
Journal of Machine Learning Research 6 (2005) 711–741 Submitted 1/04; Revised 2/05; Published 5/05

Smooth ε-Insensitive Regression by Loss Symmetrization

Ofer Dekel oferd@cs.huji.ac.il

Shai Shalev-Shwartz shais@cs.huji.ac.il

Yoram Singer singer@cs.huji.ac.il

School of Computer Science and Engineering

The Hebrew University

Jerusalem, 91904, Israel

Editors: Kristin P. Bennett and Nicolò Cesa-Bianchi

Abstract

We describe new loss functions for regression problems along with an accompanying al-
gorithmic framework which utilizes these functions. These loss functions are derived by
symmetrization of margin-based losses commonly used in boosting algorithms, namely, the
logistic loss and the exponential loss. The resulting symmetric logistic loss can be viewed
as a smooth approximation to the ε-insensitive hinge loss used in support vector regres-
sion. We describe and analyze two parametric families of batch learning algorithms for
minimizing these symmetric losses. The first family employs an iterative log-additive up-
date which can be viewed as a regression counterpart to recent boosting algorithms. The
second family utilizes an iterative additive update step. We also describe and analyze
online gradient descent (GD) and exponentiated gradient (EG) algorithms for the sym-
metric logistic loss. A byproduct of our work is a new simple form of regularization for
boosting-based classification and regression algorithms. Our regression framework also has
implications on classification algorithms, namely, a new additive update boosting algorithm
for classification. We demonstrate the merits of our algorithms in a series of experiments.

1. Introduction

The focus of this paper is supervised learning of real-valued functions. We observe a se-
quence S = {(x1, y1), . . . , (xm, ym)} of instance-target pairs, where the instances are vec-
tors in Rn and the targets are real-valued scalars, yi ∈ R. Our goal is to learn a function
f : Rn → R which provides a good approximation of the target values from their corre-
sponding instance vectors. Such a function is often referred to as a regression function
or a regressor for short. Regression problems have long been the focus of research pa-
pers in statistics and learning theory (see for instance the book by Hastie, Tibshirani, and
Friedman (2001) and the references therein). In this paper we discuss learning of linear
regressors, that is, f is of the form f(x) = λ · x. This setting is also suitable for learning
a linear combination of base regressors of the form f(x) =

∑l
j=1 λjhj(x) where each base

regressor hj is a mapping from an instance domain X into R. The latter form enables us
to employ kernels by setting hj(x) = K(xj ,x).

The class of linear regressors is rather restricted. Furthermore, in real applications both
the instances and the target values are often corrupted by noise and a perfect mapping
such that for all (xi, yi) ∈ S, f(xi) = yi is usually unobtainable. Hence, we employ a loss

c©2005 Ofer Dekel, Shai Shalev-Shwartz and Yoram Singer.

Dekel, Shalev-Shwartz and Singer

−5 0 5

0

1

2

3

4

5

6

7

8

9 abs−loss
log−loss
exp−loss

−5 0 5

0

1

2

3

4

5

6

7

8

9 hinge−loss
log−loss
exp−loss

Figure 1: Constructing regression losses (left) by symmetrization of margin losses (right).

function L : R × R → R+ which determines the penalty for a discrepancy between the
predicted target, f(x), and the true (observed) target y. As we discuss shortly, the loss
functions we consider in this paper depend only on the discrepancy between the predicted
target and the true target δ = f(x) − y, hence L can be viewed as a function from R into
R+. We therefore allow ourselves to overload our notation and denote L(δ) = L(f(x), y).

Given a loss function L, the goal of a regression algorithm is to find a regressor f which
attains a small total loss on the training set S,

Loss(λ, S) =
m
∑

i=1

L(f(xi)− yi) =
m
∑

i=1

L(λ · xi − yi).

Denoting the discrepancy λ ·xi− yi by δi, we note that two common approaches to solving
regression problems are to minimize either the sum of the absolute discrepancies over the
sample (

∑

i |δi|) or the sum of squared discrepancies (
∑

i δ
2
i). It has been argued that the

squared loss is sensitive to outliers, hence robust regression algorithms often employ the
absolute loss (Huber, 1981). Furthermore, it is often the case that the exact discrepancy
between λ · x and y is unimportant so long as it falls below an insensitivity parameter
ε. Formally, the ε-insensitive hinge loss, denoted |δ|ε, is zero if |δ| ≤ ε and is |δ| − ε for
|δ| > ε (see also the left hand side of Figure 2). The ε-insensitive hinge loss is not smooth
as its derivative is discontinuous at δ = ±ε. Several batch learning algorithms have been
proposed for minimizing the ε-insensitive hinge loss (see for example Vapnik, 1998; Smola
and Schölkopf, 1998). However, these algorithms are based on rather complex constrained
optimization techniques since the ε-insensitive hinge loss is a non-smooth function.

The first loss function presented in this paper is a smooth approximation to the ε-
insensitive hinge loss. Define the symmetric ε-insensitive logistic loss, or log-loss for short,
to be,

Llog(δ; ε) = log
(

1 + eδ−ε
)

+ log
(

1 + e−δ−ε
)

− κ. (1)

Whenever it is clear from context we omit the insensitivity parameter ε and denote this loss
by Llog(δ). The constant κ in Eq. (1) equals 2 log(1 + e−ε) and is set such that Llog(0) = 0.
Since additive constants do not affect the value of the minimizer of Llog(δ), we omit κ

712

Smooth ε-Insensitive Regression by Loss Symmetrization

−15 −10 −5 0 5 10 15

0

1

2

3

4

5

6

7

8

9
|δ|ε
log−loss

−150 −100 −50 0 50 100 150

0

10

20

30

40

50

60

70

80

90
comb−loss

Figure 2: The smooth ε-insensitive log-loss (left) and the comb-loss (right).

henceforth. In Figure 2 we depict the ε-insensitive log-loss along with the ε-insensitive
hinge loss for ε = 5. Note that the ε-insensitive log-loss provides a smooth upper bound
on the ε-insensitive hinge loss. Moreover, note that for this particular choice of ε and for
|δ| < 2 and |δ| > 8 the log-loss and hinge-loss are graphically indistinguishable.

To motivate our construction, let us take a short detour and discuss a recent view
of margin-based classification algorithms. In the binary classification setting discussed
in Friedman et al. (2000), Collins et al. (2002) and Lebanon and Lafferty (2001), we are
provided with instance-label pairs, (x, y), where, in contrast to regression, each label takes
one of two values, namely y ∈ {−1, +1}. A real-valued classifier is a function f into the reals
such that sign(f(x)) is the predicted label and |f(x)| is the confidence of f in its predic-
tion. The product yf(x) is called the (signed) margin of the instance-label pair (x, y). The
goal of a margin-based classifier is to attain large margin values on as many instances as
possible. Learning algorithms for margin-based classifiers typically employ a margin-based
loss function Lc(yf(x)) and attempt to minimize the total loss over all instances in a given
sample. One of the margin losses discussed is the logistic loss, which takes the form

Lc(yf(x)) = log
(

1 + e−yf(x)
)

. (2)

We discuss a general technique for reducing a regression problem to a margin-based clas-
sification problem called loss symmetrization. The symmetric log-loss given in Eq. (1) is
obtained by applying this technique to the classification logistic loss in Eq. (2). The tech-
nique of loss symmetrization was previously discussed in Bi and Bennett (2003) in the
context of support vector regression.

Formally, let [u ; v] denote the concatenation of an additional element v to the end of a
vector u. We replace every instance-target pair (x, y) from the regression problem with two
classification instance-label pairs,

(x, y) 7→
{

([x ; −y + ε] , +1)
([x ; −y − ε] , −1)

.

In words, we duplicate each regression instance and create two instances of a classification
problem. We then increase the dimension of the instance vectors by one and concatenate

713

Dekel, Shalev-Shwartz and Singer

−y + ε to the first newly created instance and set its label to +1. Symmetrically, we
concatenate −y − ε to the second copy of the instance and set its label to −1. We define
the linear classifier to be the vector [λ ; 1] ∈ Rn+1. It is simple to verify that,

Llog(λ · x− y ; ε) = Lc([λ ; 1] · [x ; −y + ε]) + Lc(−[λ ; 1] · [x ; −y − ε]).

In Figure 1 we give an illustration of the above construction. We have thus reduced a
regression problem of m instances in Rn with targets in R to a classification problem with
2m instances in Rn+1 and binary labels in {±1}.

The work in Collins et al. (2002) gave a unified view of two margin losses: the logistic
loss defined by Eq. (2) and an exponential loss. An immediate benefit of our construction
is a similar unified account of the two respective regression losses. Formally, we define the
symmetric exponential loss, or exp-loss for short, as

Lexp(δ) = eδ + e−δ. (3)

The exp-loss was first presented and analyzed by Duffy and Helmbold (2000) in their pio-
neering work on leveraging regressors. However, their view is somewhat different than ours
as it builds upon the notion of weak-learnability, yielding a different (sequential) algorithm
for regression. The exp-loss is by far less forgiving than the log-loss, i.e. small discrepancies
are amplified exponentially. While this property might be undesirable in regression prob-
lems with numerous outliers, it can also serve as a barrier that prevents the existence of any
large discrepancy in the training set. To see this, note that the minimizer of

∑

i Lexp(δi) is
also the minimizer of log(

∑

i Lexp(δi)) which is a smooth approximation to maxi |δi|.
We can also combine the log-loss and the exp-loss with two different insensitivity param-

eters and benefit both from a discrepancy insensitivity region and from enforcing a smooth
barrier on the maximal discrepancy. Formally, let ε1 > 0 and ε2 > ε1 be two insensitivity
parameters. We define the combined loss, abbreviated as comb-loss, by

Lcomb(δ; ε1, ε2) = Llog(δ; ε1) + Lexp(δ; ε2),

where Lexp(δ; ε2) = e−ε2Lexp(δ). An illustration of the combined loss with ε1 = 50 and
ε2 = 100 is given on the right hand side of Figure 2.

The paper is organized as follows. In Section 2 we describe and analyze a family of log-
additive update algorithms for batch learning settings. The algorithms in this family are in
essence boosting algorithms for regression problems. The symmetrization technique outlined
above is used to derive these algorithms and to adapt proof techniques from Collins et al.
(2002). In Section 3 we describe another family of additive update regression algorithms
based on modified gradient descent. For both the log-additive and the additive updates,
we provide a boosting-style analysis of the decrease in loss. Then, in Section 4, we describe
a simple use of the symmetric losses defined above as a means of regularizing our batch
learning algorithms and other boosting algorithms as well. In Section 5 we discuss the
convergence properties of both log-additive and additive update algorithms, when applied
with regularization. We then show the implications of our work on classification problems
in Section 6. Specifically, we show how both the additive update algorithm of Section 3 and
the regularization scheme of Section 4 extend to the setting of classification. In Section 7 we
shift our attention to online learning algorithms for the ε-insensitive log-loss. In Section 8

714

Smooth ε-Insensitive Regression by Loss Symmetrization

we complement our formal discussion with a set of experimental results obtained on real
and synthetic data sets. Specifically, we demonstrate the different properties of the log-loss
and exp-loss functions, we compare the different algorithms presented in this paper under
different settings and discuss the effect of regularization on the generalization abilities of our
algorithms. In this section, we also present a detailed example of boosting a weak-learning
regression algorithm using our techniques. We conclude the paper in Section 9.

2. Log-additive Update for Batch Regression

In the previous section we discussed a general reduction from regression problems to margin-
based classification problems. As a first application of this reduction, we devise a family
of batch regression learning algorithms based on boosting techniques. We term these algo-
rithms log-additive update algorithms as they iteratively update λ by a logarithmic function
of the gradient of the loss.

Our implicit goal is to obtain the (global) minimizer of the empirical loss function
∑m

i=1 L(λ · xi − yi) where L is either the log-loss, the exp-loss or the comb-loss. We first
prove that progress is made on every iteration of the learning algorithm. For the sake of
clarity, the main theorem of this section is stated and proven only for the log-loss. We then
complete our presentation with a brief discussion on how the theorem is easily adapted to
the exp-loss and comb-loss cases. In Section 5 we show how progress on every iteration
leads to convergence to the global minimum of the respective loss function.

Following the general paradigm of boosting, we make the assumption that we have
access to a set of predefined base regressors. These base regressors are analogous to the
weak hypotheses commonly discussed in boosting. The goal of the learning algorithm is
to select a subset of base regressors and combine them linearly to obtain a highly accurate
strong regressor. We assume that the set of base regressors is of finite cardinality though our
algorithms can be generalized to deal with a countably infinite number of base regressors.
In the finite case we can simply map each input instance to the vector of images generated
by each of the base-regressors, x 7→ (h1(x), . . . , hn(x)), where n is the number of base-
regressors. Using this transformation, each input instance is a vector xi ∈ Rn and the
strong regressor’s prediction is λ ·x. The j’th element of λ, namely λj , should be regarded
as the weight associated with the base regressor hj .

Boosting was initially described and analyzed as a sequential algorithm that iteratively
selects a single base-hypothesis or feature hj and updates its weight λj . All of the elements
of λ are initialized to zero, so after performing T sequential update iterations, at most T
elements of λ are non-zero. Thus, this form of sequential update can be used for feature
selection as well as loss minimization. An alternative approach is to simultaneously update
all of the elements of λ on every iteration. This approach is the more common among
regression algorithms. Collins et al. (2002) described a unified framework of boosting al-
gorithms for classification. In that framework, the sequential and parallel update schemes
become two extremes of a general approach for applying iterative updates to λ. Following
Collins et al. we describe and analyze an algorithm that employs update templates to de-
termine specifically which subsets of the coordinates of λ may be updated in parallel. This
algorithm includes both sequential update and parallel update paradigms as special cases

715

Dekel, Shalev-Shwartz and Singer

Input: Training set S = {(xi, yi) |xi ∈ Rn, yi ∈ R}mi=1 ; Insensitivity ε ∈ R+

Update templates A ⊆ Rn
+ s.t. ∀a ∈ A maxi

(

∑n
j=1 aj |xi,j |

)

≤ 1

Initialize: λ1 = (0, 0, . . . , 0)

Iterate: For t = 1, 2, . . .

δt,i = λt·xi−yi

[if log-loss] q−t,i =
eδt,i−ε

1 + eδt,i−ε
q+
t,i =

e−δt,i−ε

1 + e−δt,i−ε
(1 ≤ i ≤ m)

[if exp-loss] q−t,i = eδt,i q+
t,i = e−δt,i (1 ≤ i ≤ m)

W−
t,j =

∑

i:xi,j≥0

q−t,i xi,j −
∑

i:xi,j<0

q+
t,i xi,j (1 ≤ j ≤ n)

W+
t,j =

∑

i:xi,j≥0

q+
t,i xi,j −

∑

i:xi,j<0

q−t,i xi,j (1 ≤ j ≤ n)

at = argmax
a∈A

n
∑

j=1

aj

(
√

W−
t,j −

√

W+
t,j

)2

Λt,j =
at,j

2
log

(

W+
t,j

W−
t,j

)

(1 ≤ j ≤ n)

λt+1 = λt + Λt

Figure 3: A log-additive update algorithm for minimizing either the log-loss or the exp-loss.

by setting the templates accordingly, and allows us to discuss and prove the correctness of
both paradigms in a unified manner.

In this unified approach, we are required to pre-specify to the algorithm which subsets of
the coordinates of λ may be updated simultaneously. Formally, the algorithm is given a set
of update templates A, where every template a ∈ A is a vector in Rn

+. On every iteration,
the algorithm selects a template a ∈ A and updates only those elements λj for which aj is
non-zero. We require that every a ∈ A conform with the constraint

∑

j aj |xi,j | ≤ 1 for all of
the instances xi in the training set. The purpose of this requirement will become apparent
in the proof of Theorem 1. The parallel update is obtained by setting A to contain the
single vector (ρ, . . . , ρ) where ρ = (maxi ‖xi‖1)−1. The sequential update is obtained by
setting A to be the set of vectors a1, . . . ,an defined by

ak,j =

{

(maxi |xi,j |)−1 if j = k
0 if j 6= k .

716

Smooth ε-Insensitive Regression by Loss Symmetrization

The algorithm that we discuss is outlined in Figure 3 and operates as follows: during
the process of building λ, we may encounter two different types of discrepancies: underes-
timation and overestimation. If the predicted target λ · xi is less than the correct target
yi, we say that λ underestimates yi and if it is greater we say that λ overestimates yi.
For every instance-target pair in the training set, we use a pair of weights q−t,i and q+

t,i to

represent its discrepancies: q−t,i represents the degree to which yi is overestimated by λt and

analogously q+
t,i represents the degree to which yi is underestimated by λt. We then proceed

to calculate two weighted sums over each coordinate of the instances: W−
t,j can be thought

of as the degree to which λt,j should be decreased in order to compensate for overestimation
discrepancies. Symmetrically, W+

t,j represents the degree to which λt,j should be increased.
At this point, the algorithm selects the update template at ∈ A with respect to which it
will apply the update to λ. at is selected so as to maximize the decrease in loss, according
to a criterion that follows directly from Theorem 1 below. In the sequential version of the
algorithm, selecting an update template is equivalent to selecting a single base regressor and
updating its weight. In this case, the template selection criterion should be viewed as the
weak learning criterion of the boosting procedure. The algorithm’s iteration concludes with
an update of λ. Each element λj is updated by half the log ratio between the respective
elements of W+

t and W−
t , times the scaling factor at,j .

The following theorem states a non-negative lower bound on the decrease in loss on
every iteration of the algorithm for the case of the log-loss.

Theorem 1 Let {(xi, yi)}mi=1 be a training set of instance-target pairs where for all i in
1, . . . , m, xi ∈ Rn and yi ∈ R. Then using the notation defined in the algorithm outlined in
Figure 3, on every iteration t the decrease in the log-loss satisfies,

Loss(λt, S) − Loss(λt+1, S) ≥
n
∑

j=1

at,j

(
√

W−
t,j −

√

W+
t,j

)2

.

Proof Define ∆t(i) to be the difference between the loss attained by λt and that attained
by λt+1 on an instance-target pair (xi, yi) in the training set, namely

∆t(i) = Llog(δt,i)− Llog(δt+1,i). (4)

Since λt+1 = λt + Λt then δt+1,i = δt,i + Λt · xi. Using this equality, and the identity
1/(1 + eα) = 1− 1/(1 + e−α), ∆t(i) can be rewritten as

∆t(i) = − log

(

1 + eδt+1,i −ε

1 + eδt,i−ε

)

− log

(

1 + e−δt+1,i −ε

1 + e−δt,i−ε

)

= − log

(

1− 1

1 + e−(δt,i−ε)
+

eΛt·xi

1 + e−(δt,i−ε)

)

− log

(

1− 1

1 + e−(−δt,i−ε)
+

e−Λt·xi

1 + e−(−δt,i−ε)

)

.

We can now plug the definitions of q+
t,i and q−t,i into this expression to get

∆t(i) = − log
(

1− q−t,i
(

1− eΛt·xi
)

)

− log
(

1− q+
t,i

(

1− e−Λt·xi
)

)

.

717

Dekel, Shalev-Shwartz and Singer

Next we apply the inequality − log(1−α) ≥ α (which holds wherever log(1−α) is defined):

∆t(i) ≥ q−t,i
(

1− eΛt·xi
)

+ q+
t,i

(

1− e−Λt·xi
)

. (5)

We rewrite the scalar product Λt · xi in a more convenient form,

Λt · xi =
n
∑

j=1

at,j

2
log
(

W+
t,j/W−

t,j

)

xi,j

=
n
∑

j=1

(at,j |xi,j |) sign(xi,j) log
(
√

W+
t,j/W−

t,j

)

. (6)

Recall the assumptions made on the vectors in A, namely that at and xi comply with
∑n

j=1 at,j |xi,j | ≤ 1 and that at,j |xi,j | is non-negative. This assumption is used in conjunction
with the fact that (1 − eα) is a concave function and is equal to zero at α = 0. We can
replace Λt · xi in Eq. (5) with the form given in Eq. (6) and use Jensen’s inequality to get,

∆t(i) ≥ q−t,i
(

1− eΛt·xi
)

+ q+
t,i

(

1− e−Λt·xi
)

≥
n
∑

j=1

at,jq
−
t,i|xi,j |

(

1− e
sign(xi,j) log

“q

W+
t,j/W−

t,j

”)

+
n
∑

j=1

at,jq
+
t,i|xi,j |

(

1− e
−sign(xi,j) log

“q

W+
t,j/W−

t,j

”)

.

We now rewrite,

∆t(i) ≥
∑

j:xi,j>0

at,jq
−
t,i|xi,j |



1−

√

√

√

√

W+
t,j

W−
t,j



+
∑

j:xi,j<0

at,jq
−
t,i|xi,j |



1−

√

√

√

√

W−
t,j

W+
t,j





+
∑

j:xi,j>0

at,jq
+
t,i|xi,j |



1−

√

√

√

√

W−
t,j

W+
t,j



+
∑

j:xi,j<0

at,jq
+
t,i|xi,j |



1−

√

√

√

√

W+
t,j

W−
t,j



 .

Summing ∆t(i) over i and using the definition of the q’s and W ’s we finally get that,

m
∑

i=1

∆t(i) ≥
n
∑

j=1

at,j

(

W−
t,j

(

1−
√

W+
t,j/W−

t,j

)

+ W+
t,j

(

1−
√

W−
t,j/W+

t,j

))

=

n
∑

j=1

at,j

(
√

W−
t,j −

√

W+
t,j

)2

.

This concludes the proof.

Theorem 1 focuses on the log-loss function, but is easily adapted to case of the exp-loss.
Note that the only difference between the log-loss and exp-loss cases in the algorithm pseudo-
code (Figure 3) is in the definitions of the overestimation and underestimation weights q−

and q+. When our goal is to minimize the exp-loss, we define

q−t,i = eδt,i q+
t,i = e−δt,i . (7)

718

Smooth ε-Insensitive Regression by Loss Symmetrization

To show that Theorem 1 still holds for the exp-loss we modify the definition of ∆t(i) from
Eq. (4) in accordance to the change in the loss. Specifically, let

∆t(i) = Lexp(δt,i)− Lexp(δt+1,i)

= eδt,i − eδt+1,i + e−δt,i − e−δt+1,i .

As before, we plug the definitions of q+
t,i and q−t,i from Eq. (7) into the above and rewrite ∆t

as,
∆t(i) = q−t,i

(

1− eΛt·xi
)

+ q+
t,i

(

1− e−Λt·xi
)

.

Eq. (5) in the proof of Theorem 1 now holds with equality and the rest of the proof proceeds
as before. Consequently, we get the same lower bound for the exp-loss as was stated in
Theorem 1 for the log-loss.

Similarly, we can redefine q− and q+ to minimize the comb-loss. Recall that the comb-
loss function is defined by a pair of insensitivity parameters, ε1 and ε2. To minimize the
comb-loss, we define

q−t,i =
eδt,i−ε1

1 + eδt,i−ε1
+ eδt,i−ε2 q+

t,i =
e−δt,i−ε1

1 + e−δt,i−ε1
+ e−δt,i−ε2 .

Again, the formal discussion given in this section carries over to the comb-loss case with
only minor technical adaptations necessary.

To conclude this section, we note that the log-additive algorithm can be used verbatim in
the case of a weighted loss. In Section 4 we use this extension to devise a simple regularization
scheme. Formally, let ν ∈ Rm

+ be a vector of non-negative weights such that νi is the weight
of the i’th example. The weighted loss is defined as,

Loss(λ, ν, S) =

m
∑

i=1

νiL(λ · xi − yi),

where L(·) is any of the loss functions discussed above. The sole change to the algorithm
resides in the calculation of the weights q+

t,i and q−t,i which must now be scaled by νi, namely,

q+
t,i ← νiq

+
t,i and q−t,i ← νiq

−
t,i. It is easy to verify that Theorem 1 still holds for this extended

definition of weighted-loss.

3. Additive Update for Batch Regression

In this section we describe a family of additive batch learning algorithms that advance on
each iteration in a direction which is a linear transformation of the gradient of the loss. We
term these algorithms additive update algorithms. These algorithms bear a resemblance to
the log-additive algorithms described in the previous section, as do their proofs of progress.
As in the previous section, we first restrict the discussion to the log-loss and then outline
the adaptation to the exp-loss at the end of the section.

We again devise a template-based family of updates. This family includes a parallel
update which modifies all the elements of λ simultaneously and a sequential update which
updates a single element of λ on each iteration. The parallel update amounts to a gradient
descent approach to minimizing the loss. The sequential update applied to an element

719

Dekel, Shalev-Shwartz and Singer

Input: Training set S = {(xi, yi) |xi ∈ Rn, yi ∈ R}mi=1 ; Insensitivity ε ∈ R+

Update templates A ⊆ Rn
+ s.t. ∀a ∈ A ∑m

i=1

∑n
j=1 ajx

2
i,j ≤ 2

Initialize: λ1 = (0, 0, . . . , 0)

Iterate: For t = 1, 2, . . .

δt,i = λt·xi−yi

[if log-loss] q−t,i =
eδt,i−ε

1 + eδt,i−ε
q+
t,i =

e−δt,i−ε

1 + e−δt,i−ε
(1 ≤ i ≤ m)

[if exp-loss] q−t,i =
eδt,i

Zt
q+
t,i =

e−δt,i

Zt

(1 ≤ i ≤ m)

where Zt =
m
∑

i=1

(

eδt,i + e−δt,i + 2
)

Wt,j =
m
∑

i=1

(q+
t,i − q−t,i) xi,j (1 ≤ j ≤ n)

at = argmax
a∈A

n
∑

j=1

ajW
2
t,j

Λt,j = at,jWt,j
(1 ≤ j ≤ n)

λt+1 = λt + Λt

Figure 4: An additive update algorithm for minimizing either the log-loss or the exp-loss.

λj is an axis-parallel gradient descent step. We denote the set of update templates by
A and assume that every a ∈ A is a vector in Rn

+. For each a ∈ A we require that
∑m

i=1

∑n
j=1 ajx

2
i,j ≤ 2.

The pseudo-code of the additive update algorithm is given in Figure 4. Intuitively, on
each iteration t, the algorithm computes the negative of the gradient with respect to λt,
denoted (Wt,1, . . . , Wt,n). It then selects the update template at ∈ A which, as we shortly
show in Theorem 2, guarantees a maximal drop in the loss. Finally, λt,j is updated by
at,jWt,j .

Theorem 2 Let {(xi, yi)}mi=1 be a training set of instance-target pairs where for all i in
1, . . . , m, xi ∈ Rn and yi ∈ R. Then using the notation defined in the algorithm outlined in
Figure 4, on every iteration t the decrease in the log-loss, denoted ∆t, satisfies

∆t = Loss(λt, S) − Loss(λt+1, S) ≥ 1

2

n
∑

j=1

at,jW
2
t,j .

720

Smooth ε-Insensitive Regression by Loss Symmetrization

Proof We begin by defining a quadratic function Q : R→ R which is parameterized by
two parameters, λ and Λ. Qλ,Λ will be shown to be an upper bound on the log-loss along
the direction Λ from λ. Concretely, Qλ,Λ is defined as,

Qλ,Λ(α) = Loss(λ, S) + (∇Loss(λ, S) ·Λ)
(

α− α2/2
)

.

Formally, we show that for all α, Qλt,Λt
(α) ≥ Loss(λt + αΛt, S) where Λt is defined as in

Figure 4. For convenience, we define Γ(α) = Qλt,Λt
(α) − Loss(λt + αΛt, S) and instead

prove that Γ is a non-negative function.
By construction, we get that Γ(0) = 0. Since the derivative of Qλt,Λt

at zero is equal
to ∇Loss(λt, S) · Λt, we get that the derivative of Γ at zero is also zero. To prove that Γ
is a non-negative function it remains to show that Γ is convex and thus α = 0 attains its
global minimum. To prove convexity it is sufficient to show that the second derivative of Γ
(denoted Γ′′) is non-negative. Routine calculations yield that,

Γ′′(α) = −Λ · ∇Loss(λ, S)−ΛTHΛ, (8)

where H =
∑m

i=1 L
′′

log(λ+αΛ)xix
T
i and L

′′

log is the second derivative of the log-loss function.
It is simple to show that this derivative is bounded in [0, 1/2]. Plugging the value of H into
Eq. (8) we get that,

Γ′′(α) ≥ −Λ · ∇Loss(λ, S)− 1

2

m
∑

i=1

(Λ · xi)
2. (9)

Note that on the t’th iteration, the j’th element of Λt equals at,jWt,j where Wt,j =
−∇jLoss(λt, S). Therefore, we rewrite Eq. (9) as,

Γ′′(α) ≥
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1





n
∑

j=1

at,jWt,jxi,j





2

=
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1





n
∑

j=1

√
at,j Wt,j

√
at,j xi,j





2

. (10)

Using the Cauchy-Schwartz inequality (u · v ≤ ‖u‖‖v‖) we further bound Γ′′ by,

Γ′′(α) ≥
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1





n
∑

j=1

at,jW
2
t,j





(

n
∑

k=1

at,kx
2
i,k

)

=
n
∑

j=1

at,jW
2
t,j

(

1− 1

2

m
∑

i=1

n
∑

k=1

at,kx
2
i,k

)

. (11)

Finally, we use the constraint
∑

i

∑n
k=1 at,kx

2
i,k ≤ 2 which immediately implies that Γ′′(α) ≥

0. Summing up, we have shown that Loss(λt + αΛt, S) is upper bounded by Qλt,Λt
(α).

Therefore, Loss(λt+1, S) = Loss(λt + Λt, S) ≤ Qλt,Λt
(1), hence,

∆t ≥ Loss(λt, S) − Qλt,Λt
(1) =

1

2

n
∑

j=1

at,jW
2
t,j .

721

Dekel, Shalev-Shwartz and Singer

This concludes the proof.

To conclude this section, we briefly outline the adaptation of the additive update algo-
rithm to the exp-loss. Recall that in the exp-loss setting, our goal is to minimize,

m
∑

i=1

(

eδi + e−δi

)

where δi = λ · xi − yi.

Since the gradient of the exp-loss is itself exponential, we cannot hope to minimize the
exp-loss by straightforward gradient descent. However, instead of minimizing the exp-loss
function over the sample, we can minimize the loss,

log

(

m
∑

i=1

(

eδi + e−δi + 2
)

)

. (12)

Clearly, both functions attain the same (global) minimum. We can now repeat verbatim the
proof technique of Theorem 2 using q− and q+ as defined for the exp-loss case in Figure 4.

The additive update family of algorithms can accommodate a weighted loss just as log-
additive update algorithms do. The algorithm is adapted to cope with weights in the same
way that the log-additive algorithm was adapted in the end of Section 2, namely by an
appropriate rescaling of the weights q− and q+.

4. Regularization

Regularization is a means of controlling the complexity of the regressor being learned. In
particular for linear regressors, regularization serves as a soft limit on the magnitude of the
elements of λ (cf. (Poggio and Girosi, 1990)). The loss functions discussed in the previous
sections can also be used as a new form of regularization. Using the log-loss, we can apply
the following regularization to the j’th coordinate of λ,

log
(

1 + eλj

)

+ log
(

1 + e−λj

)

.

The minimum of the above equation is obtained at λj = 0. It is straightforward to show
that the regularization term above is bounded from below by |λj | and from above by |λj |+2.
Therefore, summing over all possible indices j, the regularization term on λ lies between
‖λ‖1 and ‖λ‖1 + 2n. Thus, this form of regularization can be viewed as a smooth approx-
imation to the `1 norm of λ. A similar form of regularization can be imposed using the
exp-loss, namely,

eλj + e−λj .

For both losses, the j’th regularization term equals L(λj ; 0). When the set of base hy-
potheses is finite, an equivalent way to impose this form of regularization is to introduce
a set of pseudo examples Sreg = {xk, 0}nk=1 where xk = 1k (the vector with 1 in its k’th
position and zeros elsewhere). Let ν > 0 be a regularization parameter that governs the
relative importance of the regularization term with respect to the empirical loss. Slightly
overloading our notation, let Loss(λ, ν, S) denote the regularized empirical loss, defined by,

Loss(λ, S) + ν Loss(λ, Sreg).

722

Smooth ε-Insensitive Regression by Loss Symmetrization

As noted in Section 2 and Section 3, both the log-additive and additive update batch
algorithms easily accommodate a weighted loss. Therefore, by introducing a set of n pseudo-
examples, each of which weighted by ν, we can incorporate regularization into our batch
algorithms without any modification to the algorithm core. Concretely, we set the weight
of each example in S to 1 and of each pseudo-example in Sreg to ν. We can now use either
the log-additive or the additive algorithm to minimize the weighted loss.

In practice, we do not need to explicitly add pseudo-examples to our sample in order to
incorporate a regularization term into the loss function. A more efficient way of achieving
the same effect is to modify our algorithms to behave as if such a pseudo sample was
presented to them. For instance, for the log-additive log-loss update (Figure 3) the term
ν/(1+ e−λt,j) should be added to the definition of W−

t,j for every coordinate being updated.

Analogously, the term ν/(1 + eλt,j) should be added to W+
t,j . Applying this modification is

equivalent to adding pseudo-examples which correspond to the coordinates being updated.

Another useful property of this regularized loss is that it is strictly convex. To see
that Loss(λ, ν, S) is strictly convex it suffices to show that its Hessian is positive definite.
The Hessian of Loss(λ, ν, S) can be written as a sum of two matrices H + Hreg where the
first is the matrix of second order derivatives of Loss(λ, S) and the second contains the
second order derivatives of ν Loss(λ, Sreg). Since Loss(λ, S) is the sum of convex losses, H
is positive semi-definite. It is simple to verify that the matrix Hreg is a diagonal matrix
with Hi,i = 2ν/

(

1 + e−λi
) (

1 + eλi
)

for the log-loss or Hi,i = ν
(

e−λi + eλi
)

for the exp-loss.
Clearly, the diagonal elements are strictly positive for both losses for any finite λ. Therefore,
Hreg is positive definite and thus H + Hreg is positive definite as well. Furthermore, since
the regularization term tends to infinity at least as fast as ‖λ‖1, the regularized loss has an
attainable global minimum. In other words, this form of regularization enforces uniqueness
of the solution in our loss minimization problem. We denote the unique global minimum of
Loss(λ, ν, S) by λ?. We use the uniqueness of λ? in the next section where the convergence
of our batch algorithms is discussed.

5. Convergence

In the previous section we have argued that the regularized loss attains a unique minimum
at the point denoted λ?. In this section we show that the batch algorithms described so far
converge to this unique minimizer. For simplicity, we assume that the set of templates A
spans Rn. The following theorem can be tediously generalized to the case where the space
spanned by A is any linear-subspace of Rn in which case convergence is to the optimal value
within this subspace.

Theorem 3 Assume that the vectors in A span the entire space Rn. Let λ1, λ2, . . . ,λt, . . .
be the sequence of vectors generated by the log-additive (Figure 3) or the additive (Figure 4)
updates, using either of the regularized loss functions discussed in this paper. Then this
sequence converges to λ?, the global minimizer of the regularized loss L(λ, ν, S).

Proof Due to the introduction of the regularization term, the loss function is strictly convex
and attains its unique minimum at the point denoted λ?, as argued in the previous section.
In addition, the regularization term guarantees that the entire sequence λ1, . . . ,λt, . . . lies

723

Dekel, Shalev-Shwartz and Singer

within a compact set C. To see this, note that λ is initialized to be the zero vector and
therefore the initial regularized loss is

Loss(0, ν, S) = Loss(0, S) + ν Loss(0, Sreg).

Denote the initial loss above by L0. Since the loss attained by the algorithm on every
iteration is non-increasing, the contribution of the regularization term to the total loss
certainly does not exceed L0/ν. Also, the regularization term for both the exp-loss and the
log-loss bounds the `∞ norm of λt by

‖λt‖∞ ≤ Loss(λt, Sreg) ≤ Loss(λt, ν, S)/ν ≤ L0/ν.

Therefore, we can define C = {λ : ‖λ‖∞ ≤ L0/ν} and assert that the sequence λ1, λ2, . . . is
contained in C. Next, note that the lower bound on the decrease in loss given in Theorem 1
and Theorem 2 can be thought of as a function of the current regressor λt and the chosen
template at. If the bound on the decrease equals zero for all possible a ∈ A then λt must be
equal to λ?. Otherwise, there exists a ∈ A for which the decrease bound is strictly positive.
To see this, note that if the decrease bound for the log-additive update is 0 then,

∀j :
(
√

W−
t,j −

√

W+
t,j

)2

= 0,

which implies that W−
t,j −W+

t,j = 0. Note that W−
t,j −W+

t,j is the j’th partial derivative of
the loss function being minimized (log-loss, exp-loss, or comb-loss). Since the regularized
loss function is strictly convex, a zero gradient vector is attained only at the optimal point
λ?. A similar argument holds for the additive update.

Assume now by contradiction that the sequence of regressors λ1, λ2, . . . does not con-
verge to λ?. An immediate consequence of this assumption is that there exists γ > 0 such
that an infinite subsequence of regressors λs1 , λs2 , . . . remains outside of B(λ?, γ), the open
ball of radius γ centered at λ?. The set C \ B(λ?, γ) is a compact set and therefore the
lower bound from Theorem 1 (or equivalently Theorem 2) attains a minimum value over
C \B(λ?, γ) at some point λ̃. Denote this minimum by µ. Since λ̃ 6∈ B(λ?, γ) it necessarily
follows that λ̃ 6= λ? and therefore µ must be strictly positive. Thus, on each of the iterations
s1, s2, . . . the decrease in loss is at least µ > 0. The subsequence s1, s2, . . . is infinite and
as a consequence the loss must eventually become negative. We get a contradiction since
the loss is a non-negative function. We conclude that the sequence λt must converge to λ?.

6. Back to Classification

To conclude the part of the paper which discusses batch algorithms we would like to briefly
draw connections to boosting algorithms for classification. The reader mainly interested in
regression problems may skip this section.

The algorithms of previous sections can also be used in classification settings. The log-
additive updates simply reduce to the algorithms described in (Collins et al., 2002). The
additive update results in a new boosting procedure for classification accompanied with a
matching criterion for selecting a base hypothesis. Concretely, in the binary classification

724

Smooth ε-Insensitive Regression by Loss Symmetrization

setting we receive a training set S = {(x1, y1), . . . , (xm, ym)} where each target yi is either
−1 or +1. As in the case of regression, x is the mapping of an instance into its image under
the set of base-classifiers, x 7→ (h1(x), . . . , hn(x)) and the goal is to find a function f(x)
that attains a small loss. The function f(x) is a weighted combination of base-hypotheses,
f(x) =

∑n
j=1 λjhj(x) = λ · x. The skeleton of the additive algorithm for classification

is almost the same as the one for regression. In the classification case we define a single
(unnormalized) distribution over the examples, setting the weight of the i’th example to,

qt,i = e−δt,i/Zt [exp-loss] ; qt,i =
1

1 + e−δt,i
[log-loss],

where δi = yiλt · xi and Zt = 1 +
∑m

i=1 e−δt,i . On round t we set each variable Wt,j to be
Wt,j =

∑n
i=1 qt,i xi,j . The rest of the algorithm, including the constraint

∑

i,j ajx
2
i,j ≤ 2, is

kept intact. The result is a new boosting-type procedure where base-hypotheses are selected
so as to maximize

∑

j ajW
2
i,j .

The regularization technique discussed in Section 4 can be used in classification tasks as
well. It is worth noting that Schapire et al. (2002) suggested a procedure for incorporating
prior knowledge into log-loss boosting which can also be used for regularization. We compare
the two regularization techniques in the log-loss case. Using the notation of Section 4, the
regularization technique of Schapire et al. can also be described via the introduction of a
pseudo-sample. Given a training set S = {xi, yi}mi=1 with yi ∈ {−1, +1} define the pseudo-
sample S̄ = {xi,−yi} and use log-loss boosting to train a classifier whose task is to minimize
the loss,

(1− ν)Loss(λ, S) + νLoss(λ, S̄),

where, as before, ν is a regularization parameter. In this case ν is restricted to the interval
[0, 1/2]. This construction of a regularization sample implies that even when there exists a
strong-hypothesis which attains zero classification error on S the extended sample S ∪ S̄ is
inseparable. If the space spanned by the examples is of a full rank, then this regularization
scheme guarantees a unique and attainable global minimizer λ?. However, the two optima
due to the two different regularization schemes will be achieved at different points. The
regularization scheme presented in this paper penalizes large values of |λj | whereas Schapire
et al. penalize overconfident predictions.

7. Online Regression Algorithms

In this section we describe online regression algorithms for the log-loss defined in Eq. (1).
In the previous sections we allowed ourselves to ignore the constant κ which appears in
the definition of the log-loss since this did not alter the global minimum of our problem.
However, in the online learning setting this constant should not be ignored. Inclusion of κ
does not affect the online algorithms themselves as they depend only on the gradient of the
loss function, but it will play a role in their analysis.

We follow the notation and techniques presented in (Kivinen and Warmuth, 1997; Cesa-
Bianchi, 1999). In online learning settings, we observe a sequence of instance-target pairs,
in rounds, one by one. On round t we first receive an instance xt. Based on the current
regressor, λt, we extend a prediction λt · xt. We then receive the true target yt and suffer
an instantaneous loss equal to Llog(λt ·xt−yt). Our goal is to suffer a small cumulative loss.

725

Dekel, Shalev-Shwartz and Singer

Input: Insensitivity parameter ε ; Upper bound R

Initialize:

[if gd] λ1 = (0, . . . , 0)

[if eg] λ1 = (1/n, . . . , 1/n)

Iterate: For t = 1, 2, . . .

Receive an example xt

Predict λt · xt

Receive true target yt

Update:

δt = λt · xt

L
′

log(δt) = 1
1+e−δt+ε − 1

1+eδt+ε

βt = L
′

log(δt)/R

[if gd] λt+1,j = λt,j − βt xt,j (1 ≤ j ≤ n)

[if eg] λt+1,j =
λt,je−βt xt,j

Pn
k=1 λt,ke

−βt xt,k
(1 ≤ j ≤ n)

Figure 5: The GD and EG algorithms for online regression with the log-loss.

The learning algorithm employs an update rule which modifies its current regressor after
each round. We describe and analyze two online regression algorithms for the log-loss that
differ in the update rules that they employ. The first is additive in the gradient of the loss
and is thus called Gradient Descent (GD) while the second is exponential in the gradient
of the loss and is analogously called Exponentiated Gradient (EG).

The GD algorithm: The pseudo-code of the algorithm is given in Figure 5. Note that
the GD algorithm updates its current regressor, λt, by subtracting the gradient of the loss
function from it. The GD algorithm assumes an upper bound R on twice the squared norm
of all the instances, that is, 2‖xt‖22 ≤ R. In the following analysis we give a bound on the
cumulative loss attained on any number of rounds. However, rather than bounding the
loss per se we bound the cumulative loss relative to the cumulative loss suffered by a fixed
regressor µ. The bound holds for any linear regressor µ and any number of rounds, hence
we get that the GD algorithm is competitive with the optimal (fixed) linear regressor for any
number of rounds. Formally, the following theorem states that the cumulative loss attained
by the GD algorithm is at most twice the cumulative loss of any fixed linear regressor plus
an additive constant.

Theorem 4 Let S = {(x1, y1), ..., (xT , yT)} be a sequence of instance-target pairs such that
∀t : 2‖xt‖22 ≤ R and let λ1, ...,λT be the regressors generated by the GD online algorithm

726

Smooth ε-Insensitive Regression by Loss Symmetrization

(Figure 5) on the sequence. Then for any fixed linear regressor µ ∈ Rn we have

T
∑

t=1

Llog(λt · xt − yt) ≤ 2
T
∑

t=1

Llog(µ · xt − yt) + R ‖µ‖22 . (13)

Note that the statement of the theorem changes if the constant κ is excluded from the
definition of the log-loss in Eq. (1), resulting in a looser bound. The proof of the theorem
is based on the following lemma that underscores an invariant property of the update rule.

Lemma 5 Consider the setting of Theorem 4, then for each round t we have

Llog(λt · xt − yt)− 2Llog(µ · xt − yt) ≤ R
(

‖λt − µ‖22 − ‖λt+1 − µ‖22
)

. (14)

The proof of the lemma is given in Appendix A. Intuitively, the lemma states that if the loss
attained by λt on round t is greater than the loss of a fixed regressor µ, then the algorithm
will update λt such that it gets closer to µ. In contrast, if the loss of µ is greater than the
loss of GD, the algorithm may move its regressor away from µ. With Lemma 5 handy, the
proof of Theorem 4 is almost immediate.

Proof of Theorem 4: Summing Eq. (14) for t = 1, ..., T we get

T
∑

t=1

Llog(λt · xt−yt)− 2
T
∑

t=1

Llog(µ · xt−yt) ≤ R
(

‖λ1 − µ‖22 − ‖λT+1 − µ‖22
)

≤ R ‖λ1 − µ‖22
= R ‖µ‖22,

where in the last equality we use the fact that the initial regressor, λ1, is the zero vector.

The EG algorithm: The algorithm is described in Figure 5 and works under the as-
sumption that the regressor λ is contained in the probability simplex, namely λ ∈ Pn where
Pn = {µ : µ ∈ Rn

+,
∑n

j=1 µj = 1}. We note in passing that following a construction
described in (Kivinen and Warmuth, 1997), it is possible to derive a generalized version
of EG in which the elements of λ can be either negative or positive, so long as the sum
of their absolute values is less than 1. The EG algorithm assumes an upper bound on
the squared difference between the maximal and minimal coordinates of the instances it
receives, R ≥ (maxj xt,j −minj xt,j)

2. Since EG maintains a regressor from the probability
simplex, we measure the cumulative loss of the EG algorithm relative to the cumulative loss
achieved by any fixed regressor from the probability simplex.

Theorem 6 Let S = {(x1, y1), ..., (xT , yT)} be a sequence of instance-target pairs such that
∀t : (maxj xt,j −minj xt,j)

2 ≤ R and let λ1, ...,λT be the regressors generated by the EG
online algorithm (Figure 5) on the sequence. Then, for any fixed regressor µ ∈ Pn we have

T
∑

t=1

Llog(λt · xt − yt) ≤
4

3

T
∑

t=1

Llog(µ · xt − yt) +
4R

3
DRE(µ, λ1) , (15)

where DRE(p, q) =
∑

j pj log(pj/qj) is the relative entropy function.

727

Dekel, Shalev-Shwartz and Singer

The proof of the theorem is analogous to the proof of Theorem 4 and employs the following
relative entropy based progress lemma.

Lemma 7 Consider the setting of Theorem 6, then for each round t we have

Llog(λt · xt − yt)−
4

3
Llog(µ · xt − yt) ≤

4R

3
(DRE(µ, λt)−DRE(µ, λt+1)) . (16)

The proof of the lemma is given in Appendix A.

8. Experiments

In this section we present experimental results that demonstrate different aspects of our
algorithms in the light of their formal analysis. In Section 8.1, we start with a synthetic
example that underscores the different properties of the log-loss and the exp-loss functions.
We then turn to a comparison of the different algorithmic approaches to minimizing these
losses. In Section 8.2 we compare the log-additive and additive batch updates by examining
how certain properties of the training data influence the rates of convergence of the two
updates. Next we demonstrate the different benefits of the sequential and parallel update
paradigms. In Section 8.3 we use the sequential form of our update as a boosting procedure
which uses regression stumps as base regressors. We compare this boosting technique to
the LAD algorithm (Friedman, 2001) on a natural data set. In Section 8.4 we turn our
attention to the parallel update paradigm. When using the parallel update, some form of
regularization is essential to avoid over-fitting. We therefore demonstrate the effectiveness
of the regularization scheme presented in Section 4 and show the effect of the regulariza-
tion parameter on the generalization ability of our algorithms. More specifically, we learn a
kernel-based regressor and compare our log-loss regularization to Support Vector Regression
with l1 regularization. The last two experiments illustrate some properties of our online
algorithms and are presented in Section 8.5. In these experiments, we compare the cumu-
lative loss of the online GD algorithm with its theoretical bound given in Theorem 4. We
also compare the sensitivity of the online GD and EG regression algorithms to the number
of relevant coordinates in the data, demonstrating that EG vastly outperforms GD when
the number of relevant coordinates is small.

8.1 Comparison of the Exp-Loss and the Log-Loss

In this section we describe an experiment that underscores the different merits of the log-
loss and the exp-loss functions. The end result is that the solution obtained by minimizing
the log-loss shares the same asymptotic behavior as the `1 regression loss (

∑

i |δi|). On
the other hand, the solution found by minimizing the exp-loss approximately minimizes
the l∞ regression loss on the sample. To exemplify the above properties we created two
synthetic data sets and for each one we found the two regressors that minimize the log-loss
and the exp-loss respectively. The two data sets and the resulting regressors are depicted
in Figure 6. Each of the two data sets was generated by sampling points on the curve of
a univariate third degree polynomial, resulting in a sample S = {(xi, yi)} where xi, yi ∈ R.
Then, the target yi of each point xi was contaminated with a small additive noise distributed

728

Smooth ε-Insensitive Regression by Loss Symmetrization

log−loss
exp−loss

log−loss
exp−loss

Figure 6: A comparison of log-loss and exp-loss on synthetic data.

normally with a zero mean and a variance of 0.1. In the first experiment, the targets were
further contaminated by adding one-sided noise which was generated by subtracting the
absolute value of a normal variable with a zero mean and a unit variance (Figure 6, left).
Each instance xi was expanded by taking powers of xi, i.e. we performed the mapping
xi 7→ (1, xi, x

2
i , x

3
i). This expansion enables us to use our linear algorithms to learn degree

three polynomials. It is clear from the figure that the regressor obtained by minimizing the
log-loss is very close to the polynomial generating the data, demonstrating the robustness
of the log-loss to biased noise. The regressor attained by minimizing the exp-loss, however,
approximately minimizes the maximal discrepancy over the entire data set and therefore
lies significantly below. The other facet of this behavior is illustrated on the right hand side
of Figure 6. In this data set, the additional one sided noise was set to one with a probability
of 1/3 and otherwise it was set to zero. Thus, about a third of the targets were shifted up
by 1. Here, the regressor obtained by minimizing the exp-loss lies between the two groups
of points and as such approximately minimizes the `∞ regression loss on the sample. The
regressor found by minimizing the log-loss practically ignores the samples that were shifted
by 1 and as such approximately minimizes the `1 regression loss on the sample.

8.2 A Comparison of the Log-Additive and Additive Updates

In this section we compare the performance of the log-additive update from Figure 3 to that
of the additive update from Figure 4. An important difference between the two updates
is the type of constraint imposed on the norm of the update templates. In the following,
we demonstrate the effect of this difference on the convergence rates of the two update
strategies. To make the comparison as simple as possible, we chose the instance space to
be R1. Therefore, the instances are scalars and there is a single update template a ∈ R. For
the log-additive update the constraint on a becomes amaxi |xi| ≤ 1 while for the additive
update the constraint is a

∑

i x
2
i ≤ 2. To demonstrate the implications of the different norm

constraints, we generated two synthetic data sets. The target of each instance was set for
both data sets to be equal to the input instance, that is, yi = xi. Each data set consists
of 26 instance-target pairs. For both data sets, we set the value of the first 25 instances to
equal 0.01. In the first data set we set the last instance to 0.5 whereas in the second data set

729

Dekel, Shalev-Shwartz and Singer

2 4 6 8 10 12 14

0

0.02

0.04

0.06

0.08

0.1

0.12
lo

g−
lo

ss

additive
log−additive

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

lo
g−

lo
ss

additive
log−additive

0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

ex
p−

lo
ss

additive
log−additive

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

ex
p−

lo
ss

additive
log−additive

Figure 7: Comparison of the convergence rates of the log-additive and additive updates on
two different data sets (see text). The left column corresponds to the first data
set and the right column to the second. The top row presents results for the
log-loss while the bottom row presents results for the exp-loss.

we set it to 10. Therefore, for the first data set, the constraint on a reduces to a ≤ 2 when
using the log-additive update and to a ≤ 4 when the additive update is used. In the case
of the second data set, the constraint on a becomes a ≤ 0.02 for the log-additive update,
and a ≤ 0.0008 for the additive one. We would like to note in passing that for the additive
update, a typically decreases as the number of examples increases. Hence, the steps that
additive update takes are likely to be smaller in large data sets. The end result is slower
convergence rates as both the log-additive and the additive updates scale linearly with the
value of the template used. Put another way, a small value of a yields an update which
changes λ rather conservatively. Therefore, in the settings discussed in this section, the
additive update should converge faster on the first data set while the log-additive update
should converge faster on the second data set. The top row of Figure 7 shows the log-loss
obtained on the training set as a function of the number of iterations for the two data sets.
It is clear from the graphs that our expectations are met and that the additive update
converges faster than the log-additive update on the first data set and slower on the second
data set.

730

Smooth ε-Insensitive Regression by Loss Symmetrization

Another important difference between the two updates is the construction of q+
i and q−i

when minimizing the exp-loss. Recall that in the case of the log-additive update, the weights
of the examples are q+

i = eδi and q−i = e−δi while for the additive update we further divide
these weights by Z. Therefore, when the data set contains examples for which the exp-loss
cannot be made small, the value of Z is likely to be rather large. Unlike the log-additive
update, the additive form is sensitive to scaling of the weights q+

i and q−i . Thus, whenever Z
is large, the resulting normalized weights will be small and therefore the corresponding step
sizes taken by the additive update will also be small. The bottom row of Figure 7 reflects
this sensitivity of the additive update to scaling. For both data sets described above the
log-additive update exhibits much faster convergence than the additive-one.

8.3 Boosting Regression Stumps

The next experiment demonstrates the effectiveness of the log-additive and additive updates
in their sequential form, when they are applied as boosting procedures. As in the classic
boosting setting, our algorithm has access to an external learning procedure called a base or
weak learner. The goal of the boosting algorithm is to construct a highly accurate regressor
by combining base regressors obtained from consecutive calls to the base learner. On every
boosting iteration the base learner receives the training set along with the weights q+

t,i and

q−t,i generated by the boosting algorithm. The goal of the base learner is to construct a
regressor which maximizes the decrease in loss. We denote by ht : Rn → R, the regressor
returned by the base learner on round t. We use either the bound in Theorem 1 or the
bound in Theorem 2 as the criterion for selecting a base regressor using the log-additive
and additive updates respectively. That is, the base learner attempts to maximize the lower
bound on the decrease in loss given in Theorem 1 or Theorem 2.

In our experiments, we use regression stumps as base regressors. Like decision stumps
which are depth-one decision trees, regression stumps are the simplest form of regression
trees (cf. Friedman (2001)). Each stump is characterized by two parameters: a feature index
parameter, ` ∈ {1, . . . , n} and a threshold parameter θ ∈ R. The prediction of each stump
is either −1 or +1 and is defined as h(x) = sign(θ− x`). We now describe the specific base
learner we use. Given a training set S = {(xi, yi)} of m instance-target pairs, we construct
for each feature index ` ∈ {1, . . . , n} a set of candidate thresholds. Each set consists of
all possible mid-points between two consecutive values of that feature on the training set.
Formally, let Θ` denote the candidate thresholds set for feature ` and let xi,` denote the `th
feature of the ith instance in S. Then, the set Θ` is defined as,

Θ` = {(xi1,` + xi2,`)/2 |xi1,` < xi2,` and @ r s.t. xi1,` < xr,` < xi2,`} . (17)

Note that each set Θ` may contain at most m − 1 different thresholds and can be pre-
computed efficiently in time m log(m) by sorting the training set independently for each
feature.

Given the current set of weights, q+
t,i and q−t,i, the base learner constructs a regression

stump by choosing a feature index ` and a threshold value θ ∈ Θ`. This pair is chosen so
as to maximize the bound on the decrease in the log-loss as defined in Theorem 1 or in
Theorem 2. It is easy to verify that the value of an update template for each base regressor
is either 2/m in the case of the additive update or 1 in the case of the log-additive update

731

Dekel, Shalev-Shwartz and Singer

Input: Training set S = {(xi, yi) |xi ∈ Rd, yi ∈ R}mi=1 ; Insensitivity ε ∈ R+ ;

Number of iterations T

Initialization: compute the set of admissible thresholds Θ` (` = 1, . . . , d)
Iterate:

For t = 1, 2, . . . , T

δt,i =
t−1
∑

j=1

λjhj(xi)−yi

q−t,i =
eδt,i−ε

1 + eδt,i−ε
, q+

t,i =
e−δt,i−ε

1 + e−δt,i−ε
(1 ≤ i ≤ m)

Define:

[if log-additive]

∆(θ, `) =





√

∑

i : xi,l>θ

q−t,i +
∑

i : xi,l<θ

q+
t,i −

√

∑

i : xi,l>θ

q+
t,i +

∑

i : xi,l<θ

q−t,i





2

[if additive]

∆(θ, `) =
1

m





∑

i : xi,l>θ

(q+
t,i − q−t,i) +

∑

i : xi,l<θ

(q−t,i − q+
t,i)





2

Set (θ?, `?) = argmax
(θ,`)

∆(θ, `)

Set ht(x) = sign(θ? − x`?)

Update:

[if log-additive] λt = 1
2 log

(

P

i:ht(xi)≥0 q+
t,i+

P

i:ht(xi)<0 q−t,i
P

i:ht(xi)≥0 q−t,i+
P

i:ht(xi)<0 q+
t,i

)

[if additive] λt = 2
m

∑m
i=1(q

+
t,i − q−t,i)ht(xi)

Output: f(x) =
∑T

t=1 λtht(x)

Figure 8: The stumps-based regression algorithm.

732

Smooth ε-Insensitive Regression by Loss Symmetrization

since the output of the base regressors is either +1 or −1. Hence, given a candidate feature
index ` and a threshold θ ∈ Θ` the bound on the decrease in loss for the additive update is,

1

m





∑

i : xi,l>θ

(q+
t,i − q−t,i) +

∑

i : xi,l<θ

(q−t,i − q+
t,i)





2

, (18)

and for the log-additive update the bound is,





√

∑

i : xi,l>θ

q−t,i +
∑

i : xi,l<θ

q+
t,i −

√

∑

i : xi,l>θ

q+
t,i +

∑

i : xi,l<θ

q−t,i





2

. (19)

As mentioned above, the base learner evaluates one of the above terms (depending on the
update) for each possible ` and θ ∈ Θ`. It then chooses the pair which maximizes either
Eq. (18) or Eq. (19). The pseudocode of the regression learning algorithm using stumps for
both the additive and the log-additive updates is given in Figure 8.

We compared the regression algorithm with stumps to an algorithm named Least Ab-
solute Deviation (LAD) due to Friedman (2001). LAD is a boosting-style algorithm which
attempts to minimize the hinge-loss by fitting a base hypothesis to the residual error, the
approximation error left after applying the combination of base hypotheses found so far.
It is not obvious how to conduct a fair comparison between our approach and LAD since
the direct objective of our regression learning algorithm is to minimize the log-loss while
the goal of LAD is to minimize the hinge-loss. To remove any doubt on the validity of the
results, we evaluate both algorithms using the hinge-loss, thus giving a slight advantage to
LAD in our empirical evaluation. In addition, we compared the mean squared errors (MSE)
of the algorithms.

We ran experiments on two standard data sets for regression: the Boston housing data
set from the UCI repository and the body fat data set (Penrose et al., 1985). To evaluate our
results, we used a 10-fold cross validation technique. The plots on the top row of Figure 9
depict the average hinge-loss on the two data sets as a function of the number of sequential
iterations while the plots on the bottom row correspond to the mean squared error obtained
by the algorithms on the same data sets. The plots underscore a few interesting phenomena.
The LAD algorithm appears to be able to decrease the hinge loss and the MSE much faster
than our algorithm on both the training data (not shown) and the test data. In no more than
3 iterations, LDA is able to achieve rather low loss. It takes about an order of magnitude
more iterations for our algorithm to obtain the same performance LAD achieves after 2 or
3 iterations. This behavior can be partially attributed to the fact that LAD is designed
to directly maximize the decrease in loss while our algorithm maximizes a lower bound on
the decrease in loss. However, despite its initial performance, LDA seems to “get stuck”
rather quickly and the final regressor it obtains has substantially higher loss on both data
sets compared to our algorithm, whether it is trained with the log-additive update or the
additive one. The improved generalization performance may be attributed to the following
behavior that is common to boosting algorithms: as more base regressors are added, the
regression error obtained on most of the examples is rather small. Thus, the weights q+

i

and q−i for most of the examples are also small and do not contribute too much to further

733

Dekel, Shalev-Shwartz and Singer

10
0

10
1

10
2

10
3

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Number of boosting iterations

l 1 lo
ss

additive
log−additive
LAD

10
0

10
1

10
2

10
3

3.5

4

4.5

5

5.5

6

6.5

7

Number of Boosting iterations

l 1 lo
ss

additive
log−additive
LAD

10
0

10
1

10
2

10
3

10

20

30

40

50

60

70

80

90

Number of boosting iterations

l 2 lo
ss

additive
log−additive
LAD

10
0

10
1

10
2

10
3

20

25

30

35

40

45

50

55

60

65

70

Number of Boosting iterations

l 2 lo
ss

additive
log−additive
LAD

Figure 9: A comparison of the `1 and MSE losses obtained by the regression algorithm with
stumps and the LAD algorithm (see text) on Boston housing data set (left) and
body-fat (right) data sets.

decreases in the loss. Thus, even simple regressors such as decision stumps can further
reduce the loss on the remaining examples for which the loss is still high. Indeed, we see
that some over-fitting takes place when our regression algorithm is run for more than 200
iterations.

Comparing the performance of the additive and the log-additive updates in this exper-
iment, it is apparent that the former seems more effective in reducing the loss but is also
more susceptible to over-fitting. The accuracy of each update strategy seems to be prob-
lem dependent. We leave further theoretical and empirical research on the generalization
properties of the two updates to future research.

8.4 Examining the Effect of Regularization

So far we have focused on experiments which illustrate the different facets of empirical
loss minimization using different update schemes. In this section we shift our focus to the
effects of the regularization technique discussed in Section 4. The role of regularization is to
control the complexity of the final regressor. Indeed, as we demonstrate empirically, proper

734

Smooth ε-Insensitive Regression by Loss Symmetrization

10
−10

10
−5

10
0

10
5

0

2

4

6

8

10

12

l 1−
lo

ss

ν

train
test

10
−10

10
−5

10
0

10
5

0

1

2

3

4

5

6

7

l 1−
lo

ss

ν

train
test

Figure 10: The training and test losses as a function of the regularization parameter (ν) for
the log-loss (left) and Support Vector Regression (right).

regularization can ensure that the generalization loss (i.e. the regression loss suffered on
test examples) would not greatly exceed the loss obtained on the training set. The feature
space we use in this experiment is based on kernel operators. Concretely, the regressors we
construct take the form

fλ(x) =
m
∑

j=1

λjk(xj ,x),

where {x1, . . . ,xm} are the instances in the training set and k is a kernel function. We used
the log-additive and additive update algorithms to minimize the following regularized loss,

Loss(λ, ν, S) =
m
∑

i=1

Llog(fλ(xi)− yi ; ε) + ν
m
∑

j=1

Llog(λj). (20)

As illustrated in Figure 1, the log-loss can be interpreted as a smooth approximation to the
ε-insensitive hinge loss used by Support Vector Regression (SVR). SVR is a technique for
non-linear regression which uses kernel functions. For a thorough review of SVR, see for
instance (Smola and Schölkopf, 1998). In our setting, the regularized loss from Eq. (20) can
be viewed as a smooth approximation to the hinge-loss with l1 regularization that is used
in Linear Programming Support Vector Regression (LP-SVR), namely,

m
∑

i=1

|fλ(xi)− yi|ε + ν
m
∑

j=1

|λj |. (21)

We ran experiments using the Boston Housing data set from the UCI Machine Learning
Repository. Following Bi and Bennett (2003), we chose to use a Gaussian kernel with
2σ2 = 3.9. We ran experiments with ε set to 0, 1, 2, 3. The preprocessing we performed
consisted of shifting and scaling the input variables to the unit hypercube. Specifically, let
rj = mini xi,j and sj = maxi xi,j , then xi,j was transformed to (xi,j−rj)/(sj−rj). As in the

735

Dekel, Shalev-Shwartz and Singer

−12 −10 −8 −6 −4 −2 0 2 4
0

1

2

3

4

5

6

7

8

9

T
es

t l
1−

lo
ss

log(ν)

SVR
log−loss

−12 −10 −8 −6 −4 −2 0 2 4
0

10

20

30

40

50

60

70

80

90

100

110

T
es

t M
S

E

log(ν)

SVR
log−loss

Figure 11: Comparisons of the test losses obtained by the regularized log-loss minimization
procedure and by SVR as a function of ν. The losses used for evaluation are
the `1 loss (left) and the mean squared error (right). The standard deviation of
over the cross validation fold is depicted as error bars.

previous experiment, we used 10-fold cross validation to evaluate the results and measured
the hinge-loss and the mean-squared error (MSE).

The train and test hinge losses for different values of the regularization parameter ν are
depicted in Figure 10. As anticipated, the training loss for both algorithms is monotoni-
cally increasing in the regularization parameter ν while the difference between the test and
training loss is monotonically decreasing in ν. This behavior is typical of regularization
techniques. On the left hand side of Figure 11 we directly compare the test error obtained
by the two algorithms. The standard deviation over the ten folds is shown using error bars.
The MSE of the algorithms is given on the right hand side of Figure 11. As can be seen
form the figure, the lowest test loss attained by SVR is very close to the value attained by
the log-loss (with a slight advantage to the latter). However, the regressors obtained by the
log-loss seem to be less sensitive to the particular choice of ν than the regressors obtained by
SVR. Indeed, for ν in [10−5, 1], the discrepancy between the losses of the regressors found
by the log-loss is less than 1 while in the same range the losses of SVR can be as much as 3
units apart. This behavior suggests that regression methods which use the smooth log-loss
function may give a viable alternative to SVR as they are less sensitive to the particular
choice of the regression parameter.

8.5 Online Experiments

We conclude the experiments section with two experiments which use our online algorithms.
Theorem 4 states that the GD online algorithm attains a cumulative log-loss which is at
most twice the loss of any fixed regressor µ, up to a constant additive factor. For any finite
number of online rounds T , the theorem in particular holds for µ = λ?

T , the regressor which
attains the minimal log-loss on the first T examples in the sequence. In practice, however,
we have found that GD performs much better than the theoretical guarantee in Theorem 4.

736

Smooth ε-Insensitive Regression by Loss Symmetrization

500 1000 1500 2000 2500 3000 3500 4000 4500

500

1000

1500

2000

rounds

cu
m

ul
at

iv
e

lo
ss

GD
optimal
bound

2000 4000 6000 8000 10000 12000

10
0

10
1

10
2

k = 5

k = 5

k = 50

k = 50

k = 100

k = 100

rounds

cu
m

ul
at

iv
e

lo
ss

GD
EG

Figure 12: (Left) Cumulative loss of the GD online algorithm compared with the cumulative
loss of the optimal fixed regressor and the worst case bound in Theorem 4.
(Right) The cumulative loss of EG and GD for different numbers of relevant
features.

To demonstrate this, we randomly generated instances and selected the target value for each
instance according to a predefined linear function. We added random Gaussian noise to the
target values and presented the sequence to the GD algorithm. The cumulative loss of the
GD algorithm is depicted on the left hand side of Figure 12, along with the cumulative loss
of λ?

T and the worst-case guarantee attained from Theorem 4 with µ = λ?
T . Clearly, the

cumulative loss of the GD algorithm lies significantly below the worst case bound. Moreover,
despite the simplicity of the algorithm, its de facto performance is competitive with the best
regressor on each round.

Our last experiment compares the performance of the EG and GD online algorithms.
We randomly generated instances in {−1, 1}1000, and generated noise-free targets according
to a linear function with only k non-zero components (for k = 5, 50, 100). For each value of
k, the first k elements of the target function were set to be 1/k while the rest of the elements
were set to zero. The results are depicted in Figure 12 (right). The cumulative loss curves
indicate that the EG algorithm is faster to converge than GD. In fact, for k = 5 it takes less
than 10 iterations for EG to cease making any significant regression errors. Indeed, simple
calculations yield that the excess loss as given in the analyses of the online algorithms is
O(log(n/k)) for EG while for GD it is O(n/k). This type of behavior is clearly observed on
the right hand side of Figure 12: the higher k becomes the smaller the difference between
GD and EG.

9. Discussion

We described a framework for solving regression problems by a symmetrization of margin-
based loss functions commonly used in boosting techniques. Our approach naturally lent
itself to a shifted and symmetric loss function which is approximately zero in a pre-specified
interval and can thus be used as a smooth alternative to the ε-insensitive hinge loss. We

737

Dekel, Shalev-Shwartz and Singer

presented both batch and online algorithms for solving the resulting regression problems.
The updates of the batch algorithms we presented take either a log-additive or an additive
form. Our framework also results in a new and very simple to implement regularization
scheme for regression and classification boosting algorithms. As a byproduct, we obtained
a new additive algorithm for boosting-style classification, which can be used in conjunction
with the newly introduced regularization scheme. There are numerous extensions of this
work. One of them is the application of Thms. 1 and 2 as splitting criteria for regression-tree
learning algorithms. Another interesting direction is the marriage of the loss symmetrization
technique with other boosting related techniques such as drifting games (Schapire, 1999;
Freund and Opper, 2002).

Acknowledgments

We are in debt to Rob Schapire for making the connection to regularization and for numerous
comments. We also would like to thank the anonymous reviewers for their constructive
comments. This research was funded by NSF ITR Award 0205594 and by EU PASCAL
Network of Excellence.

Appendix A. Technical Proofs

Proof of Lemma 5: Recall that we denote the discrepancy between the target predicted
by the online algorithm and the true target by δt = λt · xt − yt. For brevity, let δ̄t denote
µ ·xt−yt. Given the form of the update rule of GD, we can expand λt+1 to get the following
lower bound on the progress given in Lemma 5,

R
(

‖λt − µ‖22 − ‖λt+1 − µ‖22
)

= R

(

2(λt − µ) · 1

R
L

′

log(δt) xt −
∥

∥

∥

∥

1

R
L

′

log(δt) xt

∥

∥

∥

∥

2
)

= 2L
′

log(δt)(λt − µ) · xt −
1

R

(

L
′

log(δt)
)2
‖xt‖22

≥ 2L
′

log(δt)(λt − µ) · xt −
1

2

(

L
′

log(δt)
)2

, (22)

where L
′

log denotes the derivative of Llog and we used the fact that 2‖xt‖22 ≤ R in the last
inequality. Since (λt−µ) ·xt = (λt ·xt−yt)+(yt−µ ·xt) = δt− δ̄t, we can rewrite Eq. (22)
as

2L
′

log(δt)(δt − δ̄t)−
1

2
(L

′

log(δt))
2
.

Therefore, it is sufficient to prove that the following function is non-negative

F (δ, δ̄) = 2L
′

log(δ)(δ − δ̄)− 1

2
(L

′

log(δ))
2 − Llog(δ) + 2Llog(δ̄).

The partial derivative of F with respect to δ̄ is

∂F (δ, δ̄)

∂δ̄
= − 2L

′

log(δ) + 2L
′

log(δ̄).

738

Smooth ε-Insensitive Regression by Loss Symmetrization

The only assignment of δ̄ for which this derivative equals 0 is δ̄ = δ. It is straightforward to
verify that the second derivative of F with respect to δ̄ is positive since Llog(·) is a convex
function. Therefore, fixing δ, F attains its minimum at δ̄ = δ. Put another way, we have
shown that for any δ, δ̄ ∈ R, F (δ, δ) ≤ F (δ, δ̄). Denoting K(δ) = F (δ, δ) and simplifying K
we get,

K(δ) = −1

2
(L

′

log(δ))
2
+ Llog(δ).

It is left to show that K(δ) is non-negative. We prove this by showing that for all δ

K(δ) ≥ K(0) = 0. The derivative of K with respect to δ is dK(δ)
dδ = L

′

log(δ)(1 − L
′′

log(δ)) ,

where L
′′

log(δ) is the second derivative of Llog(δ), namely,

L
′′

log(δ) =
e−δ+ε

(1 + e−δ+ε)2
+

eδ+ε

(1 + eδ+ε)2

=

(

1− 1

1 + e−δ+ε

)

1

1 + e−δ+ε
+

(

1− 1

1 + eδ+ε

)

1

1 + eδ+ε
.

The above equation implies that L
′′

log(δ) is the sum of two numbers, each of which is in

[0, 1/4] and therefore 0 ≤ L
′′

log(δ) ≤ 1
2 for all δ ∈ R. Therefore, 1−L

′′

log(δ) ≥ 0. We complete

the proof by noticing that L
′

log(δ) is a monotonically increasing function and L
′

log(0) = 0.
Therefore, δ = 0 is the single extreme point of K(δ) and since K(1) > K(0) = 0 we get
that for all δ K(δ) ≥ K(0) = 0.

Proof of Lemma 7: Recall that the EG update rule is

λt+1,j =
λt,je

−βtxt,j

∑

k λt,ke
−βtxt,k

, (23)

where βt = L′(λt · xt − yt)/R and R ≥ (maxj xt,j −minj xt,j)
2. First note that, without

loss of generality, we can assume that minj xt,j = 0. This is true since we can replace
each instance-target pair (xt, yt) with the pair (xt − (minj xt,j) , yt − (minj xt,j)). Since
we consider only regressors in the probability simplex this transformation does not change
discrepancy values. In addition, it is simple to verify that the update given in Eq. (23) is
invariant to this shifting.

We now prove the bound in the Lemma, starting with the left-hand side of Eq. (16).
Using the definition of the relative entropy we get

DRE(µ, λt)−DRE(µ, λt+1) = −βµ · xt − log





n
∑

j=1

λt,je
−βxt,j



 .

We employ the inequality αz ≤ 1 − z(1 − α) which holds for every α ≥ 0 and z ∈ [0, 1].

Applying this inequality with α = e−β
√

R and z = xt,j/
√

R yields that

e−βxt,j ≤ 1− xt,j√
R

(

1− e−β
√

R
)

,

739

Dekel, Shalev-Shwartz and Singer

and summing over j results in the bound,

n
∑

j=1

λt,je
−βxt,j ≤ 1− λt · xt√

R

(

1− e−β
√

R
)

.

Hence,

DRE(µ, λt)−DRE(µ, λt+1) ≥ −βµ · xt − log

(

1− λt · xt√
R

(1− e−β
√

R)

)

.

Therefore, to prove Eq. (16) it suffices to show that F (y, λ · x, µ · x) ≥ 0 where

F (y, p, r) =
4

3
R

(

−βr − log

(

1− p√
R

(1− e−β
√

R)

))

+
4

3
Llog(r − y)− Llog(p− y).

We now show that for any p, r ∈ R we have F (y, p, r) ≤ F (y, p, p). The partial derivative
of F with respect to the variable r is

∂F (y, p, r)

∂r
=

4

3

(

−Rβ + L
′

log(r − y)
)

=
4

3

(

−L
′

log(p− y) + L
′

log(r − y)
)

.

The only assignment of r for which this derivative is equal to 0 is r = p. The second
derivative of F with respect to r is 4/3L

′′

log(r− y) which is non-negative (see the end of the
proof of Lemma 5). Hence, given p, F attains a global minimum at r = p. We thus have
shown that for any p, r ∈ R, F (y, p, r) ≤ F (y, p, p). F (y, p, p) reduces to

F (y, p, p) =
4

3

(

−L
′

log(p− y)p−R log

(

1− p√
R

(1− e−L
′

log(p−y)/
√

R)

))

+
1

3
Llog(p− y).

It is left to show that F (y, p, p) is non-negative. Let z = p/
√

R and δ = p−y. The definition
of
√

R implies that z ∈ [0, 1]. Therefore, it is sufficient to prove that the function G(z, δ) is
non-negative for all z ∈ [0, 1] and δ ∈ R where,

G(z, δ) = Llog(δ)− 4
√

R

(

zL
′

log(δ) +
√

R log

(

1− z

(

1− e−L
′

log(δ)/
√

R

)))

.

We now apply the inequality log (1− z(1− ep)) ≤ zp + p2/8, which holds for z ∈ [0, 1] and
p ∈ R . We get

G(z, δ) ≥ Llog(δ)−
1

2

(

L
′

log(δ)
)2

.

The term lower-bounding G(z, δ) is equal to K(δ) where K(δ) was defined in Lemma 5. In
that lemma we proved that K(δ) ≥ 0. Therefore, G(z, δ) ≥ 0 as required.

740

Smooth ε-Insensitive Regression by Loss Symmetrization

References

J. Bi and K.P. Bennett. A geometric approach to support vector regression. In Neurocom-
puting, special issue on support vector machines, volume 55, pages 79–108, September
2003.

N. Cesa-Bianchi. Analysis of two gradient-based algorithms for on-line regression. Journal
of Computer and System Sciences, 59(3):392–411, 1999.

M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman
distances. Machine Learning, 47(2/3):253–285, 2002.

N. Duffy and D. Helmbold. Leveraging for regression. In Proceedings of the Thirteenth
Annual Conference on Computational Learning Theory. ACM, 2000.

Y. Freund and M. Opper. Drifting games and Brownian motion. Journal of Computer and
System Sciences, 64:113–132, 2002.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. Annals of Statistics, 28(2):337–374, April 2000.

J.H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5):1189–1232, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

P.J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.

J. Kivinen and M.K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–64, January 1997.

G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential models. In
Advances in Neural Information Processing Systems 14, 2001.

K.W. Penrose, A.G. Nelson, and A.G. Fisher. Generalized body composition prediction
equation for men using simple measurement techniques. Medicine and Science in Sports
and Exercise, 17(2):189, 1985.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the
IEEE, 78(9), 1990.

R.E. Schapire, M. Rochery, M. Rahim, and N. Gupta. Incorporating prior knowledge into
boosting. In Machine Learning: Proceedings of the Nineteenth International Conference,
2002.

R.E. Schapire. Drifting games. In Proceedings of the Twelfth Annual Conference on Com-
putational Learning Theory, 1999.

A. Smola and B. Schölkopf. A tutorial on support vector regression. Technical Report
NC2-TR-1998-030, NeuroCOLT2, 1998.

V.N. Vapnik. Statistical Learning Theory. Wiley, 1998.

741

