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Abstract

A problem for many kernel-based methods is that the amouoctiputation required to find the
solution scales a®(n®), wheren is the number of training examples. We develop and analyze
an algorithm to compute an easily-interpretable low-rapfraximation to am x n Gram matrix

G such that computations of interest may be performed morelyapThe approximation is of
the formGy = CV\{:FCT, whereC is a matrix consisting of a small numbepnf columns ofG and

W is the best rank approximation ta/V, the matrix formed by the intersection between those
¢ columns ofG and the correspondingrows of G. An important aspect of the algorithm is the
probability distribution used to randomly sample the cahgirwe will use a judiciously-chosen and
data-dependent nonuniform probability distribution. llef, and ||-|| denote the spectral norm
and the Frobenius norm, respectively, of a matrix, andlebe the best rank-approximation to

G. We prove that by choosing(k/e*) columns

n
[G—cw/CT|; < HGkaHerEziGﬁ,
=

both in expectation and with high probability, for bdk= 2, F, and for allk: 0 < k < rank'W).
This approximation can be computed ustd@) additional space and time, after making two passes
over the data from external storage. The relationshipsdxatwthis algorithm, other related matrix
decompositions, and the Nysm method from integral equation theory are discussed.

Keywords: kernel methods, randomized algorithms, Gram matrix, Nistmethod

1. Introduction

In this introductory section, we first, in Section 1.1, provide a summary o¥aatebackground,
then in Section 1.2 we summarize our main result, and finally, in Section 1.3, wiel@n outline
of the remainder of the paper.

1. A preliminary version of this paper appeared as Drineas and Mgl{@665b,a).

(©2005 Petros Drineas and Michael W. Mahoney.
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1.1 Background

Given a collectionX of data points, which are often but not necessarily elemerid"pfechniques
such as linear support vector machines (SVMs), Gaussian prod&#8s} principal components
analysis (PCA), and the related singular value decomposition (SVD), idemtif extract structure
from X by computing linear functions, i.e., functions in the form of dot productshefdata. For
example, in PCA the subspace spanned by theKiesgenvectors is used to givekedimensional
model of the data with minimal residual; thus, it provides a low-dimensional septation of the
data. Such spectral analysis has a rich theoretical foundation anditmesaus practical applica-
tions.

In many cases, however, there is nonlinear structure in the data (or thesdeh as text,
may not support the basic linear operations of addition and scalar multiplicatiotf)ese cases,
kernel-based learning methods have proved to be quite useful (Crisaaudishawe-Taylor, 2000;
Schblkopf, Smola, and Nlller, 1998). Kernel-based learning methods are a class of statistiaal lear
ing algorithms, the best known examples of which are SVMs (Cristianini &a@v&-Taylor, 2000).
In this approach, data items are mapped into high-dimensional spaces,infoemation about their
mutual positions (in the form of inner products) is used for constructingsifleation, regression,
or clustering rules. Kernel-based algorithms exploit the information enktid#he inner product
between all pairs of data items and are successful in part becausestbiéea an efficient method to
compute inner products between very complex or even infinite dimensioc@rse Thus, kernel-
based algorithms provide a way to deal with nonlinear structure by redacinighear algorithms
to algorithms that are linear in some feature sp@dhat is nonlinearly related to the original input
space.

More precisely, assume that the data consists of ve&tdis..., X" € X ¢ R™ and letX e
R™M pe the matrix whoseth column isX(V). In kernel-based methods, a set of features is chosen
that define a spacé, where it is hoped relevant structure will be revealed, the datae then
mapped to the feature spageusing a mappingp : X — ¥, and then classification, regression, or
clustering is performed irff using traditional methods such as linear SVMs, GPs, or PCA. If
is chosen to be a dot product space and if one defines the kernel naggdx¥nown as the Gram
matrix, G € R™" asG;jj; = k(x;,Xj) = (P(x), P(X;)), then any algorithm whose operations can be
expressed in the input space in terms of dot products can be generaliaedalgorithm which
operates in the feature space by substituting a kernel function for thegrogtuct. In practice, this
means presenting the Gram mai@xn place of the input covariance mate X. Relatedly, using
the kernel instead of a dot product in the input space corresponds to mappingtineetanto a
(usually) high-dimensional dot product spgéoy a (usually nonlinear) mappirg: R™ — ¥, and
taking dot products there, i.&k(x;,X;) = (P(x), P(x;)). Note that for the commonly-used Mercer
kernels,G is a symmetric positive semidefinite (SPSD) matrix.

The generality of this framework should be emphasized. For example, hsrbeen much
work recently on dimensionality reduction for nonlinear manifolds in high-dsieral spaces. See,
e.g., Isomap, local linear embedding, and graph Laplacian eigenmapnfeama, de Silva, and
Langford, 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003) el a8 Hessian eigenmaps
and semidefinite embedding (Donoho and Grimes, 2003; Weinbergera@&h&aul, 2004). These
methods first induce a local neighborhood structure on the data andgbehisi local structure to
find a global embedding of the manifold in a lower dimensional space. Theenanwhich these
different algorithms use the local information to construct the global enmbedsl quite different,
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butin Ham, Lee, Mika, and Sétkopf (2003) they are interpreted as kernel PCA applied to specially
constructed Gram matrices.

This “kernel trick” has been quite successful for extracting nonlis&aicture in large data sets
when the features are chosen such that the structure in the data is morestartlie feature space
than in the original space. Although in many cases the features are chagdethat the Gram matrix
is sparse, in which case sparse matrix computation methods may be used, mppiiEtions the
Gram matrix is dense, but is well approximated by a low-rank matrix. In this,@adculations of
interest (such as the matrix inversion needed in GP prediction, the quazh@dramming problem
for SVMs, and the computation of the eigendecomposition of the Gram matrix}tillijenerally
take space which i®(n?) and time which iO(n®). This is prohibitive ifn, the number of data
points, is large. Recent work in the learning theory community has focuséaking advantage of
this low-rank structure in order to perform learning tasks of interest reffi@ently. For example,
in Achlioptas, McSherry, and Sotkopf (2002), several randomized methods are used in order to
speed up kernel PCA. These methods have provable guaranteesjoalibeof their approximation
and may be viewed as replacing the kernel funckiby a “randomized kernel” which behaves like
in expectation. Relatedly, in Williams and Seeger (2001), uniform sampling wtiteplacement is
used to choose a small set of basis training points, from which an apprixiniathe Gram matrix
is constructed. Although this algorithm does not come with provable perfareguarantees, it may
be viewed as a special case of our main algorithm, and it was shown empitalgrform well
on two data sets for approximate GP classification and regression. ltseastzrpreted in terms
of the Nystbm method from integral equation theory; this method has also been appiEtlye
in the learning theory community to approximate the solution of spectral partitidoirignage and
video segmentation (Fowlkes, Belongie, Chung, and Malik, 2004) and¢o@xhe eigenfunctions
of a data-dependent kernel to new data points (Bengio, Paiement, Yimdealleau, Roux, and
Ouimet, 2004; Lafon, 2004). Related work taking advantage of low-samicture includes Smola
and Sclilkopf (2000); Fine and Scheinberg (2001); Williams and Seeger (j2@i0ges (1996);
Osuna, Freund, and Girosi (1997); Williams, Rasmussen, Schwarglaoig Tresp (2002); Azar,
Fiat, Karlin, McSherry, and Saia (2001).

1.2 Summary of Main Result

In this paper, we develop and analyze an algorithm to compute an easilyréatitdrle low-rank
approximation to am x n Gram matrixG. Our main result, the MIN APPROXIMATION algorithm

of Section 4.2, is an algorithm that, when given as input a SPSD m@texR™", computes a
low-rank approximation t@ of the formGy = C\/\{jCT, whereC € R™€ is a matrix formed by
randomly choosing a small numbeiof columns (and thus rows) @& andW € R®*€ is the best
rank-k approximation t&V, the matrix formed by the intersection between thmselumns ofG and
the corresponding rows of G. The columns are chosen inndependent random trials (and thus
with replacement) according to a judiciously-chosen and data-dependeuahiform probability
distribution. The nonuniform probability distribution will be carefully chosew will be important
for the provable bounds we obtain. Lit|, and |-||z denote the spectral norm and the Frobenius
norm, respectively, and I& be the best rank-approximation tas. Our main result, presented in
a more precise form in Theorem 3, is that under appropriate assumptions:

n
HG_CVWCTHES ||G—Gk||E+E.ZlGﬁ, (1)
=
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in both expectation and with high probability, for bdh= 2, F, for all k: 0 < k < rankW). This
approximation can be computed@in) space and time after two passes over the data from external
storage.

In addition to developing and analyzing an algorithm which provides a ptpwypod decom-
position of a Gram matrix, which may then be used to speed up kernel-basathte methods,
this paper makes several contributions. First, it extends related workllaMs and Seeger (2001)
involving uniform sampling to a more natural general case and providesasgion of when that
is necessary. Second, it provides rigorous proofs of sufficiemdiions for the methods to be ap-
plicable for any data set and discusses when other conditions may be ppoopidate. Third, it
clarifies several potential misconceptions that have appeared in the lieeregiarding the relation-
ship between recent work on Ny8in-based kernel methods (Williams and Seeger, 2001; Williams,
Rasmussen, Schwaighofer, and Tresp, 2002; Fowlkes, BelongimgCand Malik, 2004) and the
low-rank approximation algorithm of Frieze, Kannan, and Vempala (199)eas, Kannan, and
Mahoney (2004b). Finally, it extends random sampling methodology ofuttees to a new ap-
plication domain and it extends the ability of those methods from simply extractirey liteicture
of the data to extracting linear structure while respecting nonlinear structuotsas the SPSD

property.

1.3 Outline of the Paper

After this introduction, in Section 2 we provide a review of relevant lineaelalg. Then, in Sec-
tion 3 we review several aspects of the random sampling methodology oéd3irKannan, and
Mahoney (2004a,b,c) that will be useful for the proofs in this paperadso Drineas, Kannan, and
Mahoney (2004d, 2005). In Section 4 we present our main algorithm anohain theorem, pro-
viding a brief discussion of the algorithm and a proof of the theorem. Tihe3gction 5 we discuss
in detail several aspects of the algorithm and its relationship to previous with a particular
emphasis on the relationships between our main algorithm, the Ovystrethod of Williams and
Seeger (2001); Williams, Rasmussen, Schwaighofer, and Tresp)(Z®@kes, Belongie, Chung,
and Malik (2004), and our previous randomized SVD and CUR algorithmaéBs, Kannan, and
Mahoney, 2004b,c). Finally, in Section 6 we provide a brief conclusion.

2. Review of Relevant Linear Algebra

This section contains a review of linear algebra that will be useful throuigthe paper. For more
details about general linear algebra, see Golub and Loan (1989);amadrJohnson (1985); Bhatia
(1997); for more details about matrix perturbation theory, see Stewad@an (1990); and for more
details about generalized inverses, see Nashed (1976); Behdsth&reville (2003).

For a vectorx € R" we let [x| = (YL, |xi|2)1/2 denote its Euclidean length. For a matixe
R™" we letAl), j =1,...,n, denote thg-th column ofA as a column vector antljy,i=1,...,m,
denote the-th row of A as a row vector. We denote matrix norms [4|¢, using subscripts to
distinguish between various norms. Of particular interest will be the Fioberorm, the square of
whichis [|A||2 =3M, 2?:1A,-2- , and the spectral norm, which is defined |p¥[, = SURcgn, x40 %.
These norms are related to each other|g8}, < ||Al|r < vn|All,. If Ae R™", then there exist
orthogonal matriced = [ulu?...u™ € R™MandV = [v}v?... V" € R™" where{u'}{*, € R™and
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{W}{_; € R" are such that
UTAV = 3 = diag(0y,...,0p),

wherez € R™", p = min{m,n} ando; > 0> > ... > 0, > 0. EquivalentlyA = UXVT. The three
matricesU, V, andX constitute the singular value decomposition (SVDYoflf k <r = rank(A)
and we defingy = US| = z{;lctutvtT then the distance (as measured by bpth, and ||-||)
betweer and any rank approximation téA is minimized byAx. An nx n matrix A is a symmetric
positive semidefinite (SPSD) matrixAfis symmetric anck” Ax > 0 for all nonzero vectors. If A
is a SPSD matrix, then its SVD may be writtAn= usuT.

From the perturbation theory of matrices it is known that the size of the difter between
two matrices can be used to bound the difference between the singularspaicteum of the two
matrices (Stewart and Sun, 1990; Bhatia, 1997). In particulArGfe R™" m > n, then

max oi(A+E) ~ 0i(A)| < [[E], 2)
and .

kz (ok(A+E) — ok(A)? < |IE|I?. 3)

=1

The latter inequality is known as the Hoffman-Wielandt inequality.
LetAc R™"N letW € R™™MandQ € R™" be symmetric positive definite matrices, and consider
the following generalization of the four Moore-Penrose conditions:

AXA = A (4)
XAX = X (5)
(WAX)T = WAX (6)
(QXAT = QXA (7)

The uniqueX that satisfies these four conditions is denoted Ag\}\’,%) = (+vv,Q) and is the{W, Q}-

weighted{1,2}-generalized inverse oh. It can be expressed in terms of the unweighted gen-
eralized inverse oA as: Al o) = Q12 (Wl/ZAQ*1/2)+W1/2. Note that ifW = I, andQ = I,
then the uniqgu& € R™" satisfying these four conditions is the Moore-Penrose generalizedéver

AT, If r =rank(A), then in terms of the SVD the generalized inverse takes the following form:
At =VIWT =51 o7t

3. Review of Our Random Sampling Methodology

Recent work in the theory of randomized algorithms has focused on matbiepns (Frieze,
Kannan, and Vempala, 1998; Drineas, Frieze, Kannan, Vempala, @ay,V1999; Achlioptas
and McSherry, 2001; Achlioptas, McSherry, and &kbpf, 2002; Drineas and Kannan, 2001,
2003; Drineas, Kannan, and Mahoney, 2004a,b,c,d, 2005; Radem&empala, and Wang, 2005).
In particular, our previous work has applied random sampling methods tapgeximation of
several common matrix computations such as matrix multiplication (Drineas, KaandnMa-
honey, 2004a), the computation of low-rank approximations to a matrix (&sinkannan, and
Mahoney, 2004b), the computation of the CUR matrix decomposition (Dritkas)an, and Ma-
honey, 2004c), and approximating the feasibility of linear programs (Bsin&annan, and Ma-
honey, 2004d, 2005). In this section, we review two results that will be usthis paper.

2157



DRINEAS AND MAHONEY

3.1 Review of Approximate Matrix Multiplication

The BASICMATRIX MULTIPLICATION algorithm to approximate the product of two matrices is pre-
sented and analyzed in Drineas, Kannan, and Mahoney (2004a)n iNsealgorithm is given as
input a matrix A € R™", a probability distributior{ p; }i”:l, and a numbet < n, it returns as output

a matrixC € R™¢ (such thatCC™ ~ AAT) whose columns are randomly-chosen and suitably-
rescaled columns @& An important aspect of this algorithm is the probability distribut{qcm}i”:l
used to choose columns Af Although one could always use a uniform distribution to choose the
columns to form the matrixC, superior results are obtained if the probabilities are chosen judi-
ciously. Sampling probabilities of the form (8), that depend on the lengttereduwf the columns

of A, are theoptimal sampling probabilitiefor approximatingAAT by CCT, in a sense made pre-
cise in Drineas, Kannan, and Mahoney (2004a). Note that if thesalpititles are relaxed such that
Pk > B \A“‘) \2/ HAHé for some positivgd < 1, then bounds similar to those in the following theorem
will be obtained, with a smalB-dependent loss in accuracy. Note also that although we studied
random sampling with replacement for ease of analysis, it is not knowrtdhoempute efficiently
optimal nonuniform sampling probabilities when the sampling is performed wittempl&acement.

In Drineas, Kannan, and Mahoney (2004a) we prove a more gerexsabn of the following theo-
rem; see Drineas, Kannan, and Mahoney (2004a) for a discussiba t#chnical issues associated
with this result.

Theorem 1 Suppose & R™" ce Z" suchthatl <c<n, and{pi}i”:1 are such that
A
IAIE

Construct C with theBASICMATRIXMULTIPLICATION algorithm of Drineas, Kannan, and Ma-
honey (2004a), and let CCbe an approximation to AA Then,

Pk (8)

1
E[||AAT —CCT|| ] < 7 IAIE. (9)
Furthermore, le® € (0,1) andn = 1+ ,/8log(1/8). Then, with probability at least — 9,
T T n 2
|AAT —CCT||- < %HAHF. (10)

3.2 Review of Approximate Singular Value Decomposition

The LINEARTIMESVD algorithm is presented in Drineas, Kannan, and Mahoney (200¢lx.

an algorithm which, when given a matrixe R™", usesO(m+ n) additional space and time to
compute an approximation to the t&gingular values and the corresponding left singular vectors
of A. It does so by randomly choosigolumns ofA and rescaling each appropriately to construct
a matrixC € R™€, computing the tojx singular values and corresponding right singular vectors of
C by performing an eigendecomposition©fC, and using this information to construct a matrix
Hx € R™K consisting of approximations to the tlpeft singular vectors of. A minor modification

of the result from Drineas, Kannan, and Mahoney (2004b) yieldsalenfing theorem in which
the additional error is stated with respect to the best taakproximation for anyk < rank(C).
This theorem holds for any set of sampling probabilities, but the bestdsoare obtained when
probabilities of the form (8) are used, in which case Theorem 2 may beinethtwith Theorem 1.
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Theorem 2 Suppose A R™" and let H be the mx k matrix whose columns consist of the top
k singular vectors of the m ¢ matrix C, as constructed from thaNEARTIMESVD algorithm of
Drineas, Kannan, and Mahoney (2004b). Then, for ever§ K k < rank(C),

JA—HHTAE < [[A= A +2VK[|AAT —cCT| (11)
[A=HHTAL < 1A= Ad5+2[[AAT —cCT]l,. (12)

In addition, if k=r = rank(C) then
A= HAHT A < []AAT —CCT ||, 3)

4. Approximating a Gram Matrix

Consider a set af points inR™, denoted bV, ..., X and letX be them x n matrix whosd-th
column isX(". These points may be either the original data or the data after they havenapeed
into the feature space. Then, define the n Gram matrixG asG = XTX. Thus,G is a SPSD
matrix andGj; = (X1, X)) is the dot product between the data vectors andX (). If Gis dense
but has good linear structure, i.e., is well-approximated by a low-rank m#tgx, a computation
of a easily-computable and easily-interpretable low-rank approximati@) teith provable error
bounds, is of interest.

In this section, two algorithms are presented that compute such an approxirtagoGram
matrixG. In Section 4.1, a preliminary algorithm is presented; it is a modification of amitign in
the literature and is a special case of our main algorithm. Then, in Sectionu @ain algorithm
and our main theorem are presented. Finally, in Section 4.3, the proofrahaim theorem is
presented.

4.1 A Preliminary Nystrdm-Based Algorithm

In Williams and Seeger (2001), a method to approxim@ateas proposed that, in our notation,
chooseg columns fromG uniformly at random and without replacement, and constructs an approx-
imation of the formG = CW-ICT, where then x ¢ matrix C consists of the chosen columns and
W is a matrix consisting of the intersection of thasmlumns with the correspondirmyows. Anal-
ysis of this algorithm and issues such as the existence of the inverse oteddnessed in Williams
and Seeger (2001), but computational experiments were performedeaptbcedure was shown to
work well empirically on two data sets (Williams and Seeger, 2001). This meth®téen referred

to as the Nysttm method (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighuader, a
Tresp, 2002; Fowlkes, Belongie, Chung, and Malik, 2004) since itamamterpretation in terms
of the Nystbm technique for solving linear integral equations (Delves and Mohamé&®,) 1S$ee
Section 5 for a full discussion.

In Algorithm 1, the RRELIMINARY APPROXIMATION algorithm is presented. It is an algorithm
that takes as input amx n Gram matrixG and returns as output an approximate decomposition of
the formG = CW'CT, whereC andW are as in Williams and Seeger (2001), and wiwreis the
Moore-Penrose generalized invers&\af Thec columns are chosen uniformly at random and with
replacement. Thus, theRRLIMINARY APPROXIMATION algorithm is quite similar to the algorithm
of Williams and Seeger (2001), except that we sample with replacementainddltdo not assume
the existence ofV—1. Rather than analyzing this algorithm (which could be done by combining
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the analysis of Section 4.3 with the uniform sampling bounds of Drineas, dtarand Mahoney
(2004a)), we present and analyze a more general form of it, forhmiie can obtain improved
bounds, in Section 4.2. Note, however, that if the uniform sampling pitiiiedare nearly optimal,
in the sense that/h > BG2/ 5", G2 for some positivéd < 1 and for every = 1,...,n, then bounds
similar to those in Theorem 3 will be obtained for this algorithm, with a spralependent loss in
accuracy.

Data :nxnGram matrixG andc <n.

Result :nx nmatrixG.

e Pickc columns ofG in i.i.d. trials, uniformly at random with replacement; [ebe the set
of indices of the sampled columns.

e LetC be then x ¢ matrix containing the sampled columns.

e LetW be thec x ¢ submatrix ofG whose entries argjj,ic I, € 1.

e ReturnG = CW*CT.

Algorithm 1: The RRELIMINARY APPROXIMATION algorithm.

4.2 The Main Algorithm and the Main Theorem

In previous work (Drineas, Kannan, and Mahoney, 2004a,b,c,d3)20@& showed the importance
of sampling columns and/or rows of a matrix with carefully chosen nonuniforobability dis-
tributions in order to obtain provable error bounds for a variety of commanixnaperations. In
Algorithm 2, the MaIN APPROXIMATION algorithm is presented. It is a generalization of tireP
LIMINARY APPROXIMATION algorithm that allows the column sample to be formed using arbitrary
sampling probabilities. The MN APPROXIMATION algorithm takes as input anx n Gram matrix

G, a probability distribution{p; }{_;, a numberc < n of columns to choose, and a rank parameter
k < c. It returns as output an approximate decomposition of the B C\/\{jCT, whereC is an

n x ¢ matrix consisting of the chosen columns@f each rescaled in an appropriate manner, and
whereW is ac x ¢ matrix that is the best rank-approximation to the matri¥/, which is a matrix
whose elements consist of those element§ iim the intersection of the chosen columns and the
corresponding rows, each rescaled in an appropriate manner.

To implement this algorithm, two passes over the Gram md&rixom external storage and
O(n), i.e. sublinear irO(n?), additional space and time are sufficient (assuming that the sampling
probabilities of the form, e.gp = G/ 3., GZ or p = |GV \2/ |G||2 or pi = 1/n are used). Thus,
this algorithm is efficient within the framework of the Pass-Efficient moded; 3gneas, Kannan,
and Mahoney (2004a) for more details. Note that if the sampling probabilitidsedorm p; =
G2/sM ,G? are used, as in Theorem 3 below, then one may storentken data matrixX in
external storage, in which case only those elemen@Gthfat are used in the approximation need to
be computed.

In the simplest application of this algorithm, one could chdosec, in which casé\, =W, and
the decomposition is of the for@ = CW+CT, whereW is the exact Moore-Penrose generalized
inverse of the matriV. In certain cases, however, computing the generalized inverse may be
problematic since, e.g., it may amplify noise present in the low singular valuege tNat, as a
function of increasingdg, the Frobenius norm bound (11) of Theorem 2 is not necessarily ogmal
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Data :nxnGram matrixG, {pi}[_, suchthat ;pi=1,c<n,andk<c.

Result :nxnmatrixG.
e Pick c columns ofG in i.i.d. trials, with replacement and with respect to the probabilities
{pi}{.,; let I be the set of indices of the sampled columns.

¢ Scale each sampled column (whose indeixdsl) by dividing its elements by/cp;; let
C be then x ¢ matrix containing the sampled columns rescaled in this manner.

e LetW be thec x ¢ submatrix ofG whose entries ar€;; /(c,/pipj),i € 1, ] € 1.

e Computé\, the best rankapproximation tan.

e ReturnGy = CW,'CT.

Algorithm 2: The MAIN APPROXIMATION algorithm.

k =rank(C). Also, although the bounds of Theorem 3 for the spectral norrk forank'W) are in
general worse than those fore= rankW), the former are of interest since our algorithms hold for
any input Gram matrix and we make no assumptions about a model for themtigedata.

The sampling matrix formalism of Drineas, Kannan, and Mahoney (2004agi$in the proofs
of Theorem 3 in Section 4.3, and thus we introduce it here. Let us defineatimpling matrix
Se R"™¢ to be the zero-one matrix whe = 1 if the i-th column ofA is chosen in thg-th
independent random trial ar&} = 0 otherwise. Similarly, define the rescaling matBix: R®*° to
be the diagonal matrix withy = 1/\/c—pt. Then then x ¢ matrix

C=GSD

consists of the chosen columns®f each of which has been rescaled W/FD( wherei; is the
label of the column chosen in theh independent trial. Similarly, thex ¢ matrix

W = (SD)TGSD= DS'GSD

consists of the intersection between the chosen columns and the codiegpaws, each element
of which has been rescaled by witjic, /b, pj;. (This can also be viewed as formi#gby sampling
a numberc of rows of C and rescaling. Note, however, that in this case the columwsasfd the
rows ofC are sampled using the same probabilities.) In Algorithm 3, tieNVA PPROXIMATION
is restated using this sampling matrix formalism. It should be clear that Algorithmd 2kyorithm
2 yield identical results.

Before stating our main theorem, we wish to emphasize the structural simplicityr shain
result. If, e.g., we choosk = c, then our main algorithm provides a decomposition of the form
G=CwH+CT:

G ~| & =l c|(w)( c ). (14)

Up to rescaling, the MiN APPROXIMATION algorithm returns an approximati@which is created
from two submatrices oB, namelyC andW. In the uniform sampling casg@; = 1/n, the diagonal
elements of the rescaling matrix are alln/c, and these all cancel out of the expression. In the
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Data :nxnGram matrixG, {pi}[_, suchthat ;pi=1,c<n,andk<c.

Result :nxnmatrixG.
e Define the i x ¢) matrix S= Opc;
e Define the ¢ x ¢) matrix D = Ogxc;
efort=1,...,cdo
Picki; € [n], wherePr(i; =1) = p;;
Dy = (cp,) Y%
St=1,
end
e LetC = GSDandw = DS'GSD
e Computé\, the best rank approximation tov.
o ReturnGy = CW,CT.

Algorithm 3: The MaIN APPROXIMATION algorithm, restated.

nonuniform sampling cas€, is a rescaled version of the columns®&andW is a rescaled version
of the intersection of those columns with the corresponding rows. Alteetgtone can vievC as
consisting of the actual columns &f without rescaling, anW/ as consisting of the intersection of
those columns with the corresponding rows, again without rescaling, itloging manner. Let
C=GS letW = STGS and let

W* =W, . =D (DWD) D (15)
be the{D2, D~2}-weighted{1, 2}-generalized inverse &%. ThenG ~ G = CW+C.

The following theorem states our main result regarding theNVIAPPROXIMATION algorithm.
Its proof may be found in Section 4.3.

Theorem 3 Suppose G is anxin SPSD matrix, let K ¢ be a rank parameter, and |6, = CcwC?
be constructed from thlAIN APPROXIMATION algorithm of Algorithm 2 by sampling ¢ columns
of G with probabilities{ p; }' ; such that

pi=Gi/ zlez (16)

Let r = rank(W) and let G be the best rank-k approximation to G. In addition, ¢et 0 and

n=1+/8log(1/d). If c > 64k/e* then
n
E[f[G-Gue] < HGkaHFHZG% (17)
=
and if c> 64kn?/e* then with probability at least — &

n
1G—Gkl|g < IG— Gl +szleﬁ. (18)
1=
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In addition, if c> 4/¢? then
n
E[l6—Gill,] < ||G—Gk||2+e_zleﬁ (19)
i=
and if ¢> 4n?/€? then with probability at least — &
n
|G—Gy|, < \|G—Gk||2+821Gﬁ. (20)
i=

Several things should be noted about this result. Firktifr = rank'W) thenW, =W, and an
application of (13) of Theorem 2 leads to bounds of the fd{@&— G ||, <e 3, Gf, in expectation
and with high probability. Second, the sampling probabilities used in Thoereray3be written

asp = \X(‘)|2/ |1 X] é which only depend on dot products from the data maXrixThis is useful
if X consists of the data after it has been mapped to the feature $paEwmally, if the sampling

probabilities were of the form; = |G®) \2/ |G||2 then they would preferentially choose data points
that are more informative (in the sense of being longer) and/or moresexedive of the data (in the
sense that they tend to be more well correlated with more data points). Itiségaebbabilities (16)
ignore the correlations. As discussed in Sections 5 and 6, this leads to batwewyse error bounds.
To the best of our knowledge, it is not known how to sample with respecont@lations while
respecting the SPSD property and obtaining provably good bounds witlovetgberror bounds.
This is of interest since in many applications it is likely that the data are apprtedynmaormalized
by the way the data are generated, and it is the correlations that are efsinténtuitively, this
difficulty arises since it is difficult to identify structure in a matrix to ensure th&3Property,
unless, e.g., the matrix is diagonally dominant or given in the f&fiX. As will be seen in Section
4.3, the proof of Theorem 3 depends crucially on the decompositi@asiG = X X.

4.3 Proof of Theorem 3

SinceG = XT X it follows that both the left and the right singular vectorsére equal to the right
singular vectors oK and that the singular values Gfare the squares of the singular values<of
More formally, let the SVD oX beX =UZVT. Then

G=Vz/T =XxTUUTX. (21)

Now, let us conside€x = XSDe R™€, i.e., the column sampled and rescaled versiod,and let
the SVD ofCx beCx = USVT. Thus, in particula) contains the left singular vectors 6§. We
do not specify the dimensions bf (and in particular how many columté has) since we do not
know the rank ofCx. LetUy be them x k matrix whose columns consist of the singular vectors of
Cx corresponding to the tdpsingular values. Instead of exactly computing the left singular vectors
U of X, we can approximate them l,, computed from a column sample ¥f and use this to
compute an approximatio@ to G.

We first establish the following lemma, which provides a bouncﬂ@w— GKHE for& =2,F.

Lemma 4 If Gy = CW,'CT then
-G — XX X050, 22)
|6-Gdl, = |x-0LG7X]3. (23)
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Proof Recall thatC = GSDandW = (SD)"GSD= C{Cx. Thus,W = V3% andW, = VT,
whereZy is the diagonal matrix with the tdpsingular values o€x on the diagonal and the remain-
der set to 0. Then sing@ = XSD=U2VT andW," =V, /T

Gy = GSDW)"(GSD' (24)
XTUT (VEUT)'VE0TX (25)
= XU/ X, (26)

whereljkl]kT is a projection onto the space spanned by thektspngular vectors ofV. (22) then
follows immediately, and (23) follows since

XTX XU X = (X =G 07X) T (X — UG X)

and sincel|Q|) = [|QTQ||, for any matrixQ. |

By combining (23) with Theorem 2, we see that

IG-Gll, < IX=Xl3+2[]XXT —CxCx]l,

<
< |G—Gyll,+2||XXT —CxCx

l>-

Since the sampling probabilities (16) are of the fopm= }X(i)jz/ HXHE, this may be combined
with Theorem 1, from which, by choosingappropriately, the spectral norm bounds (19) and (20)
of Theorem 3 follow.

To establish the Frobenius norm bounds, define XXTXXT —CxCyCxCY. Then, we have
that

IG-GulZ = [XTX||E —2[XXTOk||Z + ||O7 X X702 (27)
k k
< HXTXHi—2<210t4(CX)—\/R||E||F>+210f1(cx)+\/RHEHF (28)
t= t=
k
= HXTXHi—Zoﬁ‘<cx>+3x/RHE||F (29)
t=
k
< HXTXHi—ZC’?(XTX)+4\/RHEHF7 (30)
t=

where (27) follows by Lemmas 4 and 5, (28) follows by Lemmas 6 and 7, 3@df¢llows by
Lemma 8. Since

k k
X712 —t;o$<xTx> = |G| - Zoﬁ(@) — IG-Gi?,

=

it follows that

1G — G| < 1IG — G2 + 4VK|[XXTXXT — CxCECxCx |- (31)
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Since the sampling probabilities (16) are of the fqum- \X(i) \2/ ||XH§, this may be combined with
Lemma 9 and Theorem 1. Sin¢e?+ B2)Y/2 < a+p for a,B > 0, by using Jensen’s inequality,
and by choosing appropriately, the Frobenius norm bounds (17) and (18) of The8rithow.

The next four lemmas are used to bound the right hand side of (22).

Lemma 5 For every k 0 < k < rank(W) we have that
IXTX = XTOOTX|[2 = [XTX|2 = 2||XXTGi|2 + || 5T XXTGi|2.
Proof DefineY = X —UU/J X. Then

XX -XTGOIXE = YTV
= Tr(YTYYTY)
= IXTX|Z = 2Tr (XXTGUTXXT) +Tr (GTXXTOU7XXTU)

where the last line follows by multiplying out terms and since the trace is symmettar uyclic
permutations. The lemma follows sing@||2 = Tr (QQT) for any matrixQ. [ |

Lemma 6 For every k 0 < k < rank(W) we have that

k
[XXT0|| - Zlo;‘(cx) < VK| XXTXXT — CxCECxCk
t=

le-

Proof Sincea;(CxC}) = 0?(Cx) and sinceU is a matrix consisting of the singular vectors of
Cx = XSD, we have that

R k
[XX70e — 3 o' (0x)

\xxT -5 focto )\2|

T (XXTXXT —CxCkCxCy) U

IN

vk (zi( " (XXTXXT —CxCLCxCE) 0(0)2) 1/2,

where the last line follows from the Cauchy-Schwartz inequality. The lemnmeftiews. |

Lemma 7 For every k 0 < k < rank(W) we have that

k
XX - 3 0t(E0) < VRIXKTXXT - CACC -
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Proof Recall that if a matridJ has orthonormal columns thgfu " Q|| - < [|Q||¢ for any matrixQ.
Thus, we have that

k k
ODOTOE - (@) < XXTGE - 5 atSx)
t= t=
k
< |IXXT0de - 3 ofiCo)|.
The remainder of the proof follows that of Lemma 6. |

Lemma 8 For every k 0 < k < rank(W) we have that

k

Zx 0t (Cx) — O (XTX)| < V|| XXTXXT — CxCxCxCx

Ie-

Proof

~
"'-b

y 1/2
H(Cx) — RXTX) ;<of<cx>—o$<xTx>>2)

t=

g\/R<

1/2
~ VK (i(odcxc;cxc:;) - cn(xxTXXT))Z)
t=

< VK|[XXTXXT — CxCXCxCx || »
where the first inequality follows from the Cauchy-Schwartz inequality tardsecond inequality
follows from the matrix perturbation result (3). |

The following is a result of the BSICMATRIX MULTIPLICATION algorithm that is not found in
Drineas, Kannan, and Mahoney (2004a), but that will be useflddanding the additional error in
(31). We state this result for a genenak n matrix A.

Lemma 9 Suppose & R™", ce Z" suchthatl <c<n, and{p;}{, are such that p= |A® \2/ A2,
Construct C with theBASICMATRIX MULTIPLICATION algorithm of Drineas, Kannan, and Ma-
honey (2004a). Then

E[|[AATAAT —cCTcCT | ] < —=||AlR. (32)
\/“
Furthermore, le® € (0,1) andn = 1+ /8log(1/d). Then, with probability at least — J,
|AATAAT —cCTeCT |- < \[ A (33)
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Proof First note that:

AATAAT —CCTcCT = AATAAT —AATCCT +AATCCT —cCTcCT
= AAT (AAT —CCT) + (AAT—CCT)cC'.

Thus, by submultiplicitivity and subadditivity we have that foe= 2, F:

|AATAAT —CCTCCT || < ||A|E ||AAT —cCT

le < +[|AAT—cCT|l [Cf-

le

The lemma follows sincéC||2 = ||A|2 whenpy = |A®|? /||A2, and by applying Theorem

5. Discussion Section

One motivation for the present work was to provide a firm theoretical hastae Nystbm-based
algorithm of Williams and Seeger (2001). A second motivation was to clarifyalaionships be-
tween our randomized SVD algorithms (Drineas, Kannan, and Mahof6b2, our randomized
CUR algorithms (Drineas, Kannan, and Mahoney, 2004c), and thedwydtased methods of oth-
ers (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer,ragg, R002; Fowlkes,
Belongie, Chung, and Malik, 2004). A third motivation was to extend owteansampling method-
ology to extract linear structure from matrices while preserving importaniimear structure. In
this section, we discuss these issues. Note that @anSTANTTIMESVD algorithm of Drineas,
Kannan, and Mahoney (2004b) is the algorithm originally analyzed by &ri€annan, and Vem-
pala (1998), and thus a discussion of it corresponds also to a discudglweir algorithm (Frieze,
Kannan, and Vempala, 1998).

5.1 Summary of the Nystiom Method

The Nystbm method was originally introduced to handle approximations based on theicaime
integration of the integral operator in integral equations, and it is well knimwits simplicity and
accuracy (Delves and Mohamed, 1985). To illustrate the Mygstnethod, consider the eigenfunc-
tion problem:

/DK(t,s)qJ(s)ds: AD(t) t € D. (34)

The resulting solution is first found at the set of quadrature node paimisthen it is extended to all
points inD by means of a special interpolation formula (see (39) below). This metlpites the
use of a quadrature rule. Assume tBat [a,b] C R and that the quadrature rule is the following:

b n
| viods=3 wiy(s)). (39)
a =1

where{w; } are the weights anks; } are the quadrature points that are determined by the particular
guadrature rule. If this rule is used to compute the integral occurring in\{@&thave

n

/bK(x, S)P(s)ds~ Z wik(X,sj)@(sj), (36)
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and the integral equation (34) leads to an eigenvalue problem of the form
n
Z k(% $j)@(S;) = AQ(X). (37)

Solving (37) leads to an approximate eigenva?{umd an approximate eigenfunctifp(x) and may
be done via the Nysbm method as follows. First, sgt=x;, i =1,...,nin (37). This leads to a
system ofn algebraic equations:

=}

wik(x,S))@(sj) = A@(x;), (38)
1

J

that depend on the séx;} of Nystrom points. Although it is by no means necessary that the set of
Nystrom points is coincident with the set of quadrature points, they are oftesenhio be so since

in that case if the kernd{(-,-) is symmetric then the matrik(-,-) in (38) is symmetric. Then, if

Am # O the exact eigenvectogs, on the Nystom points can be extended to a functigr(x) on the

full domain by substituting it into (37):

>’1‘ N

Z K(X,Sj) Pm(Sj)- (39)

The functiong@n(x) is theNystidm extensioof the eigenvectog, and in the present context may
be thought of as being an approximation to the exact eigenfundtignomputed by extending a
function computed on a (small) numbeof points to the full (large) domaib.

In the applications we are considering, the data points are vect@fs ifhus, consider amx n
matrix A consisting ofm such vectors. Let columns and rows be chosen (without replacement)
in some manner, and ldtbe partitioned as

Air A
A= : 40
{ A1 Az ] (40)

where A1 € R®*" represents the subblock of matrix elements common to the sampled columns
and the sampled rowsy; andA;, are rectangular matrices consisting of elements with a sampled
column label (exclusive) or sampled row label, respectively,And R(M-9* (1) consists of the
remaining elements. K,r = O(1) thenAy; is small andAy; is large. To be consistent with the
notation of Drineas, Kannan, and Mahoney (2004b,c), w€ let[Al;Al,]T andR= [A11A12). Let
the SVD ofA;; beA;; = USVT, and let the rank of\;; bek.

Assume, for the moment, thatis a SPSD matrix and that the chosen rows are the same as the
chosen columns. TheAy is also a SPSD matrix; in additiod,= U are the eigenvalues éf; and
% consists of the eigenvectors Af;. In this case, the Nysim extension ot gives the following
approximation for the eigenvectors of the full mat#ix

~

T fs-1_ | A1 |51 _ U
U=cls _[A21 01— | , G5 |- (41)

Note that this Nystim extension of the restricted solution to the full set of data points is of the same
form as (39).
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More generally, ifA is an arbitrarym x n matrix, then the Nystm extension otJ andV gives
the following approximation for the singular vectors of the full matkix

- v

g - [AZlvi_lyand (42)

. v

Vo= Yeq | (43)
s

If both U andV have been computed then the Ngstrextensions (42)—(43) also have an interpre-
tation in terms of matrix completion. To see this, Aet USVT; then we have

X U ST §-13T
A = _A21\7§_1]z[v SWTAL | (44)
[ An UU0TAp
B _A21\7\7T A21A] ALz } (45)
[ A1g
= Az Al [ A Az . (46)
Note that ifA11 is nonsingular, then (45) becomes
~ [ A1g Ag2 }
A = Z . 47
| Ao AsiATfAL (47

In this case, the Nysbm extension implicitly approximate®, usingAx1A;; LA15, and the quality
of the approximation of by A can be quantified by the norm of the Schur complement

A2 — AiAf

¢ E=2F.

The size of this error norm is governed, e.g., by the extent to which thenoalwfA,; provide a
good basis for the columns 86,. If A3 is rectangular or square and singular then other terms in the
matrix A also contribute to the error. Note that (46) is of the fokmy A= CAJ;R. If Ais a SPSD
matrix and the chosen rows are the same as the chosen columns then (45fiechapgropriately
and (46) is of the formA ~ A= CW*CT, which is the form of our main decomposition for a Gram
matrix G. Note, however, that neithéf norU are actually computed by our main approximation
algorithm. In Sections 5.2 and 5.3, we discuss these issues further.

5.2 Relationship to the Randomized Singular Value Decompositions

Recall that the INEARTIMESVD of Drineas, Kannan, and Mahoney (2004b) computes exactly the
low-dimensional singular vectors 6f Let the SVD ofC beC =H3>Z". Then, the high-dimensional
singular vectors of are computed by extending the low-dimensional singular vectors as

H=Czz1, (48)

and it is these that are taken as approximations of the left singular vettbws ariginal matrixA,
in the sense that under appropriate assumptions,

[A—HHTA|l; < |A—Adlg +&[Alle . (49)
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in expectation and with high probability, for both= 2,F. This is not a Nystim extension in the
sense of Section 5.1 since although sampling is used to construct the @atrsecond level of
sampling is never performed to constriéat.

On the other hand, the @NSTANTTIMESVD algorithm of Drineas, Kannan, and Mahoney
(2004b) (and thus the algorithm of Frieze, Kannan, and Vempala, i8%8nilar except that it
approximateshe low-dimensional singular vectors©f It does this by randomly samplingrows
of C and rescaling each appropriately to formw & c matrix A1 (this matrix is calledV in Drineas,
Kannan, and Mahoney (2004b,c), but it is constructed with differamigding probabilities than the
W defined in this paper) and computing the eigenvectora[ef;. These eigenvectors are then
Nystrom-extended via (42) to vectdts (denoted by in Drineas, Kannan, and Mahoney (2004b))
that approximate the left singular vectorsAfin this case, the projectiaddH™ = C(CTC)*CT of
the LINEARTIMESVD algorithm is replaced by an approximate projection onto the column space
of C of the formUU = C(A],;A11)"CT. From this perspective, sin€@' C ~ A];A11 we may view
the LINEARTIMESVD of Drineas, Kannan, and Mahoney (2004b) as performing a 8iysbased
extension of approximations of the eigenvectoré&\bfA ;.

We emphasize these points since we would like to clarify several potential deisiandings
in the literature regarding the relationship between the Nystbased algorithm of Williams and
Seeger (2001) and the approximate SVD algorithm of Frieze, Kanndneampala (1998). For ex-
ample, in some work (Williams and Seeger, 2001; Williams, Rasmussen, Sclofexigind Tresp,
2002; Fowlkes, Belongie, Chung, and Malik, 2004) it is claimed that thegtiign-based methods
are a special case of Frieze, Kannan, and Vempala (1998) and tllus GONSTANTTIMESVD
algorithm of Drineas, Kannan, and Mahoney (2004b). Although the @\gorithms of Drineas,
Kannan, and Mahoney (2004b) and Frieze, Kannan, and Vempd8)(1i® represent a Nystm-
based extension in the sense just described, several things showtktefirst, in order to obtain
provable performance guarantees, theNGTANTTIMESVD algorithm used by Drineas, Kannan,
and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998)xdprates the left (or right, but
not both) singular vectors in a single Ny&tn-like extension of the form (42) (or (43) for the right
singular vectors). This algorithm makes no assumptions about the symmetogitive definite-
ness of the input matrix, and it does not take advantage of this structurexikis. Second, and
relatedly, in this algorithm there are two levels of sampling, and only the fipstra#s directly on
the elements of the matriX; the second depends on the lengths of the rowa. dthus, in general,
the matrixA;; does not consist of the same rows as columns, evArisfa SPSD matrix. 1A is
a SPSD matrix, then one could approximatasA =UZUT, but the error associated with this is
not the error that the theorems of Drineas, Kannan, and Mahonegt§2@0d Frieze, Kannan, and
Vempala (1998) bound. Third, the structure of the approximation obtaipddrineas, Kannan,
and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998) isdiffideent from that of the
approximation of Williams and Seeger (2001) and (14). In the latter casefitie formCW-CT,
while in the former case it is of the forfcA, whereP: is an exact or approximate projection onto
the column space .

5.3 Relationship to the Randomized CUR Decompositions

To shed further light on the relationship between theNSTANTTIMESVD algorithm (Drineas,
Kannan, and Mahoney, 2004b; Frieze, Kannan, and Vempala, 39@&he Nystim-based meth-
ods (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer,rasd, R002; Fowlkes,
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Belongie, Chung, and Malik, 2004), it is worth considering the CUR deasitipns of Drineas,
Kannan, and Mahoney (2004c), which are structurally a generalizationr main matrix decom-
position. ACUR decompositiois a low-rank matrix decomposition of the fodr= CUR, whereC

is a matrix consisting of a small number of columngpR is a matrix consisting of a small number
of rows of A, andU is an appropriately-defined low-dimensional matrix. Examples may be found
in Drineas, Kannan, and Mahoney (2004c), and also in Goreinotyshymikov, and Zamarashkin
(1997); Goreinov and Tyrtyshnikov (2001). In particular, the/EARTIMECUR and ®NSTANT
TIMECUR algorithms of Drineas, Kannan, and Mahoney (2004c¢) (so nametbdiheir relation-
ship with the correspondingly-named SVD algorithms of Drineas, KannmashMahoney, 2004b)
compute an approximation to a matixe R™" by samplingc columns and rows of the matrix
A to form matricesC € R™¢ andR € R"*", respectively. The matriceéS andR are constructed
with carefully-chosen and data-dependent nonuniform probabilityilisions, and fronC andR

a matrixU € R®*" is constructed such that under appropriate assumptions:

|A—CUR(g < [|A—Adg +[|Al. (50)

with high probability, for bothg = 2, F. Although these algorithms apply to any matrix, and thus
to a SPSD matrix, the computed approximati@ldR (with the provable error bounds of the form
(50)) is neither symmetric nor positive semidefinite in the latter case. The SR#§@rfy is an
important property in many applications, and thus it is desirable to obtain adokapproximation
that respects this property. The analysis of theiMAPPROXIMATION algorithm shows that iG

is a SPSD matrix then we can chod®e- CT andU = A, and obtain a SPSD approximation of the
form G ~ G, = C\/\{jCT with provable error bounds of the form (1). Note that this bound is worse
than that of (50) since the scale of the additional error is larger. Alth@ughay not be surprising
that the bound is somewhat worse since we are requiring that the apptimxinsanot just low rank
but that in addition it respects the nonlinear SPSD property, the worselbslikely due simply to
the sampling probabilities that were used to obtain provable performancangees.

Since the CUR algorithms of Drineas, Kannan, and Mahoney (2004cjaetheir proofs of
correctness on the corresponding SVD algorithms of Drineas, Kaananyiahoney (2004b), the
Nystrom discussion about the SVD algorithms is relevant to them. In addition, to staddrthe
CUR algorithm in terms of matrix completion, considerrarx h matrix A with ¢ columns and
rows chosen in some manner which is partitioned as in (40).ULetR®*" be an appropriately
defined matrix as in Drineas, Kannan, and Mahoney (2004c), and lé¢ammpose the original
matrix A of (40) asA~CUR

CUR = [A“]U[An Az | (51)
Axy
_ [AnUAn A11UA12} (52)
AiUA11 AxiUAg |-

In Drineas, Kannan, and Mahoney (2004t} A;1, but we provide a definition fod such that

U ~ A}, in which case the structural similarity between (51) and (46) should be akeshould the
similarity between (52) and (45). For general matridethe CUR decomposition approximat&s

by Azo = A21UA1,, but it also approximatesy; by Ax1UAq1, Aro by A11UA12, andAp1 by AjjUA 1.
Thus, the quality of the approximation of the full matrix can not be quantifiedlgitmpthe norm

of the Schur complemerﬁAzz—AﬂAflAlz & and in Drineas, Kannan, and Mahoney (2004c) we
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bound||A—CUR| directly. Relatedly, the quality of the approximation is determined, e.g., by how
well a basis the chosen columnsére for the remaining columns &f

6. Conclusion

We have presented and analyzed an algorithm that provides an appi@®xie@mposition of an
nx n Gram matrixG which is of the formG ~ G, = CW,"CT and which has provable error bounds
of the form (1). A crucial feature of this algorithm is the probability distribnticsed to randomly
sample columns. We conclude with two open problems related to the choice oifsthisudion.

First, it would be desirable to choose the probabilities in Theorem 3 pp-6d G! \2/ |G||2 and
to establish bounds of the form (1) in which the scale of the additional emst|G||- = ||XTX||-
rather thans ; GZ = HXHé. This would entail extracting linear structure while simultaneously
respecting the SPSD property and obtaining improved scale of errorw®hid likely be a corollary
of a CUR decomposition for a generalx n matrix A with error bounds of the form (50) in which
U =W, whereW is now the matrix consisting of the intersection of the chosen columns and (in
general different) rows. This would simplify considerably the fornddbund in Drineas, Kannan,
and Mahoney (2004c) and would lead to improved interpretability. Seamadshould also note
that if capturing coarse statistics over the data is not of interest, but instesd interested in other
properties of the data, e.g., identifying outliers, then probabilities that depeithe data in some
other manner, e.g., inversely with respect to their lengths squared, maptmpeate. We do not
have provable bounds in this case. We should note, however, thatewergoirically evaluating
the applicability of the methodology presented in this paper for problems oksiteér machine
learning. We will report the results at a future date.
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