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Abstract

Many works related learning from examples to regularizatexhniques for inverse problems, em-
phasizing the strong algorithmic and conceptual analogyedfin learning algorithms with regu-
larization algorithms. In particular it is well known thaggularization schemes such as Tikhonov
regularization can be effectively used in the context ofde®sy and are closely related to algo-
rithms such as support vector machines. Nevertheless tivgection with inverse problem was
considered only for the discrete (finite sample) problem tedprobabilistic aspects of learning
from examples were not taken into account. In this paper weige a natural extension of such
analysis to the continuous (population) case and studyntieeplay between the discrete and con-
tinuous problems. From a theoretical point of view, thiswab to draw a clear connection between
the consistency approach in learning theory and the dtabidinvergence property in ill-posed in-
verse problems. The main mathematical result of the papgmisw probabilistic bound for the
regularized least-squares algorithm. By means of stan#ardts on the approximation term, the
consistency of the algorithm easily follows.
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1. Introduction

The main goal of learning from examples is to infer an estimator from a finitef @amples. The
crucial aspect in the problem is that the examples are drawn accordiriixéal &ut unknown prob-
abilistic input-output relation and the desired property of the selected funistim be descriptive
also of new data, i.e. it shoulgeneralize The fundamental work of Vapnik and further develop-
ments (see Vapnik (1998); Alon et al. (1997) and Bartlett and Mend€&@0®) for recent results)
show that the key to obtain a meaningful solution is to control the complexity ofiypethesis
space. Interestingly, as pointed out in a number of papers (see Pogb@imsi (1992); Evgeniou
et al. (2000) and references therein), this is in essence the idedyumgleegularization techniques
for ill-posed problems (Tikhonov and Arsenin, 1977; Engl et al., 1988} surprisingly the form of
the algorithms proposed in both theories is strikingly similar (Mukherjee et @2)2ind the point
of view of regularization is indeed not new to learning (Poggio and Gir@821Evgeniou et al.,
2000; Vapnik, 1998; Arbib, 1995; Fine, 1999; Kecman, 2001 ;apf and Smola, 2002). In par-
ticular it allowed to cast a large class of algorithms in a common framework, nasgharization
networks or regularized kernel methods (Evgeniou et al., 200®!smbf and Smola, 2002).

Anyway a careful analysis shows that a rigorous mathematical connéetiaeen learning the-
ory and the theory of ill-posed inverse problems is not straightforwamgghme settings underlying
the two theories are different. In fact learning theory is intrinsically pbilsdic whereas the theory
of inverse problem is mostly deterministic. Statistical methods were recently djpliee context
of inverse problems (Kaipio and Somersalo, 2005). Anyway a Bayesiah @f view is considered
which differs from the usual learning theory approach. Recently thaection between learning
and inverse problems was considered in the restricted setting in which thentdeofiehe input
space are fixed and not probabilistically drawn (Mukherjee et al., 200¢kova, 2004). This cor-
responds to what is usually called nonparametric regression with fixéghdgzyorfi et al., 1996)
and when the noise level is fixed and known, the problem is well studied iootfieext of inverse
problems (Bertero et al., 1988). In the case of fixed design on a finitégriproblem is mostly that
we are dealing with an ill-conditioned problem, thatsstablew.r.t. the data. Though such setting
is indeed close to the algorithmic setting from a theoretical perspective it igematral enough to
allow a consistency analysis of a given algorithm since it does not take€#re random sampling
providing the data. In this paper we extend the analysis to the setting of reon@igic regression
with random design (Giffi et al., 1996).

Our analysis and contribution develop in two steps. First, we study the mathehtiic
nections between learning theory and inverse problems theory. We eptis@specific case of
guadratic loss and analyse the population case (i.e. when the probabilitigudistr is known) to
show that the discrete inverse problem which is solved in practice canelpeasethe stochastic
discretization of an infinite dimensional inverse problem. This ideal probleim generalill-posed
(Tikhonov and Arsenin, 1977) and its solution corresponds to the trgetion which is the fi-
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nal goal in learning theory. This clarifies in particular the following importact. Regularized
solutions in learning problems should not only provide stable approximatemswuo the discrete
problem but especially give continuous estimates of the solution to the ill-fpofeite dimensional
problem. Second, we exploit the established connection to study the iggdl&ast-squares al-
gorithm. This passes through the definition of a natural notion of discretieatise providing a
straightforward relation between the number of available data and the ffi@strey the problem.
Classical regularization theory results can be easily adapted to the neledsning. In partic-
ular our definition of noise together with well-known results concerning diikdv regularization
for inverse problems with modelling error can be applied to derive a netapitistic bound for
the estimation error of regularized least squares improving recently mopesults (Cucker and
Smale, 2002a; De Vito et al., 2004). The approximation term can be studamdythclassical spec-
tral theory arguments. The consistency of the algorithm easily follows. ésnihjor aim of the
paper was to investigate the relation between learning from examples anseipreblem we just
prove convergence without dealing with rates. Anyway the approagoped in Cucker and Smale
(2002a); De Vito et al. (2004) to study the approximation term can be stfarglardly applied to
derive explicit rates under suitable a priori conditions.

Several theoretical results are available on regularized kernel mefibotisge class of loss
functions. The stability approach proposed in Bousquet and Eliss2@9P] allows to find data-
dependent generalization bounds. In Steinwart (2004) it is proveditich results as well as other
probabilistic bounds can be used to derive consistency results withouergence rates. For the
specific case of regularized least-squares algorithm a functionataahbpproach to derive consis-
tency results for regularized least squares was proposed in Cunk8naale (2002a) and eventually
refined in De Vito et al. (2004) and Smale and Zhou (2004b). In the lattezaheection between
learning and sampling theory is investigated. Some weaker results in the sainef spose pre-
sented in this paper can be found in Rudin (2004). Anyway none of théaned papers exploit the
connection with inverse problems. The arguments used to derive olisraseiclose to those used
in the study of stochastic inverse problems discussed in Vapnik (1998 e algorithmic point
of view Ong and Canu (2004) apply other techniques than Tikhonovaegation in the context of
learning. In particular several iterative algorithms are considered ameergence with respect to
the regularization parameter (semiconvergence) is proved.

The paper is organized as follows. After recalling the main concepts aatlaroof statistical
learning (Section 2) and of inverse problems (Section 3), in Section 4 veagea formal connec-
tion between the two theories. In Section 5 the main results are stated, disaunslsgroved. In the
Appendix we collect some technical results we need in our proofs. Finggdation 6 we conclude
with some remarks and open problems.
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2. Learning from Examples

We briefly recall some basic concepts of statistical learning theory (tailslsee Vapnik (1998);
Evgeniou et al. (2000); Sétkopf and Smola (2002); Cucker and Smale (2002b) and references
therein).

In the framework of learning from examples, there are two sets of vasialthe input space
X, which we assume to be a compact subsék'yfand the output spadé which is a subset dR
contained if—M, M] for someM > 0. The relation between the inpxit X and the outpuy € Y is
described by a probability distributigr(x,y) = v(x)p(y|x) on X x Y. The distributionp is known
only through a sample = (x,y) = ((X1,Y1),---, (X, Ye)), calledtraining set drawn independently
and identically distributed (i.i.d.) according po Given the sample, the aim of learning theory is
to find a functionf; : X — R such thatf,(x) is a good estimate of the outpptvhen a new inpux is
given. The functiorf; is calledestimatorand the map providingd,, for any training set, is called
learning algorithm

Given a measurable functidit X — R, the ability of f to describe the distributiomis measured
by its expected risklefined as

I[f]= | V(f(x),y)dp(x.y),
XxY

whereV (f(x),y) is theloss functionwhich measures the cost paid by replacing the true favith
the estimate (x). In this paper we consider the square loss

V(f(x),y) = (f(x) —y)2.

With this choice, it is well known that the regression function

904 = [ yp(yix)

is well defined (sincé&’ is bounded) and is the minimizer of the expected risk over the space of
all the measurable real functions &h In this senseay can be seen as the ideal estimator of the
distribution probabilityp. However, the regression function cannot be reconstructed exautly s
only a finite, possibly small, set of exampless given.

To overcome this problem, in the framework of the regularized least sgjaliyerithm (Wahba,
1990; Poggio and Girosi, 1992; Cucker and Smale, 2002b; Zhan@),280 hypothesis spack
of functions is fixed and the estimatéy® is defined as the solution of the regularized least squares
problem, .

min(7 3 (106) ~)* +2Q(1), @
whereQ is a penalty term and is a positive parameter to be chosen in order to ensure that the
discrepancy.
O
[[f; ]—flg{l[f]
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is small with high probability. Since is unknown, the above difference is studied by means of a
probabilistic boundB(A, £,n), which is a function depending on the regularization paramettre
number? of examples and the confidence level f, such that

PG~ inf 1[f] < B(\6n)| > 17,

We notice that, in general, ipf, | [f] is larger tharl [g] and represents a sort of irreducible error
(Hastie et al., 2001) associated with the choice of the sgacéMe do not require the infimum
inf¢c4,1[f] to be achieved. If the minimum af exists, we denote the minimizer by, .

In particular, the learning algorithm monsistentf it is possible to choose the regularization
parameter, as a function of the available dataA(/,z), in such a way that

Jim P I[fAE2)] — fig[l [f]>¢| =0, 2)
for everye > 0. The above convergence in probability is usually ca(ledak) consistencgf the
algorithm (see Devroye et al. (1996) for a discussion on the diffé&iadtof consistencies).

In this paper we assume that the hypothesis spdcis a reproducing kernel Hilbert space
(RKHS) onX with a continuous kerndd. We recall the following facts (Aronszajn, 1950; Schwartz,
1964). The kerneK : X x X — R is a continuous symmetric positive definite function, where
positive definiteneans that

Za;ajK(xi,xj) > 0.
]
foranyxy,...xn € X anday,...a, € R.

The spaceH is a real separable Hilbert space whose elements are real continunmtierfis
defined onX. In particular, the functionky = K(-,x) belong to# for all x € X, and

H = spadKy|xe X}
(K, K)oy = K(xt) WxteX,

where(-,-) ., is the scalar product iftf. Moreover, since the kernel is continuous atis compact

K = supy/K(x,X) = sup||Kx|| 4y < 400, (3)

xeX xeX
where||-||,, is the norm in#. Finally, givenx € X, the followingreproducingproperty holds

f(x)=(f,Kyx), VFeH. 4)
In particular, in the learning algorithm (1) we choose the penalty term
Q(f) = || flls",

so that, by a standard convex analysis argument, the mininfij2eexists, is unique and can be
computed by solving a linear finite dimensional problem, (Wahba, 1990).

With the above choices, we will show that the consistency of the regulddastisquares algo-
rithm can be deduced using the theory of linear inverse problems we rgvibe next section.
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3. 11l-Posed I nver se Problems and Regularization

In this section we give a very brief account of the main concepts of linearsevproblems and
regularization theory (see Tikhonov and Arsenin (1977); GroetseB4)t Bertero et al. (1985,
1988); Engl et al. (1996); Tikhonov et al. (1995) and referericerein).
Let # and X be two Hilbert spaces antl: # — K a linear bounded operator. Consider the
equation
Af=g (5)

whereg € X is theexactdatum. Finding the functiof satisfying the above equation, givérand
g, is the linear inverse problem associated to (5). In general the abotéepr is ill-posed, that
is, the solution either not exists, is not unique or does not depend cousiiyuon the datung.
Existence and uniqueness can be restored introducing the MooresBayeneralized solutiofi
defined as the minimal norm solution of the least squares problem

min||Af—g||% . 6
felﬂH all% (6)

It can be shown (Tikhonov et al., 1995) that the generalized soldticexists if and only ifPg e
Rang€A), whereP is the projection on the closure of the rangefof However, the generalized
solution f does not depend continuously on the datynso that findingf ' is again an ill-posed
problem. This is a problem since the exact datyis not known, but only aoisydatumgs € X is
given, where|g — gs|| - < 8. According to Tikhonov regularization (Tikhonov and Arsenin, 1977)
a possible way to find a solution depending continuously on the data is toedplablem (6) with
the following convex problem

min{||Af —gs||2 + A || |3, 7
MIn{[IAT —Gall% + A1l Tl ()

and, forA > 0, the unique minimizer is given by
f) = (AA+ ) TAgs, 8)

whereA* the adjoint operator oA. A crucial issue is the choice of the regularization parameter
as a function of the noise. A basic requirement is thatrdélsenstruction error

8-l

is small. In particularA must be selected, as a function of the noise |&wahd the datas, in such

a way that the regularized solutidﬁ(é’g"’) converges to the generalized solution, that is,
im [[2°%)— 11| o, 9
5-oll 3 9 ©

for anyg such thatf " exists.
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Remark 1 We briefly comment on the well known difference between ill-posed arahdit®ned
problems (Bertero et al., 1988). Finite dimensional problems are oftdlnp@sed. In particular it
can be shown that if a solution exists unique then continuity dfi# always ensured. Nonethe-
less regularization is needed since the problems are usually ill conditionddesd to unstable
solutions.

Sometimes, another measure of the error, namelyesielual is considered according to the fol-
lowing definition
AH—PH :HAH—AHH, 10
|at—pd|, = [ag At (10)

which will be important in our analysis of learning. Comparing (9) and (it@3,clear that while
studying the convergence of the residual we do not have to assume ehgetrieralized solution
exists.
We conclude this section noting that the above formalism can be easily edttntte case of
a noisy operatofs : H — K where
A=Al <3,

and||-|| is the operator norm (Tikhonov et al., 1995).

4. Learning asan Inverse Problem

The similarity between regularized least squares and Tikhonov reguilanzsapparent comparing
Problems (1) and (7). However while trying to formalize this analogy sédéfizulties emerge.

e To treat the problem of learning in the setting of ill-posed inverse problentsaweto define
a direct problem by means of a suitable operétbetween two Hilbert space& and K.

e The nature of the nois&in the context of statistical learning is not clear .

e We have to clarify the relation between consistency, expressed byn@}ha convergence
considered in (9).

In the following we present a possible way to tackle these problems andtbbgwoblem of learn-
ing can be indeed rephrased in a framework close to the one presentegietious section.

We letL?(X,v) be the Hilbert space of square integrable functions<owith respect to the
marginal measure and we define the operatér. # — L?(X,v) as

(A)(X) = (f,Ke) gy

whereK is the reproducing kernel off. The fact thaK is bounded, see (3), ensures that a
bounded linear operator. Two comments are in order. First, from (4pe¢hst the action ok on
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an element is simply
(Af)(x) =f(x) Wxex feH,

that is, A is the canonical inclusion aff into L?(X,v). However it is important to note that
changes the norm singf ||, is different to| f[| 2« ,). Second, to avoid pathologies connected
with subsets of zero measure, we assumeutiginot degenerate This condition and the fact that
K is continuous ensure thatis injective (see the Appendix for the proof).

It is known that, considering the quadratic loss function, the expectedaiske written as

1) = [ (100-900)°dv00+ [ (y=g(x)2dplx.y)
= IIf ~dlitaxy) + 11gl:

whereg is the regression function (Cucker and Smale, 2002b)faiscany function inL?(X,v). If
f belongs to the hypothesis spate the definition of the operatak allows to write

I[f] = |Af—glP2x) +[d]- (11)

Moreover, ifP is the projection on the closure of the rangefothat is, the closure aff into
L2(X,v), then the definition of projection gives

inf A= gllZzcu) = 19— PalEzcy) (12)
Given f € #, clearlyPAf = Af, so that
I[f] = inf 1] = AT gl ~ 19— PalEzxy) = AT~ Palfz. (13)

which is the square of the residual bf
Now, comparing (11) and (6), it is clear that the expected risk admits a minirfjzem the
hypothesis spacg/ if and only if f,, is precisely the generalized solutidh of the linear inverse
problem
Af=g. (14)

The fact thatf,, is the minimal norm solution of the least squares problem is ensured by the fac
thatAis injective.

Let nowz = (X,y) = ((X1,¥1),---,(X¢,¥¢)) be the training set. The above arguments can be
repeated replacing the s¥twith the finite set{xy,...,%/}. We now get a discretized version Af
by defining thesampling operato(Smale and Zhou, 2004a)

A H — Eé (Axf)i = <f7KXi>5/-[: f(xi)7

1. This means that all the open non-void subsefs bave strictly positive measure.
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whereE! = R’ is the finite dimensional euclidean space endowed with the scalar product

iWIV\/'

S

<W7W,>Ef =

It is straightforward to check that
1g 2 2
Z_Zi(f(xi)_)’i) = [IAf =yl
1=

so that the estimatof,” given by the regularized least squares algorithm, see Problem (1), is the
Tikhonov regularized solution of the discrete problem

At this point it is useful to remark the following three facts. First, in learniogrf examples rather
than finding a stable approximation to the solution of the noisy (discrete) Pnqhilg), we want to
find a meaningful approximation to the solution of the exact (continuoug)léro(14) (compare
with Kurkova (2004)). Second, in statistical learning theory, the keytjtyais the residual of the
solution, which is a weaker measure than the reconstruction error, ustiadlied in the inverse
problem setting. In particular, consistency requires a weaker kind mfecgence than the one
usually studied in the context of inverse problems . Third, we observéntktad context of learning
the existence of the minimizdy,, that is, of the generalized solution, is no longer needed to define
good asymptotic behavior. In fact when the projection of the regressimtibn is not in the range
of A the ideal solutiorf,, does not exist but this is not a problem since Eq. (12) still holds.

After this preliminary considerations in the next section we further devaloalysis stating
the main mathematical results of this paper.

5. Regularization, Stochastic Noise and Consistency

Table 1 compares the classical framework of inverse problems (see Sextidth the formulation
of learning proposed above. We note some differences. First, the daiayspac&’ is different
from the exact data spa¢é(X,v) so thatA and A belong to different spaces, as well gsand
y. A measure of the difference betwedgpandA, and betweergy andy is then required. Second,
both Ay andy are random variables and we need to relate the isghe numbe¥ of examples
in the training setz. Given the above premise our derivation of consistency results is gmaelo
in two steps: we first study the residual of the solution by means of a meaftire noise due to
discretization, then we show a possible way to give a probabilistic evaludtiba noise previously
introduced.
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Inverse problem L earning theory
input spacer hypothesis space RKHE
data spacex target spac&?(X,v)
normin & || | norm inL?(X,v) [ [l z(x v
exact operatoA inclusion of # into L?(X, V)
exact datung regression functiog(x) = J, ydp(y|x)
generalized solutior ideal solutionf,,
reconstruction errot f — fT||, | residuall|Af _Af}[”E?(X,v) =1[f] = 1[fy]
noisy data spac&’ =
noisy datags € X y € Ef
noisy operatoAs : H — K sampling operatod, : H — E*
Tikhonov regularization Regularized least squares algorithm

Table 1: The above table summarizes the relation between the theory ofeipreldem and the
theory of learning from examples. When the projection of the regressiariion is not in
the range of the operatdythe ideal solutionf,, does not exist. Nonetheless, in learning
theory, if the ideal solution does not exist the asymptotic behavior can sstlioéed since
we are looking for the residual.

5.1 Bounding the Residual of Tikhonov Solution

In this section we study the dependence of the minimizer of Tikhonov fun¢tionine operatoA

and the datg. We indicate withZ(H) andL(#, X) the Banach space of bounded linear operators
from #{ into #{ and from7{ into X respectively. We denote witl|| ., the uniform norm in
L(H) and, ifAe L(H,K), we recall thatA* is the adjoint operator. The Tikhonov solutions of
Problems (14) and (15) can be written as

A = (A'A+A) AT,
7 = (AAGAN) Ay

(see for example Engl et al., 1996, Chapter 5, page 117). The aboati@ns show that} and
fA depend only omA:A, and A*A, which are operators fron# into #, and onA%y and A‘g,
which are elements off. This observation suggests that noise levels could be evaluated controlling
[ AP~ A°A ) and]| Ay — A'gl -

For this purpose, for evey= (1,0;) € ]Ri, we define the collection of training sets

Us:={z€ (XxY)| [|AY —Aglly < B, [|AA—AAll (5 < B2}
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Recalling thaP is the projection on the closure of the rangedaindY C [—M, M|, we are ready to
state the following theorem.

Theorem 2 GivenA > 0, the following inequality holds

01 Mo

142 =Pl A7 Pl | < o o

L2(X,v)

for any training setz € Us.

We postpone the proof to Section 5.4 and briefly comment on the above Hseifirst term in the
l.h.s. of the inequality is exactly the residual of the regularized solution wldte second term
represents the approximation error, which does not depend on the s@uapleound quantifies the
difference between the residual of the regularized solutions of the @ardaoisy problems in terms

of the noise leved = (81,8,). As mentioned before this is exactly the kind of result needed to derive
consistency. Our result bounds the residual both from above and helbis obtained introducing
the collectionT of training sets compatible with a certain noise ledellt is left to quantify the
noise level corresponding to a training set of cardindlityrhis will be achieved in a probabilistic
setting in the next section, where we also discuss a standard result grptiogienation error.

5.2 Stochastic Evaluation of the Noise and Approximation Term

In this section we give a probabilistic evaluation of the noise ledelandd, and we analyze the
behavior of the ternﬂAfA — PgHLZ(X.V). In the context of inverse problems a noise estimate is a part
of the available data whereas in learning problems we need a probabilidifsiana

Theorem 3 LetO< n < 1. Then

PLIAG— Ayl < B1(En), A A= AC A L) < 2(6,m)] = 11

wherek = supcx v/K(x,X),

M 8 4 2 /8 4
&(€,n) = %w(zlogﬁ) &(¢,n) = %w(zlog—>

with g(t) = 3(t+vt2+4t) = vi+o(\1).

We refer again to Section 5.4 for the complete proof and add a few commeémsonE proposed
is just one of the possible probabilistic tools that can be used to study the edotdom variables.
For example union bounds and Hoeffding’s inequality can be used irdgingla suitable notion of
covering numbers oK x Y.

An interesting aspect in our approach is that the collection of training seipatthble with a
certain noise leved does not depend on the regularization paramgterhis last fact allows us
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to consider indifferently data independent parameter choices\(¢) as well as data dependent
choicesA = A(4,z). Since through data dependent parameter choices the regularizaigoneper
becomes a function of the given samplé, z), in general some further analysis is needed to ensure
that the bounds hold uniformly w.ra.

We now consider the terflAf* — PgHLZ(xm which does not depend on the training zetnd
plays the role of an approximation error (Smale and Zhou, 2003; NiyogiGirasi, 1999). The
following is a trivial modification of a classical result in the context of ineepsoblems (see for
example Engl et al. (1996) Chapter 4, Theorem 4.1, p. 72).

Proposition 4 Let f* the Tikhonov regularized solution of the problem Af;, then the following
convergence holds

L2(X,v) =0

lim

A
Jim, Af*—Pg

We report the proof in the Appendix for completeness. The above pitipoensures that, indepen-
dently of the probability measue the approximation term goes to zeroXas» 0. Unfortunately
it is well known, both in learning theory (see for example Devroye et &96); Vapnik (1998);
Smale and Zhou (2003); Steinwart (2004)) and inverse problems tf@ovgtsch, 1984), that such
a convergence can be arbitrarily slow and convergence rates candirenl only under some as-
sumptions either on the regression funct@or on the probability measume (Smale and Zhou,
2003). In the context of RKHS the issue was considered in Cucker aradeS2002a); De Vito
et al. (2004) and we can strightforwardly apply those results to obtaiic#xqonvergence rates.

We are now in the position to derive the consistency result that we presém following
section.

5.3 Consistency and Regularization Parameter Choice

Combining Theorems 2 and 3 with Proposition 4, we easily derive the folloveisgitr(see Section
5.4 for the proof).

Theorem 5 Given0 < n <1, A >0 and/ € N, the following inequality holds with probability
greater thatl —n

MK  Mk? 8, 4
1[f] fg[l[f] < [(2\/X+ Y >L|J<€Iogn> +HAf Pg L2(X,v)]

[log 1 4
24/ =N A_ —~ log =
Mk 2)\2£+HAf Pg L2(X,v)+o< ] Iogn

wherey(-) is defined as in Theorem 3. Moreovei i O(I~°) with 0 < b < 1, then

(16)

2

nmppmwﬂ—mﬂmzﬁza
{—+o0 feH
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for everye > 0.

As mentioned before, the second term in the right hand side of the abawgalitg is an approxi-
mation error and vanishes agyoes to zero. The first term in the right hand side of Inequality (16)
plays the role of sample error. It is interesting to note that sineed(¢) we have an equivalence
between the limi¥ — oo, usually studied in learning theory, and the lidit> 0, usually considered
for inverse problems. Our result presents the formal connection bettheeconsistency approach
considered in learning theory, and the regularization-stability conveegamoperty used in ill-posed
inverse problems. Although it is known that connections already existy asfwe know, this is the
first full connection between the two areas, for the specific case afsdpss.

We now briefly compare our result with previous work on the consisteftlieoregularized
least squares algorithm. Recently, several works studied the congigteperty and the related
convergence rate of learning algorithms inspired by Tikhonov regutasizaFor the classification
setting, a general discussion considering a large class of loss functarise found in Steinwart
(2004), whereas some refined results for specific loss functionsecouhd in Chen et al. (2004)
and Scovel and Steinwart (2003). For regression problems in Betuaqd Elisseeff (2002) a large
class of loss functions is considered and a bound of the form

1[F] —1,[1}] < O<ﬁ>

is proved, wherdaz[f}] is the empirical errof. Such a bound allows to prove consistency using the
error decomposition in Steinwart (2004). The square loss was coedideZhang (2003) where,
using leave-one out techniques, the following bound in expectation veasgr

E(1[f]) <o<;\)

Techniques similar to those used in this paper are used in De Vito et al. (@0@ddive a bound of

the form
2
L2(X v)>

In that cases(A, /) <O
L2(X,v) S0 (\/m)

Moreover in Cucker and Smale (2002a),

I[f,] — inf I[f] < <S()\ 0 +HAf" Pg

feH

whereS(A, /) is a data-independent bound #M — fA

VN
Theorem 2 give®© (%) as it can be seen from Equation (3) at p. 12. Finally our results were
recently improved in Smale and Zhou (2004b), where, using again tea@mgjmilar to those pre-
sented here, a bound of the fo®\, /) <O (WJ +0 (0\ ) is obtained. It is worth noting that

in general working on the square root of the error leads to better lbvesalts.

and we see that Theorem 4 givB&\, /) < O(

2. We recall that the empirical error is defined g$] = + 5/_, V(f(x),V).
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5.4 Proofs

In this section we collect the proofs of the theorems that we stated in the pseséations. e first
now prove the bound on the residual for the Tikhonov regularization.
Proof [of Theorem 2] The idea of the proof is to note that, by triangular inequalitycan write

< HAf}-AfA

‘HAf;—Pg )—HAf)‘—Pg (17)

L2(X,v L2(X,v) L2(X,v)

so that we can focus on the difference between the discrete and cargtisolotions. By a simple
algebraic computation we have that
2 = (AAAD) Ay — (A'A+ M)A
= [(AAEA) T = (AN ALY + (AA+A) H(Ay — A'g) (18)
= (A'AFN) LA A AA) (AACHAD) ALY + (ATAF N LAy — A'g).

and we see that the relevant quantities for the definition of the noise appear
We claim that

|AA A+, )y = % (19)
“(A;AX+)\I)71A;}|L(}[) = % (20)
Indeed, letA = U|A| be the polar decomposition 8f The spectral theorem implies that
IAAALN) oy = ||U|A\(!A|2t+>\l)1||L(g{):HA|(\A|2+AI)1||L(}[)
T ol PN

A direct computation of the derivative shows that the maximurfyg is 2%& and (19) is proved.
Formula (20) follows replacing with Ay.

Last step is to plug Equation (18) into (17) and use Cauchy-Schwartaatigq Sincelly| g <
M, (19) and (20) give

M * * * *
IAf2 —Pgll.z — [AF* —Pg]|.z| < I A= AA (50 + IAY = A"dll 5

1
2VA

so that the theorem is proved. [ |

The proof of Theorem 2 is a straightforward application of Lemma (8) Agge=ndix) .
Proof [Theorem 2] The proof is a simple consequence of estimate (26) applied tarttiem vari-
ables
E1(xy) = YK«
E20%y) = (- Ky Ky =Kx@Ky
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where
1. &; takes value i#{, L; = KM andv; = A*g, see (21), (23);

2. &, takes vales in the Hilbert space of Hilbert-Schmidt operators, which catehéfied with
H@H, Ly =k?andv; =T, see (22), (24).

Replacingy with n/2, (26) gives

* * Mk (8 4
IWg- Ayl <t = 5 (Gloar)

. . K> (8 4
[A'A=ACA o) < B2(£,0) = 2w<€|09n>7

respectively, so that the thesis follows. [ |

Finally we combine the above results to prove the consistency of the reguldeiast squares
algorithm.
Proof [Theorem 4] Theorem 1 gives

1A% =Pl < (500t 502 +IAP Pz

Equation (13) and the estimates for the noise ledeksndd, given by Theorem 2 ensure that

I[f)— inf 1[f] < <2Mf'< MKZ)qJ(glog >+HAfA Pg

and (16) simply follows taking the square of the above inequality. Let Aow 0(¢°) with
O<b< % the consistency of the regularised least squares algorithm is provewdaying the
relation between andn and using the result of Proposition (4) (see Appendix). [ |

L2(X,v)

6. Conclusions

In this paper we analyse the connection between the theory of statisticgahigand the theory of

ill-posed problems. More precisely we show that, considering the quatbrasifunction, the prob-

lem of finding the best solutiofy,, for a given hypothesis spadk is a linear inverse problem and
that the regularized least squares algorithm is the Tikhonov regularizittbe discretized version

of the above inverse problem. As a consequence, the consistencyadftihighm is traced back to
the well known convergence property of the Tikhonov regularizatiorpr@babilistic estimate of

the noise is given based on a elegant concentration inequality in Hilbetspa
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An open problem is extending the above results to arbitrary loss functonsther choices of
loss functions the problem of finding the best solution gives rise to a nom likpased problem and
the theory for this kind of problems is much less developed than the condisiopatheory for linear
problems. Moreover, since, in general, the expectedlfikfor arbitrary loss function does not
define a metric, the relation between the expected risk and the residuatiearot-urther problems
are the choice of the regularization parameter, for example by means ofrleeaized Morozov
principle (Engl et al., 1996) and the extension of our analysis to a widses @aregularization
algorithms.
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Appendix A. Technical Results

First, we collect some useful properties of the operatoasdAy.

Proposition 6 The operator A is a Hilbert-Schmidt operator frafiinto L?(X,v) and
A — /X O(X) Ky v (X), 21)
AA = /X (- Ky) 57K AV (), 22)
whereg € L2(X,v), the first integral converges in norm and the second one in trace norm.

Proof The proofis standard and we report it for completeness.
Since the elementk € # are continuous functions defined on a compact sevasd probability
measure, thefi € L?(X,v), so thatAis a linear operator from to L2(X,v). Moreover the Cauchy-
Schwartz inequality gives

(A = [{F, Ka) el < K[ F ][5,
so that|Af|| 2x vy < K| f||; andAis bounded.

We now show tha# is injective. Letf € # andW = {x € X| f(x) # 0}. AssumeAf =0,
thenW is a open set, sincéis continuous, antlVV has null measure, sin¢éf)(x) = f(x) = 0 for
v-almost allx € X. The assumption thatis not degenerate ensuidsbe the empty set and, hence,
f(x) =0forallx e X, thatis,f = 0.

We now prove (21). We first recall the map

Xox—KyeH
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is continuous sincéK; — KX||9{2 =K(t,t) + K(x,x) — 2K(x,t) for all x,t € X, andK is a continuous
function. Hence, giverp € L2(X,v), the mapx — @Ky is measurable fronX to #. Moreover, for
allxe X,

1000 Kx[| 5 = l@() [/ K (%, %) < [@(x) K.

Sincev is finite, @is in L1(X,v) and, hencegKj is integrable, as a vector valued map. Finally, for
all f € #H,

900 (K £, = (@ AT) 2y = (A0 oy

so, by uniqueness of the integral, Equation (21) holds.

Equations (22) is a consequence of Equation (21) and the fact thatéggahcommutes with
the scalar product.

We now prove thaA is a Hilbert-Schmidt operator. Lé&,)nen be a Hilbert basis of{. Since
AAis a positive operator arjdKy, en) 5|2 is a positive function, by monotone convergence theorem,
we have that

THAA) = 3 [ [(en Ky 2dv()
= [, lenKauPavi
= [ (KK dv()

= /K(x,x)dv(x)<|<2
X

and the thesis follows. [ |

Corollary 7 The sampling operator,& # — E’ is a Hilbert-Schmidt operator and
Aty = % iYi Kx (23)
1=
1 y4
ACA = 7 i;«’ K ) K- (24)

Proof The content of the proposition is a restatement of Proposition 6 and thadathe integrals
reduce to sums. [ |

For sake of completeness we report a standard proof on the coneergéthe approximation
error.
Proof [of Proposition 4] Consider the polar decompositida- U |A| of A (see, for example, Lang
(1993)), wherdA|> = A*A is a positive operator ori{ andU is a partial isometry such that the
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projectorP on the range oA is P =UU*. LetdE(t) be the spectral measure|éf. Recalling that
= (AA+N)A'g = (JAP+A)THAU'g

the spectral theorem gives

2
ar—pgl’ = [uiaAR 0 TAUg-UU'gl?, =
-1 « 2
= |[(a2 AR+ - 1)ug| =
_ Al t? 1 2dEtU* Uy
_ A <ﬂ+A_ ) (EMU .U g)r.
Letry(t) = gy — 1=~ then

)] <1 and AIirrlrx(t):o vt >0,

—

so that the dominated convergence theorem gives that

i [ar o] =0

Finally, to prove our estimate of the noise we need the following probabilistic aliégdue to
Pinelis and Sakhanenko (1985). (See Yurinsky, 1995, for the vepsasented int he following.)

Lemma8 Let Z be a probability space anglbe a random variable on X taking value in a real
separable Hilbert spacg{. Assume that the expectation valde=vE[{] exists and there are two
positive constants H anal such that

IN

1€(2) =Vl 5 H as
2

E[lE-v5] < o%

A

If z; are drawn i.i.d. from Z, then, with probability greater than-n,

18 2 (2HZ 2
z;z@)—v*H < oz loa2 ) —att.n) 5)

where dt) = 3(t + vt2+4t). In particular

2 2 1 2
o(4,n) _cwlzlogﬁ+o< ZIogﬁ>
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Proof Itisjustatestamentto Th. 3.3.4 of Yurinsky (1995), see also Steinw@®B)2 Consider the
set of independent random variables with zero nigané(z) — v* defined on the probability space
Z'. Sinceg; are identically distributed, for ath> 2 it holds

0
1
E[|[&ll5] < SmB*H™ 2,
2 2
with the choiceB? = ¢a?. So Th. 3.3.4 of Yurinsky (1995) can be applied and it ensures

p|L 2B pexp(— X
/ S I TR

forall x > 0. Lettingd = %3, we get the equation

_é(a@) —v)

16, 1 o> | 2
2'B) 13HB 2~ 2(1+oHo 2 Iy
sinceB? = (a?. Definingt = Ho 2
ﬁ_tz =lo E
HZ1+t 9y
The thesis follows, observing thgis the inverse ofl% and thag(t) = vt +o(/1). [ |

We notice that, i is bounded by almost surely, then* exists and we can chooseé= 2L and

o0 = L so that L /8 5
5(6.0) = §9<z Iogﬁ> . (26)

In Smale and Y. (2004) a better estimate is given, replacing the funéi;omith tlog(1+t), anyway
the asymptotic rate is the same.
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