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Abstract

A problem for many kernel-based methods is that the amount ofcomputation required to find the
solution scales asO(n3), wheren is the number of training examples. We develop and analyze
an algorithm to compute an easily-interpretable low-rank approximation to ann×n Gram matrix
G such that computations of interest may be performed more rapidly. The approximation is of
the formG̃k = CW+

k CT , whereC is a matrix consisting of a small numberc of columns ofG and
Wk is the best rank-k approximation toW, the matrix formed by the intersection between those
c columns ofG and the correspondingc rows of G. An important aspect of the algorithm is the
probability distribution used to randomly sample the columns; we will use a judiciously-chosen and
data-dependent nonuniform probability distribution. Let‖·‖2 and ‖·‖F denote the spectral norm
and the Frobenius norm, respectively, of a matrix, and letGk be the best rank-k approximation to
G. We prove that by choosingO(k/ε4) columns

∥

∥G−CW+
k CT

∥

∥

ξ ≤ ‖G−Gk‖ξ + ε
n

∑
i=1

G2
ii ,

both in expectation and with high probability, for bothξ = 2, F , and for allk : 0≤ k ≤ rank(W).
This approximation can be computed usingO(n) additional space and time, after making two passes
over the data from external storage. The relationships between this algorithm, other related matrix
decompositions, and the Nyström method from integral equation theory are discussed.1

Keywords: kernel methods, randomized algorithms, Gram matrix, Nyström method

1. Introduction

In this introductory section, we first, in Section 1.1, provide a summary of relevant background,
then in Section 1.2 we summarize our main result, and finally, in Section 1.3, we provide an outline
of the remainder of the paper.

1. A preliminary version of this paper appeared as Drineas and Mahoney (2005b,a).

c©2005 Petros Drineas and Michael W. Mahoney.
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1.1 Background

Given a collectionX of data points, which are often but not necessarily elements ofR
m, techniques

such as linear support vector machines (SVMs), Gaussian processes(GPs), principal components
analysis (PCA), and the related singular value decomposition (SVD), identify and extract structure
from X by computing linear functions, i.e., functions in the form of dot products, ofthe data. For
example, in PCA the subspace spanned by the firstk eigenvectors is used to give ak dimensional
model of the data with minimal residual; thus, it provides a low-dimensional representation of the
data. Such spectral analysis has a rich theoretical foundation and has numerous practical applica-
tions.

In many cases, however, there is nonlinear structure in the data (or the data, such as text,
may not support the basic linear operations of addition and scalar multiplication). In these cases,
kernel-based learning methods have proved to be quite useful (Cristianini and Shawe-Taylor, 2000;
Scḧolkopf, Smola, and M̈uller, 1998). Kernel-based learning methods are a class of statistical learn-
ing algorithms, the best known examples of which are SVMs (Cristianini and Shawe-Taylor, 2000).
In this approach, data items are mapped into high-dimensional spaces, where information about their
mutual positions (in the form of inner products) is used for constructing classification, regression,
or clustering rules. Kernel-based algorithms exploit the information encoded in the inner product
between all pairs of data items and are successful in part because thereis often an efficient method to
compute inner products between very complex or even infinite dimensional vectors. Thus, kernel-
based algorithms provide a way to deal with nonlinear structure by reducingnonlinear algorithms
to algorithms that are linear in some feature spaceF that is nonlinearly related to the original input
space.

More precisely, assume that the data consists of vectorsX(1), . . . ,X(n) ∈ X ⊂ R
m and letX ∈

R
m×n be the matrix whosei-th column isX(i). In kernel-based methods, a set of features is chosen

that define a spaceF , where it is hoped relevant structure will be revealed, the dataX are then
mapped to the feature spaceF using a mappingΦ : X → F , and then classification, regression, or
clustering is performed inF using traditional methods such as linear SVMs, GPs, or PCA. IfF

is chosen to be a dot product space and if one defines the kernel matrix,also known as the Gram
matrix, G∈ R

n×n asGi j = k(xi ,x j) = (Φ(xi),Φ(x j)), then any algorithm whose operations can be
expressed in the input space in terms of dot products can be generalizedto an algorithm which
operates in the feature space by substituting a kernel function for the inner product. In practice, this
means presenting the Gram matrixG in place of the input covariance matrixXTX. Relatedly, using
the kernelk instead of a dot product in the input space corresponds to mapping the data set into a
(usually) high-dimensional dot product spaceF by a (usually nonlinear) mappingΦ : R

m→ F , and
taking dot products there, i.e.,k(xi ,x j) = (Φ(xi),Φ(x j)). Note that for the commonly-used Mercer
kernels,G is a symmetric positive semidefinite (SPSD) matrix.

The generality of this framework should be emphasized. For example, therehas been much
work recently on dimensionality reduction for nonlinear manifolds in high-dimensional spaces. See,
e.g., Isomap, local linear embedding, and graph Laplacian eigenmap (Tenenbaum, de Silva, and
Langford, 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003) as well as Hessian eigenmaps
and semidefinite embedding (Donoho and Grimes, 2003; Weinberger, Sha,and Saul, 2004). These
methods first induce a local neighborhood structure on the data and then use this local structure to
find a global embedding of the manifold in a lower dimensional space. The manner in which these
different algorithms use the local information to construct the global embedding is quite different,
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but in Ham, Lee, Mika, and Schölkopf (2003) they are interpreted as kernel PCA applied to specially
constructed Gram matrices.

This “kernel trick” has been quite successful for extracting nonlinearstructure in large data sets
when the features are chosen such that the structure in the data is more manifest in the feature space
than in the original space. Although in many cases the features are chosensuch that the Gram matrix
is sparse, in which case sparse matrix computation methods may be used, in otherapplications the
Gram matrix is dense, but is well approximated by a low-rank matrix. In this case, calculations of
interest (such as the matrix inversion needed in GP prediction, the quadraticprogramming problem
for SVMs, and the computation of the eigendecomposition of the Gram matrix) willstill generally
take space which isO(n2) and time which isO(n3). This is prohibitive ifn, the number of data
points, is large. Recent work in the learning theory community has focused on taking advantage of
this low-rank structure in order to perform learning tasks of interest moreefficiently. For example,
in Achlioptas, McSherry, and Schölkopf (2002), several randomized methods are used in order to
speed up kernel PCA. These methods have provable guarantees on thequality of their approximation
and may be viewed as replacing the kernel functionk by a “randomized kernel” which behaves likek
in expectation. Relatedly, in Williams and Seeger (2001), uniform sampling without replacement is
used to choose a small set of basis training points, from which an approximation to the Gram matrix
is constructed. Although this algorithm does not come with provable performance guarantees, it may
be viewed as a special case of our main algorithm, and it was shown empiricallyto perform well
on two data sets for approximate GP classification and regression. It was also interpreted in terms
of the Nystr̈om method from integral equation theory; this method has also been applied recently
in the learning theory community to approximate the solution of spectral partitioningfor image and
video segmentation (Fowlkes, Belongie, Chung, and Malik, 2004) and to extend the eigenfunctions
of a data-dependent kernel to new data points (Bengio, Paiement, Vincent, Delalleau, Roux, and
Ouimet, 2004; Lafon, 2004). Related work taking advantage of low-rankstructure includes Smola
and Scḧolkopf (2000); Fine and Scheinberg (2001); Williams and Seeger (2000); Burges (1996);
Osuna, Freund, and Girosi (1997); Williams, Rasmussen, Schwaighofer, and Tresp (2002); Azar,
Fiat, Karlin, McSherry, and Saia (2001).

1.2 Summary of Main Result

In this paper, we develop and analyze an algorithm to compute an easily-interpretable low-rank
approximation to ann×n Gram matrixG. Our main result, the MAIN APPROXIMATION algorithm
of Section 4.2, is an algorithm that, when given as input a SPSD matrixG ∈ R

n×n, computes a
low-rank approximation toG of the formG̃k = CW+

k CT , whereC ∈ R
n×c is a matrix formed by

randomly choosing a small numberc of columns (and thus rows) ofG andWk ∈ R
c×c is the best

rank-k approximation toW, the matrix formed by the intersection between thosec columns ofG and
the correspondingc rows ofG. The columns are chosen inc independent random trials (and thus
with replacement) according to a judiciously-chosen and data-dependentnonuniform probability
distribution. The nonuniform probability distribution will be carefully chosenand will be important
for the provable bounds we obtain. Let‖·‖2 and ‖·‖F denote the spectral norm and the Frobenius
norm, respectively, and letGk be the best rank-k approximation toG. Our main result, presented in
a more precise form in Theorem 3, is that under appropriate assumptions:

∥

∥G−CW+
k CT

∥

∥

ξ ≤ ‖G−Gk‖ξ + ε
n

∑
i=1

G2
ii , (1)
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in both expectation and with high probability, for bothξ = 2, F , for all k : 0≤ k ≤ rank(W). This
approximation can be computed inO(n) space and time after two passes over the data from external
storage.

In addition to developing and analyzing an algorithm which provides a provably good decom-
position of a Gram matrix, which may then be used to speed up kernel-based learning methods,
this paper makes several contributions. First, it extends related work of Williams and Seeger (2001)
involving uniform sampling to a more natural general case and provides a discussion of when that
is necessary. Second, it provides rigorous proofs of sufficient conditions for the methods to be ap-
plicable for any data set and discusses when other conditions may be more appropriate. Third, it
clarifies several potential misconceptions that have appeared in the literature regarding the relation-
ship between recent work on Nyström-based kernel methods (Williams and Seeger, 2001; Williams,
Rasmussen, Schwaighofer, and Tresp, 2002; Fowlkes, Belongie, Chung, and Malik, 2004) and the
low-rank approximation algorithm of Frieze, Kannan, and Vempala (1998);Drineas, Kannan, and
Mahoney (2004b). Finally, it extends random sampling methodology of the authors to a new ap-
plication domain and it extends the ability of those methods from simply extracting linear structure
of the data to extracting linear structure while respecting nonlinear structuressuch as the SPSD
property.

1.3 Outline of the Paper

After this introduction, in Section 2 we provide a review of relevant linear algebra. Then, in Sec-
tion 3 we review several aspects of the random sampling methodology of Drineas, Kannan, and
Mahoney (2004a,b,c) that will be useful for the proofs in this paper; see also Drineas, Kannan, and
Mahoney (2004d, 2005). In Section 4 we present our main algorithm and our main theorem, pro-
viding a brief discussion of the algorithm and a proof of the theorem. Then,in Section 5 we discuss
in detail several aspects of the algorithm and its relationship to previous work, with a particular
emphasis on the relationships between our main algorithm, the Nyström method of Williams and
Seeger (2001); Williams, Rasmussen, Schwaighofer, and Tresp (2002); Fowlkes, Belongie, Chung,
and Malik (2004), and our previous randomized SVD and CUR algorithms (Drineas, Kannan, and
Mahoney, 2004b,c). Finally, in Section 6 we provide a brief conclusion.

2. Review of Relevant Linear Algebra

This section contains a review of linear algebra that will be useful throughout the paper. For more
details about general linear algebra, see Golub and Loan (1989); Horn and Johnson (1985); Bhatia
(1997); for more details about matrix perturbation theory, see Stewart and Sun (1990); and for more
details about generalized inverses, see Nashed (1976); Ben-Israel and Greville (2003).

For a vectorx ∈ R
n we let |x| =

(

∑n
i=1 |xi |2

)1/2
denote its Euclidean length. For a matrixA ∈

R
m×n we letA( j), j = 1, . . . ,n, denote thej-th column ofA as a column vector andA(i), i = 1, . . . ,m,

denote thei-th row of A as a row vector. We denote matrix norms by‖A‖ξ, using subscripts to
distinguish between various norms. Of particular interest will be the Frobenius norm, the square of
which is ‖A‖2

F = ∑m
i=1 ∑n

j=1A2
i j , and the spectral norm, which is defined by‖A‖2 = supx∈Rn, x6=0

|Ax|
|x| .

These norms are related to each other as:‖A‖2 ≤ ‖A‖F ≤√
n‖A‖2. If A∈ R

m×n, then there exist
orthogonal matricesU = [u1u2 . . .um] ∈ R

m×m andV = [v1v2 . . .vn] ∈ R
n×n where{ut}m

t=1 ∈ R
m and
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{vt}n
t=1 ∈ R

n are such that
UTAV = Σ = diag(σ1, . . . ,σρ),

whereΣ ∈ R
m×n, ρ = min{m,n} andσ1 ≥ σ2 ≥ . . . ≥ σρ ≥ 0. Equivalently,A = UΣVT . The three

matricesU , V, andΣ constitute the singular value decomposition (SVD) ofA. If k ≤ r = rank(A)
and we defineAk = UkΣkVT

k = ∑k
t=1 σtutvtT then the distance (as measured by both‖·‖2 and‖·‖F )

betweenA and any rankk approximation toA is minimized byAk. An n×n matrixA is a symmetric
positive semidefinite (SPSD) matrix ifA is symmetric andxTAx≥ 0 for all nonzero vectorsx. If A
is a SPSD matrix, then its SVD may be writtenA = UΣUT .

From the perturbation theory of matrices it is known that the size of the difference between
two matrices can be used to bound the difference between the singular valuespectrum of the two
matrices (Stewart and Sun, 1990; Bhatia, 1997). In particular, ifA,E ∈ R

m×n,m≥ n, then

max
t:1≤t≤n

|σt(A+E)−σt(A)| ≤ ‖E‖2 (2)

and
n

∑
k=1

(σk(A+E)−σk(A))2 ≤ ‖E‖2
F . (3)

The latter inequality is known as the Hoffman-Wielandt inequality.
LetA∈R

m×n, letW∈R
m×m andQ∈R

n×n be symmetric positive definite matrices, and consider
the following generalization of the four Moore-Penrose conditions:

AXA = A (4)

XAX = X (5)

(WAX)T = WAX (6)

(QXA)T = QXA. (7)

The uniqueX that satisfies these four conditions is denotedX = A(1,2)
(W,Q) = A+

(W,Q) and is the{W,Q}-
weighted-{1,2}-generalized inverse ofA. It can be expressed in terms of the unweighted gen-
eralized inverse ofA as: A+

(W,Q) = Q−1/2
(

W1/2AQ−1/2
)+

W1/2. Note that ifW = Im andQ = In
then the uniqueX ∈ R

n×n satisfying these four conditions is the Moore-Penrose generalized inverse
A+. If r = rank(A), then in terms of the SVD the generalized inverse takes the following form:
A+ = VΣ−1UT = ∑r

t=1 σ−1
t vtutT .

3. Review of Our Random Sampling Methodology

Recent work in the theory of randomized algorithms has focused on matrix problems (Frieze,
Kannan, and Vempala, 1998; Drineas, Frieze, Kannan, Vempala, and Vinay, 1999; Achlioptas
and McSherry, 2001; Achlioptas, McSherry, and Schölkopf, 2002; Drineas and Kannan, 2001,
2003; Drineas, Kannan, and Mahoney, 2004a,b,c,d, 2005; Rademacher, Vempala, and Wang, 2005).
In particular, our previous work has applied random sampling methods to theapproximation of
several common matrix computations such as matrix multiplication (Drineas, Kannan, and Ma-
honey, 2004a), the computation of low-rank approximations to a matrix (Drineas, Kannan, and
Mahoney, 2004b), the computation of the CUR matrix decomposition (Drineas,Kannan, and Ma-
honey, 2004c), and approximating the feasibility of linear programs (Drineas, Kannan, and Ma-
honey, 2004d, 2005). In this section, we review two results that will be used in this paper.
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3.1 Review of Approximate Matrix Multiplication

The BASICMATRIX MULTIPLICATION algorithm to approximate the product of two matrices is pre-
sented and analyzed in Drineas, Kannan, and Mahoney (2004a). When this algorithm is given as
input a matrix,A∈R

m×n, a probability distribution{pi}n
i=1, and a numberc≤ n, it returns as output

a matrixC ∈ R
m×c (such thatCCT ≈ AAT) whose columns arec randomly-chosen and suitably-

rescaled columns ofA. An important aspect of this algorithm is the probability distribution{pi}n
i=1

used to choose columns ofA. Although one could always use a uniform distribution to choose the
columns to form the matrixC, superior results are obtained if the probabilities are chosen judi-
ciously. Sampling probabilities of the form (8), that depend on the lengths squared of the columns
of A, are theoptimal sampling probabilitiesfor approximatingAAT by CCT , in a sense made pre-
cise in Drineas, Kannan, and Mahoney (2004a). Note that if these probabilities are relaxed such that

pk ≥ β
∣

∣A(k)
∣

∣

2
/‖A‖2

F for some positiveβ ≤ 1, then bounds similar to those in the following theorem
will be obtained, with a smallβ-dependent loss in accuracy. Note also that although we studied
random sampling with replacement for ease of analysis, it is not known howto compute efficiently
optimal nonuniform sampling probabilities when the sampling is performed withoutreplacement.
In Drineas, Kannan, and Mahoney (2004a) we prove a more generalversion of the following theo-
rem; see Drineas, Kannan, and Mahoney (2004a) for a discussion ofthe technical issues associated
with this result.

Theorem 1 Suppose A∈ R
m×n, c∈ Z

+ such that1≤ c≤ n, and{pi}n
i=1 are such that

pk =

∣

∣A(k)
∣

∣

2

‖A‖2
F

. (8)

Construct C with theBASICMATRIX MULTIPLICATION algorithm of Drineas, Kannan, and Ma-
honey (2004a), and let CCT be an approximation to AAT . Then,

E
[∥

∥AAT −CCT
∥

∥

F

]

≤ 1√
c
‖A‖2

F . (9)

Furthermore, letδ ∈ (0,1) andη = 1+
√

8log(1/δ). Then, with probability at least1−δ,

∥

∥AAT −CCT
∥

∥

F ≤ η√
c
‖A‖2

F . (10)

3.2 Review of Approximate Singular Value Decomposition

The LINEARTIMESVD algorithm is presented in Drineas, Kannan, and Mahoney (2004b).It is
an algorithm which, when given a matrixA ∈ R

m×n, usesO(m+ n) additional space and time to
compute an approximation to the topk singular values and the corresponding left singular vectors
of A. It does so by randomly choosingc columns ofA and rescaling each appropriately to construct
a matrixC∈ R

m×c, computing the topk singular values and corresponding right singular vectors of
C by performing an eigendecomposition ofCTC, and using this information to construct a matrix
Hk ∈R

m×k consisting of approximations to the topk left singular vectors ofA. A minor modification
of the result from Drineas, Kannan, and Mahoney (2004b) yields the following theorem in which
the additional error is stated with respect to the best rankk approximation for anyk ≤ rank(C).
This theorem holds for any set of sampling probabilities, but the best bounds are obtained when
probabilities of the form (8) are used, in which case Theorem 2 may be combined with Theorem 1.
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Theorem 2 Suppose A∈ R
m×n and let Hk be the m× k matrix whose columns consist of the top

k singular vectors of the m× c matrix C, as constructed from theL INEARTIMESVD algorithm of
Drineas, Kannan, and Mahoney (2004b). Then, for every k: 0≤ k≤ rank(C),

∥

∥A−HkH
T
k A
∥

∥

2
F ≤ ‖A−Ak‖2

F +2
√

k
∥

∥AAT −CCT
∥

∥

F (11)
∥

∥A−HkH
T
k A
∥

∥

2
2 ≤ ‖A−Ak‖2

2 +2
∥

∥AAT −CCT
∥

∥

2 . (12)

In addition, if k= r = rank(C) then

∥

∥A−HrH
T
r A
∥

∥

2
2 ≤

∥

∥AAT −CCT
∥

∥

2 . (13)

4. Approximating a Gram Matrix

Consider a set ofn points inR
m, denoted byX(1), . . . ,X(n), and letX be them×n matrix whosei-th

column isX(i). These points may be either the original data or the data after they have beenmapped
into the feature space. Then, define then× n Gram matrixG asG = XTX. Thus,G is a SPSD
matrix andGi j = (X(i),X( j)) is the dot product between the data vectorsX(i) andX( j). If G is dense
but has good linear structure, i.e., is well-approximated by a low-rank matrix,then a computation
of a easily-computable and easily-interpretable low-rank approximation toG, with provable error
bounds, is of interest.

In this section, two algorithms are presented that compute such an approximation to a Gram
matrixG. In Section 4.1, a preliminary algorithm is presented; it is a modification of an algorithm in
the literature and is a special case of our main algorithm. Then, in Section 4.2, our main algorithm
and our main theorem are presented. Finally, in Section 4.3, the proof of our main theorem is
presented.

4.1 A Preliminary Nystr öm-Based Algorithm

In Williams and Seeger (2001), a method to approximateG was proposed that, in our notation,
choosesc columns fromG uniformly at random and without replacement, and constructs an approx-
imation of the formG̃ = CW−1CT , where then×c matrixC consists of thec chosen columns and
W is a matrix consisting of the intersection of thosec columns with the correspondingc rows. Anal-
ysis of this algorithm and issues such as the existence of the inverse were not addressed in Williams
and Seeger (2001), but computational experiments were performed andthe procedure was shown to
work well empirically on two data sets (Williams and Seeger, 2001). This method has been referred
to as the Nystr̈om method (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and
Tresp, 2002; Fowlkes, Belongie, Chung, and Malik, 2004) since it hasan interpretation in terms
of the Nystr̈om technique for solving linear integral equations (Delves and Mohamed, 1985). See
Section 5 for a full discussion.

In Algorithm 1, the PRELIMINARY APPROXIMATION algorithm is presented. It is an algorithm
that takes as input ann×n Gram matrixG and returns as output an approximate decomposition of
the formG̃ = CW+CT , whereC andW are as in Williams and Seeger (2001), and whereW+ is the
Moore-Penrose generalized inverse ofW. Thec columns are chosen uniformly at random and with
replacement. Thus, the PRELIMINARY APPROXIMATION algorithm is quite similar to the algorithm
of Williams and Seeger (2001), except that we sample with replacement and that we do not assume
the existence ofW−1. Rather than analyzing this algorithm (which could be done by combining
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the analysis of Section 4.3 with the uniform sampling bounds of Drineas, Kannan, and Mahoney
(2004a)), we present and analyze a more general form of it, for which we can obtain improved
bounds, in Section 4.2. Note, however, that if the uniform sampling probabilities are nearly optimal,
in the sense that 1/n≥ βG2

ii/∑n
i=1G2

ii for some positiveβ ≤ 1 and for everyi = 1, . . . ,n, then bounds
similar to those in Theorem 3 will be obtained for this algorithm, with a smallβ-dependent loss in
accuracy.

Data : n×n Gram matrixG andc≤ n.

Result : n×n matrix G̃.
• Pickc columns ofG in i.i.d. trials, uniformly at random with replacement; letI be the set
of indices of the sampled columns.
• Let C be then×c matrix containing the sampled columns.
• Let W be thec×c submatrix ofG whose entries areGi j , i ∈ I , j ∈ I .
• ReturnG̃ = CW+CT .

Algorithm 1: The PRELIMINARY APPROXIMATION algorithm.

4.2 The Main Algorithm and the Main Theorem

In previous work (Drineas, Kannan, and Mahoney, 2004a,b,c,d, 2005), we showed the importance
of sampling columns and/or rows of a matrix with carefully chosen nonuniformprobability dis-
tributions in order to obtain provable error bounds for a variety of common matrix operations. In
Algorithm 2, the MAIN APPROXIMATION algorithm is presented. It is a generalization of the PRE-
LIMINARY APPROXIMATION algorithm that allows the column sample to be formed using arbitrary
sampling probabilities. The MAIN APPROXIMATION algorithm takes as input ann×n Gram matrix
G, a probability distribution{pi}n

i=1, a numberc ≤ n of columns to choose, and a rank parameter
k≤ c. It returns as output an approximate decomposition of the formG̃k = CW+

k CT , whereC is an
n× c matrix consisting of the chosen columns ofG, each rescaled in an appropriate manner, and
whereWk is ac×c matrix that is the best rank-k approximation to the matrixW, which is a matrix
whose elements consist of those elements inG in the intersection of the chosen columns and the
corresponding rows, each rescaled in an appropriate manner.

To implement this algorithm, two passes over the Gram matrixG from external storage and
O(n), i.e. sublinear inO(n2), additional space and time are sufficient (assuming that the sampling

probabilities of the form, e.g.,pi = G2
ii/∑n

i=1G2
ii or pi =

∣

∣G(i)
∣

∣

2
/‖G‖2

F or pi = 1/n are used). Thus,
this algorithm is efficient within the framework of the Pass-Efficient model; see Drineas, Kannan,
and Mahoney (2004a) for more details. Note that if the sampling probabilities of the form pi =
G2

ii/∑n
i=1G2

ii are used, as in Theorem 3 below, then one may store them× n data matrixX in
external storage, in which case only those elements ofG that are used in the approximation need to
be computed.

In the simplest application of this algorithm, one could choosek= c, in which caseWk =W, and
the decomposition is of the form̃G = CW+CT , whereW+ is the exact Moore-Penrose generalized
inverse of the matrixW. In certain cases, however, computing the generalized inverse may be
problematic since, e.g., it may amplify noise present in the low singular values. Note that, as a
function of increasingk, the Frobenius norm bound (11) of Theorem 2 is not necessarily optimalfor
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Data : n×n Gram matrixG, {pi}n
i=1 such that∑n

i=1 pi = 1, c≤ n, andk≤ c.

Result : n×n matrix G̃.
• Pick c columns ofG in i.i.d. trials, with replacement and with respect to the probabilities
{pi}n

i=1; let I be the set of indices of the sampled columns.
• Scale each sampled column (whose index isi ∈ I ) by dividing its elements by

√
cpi ; let

C be then×c matrix containing the sampled columns rescaled in this manner.
• Let W be thec×c submatrix ofG whose entries areGi j /(c

√
pi p j), i ∈ I , j ∈ I .

• ComputeWk, the best rank-k approximation toW.
• ReturnG̃k = CW+

k CT .

Algorithm 2: The MAIN APPROXIMATION algorithm.

k = rank(C). Also, although the bounds of Theorem 3 for the spectral norm fork≤ rank(W) are in
general worse than those fork = rank(W), the former are of interest since our algorithms hold for
any input Gram matrix and we make no assumptions about a model for the noisein the data.

The sampling matrix formalism of Drineas, Kannan, and Mahoney (2004a) is used in the proofs
of Theorem 3 in Section 4.3, and thus we introduce it here. Let us define the sampling matrix
S∈ R

n×c to be the zero-one matrix whereSi j = 1 if the i-th column ofA is chosen in thej-th
independent random trial andSi j = 0 otherwise. Similarly, define the rescaling matrixD ∈ R

c×c to
be the diagonal matrix withDtt = 1/

√
cpit . Then then×c matrix

C = GSD

consists of the chosen columns ofG, each of which has been rescaled by 1/
√

cpit , whereit is the
label of the column chosen in thet-th independent trial. Similarly, thec×c matrix

W = (SD)TGSD= DSTGSD

consists of the intersection between the chosen columns and the corresponding rows, each element
of which has been rescaled by with 1/c

√
pit p jt . (This can also be viewed as formingW by sampling

a numberc of rows ofC and rescaling. Note, however, that in this case the columns ofA and the
rows ofC are sampled using the same probabilities.) In Algorithm 3, the MAIN APPROXIMATION

is restated using this sampling matrix formalism. It should be clear that Algorithm 3 and Algorithm
2 yield identical results.

Before stating our main theorem, we wish to emphasize the structural simplicity of our main
result. If, e.g., we choosek = c, then our main algorithm provides a decomposition of the form
G̃ = CW+CT :



 G



≈



 G̃



=



 C





(

W
)+ (

CT
)

. (14)

Up to rescaling, the MAIN APPROXIMATION algorithm returns an approximatioñG which is created
from two submatrices ofG, namelyC andW. In the uniform sampling case,pi = 1/n, the diagonal
elements of the rescaling matrixD are alln/c, and these all cancel out of the expression. In the
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Data : n×n Gram matrixG, {pi}n
i=1 such that∑n

i=1 pi = 1, c≤ n, andk≤ c.

Result : n×n matrix G̃.
• Define the (n×c) matrixS= 0n×c;
• Define the (c×c) matrixD = 0c×c;
• for t = 1, . . . ,c do

Pick it ∈ [n], wherePr(it = i) = pi ;
Dtt = (cpit )

−1/2;
Sit t = 1;

end
• Let C = GSDandW = DSTGSD.
• ComputeWk, the best rank-k approximation toW.
• ReturnG̃k = CW+

k CT .

Algorithm 3: The MAIN APPROXIMATION algorithm, restated.

nonuniform sampling case,C is a rescaled version of the columns ofG andW is a rescaled version
of the intersection of those columns with the corresponding rows. Alternatively, one can viewC as
consisting of the actual columns ofG, without rescaling, andW as consisting of the intersection of
those columns with the corresponding rows, again without rescaling, in the following manner. Let
Ĉ = GS, letŴ = STGS, and let

Ŵ+ = Ŵ+
D2,D−2 = D

(

DŴD
)+

D (15)

be the{D2,D−2}-weighted-{1,2}-generalized inverse of̂W. ThenG≈ G̃ = ĈŴ+ĈT .
The following theorem states our main result regarding the MAIN APPROXIMATION algorithm.

Its proof may be found in Section 4.3.

Theorem 3 Suppose G is an n×n SPSD matrix, let k≤ c be a rank parameter, and let̃Gk =CW+
k CT

be constructed from theMAIN APPROXIMATION algorithm of Algorithm 2 by sampling c columns
of G with probabilities{pi}n

i=1 such that

pi = G2
ii/

n

∑
i=1

G2
ii . (16)

Let r = rank(W) and let Gk be the best rank-k approximation to G. In addition, letε > 0 and
η = 1+

√

8log(1/δ). If c≥ 64k/ε4, then

E
[∥

∥G− G̃k
∥

∥

F

]

≤ ‖G−Gk‖F + ε
n

∑
i=1

G2
ii (17)

and if c≥ 64kη2/ε4 then with probability at least1−δ

∥

∥G− G̃k
∥

∥

F ≤ ‖G−Gk‖F + ε
n

∑
i=1

G2
ii . (18)
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In addition, if c≥ 4/ε2 then

E
[∥

∥G− G̃k
∥

∥

2

]

≤ ‖G−Gk‖2 + ε
n

∑
i=1

G2
ii (19)

and if c≥ 4η2/ε2 then with probability at least1−δ

∥

∥G− G̃k
∥

∥

2 ≤ ‖G−Gk‖2 + ε
n

∑
i=1

G2
ii . (20)

Several things should be noted about this result. First, ifk≥ r = rank(W) thenWk = W, and an
application of (13) of Theorem 2 leads to bounds of the form

∥

∥G− G̃r
∥

∥

2 ≤ ε∑n
i=1G2

ii , in expectation
and with high probability. Second, the sampling probabilities used in Thoerem 3may be written

as pi =
∣

∣X(i)
∣

∣

2
/‖X‖2

F , which only depend on dot products from the data matrixX. This is useful
if X consists of the data after it has been mapped to the feature spaceF . Finally, if the sampling

probabilities were of the formpi =
∣

∣G(i)
∣

∣

2
/‖G‖2

F then they would preferentially choose data points
that are more informative (in the sense of being longer) and/or more representative of the data (in the
sense that they tend to be more well correlated with more data points). Insteadthe probabilities (16)
ignore the correlations. As discussed in Sections 5 and 6, this leads to somewhat worse error bounds.
To the best of our knowledge, it is not known how to sample with respect to correlations while
respecting the SPSD property and obtaining provably good bounds with improved error bounds.
This is of interest since in many applications it is likely that the data are approximately normalized
by the way the data are generated, and it is the correlations that are of interest. Intuitively, this
difficulty arises since it is difficult to identify structure in a matrix to ensure the SPSD property,
unless, e.g., the matrix is diagonally dominant or given in the formXTX. As will be seen in Section
4.3, the proof of Theorem 3 depends crucially on the decomposition ofG asG = XTX.

4.3 Proof of Theorem 3

SinceG = XTX it follows that both the left and the right singular vectors ofG are equal to the right
singular vectors ofX and that the singular values ofG are the squares of the singular values ofX.
More formally, let the SVD ofX beX = UΣVT . Then

G = VΣ2VT = XTUUTX. (21)

Now, let us considerCX = XSD∈ R
m×c, i.e., the column sampled and rescaled version ofX, and let

the SVD ofCX beCX = Û Σ̂V̂T . Thus, in particular,̂U contains the left singular vectors ofCX. We
do not specify the dimensions of̂U (and in particular how many columnŝU has) since we do not
know the rank ofCX. Let Ûk be them×k matrix whose columns consist of the singular vectors of
CX corresponding to the topk singular values. Instead of exactly computing the left singular vectors
U of X, we can approximate them bŷUk, computed from a column sample ofX, and use this to
compute an approximatioñG to G.

We first establish the following lemma, which provides a bound on
∥

∥G− G̃k
∥

∥

ξ for ξ = 2,F.

Lemma 4 If G̃k = CW+
k CT then

∥

∥G− G̃k
∥

∥

F =
∥

∥XTX−XTÛkÛkX
∥

∥

F (22)
∥

∥G− G̃k
∥

∥

2 =
∥

∥X−ÛkÛ
T
k X
∥

∥

2
2 . (23)

2163



DRINEAS AND MAHONEY

Proof Recall thatC = GSDandW = (SD)TGSD= CT
XCX. Thus,W = V̂Σ̂2V̂ andWk = V̂Σ̂2

kV̂
T ,

whereΣ̂k is the diagonal matrix with the topk singular values ofCX on the diagonal and the remain-
der set to 0. Then sinceCX = XSD= Û Σ̂V̂T andW+

k = V̂Σ̂−2
k V̂T

G̃k = GSD(Wk)
+ (GSD)T (24)

= XTÛ Σ̂V̂T (V̂Σ̂2
kV̂

T)+ V̂Σ̂ÛTX (25)

= XTÛkÛ
T
k X, (26)

whereÛkÛT
k is a projection onto the space spanned by the topk singular vectors ofW. (22) then

follows immediately, and (23) follows since

XTX−XTÛkÛ
T
k X =

(

X−ÛkÛ
T
k X
)T (

X−ÛkÛ
T
k X
)

and since‖Ω‖2
2 =

∥

∥ΩTΩ
∥

∥

2 for any matrixΩ.

By combining (23) with Theorem 2, we see that

∥

∥G− G̃k
∥

∥

2 ≤ ‖X−Xk‖2
2 +2

∥

∥XXT −CXCT
X

∥

∥

2

≤ ‖G−Gk‖2 +2
∥

∥XXT −CXCT
X

∥

∥

2 .

Since the sampling probabilities (16) are of the formpi =
∣

∣X(i)
∣

∣

2
/‖X‖2

F , this may be combined
with Theorem 1, from which, by choosingc appropriately, the spectral norm bounds (19) and (20)
of Theorem 3 follow.

To establish the Frobenius norm bounds, defineE = XXTXXT −CXCT
XCXCT

X . Then, we have
that

∥

∥G− G̃k
∥

∥

2
F =

∥

∥XTX
∥

∥

2
F −2

∥

∥XXTÛk
∥

∥

2
F +

∥

∥ÛT
k XXTÛk

∥

∥

2
F (27)

≤
∥

∥XTX
∥

∥

2
F −2

(

k

∑
t=1

σ4
t (CX)−

√
k‖E‖F

)

+
k

∑
t=1

σ4
t (CX)+

√
k‖E‖F (28)

=
∥

∥XTX
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)+3

√
k‖E‖F (29)

≤
∥

∥XTX
∥

∥

2
F −

k

∑
t=1

σ2
t (X

TX)+4
√

k‖E‖F , (30)

where (27) follows by Lemmas 4 and 5, (28) follows by Lemmas 6 and 7, and (30) follows by
Lemma 8. Since

∥

∥XTX
∥

∥

2
F −

k

∑
t=1

σ2
t (X

TX) = ‖G‖2
F −

k

∑
t=1

σ2
t (G) = ‖G−Gk‖2

F ,

it follows that

∥

∥G− G̃k
∥

∥

2
F ≤ ‖G−Gk‖2

F +4
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F . (31)
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Since the sampling probabilities (16) are of the formpi =
∣

∣X(i)
∣

∣

2
/‖X‖2

F , this may be combined with
Lemma 9 and Theorem 1. Since(α2 + β2)1/2 ≤ α + β for α,β ≥ 0, by using Jensen’s inequality,
and by choosingc appropriately, the Frobenius norm bounds (17) and (18) of Theorem3 follow.

The next four lemmas are used to bound the right hand side of (22).

Lemma 5 For every k: 0≤ k≤ rank(W) we have that

∥

∥XTX−XTÛkÛ
T
k X
∥

∥

2
F =

∥

∥XTX
∥

∥

2
F −2

∥

∥XXTÛk
∥

∥

2
F +

∥

∥ÛT
k XXTÛk

∥

∥

2
F .

Proof DefineY = X−ÛkÛT
k X. Then

∥

∥XTX−XTÛkÛ
T
k X
∥

∥

2
F =

∥

∥YTY
∥

∥

2
F

= Tr
(

YTYYTY
)

=
∥

∥XTX
∥

∥

2
F −2Tr

(

XXTÛkÛ
T
k XXT)+Tr

(

ÛT
k XXTÛkÛ

T
k XXTÛk

)

,

where the last line follows by multiplying out terms and since the trace is symmetric under cyclic
permutations. The lemma follows since‖Ω‖2

F = Tr
(

ΩΩT
)

for any matrixΩ.

Lemma 6 For every k: 0≤ k≤ rank(W) we have that

∣

∣

∣

∣

∣

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

∣

∣

∣

∣

∣

≤
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F .

Proof Sinceσt(CXCT
X) = σ2

t (CX) and sinceÛ is a matrix consisting of the singular vectors of
CX = XSD, we have that

∣

∣

∣

∣

∣

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k

∑
t=1

∣

∣

∣XXTÛ (t)
∣

∣

∣

2
−

k

∑
t=1

∣

∣

∣CXCT
XÛ (t)

∣

∣

∣

2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k

∑
t=1

Û (t)T (

XXTXXT −CXCT
XCXCT

X

)

Û (t)

∣

∣

∣

∣

∣

≤
√

k

(

k

∑
t=1

(

Û (t)T (

XXTXXT −CXCT
XCXCT

X

)

Û (t)
)2
)1/2

,

where the last line follows from the Cauchy-Schwartz inequality. The lemma then follows.

Lemma 7 For every k: 0≤ k≤ rank(W) we have that

∥

∥ÛT
k XXTÛk

∥

∥

2
F −

k

∑
t=1

σ4
t (CX) ≤

√
k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F .
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Proof Recall that if a matrixU has orthonormal columns then
∥

∥UTΩ
∥

∥

F ≤ ‖Ω‖F for any matrixΩ.
Thus, we have that

∥

∥ÛT
k XXTÛk

∥

∥

2
F −

k

∑
t=1

σ4
t (CX) ≤

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

≤
∣

∣

∣

∣

∣

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

∣

∣

∣

∣

∣

.

The remainder of the proof follows that of Lemma 6.

Lemma 8 For every k: 0≤ k≤ rank(W) we have that

∣

∣

∣

∣

∣

k

∑
t=1

σ4
t (CX)−σ2

t (X
TX)

∣

∣

∣

∣

∣

≤
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F .

Proof

∣

∣

∣

∣

∣

k

∑
t=1

σ4
t (CX)−σ2

t (X
TX)

∣

∣

∣

∣

∣

≤
√

k

(

k

∑
t=1

(

σ4
t (CX)−σ2

t (X
TX)

)2

)1/2

=
√

k

(

k

∑
t=1

(

σt(CXCT
XCXCT

X)−σt(XXTXXT)
)2

)1/2

≤
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F ,

where the first inequality follows from the Cauchy-Schwartz inequality andthe second inequality
follows from the matrix perturbation result (3).

The following is a result of the BASICMATRIX MULTIPLICATION algorithm that is not found in
Drineas, Kannan, and Mahoney (2004a), but that will be useful forbounding the additional error in
(31). We state this result for a generalm×n matrixA.

Lemma 9 Suppose A∈R
m×n, c∈Z

+ such that1≤ c≤n, and{pi}n
i=1 are such that pk =

∣

∣A(k)
∣

∣

2
/‖A‖2

F .
Construct C with theBASICMATRIX MULTIPLICATION algorithm of Drineas, Kannan, and Ma-
honey (2004a). Then

E
[∥

∥AATAAT −CCTCCT
∥

∥

F

]

≤ 2√
c
‖A‖4

F . (32)

Furthermore, letδ ∈ (0,1) andη = 1+
√

8log(1/δ). Then, with probability at least1−δ,

∥

∥AATAAT −CCTCCT
∥

∥

F ≤ 2η√
c
‖A‖4

F . (33)

2166
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Proof First note that:

AATAAT −CCTCCT = AATAAT −AATCCT +AATCCT −CCTCCT

= AAT (AAT −CCT)+
(

AAT −CCT)CCT .

Thus, by submultiplicitivity and subadditivity we have that forξ = 2,F:

∥

∥AATAAT −CCTCCT
∥

∥

F ≤ ‖A‖2
F

∥

∥AAT −CCT
∥

∥

F +
∥

∥AAT −CCT
∥

∥

F ‖C‖2
F .

The lemma follows since‖C‖2
F = ‖A‖2

F whenpk =
∣

∣A(k)
∣

∣

2
/‖A‖2

F , and by applying Theorem 1.

5. Discussion Section

One motivation for the present work was to provide a firm theoretical basisfor the Nystr̈om-based
algorithm of Williams and Seeger (2001). A second motivation was to clarify therelationships be-
tween our randomized SVD algorithms (Drineas, Kannan, and Mahoney, 2004b), our randomized
CUR algorithms (Drineas, Kannan, and Mahoney, 2004c), and the Nyström-based methods of oth-
ers (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and Tresp, 2002; Fowlkes,
Belongie, Chung, and Malik, 2004). A third motivation was to extend our random sampling method-
ology to extract linear structure from matrices while preserving important nonlinear structure. In
this section, we discuss these issues. Note that our CONSTANTTIMESVD algorithm of Drineas,
Kannan, and Mahoney (2004b) is the algorithm originally analyzed by Frieze, Kannan, and Vem-
pala (1998), and thus a discussion of it corresponds also to a discussion of their algorithm (Frieze,
Kannan, and Vempala, 1998).

5.1 Summary of the Nystr̈om Method

The Nystr̈om method was originally introduced to handle approximations based on the numerical
integration of the integral operator in integral equations, and it is well known for its simplicity and
accuracy (Delves and Mohamed, 1985). To illustrate the Nyström method, consider the eigenfunc-
tion problem:

Z

D
K(t,s)Φ(s)ds= λΦ(t) t ∈ D. (34)

The resulting solution is first found at the set of quadrature node points,and then it is extended to all
points inD by means of a special interpolation formula (see (39) below). This method requires the
use of a quadrature rule. Assume thatD = [a,b] ⊂ R and that the quadrature rule is the following:

Z b

a
y(s)ds=

n

∑
j=1

w jy(sj), (35)

where{w j} are the weights and{sj} are the quadrature points that are determined by the particular
quadrature rule. If this rule is used to compute the integral occurring in (34), we have

Z b

a
K(x,s)Φ(s)ds≈

n

∑
j=1

w jk(x,sj)φ̃(sj), (36)
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and the integral equation (34) leads to an eigenvalue problem of the form

n

∑
j=1

w jk(x,sj)φ̃(sj) = λ̃φ̃(x). (37)

Solving (37) leads to an approximate eigenvalueλ̃ and an approximate eigenfunctionφ̃(x) and may
be done via the Nyström method as follows. First, setx = xi , i = 1, . . . ,n in (37). This leads to a
system ofn algebraic equations:

n

∑
j=1

w jk(xi ,sj)φ̃(sj) = λ̃φ̃(xi), (38)

that depend on the set{xi} of Nyström points. Although it is by no means necessary that the set of
Nyström points is coincident with the set of quadrature points, they are often chosen to be so since
in that case if the kernelK(·, ·) is symmetric then the matrixk(·, ·) in (38) is symmetric. Then, if
λ̃m 6= 0 the exact eigenvectorsφ̃m on the Nystr̈om points can be extended to a functionφ̄m(x) on the
full domain by substituting it into (37):

φ̄m(x) =
1

λ̃m

n

∑
j=1

w jk(x,sj)φ̃m(sj). (39)

The functionφ̄m(x) is theNystr̈om extensionof the eigenvector̃φm, and in the present context may
be thought of as being an approximation to the exact eigenfunctionΦm computed by extending a
function computed on a (small) numbern of points to the full (large) domainD.

In the applications we are considering, the data points are vectors inR
n. Thus, consider anm×n

matrix A consisting ofm such vectors. Letc columns andr rows be chosen (without replacement)
in some manner, and letA be partitioned as

A =

[

A11 A12

A21 A22

]

, (40)

whereA11 ∈ R
c×r represents the subblock of matrix elements common to the sampled columns

and the sampled rows,A21 andA12 are rectangular matrices consisting of elements with a sampled
column label (exclusive) or sampled row label, respectively, andA22 ∈ R

(m−c)×(n−r) consists of the
remaining elements. Ifc, r = O(1) thenA11 is small andA22 is large. To be consistent with the
notation of Drineas, Kannan, and Mahoney (2004b,c), we letC = [AT

11A
T
21]

T andR= [A11A12]. Let
the SVD ofA11 beA11 = Ũ Σ̃ṼT , and let the rank ofA11 bek.

Assume, for the moment, thatA is a SPSD matrix and that the chosen rows are the same as the
chosen columns. Then,A11 is also a SPSD matrix; in addition,Ṽ = Ũ are the eigenvalues ofA11 and
Σ̃ consists of the eigenvectors ofA11. In this case, the Nyström extension ofŨ gives the following
approximation for the eigenvectors of the full matrixA:

Ū = CŨΣ−1 =

[

A11

A21

]

Ũ Σ̃−1 =

[

Ũ
A21Ũ Σ̃−1

]

. (41)

Note that this Nystr̈om extension of the restricted solution to the full set of data points is of the same
form as (39).
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More generally, ifA is an arbitrarym×n matrix, then the Nystr̈om extension ofŨ andṼ gives
the following approximation for the singular vectors of the full matrixA:

Ū =

[

Ũ
A21ṼΣ̃−1

]

, and (42)

V̄ =

[

Ṽ
AT

12Ũ Σ̃−1

]

. (43)

If both Ū andV̄ have been computed then the Nyström extensions (42)–(43) also have an interpre-
tation in terms of matrix completion. To see this, setÃ = Ū Σ̃V̄T ; then we have

Ã =

[

Ũ
A21ṼΣ̃−1

]

Σ̃
[

ṼT Σ̃−1ŨTA12
]

(44)

=

[

A11 ŨŨTA12

A21ṼṼT A21A
+
11A12

]

(45)

=

[

A11

A21

]

A+
11

[

A11 A12
]

. (46)

Note that ifA11 is nonsingular, then (45) becomes

Ã =

[

A11 A12

A21 A21A
−1
11 A12

]

. (47)

In this case, the Nyström extension implicitly approximatesA22 usingA21A
−1
11 A12, and the quality

of the approximation ofA by Ã can be quantified by the norm of the Schur complement
∥

∥A22−A21A
−1
11 A12

∥

∥

ξ ,ξ = 2,F.

The size of this error norm is governed, e.g., by the extent to which the columns ofA21 provide a
good basis for the columns ofA22. If A11 is rectangular or square and singular then other terms in the
matrix Ã also contribute to the error. Note that (46) is of the formA≈ Ã = CA+

11R . If A is a SPSD
matrix and the chosen rows are the same as the chosen columns then (45) is modified appropriately
and (46) is of the formA≈ Ã = CW+CT , which is the form of our main decomposition for a Gram
matrix G. Note, however, that neither̃U nor Ū are actually computed by our main approximation
algorithm. In Sections 5.2 and 5.3, we discuss these issues further.

5.2 Relationship to the Randomized Singular Value Decompositions

Recall that the LINEARTIMESVD of Drineas, Kannan, and Mahoney (2004b) computes exactly the
low-dimensional singular vectors ofC. Let the SVD ofC beC= HΣZT . Then, the high-dimensional
singular vectors ofC are computed by extending the low-dimensional singular vectors as

H = CZΣ−1, (48)

and it is these that are taken as approximations of the left singular vectors of the original matrixA,
in the sense that under appropriate assumptions,

∥

∥A−HHTA
∥

∥

ξ ≤ ‖A−Ak‖ξ + ε‖A‖F , (49)
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in expectation and with high probability, for bothξ = 2,F. This is not a Nystr̈om extension in the
sense of Section 5.1 since although sampling is used to construct the matrixC a second level of
sampling is never performed to constructA11.

On the other hand, the CONSTANTTIMESVD algorithm of Drineas, Kannan, and Mahoney
(2004b) (and thus the algorithm of Frieze, Kannan, and Vempala, 1998)is similar except that it
approximatesthe low-dimensional singular vectors ofC. It does this by randomly samplingw rows
of C and rescaling each appropriately to form aw×c matrixA11 (this matrix is calledW in Drineas,
Kannan, and Mahoney (2004b,c), but it is constructed with different sampling probabilities than the
W defined in this paper) and computing the eigenvectors ofAT

11A11. These eigenvectors are then
Nyström-extended via (42) to vectors̄U (denoted byH̃ in Drineas, Kannan, and Mahoney (2004b))
that approximate the left singular vectors ofA. In this case, the projectionHHT = C(CTC)+CT of
the LINEARTIMESVD algorithm is replaced by an approximate projection onto the column space
of C of the formŪŪ = C(AT

11A11)
+CT . From this perspective, sinceCTC ≈ AT

11A11 we may view
the LINEARTIMESVD of Drineas, Kannan, and Mahoney (2004b) as performing a Nyström-based
extension of approximations of the eigenvectors ofAT

11A11.

We emphasize these points since we would like to clarify several potential misunderstandings
in the literature regarding the relationship between the Nyström-based algorithm of Williams and
Seeger (2001) and the approximate SVD algorithm of Frieze, Kannan, and Vempala (1998). For ex-
ample, in some work (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and Tresp,
2002; Fowlkes, Belongie, Chung, and Malik, 2004) it is claimed that their Nyström-based methods
are a special case of Frieze, Kannan, and Vempala (1998) and thus ofthe CONSTANTTIMESVD
algorithm of Drineas, Kannan, and Mahoney (2004b). Although the SVDalgorithms of Drineas,
Kannan, and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998) do represent a Nyström-
based extension in the sense just described, several things should be noted. First, in order to obtain
provable performance guarantees, the CONSTANTTIMESVD algorithm used by Drineas, Kannan,
and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998) approximates the left (or right, but
not both) singular vectors in a single Nyström-like extension of the form (42) (or (43) for the right
singular vectors). This algorithm makes no assumptions about the symmetry orpositive definite-
ness of the input matrix, and it does not take advantage of this structure if itexists. Second, and
relatedly, in this algorithm there are two levels of sampling, and only the first depends directly on
the elements of the matrixA; the second depends on the lengths of the rows ofC. Thus, in general,
the matrixA11 does not consist of the same rows as columns, even ifA is a SPSD matrix. IfA is
a SPSD matrix, then one could approximateA asÃ = Ū Σ̃ŪT , but the error associated with this is
not the error that the theorems of Drineas, Kannan, and Mahoney (2004b) and Frieze, Kannan, and
Vempala (1998) bound. Third, the structure of the approximation obtained by Drineas, Kannan,
and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998) is quitedifferent from that of the
approximation of Williams and Seeger (2001) and (14). In the latter case it is of the formCW+CT ,
while in the former case it is of the formPCA, wherePC is an exact or approximate projection onto
the column space ofC.

5.3 Relationship to the Randomized CUR Decompositions

To shed further light on the relationship between the CONSTANTTIMESVD algorithm (Drineas,
Kannan, and Mahoney, 2004b; Frieze, Kannan, and Vempala, 1998)and the Nystr̈om-based meth-
ods (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and Tresp, 2002; Fowlkes,
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Belongie, Chung, and Malik, 2004), it is worth considering the CUR decompositions of Drineas,
Kannan, and Mahoney (2004c), which are structurally a generalizationof our main matrix decom-
position. ACUR decompositionis a low-rank matrix decomposition of the formA≈CUR, whereC
is a matrix consisting of a small number of columns ofA, R is a matrix consisting of a small number
of rows ofA, andU is an appropriately-defined low-dimensional matrix. Examples may be found
in Drineas, Kannan, and Mahoney (2004c), and also in Goreinov, Tyrtyshnikov, and Zamarashkin
(1997); Goreinov and Tyrtyshnikov (2001). In particular, the LINEARTIMECUR and CONSTANT-
TIMECUR algorithms of Drineas, Kannan, and Mahoney (2004c) (so named due to their relation-
ship with the correspondingly-named SVD algorithms of Drineas, Kannan, and Mahoney, 2004b)
compute an approximation to a matrixA∈ R

m×n by samplingc columns andr rows of the matrix
A to form matricesC ∈ R

m×c andR∈ R
r×n, respectively. The matricesC andR are constructed

with carefully-chosen and data-dependent nonuniform probability distributions, and fromC andR
a matrixU ∈ R

c×r is constructed such that under appropriate assumptions:

‖A−CUR‖ξ ≤ ‖A−Ak‖ξ + ε‖A‖F , (50)

with high probability, for bothξ = 2, F . Although these algorithms apply to any matrix, and thus
to a SPSD matrix, the computed approximationCUR (with the provable error bounds of the form
(50)) is neither symmetric nor positive semidefinite in the latter case. The SPSD property is an
important property in many applications, and thus it is desirable to obtain a low-rank approximation
that respects this property. The analysis of the MAIN APPROXIMATION algorithm shows that ifG
is a SPSD matrix then we can chooseR= CT andU = A+

11 and obtain a SPSD approximation of the
form G≈ G̃k = CW+

k CT with provable error bounds of the form (1). Note that this bound is worse
than that of (50) since the scale of the additional error is larger. Althoughit may not be surprising
that the bound is somewhat worse since we are requiring that the approximation is not just low rank
but that in addition it respects the nonlinear SPSD property, the worse bound is likely due simply to
the sampling probabilities that were used to obtain provable performance guarantees.

Since the CUR algorithms of Drineas, Kannan, and Mahoney (2004c) relyfor their proofs of
correctness on the corresponding SVD algorithms of Drineas, Kannan,and Mahoney (2004b), the
Nyström discussion about the SVD algorithms is relevant to them. In addition, to understand the
CUR algorithm in terms of matrix completion, consider anm×n matrix A with c columns andr
rows chosen in some manner which is partitioned as in (40). LetU ∈ R

c×r be an appropriately
defined matrix as in Drineas, Kannan, and Mahoney (2004c), and let usdecompose the original
matrixA of (40) asA≈CUR:

CUR =

[

A11

A21

]

U
[

A11 A12
]

(51)

=

[

A11UA11 A11UA12

A21UA11 A21UA12

]

. (52)

In Drineas, Kannan, and Mahoney (2004c)U 6= A11, but we provide a definition forU such that
U ≈ A+

11, in which case the structural similarity between (51) and (46) should be clear, as should the
similarity between (52) and (45). For general matricesA, the CUR decomposition approximatesA22

by A22 = A21UA12, but it also approximatesA21 by A21UA11, A12 by A11UA12, andA11 by A11UA11.
Thus, the quality of the approximation of the full matrix can not be quantified simply by the norm
of the Schur complement

∥

∥A22−A21A
+
11A12

∥

∥

ξ, and in Drineas, Kannan, and Mahoney (2004c) we
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bound‖A−CUR‖ξ directly. Relatedly, the quality of the approximation is determined, e.g., by how
well a basis the chosen columns ofC are for the remaining columns ofA.

6. Conclusion

We have presented and analyzed an algorithm that provides an approximate decomposition of an
n×n Gram matrixG which is of the formG≈ G̃k = CW+

k CT and which has provable error bounds
of the form (1). A crucial feature of this algorithm is the probability distribution used to randomly
sample columns. We conclude with two open problems related to the choice of this distribution.

First, it would be desirable to choose the probabilities in Theorem 3 to bepi =
∣

∣G(i)
∣

∣

2
/‖G‖2

F and
to establish bounds of the form (1) in which the scale of the additional errorwas‖G‖F =

∥

∥XTX
∥

∥

F

rather than∑n
i=1G2

ii = ‖X‖2
F . This would entail extracting linear structure while simultaneously

respecting the SPSD property and obtaining improved scale of error. Thiswould likely be a corollary
of a CUR decomposition for a generalm×n matrix A with error bounds of the form (50) in which
U = W+

k , whereW is now the matrix consisting of the intersection of the chosen columns and (in
general different) rows. This would simplify considerably the form ofU found in Drineas, Kannan,
and Mahoney (2004c) and would lead to improved interpretability. Second,we should also note
that if capturing coarse statistics over the data is not of interest, but insteadone is interested in other
properties of the data, e.g., identifying outliers, then probabilities that depend on the data in some
other manner, e.g., inversely with respect to their lengths squared, may be appropriate. We do not
have provable bounds in this case. We should note, however, that we are empirically evaluating
the applicability of the methodology presented in this paper for problems of interest in machine
learning. We will report the results at a future date.
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ON THE NYSTRÖM METHOD FORAPPROXIMATING A GRAM MATRIX
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