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Abstract

We show several high-probability concentration bounds forlearning unigram language models.
One interesting quantity is the probability of all words appearing exactlyk times in a sample of size
m. A standard estimator for this quantity is the Good-Turing estimator. The existing analysis on

its error shows a high-probability bound of approximatelyO
(

k√
m

)

. We improve its dependency

on k to O
(

4√k√
m + k

m

)

. We also analyze the empirical frequencies estimator, showing that with high

probability its error is bounded by approximatelyO
(

1
k +

√
k

m

)

. We derive a combined estimator,

which has an error of approximatelyO
(

m− 2
5

)

, for anyk.

A standard measure for the quality of a learning algorithm isits expected per-word log-loss.
The leave-one-out method can be used for estimating the log-loss of the unigram model. We show

that its error has a high-probability bound of approximately O
(

1√
m

)

, for any underlying distribu-

tion.
We also bound the log-loss a priori, as a function of various parameters of the distribution.

Keywords: Good-Turing estimators, logarithmic loss, leave-one-outestimation, Chernoff bounds

1. Introduction and Overview

Natural language processing (NLP) has developed rapidly over the last decades. It has a wide range
of applications, including speech recognition, optical character recognition, text categorization and
many more. The theoretical analysis has also advanced significantly, though many fundamental
questions remain unanswered. One clear challenge, both practical and theoretical, concerns deriving
stochastic models for natural languages.

Consider a simple language model, where the distribution of each word in the text is assumed
to be independent. Even for such a simplistic model, fundamental questions relating sample size to
the learning accuracy are already challenging. This is mainly due to the factthat the sample size is
almost always insufficient, regardless of how large it is.

To demonstrate this phenomena, consider the following example. We would like toestimate
the distribution of first names in the university. For that, we are given the names list of a graduate
seminar: Alice, Bob, Charlie, Dan, Eve, Frank, two Georges, and two Henries. How can we use this
sample to estimate the distribution of students’ first names? An empirical frequency estimator would
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assign Alice the probability of 0.1, since there is one Alice in the list of 10 names, while George,
appearing twice, would get estimation of 0.2. Unfortunately, unseen names, such as Michael, will
get an estimation of 0. Clearly, in this simple example the empirical frequencies are unlikely to
estimate well the desired distribution.

In general, the empirical frequencies estimate well the probabilities of popular names, but are
rather inaccurate for rare names. Is there a sample size, which assuresus that all the names (or
most of them) will appear enough times to allow accurate probabilities estimation? The distribution
of first names can be conjectured to follow the Zipf’s law. In such distributions, there will be a
significant fraction of rare items, as well as a considerable number of non-appearing items, in any
sample of reasonable size. The same holds for the language unigram models, which try to estimate
the distribution of single words. As it has been observed empirically on many occasions (Chen,
1996; Curran and Osborne, 2002), there are always many rare words and a considerable number
of unseen words, regardless of the sample size. Given this observation, a fundamental issue is to
estimate the distribution the best way possible.

1.1 Good-Turing Estimators

An important quantity, given a sample, is the probability mass of unseen words(also called “the
missing mass”). Several methods exist for smoothing the probability and assigning probability
mass to unseen items. The almost standard method for estimating the missing probability mass
is the Good-Turing estimator. It estimates the missing mass as the total number of unique items,
divided by the sample size. In the names example above, the Good-Turing missing mass estimator
is equal 0.6, meaning that the list of the class names does not reflect the true distribution, to put
it mildly. The Good-Turing estimator can be extended for higher orders, that is, estimating the
probability of all names appearing exactlyk times. Such estimators can also be used for estimating
the probability of individual words.

The Good-Turing estimators dates back to World War II, and were published first in 1953 (Good,
1953, 2000). It has been extensively used in language modeling applications since then (Katz, 1987;
Church and Gale, 1991; Chen, 1996; Chen and Goodman, 1998). However, their theoretical con-
vergence rate in various models has been studied only in the recent years(McAllester and Schapire,
2000, 2001; Kutin, 2002; McAllester and Ortiz, 2003; Orlitsky et al., 2003). For estimation of the
probability of all words appearing exactlyk times in a sample of sizem, McAllester and Schapire

(2000) derive a high probability bound on Good-Turing estimator error of approximatelyO
(

k√
m

)

.

One of our main results improves the dependency onk of this bound to approximatelyO
(

4√k√
m + k

m

)

.

We also show that the empirical frequencies estimator has an error of approximatelyO
(

1
k +

√
k

m

)

,

for large values ofk. Based on the two estimators, we derive a combined estimator with an error of

approximatelyO
(

m− 2
5

)

, for anyk. We also derive a weak lower bound ofΩ
(

4√k√
m

)

for an error of

any estimator based on an independent sample.

Our results give theoretical justification for using the Good-Turing estimatorfor small values of
k, and the empirical frequencies estimator for large values ofk. Though in most applications the
Good-Turing estimator is used for very small values ofk, for examplek ≤ 5, as by Katz (1987) or
Chen (1996), we show that it is fairly accurate in a much wider range.
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1.2 Logarithmic Loss

The Good-Turing estimators are used to approximate the probability mass of allthe words with a
certain frequency. For many applications, estimating this probability mass is notthe main optimiza-
tion criteria. Instead, a certain distance measure between the true and the estimated distributions
needs to be minimized.

The most popular distance measure used in NLP applications is theKullback-Leibler (KL) di-
vergence. For a true distributionP = {px}, and an estimated distributionQ = {qx}, both over some
setX, this measure is defined as∑x px ln px

qx
. An equivalent measure, up to the entropy ofP, is the

logarithmic loss(log-loss), which equals∑x px ln 1
qx

.
Many NLP applications use the value oflog-lossto evaluate the quality of the estimated dis-

tribution. However, thelog-losscannot be directly calculated, since it depends on the underlying
distribution, which is unknown. Therefore, estimatinglog-lossusing the sample is important, al-
though the sample cannot be independently used for both estimating the distribution and testing it.
The hold-out estimation splits the sample into two parts: training and testing. The training part
is used for learning the distribution, whereas the testing sample is used for evaluating the average
per-word log-loss. The main disadvantage of this method is the fact that it uses only part of the
available information for learning, whereas in practice one would like to use all the sample.

A widely used general estimation method is calledleave-one-out. Basically, it performs aver-
aging all the possible estimations, where a single item is chosen for testing, andthe rest are used
for training. This procedure has an advantage of using the entire sample,and in addition it is rather
simple and usually can be easily implemented. The existing theoretical analysis ofthe leave-one-
out method (Holden, 1996; Kearns and Ron, 1999) shows general high probability concentration
bounds for the generalization error. However, these techniques are not applicable in our setting.

We show that theleave-one-outestimation error for thelog-loss is approximatelyO
(

1√
m

)

,

for any underlying distribution and a general family of learning algorithms. It gives a theoretical
justification for effective use ofleave-one-outestimation for thelog-loss.

We also analyze the concentration of thelog-loss itself, not based of an empirical measure.
We address the characteristics of the underlying distribution affecting thelog-loss. We find such a
characteristic, defining a tight bound for thelog-lossvalue.

1.3 Model and Semantics

We denote the set of all words asV, andN = |V|. Let P be a distribution overV, wherepw is the
probability of a wordw∈V. Given a sampleSof sizem, drawn i.i.d. usingP, we denote the number
of appearances of a wordw in SascS

w, or simplycw, when a sampleS is clear from the context.1 We
defineSk = {w∈V : cS

w = k}, andnk = |Sk|.
For a claimΦ regarding a sampleS, we write∀δSΦ[S] for P(Φ[S]) ≥ 1− δ. For some error

bound functionf (·), which holds with probability 1− δ, we write Õ( f (·)) for O
(

f (·)
(

ln m
δ
)c)

,
wherec > 0 is some constant.

1.4 Paper Organization

Section 2 shows several standard concentration inequalities, together withtheir technical applica-
tions regarding the maximum-likelihood approximation. Section 3 shows the errorbounds for the

1. Unless mentioned otherwise, all further sample-dependent definitions depend on the sampleS.
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k-hitting mass estimation. Section 4 bounds the error for the leave-one-out estimation of the loga-
rithmic loss. Section 5 shows the bounds for the a priori logarithmic loss. Appendix A includes the
technical proofs.

2. Concentration Inequalities

In this section we state several standard Chernoff-style concentration inequalities. We also show
some of their corollaries regarding the maximum-likelihood approximation ofpw by p̂w = cw

m .

Lemma 1 (Hoeffding, 1963) Let Y= Y1, . . . ,Yn be a set of n independent random variables, such
that Yi ∈ [bi ,bi +di ]. Then, for anyε > 0,

P

(∣

∣

∣

∣

∣

∑
i

Yi −E

[

∑
i

Yi

]∣

∣

∣

∣

∣

> ε

)

≤ 2 exp

(

− 2ε2

∑i d
2
i

)

.

The next lemma is a variant of an extension of Hoeffding’s inequality, by McDiarmid (1989).

Lemma 2 Let Y= Y1, . . . ,Yn be a set of n independent random variables, and f(Y) such that any
change of Yi value changes f(Y) by at most di , that is

sup
∀ j 6=i,Yj=Y′

j

(| f (Y)− f (Y′)|) ≤ di .

Let d= maxi di . Then,

∀δY : | f (Y)−E[ f (Y)]| ≤ d

√

nln 2
δ

2
.

Lemma 3 (Angluin and Valiant, 1979) Let Y= Y1, . . . ,Yn be a set of n independent random vari-
ables, where Yi ∈ [0,B]. Let µ= E [∑i Yi ]. Then, for anyε > 0,

P

(

∑
i

Yi < µ− ε

)

≤ exp

(

− ε2

2µB

)

,

P

(

∑
i

Yi > µ+ ε

)

≤ exp

(

− ε2

(2µ+ ε)B

)

.

Definition 4 (Dubhashi and Ranjan, 1998) A set of random variables Y1, . . . ,Yn is called “nega-
tively associated”, if it satisfies for any two disjoint subsets I and J of{1, . . . ,n}, and any two
non-decreasing, or any two non-increasing, functions f from R|I | to R and g from R|J| to R:

E[ f (Yi : i ∈ I)g(Yj : j ∈ J)] ≤ E[ f (Yi : i ∈ I)]E[g(Yj : j ∈ J)].

The next lemma is based on thenegative associationanalysis. It follows directly from Theorem
14 and Proposition 7 of Dubhashi and Ranjan (1998).
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Lemma 5 For any set of N non-decreasing, or N non-increasing functions{ fw : w ∈ V}, any
Chernoff-style bound on∑w∈V fw(cw), pretending that cw are independent, is valid. In particular,
Lemmas 1 and 2 apply for{Y1, ...,Yn} = { fw(cw) : w∈V}.

The next lemma shows an explicit upper bound on the binomial distribution probability.2

Lemma 6 Let X∼ Bin(n, p) be a sum of n i.i.d. Bernoulli random variables with p∈ (0,1). Let
µ = E[X] = np. For x∈ (0,n], there exists some function Tx = exp

(

1
12x +O

(

1
x2

))

, such that∀k ∈
{0, . . . ,n}, we have P(X = k) ≤ 1√

2πµ(1−p)

Tn
TµTn−µ

. For integral values of µ, the equality is achieved

at k= µ. (Note that for x≥ 1, we have Tx = Θ(1).)

The next lemma deals with the number of successes in independent trials.

Lemma 7 (Hoeffding, 1956) Let Y1, . . . ,Yn ∈ {0,1} be a sequence of independent trials, with pi =
E[Yi ]. Let X= ∑i Yi be the number of successes, and p= 1

n ∑i pi be the average trial success proba-
bility. For any integers b and c such that0≤ b≤ np≤ c≤ n, we have

c

∑
k=b

(

n
k

)

pk(1− p)n−k ≤ P(b≤ X ≤ c) ≤ 1.

Using the above lemma, the next lemma shows a general concentration bound for a sum of
arbitrary real-valued functions of a multinomial distribution components. We show that with a
small penalty, any Chernoff-style bound pretending the components beingindependent is valid.3

We recall thatcS
w, or equivalentlycw, is the number of appearances of the wordw in a sampleSof

sizem.

Lemma 8 Let{c′w ∼ Bin(m, pw) : w∈V} be independent binomial random variables. Let{ fw(x) :
w∈V} be a set of real valued functions. Let F= ∑w fw(cw) and F′ = ∑w fw(c′w). For anyε > 0,

P(|F −E [F ]| > ε) ≤ 3
√

m P
(∣

∣F ′−E
[

F ′]∣
∣> ε

)

.

The following lemmas provide concentration bounds for maximum-likelihood estimation of pw

by p̂w = cw
m . The first lemma shows that words with “high” probability have a “high” count in the

sample.

Lemma 9 Let δ > 0, andλ ≥ 3. We have∀δS:

∀w∈V, s.t. mpw ≥ 3ln 2m
δ , |mpw−cw| ≤

√

3mpw ln
2m
δ

;

∀w∈V, s.t. mpw > λ ln 2m
δ , cw >

(

1−
√

3
λ

)

mpw.

2. Its proof is based on Stirling approximation directly, though local limit theorems could be used. This form of bound
is needed for the proof of Theorem 30.

3. Thenegative associationanalysis (Lemma 5) shows that a sum of monotone functions of multinomialdistribution
components must obey Chernoff-style bounds pretending that the components are independent. In some sense, our
result extends this notion, since it does not require the functions to be monotone.
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The second lemma shows that words with “low” probability have a “low” countin the sample.

Lemma 10 Let δ ∈ (0,1), and m> 1. Then,∀δS: ∀w∈ V such that mpw ≤ 3ln m
δ , we have cw ≤

6ln m
δ .

The following lemma derives the bound as a function of the count in the sample (and not as a
function of the unknown probability).

Lemma 11 Let δ > 0. Then,∀δS:

∀w∈V, s.t. cw > 18ln4m
δ , |mpw−cw| ≤

√

6cw ln
4m
δ

.

The following is a general concentration bound.

Lemma 12 For anyδ > 0, and any word w∈V, we have

∀δS,
∣

∣

∣

cw

m
− pw

∣

∣

∣<

√

3ln 2
δ

m
.

The following lemma bounds the probability of words that do not appear in the sample.

Lemma 13 Let δ > 0. Then,∀δS:

∀w /∈ S, mpw < ln
m
δ

.

3. K-Hitting Mass Estimation

In this section our goal is to estimate the probability of the set of words appearing exactlyk times
in the sample, which we call “thek-hitting mass”. We analyze the Good-Turing estimator, the
empirical frequencies estimator, and a combined estimator.

Definition 14 We define the k-hitting mass Mk, its empirical frequencies estimator̂Mk, and its
Good-Turing estimator Gk as4

Mk = ∑
w∈Sk

pw M̂k =

(

k
m

)

nk Gk =

(

k+1
m−k

)

nk+1.

The outline of this section is as follows. Definition 16 slightly redefines thek-hitting mass and
its estimators. Lemma 17 shows that this redefinition has a negligible influence. Then, we analyze
the estimation errors using the concentration inequalities from Section 2.

Lemmas 20 and 21 bound the expectation of the Good-Turing estimator error,following McAllester
and Schapire (2000). Lemma 23 bounds the deviation of the error, using the negative association
analysis. A tighter bound, based on Lemma 8, is achieved at Theorem 25. Theorem 26 analyzes the
error of the empirical frequencies estimator. Theorem 29 refers to the combined estimator. Finally,
Theorem 30 shows a weak lower bound for thek-hitting mass estimation.

4. The Good-Turing estimator is usually defined as( k+1
m )nk+1. The two definitions are almost identical for small values

of k, as their quotient equals 1− k
m. Following McAllester and Schapire (2000), our definition makes the calculations

slightly simpler.

1236



CONCENTRATION BOUNDS FORUNIGRAM LANGUAGE MODELS

Definition 15 For any w∈ V and i∈ {0, · · · ,m}, we define Xw,i as a random variable equal 1 if
cw = i, and 0 otherwise.

The following definition concentrates on words whose frequencies are close to their probabili-
ties.

Definition 16 Let α > 0 and k> 3α2. We define Ik,α =
[

k−α
√

k
m , k+1+α

√
k+1

m

]

, and Vk,α = {w∈V :

pw ∈ Ik,α}. We define:

Mk,α = ∑
w∈Sk∩Vk,α

pw = ∑
w∈Vk,α

pwXw,k,

Gk,α =
k+1
m−k

|Sk+1∩Vk,α| =
k+1
m−k ∑

w∈Vk,α

Xw,k+1,

M̂k,α =
k
m
|Sk∩Vk,α| =

k
m ∑

w∈Vk,α

Xw,k.

By Lemma 11, for large values ofk the redefinition coincides with the original definition with
high probability:

Lemma 17 For δ > 0, let α =
√

6ln 4m
δ . For k > 18ln4m

δ , we have∀δS: Mk = Mk,α, Gk = Gk,α,

andM̂k = M̂k,α.

Proof By Lemma 11, we have

∀δS, ∀w : cw > 18ln4m
δ , |mpw−cw| ≤

√

6cw ln
4m
δ

= α
√

cw.

This means that any wordw with cw = k has

k−α
√

k
m

≤ pw ≤ k+α
√

k
m

<
k+1+α

√
k+1

m
.

Thereforew ∈ Vk,α, completing the proof forMk and M̂k. Sinceα <
√

k, any wordw with
cw = k+1 has

k−α
√

k
m

<
k+1−α

√
k+1

m
≤ pw ≤ k+1+α

√
k+1

m
,

which yieldsw∈Vk,α, completing the proof forGk.

Since the minimal probability of a word inVk,α is Ω
(

k
m

)

, we derive:

Lemma 18 Let α > 0 and k> 3α2. Then,|Vk,α| = O
(

m
k

)

.
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Proof We haveα <
√

k√
3
. Any wordw∈Vk,α haspw ≥ k−α

√
k

m > k
m

(

1− 1√
3

)

. Therefore,

|Vk,α| <
m
k

1

1− 1√
3

= O
(m

k

)

,

which completes the proof.

Using Lemma 6, we derive:

Lemma 19 Let α > 0 and3α2 < k≤ m
2 . Let w∈Vk,α. Then, E[Xw,k] = P(cw = k) = O

(

1√
k

)

.

Proof Sincecw ∼ Bin(m, pw) is a binomial random variable, we use Lemma 6:

E[Xw,k] = P(cw = k) ≤ 1
√

2πmpw(1− pw)

Tm

TmpwTm(1−pw)
.

For w ∈ Vk,α, we havempw = Ω(k), which implies Tm
TmpwTm(1−pw)

= O(1). Sincepw ∈ Ik,α and

3α2 < k≤ m
2 , we have

1
√

2πmpw (1− pw)
≤ 1

√

2π
(

k−α
√

k
)(

1−
(

k+1+α
√

k+1
m

))

<
1

√

2πk
(

1− 1√
3

)(

1− k+1
m

(

1+ 1√
3

))

<
1

√

2πk
(

1− 1√
3

)(

1−
(

1
2 + 1

m

)

(

1+ 1√
3

))

= O

(

1√
k

)

,

which completes the proof.

3.1 Good-Turing Estimator

The following lemma, directly based on the definition of the binomial distribution, was shown in
Theorem 1 of McAllester and Schapire (2000).

Lemma 20 For any k< m, and w∈V, we have

pwP(cw = k) =
k+1
m−k

P(cw = k+1)(1− pw).

The following lemma bounds the expectations of the redefinedk-hitting mass, its Good-Turing
estimator, and their difference.
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Lemma 21 Let α > 0 and 3α2 < k < m
2 . We have E[Mk,α] = O

(

1√
k

)

, E[Gk,α] = O
(

1√
k

)

, and

|E[Gk,α]−E[Mk,α]| = O
(√

k
m

)

.

Lemma 22 Let δ > 0, k∈ {1, . . . ,m}. Let U⊆V, such that|U | = O
(

m
k

)

. Let{bw : w∈U}, such
that∀w∈U,bw ≥ 0 and maxw∈Ubw = O

(

k
m

)

. Let Xk = ∑w∈U bwXw,k. We have∀δS:

|Xk−E[Xk]| = O





√

k ln 1
δ

m



 .

Proof We defineYw,k = ∑i≤k Xw,i be random variable indicatingcw ≤ k and Zw,k = ∑i<k Xw,i =
Yw,k−Xw,k be random variable indicatingcw < k. LetYk = ∑w∈U bwYw,k andZk = ∑w∈U bwZw,k. We
have

Xk = ∑
w∈U

bwXw,k = ∑
w∈U

bw [Yw,k−Zw,k] = Yk−Zk.

Both Yk andZk, can be bounded using the Hoeffding inequality. Since{bwYw,k} and{bwZw,k}
are monotone with respect to{cw}, Lemma 5 applies for them. This means that the concentra-
tion of their sum is at least as tight as if they were independent. Recalling that|U | = O

(

m
k

)

and
maxw∈Ubw = O

(

k
m

)

, and using Lemma 2 forYk andZk, we have

∀ δ
2 S, |Yk−E[Yk]| = O

(

k
m

√

m
k ln 1

δ

)

,

∀ δ
2 S, |Zk−E[Zk]| = O

(

k
m

√

m
k ln 1

δ

)

.

Therefore,

|Xk−E[Xk]| = |Yk−Zk−E[Yk−Zk]|

≤ |Yk−E[Yk]|+ |Zk−E[Zk]| = O





√

k ln 1
δ

m



 ,

which completes the proof.

Using thenegative associationnotion, we can show a preliminary bound for Good-Turing esti-
mation error:

Lemma 23 For δ > 0 and18ln8m
δ < k < m

2 , we have∀δS:

|Gk−Mk| = O





√

k ln 1
δ

m



 .

1239



DRUKH AND MANSOUR

Proof Let α =
√

6ln 8m
δ . By Lemma 17, we have

∀ δ
2 S, Gk = Gk,α ∧ Mk = Mk,α. (1)

By Lemma 21,

|E[Gk−Mk]| = |E[Gk,α −Mk,α]| = O

(√
k

m

)

. (2)

By Definition 16,Mk,α = ∑w∈Vk,α pwXw,k andGk,α = ∑w∈Vk,α

(

k+1
m−k

)

Xw,k+1. By Lemma 18, we
have|Vk,α| = O

(

m
k

)

. Therefore, using Lemma 22 withk for Mk,α, and withk+1 for Gk,α, we have

∀ δ
4 S, |Mk,α −E[Mk,α]| = O

(
√

k ln 1
δ

m

)

, (3)

∀ δ
4 S, |Gk,α −E[Gk,α]| = O

(
√

k ln 1
δ

m

)

. (4)

Combining Equations (1), (2), (3), and (4), we have∀δS:

|Gk−Mk| = |Gk,α −Mk,α|
≤ |Gk,α −E[Gk,α]|+ |Mk,α −E[Mk,α]|+ |E[Gk,α]−E[Mk,α]|

= O





√

k ln 1
δ

m



+O

(√
k

m

)

= O





√

k ln 1
δ

m



 ,

which completes the proof.

Lemma 24 Letδ > 0, k> 0. Let U⊆V. Let{bw : w∈U} be a set of weights, such that bw ∈ [0,B].
Let Xk = ∑w∈U bwXw,k, and µ= E[Xk]. We have

∀δS, |Xk−µ| ≤ max

{
√

4Bµln

(

6
√

m
δ

)

,2Bln

(

6
√

m
δ

)

}

.

Proof By Lemma 8, combined with Lemma 3, we have

P(|Xk−µ| > ε) ≤ 6
√

m exp

(

− ε2

B(2µ+ ε)

)

≤ max

{

6
√

m exp

(

− ε2

4Bµ

)

,6
√

m exp
(

− ε
2B

)

}

, (5)
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where Equation (5) follows by consideringε ≤ 2µ andε > 2µ separately. The lemma follows sub-

stitutingε = max

{√

4Bµln
(

6
√

m
δ

)

,2Bln
(

6
√

m
δ

)

}

.

We now derive the concentration bound on the error of the Good-Turingestimator.

Theorem 25 For δ > 0 and18ln8m
δ < k < m

2 , we have∀δS:

|Gk−Mk| = O





√√
k ln m

δ
m

+
k ln m

δ
m



 .

Proof Let α =
√

6ln 8m
δ . Using Lemma 17, we have∀ δ

2 S: Gk = Gk,α, andMk = Mk,α. Recall that

Mk,α = ∑w∈Vk,α pwXw,k andGk,α = ∑w∈Vk,α
k+1
m−kXw,k+1. Both Mk,α andGk,α are linear combinations

of Xw,k andXw,k+1, respectively, where the coefficients’ magnitude isO
(

k
m

)

, and the expectation, by

Lemma 21, isO
(

1√
k

)

. By Lemma 24, we have

∀ δ
4 S, |Mk,α −E[Mk,α]| = O

(
√√

k ln m
δ

m +
k ln m

δ
m

)

, (6)

∀ δ
4 S, |Gk,α −E[Gk,α]| = O

(
√√

k ln m
δ

m +
k ln m

δ
m

)

. (7)

Combining Equations (6), (7), and Lemma 21, we have∀δS:

|Gk−Mk| = |Gk,α −Mk,α|
≤ |Gk,α −E[Gk,α]|+ |Mk,α −E[Mk,α]|+ |E[Gk,α]−E[Mk,α]|

= O





√√
k ln m

δ
m

+
k ln m

δ
m

+

√
k

m



= O





√√
k ln m

δ
m

+
k ln m

δ
m



 ,

which completes the proof.

3.2 Empirical Frequencies Estimator

In this section we bound the error of the empirical frequencies estimatorM̂k.

Theorem 26 For δ > 0 and18ln8m
δ < k < m

2 , we have

∀δS, |Mk− M̂k| = O





√
k
(

ln m
δ
) 3

2

m
+

√

ln m
δ

k



 .
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Proof Let α =
√

6ln 8m
δ . By Lemma 17, we have∀ δ

2 S: M̂k = M̂k,α, andMk = Mk,α. Let V−
k,α =

{w∈Vk,α : pw < k
m}, andV+

k,α = {w∈Vk,α : pw > k
m}. Let

X− = ∑
w∈V−

k,α

(

k
m
− pw

)

Xw,k, X+ = ∑
w∈V+

k,α

(

pw−
k
m

)

Xw,k,

and letX? specify eitherX− or X+. By the definition, forw∈Vk,α we have
∣

∣

k
m− pw

∣

∣= O
(

α
√

k
m

)

.

By Lemma 18,|Vk,α| = O
(

m
k

)

. By Lemma 19, forw∈Vk,α we haveE[Xw,k] = O
(

1√
k

)

. Therefore,

|E[X?]| ≤ ∑
w∈Vk,α

∣

∣

∣

∣

k
m
− pw

∣

∣

∣

∣

E[Xw,k] = O

(

m
k

α
√

k
m

1√
k

)

= O
(α

k

)

. (8)

Both X− andX+ are linear combinations ofXw,k, where the coefficients areO
(

α
√

k
m

)

and the

expectation isO
(α

k

)

. Therefore, by Lemma 24, we have

∀ δ
4 S: |X?−E[X?]| = O

(
√

α4

m
√

k
+

α3
√

k
m

)

. (9)

By the definition ofX− andX+, Mk,α − M̂k,α = X+ −X−. Combining Equations (8) and (9), we
have∀δS:

|Mk− M̂k| = |Mk,α − M̂k,α| = |X+−X−|
≤ |X+−E[X+]|+ |E[X+]|+ |X−−E[X−]|+ |E[X−]|

= O

(
√

α4

m
√

k
+

α3
√

k
m

+
α
k

)

= O





√
k
(

ln m
δ
) 3

2

m
+

√

ln m
δ

k



 ,

since
√

ab= O(a+b), and we usea = α3
√

k
m andb = α

k .

3.3 Combined Estimator

In this section we combine the Good-Turing estimator with the empirical frequencies to derive a
combined estimator, which is uniformly accurate for all values ofk.

Definition 27 We defineM̃k, a combined estimator for Mk, by

M̃k =

{

Gk k≤ m
2
5

M̂k k > m
2
5 .
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Lemma 28 (McAllester and Schapire, 2000) Let k∈ {0, . . . ,m}. For anyδ > 0, we have

∀δS: |Gk−Mk| = O





√

ln 1
δ

m

(

k+ ln
m
δ

)



 .

The following theorem shows that̃Mk has an error bounded bỹO
(

m− 2
5

)

, for anyk. For smallk,

we use Lemma 28. Theorem 25 is used for 18 ln8m
δ < k≤ m

2
5 . Theorem 26 is used form

2
5 < k < m

2 .
The complete proof also handlesk ≥ m

2 . The theorem refers tõMk as a probability estimator, and
does not show that it is a probability distribution by itself.

Theorem 29 Let δ > 0. For any k∈ {0, . . . ,m}, we have

∀δS, |M̃k−Mk| = Õ
(

m− 2
5

)

.

The following theorem shows a weak lower bound for approximatingMk. It applies to estimat-
ing Mk based on a different independent sample. This is a very “weak” notation, sinceGk, as well
asM̂k, are based on the same sample asMk.

Theorem 30 Suppose that the vocabulary consists ofm
k words distributed uniformly (that is pw =

k
m), where1� k� m. The variance of Mk is Θ

(√
k

m

)

.

4. Leave-One-Out Estimation of Log-Loss

Many NLP applications use log-loss as the learning performance criteria. Since the log-loss depends
on the underlying probabilityP, its value cannot be explicitly calculated, and must be approximated.
The main result of this section, Theorem 32, is an upper bound on the leave-one-out estimation of
the log-loss, assuming a general family of learning algorithms.

Given a sampleS= {s1, . . . ,sm}, the goal of a learning algorithm is to approximate the true
probabilityP by some probabilityQ. We denote the probability assigned by the learning algorithm
to a wordw by qw.

Definition 31 We assume that any two words with equal sample frequency are assignedequal prob-
abilities in Q, and therefore denote qw by q(cw). Let the log-loss of a distribution Q be

L = ∑
w∈V

pw ln
1
qw

= ∑
k≥0

Mk ln
1

q(k)
.

Let the leave-one-out estimation, q′
w, be the probability assigned to w, when one of its instances

is removed. We assume that any two words with equal sample frequency are assigned equal leave-
one-out probability estimation, and therefore denote q′

w by q′(cw). We define the leave-one-out
estimation of the log-loss as averaging the loss of each sample word, whenit is extracted from the
sample and pretended to be the test sample:
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Lleave−one = ∑
w∈V

cw

m
ln

1
q′w

= ∑
k>0

knk

m
ln

1
q′(k)

.

Let Lw = L(cw) = ln 1
q(cw) , and L′w = L′(cw) = ln 1

q′(cw) . Let the maximal loss be

Lmax= max
k

max
{

L(k),L′(k+1)
}

.

In this section we discuss a family of learning algorithms, that receive the sample as an input.
Assuming an accuracy parameterδ, we require the following properties to hold:

1. Starting from a certain number of appearances, the estimation is close to thesample frequency.
Specifically, for someα,β ∈ [0,1],

∀k≥ ln

(

4m
δ

)

, q(k) =
k−α
m−β

. (10)

2. The algorithm is stable when a single word is extracted from the sample:

∀m, 2≤ k≤ 10ln4m
δ ,

∣

∣L′(k+1)−L(k)
∣

∣= O

(

1
m

)

, (11)

∀m, ∀S s.t. nS
1 > 0, k∈ {0,1},

∣

∣L′(k+1)−L(k)
∣

∣= O

(

1

nS
1

)

. (12)

An example of such an algorithm is the following leave-one-out algorithm (weassume that the
vocabulary is large enough so thatn0 +n1 > 0):

qw =

{

N−n0−1
(n0+n1)(m−1) cw ≤ 1

cw−1
m−1 cw ≥ 2.

Equation (10) is satisfied byα = β = 1. Equation (11) is satisfied fork≥ 2 byL(k)−L′(k+1) =
ln
(

m−1
m−2

)

= O
(

1
m

)

. Equation (12) is satisfied fork≤ 1:

|L′(1)−L(0)| =
∣

∣

∣

∣

ln

(

N−n0−1
N−n0−2

m−2
m−1

)∣

∣

∣

∣

= O

(

1
N−n0

+
1
m

)

= O

(

1
n1

)

,

|L′(2)−L(1)| =
∣

∣

∣

∣

ln

(

n0 +n1 +1
n0 +n1

m−2
m−1

)∣

∣

∣

∣

= O

(

1
n0 +n1

+
1
m

)

= O

(

1
n1

)

.

The following is the main theorem of this section. It bounds the deviation between the between
the true loss and theleave one outestimate. This bound shows that for a general family of learning
algorithms, leave-one-out technique can be effectively used to estimate thelogarithmic loss, given
the sample only. The estimation error bound decreases roughly in proportion to the square root of
the sample size, regardless of the underlying distribution.
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Theorem 32 For a learning algorithm satisfying Equations (10), (11), and (12), andδ > 0, we
have:

∀δS, |L−Lleave−one| = O

(

Lmax

√

(ln m
δ )4 ln

ln m
δ

δ
m

)

.

The proof of Theorem 32 bounds the estimation error separately for the high-probability and
low-probability words. We use Lemma 20 (McAllester and Schapire, 2000) tobound the estimation
error for low-probability words. The expected estimation error for the high-probability words is
bounded elementarily using the definition of the binomial distribution (Lemma 33). Finally, we use
McDiarmid’s inequality (Lemma 2) to bound its deviation.

The next lemma shows that the expectation of the leave-one-out method is a good approximation
for the per-word expectation of the logarithmic loss.

Lemma 33 Let 0 ≤ α ≤ 1, and y≥ 1. Let Bn ∼ Bin(n, p) be a binomial random variable. Let
fy(x) = ln(max(x,y)). Then,

0≤ E

[

p fy(Bn−α)− Bn

n
fy(Bn−α−1)

]

≤ 3p
n

.

Proof For a real valued functionF (hereF(x) = fy(x−α)), we have:

E

[

Bn

n
F(Bn−1)

]

=
n

∑
x=0

(

n
x

)

px(1− p)n−x x
n

F(x−1)

= p
n

∑
x=1

(

n−1
x−1

)

px−1(1− p)(n−1)−(x−1)F(x−1)

= pE[F(Bn−1)] ,

where we used
(n

x

)

x
n =

(n−1
x−1

)

. SinceBn ∼ Bn−1 +B1, we have:

E

[

p fy(Bn−α)− Bn

n
fy(Bn−α−1)

]

= p(E[ fy(Bn−1 +B1−α)]−E[ fy(Bn−1−α)])

= pE

[

ln
max(Bn−1 +B1−α,y)

max(Bn−1−α,y)

]

≤ pE

[

ln
max(Bn−1−α+B1,y+B1)

max(Bn−1−α,y)

]

= pE

[

ln(1+
B1

max(Bn−1−α,y)
)

]

≤ pE

[

B1

max(Bn−1−α,y)

]

.

SinceB1 andBn−1 are independent, we get
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pE

[

B1

max(Bn−1−α,y)

]

= pE[B1]E

[

1
max(Bn−1−α,y)

]

= p2E

[

1
max(Bn−1−α,y)

]

= p2
n−1

∑
x=0

(

n−1
x

)

px(1− p)n−1−x 1
max(x−α,y)

= p2
n−1

∑
x=0

(

n−1
x

)

px(1− p)n−1−x 1
x+1

x+1
max(x−α,y)

≤ p
n

max
x

(

x+1
max(x−α,y)

)n−1

∑
x=0

(

n
x+1

)

px+1(1− p)n−(x+1)

≤ 3p
n

(1− (1− p)n) <
3p
n

. (13)

Equation (13) follows by the following observation:x+1≤ 3(x−α) for x≥ 2, andx+1≤ 2y

for x≤ 1. Finally, pE
[

ln max(Bn−1−α+B1,y)
max(Bn−1−α,y)

]

≥ 0, which implies the lower bound of the lemma.

The following lemma boundsn2 as a function ofn1.

Lemma 34 Let δ > 0. We have∀δS: n2 = O
((
√

mln 1
δ +n1

)

ln m
δ

)

.

Theorem 32 Proof Let yw =
(

1−
√

3
5

)

pwm−2. By Lemma 9, withλ = 5, we have∀ δ
2 S:

∀w∈V : pw >
3ln 4m

δ
m

,
∣

∣pw− cw
m

∣

∣≤
√

3pw ln 4m
δ

m (14)

∀w∈V : pw >
5ln 4m

δ
m

, cw > yw +2≥ (5−
√

15) ln 4m
δ > ln 4m

δ . (15)

Let VH =
{

w∈V : pw >
5ln 4m

δ
m

}

andVL = V \VH . We have

|L−Lleave−one| ≤
∣

∣

∣

∣

∣

∑
w∈VH

(

pwLw−
cw

m
L′

w

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
w∈VL

(

pwLw−
cw

m
L′

w

)

∣

∣

∣

∣

∣

. (16)

We start by bounding the first term of Equation (16). By Equation (15), we have∀w∈VH ,cw >
yw +2 > ln 4m

δ . Equation (10) implies thatqw = cw−α
m−β , thereforeLw = ln m−β

cw−α = ln m−β
max(cw−α,yw) , and

L′
w = ln m−1−β

cw−1−α = ln m−1−β
max(cw−1−α,yw) . Let

ErrH
w =

cw

m
ln

m−β
max(cw−1−α,yw)

− pw ln
m−β

max(cw−α,yw)
.

We have
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∣

∣

∣

∣

∣

∑
w∈VH

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
w∈VH

ErrH
w + ln

m−1−β
m−β ∑

w∈VH

cw

m

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
w∈VH

ErrH
w

∣

∣

∣

∣

∣

+O

(

1
m

)

. (17)

We bound
∣

∣∑w∈VH
ErrH

w

∣

∣ using McDiarmid’s inequality. As in Lemma 33, letfw(x)= ln(max(x,yw)).
We have

E
[

ErrH
w

]

= ln(m−β)E
[cw

m
− pw

]

+E
[

pw fw(cw−α)− cw

m
fw(cw−1−α)

]

.

The first expectation equals 0, the second can be bounded using Lemma 33:

∣

∣

∣

∣

∣

∑
w∈VH

E
[

ErrH
w

]

∣

∣

∣

∣

∣

≤ ∑
w∈VH

∣

∣

∣E
[

pw fw(cw−α)− cw

m
fw(cw−1−α)

]∣

∣

∣

≤ ∑
w∈VH

3pw

m
= O

(

1
m

)

. (18)

In order to use McDiarmid’s inequality, we bound the change of∑w∈VH
ErrH

w as a function of a
single change in the sample. Suppose that a wordu is replaced by a wordv. This results in decrease
for cu, and increase forcv. Recalling thatyw = Ω(mpw), the change ofErrH

u , as well as the change
of ErrH

v , is bounded byO
(

lnm
m

)

, as follows:

The change ofpu ln m−β
max(cu−α,yu)

would be 0 ifcu−α ≤ yu. Otherwise,

∣

∣

∣

∣

pu ln
m−β

max(cu−1−α,yu)
− pu ln

m−β
max(cu−α,yu)

∣

∣

∣

∣

≤ pu[ln(cu−α)− ln(cu−1−α)] = pu ln

(

1+
1

cu−1−α

)

= O

(

pu

cu

)

.

Sincecu≥ yu = Ω(mpu), the change is bounded byO( pu
cu

)= O( 1
m). The change ofcu

m ln m−β
max(cu−1−α,yu)

would beO( lnm
m ) if cu−1−α ≤ yu. Otherwise,

∣

∣

∣

∣

cu−1
m

ln
m−β

max(cu−2−α,yu)
− cu

m
ln

m−β
max(cu−1−α,yu)

∣

∣

∣

∣

≤ cu−1
m

∣

∣

∣

∣

ln
m−β

max(cu−2−α,yu)
− ln

m−β
max(cu−1−α,yu)

∣

∣

∣

∣

+
1
m

ln
m−β

max(cu−1−α,yu)

≤ cu−1
m

ln

(

1+
1

cu−2−α

)

+
lnm
m

= O

(

lnm
m

)

.

The change ofErrH
v is bounded in a similar way.
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By Equations (17) and (18), and Lemma 2, we have∀ δ
16S:

∣

∣

∣

∣

∣

∑
w∈VH

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
w∈VH

ErrH
w −E

[

∑
w∈VH

ErrH
w

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E

[

∑
w∈VH

ErrH
w

]∣

∣

∣

∣

∣

+O

(

1
m

)

≤ O

(

lnm
m

√

mln
1
δ

+
1
m

+
1
m

)

= O





√

(lnm)2 ln 1
δ

m



 . (19)

Next, we bound the second term of Equation (16). By Lemma 10, we have∀ δ
4 S:

∀w∈V s.t. pw ≤
3ln 4m

δ
m

, cw ≤ 6ln 4m
δ . (20)

Let b = 5ln 4m
δ . By Equations (14) and (20), for anyw such thatpw ≤ b

m, we have

cw

m
≤ max







pw +

√

3pw ln 4m
δ

m
,
6ln 4m

δ
m







≤
(5+

√
3∗5) ln 4m

δ
m

<
2b
m

.

Therefore∀w∈VL, we havecw < 2b. LetnL
k = |VL∩Sk|, GL

k−1 = k
m−k+1nL

k , andML
k = ∑w∈VL∩Sk

pw.
We have

∣

∣

∣

∣

∣

∑
w∈VL

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2b

∑
k=1

knL
k

m
L′(k)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2b

∑
k=1

knL
k

m−k+1
L′(k)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

+
2b

∑
k=1

knL
kL′(k)

(

1
m−k+1

− 1
m

)

=

∣

∣

∣

∣

∣

2b

∑
k=1

GL
k−1L′(k)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

+O

(

bLmax

m

)

=

∣

∣

∣

∣

∣

2b−1

∑
k=0

GL
kL′(k+1)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

+O

(

bLmax

m

)

≤
2b−1

∑
k=0

GL
k |L′(k+1)−L(k)|+

2b−1

∑
k=0

|GL
k −ML

k |L(k)+O

(

bLmax

m

)

. (21)

The first sum of Equation (21) is bounded using Equations (11) and (12), and Lemma 34:
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2b−1

∑
k=0

GL
k |L′(k+1)−L(k)|

=
2b−1

∑
k=2

GL
k |L′(k+1)−L(k)|+G0|L′(1)−L(0)|+G1|L′(2)−L(1)|. (22)

The first term of Equation (22) is bounded by Equation (11):

2b−1

∑
k=2

GL
k |L′(k+1)−L(k)| ≤

2b−1

∑
k=2

GL
k ·O

(

1
m

)

= O

(

1
m

)

. (23)

The other two terms are bounded using Lemma 34. Forn1 > 0, we have∀ δ
16S, n2 = O

(

b
(
√

mln 1
δ +n1

))

.

By Equation (12), we have

G0|L′(1)−L(0)|+G1|L′(2)−L(1)|

≤ n1

m
·O
(

1
n1

)

+
2n2

m−1
·O
(

1
n1

)

= O



b

√

ln 1
δ

m



 . (24)

Forn1 = 0, Lemma 34 results inn2 = O
(

b
√

mln 1
δ

)

, and Equation (24) transforms into

G1|L′(2)−L(1)| ≤ 2n2Lmax

m−1
= O



bLmax

√

ln 1
δ

m



 . (25)

Equations (22), (23), (24), and (25) sum up to

2b−1

∑
k=0

GL
k |L′(k+1)−L(k)| = O



bLmax

√

ln 1
δ

m



 . (26)

The second sum of Equation (21) is bounded using Lemma 28 separately for everyk < 2b with
accuracy δ

16b. Since the proof of Lemma 28 also holds forGL
k andML

k (instead ofGk andMk), we

have∀ δ
8 S, for everyk < 2b, |GL

k −ML
k |= O

(

b
√

ln b
δ

m

)

. Therefore, together with Equations (21) and

(26), we have

∣

∣

∣

∣

∣

∑
w∈VL

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

≤ O



bLmax

√

ln 1
δ

m



+
2b−1

∑
k=0

L(k)O



b

√

ln b
δ

m



+O

(

bLmax

m

)

= O



Lmax

√

b4 ln b
δ

m



 . (27)
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The proof follows by combining Equations (16), (19), and (27).

5. Log-Loss A Priori

Section 4 bounds the error of the leave-one-out estimation of the log-loss.It shows that the log-loss
can be effectively estimated, for a general family of learning algorithms.

Another question to be considered is the log-loss distribution itself, without theempirical esti-
mation. That is, how large (or low) is it expected to be, and which parametersof the distribution
affect it.

We denote the learning error (equivalent to the log-loss) as the KL-divergence between the true
and the estimated distribution. We refer to a general family of learning algorithms, and show lower
and upper bounds for the learning error.

The upper bound (Theorem 39) can be divided to three parts. The first part is the missing mass.
The other two build a trade-off between a threshold (lower thresholds leads to a lower bound), and
the number of words with probability exceeding this threshold (fewer wordslead to a lower bound).
It seems that this number of words is a necessary lower bound, as we show at Theorem 35.

Theorem 35 Let the distribution be uniform:∀w∈V : pw = 1
N , with N� m. Also, suppose that the

learning algorithm just uses maximum-likelihood approximation, meaning qw = cw
m . Then, a typical

learning error would beΩ(N
m).

The proof of Theorem 35 bases on the Pinsker inequality (Lemma 36). It first shows a lower
bound forL1 norm between the true and the expected distributions, and then transforms itto the
form of the learning error.

Lemma 36 (Pinsker Inequality) Given any two distributions P and Q, we have

KL(P||Q) ≥ 1
2
(L1(P,Q))2.

Theorem 35 Proof We first show thatL1(P,Q) concentrates nearΩ
(
√

N
m

)

. Then, we use Pinsker

inequality to show lower bound5 of KL(P||Q).
First we find a lower bound forE[|pw−qw|]. Sincecw is a binomial random variable,σ2[cw] =

mpw(1− pw) = Ω
(

m
N

)

, and with some constant probability,|cw−mpw|> σ[cw]. Therefore, we have

E[|qw− pw|] =
1
m

E[|cw−mpw|]

≥ 1
m

σ[cw]P(|cw−mpw| > σ[cw]) = Ω
(

1
m

√

m
N

)

= Ω
(

1√
mN

)

E

[

∑
w∈V

|pw−qw|
]

= Ω
(

N
1√
mN

)

= Ω

(

√

N
m

)

.

5. This proof does not optimize the constants. Asymptotic analysis of logarithmic transform of binomial variables by
Flajolet (1999) can be used to achieve explicit values forKL(P||Q).

1250



CONCENTRATION BOUNDS FORUNIGRAM LANGUAGE MODELS

A single change in the sample changesL1(P,Q) by at most 2
m. Using McDiarmid inequality

(Lemma 2) onL1(P,Q) as a function of sample words, we have∀ 1
2 S:

L1(P,Q) ≥ E[L1(P,Q)]−|L1(P,Q)−E[L1(P,Q)]|

= Ω

(

√

N
m

)

−O

(√
m

m

)

= Ω

(

√

N
m

)

.

Using Pinsker inequality (Lemma 36), we have

∀ 1
2 S, ∑

w∈V

pw ln
pw

qw
≥ 1

2

(

∑
w∈V

|pw−qw|
)2

= Ω
(

N
m

)

,

which completes the proof.

Definition 37 Let α ∈ (0,1) andτ ≥ 1. We define an (absolute discounting) algorithm Aα,τ, which
“removes” α

m probability mass from words appearing at mostτ times, and uniformly spreads it
among the unseen words. We denote by n1...τ = ∑τ

i=1ni the number of words with count between1
andτ. The learned probability Q is defined by :

qw =







αn1...τ
mn0

cw = 0
cw−α

m 1≤ cw ≤ τ
cw
m τ < cw.

The α parameter can be set to some constant, or to make the missing mass match the Good-
Turing missing mass estimator, that isαn1...τ

m = n1
m .

Definition 38 Given a distribution P, and x∈ [0,1], let Fx = ∑w∈V:pw≤x pw, and Nx = |{w ∈ V :
pw > x}|. Clearly, for any distribution P, Fx is a monotone function of x, varying from 0 to 1, and
Nx is a monotone function of x, varying from N to0. Note that Nx is bounded by1x .

The next theorem shows an upper bound for the learning error.

Theorem 39 For anyδ > 0 andλ > 3, such thatτ < (λ−
√

3λ) ln 8m
δ , the learning error of Aα,τ is

bounded∀δS by

0≤ ∑
w∈V

pw ln

(

pw

qw

)

≤ M0 ln

(

n0 ln 4m
δ

αn1...τ

)

+
λ ln 8m

δ
1−α





√

3ln 8
δ

m
+M0





+
α

1−α
Fλ ln 8m

δ
m

+

√

3ln 8
δ

m
+

3λ ln 8m
δ

2(
√

λ−
√

3)2m
Nλ ln 8m

δ
m

.
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The proof of Theorem 39 bases directly on Lemmas 40, 41, and 43. We can rewrite this bound
roughly as

∑
w∈V

pw ln

(

pw

qw

)

≤ Õ

(

M0 +
λ√
m

+
Nλ

m

m

)

.

This bound implies the characteristics of the distribution influencing the log-loss. It shows
that a “good” distribution can involve many low-probability words, given that the missing mass
is low. However, the learning error would increase if the dictionary included many mid-range-
probability words. For example, if a typical word’s probability werem− 3

4 , the bound would become

Õ
(

M0 +m− 1
4

)

.

Lemma 40 For anyδ > 0, the learning error for non-appearing words can be bounded with high
probability by

∀δS, ∑
w/∈S

pw ln

(

pw

qw

)

≤ M0 ln

(

n0 ln m
δ

αn1...τ

)

.

Proof By Lemma 13, we have∀δS, the real probability of any non-appearing word does not exceed
ln m

δ
m . Therefore,

∑
w/∈S

pw ln

(

pw

qw

)

= ∑
w/∈S

pw ln

(

pw
m
α

n0

n1...τ

)

≤ ∑
w/∈S

pw ln

(

ln m
δ

m
m
α

n0

n1...τ

)

= M0 ln

(

n0 ln m
δ

αn1...τ

)

,

which completes the proof.

Lemma 41 Letδ > 0, λ > 0. Let VL =
{

w∈V : pw ≤ λ ln 2m
δ

m

}

, and V′
L = VL ∩S. The learning error

for V ′
L can be bounded with high probability by

∀δS, ∑
w∈V ′

L

pw ln

(

pw

qw

)

≤
λ ln 2m

δ
1−α





√

3ln 2
δ

m
+M0



+
α

1−α
Fλ ln 2m

δ
m

.

Proof We use ln(1+x) ≤ x.

∑
w∈V ′

L

pw ln
pw

qw
≤ ∑

w∈V ′
L

pw
pw−qw

qw
.

For any appearing wordw, qw ≥ 1−α
m . Therefore,
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∑
w∈V ′

L

pw
pw−qw

qw
≤ m

1−α ∑
w∈V ′

L

pw(pw−qw)

=
m

1−α

[

∑
w∈V ′

L

pw

(

pw−
cw

m

)

+ ∑
w∈V ′

L

pw

(cw

m
−qw

)

]

≤ m
1−α

∣

∣

∣

∣

∣

∑
w∈V ′

L

pw

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+
m

1−α ∑
w∈V ′

L

pw
α
m

≤ m
1−α

λ ln 2m
δ

m

∣

∣

∣

∣

∣

∑
w∈V ′

L

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+
α

1−α ∑
w∈V ′

L

pw

≤
λ ln 2m

δ
1−α

∣

∣

∣

∣

∣

∑
w∈V ′

L

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+
α

1−α
Fλ ln 2m

δ
m

. (28)

We apply Lemma 12 onvL, the union of words inVL. Let pvL = ∑w∈VL
pw andcvL = ∑w∈VL

cw.
We have∀δS:

∣

∣

∣

∣

∣

∑
w∈V ′

L

(

pw−
cw

m

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
w∈VL

(

pw−
cw

m

)

− ∑
w∈VL\S

(

pw−
cw

m

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
w∈VL

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+ ∑
w∈VL\S

pw

≤
∣

∣

∣pvL −
cvL

m

∣

∣

∣+M0

≤

√

3ln 2
δ

m
+M0. (29)

The proof follows combining Equations (28) and (29).

Lemma 42 Let0 < ∆ < 1. For any x∈ [−∆,∆], we haveln(1+x) ≥ x− x2

2(1−∆)2 .

Lemma 43 Let δ > 0, λ > 3, such thatτ < (λ−
√

3λ) ln 4m
δ . Let the high-probability words set be

VH =
{

w∈V : pw >
λ ln 4m

δ
m

}

, and V′
H =VH ∩S. The learning error for V′H can be bounded with high

probability by

∀δS, ∑
w∈V ′

H

pw ln

(

pw

qw

)

≤

√

3ln 4
δ

m
+

3λ ln 4m
δ

2(
√

λ−
√

3)2m
Nλ ln 4m

δ
m

.
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Proof

∑
w∈V ′

H

pw ln

(

pw

qw

)

= ∑
w∈V ′

H

pw ln

(

pw
cw
m

)

+ ∑
w∈V ′

H

pw ln

( cw
m

qw

)

= ∑
w∈V ′

H

pw ln

(

mpw

cw

)

+ ∑
w∈V ′

H ,cw≤τ
pw ln

(

cw

cw−α

)

. (30)

Using Lemma 9 withλ, we have∀ δ
2 S:

∀w∈VH ,
∣

∣

∣pw−
cw

m

∣

∣

∣≤

√

3pw ln 4m
δ

m
, (31)

∀w∈VH , cw ≥ (λ−
√

3λ) ln
4m
δ

.

This means that for a reasonable choice ofτ (meaningτ < (λ−
√

3λ) ln 4m
δ ), the second term of

Equation (30) is 0, andV ′
H = VH . Also,

∣

∣

∣

∣

cw
m − pw

pw

∣

∣

∣

∣

≤ 1
pw

√

3pw ln 4m
δ

m
≤
√

m

λ ln 2m
δ

3ln 2m
δ

m
=

√

3
λ
.

Therefore, we can use Lemma 42 with∆ =
√

3
λ :

∑
w∈V ′

H

pw ln

(

mpw

cw

)

= − ∑
w∈VH

pw ln

(

1+
cw
m − pw

pw

)

≤ − ∑
w∈VH

pw







cw
m − pw

pw
− 1

2
(

1−
√

3
λ

)2

( cw
m − pw

pw

)2







= ∑
w∈VH

(

pw−
cw

m

)

+
λ

2
(√

λ−
√

3
)2 ∑

w∈VH

( cw
m − pw

)2

pw
. (32)

We apply Lemma 12 on thevH , the union of all words inVH . Let pvH = ∑w∈VH
pw andcvH =

∑w∈VH
cw. The bound on the first term of Equation (32) is:

∀ δ
2 S,

∣

∣

∣

∣

∣

∑
w∈VH

(

pw−
cw

m

)

∣

∣

∣

∣

∣

=
∣

∣

∣pvH − cvH

m

∣

∣

∣≤

√

3ln 4
δ

m
. (33)

Assuming that Equation (31) holds, the second term of Equation (32) can also be bounded:
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∑
w∈VH

( cw
m − pw

)2

pw
≤ ∑

w∈VH

1
pw

3pw ln 4m
δ

m
=

3ln 4m
δ

m
Nλ ln 4m

δ
m

. (34)

The proof follows by combining Equations (30), (32), (33) and (34).
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Appendix A. Technical Proofs

A.1 Concentration Inequalities

Lemma 6 Proof We use Stirling approximationΓ(x+1) =
√

2πx
(

x
e

)x
Tx, where

Tx = exp

(

1
12x

+O

(

1
x2

))

.

P(X = k) =

(

n
k

)

pk(1− p)n−k

≤ Γ(n+1)

Γ(µ+1)Γ(n−µ+1)

(µ
n

)µ
(

n−µ
n

)n−µ

=

√
2πn

√
2πµ
√

2π(n−µ)

nn

µµ(n−µ)n−µ

µµ

nµ

(n−µ)n−µ

nn−µ

Tn

TµTn−µ

=
1√
2πµ

√

n
n−µ

Tn

TµTn−µ

=
1

√

2πµ(1− p)

Tn

TµTn−µ
.

Clearly, for integral values ofµ, the equality is achieved atk = µ.

Lemma 8 Proof Let m′ = ∑w∈V c′w. Using Lemma 7 form′ with b = c = E[m′] = m, the prob-
ability P(m′ = m) achieves its minimum when∀w ∈ V, pw = 1

N . Under this assumption, we have
m′ ∼ Bin(mN, 1

N). Using Lemma 6, we have
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P
(

m′ = m
)

=
1

√

2πmN1
N

(

1− 1
N

)

TmN

TmTmN−m
≥ 1

3
√

m
.

Therefore, for any distribution{pw : w∈V}, we have

P(m′ = m) ≥ 1
3
√

m
.

Obviously,E[F ′] = ∑wE[ fw(c′w)] = E[F]. Also, the distribution of{c′w} given thatm′ = m is
identical to the distribution of{cw}, therefore the distribution ofF ′ given thatm′ = m is identical to
the distribution ofF . We have

P(|F ′−E[F ′]| > ε) = ∑
i

P(m′ = i)P(|F ′−E[F ′]| > ε|m′ = i)

≥ P(m′ = m)P(|F ′−E[F ′]| > ε|m′ = m)

= P(m′ = m)P(|F −E[F]| > ε)

≥ 1
3
√

m
P(|F −E[F]| > ε),

which completes the proof.

Lemma 44 For anyδ > 0, and a word w∈V, such that pw ≥ 3ln 2
δ

m , we have

P





∣

∣

∣
pw−

cw

m

∣

∣

∣
>

√

3pw ln 2
δ

m



≤ δ.

Proof The proof follows by applying Lemma 3, substitutingε =
√

3mpw ln 2
δ . Note that for 3 ln2

δ ≤
mpw we haveε ≤ mpw:

P





∣

∣

∣
pw−

cw

m

∣

∣

∣
≥

√

3pw ln 2
δ

m



 = P(|mpw−cw| ≥ ε)

≤ 2exp

(

− ε2

2E[cw]+ ε

)

≤ 2exp

(

−
3mpw ln 2

δ
3mpw

)

= δ,

which completes the proof.
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Lemma 9 Proof There are at mostmwords with probabilitypw ≥ 3ln 2m
δ

m . The first claim follows
using Lemma 44 together with union bound over all these words (with accuracy δ

m for each word).

Using the first claim, we derive the second. We show a lower bound forcw
m , using

ln 2m
δ

m < 1
λ pw:

cw

m
≥ pw−

√

3pw ln 2m
δ

m
> pw− pw

√

3
λ

=

(

1−
√

3
λ

)

pw.

The final inequality follows from simple algebra.

Lemma 10 Proof Let b = 3ln(m
δ ). Note thatδ ∈ [0,1] andm> 1 yieldb > 2. First, suppose that

there are up tom words withpw ≤ b
m. For each such word, we apply Lemma 3 oncw, with ε = b.

We have:

P
(

cw > 6ln
m
δ

)

≤ P(cw > mpw + ε) ≤ exp

(

− b2

2mpw +b

)

≤ δ
m

.

Since we assume that there are up tom such words, the total mistake probability isδ.
Now we assume the general case, that is, without any assumption on the number of words. Our

goal is to reduce the problem to the former conditions, that is, to create a setof sizemof words with
probability smaller thanb

m.
We first createm empty setsv1, . . . ,vm. Let the probability of each setvi , pvi , be the sum of the

probabilities of all the words it includes. Let the actual count ofvi , cvi , be the sum of the sample
counts of all the wordsw it includes.

We divide all the wordsw between these sets in a bin-packing-approximation manner. We sort
the wordsw in decreasing probability order. Then, we do the following loop: insert thenext word
w to the setvi with the currently smallestpvi .

We claim thatpvi ≤ b
m for eachvi at the end of the loop. If this inequality does not hold, then

some wordw made this “overflow” first. Obviously,pw must be smaller thanb2m, otherwise it would
be one of the first2m

b < m words ordered, and would enter an empty set. Ifpw < b
2m and it made

an “overflow”, then the probability of each set at the momentw was entered must exceedb2m, since
w must have entered the lightest set available. This means that the total probability of all words
entered by that moment was greater thanm b

2m > 1.

Applying the case ofmwords to the setsv1, . . . ,vm, we have∀δS: for everyvi , cvi ≤ 2b. Also, if
the count of each setvi does not exceed 2b, so does the count of each wordw∈ vi . That is,

P

(

∃w : pw ≤ b
m

,cw > 2b

)

≤ P

(

∃vi : pvi ≤
b
m

,cvi > 2b

)

≤ δ,

which completes the proof.
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Lemma 11 Proof By Lemma 9 with someλ > 3 (which will be set later), we have∀ δ
2 S:

∀w : pw ≥
3ln 4m

δ
m

, |mpw−cw| ≤
√

3mpw ln
4m
δ

, (35)

∀w : pw >
λ ln 4m

δ
m

, cw >

(

1−
√

3
λ

)

mpw. (36)

By Equation (35), for any wordwsuch that
3ln 4m

δ
m ≤ pw≤ λ ln 4m

δ
m , we havecw≤mpw+

√

3mpw ln 4m
δ ≤

(

λ+
√

3λ
)

ln 4m
δ . By Lemma 10, we have

∀ δ
2 S, ∀w s.t. pw ≤ 3ln 4m

δ
m , cw ≤ 6ln

4m
δ

.

It means that for anyw : mpw ≤ λ ln 4m
δ , we havecw ≤

(

λ+
√

3λ
)

ln 4m
δ . This means that for

any w such thatcw >
(

λ+
√

3λ
)

ln 4m
δ , we havempw > λ ln 4m

δ . By Equation (36), this means

mpw ≤ 1
1−
√

3
λ
cw, and by Equation (35):

|mpw−cw| ≤
√

3mpw ln
4m
δ

≤
√

√

√

√

3cw ln 4m
δ

1−
√

3
λ

=

√

3cw

√
λ ln 4m

δ√
λ−

√
3

.

Substitutingλ = 12 results in

∀δS: ∀w s.t. cw > 18ln4m
δ , |mpw−cw| ≤

√

6cw ln
4m
δ

,

which completes the proof.

Lemma 12 Proof If pw ≥ 3ln 2
δ

m , we can apply Lemma 44. We have

∀δS,
∣

∣

∣

cw

m
− pw

∣

∣

∣
≤

√

3pw ln 2
δ

m
≤

√

3ln 2
δ

m
.

Otherwise, we can apply Lemma 10. We have:

∀δS,
∣

∣

∣

cw

m
− pw

∣

∣

∣
≤ max

{

pw,
cw

m

}

≤
6ln m

δ
m

≤

√

3ln 2
δ

m
,

which completes the proof.
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Lemma 13 Proof Let b = ln m
δ . We note that there are at mostm

b words with probabilitypw ≥ b
m.

P

(

∃w : cw = 0, pw ≥ b
m

)

≤ ∑
w:pw≥ b

m

P(cw = 0)

= ∑
w:pw≥ b

m

(1− pw)m ≤ m
b

(

1− b
m

)m

< me−b = δ,

which completes the proof.

A.2 K-Hitting Mass Estimation

Lemma 21 Proof We have∑w∈Vk,α pw ≤ 1. Using Lemma 19, we boundP(cw = k) andP(cw =
k+1):

E[Mk,α] = ∑
w∈Vk,α

pwP(cw = k) = O

(

1√
k

)

|E[Gk,α]−E[Mk,α]| =

∣

∣

∣

∣

∣

∑
w∈Vk,α

[

k+1
m−k

P(cw = k+1)− pwP(cw = k)

]

∣

∣

∣

∣

∣

= ∑
w∈Vk,α

pw
k+1
m−k

P(cw = k+1) = O

(√
k

m

)

. (37)

Equation (37) follows by Lemma 20. By Lemma 18, we have|Vk,α| = O
(

m
k

)

:

E[Gk,α] =
k+1
m−k ∑

w∈Vk,α

P(cw = k+1) = O

(

k
m

m
k

1√
k

)

= O

(

1√
k

)

,

which completes the proof.

Theorem 29 Proof The proof is done by examining four cases ofk. Fork≤ 18ln8m
δ , we can use

Lemma 28. We have

∀δS, |M̃k−Mk| = |Gk−Mk| = O

(
√

ln 1
δ

m

(

k+ ln m
δ
)

)

= Õ
(

1√
m

)

.

For 18ln8m
δ < k≤ m

2
5 , we can use Theorem 25. We have

∀δS, |M̃k−Mk| = |Gk−Mk| = O

(
√√

k ln m
δ

m +
k ln m

δ
m

)

= Õ
(

m− 2
5

)

.
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Form
2
5 < k < m

2 , we can use Theorem 26. We have

∀δS, |M̃k−Mk| = |M̂k−Mk| = O

(√
k(ln m

δ )
3
2

m +

√
ln m

δ
k

)

= Õ
(

m− 2
5

)

.

Fork≥ m
2 , letα =

√

6ln 8m
δ . By Lemma 17, we have∀ δ

2 S, Mk = Mk,α ∧ M̂k = M̂k,α. By Lemma

18, |Vk,α| = O
(

m
k

)

= O(1). Let c be the bound on|Vk,α|. Using Lemma 12 for eachw∈Vk,α with
accuracyδ

2c, we have

∀ δ
2 S, ∀w∈Vk,α,

∣

∣

∣

cw

m
− pw

∣

∣

∣
= O





√

ln 1
δ

m



 .

Therefore, we have∀δS:

|M̃k−Mk| = |M̂k,α −Mk,α| ≤ ∑
w∈Vk,α

∣

∣

∣

∣

k
m
− pw

∣

∣

∣

∣

Xw,k = O





√

ln 1
δ

m



= Õ

(

1√
m

)

,

which completes the proof.

Theorem 30 Proof First, we show that for any two wordsu andv, Cov(Xu,k,Xv,k) = Θ
(

k
m2

)

. Note
that{cv|cu = k} ∼ Bin

(

m−k, k
m−k

)

. By Lemma 6, we have:

P(cu = k) = P(cv = k) =
1

√

2πk
(

1− k
m

)

Tm

TkTm−k
, (38)

P(cv = k|cu = k) =
1

√

2πk
(

1− k
m−k

)

Tm−k

TkTm−2k
.

UsingTx = Θ(1) for x≥ k, we have

Cov(Xu,k,Xv,k)

= E[Xu,kXv,k]−E[Xu,k]E[Xv,k]

= P(cu = k)[P(cv = k|cu = k)−P(cv = k)]

=
1

2πk
√

(

1− k
m

)

Tm

TkTm−k





1
√

(

1− k
m−k

)

Tm−k

TkTm−2k
− 1
√

(

1− k
m

)

Tm

TkTm−k





= Θ
(

1
k

)





1
√

(

1− k
m−k

)

Tm−k

Tm−2k
− 1
√

(

1− k
m

)

Tm

Tm−k




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= Θ
(

1
k

)





Tm−k

Tm−2k





1
√

(

1− k
m−k

)

− 1
√

(

1− k
m

)





+
1

√

(

1− k
m

)

(

Tm−k

Tm−2k
− Tm

Tm−k

)



 . (39)

We can bound the first term of Equation (39):

1
√

(

1− k
m−k

)

− 1
√

(

1− k
m

)

=







√

1− k
m−

√

1− k
m−k

√

(

1− k
m−k

)(

1− k
m

)













√

1− k
m +

√

1− k
m−k

√

1− k
m +

√

1− k
m−k







= Θ
(

1− k
m
−1+

k
m−k

)

= Θ
(

k2

m2

)

. (40)

SinceTx = exp
(

1
12x +O

(

1
x2

))

= 1+ 1
12x +O

(

1
x2

)

for x≥ m−2k (note thatk� m), we have

Tm−k

Tm−2k
− Tm

Tm−k
=

T2
m−k−TmTm−2k

Tm−2kTm−k

=
1

Tm−2kTm−k

[

1
6(m−k)

− 1
12m

− 1
12(m−2k)

+O

(

1
m2

)]

= −Θ
(

k2

m3

)

+O

(

1
m2

)

. (41)

Combining Equations (39), (40), and (41), we have

Cov(Xu,k,Xv,k) = Θ
(

1
k

)[

Θ
(

k2

m2

)

−Θ
(

k2

m3

)

+O

(

1
m2

)]

= Θ
(

k
m2

)

.

Now we show thatσ2[Xw,k] = Θ
(

1√
k

)

. By Equation (38), we have

σ2[Xw,k] = P(cw = k)(1−P(cw = k)) = Θ
(

1√
k

)(

1−Θ
(

1√
k

))

= Θ
(

1√
k

)

.

Now we find a bound forσ2[Mk].

σ2[Mk] = σ2
[

∑
w

pwXw,k

]

= ∑
w

p2
wσ2[Xw,k]+ ∑

u6=v

pupvCov(Xu,k,Xv,k)

=
m
k

(

k
m

)2

Θ
(

1√
k

)

+
m
k

(m
k
−1
)

(

k
m

)2

Θ
(

k
m2

)

= Θ

(√
k

m

)

,
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which completes the proof.

A.3 Leave-One-Out Estimation of Log-Loss

Lemma 34 Proof Using Lemma 9, we have∀ δ
2 : n2 = |U ∩S2| andn1 = |U ∩S1|, whereU = {w∈

V : mpw ≤ cln m
δ }, for somec > 0. Letn′2 = |U ∩S2| andn′1 = |U ∩S1|. Let b = ln m

δ .
First, we show thatE[n′2] = O(bE[n′1]).

E[n′2] = ∑
w∈U

(

m
2

)

p2
w(1− pw)m−2

= ∑
w∈U

mpw(1− pw)m−1
[

m−1
2

pw

1− pw

]

= ∑
w∈U

mpw(1− pw)m−1O(b) = O(bE[n′1]).

Next, we bound the deviation ofn′1 andn′2. A single change in the sample changesn′1, as well
asn′2, by at most 1. Therefore, using Lemma 2 forn′1 andn′2, we have

∀ δ
4 S: n′1 ≥ E[n′1]−O

(

√

mln
1
δ

)

,

∀ δ
4 S: n′2 ≤ E[n′2]+O

(

√

mln
1
δ

)

.

Therefore,

n′2 ≤ E[n′2]+O

(

√

mln
1
δ

)

= O

(

bE[n′1]+

√

mln
1
δ

)

= O

(

b

(

n′1 +

√

mln
1
δ

))

,

which completes the proof.

A.4 Log-Loss A Priori

Theorem 39 Proof The KL-divergence is of course non-negative. By Lemma 40, we have

∀ δ
4 S, ∑

w/∈S

pw ln

(

pw

qw

)

≤ M0 ln

(

n0 ln 4m
δ

αn1...τ

)

. (42)

By Lemma 41 withλ, we have∀ δ
4 S:
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∑
w∈S:pw≤

λ ln 8m
δ

m

pw ln

(

pw

qw

)

≤
λ ln 8m

δ
1−α





√

3ln 8
δ

m
+M0



+
α

1−α
Fλ ln 8m

δ
m

. (43)

By Lemma 43 withλ, we have∀ δ
2 S:

∑
w∈S:pw>

λ ln 8m
δ

m

pw ln

(

pw

qw

)

≤

√

3ln 8
δ

m
+

3λ ln 8m
δ

2(
√

λ−
√

3)2m
Nλ ln 8m

δ
m

. (44)

The proof follows by combining Equations (42), (43), and (44).

Lemma 42 Proof Let f (x) = x2

2(1−∆)2 −x+ ln(1+x). Then,

f ′(x) =
x

(1−∆)2 −1+
1

1+x
,

f ′′(x) =
1

(1−∆)2 −
1
.
(1+x)2

Clearly, f (0) = f ′(0) = 0. Also, f ′′(x) ≥ 0 for anyx∈ [−∆,∆]. Therefore,f (x) is non-negative
in the range above, and the lemma follows.
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