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Abstract

We develop a Bayesian framework for tackling the supervisastering problem, the generic prob-
lem encountered in tasks such as reference matching, cemeteresolution, identity uncertainty
and record linkage. Our clustering model is based on thecllet process prior, which enables
us to define distributions over the countably infinite setd thaturally arise in this problem. We
add supervisionto our model by positing the existence of a set of unobseraadam variables
(we call these “reference types”) that are generic acrdsduaters. Inference in our framework,
which requires integrating over infinitely many parameté&solved using Markov chain Monte
Carlo techniques. We present algorithms for both conjugatkenon-conjugate priors. We present a
simple—but general—parameterization of our model based cua$tan assumption. We evaluate
this model on one artificial task and three real-world tasksparing it against both unsupervised
and state-of-the-art supervised algorithms. Our reshltgvghat our model is able to outperform
other models across a variety of tasks and performanceasetri

Keywords: supervised clustering, record linkage, citation matchouyeference, Dirichlet pro-
cess, non-parametric Bayesian

1. Introduction

Supervised clustering is the general characterization of a problemdtatsdrequently in strikingly
different communities. Like standard clustering, the problem involveskbrga finite setX C X

into aK-way partitionBy, ..., Bk (with K unknown). The distinction between supervised clustering
and standard clustering is that in the supervised form we are given tf@ramples. These training
examples enable a learning algorithm to determine what aspetsaoé relevant to creating an
appropriate clustering. The training examplegX (™ {Bk]»l((”:)1 «m) are subsets ok paired with
their correct partitioning. In the end, the supervised clustering task isdigtion problem: a new
X(*1) C Xx is presented and a system must produce a partition of it.

The supervised clustering problem goes under many names, dependimng goals of the in-
terested community. In the relational learning community, it is typically referregsidentity
uncertaintyand the primary task is to augment a reasoning system so that it does not imfdicitly
even explicitly) assume that there is a one-to-one correspondencecbedleents in an knowl-
edge base and entities in the real world (Cohen and Richman, 2002; Raslla2003). In the
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database community, the task arises in the context of merging databases evitipping fields,

and is known asecord linkage(Monge and Elkan, 1997; Doan et al., 2004). In information ex-
traction, particularly in the context of extracting citations from scholarlylipations, the task is to
identify which citations are to the same publication. Here, the task is knowaference matching
(McCallum et al., 2000). In natural language processing, the prohlisesean the context aforef-
erence resolutionwherein one wishes to identify which entities mentioned in a document are the
same person (or organization) in real life (Soon et al., 2001; Ng andi€;&002; McCallum and
Wellner, 2004). In the machine learning community, it has additionally beenregf to asearning
under equivalence constrainiBar-Hillel and Weinshall, 2003) arldarning from cluster examples
(Kamishima and Motoyoshi, 2003).

In this paper, we propose a generative model for solving the supdmhisstering problem. Our
model takes advantage of tBérichlet process prioywhich is a non-parametric Bayesian prior over
discrete distributions. This prior plays two crucial roles: first, it allows ussiimate the number
of clustersK in a principled manner; second, it allows us to control the complexity of the soutio
that are learned. We present inference methods for our model badédr&ov chain Monte Carlo
methods. We compare our model against other methods on large, realdataldets, where we
show that it is able to outperform most other systems according to sevedraiswd performance.

The remainder of this paper is structured as follows. In Section 2, weildegarior efforts to
tackle the supervised clustering problem. In Section 3, we develop auetvark for this prob-
lem, starting from very basic assumptions about the task. We follow this discusith a general
scheme for inference in this framework (Section 4). Next, in Section 5 resept three generic pa-
rameterizations of our framework and describe the appropriate adapibtiminference scheme to
these parameterizations. We then discuss performance metrics for theiseghelustering prob-
lem in Section 6 and present experimental results of our models’ perfoar@martificial and
real-world problems in Section 7. We conclude in Section 8 with a discussibe aidvantages and
disadvantages of our model, our generic parameterization, and ounpénhniques.

2. Prior Work

The most common technique for solving supervised clustering is by mappindidoy classifi-
cation. For a given input set, a binary classifier is trained on all pairspoft# eliciting a positive
output if the two elements belong in the same cluster and a negative outputisthefVhen applied
to test data, however, such a classifier will not necessarily produakdseguivalence relation (i.e.,
it might sayx =y andy = z but x # 2); to solve this problem, the outputs of the binary classifier
are fed into a clustering algorithm. Among others, Cohen and Richman (p&2nt an agglom-
erative clustering algorithm in the task of record linkage; Bar-Hillel andndlell (2003) present
a similar, but more complex algorithm that is provably optimal whenever thebiiassifier is
sufficiently goodt

The binary classification plus clustering approach is attractive primarilgusecboth of these
problems have individually received much attention; thus, good algoritherigyarvn to solve them.
The primary disadvantages of these approaches are the largely adrrazction between the clas-

1. Unfortunately, the “sufficiently good requirement” of Bar-Hillel an@ishall (2003) is often unattainable: it states
that the classifier must achieve an error rate of at rRg6, whereR is the ratio of the size of the smallest class to
the total number of points. In many real world problems, the size of tfalast class is 1, and the number of points
is quite large, meaning that only a perfect classifier will achieve the edjaiccuracy.
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sifier and the clustering algorithm, the necessity of training o\@F) data points, and the potential
difficulty of performing unbiased cross-validation to estimate hyperparamelée first issue, the
ad-hoc connection, makes it difficult to make state precise statements aofmrhgance. The sec-
ond can cause computational problems for expensive classifiers #suBiWMs) and invalidates
the i.i.d. assumption that is necessary for many generalization béufis.final issue, regarding
cross-validation, has to do with the fact that the classification plus clustepimgach is based on
pipelining two independent systems (see Section 7.1 for how the crossti@lids done in our
comparative model).

In addition to the classification plus clustering approach, there have legerakattempts to
solve the supervised clustering problem directly. Some researchexpbagd the problem in the
framework of learning a distance metric, for which, eg., convex optimizatiahede can be em-
ployed (Bar-Hillel et al., 2003; Xing et al., 2003; Basu et al., 2003). Wsitearned distance metric,
one is able to use a standard clustering algorithm for doing the final predicfithese methods ef-
fectively solve all of the problems associated with the classification plus chggt@pproach. The
only drawback to these approaches is that they assume Euclidean dé&ararelMahalanobis dis-
tance metric. It is often unclear how to extend this assumption to a more gepaca or a more
general notion of similarity.

Two other recent techniques have been proposed for directly solvenguiervised clustering
problem, and are not phrased in terms of learning a Mahalanobis dist@hedirst, due to Mc-
Callum and Wellner (2004), is based on conditional random fields. In thidema fully connected
graph is created, where nodes are elements in a data set. Feature &iacidafined over the edges
(corresponding to pairs of input elements), and weights are learned tonimexhe conditional
likelihood of the data. In order to ensure that the model never predictaitikee solutions, clique
potentials of—c are inserted for any solution that is intransitive. Exact inference in thiseivisd
intractable (as in most supervised clustering models), and they employ a sierpé&pon-style
update scheme, which they show to be quite effective on this task. Theppernc requires that
the most likely clustering be found for a given set of weights, which is Nigdete by reduction
to graph partitioning; McCallum and Wellner (2004) employ a standard appation algorithm
for performing this operation. This technique appears promising, largelguse it can incorporate
arbitrary feature functions. The only potential drawback seems to bévtbadpproximations are
used: the perceptron approximation to the CRF likelifoaad an approximate graph partitioning
algorithm for performing the clustering.

The other direct solution to the supervised clustering problem, due to Finldyaachims
(2005), is based on the SVMs for Interdependent and Structuredi@ugzhnique (Tsochantaridis
et al., 2004). In this model, a particular clustering metramatrelation clusteringis held fixed, and
weights are optimized to minimize the regularized empirical loss of the training dataesitlect to
this clustering function. The choice of correlation clustering is not actateit decomposes over
pairs. The advantage of this model over the model of McCallum and Wel@84] is primarily
due to the fact that the SVM model can optimize more complex (and approdoagejunctions
than can the CRF approach. However, like the CRF approach, the S¥Biproach must resort
to approximation methods for finding solutions during learning.

2. For instance, the paifxg,x2) and(xs,x4) can be seen as being drawn i.i.d. from a joint pair distribution, but the
pairs(x1,X2), (X2,X3) cannot possibly be i.i.d.

3. It could be argued that the perceptron “approximation” is actuallgsaipto the CRF, since it optimizes something
closer to “accuracy” than the log-loss optimized by the CRF.
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In comparison to other models that have been proposed, ours most clesatybles the (non-
Bayesian) generative model proposed by Pasula et al. (2003). Thisl fuomulates the identity
uncertainty/citation matching problem in a generative framework, basedcomplex generative
model under which inference is intractable. They resort to an Markaindfionte Carlo inference
scheme for identifying clusters, where a uniform prior is placed on the auwitclusters. Their
framework learns the model parameters through an MCMC sampling pnegekdough no learning
is done with respect to the prior on the number of clusters. The work veepre this paper can be
seen as a method for extending their approach in two ways: first, we dirrothg¢l the number of
output clusters; second, we provide an intuitive, effective proeefturaccounting for the multiple
aspects of similarity between different instances. As we discuss in Sectiba Bybridization of
their model and the one we propose could lead to a more effective systewmitter alone. (Indeed,
between the time of submission of this paper and its final acceptance, @tenal. (2005) have
presented an extension to the Pasula et al. (2003) model that solvesthdivlem: estimating
the number of clusters in the citation matching domain. Like us, they employ a Dirjatdeess
model to solve this problem. The fact that this model has now been propemed independently,
iS not surprising: citation matching is a well-known problem that suffensfiiee need to estimate
the number of clusters in a data set, and the Dirichlet process excels@ebyehis task.)

3. Supervised Clustering Model

In this section, we describe our model for the supervised clusterindgonofio facilitate discussion,

we take our terminology and notation from the reference matching task. arenical example

of this task is the CiteSeer/Researchindex database. Specifically, waedisat we are given

a list of references appearing in the bibliographies of scholarly publitatomd that we need to
identify which references correspond to the same publication. This tasKicltt according

to CiteSeer, there are currently over 100 different book&udificial Intelligenceby Russell and
Norvig, according to Pasula et al. (2003). We refer to theXsas the set ofeferencesnd a correct
cluster of references aguablication In our problem, the observed data is a set of references paired
with partial equivalence classes over those references (partial gtidtis). For instance, we might
know thatry,rp,r3 € X belong to the same equivalence class (are the same publication), but we
might not have any information about the equivalence clasg.dh this case, we identifyy, r,,r3

as training data and, as test data.

In general, we have a countable set of refereti¢esnd some information about the structure of
equivalence classes on this set and seek to extend the observealesgpévclasses to all of. In
complete generality, this would be impossible, due to the infinite natukeawfd the corresponding
equivalence classes. However, in fitedictioncase, our job is simply to make predictions about the
structure of dinite subset ofX, which we have previously denotd™b. Thus, while our inference
procedure attempts to uncover the structure of an infinite structure, daoglare possible because
at any given time, we only deal with a finite portion of this set. This is not unlikesituation
one encounters in Gaussian processes, wherein a distribution is phared function space, but
computations are tractable because observations are always finite.

3.1 Generative Story

The model we describe is a generative one. Our modeling assumption iseferteace is generated
according to the cross-product of two attributes. The first attributefggseahich publication this
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reference belongs to. The second attribute specifies the manner in wisicefédrence is created,
which we call the “reference type.” A reference type encompassesatien that under different
circumstances, references to the same publication are realized differently

In the terminology of reference matching, in the context of a short woykglaper (for in-
stance), author first names might be abbreviated as initials, page numbértsbmitpft off and
conferences and journals might be referred to by abbreviations. Quotieary, in a reference ap-
pearing in a journal, page numbers are included, as are full confjeamal names and author
names. In the context of coreference resolution, one referencartigiet be for generating proper
names (“Bill Clinton”), one for nominal constructions (“the Presidentd ane for pronouns (“he”).
Of course, the form and number of the reference types is unknown.

The generative process for a data set proceeds as follows:

1. Select a distributios} over publications that will be referred to in this data 98§, should
assign positive probability to only a finite set of all possible publications.

2. Selecta distributio@}) over reference types that will be used in this data set; a%iehould
be finite.

3. For each referenag appearing in the data set:

(a) Select the corresponding publicatipmn~ Gg.
(b) Select the corresponding reference tipe G,

(c) Generata,, by a problem-specific distribution parameterized by the publication and
reference typet, ~ F(pn,tn).

The difficulty with this model is knowing how to parameterize the selection of thellisons
Gg andG} in steps 1 and 2. It turns out that a Dirichlet process is an excellentdosbfving this
problem. The Dirichlet process (DP), which iglistribution over distributionscan be most easily
understood via a generalizedliya urn scheme, where one draws colored balls from an urn with
replacement. The difference is that when a black ball is drawn, onecespiatogether with a ball
of a new color. In this way, the number of “classes” (ball colors) is unlimited defines a discrete
distribution (with probability one). See Appendix A for a brief review of theperties of the DP
that are relevant to our model.

Our model is seen as an extension of the standaxefBayes multiclass classification model (in
the Bayesian framework), but where we allow the number of classeswougrisoundedly. Just as a
multiclass classification model can be seen as a finite mixture model where theentiztnponents
correspond to the finite classes, the supervised clustering model caerbas atinfinite mixture
model. In the case of the standard multiclass setup, one treats thg alaasandom variable drawn
from a multinomial distributiorMult(T), wherertis again a random variable with prior distribution
Dir (a) for the standard Dirichlet distribution. In our model, we essentially removeeiipgirement
that there is a known finite number of classes and allow this to grow unbdlyndim order to
account for the resulting non-identifiability of the classes, we introducentitien of reference
types to capture the relationships between elements from the same class.

Whenever one chooses a model for a problem, it is appropriate to aseenigther the chosen
model is able to adequately capture the required aspects of a data set.chaséhef our choice
of the Dirichlet process as a prior over publications, one such issuetisfttiee expected number
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Figure 1: Graphical model for our generic supervised clustering model.

of publications per citation. We have performed such experiments andedetiifat on a variety
of problems (reference matching, identity uncertainty and coreferezsmution), the Dirichlet
process is appropriate with respect to this measure (see Section 7.3 aredl3-fgr discussion).
3.2 Hierarchical Model

The model we propose is structured as follows:

™ | aP ~ Dir(aP/K,...,aP/K) 1t |at ~ Dir(a'/L,....at/L)
Cn | T ~ Disc(Tg,...,TR) dy | ¢ ~ Disc(rg,, ..., 1) 1)
P | G ~ G t|Gp ~ Gy

M ’ Cl’hdna pvt ~ F(pcn’tdn)

The corresponding graphical model is depicted in Figure 1. In this figueedepict thexa
andG parameters as being fixed (indicated by the square boxes)ag gese rise to multinomial
random variablest, which in turn determine indicator variableg (specifying the publication to
which r, belongs) andl, (specifying the reference type used by referenge The base density
GP generates publicatiorg (according to a problem-specific distribution), while the base density
G' generates reference typggagain according to a problem-specific distribution). Finally, the
observed referenasg is generated according to publicatipg and reference typg, with problem-
specific distributionF. Ther, random variable (the reference itself) is shaded to indicate that it
is always observed, and tlog random variable (the indicator as to which publication is used for
reference ) is partially shaded to indicate that it is sometimes observed (in the training data) a
sometimes not (in the test data).

As indicated by the counts on the plates for i, p) and(1t,t) variables, we take the limit as
K — o andL — o (whereK is the number of publications andis the number of reference types).
This limit corresponds to a choice of a Dirichlet process prior orpthandts (Neal, 1998).

4. Inference Scheme

Inference in infinite models differs from inference in finite models, primardgduse we cannot
store all possible values for infinite plates. However, as noted earliegnlyeencounter a finite
amount of data, so at any time only a finite number of these infinite parametelsewittive—i.e.,
only a finite number of them will affect the distribution of the observed data.will suggest and
implement inference schemes based on Markov chain Monte Carlo (MCMG)itpies, which
are the most frequently used methods for inference in DP models (Antdri#@k; Escobar, 1994;
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Neal, 1998; MacEachern andiMer, 1998; Ishwaran and James, 2001; Beal et al., 2002; Xing
et al., 2004). Recently, Blei and Jordan (2005) have presentedadioaal approach to Dirichlet
process models, and Minka and Ghahramani (2004) have presenitgdramce procedure for DP
models based on expectation propagation. Unfortunately, these methodswiork when the prior
distributionsGp are not conjugate to the data distributiérand they are thus not of use to us.

The MCMC-based Bayesian solution to the supervised clustering probteimdeed, any prob-
lem) is to write down the expression corresponding to the posterior distritnitibe c,s for the test
data and draw samples from that posterior. Writing data points 1 thiduaghthe training data and
pointsN + 1 throughN + M as the test data, we obtain the following expression for this posterior
(the actual distributions are from Equation (1)):

P(CN+1N+M | F1N+M,CN) O /dT[p p(m | O(p)/d”t p(m | a')
N+M

/dp P(p GS)/dt p(tIGo) > T[] Palm®) p(dh|)p(rnl peyta,)-

dingm N=

We now describe how we can do this sampling. Most of the information in thigaas taken
from Neal (1998), in which a vast amount of additional information is phed. The interested
reader is directed there for additional motivation and different algorithiFhg. algorithms we use
in this paper are either exact replicas, or slight deviations from Algorithared2 of Neal’s.

4.1 Updates for Conjugate Priors

The simplest case arises when a conjugate prior is used. In the termindltug Dirichlet pro-
cess, this means that the data sampling distribufida conjugate to the base dens{By of the
Dirichlet process. To perform inference with conjugate priors, waltede able to compute the
marginal distribution of a single observation and need to be able to draw safrgatethe posterior

of the base distributions. In each iteration of sampling, we first resampleasdive publication

pc and reference typy according to their posterior densities (in the case of conjugate priors, this
is possible). Then, for each test reference, we resample its publicatibfoaall references, we
resample the corresponding reference type. The algorithm is shownurer2g We actually have
two options when sampling thgs, depending on whether publications are allowed to be shared
across the training and testing data. If a training reference may refer gathe publication as a
testing reference (as is natural in the context of reference matchimg)thle sum in Equation (2)

is over all data; on the other hand, if they are not allowed to co-refds (@atural in, for example,
single-document coreference resolution), then the sum is only oversthaatia.

4.2 Updates for Non-Conjugate Priors

The case of non-conjugate priors is a bit more complex, since in this cagenéral, one is not
able to analytically compute the data marginals, nor is one able to directly sampléhieaelevant
posterior distributions. A rige solution would be to set up separate Markov chains to draw samples
from the appropriate distributions so that aeuld calculate these. Unfortunately, since these values
need to be computed for each loop of the “outer” Markov chain, suctpproach is impractical.

The alternative—qgiven as Algorithm 8 by Neal (1998)—is essentially to &&ajugt a few of these
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Initialize the test portion of arbitrarily
Initialize d, eachpe and eachy arbitrarily
foriter=1,... do
Sample each active; ~ G5 (P) Mne,—cF (n | P,tg,)
Sample each activtg ~ G}(t) [Tn.a.—d F ('n | Peyst)
for ne {1,...,N} (in, perhaps, arbitrary ordedp
if nis part of the test datéhen
Samplec, according to:
pica=ci|cn) O F(rn| Po,tdy) Y1 2)
p(crisnew|cn) O aP[dGH(p)F(ra| p,ta,)
if ¢y is newthen Samplepe, ~ GH(p)F (rn | p,tg,)
end if
Sampled, according to:
P(dy=di[dn) O F(rn| Peyta) Y1
p(dyis new| d_,) O o [dG,(t)F(rn| pe,,t)
if dn is newthen Samplety, ~ G4(t)F (rn | pe,,t)
end for
end for

Figure 2: The inference algorithm for the supervised clustering modelooitfugate priors.

needed values in a way that does not affect the detailed balance cortddtaqguarantees that the
outer Markov chain converges to the correct stationary distribution.

The overall structure of the sampling algorithm remains identical in the casens€onjugate
priors; however, the sampling for the indicator varialdeandd, changes slightly, and so does the
sampling of thep andt variables. For instance, in the conjugate cdgés sampled according to the
marginal distribution/ dG},(t)F (rn | pc,,t), which is analytically unavailable whe®, is not conju-
gate toF (with respect to the second variable). In the case of non- conjuga:gpwrommate this
integral by drawingVi samples independently fro@. In general, adl — oo, this is exactly like
computing the integral with an independence sampler; howeveM finite, we still get conver-
gence of the overall Markov chaiM is set by the experimenter by choosing the number of samples
M that is drawn and then settid to beM whenever the old value af, was not unique, and to
M + 1 whenever it was unique. If the chosen value corresponds to one péthly sampledis, then
we sety to be that sampled value. The corresponding sampling for Wagiables is identical. This
is the technique suggested by Neal (1998) in his Algorithm 8. In all expatsnee uséM = 8.

The second complication is when we cannot sample from the data postertiich, means that
resamplingp andt is difficult. This is partially assuaged by the fact that in samplingcfoandd,
we are given an explicit new value pfor t to use. However, at the beginning of each iteration of
the chain, we must resamppeaccording to its posterior distribution (and similarly tpr The most
general approach to solving this problem—and the approach we empley-i®to run a short
independence sampler fprby drawing a set of valueg from Gg and then choosing one of those
according to its posterior. However, depending on the actual distributioosen, there might be
more appropriate methods for doing this sampling that still leaves the oveaall iclvariant.
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4.3 Resampling the Dirichlet Process Precision

We often wish to leave the values @f anda! (the scaling/precision hyperparameters for the two
Dirichlet processes) as random variables, and estimate them accorthegiiata distribution. West
(1992) gives a method for drawing samples for the precision parameeer tiie number of refer-
encesNand the number of publicatiors (or, forat, the number of reference types); in his analysis,
it is natural to place a gamma prior on In most cases, his analysis can be applied directly; how-
ever, in the case of coreference resolution, the problem is a bit morelicatep because we have
multiple observations pair@\, K) for each “training document.” In Appendix B, we briefly extend
this analysis to the case where there are multiple observations.

5. Model Parameterization

One of the simplest model parameterizations occurs when the data peiats vectors in the
Euclidean spacRF for some dimensionaliti, and when each dimension is a measure of distance
(i.e.,|rnf — rm¢| is small whenever,, andr, are similar along dimensiofy). In this case, it may be

a reasonable assumption that the are distributed normally around some unknown mean vector,
and with some unknown covariance. While the assumption of normalcy islpyobat accurate, it
turns out that it fares rather well experimentally (see Section 7). Mereag discussed at the end
of this paper, it is possible to substitute in other modelsH@s deemed appropriate by a specific
problem.

If we believe ther,s are distributed normally (i.eF is a Normal distribution), it is natural
to treat thepy variables as means and thevariables as precisions (inverse variance-covariances
matrices). For efficiency’s sake, we further assumetihatdiagonal so that all covariance terms
are zero. In this model, one can think of a precidigras the “weight” along dimensiof, so that
high weights mean that this dimension is important and low weights mean that this @imissot
relevant.

By making F an isotropic Normal distribution, the natural conjugate priors are to n@ke
another Normal distribution and to mat§ a product of inverse-gamma distributions (one inverse-
gamma distribution per dimensiof).* As we typically center and spherize the training data, it
is natural to parameteriz8 with a mean of 0 and a covariance matrix aif for someo ~ 1.
Similarly, we may parameteriz8}, with identical scale and shape parameters all approximately 1.
(Note that we could alstearn these hyperparameters during inference by including them in the
sampling, though we do not explore this option.)

Experiments with the model just described have demonstrated that while itps a&dending
points in the same cluster, it is not as able to separate out points in difféusters (it has low pre-
cision, in the precision/recall sense). This occurs because the Gapssigsions are learned solely
for the purpose of accounting for the distribution of classes by themsdluewith no regard to the
relation between classes. We explore two modeling extensions to attempt totalteisgproblem
and give the model a better ability to separate classes; in the first, we maintaigacy (and hence
efficiency in implementation), but in the second we give up conjugacy forra agjgpropriate model.

4. If we had not assumed thiatvas diagonal, then the natural choice @&}y would be an inverse-Wishart distribution.
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5.1 Separation by Modifying G}

Our first method for adding separation power between to the model is tatioonithe parameters

of Gg on p andc: in other words, the shape and scale parameters of the prior on theigmeds
affected by the relative positions of the means of the data. In the origina¢lmed assumed that

ti ~ Gam(1,1) is a gamma random variable with mean 1 and variance 1. Here, we wish toechang
this distribution so that the mean is large enough to keep the data separatetheaimension, and

the variance is small whenever many points tell us that this dimension is importaatc@mplish

this we use instead gam(a, b) prior, whereab is half the mean variance along dimensiband

ab? is the variance of the variance along dimensforThe values fom andb must be resampled at
each iteration of the algorithm.

5.2 Separation by Conditioning

Our second approach to adding more separation power to the model isditiaothe choice of
the precisions (reference typdsyn the means (publicationg) In terms of our generative story,
this means that first we choose a publication then, based on the publicdimrseca reference
type. Since we wish to ascribe no meaning to the actual location of the mgamne compute this
probability based only on their relative distances (along each dimensioth)alao under a rige
Bayes assumption:

tpcd ~ Mplpod
pt p,C,d ~ pt p7C7d
[]r

219 p(t | c,d)p(p]t,c,d)
=1 ey

31 dl Gt() Ic]
~ . p pJ ’tlaplj 1,C, d)
rl ‘C‘le pJ I_l

1]
[i] d G(t) lc' p(pj [ ti,c.d)p (pl:jfl‘tiapJ”C?d)
- I
rl (p1-1_1|t|70 d)GS(pj)
g | ot ICI p(pj |ti,c,d) M1 p(px | ti, pj,c,d)
|_[ EL GE(pi) MLz 1p(pk|ti,c,d)
O o 1 ey 2(i— D]
= Go(ti) ['1Go(pi)= 7~ P(P;j | P ti). 3)
[] Gt [ ColP le | Pt

In the first step of this derivation, we make a factorial assumption oh ¥ikeetor. The second
step simply applies Bayes’ rule. The third step replaces the gepénisymbol for thet; variables
with the true distributionGh, makes a similar factorial assumption on thevector and replaces
the corresponding (-) with Gg. The fourth step applies Bayes’ rule to the last term and moves
the denominator from the first product into the second. The fifth step apjleesame factorial
assumption o, ;_, as before. The last step replaces the gengfrigsymbol WithGg and performs
some minor algebraic manipulation.
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This final expression in Equation (3) depends only on the prior valuethéosampleds and
ps, coupled with the probability of meam; given px under precisiort;. Unfortunately, under
the assumptions made, the probability of a vegias no longer independent of the ordering of
the values ofp. In all our experiments, we order thgaccording to the sizes of the classes: if
countcy) > coun{cy). We parameterize the distribution on the mepiip; | p«,t) by treating the
distancebetweenp; and px, measured by as a random variable with an exponential distribution:
p(P;j | Pe.ti) =Aexp—A||pj — | }tzl] We set\ = 1, but, again, it could be learned concurrently by
sampling.

Clearly, this prior distribution fot is no longer conjugate to the data sampling distributton
Moreover, theps andts are no longer separated by the indicator variables, which makes the entire
sampling story more complex. Indeed, the marginal distribution now depenttseaypes and,
similarly, the types depend on the mentions. We thus use the non-conjugattesipdscribed in
Section 4.2. The simplest approach to performing inference with the ngogaie priors would
be, for each of thé! samples fomp, to draw fromGg and weight the samplegs proportional to its
unnormalized posterior probability, given by Equation (3). Similarly, a psegdasamplé would be
weighted according to its (unnormalized) posterior probability accordingjt@mion (3).

6. Performance Metrics

Quite a few performance metrics have been proposed in the literaturemigracimg two clusterings
of a given data set. Since these are, in general, less well known than thesnused for clas-
sification (accuracy, ROC, etc.), we review them here, and attempt to uatiibe strengths and
weaknesses of each metric. Of course, the evaluation criteria onehassd seflect one’s own per-
sonal views of what is important, but the metrics used here can be seenm@gase measurements
when such prior knowledge is unavailable. All of these metrics assume ¢haave a gold standard
(correct) clusterings and a hypothesis clusterittyand that the total number of data pointdis

6.1 Rand Index

The rand index (Rand, 1971) is computed by viewing the clustering pro@desrbinary classifica-
tion problem. Letting\;; denote the number of pairs that are in the same cluster in®@athd in

H, and lettingNgo denote the number of pairs that are in different clusters in 8ahdH, the rand
index has valu&l(G,H) = 2[N11+ Noo|/[N(N — 1)]. Thus, the rand index computes the number
of correct binary decisions\g1 + Nog) made by the system and normalizes by the total number of
decisions made. The value of the rand index lies between 0 and 1, withdsesping a perfect
clustering.

The rand index is the most frequently reported metric in the clustering literghoagh we
believe that its value is often misleading. As we show in our results (Sectiom vgry simple
baseline system that places each element in its own cluster tends to achesyehagh rand index.
This occurs due to the structure of the clusters in most real world data ketich data sets,
the number of negative pairs (pairs that, in the gold standard, fall intore@iffeclusters) vastly
outnumber the number of positive pairs; thus the rand index becomes dodniyattee Ny factor,
and theNy; factor tends to have very little impact on the final value. Moreover, the infleief large
clusters on the rand index quadratically outnumbers the influence of smetfidwn this value, so
system performance on small clusters (which are typically the most diffi@dfrbes insignificant.
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In this paper, we report the rand index for comparative purposes aitieework, but strongly
encourage readers not to take these numbers too seriously. We recowtimenetsearchers in the
supervised clustering field to report on other metrics of system perfoerthan the rand index.

6.2 Precision, Recall, F-score

The second set of metrics we report are the precision/recall/F-sctive olustering. Extending the
notation used for the rand index, we wrlitigg for the number of pairs that are in the same cluster
in G, but in different clusters itH. Similarly, we write Np; for the number of pairs that are in
different clusters irG but the same cluster iH. Precision is?(G,H) = Ny1/[N11+ No1J, recall is
R(G,H) = N11/|N11+ Nyg] and F-score i§(G,H) = (P(G,H) 1 +R(G,H)~1)~L. Again, each of
these values falls between 0 and 1 with 1 being optimal. While precision, rechi-acore are still
computed based on binary decisions, they do not suffer as stronghtfi@weaknesses of the rand
index. However, they still place quadratically as much importance on largtechu

6.3 Cluster Edit Distance and Normalized Edit Score

Pantel (2003) proposes a metric called thester edit distancewhich computes the number of
“create,” “move,” and “merge” operations required to transform thgatlyesis clustering into the
gold standard. Since no “split” operation is allowed, the cluster edit disteacebe computed
easily and efficiently. However, the lack of a split operation (which is atygeecisely so that the
computation of the metric is efficient) means that the cluster edit distance falgansthms that
tend to make too many clusters, rather than too few clusters. This is becaumsalgforithm splits
anm element cluster in half, it requires only one merge operation to fix this; henvdyinstead,
two m/2-sized clusters are mistakenly merged by an algorithyi2, operations are required to fix
this error. The cluster edit distance has a minimum at 0O for the perfect whgsnd a maximum
of N. Also note that the cluster edit distance is not symmetric: in general, it dddsottbthat
CED(G,H) = CED(H, G) (again, precisely because splits are disallowed).

We propose a variant of the cluster edit distance that we calhdnealized edit scoreThis
value is computed asSES(G,H) = 1— [CED(G,H) + CED(H,G)]/[2N] and is clearly symmetric
and no longer favors fine clusterings over coarse clusterings. Addlityoit takes values from O to
1, with 1 being a perfect clustering. While the normalized edit score no taragebe interpreted
in terms of the number of operations required to transform the hypothesteihg into the correct
clustering, we believe that these additional properties are sufficiently temgdo make it preferable
to the cluster edit distance metric.

6.4 Variation of Information

The final metric we report in this paper is the variation of informatiat), (introduced by Meila
(2003). Thevl metric essentially looks at how much entropy there is ak®kibowingH, and how
much entropy there is abotit knowingG. It is computed a¥I(G,H) =H(G)+H(H) — 21 (G,H).

Here,H(:) is the entropy of a clustering, computed by looking at the probability that amng
point is in any particular clustel(G,H) is the mutual information betwed&dandH, computed by
looking at the probability that two points are in the same cluster, accordi®aondH. It has a
minimum at 0, only when the two clusterings match, and is bounded above Wy lbgas several
other desirable properties, including the fact that it is a metric. Thouginid upon by Meila
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(2003), we also report theormalized variation of informatigrcomputed simply asiVI(G,H) =
1-VI(G,H)/logN. This value is again bounded between 0 and 1, where 1 representseatcor
clustering.

7. Experimental Results

In this section, we present experimental results on both artificial andvweéd-data sets, comparing
our model against other supervised clustering algorithms as well as tdhelasd clustering algo-
rithms. We first discuss the baselines and systems we compare againsemoesbribe the data
sets we use for comparison. Some data sets support additional, prol@eifiedpaselines against
which we also compare.

7.1 Systems Compared

The first baseline we compare againspARSE, simply places all elements in the same, single
cluster. The second baselineNE, places each element in its own cluster. These are straw-man
baselines that are used only to provide a better sense of the performatraes.

The next systems we compare against are pure clustering systems toapéoform any learn-
ing. In particular, we compare against KE¥Ns, where the number of clustets, is chosen ac-
cording to an oracle (this is thus apper boundon how well the k-means algorithm can perform
in real life). We additionally compare against a version of our model thas dot use any of the
training data. To do so, we initialize? = 1 and use a single reference type, the identity matrix.
This system is denoted CDP (fo€tustering with theDrichlet Process”) in subsequent sections.

The final class of systems against which we compare are true learniegsysT he first is based
on the standard technique of building a binary classifier and applying tedhg method to it. We
use an SVM as the classifier, with an RBF kernel. The kernel pararpetad the regularization
parametefC are tuned using golden section search under 10-fold cross validatftar. the SVM
has been optimized, we use an agglomerative clustering algorithm to crestierglaccording to
either minimum, maximum or average link, with a threshold to stop merging. The link(itgime
max or avg) and the threshold is tuned through another series of 10+fudd galidation on the
training data. This is essentially the method advocated by Cohen and RichfGf),(%ith the
slight complication that we consider all link types, while they use average kokigively. This
system is denoted IRARY in subsequent sections.

The second learning system is the model of distance metric learning préfsniéng et al.
(2003). This model learns a distance metric in the form of a positive sermigefhatrix A and
computes the distance between vectoasidy as[(x—y) A(x—y)]¥/2. The matrix is learned so as
to minimize the distances between elements in the same cluster (in the training dateg>amize
the distance between elements in different clusters. Once this distance mietimed, Xing et al.
(2003) apply standard k-means clustering to the test data. There is aiwgighimC that controls
the trade-off between keeping similar points close and dissimilar points sepasfound that the
performance of the resulting system was highly sensitive to this parametke lesults we present,
we ran four configurations, one wi@= 0, one withC = 1, one withC = |5/ /|d| (wheresis the set
of similar points andi is the set of dissimilar points), and one wth= (|s|/|d|)?. We evaluated all
four and chose the one that performed best on the test data accoréisgdoe (using an “oracle”).
In all cases, eithe€ = 0 orC = (|g|/|d|)? performed best. We denote this modelN%-K in the
following.
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Lastly, we present results produced by the system described in this pe@eeport scores on
several variants of ourSupervisedClustering with theDrichlet Process” model: SCDP-1 is the
result of the system run using the conjugate inference methods; SCD®eredel presented in
Section 5.1 that is aimed at achieving better class separation by mod@ﬁin‘@nally, SCDP-3is
the model presented in Section 5.2 that separates classes through corglit@n all problems, we
will report the number of iterations of the sampling algorithm run, and the timentikesampling.
In all cases, we ran the algorithms for what averiori assumed would be “long enough” and did
not employ any technique to determine if we could stop early.

7.2 Data Sets

We evaluate these models on four data sets, the first of which is semi-artdiwiathe last three of
which are real-world data sets from three different domains. The fatar sets we experiment on
are: the USPS digits database (1987), a collection of annotated datarittyidecertainty from
Doan et al. (2004), proper noun coreference data from NIST efletdence matching data from Mc-
Callum et al. (2000). In the digits data set, the data points live in a high-dimeaiduclidean
space and thus one can directly apply all of the models discussed abloedasr three data sets
all involve textual data for which an obvious embedding in Euclidean spat# ivailable. There
are three obvious approaches to dealing with such data. The first is toEusglidean embedding
technique, such as multidimensional scaling, kernel PCA or LLE, thusgyivsndata in Euclidean
space to deal with. The second is to modify the Gaussian assumption in our tmedaore ap-
propriate, problem-specific distribution. The third, which is the alternatieeemplore here, is to
notice that in all the computations required in our model, in k-means clusteriddnahe distance
metric learning algorithm (Xing et al., 2003), one never needs to computidonsdut only relative
distances. We thus structure all of our feature functions to take the form of someo$aiistance
metric and then use all algorithms with the implicit embedding technique. The cHaoggresenta-
tion is an important one and a better representation is likely to lead to betterrparfoce, especially
in the case where the features employed are not amenable to our factsu@ion. Nevertheless,
results with this simple model are quite strong, comparative to the other baseldetsand little
effort was required to “make the features work” in this task. The only skgimplication is that
the distances need to be defined so that large distance is correlated vethrdifflass, rather than
the other way around—this is a problem not faced in conditional or discrtiménenodels such as
those of McCallum and Wellner (2004) and Finley and Joachims (2005).

7.3 Appropriateness of DP Prior

Before presenting results on these four data sets, we evaluated witethessumption that the
underlying data distribution comes from a Dirichlet process is reason@bldo so, we estimated
the a parameter for each data set as described in Section 4.3 and computaedHatata set size

5. For instance, one of the common calculations is to compute the distagtve=el the means of two subsets of the
data,{a }{_; and{bj}]_;. This can be computed as

' 1

1 1Jb 2 1 ! JH b}z 1] I i |\2 J 0 J Hb o
- ajff i = — a|7 i —_ —= a|7a|r — — i — Dir
PX Jj; SIE i;j; : I2i§\i’§+1 ¥ j;i’:zHl b

The other relevant computations can be done similarly, and the gengealimamultidimensional inputs is straight-
forward.

2
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Figure 3: Number of data points by expected number of clusters for thhed&da sets. The solid
black line is the expected number according to the Dirichlet process (dd#ekl Imes
are two standard deviations); the dashed blue line is the empirical expectden(dash-
dotted blue lines are two standard deviations).

N the expected number of clasd€saccording to the DP (as well as its standard deviation). For
eachN, we also computed—through resampling—é#mapirical expected value dk according to
the data set and its standard deviation. We have plotted these curvesHatata set in Figure 3.
As we can see form this figure, the DP is an excellent match for most of thesets, except for the
digits data, where the match is rather poor (though the expectations allaysHen two standard
deviations). Better fits could be obtained using a more complex prior, suttte a&o-parameter
Poisson-Dirichlet process, but we believe that for these tasks, thidasthDP is sufficient.

7.3.1 DGITS DATA

Ouir first data set is adapted from the USPS digits database (1987) atlsigitest set of multiclass
classification in the vision domain. In order to treat it as a supervised dhggtproblem, we
randomly selected five of the ten digits as the “training data” and use the regdivenas “test
data.” The digits used for training afé&, 3,5,8,9} and those used for testing &@,2,4,6,7}. The
idea is that upon seeing only the digit$, 3,5,8,9}, a supervised clustering model should have
learned enough about the structure of digits to be able to separate the{0i§it4,6,7}, even
though it has seen none of them (of course, it will not be able to label them)

In order to more closely mimic the fact that in real world data the clusters asty raqually
sized, we artificially “imbalanced” both the training and test data, so that there between 30
and 300 examples of each of the digits. The digits axeB&blocks of pixel intensities, which in all
cases are centered and scaled to have unit variance along each dimgvssian ten chains of ten
thousand iterations each of the inference algorithm from Figure 2. Hagh of model 1 required
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System RI P R F CED NES VI NVI

COARSE .229 .229 1.00 372 .725 .275 1.525 .765
FINE T71 1.00 .000 .000 1.00 .008 4.975 .235
K-MEANS .760 481 .656 .555 .350 412 1.446 778
CDP .886 .970 .016 .031 1.00 .000 4,237 .241
BINARY 921 .730 497 592 .455 372 1.193 .805
XING-K .821 .610 .605 .608 .245 478 1.165 .821
SCDP-1 .848 .668 .664 .666 .239 .483 1.176 .819
SCDP-2 .854 .692 .659 .675 227 .538 1.118 .828
SCDP-3 .889 .761 751 .756 .158 .710 0.791 .878

Table 1: Results on the digits data.

about 40 minutes to complete; model 2’s chains required approximately ameahd the chains
from model 3 required 5 hours to complete.

The results of the systems on the digits data are shown in Table 1. Therevaralghings
to note in these results. Somewhat surprising is the relatively poor perfoara the BNARY
model. Indeed, this model barely does better than plain K-means, which deiyptmores the
training data. Learning a distance metric, in then&-K system, improves results over standard
K-means, and also performs better than the binary classifier. The ayd#rperformance of our
model, compared to the learned distance metric, varies by which metric we belewerding to
F-score andNES, our model is universally better; however, accordinyt@ndNVI, the distance
metric method outperforms our model 1, but not models 2 and 3. Finally, onatasaur untrained
model, CDP performs quite poorly, and makes far too many clusters.

7.3.2 IDENTITY UNCERTAINTY DATA

The second data that set we apply our algorithm to is based on the rddlproblem ofidentity
uncertaintyor entity integration The data used in the experiment is mined from the dblp bibliogra-
phy servef. Each “publication” in the data is a computer science researcher and eieretice”
is @ name occurring in a reference. There are a total of 1382 elementsdatthecorresponding
to 328 total entities (all labeled). We use 1004 instances (225 entities) dagrdata and the rest
(378 instances and 103 entities that do not occur in training) as testing data.

The (pairwise) features we use for this data set are the following: stlihdistance between the
two first names; string edit distance between the two last names; string ¢alitatidetween the full
names; Euclidean distance between the publication years; Euclidean diseaween the number of
publications (in our data) published in those years; string edit distanceéeteonference names;
Euclidean distance between the number of publications published in tholsesares; and the
number of coauthors with normalized string edit distance less thianWlle ran fifty chains of ten
thousand iterations each. One chain for Models 1 and 2 required ampyateky one day to complete,
while Model 3 took approximately 3 days per chain.

We introduce an additional baseline for this data set that groups peasuesiwith identical last
names and identical first initials. This baseline is denotethisM ATCH. The results of the systems
on the identity uncertainty data are shown in Table 2. The trend of resutiddrgely agrees with

6. Thanks to Anhai Doan, Hui Fang and Rishi R. Sinha for making thaflable, seétt p: // anhai . cs. ui uc. edu/
archi ve/ domai ns/ resear chers. htnl for further information.
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System RI P R F CED NES VI NVI

COARSE .079 .079 1.00 147 .749 .251 3.589 .395
FINE 921 1.00 .000 .000 .000 .273 2.345 .605
NAMEMATCH .933 .545 1.00 .706 .405 .595 1.252 .789
K-MEANS 912 451 .510 479 341 .373 1.919 677
CDP 913 .480 452 .466 .355 .360 2.031 .658
BINARY .855 .753 .801 776 .389 .553 1.193 .808
XING-K 916 467 423 444 .378 .304 2.112 .644
SCDP-1 .963 .764 .786 775 127 .761 0.806 .864
SCDP-2 971 .820 .814 .817 A11 .796 0.669 .887
SCDP-3 .982 .875 913 .894 .066 .876 0.423 .929

Table 2: Results on the identity uncertainty data.

that of the digits data, in which our models 2 and 3 outperform the baselitensysHowever, in
this case, running the distance-metric learning algorithm actually hurts thksteBhis is perhaps
because our data does not live in Euclidean space, and hence the aimpeaformed in learning
the distance metric is not run under the proper conditions.

In this data, according to the-score, the binary classifier outperforms our model 1 (though
our models 2 and 3 outperform the binary classifier). However, acaptd both the edit distance
metrics and the information metrics, our models all outperform the binary cisgifiis data also
provides a good example of the deficiencies of the rand index: accdadihg RI, the FNE system
outperforms all of: K-MeEANS, CDP, BNARY and XING-K. Note also in this data that none of the
unsupervised models are able to outperform thhe1EMATCH baseline system (and neither does
the XING-K system).

7.3.3 FRROPERNOUN COREFERENCEDATA

The third set of data on which we evaluate is a subtask of the corefaesicanamely, coreference
of proper nouns (e.g., “George Bushk? “President Bush*- “Bush” + “President Clinton”). This
subtask is significantly simpler than the full task, since one need not ideoti&ference between
pronouns and proper nouns (“he? “George Bush”), nor proper nouns and definite descriptions
(“George Bush”— “the President”). This task has previously been used as a benchmit&®gl-
lum and Wellner (2004). We use a patrtition of the ACE 2004 broadcast aed/newswire training
corpus as the training and test data. This totals 280 documents for traiiangrath59 documents
for test data. The training data consists of 5613 mentions of entities, congisg to a total of
3100 different entities; the test data contains 950 mentions correspdnd2§ entities.

As features we use string edit distance, string edit distance on the Hieadis/Ord), the length
of the longest common substring, the length of the longest common subseqaenl the string
edit distance between the abbreviations of both terms. For computing thisefimalwe first map
words sequences like “George W. Bush” to “GWB” and leave sequeti already look like
abbreviations (eg., “IBM”) alone; we then compute string edit distance dmivthese pairs. For
this data set, we ran fifty chains for ten thousand iterations. Models 1 anth@leted in about
three days and Model 3 completed in one week.

As an additional baseline, we cluster mentions with the same head word (faind);vthis is
denoted 8MEHEAD. The results of the systems on the coreference data are shown in Tade 3.
a point of comparison, McCallum and Wellner (2004) reporfFarore of .931 on this task, using
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System RI P R F CED NES VI NVI

COARSE .003 .003 1.00 .006 .978 .021 5.950 132
FINE .997 1.00 .000 .000 1.00 .551 0.906 .868
SAMEHEAD .999 .965 .899 931 .019 .933 0.123 .982
K-MEANS .994 .297 773 429 .391 .524 1.059 .846
CDP .995 273 .384 .319 .352 418 1.265 .815
BINARY .999 .900 .893 .896 .040 .936 0.141 .979
XING-K .998 .489 .802 .608 .308 .599 0.911 .883
SCDP-1 .996 .409 497 .449 .261 .564 0.938 .863
SCDP-2 .997 .596 717 .651 .203 .682 0.654 .904
SCDP-3 .999 .804 .882 .841 .083 .861 0.284 .958

Table 3: Results on the proper noun coreference data.

a graph partition strategy, with weights trained using a perceptron-stylathlgo Our binary clas-
sification model achieve a slightly lowérscore or .896. Neither of the unsupervised algorithms
perform very well on this data, but in this data, the trained distance metriorper better than
standard K-means.

Overall the binary classifier is the best of the learned systems, achiavingfa896, a NES of
.936 and a normalized variation of information.879 (compared to our best scores®41, .861
and.958, respectively). However, even the binary classifier is outpaddralong all metrics by the
simple baseline that matches on the final wordmM8&8HEAD, which achieves scores d331,.933
and.982 for the three overall metrics. TH@31F-score is, incidentally, the same number reported
by McCallum and Wellner (2004) (though their choice of training/test dinistlikely different
from ours). Overall, however, based on this data, it seems reasdnaale that one might be better
served writing a dozen more rules to capture notions of abbreviationppaditication, and a few
other simple phenomena to handle the proper noun coreference taskthatmtry to learn a model
from data’

7.3.4 REFERENCEMATCHING DATA

Lastly, we perform evaluation on the Cora reference matching data sealMe et al. (2000¥.
This data consists of all references from their collection to publicationsibhd¢l Kearns, Robert
Schapire and Yoav Freund. There are 1916 references and biitapions. In the original pub-
lication, McCallum et al. treated this as a pure clustering task. In order toivigsva supervised
clustering task, we treat the labeled data for two of these authors as trdatigusing the last au-
thor as testing data (performing the segmentation this way is more realistic tldhomraelection,
and also serves to strengthen the point that the training and testing datyahg lmrelated).

We use the same feature set as in the identity uncertainty evaluation, with tierdhat the
first two features become the string edit distance between the publicatiors aaché¢éhe string edit
distance between the primary author names, respectively. Note that this diggaificantly noisier
than the data used in the previous section: there are errors on the lalalegfields. We again
ran fifty chains for ten thousand iterations; the chains for Models 1 andk2aiee day and Model 3
took three days.

7. Of course, the proper-noun coreference task is the easiesslsudfttull coreference resolution, where empirical
results have shown learned systems are able to outperform ruleyesterhs.
8. Thanks to Andrew McCallum for making this data available.
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System RI P R F CED NES VI NVI
COARSE 118 118 1.00 .205 745 .255 2.977 .538
FINE .882 1.00 .000 .000 .000 .105 3.456 462
K-MEANS .862 407 461 433 .392 .240 2.655 577
CDP .850 .353 379 .365 449 125 2.948 531
BINARY .936 .804 .616 .686 .107 721 0.762 .881
XING-K .855 .369 .384 377 411 .180 2.807 .552
SCDP-1 .892 .529 .507 .518 319 372 2.237 .643
SCDP-2 .934 .696 741 .718 .184 .641 1.382 .780
SCDP-3 .952 794 .782 .788 125 757 0.957 .847

Table 4: Results on the reference matching data.

BINARY | XING-K | SCDP-1| SCDP-2| SCDP-3
Digits .592 .608 .666 .675 .756
Identity Uncertainty 776 444 775 .817 .894
Proper Noun Coreference .896 .608 449 .651 .841
Reference Matching .686 377 .518 .718 .788

Table 5: Summary of F-scores of the learning systems on all four data sets.

The results of the systems on the reference matching data are shown iMTdbléhis data,
the unsupervised algorithms perform quite poorly, in comparison to thensysteat make use of
the training data. Again, as in the identity uncertainty data, we see that leariistance metric
can hurt performance (at least according{ecore; with respect to edit score and normali2&dit
seems to help, but only marginally so).

According toF-score, the binary classifier on this data outperforms our model 1, though our
models 2 and 3 are able to outperform the binary classifier system. In teed# e€ore, the binary
system outperforms all of our models, except for our model 3, whichlestabdo slightly better
(.757 versus721). In terms of\VI, the binary classifier beats all of our models, even model 3,
where it achieves anVI of .881 and we only achievé&47.

7.4 Summary of Results

We have summarized the results of the five learning systems in Table 5 by listintheir final
F-score. Across all data sets, we consistently see that the supervised apmaatherform the
unsupervised approaches, which is not a terribly surprising findirdgliténally, the standard K-
means algorithm always outperformed our CDP model (the unsupervissibi of our model).
In two of the data sets (digits and proper noun coreference), the tedisiance metric (M G-
K) achieved superior performance to standard K-means, but in the wtbedata sets, learning
the distance metric hurt. In those cases, we attribute this loss in performatiee fact that the
algorithm was not operating on truly Euclidean data.

Comparing our models against each other, of our models, model 1 is thesp@arformer,
followed by model 2, and model 3 is the best. Our models also tend to have pigiugsion than
recall, which suggests that they create too many clusters. One could pbteatace this by cross-
validating onF-score to adjust thexP parameter to attain a balanced precision/recall, but one strong
point of Bayesian models is that no cross-validation is necessary.

1569



DAUME IIl AND MARCU

Our model 3 was able to outperform the binary classification model in most siemienost
data sets, but not always. It tended to consistently outperform theybitessifier in terms of-
score, but in terms ofNES andNVI, the binary classifier was better on the reference matching
data. On the proper noun coreference data, our model was unable totlmajmerformance of the
binary classifier, but both performed more poorly than the simple head-imgtichseline system,
suggesting that future work on this subtask is perhaps best handlatEbynather than learning. On
the other data sets (digits and identity uncertainty), our models 2 and 3 catlgistgtperformed
the binary classification model.

8. Discussion

In this paper, we have presented a Bayesian model for the superlusseting problem. We have
dealt with the difficulty of defining a prior over a potentially infinite set by agijpegy to the Dirichlet
process prior. We have introduced the concept of a “referenceagmemechanism for representing
the aspects of the data that are general to the entire data set—essentialtyggiitmthe supervision.
Like any generative Bayesian classification model, our framework regjtlie specification of the
data generating distribution, which we have dendtedn general, thd= distribution is problem-
specific, but we have presented a generic parameterization kviseea Gaussian distribution.

In all but trivial cases, exact evaluation of the posterior distribution efdlass variables in
our model is intractable. We have presented MCMC-based sampling algotitiatnare able to
overcome this intractability. Unlike deterministic approximation techniques (ssicla@ational
or mean-field inference, or expectation propagation), the MCMC methadalde to perform
even when non-conjugate priors are employed. We have presentetirgpaigorithms for a full
Bayesian treatment of the problem.

Experimentally, under the Gaussian assumption our initial model is unabledcasepglasses
well. To fix this problem, we introduced two subsequent models. The firstfivaiitbn we make
is to use the references to adjust the parameterization of the prior ovesfénence types (model
2). This enables the use of a sampling procedure that is essentially ésnéffis that used in
the original model (model 1). The other modification we employ is to condition tbeelof the
reference types on the references (model 3). Unfortunately, in thiglntbe distributions over the
reference types and the references are no longer conjugate to thgedatating distribution, so a
less efficient Gibbs sampler must be employed to perform inference (ara@ea single iteration
of the non-conjugate model is approximately 10 times slower than one iteratitve abnjugate
model).

In a systematic comparison on four data sets against both supervisedsamiwised models,
we have demonstrated that our model is typically able to attain a higher levetfofmance than
other models (see Section 7.4 for a summary of the experimental resultspBdyeltian inference
(similar to transduction) has an advantage over the more standard traiegtigffgn phases: the
test data has no influence on the reference types.

The largest weakness of our model is its generative nature and theigladéficulty of specify-
ing a good distributior that fits the data and results in tractable inference. The Gaussian parame-
terization seems general, experimentally, but in order to maintain tractabilitygevtassume that
the covariance matrix was diagonal: this is essentially the same as makiivg 8ages assumption
on the features. For discrete data, using a multinomial/Dirichlet pair or binomelfiadr instead
of the normal/gamma pair might be more natural and would lead to nearly the sanenud.
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However, like other generative models, it is likely that our model would hektwith the curse of
dimensionality for any large number of highly correlated features. Thergéne story employed
by Pasula et al. (2003) is clearly superior to our—largely unmotivatedus§&an assumption; it
would be very interesting to incorporate their generative story into Bidtstribution, hopefully
to obtain the benefits of both models.

Clearly, scalability is also an issue for our model. The most computationally iméems of our
model with the application of Model 3 to the proper noun coreference whiah required roughly
one CPUyearto perform. This is not to say that, for instance, the binary classificaticensehvas
enormously efficient: training a cross-validated SVM on this data set toqmtoaipnately one CPU
month to perform, though this could be improved by not rerunning the SVMilegufor each fold.
Nevertheless, our approach is still roughly ten times slower. Howeveg Hre several methods
that one can employ to improve the speed of the model, especially if we wishléalseanodel up
to larger data sets. For instance, employing the canopy method describtECajlum et al. (2000)
and only considering drawing tleandicator variables from appropriate canopies would drastically
improve the efficiency of our model, provided the canopies were suffigismall. Furthermore,
in the cases of Models 1 and 2, since conjugate pacgsised, one could employ a more efficient
sampling scheme, similar to the Metropolis-Hastings algorithm suggested by Xathg(2004) or
the split-merge proposals suggested by Jain and Neal (2003). Négssthd CMC algorithms are
notoriously slow and experiments employing variational or EP methods forothiegate models
might also improve performance (Blei and Jordan, 2005; Minka and i@hemni, 2004).

Our model is also similar to a distance metric learning algorithm. Under the Gaassamp-
tion, the reference types become covariance matrices, which—whenishenty one reference
type—can be interpreted as a transform on the data. However, whenighmore than one refer-
ence type, or in the case of full Bayesian inference, the sorts of datéodi®ns accounted for by
our model are more general than in the standard metric learning scnario.

We believe future research in the context of the framework describedsipdper can proceed
along several dimensions. The most obvious would be the integration of doonain-specific
information in the data generating distributien One might be also able to achieve a similar
effect by investigating the interaction of our model with various unsupetvesbedding techniques
(KPCA, LLE, MDS, etc.). We have performed preliminary investigations@&mRCA (using the
standard string kernel) and LLE combined with K-means as well as K-meahdistance-metric
learning and have found that performance is substantially worse thaestksrpresented in this
paper. A final potential avenue for future work would be to attempt to coenthie power of our
model with the ability to incorporate arbitrary features found in conditional efspdike that of
McCallum and Wellner (2004). Such an integration would be technically ciwifig, but would
likely result in a more appropriate, general model.

Finally, to foster further research in the supervised clustering problaemhave contributed
our data sets and scoring software to the RIDDLE data repositoiry, / / www. ¢s. ut exas. edu/
users/ m/riddl e/, maintained by Mikhail Bilenko.

9. Consider, for instance, a two dimensional Euclidean space wheusters are axis-aligned pluses. Our model
learns two “reference types” for this data: one aligned with each axis,fandata that is reasonably separated, is
able to correctly classify most test data. On the other hand, a metric lgalgjarithm cannot perform any linear
transformation on the data that will result in “better looking” clusters.
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Appendix A. The Dirichlet Process

The formal definition of the Dirichlet process is as follows. (&t Q) be a measurable space and
let u be a measure (unnormalized density) on this space that is finite, additiveegative and
non-null. We say that a random probability measiiteon (X, Q) is a Dirichlet processwith pa-
rametei under the following condition: whenevéBs, ..., Bk } is a measurable partition €f (i.e.,
eachu(Bg) > 0 for allK) , then the joint distribution of random probabilitie*(B,), ...,P*(Bk)) is
distributed according tdir (W(B1),...,H(Bk)), whereZir denotes the standard Dirichlet distribu-
tion (Ferguson, 1973, 1974). In word®! is a Dirichlet process if it behaves as if it were a Dirichlet
distribution on any finite partition of the original space.

It is typically useful to writept = aGg, wherea = [, duandGg = p/a, so thatGy is a density.

In this case we refer t&g as thebase distributioror themean distributiorof the DP, andx as the
precision or scale parameter

Two fundamental results regarding the DP that are important to us arebg&jvations from a
DP are discrete (with probability one) and (2P is a DP with parametqy, then the conditional
distribution of P* given a sampleXy,..., Xy is a DP with parameteP* + Zw:ﬁxn, wheredy is a
point mass concentrated 4t(Ferguson, 1974). The final useful fact is a correspondenivecka
the DP and Blya Urns, described by Blackwell and MacQueen (1973). In tiigaPUrn construc-
tion, we consider the situation of an urn from which we draw balls. Initially timecontains a single
black ball. At any time step, we draw a balfrom the urn. Ifxis black (as it must be on the first
draw), we putx back into the urn and also add a ball of a brand new colax.whs not black, we
put x back into the urn and also put in an additional ball of the same color. Thempafteiraws
from such an urn describes draws from a DP (with 1). In this scheme, we can see that there is a
clustering effect in this model: as more balls of one color (say, blue) akergithe number of blue
balls in the urn increases, so the probability of drawing a blue ball in theitegation is higher.
However, regardless of how many balls there are in the urn, there iysakene probability the
black ball (i.e., a ball of a new color) is drawn. This relative probability istoaled by the preci-
sion parameten. For lowa, there will be few colors and for high, there will be many colors. The
appropriateness of such a prior depends on one’s prior intuitiond #improblem; more flexible
similar priors are given in terms of exchangeable probability partition fungtioluding a simple
two-parameter extension of the DP, by Pitman (1996).

As noted by Ferguson (1983), the discreteness of observationglieBP means that observa-
tions from the distributions drawn from a DP can be viewed as countablytenfimxtures. This can
be seen directly by considering a model that first draws a distrib@itmom a DP with parameter
aGp and then draws observatiofig,... from G. In such a model, one can analytically integrate
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out G to obtain the following conditional distributions from the observati@pgBlackwell and
MacQueen, 1973; Ferguson, 1983):

Bn1|61,...,0 Gt $5
nt1 ] 01,00 ~ = Go rH—O(i; 0

Thus, then+ 1st data point is drawn with probability proportionaktdrom the base distribution
Go, and is exactly equal to a previously dragnwith probability proportional tg_; 8g,—g;. This
characterization leads to a straightforward implementation of a Gibbs santjgliso Enables one to
show that the posterior density of a DP with paramgtafter observind\ observation®s,...,06y
is again a DP with parametgr TN, 8, (Ferguson, 1973).

Appendix B. Sampling the Precision Parameter

West (1992) describes a method of sampling the precision paramébera DP mixture model.
Placing agam(a, b) prior overa, whenn (the number of observations) akdthe number of unique
mixture components) are known, one first samples an intermediary xddyea beta distribution
x%(1—x)""1, wherea is the previous value for the precision parameter. Given this randonblaria
X, one resamples according to a mixture of two gamma densities:

mGam(a+k,b—logx) + (1— 1) Gam(a+k—1,b—logx),

wherery is the solution tog /(1 — 1) = (a+ k—1)/[n(b—logx)]. To extend this method to the
case with multiplen andk, we first recall the result of Antoniak (1974), which states that the prior
distribution ofk givena andn is given by

(o)
K = cy(k)ntak .
p( ’(X?n) Cn( )n a r(a+n)

Here,cn(k) O ]§1k) , a Stirling number of the first kind, does not dependioriPlacing a gamma
prior ona with shape parameterand scale parametbr we obtain the posterior distribution af
given all theny, kyy as

M
plalxkn) O e™a®* [ a " (a+nm)xH(L—xm)™

m=1

M
0 g2 M 1+3M knga(b-1og s Xm) [ (@ + nm). (4)
m=1

The product in Equation (4) can be written as the sum over a vector af/irdicator variables
i of lengthM, which gives us

M M
o | x kn~ iGgamla—M+ Y kn+im,b—Ilo Xm | - 5
‘ _Z&th ( %;l m QJ;L m) %)

le
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Where, writingato denote the valua—M — 1+ M _, ky, andb to denoteb — log[TM_; Xm, the
mixing weightsp are defined by

N <é+ % im> |M| (nb) ™. (6)
Z m=1 m=1

To see the correctness of this derivation, consider a giv€here are§ i choices ofa, corre-
sponding to th§ im in the shape parameter for the posterior gamma distribution in Equation (5). For
each of these, the constant from the gamma distribution is decreaseddbyraffi (A+ Y im) /T (8);
compensating for this results in the first term above (with the bottom half omitted &irs just a
constant). Additionally, each term for which = O means thaby, was chosen (instead of), so
a factor ofny, = nkim needs to be included. Finally, when the shape parameter of the gamma dis-
tribution increases by 1 for eaély = 1, the constant of proportionality for the gamma distribution
increases by a factor &f— log []xm, which is compensated for by the last term above.

Similarly, we can obtain a marginal distribution for eaghconditional ona andk as:

Xm | &, Nmkn O X (1—xm)™ 1 ~ Betla+1,ny) 7)

In order to sampleax, we first samplex by a sequence af beta distributions according to
Equation (7), conditioned on the current valuexaindn. Then, given these values xfwe sample
a new value ofo from a mixture of gammas defined in Equation (5), conditional on the newly
sampledx, with weights defined in Equation (6). In the latter step, we simply sele¢tcagM
according to the probability densify and then sample a value from the corresponding gamma
distribution.

Unfortunately, in all but trivial case$ is large and so computing directly for all suchi re-
quires an exponential amount of time ). Thus, instead of computing tips directly, we sample
for them, effectively computing the constahithough standard MCMC techniques. To perform the
actual sampling from", we employ a Gibbs sampler. Each iteration of the Gibbs sampler cycles
through each of th# values ofi and replaces, with a new value, sampled according to its poste-
rior, conditional ori_m= (i; | 1 <1 <M, | #£ m). The derivation of this posterior is straightforward:

. . a+ i
im=1]i_m = - 2mtzmim (8)

Putting it all together, we sample a new valuecoby first sampling a vectox, where each
Xm is sampled according to Equation (7). Then, we sarfpfeanyi(”)s using the Gibbs sampler
with update given by Equation (8); finally selecting one ofihleaccording to its empirical density.
Finally, given thisi and thex,s, we sample a new value farby a gamma distribution according
to Equation (5). We have found that for mod#ééic 100, n, < 1000 andky, < 500, such a chain
converges in roughly 50 iterations. In practice, we run it for 200 iteratiorbe safe.
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