pseudo-loss error counts the proportion of elements in the training setfor which the confi-
dence f (x,k) in the right label is smaller than theaverageconfidence in the remaining labels
∑

y6=k
f (x,y)/(|Y| − 1). Thus it is a weak measure for the performance of a classifier in the sense

that it can be much smaller than the training error.
Now we consider the exponential pseudo-loss. The constant term of thepseudo-loss leads to a

constant factor which can be put into the normalizing constant. So with the definition

u( f , i) := f (xi ,yi)−
1

|Y|−1 ∑
y6=yi

f (xi ,y)

the update rule can be written in the shorter form

Dt+1(i) =
1
Zt

Dt(i)e
−αtu(ht ,i)/2, with Zt :=

N

∑
i=1

Dt(i)e
−αtu(ht ,i)/2.

We present our next algorithm, GrPloss, in Figure 3, which we will deriveand justify in what
follows.
(i) Similar to Schapire and Singer (1999) we first boundplerr by the product of the normalization
constants

plerr ≤
T

∏
t=1

Zt . (6)

To prove (6), we first notice that

plerr ≤ 1
N ∑

i

e−u( fT ,i)/2. (7)
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————————————————————————————————–
Input: training setS= {(x1,y1), . . . ,(xN,yN); xi ∈ X, yi ∈Y},

Y = {1, . . . , |Y|}, weak classification algorithm with outputh : X×Y → [0,1]
OptionallyT: maximal number of boosting rounds

Initialization: D1(i) = 1
N .

For t = 1, . . . ,T:

• Train the weak classification algorithmht with distributionDt , whereht should maximize
Ut := ∑i Dt(i)u(ht , i).

• If Ut ≤ 0: goto output withT := t −1

• Set

αt = ln

(

1+Ut

1−Ut

)

.

• Update D:

Dt+1(i) =
1
Zt

Dt(i)e
−αtu(ht ,i)/2.

whereZt is a normalization factor (chosen so thatDt+1 is a distribution)

Output: final classifierH(x):

H(x) = argmax
y∈Y

f (x,y) = argmax
y∈Y

(

T

∑
t=1

αtht(x,y)

)

————————————————————————————————–

Figure 3: Algorithm GrPloss

Now we unravel the update rule

DT+1(i) =
1

ZT
e−αTu(hT ,i)/2DT(i)

=
1

ZTZT−1
e−αTu(hT ,i)/2e−αT−1u(hT−1,i)/2DT−1(i)

= . . . = D1(i)
T

∏
t=1

e−αtu(ht ,i)/2 1
Zt

=
1
N

exp

(

−
T

∑
t=1

αtu(ht , i)/2

)

T

∏
t=1

1
Zt

=
1
N

e−u( fT ,i)/2
T

∏
t=1

1
Zt

where the last equation uses the property thatu is linear inh. Since

1 = ∑
i

DT+1(i) = ∑
i

1
N

e−u( fT ,i)/2
T

∏
t=1

1
ZT
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we get Equation (6) by using (7) and the equation above

plerr ≤ 1
N ∑

i

e−u( fT ,i)/2 =
T

∏
t=1

Zt .

(ii) Derivation of αt :
Now we deriveαt by minimizing the upper bound (6). First, we plug in the definition ofZt

T

∏
t=1

Zt =
T

∏
t=1

(

∑
i

Dt(i)e
−αtu(ht ,i)/2

)

.

Now we get an upper bound on this product using the convexity of the function e−αtu between−1
and +1 (fromh(x,y) ∈ [0,1] it follows thatu∈ [−1,+1]) for positiveαt :

T

∏
t=1

Zt ≤
T

∏
t=1

(

∑
i

Dt(i)
1
2
[(1−u(ht , i))e

+ 1
2αt +(1+u(ht , i))e

− 1
2αt ]

)

. (8)

Now we chooseαt in order to minimize this upper bound by setting the first derivative with respect
to αt to zero. To do this, we define

Ut := ∑
i

Dt(i)u(ht , i).

Since eachαt occurs in exactly one factor of the bound (8) the result forαt only depends onUt and
not onUs, s 6= t, more specifically

αt = ln

(

1+Ut

1−Ut

)

.

Note thatUt has its values in the interval[−1,1], becauseut ∈ [−1,+1] andDt is a distribution.
(iii) Derivation of the upper bound of the theorem:
Now we substituteαt back in (8) and get after some straightforward calculations

T

∏
t=1

Zt ≤
T

∏
t=1

√

1−U2
t .

Using the inequality
√

1−x≤ (1− 1
2x) ≤ e−x/2 for x∈ [0,1] we can get an exponential bound on

∏t Zt
T

∏
t=1

Zt ≤ exp

[

T

∑
t=1

−U2
t /2

]

.

If we assume that each classifierht fulfills Ut ≥ δ, we finally get

T

∏
t=1

Zt ≤ e−δ2T/2.

(iv) Stopping criterion:
The stopping criterion of the slightly more general algorithm directly results in the new stopping
criterion to stop, whenUt ≤ 0. However, note that the bound depends on the square ofUt instead of
Ut leading to a formal decrease of the bound even whenUt > 0.
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We summarize the foregoing argument as a theorem.

Theorem 2If for all base classifiers ht : X×Y → [0,1] of the algorithm GrPloss given in Figure 3

Ut := ∑
i

Dt(i)u(ht , i) ≥ δ

holds forδ > 0 then the pseudo-loss error of the training set fulfills

plerr ≤
T

∏
t=1

√

1−U2
t ≤ e−δ2T/2. (9)

2.3 GrPloss for Decision Stumps

So far we have considered classifiers of the formh : X×Y → [0,1]. Now we want to consider base
classifiers that have additionally the normalization property

∑
y∈Y

h(x,y) = 1 (10)

which we did not use in the previous section for the derivation ofαt . The decision stumps we used
in our experiments find an attributea and a valuev which are used to divide the training set into two
subsets. If attributea is continuous and its value onx is at mostv thenx belongs to the first subset;
otherwisex belongs to the second subset. If attributea is categorical the two subsets correspond
to a partition of all possible values ofa into two sets. The predictionh(x,y) is the proportion of
examples with labely belonging to the same subset asx. Since proportions are in the interval[0,1]
and for each of the two subsets the sum of proportions is one our decisionstumps have both the
former and the latter property (10). Now we use these properties to minimize a tighter bound on the
pseudo-loss error and further simplify the algorithm.

(i) Derivation ofαt :
To getαt we can start with

plerr ≤
T

∏
t=1

Zt =
T

∏
t=1

(

∑
i

Dt(i)e
−αtu(ht ,i)/2

)

which was derived in part (i) of the proof of the previous section. First,we simplifyu(h, i) using the
normalization property and get

u(h, i) =
|Y|

|Y|−1
h(xi ,yi)−

1
|Y|−1

(11)

In contrast to the previous section,u(h, i) ∈ [− 1
|Y|−1,1] for h(xi ,yi) ∈ [0,1], which we will take into

account for the convexity argument:

plerr ≤
T

∏
t=1

N

∑
i=1

Dt(i)
(

h(xi ,yi)e−αt/2 +(1−ht(xi ,yi))eαt/(2(|Y|−1))
)

(12)

198



MULTICLASS BOOSTING FORWEAK CLASSIFIERS

Setting the first derivative with respect toαt to zero leads to

αt =
2(|Y|−1)

|Y| ln

(

(|Y|−1)rt

1− rt

)

,

where we defined

rt :=
N

∑
i=1

Dt(i)ht(xi ,yi).

(ii) Upper bound on the pseudo-loss error:
Now we plugαt in (12) and get

plerr ≤
T

∏
t=1

(

rt

(

1− rt

rt(|Y|−1)

)(|Y|−1)/|Y|
+(1− rt)

(

rt(|Y|−1)

1− rt

)1/|Y|)

. (13)

(iii) Stopping criterion:
As expected forrt = 1/|Y| the corresponding factor is 1. The stopping criterionUt ≤ 0 can be
directly translated intort ≥ 1/|Y|. Looking at the first and second derivative of the bound one can
easily verify that it has a unique maximum atrt = 1/|Y|. Therefore, the bound drops as long as
rt > 1/|Y|. Note again that sincert = 1/|Y| is a unique maximum we get a formal decrease of the
bound even whenrt > 1/|Y|.
(iv) Update rule:
Now we simplify the update rule using (11) and insert the new choice ofαt and get

Dt+1(i) =
Dt(i)

Zt
e−α̃t(ht(xi ,yi)−1/|Y|) for α̃t := ln

(

(|Y|−1)rt

1− rt

)

Also the goal of the base classifier can be simplified, because maximizingUt is equivalent to maxi-
mizing rt .

We will see in the next section, that the resulting algorithm is a special case ofthe algorithm
BoostMA of the next chapter withc = 1/|Y|.

3. BoostMA

The aim behind the algorithm BoostMA was to find a simple modification of AdaBoost.M1 in order
to make it work for weak base classifiers. The original idea was influenced by a frequently used
argument for the explanation of ensemble methods. Assuming that the individual classifiers are
uncorrelated, majority voting of an ensemble of classifiers should lead to better results than using
one individual classifier. This explanation suggests that the weight of classifiers that perform better
than random guessing should be positive. This is not the case for AdaBoost.M1. In AdaBoost.M1
the weight of a base classifierα is a function of the error rate, so we tried to modify this function
so that it gets positive, if the error rate is less than the error rate of random guessing. The resulting
classifier AdaBoost.M1W showed good results in experiments (Eibl and Pfeiffer, 2002). Further
theoretical considerations led to the more elaborate algorithm which we call BoostMA which uses
confidence-rated classifiers and also compares the base classifier with the uninformative rule.

In AdaBoost.M2, the sampling weights are increased for instances for which the pseudo-loss
exceeds 1/2. Here we want to increase the weights for instances, wherethe base classifierh :
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X ×Y → [0,1] performs worse than the uninformative or what we call the maxlabel rule. The
maxlabel rule labels each instance as the most frequent label. As a confidence-rated classifier, the
uninformative rule has the form

maxlabel rule :X×Y → [0,1] : h(x,y) :=
Ny

N
,

whereNy is the number of instances in the training set with labely. So it seems natural to investigate
a modification where the update of the sampling distribution has the form

Dt+1(i) = Dt(i)
e−αt(ht(xi ,yi)−c)

Zt
, with Zt :=

N

∑
i=1

Dt(i)e
−αt(ht(xi ,yi)−c),

wherec measures the performance of the uninformative rule. Later we will set

c := ∑
y∈Y

(

Ny

N

)2

and justify this setting. But up to that point we let the choice ofc open and just requirec∈ (0,1).
We now define a performance measure which plays the same role as the pseudo-loss error.

Definition 1 Let c be a number in(0,1). A classifier f: X×Y → [0,1] makes a maxlabel error in
classifying an example x with label k, if

f (x,k) < c.

The maxlabel error for the training set is called mxerr:

mxerr:=
1
N

N

∑
i=1

I ( f (xi ,yi) < c) .

The maxlabel error counts the proportion of elements of the training set forwhich the confidence
f (x,k) in the right label is smaller thanc. The numberc must be chosen in advance. The higherc is,
the higher is the maxlabel error for thesameclassifier f ; therefore to get a weak error measure we
setc very low. For BoostMA we choosec as the accuracy for the uninformative rule. When we use
decision stumps as base classifiers we have the propertyh(x,y) ∈ [0,1]. By normalizingα1, . . . ,αT ,
so that they sum to one, we ensuref (x,y) ∈ [0,1] (Equation 15).

We present the algorithm BoostMA in Figure 4 and in what follows we justify and establish
some properties about it. As for GrPloss the modus operandi consists of finding an upper bound on
mxerrand minimizing the bound with respect toα.
(i) Bound ofmxerr in terms of the normalization constantsZt :
Similar to the calculations used to bound the pseudo-loss error we begin by boundingmxerrin terms
of the normalization constantsZt : We have

1 = ∑
i

Dt+1(i) = ∑
i

Dt(i)
e−αt(ht(xi ,yi)−c)

Zt
= . . .

=
1

∏
s

Zs

1
N ∑

i

t

∏
s=1

e−αs(hs(xi ,yi)−c) =
1

∏
s

Zs

1
N ∑

i

e
−( f (xi ,yi)−c∑

s
αs)

.
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—————————————————————————————————
Input: training setS= {(x1,y1), . . . ,(xN,yN); xi ∈ X, yi ∈Y},

Y = {1, . . . , |Y|}, weak classification algorithm of the formh : X×Y → [0,1].
OptionallyT: number of boosting rounds

Initialization: D1(i) = 1
N .

For t = 1, . . . ,T:

• Train the weak classification algorithmht with distributionDt , whereht should maximize

rt = ∑
i

Dt(i)ht(xi ,yi)

• If rt ≤ c: goto output withT := t −1

• Set

αt = ln

(

(1−c)rt

c(1− rt)

)

.

• Update D:

Dt+1(i) = Dt(i)
e−αt(ht(xi ,yi)−c)

Zt
.

whereZt is a normalization factor (chosen so thatDt+1 is a distribution)

Output: Normalizeα1, . . . ,αT and set the final classifierH(x):

H(x) = argmax
y∈Y

f (x,y) = argmax
y∈Y

(

T

∑
t=1

αtht(x,y)

)

—————————————————————————————————

Figure 4: Algorithm BoostMA

So we get

∏
t

Zt =
1
N ∑

i

e
−( f (xi ,yi)−c∑

t
αt)

. (14)

Using
f (xi ,yi)

∑
t

αt
< c ⇒ e

−( f (xi ,yi)−c∑
t

αt)
> 1 (15)

and (14) we get
mxerr≤ ∏

t
Zt . (16)

(ii) Choice ofαt :
Now we bound∏

t
Zt and then we minimize it, which leads us to the choice ofαt . First we use the

definition ofZt and get

∏
t

Zt = ∏
t

(

∑
i

Dt(i)e
−αt(ht(xi ,yi)−c)

)

. (17)
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Now we use the convexity ofe−αt(ht(xi ,yi)−c) for ht(xi ,yi) between 0 and 1 and the definition

rt := ∑
i

Dt(i)ht(xi ,yi)

and get

mxerr ≤ ∏
t

∑
i

Dt(i)
(

ht(xi ,yi)e
−αt(1−c) +(1−ht(xi ,yi))e

αtc
)

= ∏
t

(

rte
−αt(1−c) +(1− rt)e

αtc
)

.

We minimize this by setting the first derivative with respect toαt to zero, which leads to

αt = ln

(

(1−c)rt

c(1− rt)

)

.

(iii) First bound onmxerr:
To get the bound onmxerrwe substitute our choice forαt in (17) and get

mxerr≤ ∏
t

(

(

(1−c)rt

c(1− rt)

)c

∑
i

Dt(i)

(

c(1− rt)

(1−c)rt

)ht(xi ,yi)
)

. (18)

Now we bound the term
(

c(1−rt)
(1−c)rt

)ht(xi ,yi)
by use of the inequality

xa ≤ 1−a+ax for x≥ 0 anda∈ [0,1],

which comes from the convexity ofxa for a between 0 and 1 and get

(

c(1− rt)

(1−c)rt

)ht(xi ,yi)

≤ 1−ht(xi ,yi)+ht(xi ,yi)
c(1− rt)

(1−c)rt
.

Substitution in (18) and simplifications lead to

mxerr≤ ∏
t

(

rc
t (1− rt)

1−c

(1−c)1−ccc

)

. (19)

The factors of this bound are symmetric aroundrt = c and take their maximum of 1 there. Therefore
if rt > c is valid the bound onmxerrdecreases.
(iv) Exponential decrease ofmxerr:
To prove the second bound we setrt = c+δ with δ ∈ (0,1−c) and rewrite (19) as

mxerr≤ ∏
t

(

1− δ
1−c

)1−c(

1+
δ
c

)c

.

We can bound both terms using the binomial series: all terms of the series of thefirst term are
negative, we stop after the terms of first order and get

(

1− δ
1−c

)1−c

≤ 1−δ.

202



MULTICLASS BOOSTING FORWEAK CLASSIFIERS

The series of the second term has both positive and negative terms, we stop after the positive term
of first order and get

(

1+
δ
c

)c

≤ 1+δ.

Thus
mxerr≤ ∏

t
(1−δ2).

Using 1+x≤ ex for x≤ 0 leads to
mxerr≤ e−δ2T .

We summarize the foregoing argument as a theorem.

Theorem 3If all base classifiers ht with ht(x,y) ∈ [0,1] fulfill

rt := ∑
i

Dt(i)ht(xi ,yi) ≥ c+δ

for δ ∈ (0,1− c) (and the condition c∈ (0,1)) then the maxlabel error of the training set for the
algorithm in Figure 4 fulfills

mxerr≤ ∏
t

(

rc
t (1− rt)

1−c

(1−c)1−ccc

)

≤ e−δ2T . (20)

Remarks: 1.) Choice ofc for BoostMA: since we use confidence-rated base classification algorithms
we choose the training accuracy for the confidence-rated uninformative rule forc, which leads to

c =
1
N

N

∑
i=1

Nyi

N
=

1
N ∑

y
∑

i;yi=y

Ny

N
= ∑

y∈Y

(

Ny

N

)2

. (21)

2.) For base classifiers with the normalization property (10) we can get a simpler expression for the
pseudo-loss error. From

∑
y6=k

f (x,y) = ∑
y6=k

∑
t

αtht(x,y) = ∑
t

αt(1−ht(x,k)) = ∑
t

αt − f (x,k)

we get

f (x,k) <
1

|Y|−1 ∑
y6=k

f (x,y) ⇔ f (x,k)

∑
t

αt
<

1
|Y| . (22)

That means that if we choosec = 1/|Y| for BoostMA the maxlabel error is the same as the pseudo-
loss error. For the choice (21) ofc this is the case when the group proportions are balanced, because
then

c = ∑
y∈Y

(

Ny

N

)2

= ∑
y∈Y

(

1
|Y|

)2

= |Y| 1
|Y|2 =

1
|Y| .

For this choice ofc the update rule of the sampling distribution for BoostMA gets

Dt+1(i) =
Dt(i)

Zt
e−αt(ht(xi ,yi)−1/|Y|) and αt = ln

(

(|Y|−1)rt

1− rt

)

,
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which is just the same as the update rule GrPloss for decision stumps. Summarizingthese two re-
sults we can say that for base classifiers with the normalization property, thechoice (21) forc of
BoostMA and data sets with balanced labels, the two algorithms GrPloss and BoostMA and their
error measures are the same.
3.) In contrast to GrPloss the algorithm does not change when the base classifier additionally fulfills
the normalization property (10) because the algorithm only usesht(xi ,yi).

4. Experiments

In our experiments we focused on the derived bounds and the practicalperformance of the algo-
rithms.

4.1 Experimental Setup

To check the performance of the algorithms experimentally we performed experiments with 12 data
sets, most of which are available from the UCI repository (Blake and Merz, 1998). To get reliable
estimates for the expected error rate we used relatively large data sets consisting of about 1000
cases or more. The expected classification error was estimated either by a test error rate or 10-fold
cross-validation. A short overview of the data sets is given in Table 1.

Database N ] Labels ] Variables Error Estimation Labels

car * 1728 4 6 10-CV unbalanced
digitbreiman 5000 10 7 test error balanced
letter 20000 26 16 test error balanced
nursery * 12960 4 8 10-CV unbalanced
optdigits 5620 10 64 test error balanced
pendigits 10992 10 16 test error balanced
satimage * 6435 6 34 test error unbalanced
segmentation 2310 7 19 10-CV balanced
waveform 5000 3 21 test error balanced
vehicle 846 4 18 10-CV balanced
vowel 990 11 10 test error balanced
yeast * 1484 10 9 10-CV unbalanced

Table 1: Properties of the databases

For all algorithms we used boosting by resampling with decision stumps as base classifiers.
We used AdaBoost.M2 by Freund and Schapire (1997), BoostMA withc = ∑y∈Y (Ny/N)2 and the
algorithm GrPloss for decision stumps of Section 2.3 which corresponds to BoostMA with c =
1/|Y|. For only four databases the proportions of the labels are significantly unbalanced so that
GrPloss and BoostMA should have greater differences only for these four databases (marked with
a *). As discussed by Bauer and Kohavi (1999) the individual samplingweightsDt(i) can get very
small. Similar to was done there, we set the weights of instances which were below 10−10 to 10−10.
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We also set a maximum number of 2000 boosting rounds to stop the algorithm if thestopping
criterion is not satisfied.

4.2 Results

The experiments have two main goals. From the theoretical point of view one isinterested in the
derived bounds. For the practical use of the algorithms, it is important to look at the training and
test error rates and the speed of the algorithms.

4.2.1 DERIVED BOUNDS

First we look at the bounds on the error measures. For the algorithm AdaBoost.M2, Freund and
Schapire (1997) derived the upper bound

(|Y|−1)2T−1
T

∏
t=1

√

εt(1− εt) (23)

on the training error. We have three different bounds on the pseudo-loss error of Grploss: the term

∏
t

Zt (24)

which was derived in the first part of the proof of Theorem 2, the tighterbound (9) of Theorem
2 and the bound (13) for the special case of decision stumps as base classifiers. In Section 3, we
derived two upper bounds on the maxlabel error for BoostMA: term (24) and the tighter bound (20)
of Theorem 3.

For all algorithms their respective bounds hold for all time steps and for all data sets. Bound
(23) on the training error of AdaBoost.M2 is very loose – it even exceeds1 for eight of the 12 data
sets, which is possible due to the factor|Y|−1 (Table 2). In contrast to the bound on the training
error of AdaBoost.M2, the bounds on the pseudo-loss error of GrPloss and the maxlabel error of
BoostMA are below 1 for all data sets and all boosting rounds. In that sense, they are tighter than
the bounds on the training error of AdaBoost.M2.

As expected, bound (13) derived for the special case of decision stumps as base classifiers on
the pseudo-loss error is smaller than bound (9) of Theorem 2 which doesn’t use the normalization
property (10) of the decision stumps.

For both GrPloss and BoostMA, bound (24) is the smallest bound since it contains the fewest
approximations. For BoostMA, term (24) is a bound on the maxlabel error and for GrPloss term
(24) is a bound on the pseudo-loss error. For unbalanced data sets, the maxlabel error is the “harder”
error measure than the pseudo-loss error, so for these data sets bound (24) is higher for BoostMA
than for GrPloss. For balanced data sets the maxlabel error and the pseudo-loss error are the same.
Bound (9) for GrPloss is higher for these data sets than bound (20) of BoostMA. This suggests that
bound (9) for GrPloss could be improved by more sophisticated calculations.

4.2.2 COMPARISON OF THEALGORITHMS

Now we wish to compare the algorithms with one another. Since GrPloss and BoostMA differ only
for the four unbalanced data sets, we focus on the comparison of GrPloss with AdaBoost.M2 and
make only a short comparison of GrPloss and BoostMA. For the subsequent comparisons we take
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AdaBoost.M2 GrPloss BoostMA
training error [%] pseudo-loss error [%] maxlabel error [%]

Database trerr BD23 plerr BD24 BD13 BD9 mxerr BD24 BD20
car * 0 33.9 0 3.4 11.1 31.9 7.8 63.1 71.9
digitbreiman 25.5 327.4 0.5 3.7 19.9 81.0 1.0 11.9 35.6
letter 46.1 1013.1 0.4 7.2 27.8 94.3 0.4 8.1 29.5
nursery * 14.2 78.7 0 0 0.5 11.1 0 0.8 7.6
optdigits 0 421.1 0 0 2.0 51.4 0 0 0.1
pendigits 13.8 190.2 0 0 0.1 42.6 0 0 0.1
satimage * 15.9 118.5 0.1 1.8 13.2 62.3 3.8 26.0 50.1
segmentation 7.5 96.2 0 0.4 2.8 30.5 0 0.4 3.5
vehicle 26.5 101.2 0.1 2.8 14.7 50.0 0.1 3.3 16.5
vowel 30.9 273.8 0 0 0.1 40.4 0 0.1 3.0
waveform 12.5 48.4 0 0.5 6.3 23.3 0 0.4 6.0
yeast * 60.2 365.0 0.4 6.6 26.0 83.6 49.2 99.2 99.6

Table 2: Performance measures and their bounds in percent at the boosting round with minimal
training error. trerr, BD23: training error of AdaBoost and its bound (23); plerr, BD24
,BD13 ,BD9: pseudo-loss error of GrPloss and its bounds (24), (13) and (9); mxerr, BD24,
BD20: maxlabel error of BoostMA and its bounds (24) and (20).

all error rates at the boosting round with minimal training error rate as was done by Eibl and Pfeiffer
(2002).

First we look at the minimum achieved training and test error rates. The theory suggests Ad-
aBoost.M2 to work best in minimizing the training error. However, GrPloss seems to have roughly
the same performance with maybe AdaBoost.M2 leading by a slight edge (Tables 3 and 4, Figure
5). The difference in the training error mainly carries over to the difference in the test error. Only
for the data sets digitbreiman and yeast do the training and the test error favor different algorithms
(Table 4). Both the training and the test error favor AdaBoost.M2 for six data sets and GrPloss for
four data sets with two draws (Table 4).

While GrPloss and AdaBoost.M2 were quite close for the training and test error rates, this is
not the case for the pseudo-loss error. Here, GrPloss is the clear winner against AdaBoost.M1 with
eight wins and four draws (Table 4). The reason for this might be the fact that bound (13) on the
pseudo-loss error of GrPloss is tighter than bound (23) on the training error of AdaBoost.M2 (Table
2). For the data set nursery, bound (13) on the pseudo-loss error of GrPloss (0.5%) is smaller than
the pseudo-loss error of AdaBoost.M2 (1.9%). So for this data set, bound (13) can explain the
superiority of GrPloss in minimizing the pseudo-loss error.

Due to the fact that only four data sets are significantly unbalanced, it is not easy to assess the
difference between GrPloss and BoostMA. GrPloss seems to have a lead regarding the training and
test error rates (Tables 3 and 5). For the experiments, the constantc of BoostMA was chosen as
the training accuracy for the confidence-rated uninformative rule (21). For the unbalanced data sets,
this c exceeds 1/|Y|, which is the corresponding choice for GrPloss (22). A change ofc – maybe
even adaptively during the run – could possibly improve the performance.We wish to make further
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training error test error
Database AdaM2 GrPloss BoostMA AdaM2 GrPloss BoostMA
car * 0 0 7.75 0 0 7.75
digitbreiman 25.49 25.63 25.63 27.51 27.13 27.38
letter 46.07 40.02 40.14 47.18 41.70 41.70
nursery * 14.16 12.37 12.63 14.27 12.35 12.67
optdigits 0 0 0 0 0 0
pendigits 13.82 17.17 17.20 18.61 20.44 20.75
satimage * 15.85 15.69 16.87 18.25 17.80 18.90
segmentation 7.49 9.05 8.90 8.40 9.31 9.48
vehicle 26.46 30.15 30.19 35.34 38.16 36.87
vowel 30.87 41.67 42.23 54.33 67.32 67.32
waveform 12.45 14.55 14.49 16.63 18.17 17.72
yeast * 60.18 59.31 60.61 60.65 61.99 62.47

Table 3: Training and test error at the boosting round with minimal training error; bold and italic
numbers correspond to high(>5%) and medium(>1.5%) differences to the smallest of the
three error rates

GrPloss vs. AdaM2
Database trerr testerr plerr speed
car * o o o +
digitbreiman - + + +
letter + + + +
nursery * + + + +
optdigits o o o -
pendigits - - + +
satimage * + + + +
segmentation - - o +
vehicle - - + +
vowel - - o +
waveform - - + +
yeast * + - + -
total 4-2-6 4-2-6 8-4-0 10-0-2

Table 4: Comparison of GrPloss with AdaBoost.M2: win-loss-table for the training error, test error,
pseudo-loss error and speed of the algorithm (+/o/-: win/draw/loss for GrPloss)

investigations about a systematic choice ofc for BoostMA. Both algorithms seem to be better in
the minimization of their corresponding error measure (Table 5). The small differences between
GrPloss and BoostMA occurring for the nearly balanced data sets can not only come from the small
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Figure 5: Training error curves: solid: AdaBoost.M2, dashed: GrPloss, dotted: BoostMA

differences in the group proportions, but also from differences in theresampling step and from the
partition of a balanced data set into unbalanced training and test sets duringcross-validation.

Performing a boosting algorithm is a time consuming procedure, so the speed of an algorithm
is an important topic. Figure 5 indicates that the training error rate of GrPlossis decreasing faster
than the training error rate of AdaBoost.M2. To be more precise, we look atthe number of boosting
rounds needed to achieve 90% of the total decrease of the training errorrate. For 10 of the 12 data
sets, AdaBoost.M2 needs more boosting rounds than GrPloss, so GrPlossseems to lead to a faster
decrease in the training error rate (Table 4). Besides the number of boosting rounds, the time for
the algorithm is also heavily influenced by the time needed to construct a base classifier. In our
program, it took longer to construct a base classifier for AdaBoost.M2 because the minimization of
the pseudo-loss which is required for AdaBoost.M2 is not as straightforward as the maximization
of rt required for GrPloss and BoostMA. However, the time needed to construct a base classifier
strongly depends on programming details, so we do not wish to over-emphasize this aspect.

208



MULTICLASS BOOSTING FORWEAK CLASSIFIERS

GrPloss vs. BoostMA
Database trerr testerr plerr mxerr speed
car * + + + o -
nursery * + + o o +
satimage * + + + - o
yeast * + + + - -
total 4-0-0 4-0-0 3-1-0 0-2-2 1-0-2

Table 5: Comparison of GrPloss with BoostMA for the unbalanced data sets:win-loss-table for
the training error, test error, pseudo-loss error, maxlabel error and speed of the algorithm
(+/o/-: win/draw/loss for GrPloss)

5. Conclusion

We proposed two new algorithms GrPloss and BoostMA for multiclass problems with weak base
classifiers. The algorithms are designed to minimize the pseudo-loss error and the maxlabel error
respectively. Both have the advantage that the base classifier minimizes the confidence-rated error
instead of the pseudo-loss. This makes them easier to use with already existing base classifiers.
Also the changes to AdaBoost.M1 are very small, so one can easily get the new algorithms by
only slight adaption of the code of AdaBoost.M1. Although they are not designed to minimize
the training error, they have comparable performance as AdaBoost.M2 in our experiments. As
a second advantage, they converge faster than AdaBoost.M2. AdaBoost.M2 minimizes a bound
on the training error. The other two algorithms have the disadvantage of minimizing bounds on
performance measures which are not connected so strongly to the expected error. However the
bounds on the performance measures of GrPloss and BoostMA are tighterthan the bound on the
training error of AdaBoost.M2, which seems to compensate for this disadvantage.
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