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Abstract

We show several high-probability concentration bound$gaming unigram language models.
One interesting quantity is the probability of all words eppng exactlk times in a sample of size
m. A standard estimator for this quantity is the Good-Turistjreator. The existing analysis on

its error shows a high-probability bound of approxima@(%). We improve its dependency

onktoO (4—\/‘{_'; + %) . We also analyze the empirical frequencies estimator, Bigpthat with high

probability its error is bounded by approximaté]&(% + %) We derive a combined estimator,

which has an error of approximateﬂy(mﬁ%) , for anyk.

A standard measure for the quality of a learning algorithntsi€xpected per-word log-loss.
The leave-one-out method can be used for estimating thivksgef the unigram model. We show
that its error has a high-probability bound of approxirrya@l(\iﬂ), for any underlying distribu-
tion.

We also bound the log-loss a priori, as a function of varicasmeters of the distribution.
Keywords: Good-Turing estimators, logarithmic loss, leave-oneeastimation, Chernoff bounds

1. Introduction and Overview

Natural language processing (NLP) has developed rapidly over th#deades. It has a wide range
of applications, including speech recognition, optical character rétogtext categorization and
many more. The theoretical analysis has also advanced significantly,htmoaigy fundamental
guestions remain unanswered. One clear challenge, both practicakanetital, concerns deriving
stochastic models for natural languages.

Consider a simple language model, where the distribution of each word in this Bssumed
to be independent. Even for such a simplistic model, fundamental questiotisgs@mple size to
the learning accuracy are already challenging. This is mainly due to thih&dhe sample size is
almost always insufficient, regardless of how large it is.

To demonstrate this phenomena, consider the following example. We would lgsitoate
the distribution of first names in the university. For that, we are given theesdist of a graduate
seminar: Alice, Bob, Charlie, Dan, Eve, Frank, two Georges, and twwieke How can we use this
sample to estimate the distribution of students’ first names? An empirical fregastimator would
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assign Alice the probability of.@, since there is one Alice in the list of 10 names, while George,
appearing twice, would get estimation aR0 Unfortunately, unseen names, such as Michael, will
get an estimation of 0. Clearly, in this simple example the empirical frequenaeasntikely to
estimate well the desired distribution.

In general, the empirical frequencies estimate well the probabilities of popataes, but are
rather inaccurate for rare names. Is there a sample size, which assutes all the names (or
most of them) will appear enough times to allow accurate probabilities estimatian@igthibution
of first names can be conjectured to follow the Zipf's law. In such distribgtidhere will be a
significant fraction of rare items, as well as a considerable number eéppearing items, in any
sample of reasonable size. The same holds for the language unigram mddelstry to estimate
the distribution of single words. As it has been observed empirically on mecgs@mns (Chen,
1996; Curran and Osborne, 2002), there are always many radswaod a considerable number
of unseen words, regardless of the sample size. Given this obsenationdamental issue is to
estimate the distribution the best way possible.

1.1 Good-Turing Estimators

An important quantity, given a sample, is the probability mass of unseen Jalsis called “the
missing mass”). Several methods exist for smoothing the probability andnasgigrobability
mass to unseen items. The almost standard method for estimating the missinglipyaialss

is the Good-Turing estimator. It estimates the missing mass as the total numbéqué itams,
divided by the sample size. In the names example above, the Good-Turinggmssss estimator

is equal 06, meaning that the list of the class names does not reflect the true distrjotipat

it mildly. The Good-Turing estimator can be extended for higher orders,igh&stimating the
probability of all names appearing exacklyimes. Such estimators can also be used for estimating
the probability of individual words.

The Good-Turing estimators dates back to World War I, and were pulifaiséin 1953 (Good,
1953, 2000). It has been extensively used in language modeling afpikaince then (Katz, 1987;
Church and Gale, 1991; Chen, 1996; Chen and Goodman, 1998)eudgwheir theoretical con-
vergence rate in various models has been studied only in the recen{lMeddéester and Schapire,
2000, 2001; Kutin, 2002; McAllester and Ortiz, 2003; Orlitsky et al., 200r estimation of the
probability of all words appearing exactktimes in a sample of size, McAllester and Schapire

(2000) derive a high probability bound on Good-Turing estimator erffrapproximatelyO (%)

One of our main results improves the dependendyairthis bound to approximatel® (% + K) .

m
We also show that the empirical frequencies estimator has an error ab@appiely O (% + %)
for large values ok. Based on the two estimators, we derive a combined estimator with an error of
approximatelyO (m*%), for anyk. We also derive a weak lower bound@f(%) for an error of
any estimator based on an independent sample.
Our results give theoretical justification for using the Good-Turing estinfat@mall values of
k, and the empirical frequencies estimator for large valuds afhough in most applications the

Good-Turing estimator is used for very small valuekdior examplek < 5, as by Katz (1987) or
Chen (1996), we show that it is fairly accurate in a much wider range.

1232



CONCENTRATION BOUNDS FORUNIGRAM LANGUAGE MODELS

1.2 Logarithmic Loss

The Good-Turing estimators are used to approximate the probability masstio¢ alords with a
certain frequency. For many applications, estimating this probability masstisenstain optimiza-
tion criteria. Instead, a certain distance measure between the true andinmetess distributions
needs to be minimized.

The most popular distance measure used in NLP applications kutliEack-Leibler (KL) di-
vergenceFor a true distributio® = { p«}, and an estimated distributi&gp= {qy}, both over some
setX, this measure is defined s pxIn %. An equivalent measure, up to the entropyPofs the
logarithmic losg(log-losg, which equalsy , pxIn q—lx.

Many NLP applications use the value lof)-lossto evaluate the quality of the estimated dis-
tribution. However, thdog-losscannot be directly calculated, since it depends on the underlying
distribution, which is unknown. Therefore, estimatilog-lossusing the sample is important, al-
though the sample cannot be independently used for both estimating the tistridnod testing it.
The hold-out estimation splits the sample into two parts: training and testing. The training part
is used for learning the distribution, whereas the testing sample is usedaloatrg the average
per-word log-loss. The main disadvantage of this method is the fact thatstardy part of the
available information for learning, whereas in practice one would like to liigessample.

A widely used general estimation method is calleave-one-outBasically, it performs aver-
aging all the possible estimations, where a single item is chosen for testinthenekt are used
for training. This procedure has an advantage of using the entire saanpl@ addition it is rather
simple and usually can be easily implemented. The existing theoretical analysislefve-one-
out method (Holden, 1996; Kearns and Ron, 1999) shows general hafalpitity concentration
bounds for the generalization error. However, these technique®aapplicable in our setting.

We show that thdeave-one-ouestimation error for thdog-lossis approximatelyO (ﬁ)
for any underlying distribution and a general family of learning algorithmgivies a theoretical
justification for effective use deave-one-ouéstimation for théog-loss

We also analyze the concentration of tlog-lossitself, not based of an empirical measure.
We address the characteristics of the underlying distribution affectinipghi®ss We find such a
characteristic, defining a tight bound for tlog-lossvalue.

1.3 Model and Semantics

We denote the set of all words ¥s andN = |V|. Let P be a distribution ove¥, wherep,, is the
probability of a wordv € V. Given a sampl&of sizem, drawn i.i.d. usind®, we denote the number
of appearances of a wowdin Sasc;, or simplyc,, when a sampl8is clear from the contextWe
defineS = {weV : ¢ =k}, andn, = |S(|.

For a claim® regarding a sampl§, we write Y°S @[S for P(®[S)) > 1 8. For some error
bound functionf (-), which holds with probability 1- &, we write O(f(-)) for O (f(-) (In)%),
wherec > 0 is some constant.

1.4 Paper Organization

Section 2 shows several standard concentration inequalities, togethaheiittechnical applica-
tions regarding the maximum-likelihood approximation. Section 3 shows the®ytmds for the

1. Unless mentioned otherwise, all further sample-dependent defmd&pend on the sampe
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k-hitting mass estimation. Section 4 bounds the error for the leave-one-out @stimoithe loga-
rithmic loss. Section 5 shows the bounds for the a priori logarithmic loss. #gipd includes the
technical proofs.

2. Concentration Inequalities

In this section we state several standard Chernoff-style concentragqnoatities. We also show
some of their corollaries regarding the maximum-likelihood approximatiqm,dfy py = .

Lemma 1 (Hoeffding, 1963) Let ¥=VY1,...,Y, be a set of n independent random variables, such

that X € [b;, b + di]. Then, for any > 0,
>g| < 2 exp<—2—82>
B yid?/)

(lpv-els

The next lemma is a variant of an extension of Hoeffding’s inequality, bipidianid (1989).

Lemma?2 LetY=Yi,...,Y, be a set of n independent random variables, afd)fsuch that any
change of Yvalue changes () by at most d that is

sup ([f(Y)—f(Y)]) <d.
viAN=Y]

Let d=maxd;. Then,

oY (YY) —E[f(Y)]| <d L;%

Lemma 3 (Angluin and Valiant, 1979) Let = Yi,..., Y, be a set of n independent random vari-
ables, where¥c [0,B]. Let p=E[5;Yi]. Then, for any > 0,

e2
P(IZYi<u—s> exp(—m?’),
e2

P (ZY. > u+s> < exp(—m> )

Definition 4 (Dubhashi and Ranjan, 1998) A set of random variablgs.Y,Y; is called “nega-
tively associated”, if it satisfies for any two disjoint subsets | and Jof..,n}, and any two
non-decreasing, or any two non-increasing, functions f frdmt&R and g from R! to R:

IN

E[f(Yiziel)g(Y;:jed)] <E[f(Yi:ie)EQY;:]ed).

The next lemma is based on thegative associatioanalysis. It follows directly from Theorem
14 and Proposition 7 of Dubhashi and Ranjan (1998).
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Lemma 5 For any set of N non-decreasing, or N non-increasing functiofig: w € V}, any
Chernoff-style bound oy fw(Cw), pretending that ¢ are independent, is valid. In particular,
Lemmas 1 and 2 apply fdiYs,...,Yn} = { fw(cw) :we V}.

The next lemma shows an explicit upper bound on the binomial distributiorapilit.

Lemma 6 Let X ~ Bin(n, p) be a sum of n i.i.d. Bernoulli random variables withe0,1). Let
n=E[X] = np. For xe (0,n], there exists some function F exp (3 +O(5)), such thatvk
{0,...,n}, we have PX = k) < I For integral values of 1, the equality is achieved

1
V2r(1—p) Tulo-u
at k= p. (Note that for x> 1, we have J=0(1).)

The next lemma deals with the number of successes in independent trials.

Lemma 7 (Hoeffding, 1956) Lety...,Y, € {0,1} be a sequence of independent trials, with=p
E[Yi]. Let X=3;Y; be the number of successes, and ﬁzi p; be the average trial success proba-
bility. For any integers b and ¢ such that< b < np<c < n, we have

c

kzb <E) P1—p"k<P(b<X<c)<1.

Using the above lemma, the next lemma shows a general concentration wumddm of
arbitrary real-valued functions of a multinomial distribution components. Vdsvghat with a
small penalty, any Chernoff-style bound pretending the components elegendent is valid.
We recall that, or equivalentlyc,, is the number of appearances of the warth a sampleS of
sizem.

Lemma 8 Let{c|, ~ Bin(m, py) : w€ V} be independent binomial random variables. £&(x) :
w € V} be a set of real valued functions. LetFy,, fw(cy) and F = 5, fw(c},). For anye > 0,

P(F-E[F]|>¢) < 3ymP(|[F —E[F]|>¢).

The following lemmas provide concentration bounds for maximum-likelihood estimatip,,
by pw = 2. The first lemma shows that words with “high” probability have a “high” doiarthe
sample.

Lemma 9 Letd > 0, and\ > 3. We have/®S:

2
YwevV, st. mpy>3Ing, \mp,\,—cwygy/Bmlen%n;

YwevV, st. mpy>AInZE, ¢y > <1—\/§> mpy.

2. Its proof is based on Stirling approximation directly, though local limit tees could be used. This form of bound
is needed for the proof of Theorem 30.

3. Thenegative associatioanalysis (Lemma 5) shows that a sum of monotone functions of multinafisbution
components must obey Chernoff-style bounds pretending that thepar@mts are independent. In some sense, our
result extends this notion, since it does not require the functions to betoran
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The second lemma shows that words with “low” probability have a “low” comithe sample.

Lemma 10 Letd € (0,1), and m> 1. Then,¥3S: Yw e V such that mp < 3In %, we have g <
6InD,
3

The following lemma derives the bound as a function of the count in the sammienpt as a
function of the unknown probability).

Lemma 11 Letd > 0. Then,¥°S:

4m
YwevV, st. cy>18In%,  mpy—cyl < \/GC\NH’IF.

The following is a general concentration bound.

Lemma 12 For anyd > 0, and any word we V, we have

2
5 Cw LI
V°S, - p,v‘< o

The following lemma bounds the probability of words that do not appear inaimplke.
Lemma 13 Letd > 0. Then,v°S:

Ywé¢ S mp,v<|n%].

3. K-Hitting Mass Estimation

In this section our goal is to estimate the probability of the set of words apgesxactlyk times
in the sample, which we call “thk-hitting mass”. We analyze the Good-Turing estimator, the
empirical frequencies estimator, and a combined estimator.

Definition 14 We define the k-hitting mass,Mits empirical frequencies estimatddy, and its
Good-Turing estimator Gas*

N k k+1
Mg = Pw Mg = (—) Nk Gy = (—) Nk41.-
W; m m—k

The outline of this section is as follows. Definition 16 slightly redefineskthéting mass and
its estimators. Lemma 17 shows that this redefinition has a negligible influenea, Wik analyze
the estimation errors using the concentration inequalities from Section 2.

Lemmas 20 and 21 bound the expectation of the Good-Turing estimatorfelimving McAllester
and Schapire (2000). Lemma 23 bounds the deviation of the error, ugnuetiative association
analysis. A tighter bound, based on Lemma 8, is achieved at Theorenh@8trem 26 analyzes the
error of the empirical frequencies estimator. Theorem 29 refers to thbined estimator. Finally,
Theorem 30 shows a weak lower bound for kHeitting mass estimation.

4. The Good-Turing estimator is usually defined%)nkﬂ. The two definitions are almost identical for small values
of k, as their quotient equals&#]. Following McAllester and Schapire (2000), our definition makes the tztions
slightly simpler.
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Definition 15 For any we V and i€ {0,---,m}, we define ¥; as a random variable equal 1 if
cw = i, and 0 otherwise.

The following definition concentrates on words whose frequencieslase to their probabili-
ties.

Definition 16 Leta > 0 and k> 3a2. We defineldq = [k*ﬁ‘n\/k, ktlbay "*1}, and Vg = {weV:
Pw € lka }. We define:

Mk,(} = g pVV = prW7k7
WeSNVk o WEVka
k+1 k+1
Gka = — 0 |SeaNVia] = o
Ka p— k\5<+1 kal m— K2 Xwk4-15
A k k
Mia = —|SNVka| == Xk
m m 4.

By Lemma 11, for large values &fthe redefinition coincides with the original definition with
high probability:

Lemma 17 For 3 > 0, leta = /6In4". For k > 18In*®, we havev®S: My = Myq, G = Ga,
andhﬁk::Mkﬂ.

Proof By Lemma 11, we have

am
¥0S, vw:c, > 18Il |mpy—cyl < \/GC\NInF —a,/Cy.

This means that any word with ¢, = k has

k—rt;\& < py< k+:1\/R - k+1+:]\/k+1‘

Thereforew € Vi o, completing the proof foMy and M. Sincea < vk, any wordw with
cw=k+1 has

k—avk _ k+1—avk+1 < P < k+1+avk+ 1’
m m m
which yieldsw € Vi o, completing the proof foGy. |

Since the minimal probability of a word M« is Q (£ ), we derive:

Lemma 18 Leta > 0 and k> 3a2. Then,|Via| = O (F).
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Proof We havea < % Any wordw € Vi o haspy > %‘ > % (1— \%) Therefore,

Vil < ?é ~o(7).

which completes the proof. |
Using Lemma 6, we derive:
Lemma 19 Leta > 0and3a? < k < 2. Let we Viq. Then, BEXyy ] =P(cy=k) =0 (l)

Proof Sincecy, ~ Bin(m, py) is a binomial random variable, we use Lemma 6:

1 Tm
EXux] = P(cw=k) < '
[Xai] = P(ew=k) < 2rmpy(1— pw) Tmpy Tma—pw)
Forw € Vikq, we havemp, = Q(k), which imp”esm = O(1). Sincepy € la and
302 <k < 2, we have
1 < !
2rmpy (1 - pw) \/Zn(k—O(\/R) (1 (gt
1
<
Jo(i-) (18 (1)
1
<
2k (1- %) (- G+ ) (24 5)

which completes the proof. |

3.1 Good-Turing Estimator

The following lemma, directly based on the definition of the binomial distributiors steown in
Theorem 1 of McAllester and Schapire (2000).

Lemma 20 For any k< m, and we V, we have

PuP(C = K) = ST P(ey = K+ 1)(1- pu).

The following lemma bounds the expectations of the redefirkitting mass, its Good-Turing
estimator, and their difference.
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Lemma 21 Leta > 0 and 302 < k < T. We have BMyq] = O(ﬁ) E[Gka] = O(\%() and
[E[Gka] ~ EMyall = O ().

Lemma 22 Letd >0, ke {1,...,m}. LetUCV, such thaiU| = O (). Let{by:we U}, such
thatvw € U, by, > 0 and mageubw = O (£). Let % = S yeu buXuk. We havers:

kin £
X~ EXJ|=0 (\/ nf) .

Proof We defineYyk = Yi<kXwi be random variable indicatingy < k and Zyx = 3 «Xwi =
Yuk — Xwk be random variable indicatingy, < k. LetYx = 5 ey bwYwk andZy = 3 ey bwZwk. We
have

X = ng bwXwk = ng bw [Yuk — Zwk] = Y — Zk.

Both Yy andZ,, can be bounded using the Hoeffding inequality. SiflogYy} and {bwZyx}
are monotone with respect {@,}, Lemma 5 applies for them. This means that the concentra-
tion of their sum is at least as tight as if they were independent. Recallingthat O () and
maxyeu bw = O (X), and using Lemma 2 fof andZy, we have

VIS [W—EMJ =0(&/FIn}).

VS, |Z—E[Z]] :o(n%,/%‘ln%).

Therefore,

X—EXd] = [Y«—Z—E[M— 24|

IN

1
YkE[Yk]+ZkE[Zk]O( 6) ,
which completes the proof. |

Using thenegative associationotion, we can show a preliminary bound for Good-Turing esti-
mation error:

Lemma 23 For 8> 0and18In&" < k < T, we havey°s:

G M—0 kin
|Gk — M| = — |
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Proof Leta = 4/6In8". By Lemma 17, we have

¥3S Gy= Gka N Mk = Mygq. (1)

By Lemma 21,

|E[Gk — Mk]| = [E[Gka —Mkal| =O ({f) . 2)

By Definition 16,Mka = Y wey,, PwXwk @andGra = Twevy, (£:1) X1, By Lemma 18, we
have|Vi«| = O ('"—If) Therefore, using Lemma 22 withfor My , and withk+ 1 for Gy o, we have

IS |Mia — E[Mal| = 0<\/ %) , @3)
S |Gea — E[Gral| = 0(\/%> . @)

Combining Equations (1), (2), (3), and (4), we ha¥&:

|IGk—My| = |Gka—Mkal
< |Gk,c1_E[Gk,q”+|Mk,a_E[Mk,a]|+|E[Gk,q]—E[Mka”

o) o) ()

which completes the proof. |

Lemma 24 Letd >0, k> 0. LetUCV. Let{by,:we U} be a set of weights, such tha{ kb [0, B].
Let X = ¥ weu bwXwk, and p= E[X]. We have

vS  [Xk—u gmax{ 4Bpln<6\é_> 2BIn (6\?>}.

Proof By Lemma 8, combined with Lemma 3, we have

P(X—H >¢) < Gmexp< (21812+8)>
) el g} @

g2

< max{ 6v/m exp<
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where Equation (5) follows by considerigg< 21 ande > 2 separately. The lemma follows sub-
stitutinge = max{ 4Bpin (@),ZBIn (%") } n

We now derive the concentration bound on the error of the Good-Testignator.

Theorem 25 For & > 0 and18In8® < k < 7, we havey®S:

KIn? KkIn?
|Gk— M| =0 \/b—i-—é
m m

Proof Leta = ,/6In%m. Using Lemma 17, we havés S: Gk = Gk q, andMy = M q. Recall that
Mia = Yweviq PwXuk aNdGra = Ywevi, Kt Xuks1- BothMyq andGyq are linear combinations
of Xwk andXyk+1, respectively, where the coefficients’ magnitud@i@%), and the expectation, by
Lemma 21, i<0 <i> By Lemma 24, we have

vk
WIS Mo~ EMal| =0 (y/¥RE+ 08, ©
viS |G —E[Gkall = 0( S k'?f) (7)
Combining Equations (6), (7), and Lemma 21, we hel&
|Gk—Mk| = |Gxa— Mgl
< |Gka — E[Gkal| + Mka — E[Mkg]| +[E[Gka] — E[Mkdl]|
kKin?  Kkin% kin® KkIn%
= o(\/“+5+ﬁ) o(,/\[é+a) ’
m m m m m
which completes the proof. |

3.2 Empirical Frequencies Estimator

In this section we bound the error of the empirical frequencies estirvitor

Theorem 26 For 6 > Oand18ln%m <k< ”g we have

3
vk(ng)®  vIng
m

VoS, |Mk—My| =0 "
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Proof Leta =,/6In&". By Lemma 17, we havé?S My = Mq, andMy = My LetV,, =
{WeVia 1 pw < £}, andViy = {we Viq : pu > £} Let

K K
e 3 (e e 3 (e e

and letX; specify eitheiX_ or X,.. By the definition, fow € Vi « we have| X — p,| =0 (%ﬁ() .

By Lemma 18)Vi«| = O (). By Lemma 19, fomw € Vi o we haveE [X,x] = O (%() Therefore,

%—pW‘E[xwk]:0<T“*/Ri> —o(%). ®

[ED]| < WgM K m vk

Both X_ and X, are linear combinations of,x, where the coefficients a@ (%) and the
expectation i€ (% ). Therefore, by Lemma 24, we have

mvk m

By the definition ofX_ andX,, My q — I\7Ik7a = X, — X_. Combining Equations (8) and (9), we
haveV%S:

ViS:  [Xe—EP6]| = o<-ﬂi+a%&>. )

‘Mk—Mk‘ = ‘Mk,a—mk,alzlﬁ_x—‘
< X BRG] B+ IXe = EXC ][+ [EX]]

B ot odvk o) \/R(Inm)% InT
) O(Vm—ﬂ<+ m +k)0( mot k5)7

sinceyvab= O(a+b), and we usa = &n\{k andb= ¢. |

3.3 Combined Estimator

In this section we combine the Good-Turing estimator with the empirical freigeie derive a
combined estimator, which is uniformly accurate for all valuek. of

Definition 27 We definéVly, a combined estimator for Mby
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Lemma 28 (McAllester and Schapire, 2000) Letk{0,...,m}. For anyd > 0, we have

Ini m
dc. o _ 7 o
VoS Gk—M =0 [ 1/~ (k+|n6)

The following theorem shows thif, has an error bounded ln'?y(m*%>, for anyk. For smallk,

we use Lemma 28. Theorem 25 is used for 1%%{ k< mé. Theorem 26 is used fans <k< %
The complete proof also handles> 3. The theorem refers thly as a probability estimator, and
does not show that it is a probability distribution by itself.

Theorem 29 Letd > 0. For any ke {0,...,m}, we have

Vés, ||\7|k—|\/|k| = é(m*%> .

The following theorem shows a weak lower bound for approximatiRglt applies to estimat-
ing My based on a different independent sample. This is a very “weak” nojaiioceGy, as well
asMy, are based on the same sampl&/fas

Theorem 30 Suppose that the vocabulary consistsiofvords distributed uniformly (that isyp=
%), wherel < k < m. The variance of iis © (%)

4. Leave-One-Out Estimation of Log-Loss

Many NLP applications use log-loss as the learning performance criténiee $e log-loss depends
on the underlying probabilitl, its value cannot be explicitly calculated, and must be approximated.
The main result of this section, Theorem 32, is an upper bound on thedeaveut estimation of
the log-loss, assuming a general family of learning algorithms.

Given a sampl&S= {s;,...,Sn}, the goal of a learning algorithm is to approximate the true
probability P by some probabilityQ. We denote the probability assigned by the learning algorithm
to a wordw by gy

Definition 31 We assume that any two words with equal sample frequency are assiguaicrob-
abilities in Q, and therefore denote,dpy g(cy). Let the log-loss of a distribution Q be

1 1
L = zpwln—: MgIn ——.
we Ow k; q(k)

Let the leave-one-out estimatior},,dpe the probability assigned to w, when one of its instances
is removed. We assume that any two words with equal sample frequenaysigned equal leave-
one-out probability estimation, and therefore denojghy d(cy). We define the leave-one-out
estimation of the log-loss as averaging the loss of each sample word,iinkeaxtracted from the
sample and pretended to be the test sample:
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Cw, 1
T _ M= = ¥ X n———.
eave-one W; m q(N k% m q/(k)

_ L _ —n_1 :
LetLy=L(cy) =1In oy @nd L, =L'(cw) =In Fley- Letthe maximal loss be
Lmax = mkaxmax{L(k), L'(k+1)}.

In this section we discuss a family of learning algorithms, that receive thelsamspan input.
Assuming an accuracy paramedemve require the following properties to hold:

1. Starting from a certain number of appearances, the estimation is closs#mipke frequency.
Specifically, for somex, 3 € [0, 1],

vk > In (%") . qk) = :1_—% (10)

2. The algorithm is stable when a single word is extracted from the sample:

vm, 2<k<10In%", IL'(k+1) = L(K)| :o(ri), (12)
vm, VSst.n?>0, ke {0,1}, |L'(k+1)—L(K)] :o<nis>. (12)
1

An example of such an algorithm is the following leave-one-out algorithma@seime that the
vocabulary is large enough so thgt+ n1 > 0):

N—ng—1
o= { Tormmn WSt
Y Cw > 2.

m-1

Equation (10) is satisfied y= 3 = 1. Equation (11) is satisfied fé&r> 2 byL(k) —L'(k+1) =
In(M=1) =0O(3). Equation (12) is satisfied fdr< 1:

m-2
oy et | (N=no—1m=2\| 11\ (1
L) L(O)|_‘In<N—nO—2m—1 =0 N—no+m =0 n/’

Np+n+1m-—2 1 1 1
|L’(2)—L(1)\:‘In< ot >‘=o( +—)=o<—>.
np+n m-1 Nop+Ny m Ny
The following is the main theorem of this section. It bounds the deviation bettheebetween
the true loss and theave one ouéstimate. This bound shows that for a general family of learning
algorithms, leave-one-out technique can be effectively used to estimdtegtv@éhmic loss, given

the sample only. The estimation error bound decreases roughly in proptwtibe square root of
the sample size, regardless of the underlying distribution.
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Theorem 32 For a learning algorithm satisfying Equations (10), (11), and (12), &nd 0, we
have:

InT)41 5
Vs, IL — Lieave-onel = O (Lmax %) :

The proof of Theorem 32 bounds the estimation error separately forighephobability and
low-probability words. We use Lemma 20 (McAllester and Schapire, 200@)tad the estimation
error for low-probability words. The expected estimation error for thdadgigpbability words is
bounded elementarily using the definition of the binomial distribution (Lemma 33ll¥f5 we use
McDiarmid’s inequality (Lemma 2) to bound its deviation.

The next lemma shows that the expectation of the leave-one-out methodid agaroximation
for the per-word expectation of the logarithmic loss.

Lemma33 Let0<a <1, and y> 1. Let B, ~ Bin(n, p) be a binomial random variable. Let
fy(X) = In(max(x,y)). Then,

0<E [pfy(Bn—a)—%fy(Bn—a—l)

Proof For a real valued functioR (hereF (x) = fy(x—a)), we have:

n X

n (X ) ) D (¢ 1)
= pXE[F Bn-1)]

E[%F(Bn—l)} — i(n p(1—p)X T (x-1)

><

I
o

where we used}) % = (- l) SinceB,, ~ B,_1 + By, we have:

€ [Ph(Bn )~ (B 1)| = PEL(Br1+ By 0] Elfy(Bos - )

max(Bn1+Bl—a,y)]

max(Bn-1 —a,y)

max(Bn-1—a+B1,y+ Bl)}
max(Bn_1—a,y)

= pE]|In

< PpE]|In

B:

max(Bn_l—a,y))}

-
< E .
=P _max<Bn1—a,y>]

= pE|In(1+

SinceB; andBy,_; are independent, we get
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B, 1
PE max(Bn_l—a,y)} - pE[Bl]E[maX(Bn—l—O‘,YJ

1
- ve| }
PE | maxBa 1 —ay)
1

N i Lo LR —
X;] X max(x—a.,y)

n-1
L T A PR | X+ 1
B pX: < X )p(l P) X+ 1 maxx—a,y)

P X+1 i n +1 n—(x+1)
< = - _
. nmf‘x<max<x—a,y>>x; x+1)P P

< T(A-1-ph) < (13)

Equation (13) follows by the following observationi 1 < 3(x—a) for x > 2, andx+ 1 < 2y

for x < 1. Finally, pE [In %} > 0, which implies the lower bound of the lemma.

The following lemma bounds, as a function of;.

Lemma 34 Letd > 0. We have/dS: mp = O(( min } +n1> In %)

Theorem 32 Proof Lety,, = (1— \/§> pwm—2. By Lemma 9, withh = 5, we havevgs

3In4 . 3pyIn 27

Ywev:py> e lpw— 2| < /TS (14)
5|n4m

YweV:py> m5, Cu > Yw+2> (5—/15)In 40 > In4m, (15)

4m
5In7g
m

LetVH :{wev:pw> }andVL:V\VH.We have

+ . (16)

||— - I—Ieav&one| <

2, (v L)

EVH

Cw,
pwblw — —L
W;L ( m W)

We start by bounding the first term of Equation (16). By Equation (18)hewvevw € iy, cyy >
Yw-+2> In 4. Equation (10) implies thay, = g thereforeLy, = In Q”;jf’x =In maﬂﬁw‘_ﬁaw ,and
L, =InDiB —jp__m1B et

cw—1-a max(cy—1—0,yw)
Cw m-— m-
Errt = In —pywln—————.
Y M maoe—1— o) max(Gy — oY)
We have
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W;H (%WL\’N—prW) = ; Errfl +in " 1BBW;H &
< W;HErr\,'f, +O<E>' a7)

We bound ¥ ey, Errit| using McDiarmid's inequality. As in Lemma 33, 1&4(x) = In(max(x, yw)).
We have

E[Errly] = In(m—B)E [ — pu| +E [pufiu(cw— o) — 2 fulcu—1-a0)]

The first expectation equals 0, the second can be bounded using Lemma 33

< Z )E [prW(CW—G)—%fW(C\N_l_G>H

3Pu —o<1>. (18)

z E[Errl)]
WeVH

who, M m
In order to use McDiarmid’s inequality, we bound the changg gfy,, Errf! as a function of a

single change in the sample. Suppose that a wasdeplaced by a word. This results in decrease

for ¢,, and increase for,. Recalling that,, = Q(mpy), the change oErr!!, as well as the change

of Err!!, is bounded byd (!"M), as follows:
The change ofyIn m)(f;‘u;iw would be 0 ifc, — a <y,. Otherwise,

m-p m-p

_ |n—
max(cy —1—a,yy) Pu max(Cy —a,Yy)

< pulln(cu—a) —In(cy—1—a)] = pyln <l+w+w> :O<&>'

Cu

puln

Sincecy > yu = Q(mpy), the change is bounded B &) = O( ). The change oft In m(c[.n—;f—am
would beO("™™) if ¢, — 1 —a < y,. Otherwise,

cu—1 m—3 Cu m—3
In ——1In
m max(c,—2—0a,y;) m maxc,—1—a,yy)
< -t m-—p —In m-Pp +1im m-—p
m max(cy —2—a,Yy) maxcy—1—a,yy)| m maxc,—1-—a,yy)

IN

C”_1In<1+ 1 >+In_m_o<lnm>'
m Cu—2—a m m
The change oErr!! is bounded in a similar way.
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By Equations (17) and (18), and Lemma 2, we helves:

2, (it pt)

1
< Errt—E Errt ||+ |E ErrH +O<—)
W;H v [WEZH v W;H v m
| 1 1 1 Inm)2In i
< o(ln mln++>0< (nm*Ing . (19)
m d m m m

Next, we bound the second term of Equation (16). By Lemma 10, wethese

4m

3In
YweV st. py < mé’ Cw < 6In4. (20)

Letb=5In=" 4”‘ . By Equations (14) and (20), for amysuch thatp,, < < , we have

In4M G|n4m v [n 4m
<max{nm+\/3pwr: 6,6:15 }<(5+ 3:]5” 0 <2—n:).

Thereforevw € i, we havec,, < 2b. Letnf = [V NS, G = — k+1nk, andMg = ¥ ey, s, Pw-
We have

32

W;L@L;V_MW)

2b 2b-1

k=1

2b rt 2b—1 2b 1 1
< L/( MEL(K kneL' (k <7——)
- kzm k+1 Z) +k; neL (k) m—k+1 m
= ZG" L'(k) szlM'-L(k) +o<b"max>
- k—1 - k

=1 o m

2b-1 2b-1
_ Z)GLL’ (k+1)— Z MEL (k (b"r;“ax)

2b—1 L 2b—1 L L bl—max
< Y GUK+D) LK+ 5 |Gk—Mk\L(k)+O< - > (21)

—0 k=0

The first sum of Equation (21) is bounded using Equations (11) anddhd Lemma 34
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2b-1
Y GilL'(k+1) - L(K)|
=0

2b—1
Y GilL'(k+1) —L(K)|+GolL'(1) ~ L(0)| + Gy L'(2) — L(D)]- (22)
=2

The first term of Equation (22) is bounded by Equation (11):

2b—-1 2b—-1 1 1
Zsz“_/ (k+1)— < Z Gk - ( ) o<a). (23)

The other two terms are bounded using Lemma 34nor0, we havefl%s n=0 (b (w /min % + n1> ) .
By Equation (12), we have

GolL'(1) — L(0)] + Ga|L'(2) — L(1)]

Ro(@) o)) e

Forn; =0, Lemma 34 results inp =0 (b min %) , and Equation (24) transforms into

2mL In3
G1|L/(2) - L(l)| < mZ_rr:\Lax =0 (bLmax m ) . (25)

Equations (22), (23), (24), and (25) sum up to

2b—-1 |n
Y GlL'(k+1)—L(k)| = O bLmax m5 . (26)
k=0

The second sum of Equation (21) is bounded using Lemma 28 separatelyefgk < 2b with
accuracy%. Since the proof of Lemma 28 also holds ték and Ml'; (instead ofGx andMy), we

havev$ S, for everyk < 2b, |Gk — ML| = (b In 5). Therefore, together with Equations (21) and
(26), we have

W; (%L\’N—pWLW) < o(bLmax mﬁ%) ZbZ:L ( '”6) +o(er:’1"aX>
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The proof follows by combining Equations (16), (19), and (27). |

5. Log-Loss A Priori

Section 4 bounds the error of the leave-one-out estimation of the logHabaws that the log-loss
can be effectively estimated, for a general family of learning algorithms.

Another question to be considered is the log-loss distribution itself, withowdrtiggrical esti-
mation. That is, how large (or low) is it expected to be, and which parameteng distribution
affect it.

We denote the learning error (equivalent to the log-loss) as the Klrgéinee between the true
and the estimated distribution. We refer to a general family of learning algoritmdsshow lower
and upper bounds for the learning error.

The upper bound (Theorem 39) can be divided to three parts. Thpditds the missing mass.
The other two build a trade-off between a threshold (lower thresholds teaallower bound), and
the number of words with probability exceeding this threshold (fewer wieat$to a lower bound).
It seems that this number of words is a necessary lower bound, as wesfibheorem 35.

Theorem 35 Let the distribution be uniformivw eV : py, = % with N < m. Also, suppose that the
learning algorithm just uses maximum-likelihood approximation, meaning &. Then, a typical
learning error would beQ(}).

The proof of Theorem 35 bases on the Pinsker inequality (Lemma 36)stisfiows a lower
bound forL; norm between the true and the expected distributions, and then transfdortfet
form of the learning error.

Lemma 36 (Pinsker Inequality) Given any two distributions P and Q, we have
1
KL(P[|Q) > 5(L1(P.Q)).

Theorem 35 Proof We first show that; (P, Q) concentrates ne& Q/g) Then, we use Pinsker

inequality to show lower bourcf KL(P||Q).
First we find a lower bound fdE|[|py — ow|]. Sincec, is a binomial random variable?[c,] =
mpw(1— pw) = Q (§), and with some constant probabilitgy — mp,| > o[c,). Therefore, we have

Ellgu—pul] = ~Ellow—mpu]

ZoleuP(ou—ma > oie) - 2 (1) <0 (1)

e |3 s -a (v ) -a(yh)

5. This proof does not optimize the constants. Asymptotic analysis ofitbgac transform of binomial variables by
Flajolet (1999) can be used to achieve explicit valuesfio(P||Q).

v
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A single change in the sample chanda$P, Q) by at most%. Using McDiarmid inequality
(Lemma 2) oL (P, Q) as a function of sample words, we haves:

L(PQ) = E[Li(PQ)-[Li(PQ) —E[La(RQ)

Using Pinsker inequality (Lemma 36), we have

2
1 pw 1 <N>
V2 In—> = - =Q(—=),
S W§€ Pw qw_2<w§€ | Pw qw|> =

which completes the proof. [ |

Definition 37 Leta € (0,1) andt > 1. We define an (absolute discounting) algorithgyAwhich
‘removes” = probability mass from words appearing at mastimes, and uniformly spreads it
among the unseen words. We denote py A= S7_; n; the number of words with count betwekn
andt. The learned probability Q is defined by :

Gn]%r CW:O
Ow = & 1<cy<T

&y
u T < Cu.

L3

The a parameter can be set to some constant, or to make the missing mass match the Good-
Turing missing mass estimator, that#.-x = 7.

Definition 38 Given a distribution P, and x [0,1], let F = ¥ yev:.p,<xPw: @nd No= {w e V .
pw > x}|. Clearly, for any distribution P, fis a monotone function of x, varying from 0 to 1, and
Ny is @ monotone function of x, varying from NGoNote that N is bounded b;&.

The next theorem shows an upper bound for the learning error.

Theorem 39 For anyd > 0 andA > 3, such thatt < (A —v/3\)In &2, the learning error of 4 is
bounded?®S by

noln 2 Aln & 3Iné
0< mln(ﬂ) < Moln | —3 |+ 535 /222 1 Mg
We Cw any .t l1-a m
a 3Iné 3AIn&m
——Fppen +1) —2 5 N, on.
+1—(1 A|nm%+ m +2(\/X—\/§)2m )\Inm%
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The proof of Theorem 39 bases directly on Lemmas 40, 41, and 43. Wewaite this bound
roughly as

This bound implies the characteristics of the distribution influencing the log-ltéisshows
that a “good” distribution can involve many low-probability words, giventttiee missing mass
is low. However, the learning error would increase if the dictionary incdudeny mid-range-
probability words. For example, if a typical word’s probability weme%, the bound would become

6 <M0+m‘%).

Lemma 40 For anyd > 0, the learning error for non-appearing words can be bounded with high
probability by

5 Puw noin g
v°S, z pwin <QW> < Mpln (—Gnl...r .

w¢S

Proof By Lemma 13, we have®S, the real probability of any non-appearing word does not exceed
'nﬁ. Therefore,

Pw m nNg
In —_— = In —_
v%spW <qW> ¥ Spw <pw0‘ nl...r)

N®m n npin T
< Zp\,\,ln<—5— 0>:Moln( 5),

which completes the proof. |

2m
Aln 57
m

Lemma4l Letd>0,A > 0. Let\[ = {WEV Dpw <
forV/ can be bounded with high probability by

Pw )\In%m 3In% a
o In( ) < M — F. on.
L

Proof We use Iii1+x) < x.

}, and\{ =V_.NS. The learning error

Zlcmln(;M < D P —

weV/ w weV/ Cw

For any appearing word, q,, > 1*?“ Therefore,
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me » sijmwmmr%)
PR TR
. HWGZVL,F’W(F’W—C%V) a2, m
< TS et e
< )\1"12;3” WEZVL/(QN_%W) +%mezém. (28)

We apply Lemma 12 omy, the union of words iV,. Let py, = Y ey Pw @ndcy = 3 ey, Cw-
We havey®S:

SRR N

weV/ weVL\S
Cw
< Pv—— )|+ Pw
WEZ/L ( m) We%\s
Cy,
3In2

< 4/ —2+Mo. 29
< m -+ Mo (29)
The proof follows combining Equations (28) and (29). |

Lemma 42 Let0 < A < 1. For any xe [-A, A}, we havdn(14x) > x— 2(1+2A)2'

Lemma 43 Letd > 0, A > 3, such thatr < (A —v/3\)In4P. Let the high-probability words set be
Mn } and\{; =Vy NS. The learning error for ¥/ can be bounded with high

m

Vi = {w ev:pw>
probability by

Pw /3In3 3AIn 4
Vo In (-) < 4 N, , an.
> wezv.qm a/) VM T2V v3pPm ME
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Proof

3|£’|§

) 20 (3)

) WGVHZ,QNST Puln <0\me a ) : (30)

Zn(e) = g e
= z pWIn<

weV,

5\3

Using Lemma 9 with\, we havev? S

YW € Vi, ‘m——‘_\/spwrl:m, 31)

YW € Wy, c\,\,z()\—\/&.’i)\)lnF

This means that for a reasonable choice fheaningt < (A —+v/3A)In 4m) the second term of
Equation (30) is 0, and/, = V4. Also,

%W—pw‘< 1 /3pv\,ln‘%m< m 3In2m
Pv |~ Pw m =\ AInZ

Therefore, we can use Lemma 42 with= \/g:

M py == Pw
QNIn< > = — pwin <1+ >
mgé’ Cw Wg% Pw

IA
|
2
=1
|
2
|
|_\
VN
319
|
2
N———

(32)

" <pw_m>+2<\/)_\_\/§>2w;|4 5

We apply Lemma 12 on they, the union of all words iny. Let py, = 3 wey, Pw andcy, =

Y wevi; Cw- The bound on the first term of Equation (32) is:
Cw 3In%
- <\ —9
W;H (p‘” m) =V m (33)

Assuming that Equation (31) holds, the second term of Equation (32)sababounded:

Vs,
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(% — 3pwin 4 3In 4m
2 mi < Z L SPw 3 N, 4m . (34)
WV Pw M m e
The proof follows by combining Equations (30), (32), (33) and (34). [ |
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Appendix A. Technical Proofs

A.1 Concentration Inequalities

Lemma6 Proof We use Stirling approximatioR(x+ 1) = v/2mx (X)* T, where
1 1
Tx= — .

P =k = (i) pr*

r(n+1) M=\
< FrDrnogrD () <T>
V2m " -t Ty

V2T /21(n — p) (N —p)"H n i TuTh—p

(
B 1 n Th
V2 n—pTThy
1 T

V21— p) Ty

Clearly, for integral values gi, the equality is achieved &t= . [ |

Lemma 8 Proof Letn' = ¥,y c,. Using Lemma 7 fom’ with b =c = E[m/] = m, the prob-
ability P(m = m) achieves its minimum whevw € V, py = % Under this assumption, we have
n ~ Bin(mN, ). Using Lemma 6, we have
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J— Z .
\/anN 1) TnTon-m = 3y/m

rrfm

Therefore, for any distributiofipy : w € V}, we have

P =m) > 3.

Obviously,E[F'] = S E[fw(cy)] = E[F]. Also, the distribution of c,} given thatn? = mis
identical to the distribution ofcy,}, therefore the distribution d¥’ given thatm’ = mis identical to
the distribution ofF. We have

P(|F' —E[F]|>¢) = ZP(r’d =1)P(|[F' —E[F]| > g|m =1i)

> P(m =m)P(|F' —E[F']| > ¢|m =m)
= P(mM =m)P(|F —E[F]| > ¢)
1
> 3 mPIF—EF]>e),
which completes the proof. [ |

2
Lemma 44 For anyd > 0, and a word we V, such that > 3'% we have

Proof The proof follows by applying Lemma 3, substitutiag- ,/3mpyIn . Note that for 31rg <
mpy we havee < mpy:

P((pw% 3“”'“§> — P(mpu—cul 2 8)

m
82
< 2 R —
= eXp( 2E[cw]+e>

3 In 2
Zexp<_m> _s

IN

3mpy

which completes the proof. |
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2m
Lemma9 Proof There are at moshwords with probabilityp,, > 3"1T5 The first claim follows

using Lemma 44 together with union bound over all these words (with aqcﬁ{w each word).

2m
Using the first claim, we derive the second. We show a lower boun%fcusing'nT6 < Fpw

Cw 3pw"1% vﬁg V/§
= >py— —2 — Z=(1-4/= ,
~ 2 Pw > Pw — Pw A 1 A Pw

The final inequality follows from simple algebra. |

Lemma 10 Proof Letb=3In(¥§). Note thatd € [0,1] andm> 1 yieldb > 2. First, suppose that
there are up ton words withp,, < n% For each such word, we apply Lemma 3@n with € = b.
We have:

b? )
P(CW> 6Ing> <P(cy>mpy+¢) < exp(—m> < et

Since we assume that there are upntsuch words, the total mistake probabilitydis

Now we assume the general case, that is, without any assumption on themafmiords. Our
goal is to reduce the problem to the former conditions, that is, to createbse¢m of words with
probability smaller tharg.

We first createn empty sets,...,vy. Let the probability of each sef, py,, be the sum of the
probabilities of all the words it includes. Let the actual count;ot,,, be the sum of the sample
counts of all the wordsy it includes.

We divide all the wordsv between these sets in a bin-packing-approximation manner. We sort
the wordsw in decreasing probability order. Then, we do the following loop: insertd word
w to the sew; with the currently smallesp, .

We claim thatp,, < % for eachy; at the end of the loop. If this inequality does not hold, then
some wordv made this “overflow” first. Obviouslyp, must be smaller thaﬁ?ﬁ, otherwise it would
be one of the first%m < mwords ordered, and would enter an empty setp,lf< % and it made
an “overflow”, then the probability of each set at the momentas entered must exceg}{, since
w must have entered the lightest set available. This means that the total iptpledlall words
entered by that moment was greater thazﬁ»] > 1.

Applying the case ofmwords to the sets;, ..., Vm, we havey®S: for everyv;, cy, < 2b. Also, if
the count of each set does not exceed2so does the count of each wosde v;. That is,

P<3w:pwg%cw>2b> gP(Hvi:p\,i g%,cvi >2b> <9,

which completes the proof. |

1257



DRUKH AND MANSOUR

Lemma 11l Proof By Lemma 9 with some > 3 (which will be set later), we have S

3In4e
YW pw > et Impy — Cw| < 3mpNIn (35)

Aln 4
YW py > 0 (36)

/ 4m<

()\ + \/_) In4". By Lemma 10, we have

V2SS, vwst. p\,\,<3'n4m, cw < 6In L%m

It means that for anw: mpy < Aln 4%“, we havec, < ()\ + \/§> In 4%“. This means that for
any w such thatc,, > ()\+\/§> In%4", we havemp, > AIn“%". By Equation (36), this means

1
TR

Cw, and by Equation (35):

4
3cwIn

4m
Mpw— G| < |/3mpyin = <

Substitutingh = 12 results in

4
¥°S:  Vwst. cy > 18In4", |mpN—cW\§\/6qun%n,

which completes the proof. [ |

2
Lemma 12 Proof If py > 3'# we can apply Lemma 44. We have

o 3pwin2 3In2
Vo w_ ‘< 5 5
S m FM—\/ m —\/ m

Otherwise, we can apply Lemma 10. We have:

Cu Cur 6InT 3In2
Vo ’—— ‘<max < 20 < 5
S m Pw] = {pw m}— m — m ’

which completes the proof. |
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Lemma 13 Proof Letb=In. We note that there are at mdStwords with probabilityp, > %
b
Pl3w:cy=0,py>—| < Z P(cw =0)
m wpw>2
m
= > (1pw)m§T(1E> <meP” =3,
. b b m
W:Pw= 1
which completes the proof. [ |
A.2 K-Hitting Mass Estimation
Lemma 21 Proof We havey e, , Pw < 1. Using Lemma 19, we bourfé(c,, = k) andP(cy =
k+1):
E[Mal pPleu—k =0 ( 7|
k, = = = P —
* WEVi a \/R
E[Geal ~ ElMia]| = K p(oy =k 1) - puP(eu=K)
k,a k,a = Wg m—k Cw = pwP(Cw =
k.a
k+1 vk
= pv——P(Cw=k+1)=0( — |. (37)
WEVi a m-— m
Equation (37) follows by Lemma 20. By Lemma 18, we hae,| = O (}):
k+1 km 1 1
E[Gka] = —— Plcy=k+1)=0(—-——]=0( =),
[ k,a] m_kwe ko (CW ) <m k \/R> (\/R>
which completes the proof. |

Theorem 29 Proof The proof is done by examining four casekofork < 18In%m, we can use
Lemma 28. We have

- ;| )
7S, M~ My| =[G —My| = O<\/ 5 (k+1In %‘)) = O(\/—%) :

For 18In%m <k< mé, we can use Theorem 25. We have

VoS, [Mk— M| = |Gk —My| = O(\/ L k'"m%> = 6<m—§> .
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2
Forms < k < 7, we can use Theorem 26. We have

m k

3
VS, [Mi— M| = [My — My =O<ﬁ(ln5)2 + X In3> :C~)<m‘§>.

Fork> T, leta =,/6In8". By Lemma 17, we have?S, M= Mg A My = My o. By Lemma

18, Vkal| = O(”F‘) = O(1). Letc be the bound otk o|. Using Lemma 12 for eacl € Vi o with
accuracy, we have

Ini
v3S YW e Vi, ‘(:nN“”O< mé)

Therefore, we havedSs:

My — My| = Mk g — My o] < Z
WEVi o

K B ng\ ~/1
mWKWO(m>OCm>

which completes the proof. [ |

Theorem 30 Proof First, we show that for any two wordsandv, Cov( Xk, Xvk) = © (%) Note
that{c,|cy = K} ~ Bin(m—k, —%). By Lemma 6, we have:

’ m—k

1 T,
2k (1— K TeTm-k
1 T
P(cy=klcu=k) = - TkT’“ k2k.
Mk (1— %) '™

Using Tx = O(1) for x > k, we have

COV(Xu,kp xv7k)
= E[XuxXuk] — EPXuk] E[Xux]
= P(cy=K)[P(cy = Kloy = k) — P(cy = k)]

Tk Tm- T T Tk Tm-
a1t Tk | J(a— i) B2 ffa— ) T
Tm—k 1 T,

e<%) { 1 T2k - ]
\/@ m-2k MTm,k
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B e<1){ka( 11 )
A\ Ja-de g
1 Tm_k Tm
* k <Tm—2k_Tm—k> ' (39)
(1-3)
We can bound the first term of Equation (39):

L1 (Va ) (Ve
\/(l_m_lik) \/(1_%) \/(1_ﬂ)(1_m) \/1—§+\/1—m_'jk

k ko k?

SinceTy = exp( g3 + O (%)) = 1+ 13 + O(5) for x> m— 2k (note thak < m), we have

Tm—k Tm . Tnzkk—Tme—Zk
Tm72k Tm k Tm72kTmfk

= Tm_ziTm_ {s(ml_ k)~ 1;11‘ 12(m1— 2k) +O<$>]
R ORE

Combining Equations (39), (40), and (41), we have

o= (2) () -o(5) ro(3)]-o(3)

Now we show that?[Xyx] = (\/R) By Equation (38), we have

orei-r e -o( ) (-o( ) -o(3)

Now we find a bound foo?[My].

o’M] = o2

Z waw,k}

w

-3 P20 [Xuuk] + > PupCOMXuk, Xuk)
W UV
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which completes the proof. |

A.3 Leave-One-Out Estimation of Log-Loss

Lemma 34 Proof Using Lemma 9, we have?: n, = lUNS|andn = |UNS |, whereU = {we
V:mpy <cIn§}, for somec > 0. Letn, = [UNS| andny = [UNS,|. Letb=1InF.
First, we show thaE[n,] = O(bE[n}]).

m

e, = é;(2>pm1—pmm4

= 3 mai-p" e

- ZJ mpy(1— pw)™ "O(b) = O(bE[n})).

Next, we bound the deviation of andn,. A single change in the sample changésas well
asn,, by at most 1. Therefore, using Lemma 2 fgrandn,, we have

vis: n&zE[n’ﬂ—O(Umln%),
L / / 1
VaS: n, <E[ny]+0 mIn?S .

Therefore,
/ / l / 1 / l
n, < E[ny]+ 0O mInS =0 bE[n}] + mInS =0(b{n+ mlnS ,
which completes the proof. [ |

A.4 Log-Loss A Priori

Theorem 39 Proof The KL-divergence is of course non-negative. By Lemma 40, we have

5 Pw noln 4"
V4 In{ — ) <Mgln . 42
L (B) <m0 (anl‘..r “2)
By Lemma 41 withi, we haver4 S
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Pw Aln &0 3Ing o
a. < A - m .
ZMnfLm pWIn<qW> ~1l-a m +Mo +1—(XFMnmST (43)

WeS pw< —x2

By Lemma 43 with\, we havev?S

Pw 3Ing 3AIn g
In{ — | < + N, 8m . 44
2 > (%)‘V m " 2(/A-3)m F (44
WES P> —0
The proof follows by combining Equations (42), (43), and (44). |

Lemma42 Proof Let f(x) = 2(1%2)2 —X+In(1+x). Then,

X 1
f/ = -1
0 = o Y
" _ ; . } 2
f'(x) = e .(1+x)
Clearly, f (0) = f/(0) = 0. Also, f”(x) > 0 for anyx € [—A, A]. Therefore,f(x) is non-negative
in the range above, and the lemma follows. |
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