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Abstract

We develop a Bayesian framework for tackling the supervisedclustering problem, the generic prob-
lem encountered in tasks such as reference matching, coreference resolution, identity uncertainty
and record linkage. Our clustering model is based on the Dirichlet process prior, which enables
us to define distributions over the countably infinite sets that naturally arise in this problem. We
addsupervisionto our model by positing the existence of a set of unobserved random variables
(we call these “reference types”) that are generic across all clusters. Inference in our framework,
which requires integrating over infinitely many parameters, is solved using Markov chain Monte
Carlo techniques. We present algorithms for both conjugateand non-conjugate priors. We present a
simple—but general—parameterization of our model based on a Gaussian assumption. We evaluate
this model on one artificial task and three real-world tasks,comparing it against both unsupervised
and state-of-the-art supervised algorithms. Our results show that our model is able to outperform
other models across a variety of tasks and performance metrics.

Keywords: supervised clustering, record linkage, citation matching, coreference, Dirichlet pro-
cess, non-parametric Bayesian

1. Introduction

Supervised clustering is the general characterization of a problem that occurs frequently in strikingly
different communities. Like standard clustering, the problem involves breaking a finite setX ⊆ X
into aK-way partitionB1, . . . ,BK (with K unknown). The distinction between supervised clustering
and standard clustering is that in the supervised form we are given training examples. These training
examples enable a learning algorithm to determine what aspects ofX are relevant to creating an
appropriate clustering. TheN training examples(X(n),{Bk}

(n)

k=1...K(n)) are subsets ofX paired with
their correct partitioning. In the end, the supervised clustering task is a prediction problem: a new
X(n+1) ⊆ X is presented and a system must produce a partition of it.

The supervised clustering problem goes under many names, depending on the goals of the in-
terested community. In the relational learning community, it is typically referred toas identity
uncertaintyand the primary task is to augment a reasoning system so that it does not implicitly(or
even explicitly) assume that there is a one-to-one correspondence between elements in an knowl-
edge base and entities in the real world (Cohen and Richman, 2002; Pasulaet al., 2003). In the
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DAUM É III AND MARCU

database community, the task arises in the context of merging databases with overlapping fields,
and is known asrecord linkage(Monge and Elkan, 1997; Doan et al., 2004). In information ex-
traction, particularly in the context of extracting citations from scholarly publications, the task is to
identify which citations are to the same publication. Here, the task is known asreference matching
(McCallum et al., 2000). In natural language processing, the problem arises in the context ofcoref-
erence resolution, wherein one wishes to identify which entities mentioned in a document are the
same person (or organization) in real life (Soon et al., 2001; Ng and Cardie, 2002; McCallum and
Wellner, 2004). In the machine learning community, it has additionally been referred to aslearning
under equivalence constraints(Bar-Hillel and Weinshall, 2003) andlearning from cluster examples
(Kamishima and Motoyoshi, 2003).

In this paper, we propose a generative model for solving the supervised clustering problem. Our
model takes advantage of theDirichlet process prior, which is a non-parametric Bayesian prior over
discrete distributions. This prior plays two crucial roles: first, it allows us toestimate the number
of clustersK in a principled manner; second, it allows us to control the complexity of the solutions
that are learned. We present inference methods for our model based on Markov chain Monte Carlo
methods. We compare our model against other methods on large, real-worlddata sets, where we
show that it is able to outperform most other systems according to several metrics of performance.

The remainder of this paper is structured as follows. In Section 2, we describe prior efforts to
tackle the supervised clustering problem. In Section 3, we develop our framework for this prob-
lem, starting from very basic assumptions about the task. We follow this discussion with a general
scheme for inference in this framework (Section 4). Next, in Section 5, we present three generic pa-
rameterizations of our framework and describe the appropriate adaptationof the inference scheme to
these parameterizations. We then discuss performance metrics for the supervised clustering prob-
lem in Section 6 and present experimental results of our models’ performance on artificial and
real-world problems in Section 7. We conclude in Section 8 with a discussion ofthe advantages and
disadvantages of our model, our generic parameterization, and our learning techniques.

2. Prior Work

The most common technique for solving supervised clustering is by mapping it tobinary classifi-
cation. For a given input set, a binary classifier is trained on all pairs of inputs, eliciting a positive
output if the two elements belong in the same cluster and a negative output otherwise. When applied
to test data, however, such a classifier will not necessarily produce a valid equivalence relation (i.e.,
it might sayx = y andy = z but x 6= z); to solve this problem, the outputs of the binary classifier
are fed into a clustering algorithm. Among others, Cohen and Richman (2002)present an agglom-
erative clustering algorithm in the task of record linkage; Bar-Hillel and Weinshall (2003) present
a similar, but more complex algorithm that is provably optimal whenever the binary classifier is
sufficiently good.1

The binary classification plus clustering approach is attractive primarily because both of these
problems have individually received much attention; thus, good algorithms are known to solve them.
The primary disadvantages of these approaches are the largely ad-hocconnection between the clas-

1. Unfortunately, the “sufficiently good requirement” of Bar-Hillel and Weinshall (2003) is often unattainable: it states
that the classifier must achieve an error rate of at mostR2/6, whereR is the ratio of the size of the smallest class to
the total number of points. In many real world problems, the size of the smallest class is 1, and the number of points
is quite large, meaning that only a perfect classifier will achieve the required accuracy.
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sifier and the clustering algorithm, the necessity of training overO(n2) data points, and the potential
difficulty of performing unbiased cross-validation to estimate hyperparameters. The first issue, the
ad-hoc connection, makes it difficult to make state precise statements about performance. The sec-
ond can cause computational problems for expensive classifiers (suchas SVMs) and invalidates
the i.i.d. assumption that is necessary for many generalization bounds.2 The final issue, regarding
cross-validation, has to do with the fact that the classification plus clusteringapproach is based on
pipelining two independent systems (see Section 7.1 for how the cross-validation is done in our
comparative model).

In addition to the classification plus clustering approach, there have been several attempts to
solve the supervised clustering problem directly. Some researchers have posed the problem in the
framework of learning a distance metric, for which, eg., convex optimization methods can be em-
ployed (Bar-Hillel et al., 2003; Xing et al., 2003; Basu et al., 2003). Using a learned distance metric,
one is able to use a standard clustering algorithm for doing the final predictions. These methods ef-
fectively solve all of the problems associated with the classification plus clustering approach. The
only drawback to these approaches is that they assume Euclidean data andlearn a Mahalanobis dis-
tance metric. It is often unclear how to extend this assumption to a more generalspace or a more
general notion of similarity.

Two other recent techniques have been proposed for directly solving the supervised clustering
problem, and are not phrased in terms of learning a Mahalanobis distance.The first, due to Mc-
Callum and Wellner (2004), is based on conditional random fields. In this model, a fully connected
graph is created, where nodes are elements in a data set. Feature functions are defined over the edges
(corresponding to pairs of input elements), and weights are learned to maximize the conditional
likelihood of the data. In order to ensure that the model never predicts intransitive solutions, clique
potentials of−∞ are inserted for any solution that is intransitive. Exact inference in this model is
intractable (as in most supervised clustering models), and they employ a simple perceptron-style
update scheme, which they show to be quite effective on this task. The perceptron requires that
the most likely clustering be found for a given set of weights, which is NP-complete by reduction
to graph partitioning; McCallum and Wellner (2004) employ a standard approximation algorithm
for performing this operation. This technique appears promising, largely because it can incorporate
arbitrary feature functions. The only potential drawback seems to be thattwo approximations are
used: the perceptron approximation to the CRF likelihood3 and an approximate graph partitioning
algorithm for performing the clustering.

The other direct solution to the supervised clustering problem, due to Finley and Joachims
(2005), is based on the SVMs for Interdependent and Structured Outputs technique (Tsochantaridis
et al., 2004). In this model, a particular clustering method,correlation clustering, is held fixed, and
weights are optimized to minimize the regularized empirical loss of the training data withrespect to
this clustering function. The choice of correlation clustering is not accidental: it decomposes over
pairs. The advantage of this model over the model of McCallum and Wellner (2004) is primarily
due to the fact that the SVM model can optimize more complex (and appropriate)loss functions
than can the CRF approach. However, like the CRF approach, the SVMISO approach must resort
to approximation methods for finding solutions during learning.

2. For instance, the pairs(x1,x2) and(x3,x4) can be seen as being drawn i.i.d. from a joint pair distribution, but the
pairs(x1,x2), (x2,x3) cannot possibly be i.i.d.

3. It could be argued that the perceptron “approximation” is actually superior to the CRF, since it optimizes something
closer to “accuracy” than the log-loss optimized by the CRF.
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In comparison to other models that have been proposed, ours most closelyresembles the (non-
Bayesian) generative model proposed by Pasula et al. (2003). This model formulates the identity
uncertainty/citation matching problem in a generative framework, based on acomplex generative
model under which inference is intractable. They resort to an Markov chain Monte Carlo inference
scheme for identifying clusters, where a uniform prior is placed on the number of clusters. Their
framework learns the model parameters through an MCMC sampling procedure, though no learning
is done with respect to the prior on the number of clusters. The work we present in this paper can be
seen as a method for extending their approach in two ways: first, we directlymodel the number of
output clusters; second, we provide an intuitive, effective procedure for accounting for the multiple
aspects of similarity between different instances. As we discuss in Section 8, the hybridization of
their model and the one we propose could lead to a more effective system than either alone. (Indeed,
between the time of submission of this paper and its final acceptance, Carbonetto et al. (2005) have
presented an extension to the Pasula et al. (2003) model that solves the first problem: estimating
the number of clusters in the citation matching domain. Like us, they employ a Dirichlet process
model to solve this problem. The fact that this model has now been proposedtwice, independently,
is not surprising: citation matching is a well-known problem that suffers from the need to estimate
the number of clusters in a data set, and the Dirichlet process excels at precisely this task.)

3. Supervised Clustering Model

In this section, we describe our model for the supervised clustering problem. To facilitate discussion,
we take our terminology and notation from the reference matching task. The canonical example
of this task is the CiteSeer/ResearchIndex database. Specifically, we assume that we are given
a list of references appearing in the bibliographies of scholarly publications and that we need to
identify which references correspond to the same publication. This task is difficult: according
to CiteSeer, there are currently over 100 different books onArtificial Intelligenceby Russell and
Norvig, according to Pasula et al. (2003). We refer to the setX as the set ofreferencesand a correct
cluster of references as apublication. In our problem, the observed data is a set of references paired
with partial equivalence classes over those references (partial publications). For instance, we might
know thatr1, r2, r3 ∈ X belong to the same equivalence class (are the same publication), but we
might not have any information about the equivalence class ofr4. In this case, we identifyr1, r2, r3

as training data andr4 as test data.
In general, we have a countable set of referencesX and some information about the structure of

equivalence classes on this set and seek to extend the observed equivalence classes to all ofX . In
complete generality, this would be impossible, due to the infinite nature ofX and the corresponding
equivalence classes. However, in thepredictioncase, our job is simply to make predictions about the
structure of afinitesubset ofX , which we have previously denotedX(n+1). Thus, while our inference
procedure attempts to uncover the structure of an infinite structure, calculations are possible because
at any given time, we only deal with a finite portion of this set. This is not unlike the situation
one encounters in Gaussian processes, wherein a distribution is placed over a function space, but
computations are tractable because observations are always finite.

3.1 Generative Story

The model we describe is a generative one. Our modeling assumption is that areference is generated
according to the cross-product of two attributes. The first attribute specifies which publication this
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reference belongs to. The second attribute specifies the manner in which this reference is created,
which we call the “reference type.” A reference type encompasses thenotion that under different
circumstances, references to the same publication are realized differently.

In the terminology of reference matching, in the context of a short workshop paper (for in-
stance), author first names might be abbreviated as initials, page numbers might be left off and
conferences and journals might be referred to by abbreviations. On thecontrary, in a reference ap-
pearing in a journal, page numbers are included, as are full conference/journal names and author
names. In the context of coreference resolution, one reference typemight be for generating proper
names (“Bill Clinton”), one for nominal constructions (“the President”) and one for pronouns (“he”).
Of course, the form and number of the reference types is unknown.

The generative process for a data set proceeds as follows:

1. Select a distributionGp
0 over publications that will be referred to in this data set.Gp

0 should
assign positive probability to only a finite set of all possible publications.

2. Select a distributionGt
0 over reference types that will be used in this data set; again,Gt

0 should
be finite.

3. For each referencern appearing in the data set:

(a) Select the corresponding publicationpn ∼ Gp
0.

(b) Select the corresponding reference typetn ∼ Gt
0.

(c) Generatern by a problem-specific distribution parameterized by the publication and
reference type:rn ∼ F(pn, tn).

The difficulty with this model is knowing how to parameterize the selection of the distributions
Gp

0 andGt
0 in steps 1 and 2. It turns out that a Dirichlet process is an excellent tool for solving this

problem. The Dirichlet process (DP), which is adistribution over distributions, can be most easily
understood via a generalized Pòlya urn scheme, where one draws colored balls from an urn with
replacement. The difference is that when a black ball is drawn, one replaces it together with a ball
of a new color. In this way, the number of “classes” (ball colors) is unlimited, but defines a discrete
distribution (with probability one). See Appendix A for a brief review of the properties of the DP
that are relevant to our model.

Our model is seen as an extension of the standard naı̈ve-Bayes multiclass classification model (in
the Bayesian framework), but where we allow the number of classes to grow unboundedly. Just as a
multiclass classification model can be seen as a finite mixture model where the mixture components
correspond to the finite classes, the supervised clustering model can be seen as aninfinite mixture
model. In the case of the standard multiclass setup, one treats the classy as a random variable drawn
from a multinomial distributionMult(π), whereπ is again a random variable with prior distribution
Dir(α) for the standard Dirichlet distribution. In our model, we essentially remove therequirement
that there is a known finite number of classes and allow this to grow unboundedly. In order to
account for the resulting non-identifiability of the classes, we introduce thenotion of reference
types to capture the relationships between elements from the same class.

Whenever one chooses a model for a problem, it is appropriate to ascertain whether the chosen
model is able to adequately capture the required aspects of a data set. In thecase of our choice
of the Dirichlet process as a prior over publications, one such issue is that of the expected number
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Figure 1: Graphical model for our generic supervised clustering model.

of publications per citation. We have performed such experiments and verified that on a variety
of problems (reference matching, identity uncertainty and coreference resolution), the Dirichlet
process is appropriate with respect to this measure (see Section 7.3 and Figure 3 for discussion).

3.2 Hierarchical Model

The model we propose is structured as follows:

πp | αp ∼ Dir(αp/K, . . . ,αp/K) πt | αt ∼ Dir(αt/L, . . . ,αt/L)
cn | πp ∼ Disc(πp

1, . . . ,π
p
K) dn | πt ∼ Disc(πt

1, . . . ,π
t
L)

pk | Gp
0 ∼ Gp

0 tk | Gt
0 ∼ Gt

0
rn | cn,dn, p, t ∼ F(pcn, tdn)

(1)

The corresponding graphical model is depicted in Figure 1. In this figure, we depict theα
andG parameters as being fixed (indicated by the square boxes). Theαs give rise to multinomial
random variablesπ, which in turn determine indicator variablescn (specifying the publication to
which rn belongs) anddn (specifying the reference type used by referencern). The base density
Gp generates publicationspk (according to a problem-specific distribution), while the base density
Gt generates reference typestl (again according to a problem-specific distribution). Finally, the
observed referencern is generated according to publicationpcn and reference typetdn with problem-
specific distributionF . The rn random variable (the reference itself) is shaded to indicate that it
is always observed, and thecn random variable (the indicator as to which publication is used for
referencern) is partially shaded to indicate that it is sometimes observed (in the training data) and
sometimes not (in the test data).

As indicated by the counts on the plates for the(πp, p) and(πt , t) variables, we take the limit as
K → ∞ andL → ∞ (whereK is the number of publications andL is the number of reference types).
This limit corresponds to a choice of a Dirichlet process prior on theps andts (Neal, 1998).

4. Inference Scheme

Inference in infinite models differs from inference in finite models, primarily because we cannot
store all possible values for infinite plates. However, as noted earlier, weonly encounter a finite
amount of data, so at any time only a finite number of these infinite parameters willbe active—i.e.,
only a finite number of them will affect the distribution of the observed data. We will suggest and
implement inference schemes based on Markov chain Monte Carlo (MCMC) techniques, which
are the most frequently used methods for inference in DP models (Antoniak,1974; Escobar, 1994;
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Neal, 1998; MacEachern and Müller, 1998; Ishwaran and James, 2001; Beal et al., 2002; Xing
et al., 2004). Recently, Blei and Jordan (2005) have presented a variational approach to Dirichlet
process models, and Minka and Ghahramani (2004) have presented aninference procedure for DP
models based on expectation propagation. Unfortunately, these methods donot work when the prior
distributionsG0 are not conjugate to the data distributionF and they are thus not of use to us.

The MCMC-based Bayesian solution to the supervised clustering problem (or, indeed, any prob-
lem) is to write down the expression corresponding to the posterior distributionof thecns for the test
data and draw samples from that posterior. Writing data points 1 throughN as the training data and
pointsN + 1 throughN + M as the test data, we obtain the following expression for this posterior
(the actual distributions are from Equation (1)):

p(cN+1:N+M | r1:N+M,c1:N) ∝
Z

dπp p(πp | αp)
Z

dπt p
(

πt | αt)

Z

dp p
(

p | Gp
0

)

Z

dt p
(

t | Gt
0

)

∑
d1:N+M

N+M

∏
n=1

p(cn | πp) p
(

dn | πt) p(rn | pcn, tdn) .

We now describe how we can do this sampling. Most of the information in this section is taken
from Neal (1998), in which a vast amount of additional information is provided. The interested
reader is directed there for additional motivation and different algorithms.The algorithms we use
in this paper are either exact replicas, or slight deviations from Algorithms 2and 8 of Neal’s.

4.1 Updates for Conjugate Priors

The simplest case arises when a conjugate prior is used. In the terminology of the Dirichlet pro-
cess, this means that the data sampling distributionF is conjugate to the base densityG0 of the
Dirichlet process. To perform inference with conjugate priors, we need to be able to compute the
marginal distribution of a single observation and need to be able to draw samples from the posterior
of the base distributions. In each iteration of sampling, we first resample each active publication
pc and reference typetd according to their posterior densities (in the case of conjugate priors, this
is possible). Then, for each test reference, we resample its publication and for all references, we
resample the corresponding reference type. The algorithm is shown in Figure 2. We actually have
two options when sampling thecns, depending on whether publications are allowed to be shared
across the training and testing data. If a training reference may refer to thesame publication as a
testing reference (as is natural in the context of reference matching), then the sum in Equation (2)
is over all data; on the other hand, if they are not allowed to co-refer (asis natural in, for example,
single-document coreference resolution), then the sum is only over the test data.

4.2 Updates for Non-Conjugate Priors

The case of non-conjugate priors is a bit more complex, since in this case, ingeneral, one is not
able to analytically compute the data marginals, nor is one able to directly sample from the relevant
posterior distributions. A naı̈ve solution would be to set up separate Markov chains to draw samples
from the appropriate distributions so that wecouldcalculate these. Unfortunately, since these values
need to be computed for each loop of the “outer” Markov chain, such an approach is impractical.
The alternative—given as Algorithm 8 by Neal (1998)—is essentially to sample just a few of these
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Initialize the test portion ofc arbitrarily
Initialize d, eachpc and eachtd arbitrarily
for iter = 1, . . . do

Sample each activepc ∼ Gp
0(p)∏n:cn=cF(rn | p, tdn)

Sample each activetd ∼ Gt
0(t)∏n:dn=d F(rn | pcn, t)

for n∈ {1, . . . ,N} (in, perhaps, arbitrary order)do
if n is part of the test datathen

Samplecn according to:
p(cn = ci | c−n) ∝ F(rn | pci , tdn)∑N

m=1 δcm=ci

p(cn is new| c−n) ∝ αp R

dGp
0(p)F(rn | p, tdn)

(2)

if cn is newthen Samplepcn ∼ Gp
0(p)F(rn | p, tdn)

end if
Sampledn according to:

p(dn = di | d−n) ∝ F(rn | pcn, tdi )∑N
m=1 δdm=di

p(dn is new| d−n) ∝ αt R

dGt
0(t)F(rn | pcn, t)

if dn is newthen Sampletdn ∼ Gt
0(t)F(rn | pcn, t)

end for
end for

Figure 2: The inference algorithm for the supervised clustering model withconjugate priors.

needed values in a way that does not affect the detailed balance conditionthat guarantees that the
outerMarkov chain converges to the correct stationary distribution.

The overall structure of the sampling algorithm remains identical in the case ofnon-conjugate
priors; however, the sampling for the indicator variablescn anddn changes slightly, and so does the
sampling of thep andt variables. For instance, in the conjugate case,dn is sampled according to the
marginal distribution

R

dGt
0(t)F(rn | pcn, t), which is analytically unavailable whenGt

0 is not conju-
gate toF (with respect to the second variable). In the case of non-conjugacy, we approximate this
integral by drawingM̃ samples independently fromGt

0. In general, asM̃ → ∞, this is exactly like
computing the integral with an independence sampler; however, forM̃ finite, we still get conver-
gence of the overall Markov chain.̃M is set by the experimenter by choosing the number of samples
M that is drawn and then setting̃M to beM whenever the old value ofdn was not unique, and to
M +1 whenever it was unique. If the chosen value corresponds to one of the newly sampledts, then
we settd to be that sampled value. The corresponding sampling for thec variables is identical. This
is the technique suggested by Neal (1998) in his Algorithm 8. In all experiments, we useM = 8.

The second complication is when we cannot sample from the data posteriors,which means that
resamplingp andt is difficult. This is partially assuaged by the fact that in sampling forcn anddn

we are given an explicit new value ofp or t to use. However, at the beginning of each iteration of
the chain, we must resamplep according to its posterior distribution (and similarly fort). The most
general approach to solving this problem—and the approach we employ here—is to run a short
independence sampler forp by drawing a set of valuesp from Gp

0 and then choosing one of those
according to its posterior. However, depending on the actual distributionschosen, there might be
more appropriate methods for doing this sampling that still leaves the overall chain invariant.
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4.3 Resampling the Dirichlet Process Precision

We often wish to leave the values ofαp andαt (the scaling/precision hyperparameters for the two
Dirichlet processes) as random variables, and estimate them according tothe data distribution. West
(1992) gives a method for drawing samples for the precision parameter given the number of refer-
encesNand the number of publicationsK (or, for αt , the number of reference types); in his analysis,
it is natural to place a gamma prior onα. In most cases, his analysis can be applied directly; how-
ever, in the case of coreference resolution, the problem is a bit more complicated because we have
multipleobservations pairs(N,K) for each “training document.” In Appendix B, we briefly extend
this analysis to the case where there are multiple observations.

5. Model Parameterization

One of the simplest model parameterizations occurs when the data pointsrn are vectors in the
Euclidean spaceRF for some dimensionalityF , and when each dimension is a measure of distance
(i.e., |rn f − rm f| is small wheneverrn andrm are similar along dimensionf ). In this case, it may be
a reasonable assumption that therns are distributed normally around some unknown mean vector,
and with some unknown covariance. While the assumption of normalcy is probably not accurate, it
turns out that it fares rather well experimentally (see Section 7). Moreover, as discussed at the end
of this paper, it is possible to substitute in other models forF as deemed appropriate by a specific
problem.

If we believe therns are distributed normally (i.e.,F is a Normal distribution), it is natural
to treat thepk variables as means and thetl variables as precisions (inverse variance-covariances
matrices). For efficiency’s sake, we further assume thattl is diagonal, so that all covariance terms
are zero. In this model, one can think of a precisiontl f as the “weight” along dimensionf , so that
high weights mean that this dimension is important and low weights mean that this dimension is not
relevant.

By making F an isotropic Normal distribution, the natural conjugate priors are to makeGp
0

another Normal distribution and to makeGt
0 a product of inverse-gamma distributions (one inverse-

gamma distribution per dimensionf ).4 As we typically center and spherize the training data, it
is natural to parameterizeGp

0 with a mean of 0 and a covariance matrix ofσI for someσ ≈ 1.
Similarly, we may parameterizeGt

0 with identical scale and shape parameters all approximately 1.
(Note that we could alsolearn these hyperparameters during inference by including them in the
sampling, though we do not explore this option.)

Experiments with the model just described have demonstrated that while it is adept at finding
points in the same cluster, it is not as able to separate out points in different clusters (it has low pre-
cision, in the precision/recall sense). This occurs because the Gaussian precisions are learned solely
for the purpose of accounting for the distribution of classes by themselves, but with no regard to the
relation between classes. We explore two modeling extensions to attempt to alleviate this problem
and give the model a better ability to separate classes; in the first, we maintain conjugacy (and hence
efficiency in implementation), but in the second we give up conjugacy for a more appropriate model.

4. If we had not assumed thatt was diagonal, then the natural choice forGt
0 would be an inverse-Wishart distribution.
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5.1 Separation by ModifyingGp
0

Our first method for adding separation power between to the model is to condition the parameters
of Gp

0 on p andc: in other words, the shape and scale parameters of the prior on the precisions is
affected by the relative positions of the means of the data. In the original model, we assumed that
t f ∼ Gam(1,1) is a gamma random variable with mean 1 and variance 1. Here, we wish to change
this distribution so that the mean is large enough to keep the data separated along this dimension, and
the variance is small whenever many points tell us that this dimension is important. To accomplish
this we use instead aGam(a,b) prior, whereab is half the mean variance along dimensionf and
ab2 is the variance of the variance along dimensionf . The values fora andb must be resampled at
each iteration of the algorithm.

5.2 Separation by Conditioning

Our second approach to adding more separation power to the model is to condition the choice of
the precisions (reference types)t on the means (publications)p. In terms of our generative story,
this means that first we choose a publication then, based on the publication, choose a reference
type. Since we wish to ascribe no meaning to the actual location of the meanspk, we compute this
probability based only on their relative distances (along each dimension), and also under a naı̈ve
Bayes assumption:

p(t | p,c,d) ≈
[1] |d|

∏
i=1

p(ti | p,c,d)

=
[2] |d|

∏
i=1

p(ti | c,d) p(p | ti ,c,d)

p(p | c,d)

≈
[3] |d|

∏
i=1

Gt
0(ti)

∏|c|
j=1Gp

0(p j)

|c|

∏
j=1

p
(

p j | ti , p1: j−1,c,d
)

=
[4] |d|

∏
i=1

Gt
0(ti)

|c|

∏
j=1

p(p j | ti ,c,d) p
(

p1: j−1 | ti , p j ,c,d
)

p
(

p1: j−1 | ti ,c,d
)

Gp
0(p j)

≈
[5] |d|

∏
i=1

Gt
0(ti)

|c|

∏
j=1

p(p j | ti ,c,d)∏ j−1
k=1 p(pk | ti , p j ,c,d)

Gp
0(p j)∏ j−1

k=1 p(pk | ti ,c,d)

=
[6] |d|

∏
i=1

Gt
0(ti)

|c|

∏
j=1

Gp
0(pi)

2( j−1)−|c|
j−1

∏
k=1

p(p j | pk, ti) . (3)

In the first step of this derivation, we make a factorial assumption on thet vector. The second
step simply applies Bayes’ rule. The third step replaces the genericp(·) symbol for theti variables
with the true distributionGt

0, makes a similar factorial assumption on thep vector and replaces
the correspondingp(·) with Gp

0. The fourth step applies Bayes’ rule to the last term and moves
the denominator from the first product into the second. The fifth step applies the same factorial
assumption onp1: j−1 as before. The last step replaces the genericp(·) symbol withGp

0 and performs
some minor algebraic manipulation.
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This final expression in Equation (3) depends only on the prior values for the sampledts and
ps, coupled with the probability of meanp j given pk under precisionti . Unfortunately, under
the assumptions made, the probability of a vectorp is no longer independent of the ordering of
the values ofp. In all our experiments, we order thep according to the sizes of the classes: if
count(c1) > count(c2). We parameterize the distribution on the meansp(p j | pk, ti) by treating the
distancebetweenp j andpk, measured byti as a random variable with an exponential distribution:

p(p j | pk, ti) = λexp[−λ
∣

∣

∣

∣p j − pk
∣

∣

∣

∣

2
ti
]. We setλ = 1, but, again, it could be learned concurrently by

sampling.

Clearly, this prior distribution fort is no longer conjugate to the data sampling distributionF .
Moreover, theps andts are no longer separated by the indicator variables, which makes the entire
sampling story more complex. Indeed, the marginal distribution now depends on the types and,
similarly, the types depend on the mentions. We thus use the non-conjugate updates described in
Section 4.2. The simplest approach to performing inference with the non-conjugate priors would
be, for each of theM̃ samples forp, to draw fromGp

0 and weight the sampled ˜ps proportional to its
unnormalized posterior probability, given by Equation (3). Similarly, a proposed samplẽt would be
weighted according to its (unnormalized) posterior probability according to Equation (3).

6. Performance Metrics

Quite a few performance metrics have been proposed in the literature for comparing two clusterings
of a given data set. Since these are, in general, less well known than the metrics used for clas-
sification (accuracy, ROC, etc.), we review them here, and attempt to pointout the strengths and
weaknesses of each metric. Of course, the evaluation criteria one uses should reflect one’s own per-
sonal views of what is important, but the metrics used here can be seen as surrogate measurements
when such prior knowledge is unavailable. All of these metrics assume that we have a gold standard
(correct) clusteringG and a hypothesis clusteringH and that the total number of data points isN.

6.1 Rand Index

The rand index (Rand, 1971) is computed by viewing the clustering problemas a binary classifica-
tion problem. LettingN11 denote the number of pairs that are in the same cluster in bothG and in
H, and lettingN00 denote the number of pairs that are in different clusters in bothG andH, the rand
index has valueRI(G,H) = 2[N11+ N00]/[N(N−1)]. Thus, the rand index computes the number
of correct binary decisions (N11+N00) made by the system and normalizes by the total number of
decisions made. The value of the rand index lies between 0 and 1, with 1 representing a perfect
clustering.

The rand index is the most frequently reported metric in the clustering literature, though we
believe that its value is often misleading. As we show in our results (Section 7),a very simple
baseline system that places each element in its own cluster tends to achieve a very high rand index.
This occurs due to the structure of the clusters in most real world data sets.In such data sets,
the number of negative pairs (pairs that, in the gold standard, fall into different clusters) vastly
outnumber the number of positive pairs; thus the rand index becomes dominated by theN00 factor,
and theN11 factor tends to have very little impact on the final value. Moreover, the influence of large
clusters on the rand index quadratically outnumbers the influence of small clusters on this value, so
system performance on small clusters (which are typically the most difficult) becomes insignificant.
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In this paper, we report the rand index for comparative purposes with earlier work, but strongly
encourage readers not to take these numbers too seriously. We recommendother researchers in the
supervised clustering field to report on other metrics of system performance than the rand index.

6.2 Precision, Recall, F-score

The second set of metrics we report are the precision/recall/F-score ofthe clustering. Extending the
notation used for the rand index, we writeN10 for the number of pairs that are in the same cluster
in G, but in different clusters inH. Similarly, we writeN01 for the number of pairs that are in
different clusters inG but the same cluster inH. Precision isP(G,H) = N11/[N11+N01], recall is
R(G,H) = N11/[N11+N10] and F-score isF(G,H) = (P(G,H)−1 + R(G,H)−1)−1. Again, each of
these values falls between 0 and 1 with 1 being optimal. While precision, recall and F-score are still
computed based on binary decisions, they do not suffer as strongly from the weaknesses of the rand
index. However, they still place quadratically as much importance on large clusters.

6.3 Cluster Edit Distance and Normalized Edit Score

Pantel (2003) proposes a metric called thecluster edit distance, which computes the number of
“create,” “move,” and “merge” operations required to transform the hypothesis clustering into the
gold standard. Since no “split” operation is allowed, the cluster edit distancecan be computed
easily and efficiently. However, the lack of a split operation (which is absent precisely so that the
computation of the metric is efficient) means that the cluster edit distance favorsalgorithms that
tend to make too many clusters, rather than too few clusters. This is because ifan algorithm splits
anm element cluster in half, it requires only one merge operation to fix this; however, if, instead,
two m/2-sized clusters are mistakenly merged by an algorithm,m/2 operations are required to fix
this error. The cluster edit distance has a minimum at 0 for the perfect clustering and a maximum
of N. Also note that the cluster edit distance is not symmetric: in general, it does not hold that
CED(G,H) = CED(H,G) (again, precisely because splits are disallowed).

We propose a variant of the cluster edit distance that we call thenormalized edit score. This
value is computed asNES(G,H) = 1− [CED(G,H)+ CED(H,G)]/[2N] and is clearly symmetric
and no longer favors fine clusterings over coarse clusterings. Additionally, it takes values from 0 to
1, with 1 being a perfect clustering. While the normalized edit score no longer can be interpreted
in terms of the number of operations required to transform the hypothesis clustering into the correct
clustering, we believe that these additional properties are sufficiently important to make it preferable
to the cluster edit distance metric.

6.4 Variation of Information

The final metric we report in this paper is the variation of information (VI), introduced by Meila
(2003). TheVI metric essentially looks at how much entropy there is aboutG knowingH, and how
much entropy there is aboutH knowingG. It is computed asVI(G,H) = H(G)+H(H)−2I(G,H).
Here,H(·) is the entropy of a clustering, computed by looking at the probability that any given
point is in any particular cluster.I(G,H) is the mutual information betweenG andH, computed by
looking at the probability that two points are in the same cluster, according toG andH. It has a
minimum at 0, only when the two clusterings match, and is bounded above by logN. It has several
other desirable properties, including the fact that it is a metric. Though frowned upon by Meila
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(2003), we also report thenormalized variation of information, computed simply asNVI(G,H) =
1−VI(G,H)/ logN. This value is again bounded between 0 and 1, where 1 represents a correct
clustering.

7. Experimental Results

In this section, we present experimental results on both artificial and real-world data sets, comparing
our model against other supervised clustering algorithms as well as other standard clustering algo-
rithms. We first discuss the baselines and systems we compare against, and then describe the data
sets we use for comparison. Some data sets support additional, problem-specific baselines against
which we also compare.

7.1 Systems Compared

The first baseline we compare against, COARSE, simply places all elements in the same, single
cluster. The second baseline, FINE, places each element in its own cluster. These are straw-man
baselines that are used only to provide a better sense of the performancemetrics.

The next systems we compare against are pure clustering systems that do not perform any learn-
ing. In particular, we compare against K-MEANS, where the number of clusters,k, is chosen ac-
cording to an oracle (this is thus anupper boundon how well the k-means algorithm can perform
in real life). We additionally compare against a version of our model that does not use any of the
training data. To do so, we initializeαp = 1 and use a single reference type, the identity matrix.
This system is denoted CDP (for “Clustering with theDrichletProcess”) in subsequent sections.

The final class of systems against which we compare are true learning systems. The first is based
on the standard technique of building a binary classifier and applying a clustering method to it. We
use an SVM as the classifier, with an RBF kernel. The kernel parameterγ and the regularization
parameterC are tuned using golden section search under 10-fold cross validation. After the SVM
has been optimized, we use an agglomerative clustering algorithm to create clusters according to
either minimum, maximum or average link, with a threshold to stop merging. The link type(min,
max or avg) and the threshold is tuned through another series of 10-fold cross validation on the
training data. This is essentially the method advocated by Cohen and Richman (2002), with the
slight complication that we consider all link types, while they use average link exclusively. This
system is denoted BINARY in subsequent sections.

The second learning system is the model of distance metric learning presented by Xing et al.
(2003). This model learns a distance metric in the form of a positive semi-definite matrixA and
computes the distance between vectorsx andy as[(x−y)>A(x−y)]1/2. The matrix is learned so as
to minimize the distances between elements in the same cluster (in the training data) andmaximize
the distance between elements in different clusters. Once this distance metric islearned, Xing et al.
(2003) apply standard k-means clustering to the test data. There is a weighting termC that controls
the trade-off between keeping similar points close and dissimilar points separate; we found that the
performance of the resulting system was highly sensitive to this parameter. In the results we present,
we ran four configurations, one withC = 0, one withC = 1, one withC = |s|/|d| (wheres is the set
of similar points andd is the set of dissimilar points), and one withC = (|s|/|d|)2. We evaluated all
four and chose the one that performed best on the test data according toF-score (using an “oracle”).
In all cases, eitherC = 0 or C = (|s|/|d|)2 performed best. We denote this model XING-K in the
following.
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Lastly, we present results produced by the system described in this paper. We report scores on
several variants of our “SupervisedClustering with theDrichlet Process” model: SCDP-1 is the
result of the system run using the conjugate inference methods; SCDP-2 isthe model presented in
Section 5.1 that is aimed at achieving better class separation by modifyingGp

0; finally, SCDP-3 is
the model presented in Section 5.2 that separates classes through conditioning. For all problems, we
will report the number of iterations of the sampling algorithm run, and the time taken for sampling.
In all cases, we ran the algorithms for what wea priori assumed would be “long enough” and did
not employ any technique to determine if we could stop early.

7.2 Data Sets

We evaluate these models on four data sets, the first of which is semi-artificial,and the last three of
which are real-world data sets from three different domains. The four data sets we experiment on
are: the USPS digits database (1987), a collection of annotated data for identity uncertainty from
Doan et al. (2004), proper noun coreference data from NIST and reference matching data from Mc-
Callum et al. (2000). In the digits data set, the data points live in a high-dimensional Euclidean
space and thus one can directly apply all of the models discussed above. The last three data sets
all involve textual data for which an obvious embedding in Euclidean space isnot available. There
are three obvious approaches to dealing with such data. The first is to usea Euclidean embedding
technique, such as multidimensional scaling, kernel PCA or LLE, thus giving us data in Euclidean
space to deal with. The second is to modify the Gaussian assumption in our model to a more ap-
propriate, problem-specific distribution. The third, which is the alternative we explore here, is to
notice that in all the computations required in our model, in k-means clustering, and in the distance
metric learning algorithm (Xing et al., 2003), one never needs to compute locations but only relative
distances.5 We thus structure all of our feature functions to take the form of some sortof distance
metric and then use all algorithms with the implicit embedding technique. The choice of representa-
tion is an important one and a better representation is likely to lead to better performance, especially
in the case where the features employed are not amenable to our factorial assumption. Nevertheless,
results with this simple model are quite strong, comparative to the other baseline models, and little
effort was required to “make the features work” in this task. The only slight complication is that
the distances need to be defined so that large distance is correlated with different class, rather than
the other way around—this is a problem not faced in conditional or discriminative models such as
those of McCallum and Wellner (2004) and Finley and Joachims (2005).

7.3 Appropriateness of DP Prior

Before presenting results on these four data sets, we evaluated whetherthe assumption that the
underlying data distribution comes from a Dirichlet process is reasonable.To do so, we estimated
the α parameter for each data set as described in Section 4.3 and computed for each data set size

5. For instance, one of the common calculations is to compute the distances between the means of two subsets of the
data,{ai}
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The other relevant computations can be done similarly, and the generalization to multidimensional inputs is straight-
forward.
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Figure 3: Number of data points by expected number of clusters for the four data sets. The solid
black line is the expected number according to the Dirichlet process (dotted black lines
are two standard deviations); the dashed blue line is the empirical expected number (dash-
dotted blue lines are two standard deviations).

N the expected number of classesK according to the DP (as well as its standard deviation). For
eachN, we also computed—through resampling—theempiricalexpected value ofK according to
the data set and its standard deviation. We have plotted these curves for each data set in Figure 3.
As we can see form this figure, the DP is an excellent match for most of the data sets, except for the
digits data, where the match is rather poor (though the expectations always fall within two standard
deviations). Better fits could be obtained using a more complex prior, such asthe two-parameter
Poisson-Dirichlet process, but we believe that for these tasks, the standard DP is sufficient.

7.3.1 DIGITS DATA

Our first data set is adapted from the USPS digits database (1987), originally a test set of multiclass
classification in the vision domain. In order to treat it as a supervised clustering problem, we
randomly selected five of the ten digits as the “training data” and use the remaining five as “test
data.” The digits used for training are{1,3,5,8,9} and those used for testing are{0,2,4,6,7}. The
idea is that upon seeing only the digits{1,3,5,8,9}, a supervised clustering model should have
learned enough about the structure of digits to be able to separate the digits{0,2,4,6,7}, even
though it has seen none of them (of course, it will not be able to label them).

In order to more closely mimic the fact that in real world data the clusters are rarely equally
sized, we artificially “imbalanced” both the training and test data, so that therewere between 30
and 300 examples of each of the digits. The digits are 8×8 blocks of pixel intensities, which in all
cases are centered and scaled to have unit variance along each dimension. We run ten chains of ten
thousand iterations each of the inference algorithm from Figure 2. Each chain of model 1 required
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System RI P R F CED NES VI NVI
COARSE .229 .229 1.00 .372 .725 .275 1.525 .765
FINE .771 1.00 .000 .000 1.00 .008 4.975 .235
K-M EANS .760 .481 .656 .555 .350 .412 1.446 .778
CDP .886 .970 .016 .031 1.00 .000 4.237 .241
BINARY .921 .730 .497 .592 .455 .372 1.193 .805
X ING-K .821 .610 .605 .608 .245 .478 1.165 .821
SCDP-1 .848 .668 .664 .666 .239 .483 1.176 .819
SCDP-2 .854 .692 .659 .675 .227 .538 1.118 .828
SCDP-3 .889 .761 .751 .756 .158 .710 0.791 .878

Table 1: Results on the digits data.

about 40 minutes to complete; model 2’s chains required approximately one hour and the chains
from model 3 required 5 hours to complete.

The results of the systems on the digits data are shown in Table 1. There are several things
to note in these results. Somewhat surprising is the relatively poor performance of the BINARY

model. Indeed, this model barely does better than plain K-means, which completely ignores the
training data. Learning a distance metric, in the XING-K system, improves results over standard
K-means, and also performs better than the binary classifier. The ordering of performance of our
model, compared to the learned distance metric, varies by which metric we believe. According to
F-score andNES, our model is universally better; however, according toVI andNVI, the distance
metric method outperforms our model 1, but not models 2 and 3. Finally, on this data, our untrained
model, CDP performs quite poorly, and makes far too many clusters.

7.3.2 IDENTITY UNCERTAINTY DATA

The second data that set we apply our algorithm to is based on the real world problem ofidentity
uncertaintyor entity integration. The data used in the experiment is mined from the dblp bibliogra-
phy server.6 Each “publication” in the data is a computer science researcher and each “reference”
is a name occurring in a reference. There are a total of 1382 elements in thedata, corresponding
to 328 total entities (all labeled). We use 1004 instances (225 entities) as training data and the rest
(378 instances and 103 entities that do not occur in training) as testing data.

The (pairwise) features we use for this data set are the following: string edit distance between the
two first names; string edit distance between the two last names; string edit distance between the full
names; Euclidean distance between the publication years; Euclidean distance between the number of
publications (in our data) published in those years; string edit distance between conference names;
Euclidean distance between the number of publications published in those conferences; and the
number of coauthors with normalized string edit distance less than 0.1. We ran fifty chains of ten
thousand iterations each. One chain for Models 1 and 2 required approximately one day to complete,
while Model 3 took approximately 3 days per chain.

We introduce an additional baseline for this data set that groups person names with identical last
names and identical first initials. This baseline is denoted NAMEMATCH. The results of the systems
on the identity uncertainty data are shown in Table 2. The trend of results here largely agrees with

6. Thanks to Anhai Doan, Hui Fang and Rishi R. Sinha for making this available, seehttp://anhai.cs.uiuc.edu/
archive/domains/researchers.html for further information.
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System RI P R F CED NES VI NVI
COARSE .079 .079 1.00 .147 .749 .251 3.589 .395
FINE .921 1.00 .000 .000 .000 .273 2.345 .605
NAMEMATCH .933 .545 1.00 .706 .405 .595 1.252 .789
K-M EANS .912 .451 .510 .479 .341 .373 1.919 .677
CDP .913 .480 .452 .466 .355 .360 2.031 .658
BINARY .855 .753 .801 .776 .389 .553 1.193 .808
X ING-K .916 .467 .423 .444 .378 .304 2.112 .644
SCDP-1 .963 .764 .786 .775 .127 .761 0.806 .864
SCDP-2 .971 .820 .814 .817 .111 .796 0.669 .887
SCDP-3 .982 .875 .913 .894 .066 .876 0.423 .929

Table 2: Results on the identity uncertainty data.

that of the digits data, in which our models 2 and 3 outperform the baseline systems. However, in
this case, running the distance-metric learning algorithm actually hurts the results. This is perhaps
because our data does not live in Euclidean space, and hence the optimization performed in learning
the distance metric is not run under the proper conditions.

In this data, according to theF-score, the binary classifier outperforms our model 1 (though
our models 2 and 3 outperform the binary classifier). However, according to both the edit distance
metrics and the information metrics, our models all outperform the binary classifier. This data also
provides a good example of the deficiencies of the rand index: accordingto the RI, the FINE system
outperforms all of: K-MEANS, CDP, BINARY and XING-K. Note also in this data that none of the
unsupervised models are able to outperform the NAMEMATCH baseline system (and neither does
the XING-K system).

7.3.3 PROPERNOUN COREFERENCEDATA

The third set of data on which we evaluate is a subtask of the coreferencetask, namely, coreference
of proper nouns (e.g., “George Bush”↔ “President Bush”↔ “Bush” 6↔ “President Clinton”). This
subtask is significantly simpler than the full task, since one need not identify coreference between
pronouns and proper nouns (“he”↔ “George Bush”), nor proper nouns and definite descriptions
(“George Bush”↔ “the President”). This task has previously been used as a benchmark byMcCal-
lum and Wellner (2004). We use a partition of the ACE 2004 broadcast news and newswire training
corpus as the training and test data. This totals 280 documents for training data and 59 documents
for test data. The training data consists of 5613 mentions of entities, corresponding to a total of
3100 different entities; the test data contains 950 mentions correspondingto 523 entities.

As features we use string edit distance, string edit distance on the heads (final word), the length
of the longest common substring, the length of the longest common subsequence, and the string
edit distance between the abbreviations of both terms. For computing this finalterm, we first map
words sequences like “George W. Bush” to “GWB” and leave sequences that already look like
abbreviations (eg., “IBM”) alone; we then compute string edit distance between these pairs. For
this data set, we ran fifty chains for ten thousand iterations. Models 1 and 2 completed in about
three days and Model 3 completed in one week.

As an additional baseline, we cluster mentions with the same head word (final word); this is
denoted SAMEHEAD. The results of the systems on the coreference data are shown in Table 3.As
a point of comparison, McCallum and Wellner (2004) report anF-score of .931 on this task, using
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System RI P R F CED NES VI NVI
COARSE .003 .003 1.00 .006 .978 .021 5.950 .132
FINE .997 1.00 .000 .000 1.00 .551 0.906 .868
SAMEHEAD .999 .965 .899 .931 .019 .933 0.123 .982
K-M EANS .994 .297 .773 .429 .391 .524 1.059 .846
CDP .995 .273 .384 .319 .352 .418 1.265 .815
BINARY .999 .900 .893 .896 .040 .936 0.141 .979
X ING-K .998 .489 .802 .608 .308 .599 0.911 .883
SCDP-1 .996 .409 .497 .449 .261 .564 0.938 .863
SCDP-2 .997 .596 .717 .651 .203 .682 0.654 .904
SCDP-3 .999 .804 .882 .841 .083 .861 0.284 .958

Table 3: Results on the proper noun coreference data.

a graph partition strategy, with weights trained using a perceptron-style algorithm. Our binary clas-
sification model achieve a slightly lowerF-score or .896. Neither of the unsupervised algorithms
perform very well on this data, but in this data, the trained distance metric performs better than
standard K-means.

Overall the binary classifier is the best of the learned systems, achieving an F of .896, a NES of
.936 and a normalized variation of information of.979 (compared to our best scores of.841, .861
and.958, respectively). However, even the binary classifier is outperformed along all metrics by the
simple baseline that matches on the final word, SAMEHEAD, which achieves scores of.931, .933
and.982 for the three overall metrics. The.931F-score is, incidentally, the same number reported
by McCallum and Wellner (2004) (though their choice of training/test division is likely different
from ours). Overall, however, based on this data, it seems reasonableto say that one might be better
served writing a dozen more rules to capture notions of abbreviation, post-modification, and a few
other simple phenomena to handle the proper noun coreference task, rather than try to learn a model
from data.7

7.3.4 REFERENCEMATCHING DATA

Lastly, we perform evaluation on the Cora reference matching data set McCallum et al. (2000).8

This data consists of all references from their collection to publications by Michael Kearns, Robert
Schapire and Yoav Freund. There are 1916 references and 121 publications. In the original pub-
lication, McCallum et al. treated this as a pure clustering task. In order to viewit as a supervised
clustering task, we treat the labeled data for two of these authors as trainingdata, using the last au-
thor as testing data (performing the segmentation this way is more realistic than random selection,
and also serves to strengthen the point that the training and testing data are largely unrelated).

We use the same feature set as in the identity uncertainty evaluation, with the exception that the
first two features become the string edit distance between the publication names and the string edit
distance between the primary author names, respectively. Note that this datais significantly noisier
than the data used in the previous section: there are errors on the labeling of the fields. We again
ran fifty chains for ten thousand iterations; the chains for Models 1 and 2 took one day and Model 3
took three days.

7. Of course, the proper-noun coreference task is the easiest subtask of full coreference resolution, where empirical
results have shown learned systems are able to outperform rule-basedsystems.

8. Thanks to Andrew McCallum for making this data available.
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System RI P R F CED NES VI NVI
COARSE .118 .118 1.00 .205 .745 .255 2.977 .538
FINE .882 1.00 .000 .000 .000 .105 3.456 .462
K-M EANS .862 .407 .461 .433 .392 .240 2.655 .577
CDP .850 .353 .379 .365 .449 .125 2.948 .531
BINARY .936 .804 .616 .686 .107 .721 0.762 .881
X ING-K .855 .369 .384 .377 .411 .180 2.807 .552
SCDP-1 .892 .529 .507 .518 .319 .372 2.237 .643
SCDP-2 .934 .696 .741 .718 .184 .641 1.382 .780
SCDP-3 .952 .794 .782 .788 .125 .757 0.957 .847

Table 4: Results on the reference matching data.

BINARY X ING-K SCDP-1 SCDP-2 SCDP-3
Digits .592 .608 .666 .675 .756
Identity Uncertainty .776 .444 .775 .817 .894
Proper Noun Coreference .896 .608 .449 .651 .841
Reference Matching .686 .377 .518 .718 .788

Table 5: Summary of F-scores of the learning systems on all four data sets.

The results of the systems on the reference matching data are shown in Table4. In this data,
the unsupervised algorithms perform quite poorly, in comparison to the systems that make use of
the training data. Again, as in the identity uncertainty data, we see that learninga distance metric
can hurt performance (at least according toF-score; with respect to edit score and normalizedVI, it
seems to help, but only marginally so).

According toF-score, the binary classifier on this data outperforms our model 1, though our
models 2 and 3 are able to outperform the binary classifier system. In terms ofedit score, the binary
system outperforms all of our models, except for our model 3, which is able to do slightly better
(.757 versus.721). In terms ofNVI, the binary classifier beats all of our models, even model 3,
where it achieves anNVI of .881 and we only achieve.847.

7.4 Summary of Results

We have summarized the results of the five learning systems in Table 5 by listing only their final
F-score. Across all data sets, we consistently see that the supervised approaches outperform the
unsupervised approaches, which is not a terribly surprising finding. Additionally, the standard K-
means algorithm always outperformed our CDP model (the unsupervised version of our model).
In two of the data sets (digits and proper noun coreference), the learned distance metric (XING-
K) achieved superior performance to standard K-means, but in the othertwo data sets, learning
the distance metric hurt. In those cases, we attribute this loss in performance tothe fact that the
algorithm was not operating on truly Euclidean data.

Comparing our models against each other, of our models, model 1 is the poorest performer,
followed by model 2, and model 3 is the best. Our models also tend to have higher precision than
recall, which suggests that they create too many clusters. One could potentially reduce this by cross-
validating onF-score to adjust theαp parameter to attain a balanced precision/recall, but one strong
point of Bayesian models is that no cross-validation is necessary.
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Our model 3 was able to outperform the binary classification model in most metrics on most
data sets, but not always. It tended to consistently outperform the binary classifier in terms ofF-
score, but in terms ofNES and NVI, the binary classifier was better on the reference matching
data. On the proper noun coreference data, our model was unable to match the performance of the
binary classifier, but both performed more poorly than the simple head-matching baseline system,
suggesting that future work on this subtask is perhaps best handled by rules, rather than learning. On
the other data sets (digits and identity uncertainty), our models 2 and 3 consistently outperformed
the binary classification model.

8. Discussion

In this paper, we have presented a Bayesian model for the supervised clustering problem. We have
dealt with the difficulty of defining a prior over a potentially infinite set by appealing to the Dirichlet
process prior. We have introduced the concept of a “reference type” as a mechanism for representing
the aspects of the data that are general to the entire data set—essentially allowing for the supervision.
Like any generative Bayesian classification model, our framework requires the specification of the
data generating distribution, which we have denotedF . In general, theF distribution is problem-
specific, but we have presented a generic parameterization whenF is a Gaussian distribution.

In all but trivial cases, exact evaluation of the posterior distribution of the class variables in
our model is intractable. We have presented MCMC-based sampling algorithmsthat are able to
overcome this intractability. Unlike deterministic approximation techniques (such as variational
or mean-field inference, or expectation propagation), the MCMC methods are able to perform
even when non-conjugate priors are employed. We have presented sampling algorithms for a full
Bayesian treatment of the problem.

Experimentally, under the Gaussian assumption our initial model is unable to separate classes
well. To fix this problem, we introduced two subsequent models. The first modification we make
is to use the references to adjust the parameterization of the prior over the reference types (model
2). This enables the use of a sampling procedure that is essentially as efficient as that used in
the original model (model 1). The other modification we employ is to condition the choice of the
reference types on the references (model 3). Unfortunately, in this model, the distributions over the
reference types and the references are no longer conjugate to the datagenerating distribution, so a
less efficient Gibbs sampler must be employed to perform inference (in general, a single iteration
of the non-conjugate model is approximately 10 times slower than one iteration ofthe conjugate
model).

In a systematic comparison on four data sets against both supervised and unsupervised models,
we have demonstrated that our model is typically able to attain a higher level of performance than
other models (see Section 7.4 for a summary of the experimental results). FullBayesian inference
(similar to transduction) has an advantage over the more standard training/prediction phases: the
test data has no influence on the reference types.

The largest weakness of our model is its generative nature and the potential difficulty of specify-
ing a good distributionF that fits the data and results in tractable inference. The Gaussian parame-
terization seems general, experimentally, but in order to maintain tractability, we had to assume that
the covariance matrix was diagonal: this is essentially the same as making a naı̈ve Bayes assumption
on the features. For discrete data, using a multinomial/Dirichlet pair or binomial/beta pair instead
of the normal/gamma pair might be more natural and would lead to nearly the same inference.
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However, like other generative models, it is likely that our model would be struck with the curse of
dimensionality for any large number of highly correlated features. The generative story employed
by Pasula et al. (2003) is clearly superior to our—largely unmotivated—Gaussian assumption; it
would be very interesting to incorporate their generative story into our “F” distribution, hopefully
to obtain the benefits of both models.

Clearly, scalability is also an issue for our model. The most computationally intensive run of our
model with the application of Model 3 to the proper noun coreference data,which required roughly
one CPUyear to perform. This is not to say that, for instance, the binary classification scheme was
enormously efficient: training a cross-validated SVM on this data set took approximately one CPU
month to perform, though this could be improved by not rerunning the SVM learning for each fold.
Nevertheless, our approach is still roughly ten times slower. However, there are several methods
that one can employ to improve the speed of the model, especially if we wish to scale the model up
to larger data sets. For instance, employing the canopy method described byMcCallum et al. (2000)
and only considering drawing thec indicator variables from appropriate canopies would drastically
improve the efficiency of our model, provided the canopies were sufficiently small. Furthermore,
in the cases of Models 1 and 2, since conjugate priorsare used, one could employ a more efficient
sampling scheme, similar to the Metropolis-Hastings algorithm suggested by Xing et al. (2004) or
the split-merge proposals suggested by Jain and Neal (2003). Nevertheless, MCMC algorithms are
notoriously slow and experiments employing variational or EP methods for the conjugate models
might also improve performance (Blei and Jordan, 2005; Minka and Ghahramani, 2004).

Our model is also similar to a distance metric learning algorithm. Under the Gaussianassump-
tion, the reference types become covariance matrices, which—when thereis only one reference
type—can be interpreted as a transform on the data. However, when there is more than one refer-
ence type, or in the case of full Bayesian inference, the sorts of data distributions accounted for by
our model are more general than in the standard metric learning scenario.9

We believe future research in the context of the framework described in this paper can proceed
along several dimensions. The most obvious would be the integration of moredomain-specific
information in the data generating distributionF . One might be also able to achieve a similar
effect by investigating the interaction of our model with various unsupervised embedding techniques
(kPCA, LLE, MDS, etc.). We have performed preliminary investigations using kPCA (using the
standard string kernel) and LLE combined with K-means as well as K-means and distance-metric
learning and have found that performance is substantially worse than the results presented in this
paper. A final potential avenue for future work would be to attempt to combine the power of our
model with the ability to incorporate arbitrary features found in conditional models, like that of
McCallum and Wellner (2004). Such an integration would be technically challenging, but would
likely result in a more appropriate, general model.

Finally, to foster further research in the supervised clustering problem, we have contributed
our data sets and scoring software to the RIDDLE data repository,http://www.cs.utexas.edu/
users/ml/riddle/, maintained by Mikhail Bilenko.

9. Consider, for instance, a two dimensional Euclidean space where theclusters are axis-aligned pluses. Our model
learns two “reference types” for this data: one aligned with each axis, and, for data that is reasonably separated, is
able to correctly classify most test data. On the other hand, a metric learning algorithm cannot perform any linear
transformation on the data that will result in “better looking” clusters.
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Appendix A. The Dirichlet Process

The formal definition of the Dirichlet process is as follows. Let(X ,Ω) be a measurable space and
let µ be a measure (unnormalized density) on this space that is finite, additive, non-negative and
non-null. We say that a random probability measurePµ on (X ,Ω) is a Dirichlet processwith pa-
rameterµ under the following condition: whenever{B1, . . . ,BK} is a measurable partition ofΩ (i.e.,
eachµ(Bk) > 0 for all k) , then the joint distribution of random probabilities(Pµ(B1), . . . ,Pµ(BK)) is
distributed according toDir(µ(B1), . . . ,µ(BK)), whereDir denotes the standard Dirichlet distribu-
tion (Ferguson, 1973, 1974). In words:Pµ is a Dirichlet process if it behaves as if it were a Dirichlet
distribution on any finite partition of the original space.

It is typically useful to writeµ = αG0, whereα =
R

Ω dµ andG0 = µ/α, so thatG0 is a density.
In this case we refer toG0 as thebase distributionor themean distributionof the DP, andα as the
precision, or scale parameter.

Two fundamental results regarding the DP that are important to us are: (1)observations from a
DP are discrete (with probability one) and (2) ifPµ is a DP with parameterµ, then the conditional
distribution ofPµ given a sampleX1, . . . ,XN is a DP with parameterPµ + ∑N

n=1 δXn, whereδX is a
point mass concentrated atX (Ferguson, 1974). The final useful fact is a correspondence between
the DP and P̀olya Urns, described by Blackwell and MacQueen (1973). In the Pòlya Urn construc-
tion, we consider the situation of an urn from which we draw balls. Initially the urn contains a single
black ball. At any time step, we draw a ballx from the urn. Ifx is black (as it must be on the first
draw), we putx back into the urn and also add a ball of a brand new color. Ifx was not black, we
put x back into the urn and also put in an additional ball of the same color. The pattern of draws
from such an urn describes draws from a DP (withα = 1). In this scheme, we can see that there is a
clustering effect in this model: as more balls of one color (say, blue) are drawn, the number of blue
balls in the urn increases, so the probability of drawing a blue ball in the nextiteration is higher.
However, regardless of how many balls there are in the urn, there is always some probability the
black ball (i.e., a ball of a new color) is drawn. This relative probability is controlled by the preci-
sion parameterα. For lowα, there will be few colors and for highα, there will be many colors. The
appropriateness of such a prior depends on one’s prior intuitions about the problem; more flexible
similar priors are given in terms of exchangeable probability partition functions, including a simple
two-parameter extension of the DP, by Pitman (1996).

As noted by Ferguson (1983), the discreteness of observations fromthe DP means that observa-
tions from the distributions drawn from a DP can be viewed as countably infinite mixtures. This can
be seen directly by considering a model that first draws a distributionG from a DP with parameter
αG0 and then draws observationsθ1, . . . from G. In such a model, one can analytically integrate
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out G to obtain the following conditional distributions from the observationsθn (Blackwell and
MacQueen, 1973; Ferguson, 1983):

θn+1 | θ1, . . . ,θn ∼
α

n+α
G0 +

1
n+α

n

∑
i=1

δθi .

Thus, then+1st data point is drawn with probability proportional toα from the base distribution
G0, and is exactly equal to a previously drawnθi with probability proportional to∑n

j=1 δθi=θ j . This
characterization leads to a straightforward implementation of a Gibbs sampler. It also enables one to
show that the posterior density of a DP with parameterµ after observingN observationsθ1, . . . ,θN

is again a DP with parameterµ+∑N
n=1 δθn (Ferguson, 1973).

Appendix B. Sampling the Precision Parameter

West (1992) describes a method of sampling the precision parameterα for a DP mixture model.
Placing aGam(a,b) prior overα, whenn (the number of observations) andk (the number of unique
mixture components) are known, one first samples an intermediary valuex by a beta distribution
xα(1−x)n−1, whereα is the previous value for the precision parameter. Given this random variable
x, one resamplesα according to a mixture of two gamma densities:

πxGam(a+k,b− logx)+(1−πx)Gam(a+k−1,b− logx),

whereπx is the solution toπx/(1−πx) = (a+ k−1)/[n(b− logx)]. To extend this method to the
case with multiplen andk, we first recall the result of Antoniak (1974), which states that the prior
distribution ofk givenα andn is given by

p(k | α,n) = cn(k)n!αk Γ(α)

Γ(α+n)
.

Here,cn(k) ∝ |S(k)
n |, a Stirling number of the first kind, does not depend onα. Placing a gamma

prior onα with shape parametera and scale parameterb, we obtain the posterior distribution ofα
given all thenm,km as

p(α | x,k,n) ∝ e−bααa−1
M

∏
m=1

αkm−1(α+nm)xα
m(1−xm)nm−1

∝ αa−M−1+∑M
m=1 kme−α(b−log∏M

m=1 xm)
M

∏
m=1

(α+nm). (4)

The product in Equation (4) can be written as the sum over a vector of binary indicator variables
i of lengthM, which gives us

α | x,k,n∼ ∑
i∈2M

ρiGam

(

a−M +
M

∑
m=1

km+ im,b− log
M

∏
m=1

xm

)

. (5)
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Where, writingâ to denote the valuea−M−1+∑M
m=1km andb̂ to denoteb− log∏M

m=1xm, the
mixing weightsρ are defined by

ρi =
1
Z

Γ

(

â+
M

∑
m=1

im

)

M

∏
m=1

(

nmb̂
)1−im

. (6)

To see the correctness of this derivation, consider a giveni. There are∑ im choices ofα, corre-
sponding to the∑ im in the shape parameter for the posterior gamma distribution in Equation (5). For
each of these, the constant from the gamma distribution is decreased by a factor ofΓ(â+∑ im)/Γ(â);
compensating for this results in the first term above (with the bottom half omitted since it is just a
constant). Additionally, each term for whichim = 0 means thatnm was chosen (instead ofα), so
a factor ofnm = n1−im

m needs to be included. Finally, when the shape parameter of the gamma dis-
tribution increases by 1 for eachim = 1, the constant of proportionality for the gamma distribution
increases by a factor ofb− log∏xm, which is compensated for by the last term above.

Similarly, we can obtain a marginal distribution for eachxm conditional onα andk as:

xm | α,nm,km ∝ xα
m(1−xm)nm−1 ∼ Bet(α+1,nm) (7)

In order to sampleα, we first samplex by a sequence ofm beta distributions according to
Equation (7), conditioned on the current value ofα andn. Then, given these values ofx, we sample
a new value ofα from a mixture of gammas defined in Equation (5), conditional on the newly
sampledx, with weights defined in Equation (6). In the latter step, we simply select ani ∈ 2M

according to the probability densityρi and then sample a value from the corresponding gamma
distribution.

Unfortunately, in all but trivial cases,M is large and so computingρi directly for all suchi re-
quires an exponential amount of time (inM). Thus, instead of computing theρs directly, we sample
for them, effectively computing the constantZ though standard MCMC techniques. To perform the
actual sampling from 2M, we employ a Gibbs sampler. Each iteration of the Gibbs sampler cycles
through each of theM values ofi and replacesim with a new value, sampled according to its poste-
rior, conditional oni−m = 〈i l | 1≤ l ≤M, l 6= m〉. The derivation of this posterior is straightforward:

im = 1 | i−m =
â+∑m′ 6=m im

â+∑m′ 6=m im+nmb̂
. (8)

Putting it all together, we sample a new value ofα by first sampling a vectorx, where each
xm is sampled according to Equation (7). Then, we sampleR-many i(r)s using the Gibbs sampler
with update given by Equation (8); finally selecting one of thei(r) according to its empirical density.
Finally, given thisi and thexms, we sample a new value forα by a gamma distribution according
to Equation (5). We have found that for modestM < 100,nm < 1000 andkm < 500, such a chain
converges in roughly 50 iterations. In practice, we run it for 200 iterations to be safe.
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