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Abstract

The problem of extracting the relevant aspects of data wadqusly addressed through timgor-
mation bottleneckiB) method, through (soft) clustering one variable whitegerving information
about anotherrelevance variable. The current work extends these ideas to obtaitiragous rep-
resentations that preserve relevant information, ratrear tiscrete clusters, for the special case of
multivariate Gaussian variables. While the general contisuB problem is difficult to solve, we
provide an analytic solution for the optimal representatiod tradeoff between compression and
relevance for the this important case. The obtained optie@ksentation is a noisy linear projec-
tion to eigenvectors of the normalized regression mét;jﬁ;l, which is also the basis obtained
in canonical correlation analysis. However, in Gaussiantti® compression tradeoff parameter
uniquely determines the dimension, as well as the scale aif emenvector, through a cascade
of structural phase transitions. This introduces a noverpretation where solutions of different
ranks lie on a continuum parametrized by the compressicel.le@ur analysis also provides a
complete analytic expression of the preserved informati®m function of the compression (the
“information-curve”), in terms of the eigenvalue spectrafithe data. As in the discrete case, the
information curve is concave and smooth, though it is madéft#rent analytic segments for each
optimal dimension. Finally, we show how the algorithmicahedeveloped in the IB framework
provides an iterative algorithm for obtaining the optimauSsian projections.

Keywords: information bottleneck, Gaussian processes, dimensigmatiuction, canonical cor-
relation analysis

1. Introduction

Extracting relevant aspects of complex data is a fundamental task in macine¢eand statistics.
The problem is often that the data contains many structures, which makecitidifti define which
of them are relevant and which are not in an unsupervised mannexx&mple, speech signals may
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be characterized by their volume level, pitch, or content; pictures camkeddy their luminosity
level, color saturation or importance with regard to some task.

This problem was addressed in a principled manner by the information batl@Bg approach
(Tishby et al., 1999). Given the joint distribution of a “source” varia¥land another “relevance”
variableY, IB operates to compres§ while preserving information abodt The variabley thus
implicitly defines what is relevant iiXX and what is not. Formally, this is cast as the following
variational problem

mnL: L=1(X;T)—-BI(T;Y) (1)
p(tlx)

whereT represents the compressed representatiod wfa the conditional distributiong(t|x),
while the information thal maintains orY is captured by the distributiop(y|t). This formulation

is general and does not depend on the type ofXhé distribution. The positive paramet@r
determines the tradeoff between compression and preserved reldeamtdtion, as the Lagrange
multiplier for the constrained optimization problem g I (X;T) —B(I(T;Y) —cons). SinceT

is a function ofX it is independent of givenX, thus the three variables can be written as the Markov
chainY — X —T. From the information inequality we thus hav&; T) —BI(T;Y) > (1-B)I(T;Y),

and therefore for all values @f< 1, the optimal solution of the minimization problem is degenerated
I(T;X)=1(T;Y) = 0. As we will show below, the range of degenerated solutions is evern famge
Gaussian variables and depends on the eigen spectrum of the var@aladeamce matrices.

The rationale behind the IB principle can be viewed as model-free “lookisigernthe black-
box” system analysis approach. Given the input-outputy) “black-box” statistics, IB aims to
construct efficient representationsXafdenoted by the variablg, that can account for the observed
statistics ofY. IB achieves this using a single tradeoff parameter to represent theffradeveen
the complexity of the representationXf measured by(X; T), and the accuracy of this representa-
tion, measured by(T;Y). The choice of mutual information for the characterization of complexity
and accuracy stems from Shannon’s theory, where information minimizatiogsponds to optimal
compression in Rate Distortion Theory, and its maximization corresponds to opifioranation
transmission in Noisy Channel Coding.

From a machine learning perspective, IB may be interpreted as regdlgenerative modeling.
Under certain conditions(T;Y) can be interpreted as an empirical likelihood of a special mixture
model, and (T; X) as penalizing complex models (Slonim and Weiss, 2002). While this interpreta-
tion can lead to interesting analogies , it is important to emphasize the diffsreficst, IB views
[(X;T) not as a regularization term, but rather corresponds to the distortiotraions the origi-
nal system. As a result, this constraint is useful even when the joint disbribis known exactly,
because the goal of IB is to obtain compact representations rather thatiniate density. Inter-
estingly,| (T;X) also characterizes the complexity of the representatias the expected number
of bits needed to specify thefor a givenx. In that role it can be viewed as an expected “cost” of
the internal representation, as in MDL. As is well acknowledged nowcsotmding with distortion
and channel coding with cost are dual problems (see for example Shat®0; Pradhan et al.,
2003). In that information theoretic sense, IBsif dual where the resulting source and channel
are perfectly matched (as in Gastpar and Vetterli, 2003).

The information bottleneck approach has been applied so far mainly to datdga@riables,
with a discretél that represents (soft) clustersXfIt has been proved useful for a range of applica-
tions from documents clustering (Slonim and Tishby, 2000) through heotla analysis (Dimitrov
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and Miller, 2001) to gene expression analysis (Friedman et al., 2001k@irk and Kaski, 2001)
(for a more detailed review of IB clustering algorithms see Slonim (2003pwe¥er, its general
information theoretic formulation is not restricted, both in terms of the natureeafdhiables< and

Y, as well as of the compression variallelt can be naturally extended to nominal, categorical, and
continuous variables, as well as to dimension reduction rather than clgstiecimiques. The goal
of this paper is apply the IB for the special, but very important, case of§an processes which
has become one of the most important generative classes in machine lehr@iddition, this is the
first concrete application of IB to dimension reduction with continuous cossgbrepresentation,
and as such exhibit interesting dimension related phase transitions.

The general solution of IB for continuous yields the same set of self-consistent equations
obtained already in (Tishby et al., 1999), but solving these equatiottssfalistributiong(t|x), p(t)
and p(y|t) without any further assumptions is a difficult challenge, as it yields norulineupled
eigenvalue problems. As in many other cases, however, we show hetiedipgoblem turns out to
be analytically tractable whex andY are joint multivariate Gaussian variables. In this case, rather
than using the fixed point equations and the generalized Blahut-Arimotdthlgaas proposed in
(Tishby et al., 1999), one can explicitly optimize the target function with retsiwethe mapping
p(t|x) and obtain a closed form solution of the optimal dimensionality reduction.

The optimal compression in the Gaussian information bottleneck (GIB) is defiterms of the
compression-relevance tradeoff (also known as the “InformationeCupy “Accuracy-Complexity”
tradeoff), determined by varying the paramdieil he optimal solution turns out to be a noisy linear
projection to a subspace whose dimensionality is determined by the par@méter subspaces are
spanned by the basis vectors obtained as in the well kreamonical correlation analysi§CCA)
(Hotelling, 1935), but the exact nature of the projection is determined iniquerway via the
parametef. Specifically, a increases, additional dimensions are added to the projection variable
T, through a series of critical points (structural phase transitions), wititeeaame time the relative
magnitude of each basis vector is rescaled. This process continuedluhélralevant information
aboutY is captured ifiT. This demonstrates how the IB principle can provide a continuous measure
of model complexity in information theoretic terms.

The idea of maximization of relevant information was also taken inlth&x framework of
Becker and Hinton (Becker and Hinton, 1992; Becker, 1996), whiatloviied Linsker’s idea of
information maximization (Linsker, 1988, 1992). In the Imax setting, theréveseone-layer feed
forward networks with input$g, X, and outputs neurong, Yp; the output neurory, serves to
define relevance to the output of the neighboring netwgrk Formally, the goal is to tune the
incoming weights of the output neurons, such that their mutual informat}anYy) is maximized.

An important difference betwedmax and the IB setting, is that in thienax setting, | (Ya; Yp) is
invariant to scaling and translation of t&s since the compression achieved in the mapping: Y,
is not modeled explicitly. In contrast, the IB framework aims to characterizdgpendence of the
solution on the explicit compression terdil; X), which is ascale sensitiveneasure when the
transformation is noisy. This view of compressed representdtiohthe inputsX is useful when
dealing with neural systems that are stochastic in nature and limited in theinssespamplitudes
and are thus constrained to finlt@'; X).

The current paper starts by defining the problem of relevant informatitraction for Gaussian
variables. Section 3 gives the main result of the paper: an analyticalatberation of the optimal
projections, which is then developed in Section 4. Section 5 develops dtiealaexpression for
the GIB compression-relevance tradeoff - the information curve. Segsbows how the general IB
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algorithm can be adapted to the Gaussian case, yielding an iterative algtmittimaling the optimal
projections. The relations to canonical correlation analysis and codingsidighinformation are
discussed in Section 9.

2. Gaussian | nfor mation Bottleneck

We now formalize the problem of information bottleneck for Gaussian vasahlet(X,Y) be two
jointly multivariate Gaussian variables of dimensians ny and denote by, the covariance
matrices ofX,Y and by, their cross-covariance matrixThe goal of GIB is to compress the vari-
ableX via a stochastic transformation into another variable R™, while preserving information
aboutY. The dimension oT is not explicitly limited in our formalism, since we will show that the
effective dimension is determined by the valugof

It is shown in Globerson and Tishby (2004) that the optimum for this prolieobtained by
a variableT which is also jointly Gaussian witlX. The formal proof uses the entropy power
inequality as in Berger and Zamir (1999), and is rather technical, but aitiiatexplanation is
that sinceX andY are Gaussians, the only statistical dependencies that connect theiiaearh
Therefore, a linear projection &f is sufficient to capture all the information théthas onY. The
Entropy-power inequality is used to show that a linear projectioX,ofvhich is also Gaussian in
this case, indeed attains this maximum information.

Since every two centered random variableand T with jointly Gaussian distribution can be
presented through the linear transformafloa AX+¢&, whereg ~ N(0, Z¢ ) is another Gaussian that
is independent oX, we formalize the problem using this representatioil ods the minimization

rAr);rng LOX;T)—=BI(T;Y) (2)

over the noisy linear transformations &fZ¢
T=AX+E &~N(0,Z). (3)

ThusT is normally distributed ~ N(0, %) with & = AS,AT + Z;.

Interestingly, the tern§ can also be viewed as an additive noise term, as commonly done in
models of learning in neural networks. Under this viéwserves as a regularization term whose
covariance determines the scales of the problem. While the goal of GIB isddh#optimal
projection parameter, 3¢ jointly, we show below that the problem factorizes such that the optimal
projectionA does not depend on the noise, which does not carry any informatiar abo

3. The Optimal Projection

The first main result of this paper is the characterization of the op#g2alas a function off

1. For simplicity we assume th&tandY have zero means arg, 2y are full rank. Otherwis& andY can be centered
and reduced to the proper dimensionality.

168



GAUSSIAN INFORMATION BOTTLENECK

Theorem 3.1 The optimal projection T= AX + & for a given tradeoff parameteB is given by
2s =Ixand

[OT;...;OT] 0<B<PY
[le-{,OT;...;OT] RS <B<BS
A= [alvT;GZV-zr;OT;...;OT] BS, < B < B° (4)

where{v{,v],...,v] } are left eigenvectors of,,>, ! sorted by their corresponding ascending
eigenvalues\i, Az, ..., An, BS = ﬁ are critical 3 values,qa; are coefficients defined hy, =

% r = viTvai, 0" is an nx dimensional row vector of zeros, and semicolons separate

rows in the matrix A.

This theorem asserts that the optimal projection consists of eigenvecm,ﬁ)fl, combinedin
an interesting manner: F@rvalues that are smaller than the smallest critical p@iptcompression
is more important than any information preservation and the optimal solution iegfemdrated one
A=0. AsBis increased, it goes through a series of critical pofiffsat each of which another
eigenvector oEX|yZ;1 is added tA. Even though the rank & increases at each of these transition
points,A changes continuously as a functionf$ince at each critical poifi°; the coefficient;
vanishes. Thuf parameterizes a sort of “continuous rank” of the projection.

To illustrate the form of the solution, we plot the landscape of the targetiime together
with the solution in a simple problem wheXec R? andY € R. In this caseé has a single non-zero
row, thusA can be thought of as a row vector of length 2, that proj&cte a scalaiA: X — R,

T € R Figure 1 shows the target functighas a function of the (vector of length 2) projecti@nin
this example, the largest eigenvalué\is= 0.95, yielding¢; = 20. Therefore, foff = 15 (Figure
1A) the zero solution is optimal, but f@@ = 100> (3¢ (Figure 1B) the corresponding eigenvector
is a feasible solution, and the target function manifold contains two mirror minire@.idcreases
from 1 to o, these two minima, starting as a single unified minimum at zero, sght,atnd then
diverge apart teo.

We now turn to prove Theorem 3.1.

4. Deriving the Optimal Projection

We first rewrite the target function as
L=1(X;T)=BI(T;Y) =h(T) —h(T[X) = Bh(T) +Bh(T[Y) (5)

whereh is the (differential) entropy of a continuous variable

h(X) = _/ f(x)log f (x)dx.

X
Recall that the entropy of ddimensional Gaussian variable is
h(X) = 7 log ((2re)
2
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Figure 1: The surface of the target functigrcalculated numerically as a function of the optimiza-
tion parameters in two illustrative examples with a scalar projedioR’> — R. Each
row plots the target surfacé both in 2D (left) and 3D (right) as a function of the (two
dimensional) projectioné. A. For 3 = 15, the optimal solution is the degenerated so-
lution A= 0. B. For 3 = 100, a non degenerate solution is optimal, together with its
mirror solution. Thezx|y2;1- eigenvector of smallest eigenvalue, with a norm computed
according to Theorem 3.1 is superimposed, showing that it obtains thd giaglienum
of L. Parameters’ values,y = [0.1 0.2], Zx = I, 2z = 0.3l2,2.
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where|x| denotes the determinant ©fand2y is the covariance ok. We therefore turn to calcu-
late the relevant covariance matrices. From the definitioh ole haveZ = A%y, iy = A,y and
> = ALAT + Z¢. Now, the conditional covariance matixy, can be used to calculate the covari-
ance of the conditional variablB|Y, using the Schur complement formula (see e.g., Magnus and
Neudecker, 1988)

iy = Tt — Ty, T = AT AT + 3.

The target function can now be rewritten as

L = log(|%t]) —log(|Zx|) — Blog(|t|) + Blog(|y|)- (6)
= (1-P)log(|ASAT +Z¢|) —log(|Z¢ |) + Blog(|AS,yAT + Z¢|)

Although £ is a function of both the noisE; andthe projectionA, Lemma A.1 in Appendix A
shows that for every paifA,Z;), there is another projectioA such that the paifA,|) obtains

the same value of. This is obtained by settingd = vD-VA whereZ; = VDVT, which yields
(A ) = L(AZ). 2 This allows us to simplify the calculations by replacing the noise covariance
matrix Z; with the identity matrixq.
To identify the minimum of£Z we differentiate£ with respect to the projectioA using the
algebraic identity5; log(|ACAT |) = (ACA")~12AC which holds for any symmetric matri3:

oL

A = (1—B)(ASAT +1g) 12A%, + B(AZ AT +1g) 12AS,,. 7)

Equating this derivative to zero and rearranging, we obtain necessadijtions for an internal
minimum of £, which we explore in the next two sections.

4.1 Scalar Projections

For clearer presentation of the general derivation, we begin with atskétbe proof by focusing
on the case wherE is a scalar, that is, the optimal projection matiis a now a single row vector.
In this case, both, AT andAZ)quT are scalars, and we can write

B—1) [AZyAT+1
< ) () A= Alzend. @)
This equation is therefore an eigenvalue problem in which the eigenvadpesd orA. It has two

types of solutions depending on the valugofirst, A may be identically zero. Otherwisd,must
T
be the eigenvector d‘tx‘yZ;l, with an eigenvalua = % ':zg‘xyAAlel

To characterize the values @for which the optimal solution does not degenerate we find when
the eigenvector solution is optimal. Denote the normapfvith respect tcA by r = ‘?‘ZA(HAZ WhenA
is an eigenvector df,, %, !, Lemma B.1 shows thatis positive and thafZ,, %, 1Z,AT = Ar||Al|2.
Rewriting the eigenvalue and isolatifid| |2, we have

_B(1-A) -1
0<[JA2 == —. 9)

2. Although this holds only for full rankg, it does not limit the generality of the discussion since low rank matrices
yield infinite values of£ and are therefore suboptimal.
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Figure 2: A. The regions of §,A) pairs that lead to the zero (red) and eigenvector (blue) solutions.
B. The norm||A||? as a function off andA over the feasible region.

This inequality provides a constraint ghand A that is required for a non-degenerated type of
solution
-1

NSt o B>(1-N71 (10)

thus defining a critical valu@®(A) = (1—A)~1. For B < BS(A), the weight of compression is
so strong that the solution degenerates to zero and no information is cabedX or Y. For
B > B¢(A) the weight of information preservation is large enough, and the optimal soliatid\ is
an eigenvector o£X|yZ;1. The feasible regions for non degenerated solutions and the [pajim
as a function of3 andA are depicted in Figure 2.

For some3 values, several eigenvectors can satisfy the condition for non degedeolutions
of Equation (10). Appendix C shows that the optimum is achieved by the\aigtar ofzx‘yZ;l
with the smallest eigenvalue. Note that this is also the eigenvecmﬁglzyXZ;l with the largest
eigenvalue. We conclude that for scalar projections

(11)

wherev; is the eigenvector oIX‘yZ;l with the smallest eigenvalue.

4.2 TheHigh-Dimensional Case

We now return to the proof of the general, high dimensional case, whildcwibthe same lines as
the scalar projection case. Setting the gradient in Equation (7) to zereardkring we obtain

% [(AS AT + 1) (ASAT +1g) A= A[Z4,5 1. (12)

Equation (12) shows that the muItipIicationmij;l by A must reside in the span of the rows
of A. This means that should be spanned by up ip eigenvectors oEX‘yZ;l. We can therefore
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represent the projectiokhas a mixturéd =WV where the rows d¥ are left normalized eigenvectors

of ZX‘yZ;l andW is a mixing matrix that weights these eigenvectors. The form of the mixing matrix
W, that characterizes the norms of these eigenvectors, is described olltherfg lemma, which

is proved in Appendix D.

Lemma4.1 The optimum of the cost function is obtained with a diagonal mixing matrix W of the
form

W = diag \/B(l_m_l,...,\/B(l_)"‘)_l,o,...,o (13)

A1r1 Akl

where{A,...,A¢} are k< ny eigenvalues o}ZX‘yZ;l with critical B valuesf®,,...,B% <B. ri =
vl Z,v; as in Theorem 3.1.

The proof is presented in Appendix D.

We have thus characterized the set of all minima ond turn to identify which of them achieve
the global minima.

Corollary 4.2
The global minimum of is obtained with all\; that satisfyA; < %

The proof is presented in Appendix D.

Taken together, these observations prove that for a given valfietbé optimal projection is
obtained by taking all the eigenvectors whose eigenvalueatisfyd > ﬁ and setting their norm
according toA = WV with W determined as in Lemma 4.1. This completes the proof of Theorem
3.1.

5. The GIB Information Curve

The information bottleneck is targeted at characterizing the tradeoff betwiemation preserva-
tion (accuracy of relevant predictions) and compression. Interestimglgh of the structure of the
problem is reflected in thmformation curve namely, the maximal value of relevant preserved in-
formation (accuracy),(T;Y), as function of the complexity of the representatioxXpfmeasured by
[(T;X). This curve is related to the rate-distortion function in lossy source codswyell as to the
achievability limit in source coding with side-information (Wyner, 1975; Cama Thomas, 1991).
It was shown to be concave under general conditions (Gilad-Batletaal., 2003), but its precise
functional form depends on the joint distribution and can reveal ptigsasf the hidden structure of
the variables. Analytic forms for the information curve are known only y\special cases, such
as Bernoulli variables and some intriguing self-similar distributions. The toallyaracterization
of the Gaussian IB problem allows us to obtain a closed form expressidheganformation curve
in terms of the relevant eigenvalues.
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Figure 3: GIB information curve obtained with four eigenvaldes- 0.1,0.5,0.7,0.9. The informa-
tion at the critical points are designated by circles. For infifiteurve is saturated at
the log of the determinar}t logA;. For comparison, information curves calculated with
smaller number of eigenvectors are also depicted (all curves calculat@dfd.000).
The slope of the un-normalized curve at each point is the correspofiding he tangent
at zero, with slop@ 1 = 1 — A4, is super imposed on the information curve.

To this end, we substitute the optimal projecti&(f) into | (T;X) andl (T;Y) and rewrite them
as a function of8

B(TiX) = Zlog(IAZAT +1q) (14)
= Slog(|(B(1 D) ~1)DY)
n(B) A\
- 32 oo((B-05M)

1n®)
BTY) = 1(TiX) =5 5 10gB1-),

whereD is a diagonal matrix whose entries are the eigenvalue‘s(‘gigl as in Appendix D, and
n(B) is the maximal index such thaf3 > ﬁ Isolating as a function ofg(T; X) in the correct
range ofng and therlg(T;Y) as a function ofg(T; X) we have

TY) = 1(TX) — Mog [ [TA=A)7 +e™% [A% (15)
; = , — =109 —Aj)"n +e N ipm
2'9\[1 i
where the products are over tfiest n = ng(1;x)) eigenvalues, since these obey the critigal
condition, withc,, <1(T;X) < ¢y 41 andcy, = {":Ellog);i_'llji )
I n
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The GIB curve, illustrated in Figure 3, is continuous and smooth, but is budieveral seg-
ments: as(T;X) increases additional eigenvectors are used in the projection. Thatieriof the
curve, which is equal t@~1, can be easily shown to be continuous and decreasing, therefore the
information curve is concave everywhere, in agreement with the gecmmahvity of information
curve in the discrete case (Wyner, 1975; Gilad-Bachrach et al., 2008like the discrete case
where concavity proofs rely on the ability to use a large number of clusiensavity is guaranteed
here also for segments of the curve, where the number of eigenverddimided a-priori.

At each value of (T; X) the curve is bounded by a tangent with a sIBpé(I (T; X)). Generally
in IB, the data processing inequality yields an upper bound on the slope atigin, 371(0) < 1,
in GIB we obtain a tighter bound3—1(0) < 1—A;. The asymptotic slope of the curve is always
zero, asB — oo, reflecting the law of diminishing return: adding more bits to the description of
X does not provide higher accuracy abdut This relation between the spectral properties of the
covariance matrices raises interesting questions for special cases tivbepectrum can be better
characterized, such as random-walks and self-similar processes.

6. An Iterative Algorithm

The GIB solution is a set of scaled eigenvectors, and as such can batadcusing standard tech-
niques. For example gradient ascent methods were suggested fonde@@A (Becker, 1996;
Borga et al., 1997). An alternative approach is to use the generalvtedgorithm for 1B prob-
lems (Tishby et al., 1999). This algorithm that can be extended to contiramiables and repre-
sentations, but its practical application for arbitrary distributions leads tindinear generalized
eigenvalue problem whose general solution can be difficult. It is therd@iteresting to explore the
form that the iterative algorithm assumes once it is applied to Gaussianlearidioreover, it may
be possible to later extend this approach to more general parametric distrigich as general
exponential forms, for which linear eigenvector methods may no longeddguate.

The general conditions for the IB stationary points were presented hpylist al. (1999) and
can be written for a continuous varialdey the following self consistent equations for the unknown
distributionsp(t|x), p(y|t) andp(t):

pt) = /dxp(x p(t|x) (16)
PO = o /dxp(xy (tx)
pitx) = (U)e BDK [p(y1) (i)

whereZ(B) is a normalization factor (partition function) and is independent.oft is important
to realize that those conditions assume nothing about the representatadie/@rand should be
satisfied byany fixed point of the IB Lagrangian. WheX, Y andT have finite cardinality, those
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equations can be iterated directly in a Blahut-Arimoto like algorithm,

P(tk) —BDkL [p(Y|x
tealx) = e BDkL[P(YP)|[p(yIt)] 17
p( k+1‘ ) Zk+l<X; B) ( )

Plters) = / X Pt 1)
S XY Pl

where each iteration results in a distribution over the variableX andY. The second and third
equations calculatp(tx;1) and p(y|tk+1) using standard marginalization, and the Markov property
Y — X —Tk. These iterations were shown to converge to the optiiiay Tishby et al. (1999).

For the general continuolssuch an iterative algorithm is clearly not feasible. We show here,
how the fact that we are confined to Gaussian distributions, can be used those equations into
an efficient parameter updating algorithm. We conjecture that algorithmsfanyeters optimiza-
tions can be defined also for parametric distribution other than Gaussighsas other exponential
distributions that can be efficiently represented with a small number of ptgesne

In the case of Gaussign(x,y), when p(tx|x) is Gaussian for somle, so arep(t), p(y|tk) and
p(tk+1/X). In other words, the set of Gaussign($|x) is invariant under the above iterations. To see
why this is true, notice thab(y|tk) is Gaussian sinc& is jointly Gaussian withX. Also, p(tk;1|x)
is Gaussian sincBk . [p(Y|X)||p(Yltk)] between two Gaussians contains only second order moments
in y andt and thus its exponential is Gaussian. This is in agreement with the gensrtidathe
optima (which are fixed points of 17) are Gaussian (Globerson and Ti&0by). This invariance
allows us to turn the IB algorithm that iterates over distributions, into an algotithatriterates over
the parameters of the distributions, being the relevant degrees of fineéadbe problem.

Denote the variabld@ at timek by Tx = AX + &k, wheregx ~ A((0,%, ). The parametera
andZ at timek+ 1 can be obtained by substitutiig in the iterative 1B equations. As shown in
Appendix E, this yields the following update equations

1
28 <thk\y (B-1) Ztk ) (18)
Ak+l = BzEk+1ztk|y ( _zy‘xz;)

wherez,,, %y, are the covariance matrices calculated for the varigble
This algorithm can be interpreted as repeated projectiéf of the matrid — Zy|XZ;1 (whose
eigenvectors we seek) followed by scaling V‘ﬁﬁimz@ly- It thus has similar form to the power

method for calculating the dominant eigenvectors of the migr‘igf_;l (Demmel, 1997; Golub and
Loan, 1989). However, unlike the naive power method, where onlyitiggesdominant eigenvector
is preserved, the GIB iterative algorithm maintains several differenheggtors, and their number
is determined by the continuous paramdteaind emerges from the iterations: All eigenvectors
whose eigenvalues are smaller than the crifica@nish to zero, while the rest are properly scaled.
This is similar to an extension of the naive power method know@réisogonal Iteration in which
the projected vectors are renormalized to maintain several non vanishitgyss€Jennings and
Stewart, 1975).

Figure 4 demonstrates the operation of the iterative algorithm for a four diorei X andY.
The tradeoff parametd¥ was set to a value that leads to two vanishing eigenvectors. The norm of
the other two eigenvectors converges to the correct values, whiclivareig Theorem 3.1.

P(Yltkr1) tm
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Ainv(V)

~a o
100 1000 34
iterations

Figure 4: The norm of projection on the four eigenvectorE@’Z;l, as evolves along the operation
of the iterative algorithm. Each line corresponds to the length of the projeaftimme row
of A on the closest eigenvector. The projection on the other eigenvectorsaaishes
(not shown). B was set to a value that leads to two non vanishing eigenvectors. The
algorithm was repeated 10 times with different random initialization points, isigoivat
it converges within 20 steps to the correct valaes

The iterative algorithm can also be interpreted as a regressXmnfT viaY. This can be seen
by writing the update equation f@%. 1 as

Acr1 = zzk+lz[;|])-/ (Zytkzgl) (zyngl) : (19)

SinceZyXZ;1 describes the optimal linear regressoXobn Y, the operation of,1 on X can be
described by the following diagram

Tyt Sy oyt Zg 1 T
X = Hy|x A lthWxM’TkH (20)

where the last step scales and normalikes

7. Relation To Other Works

The GIB solutions are related to studies of two main types: studies of eigesvhhsed co-
projections, and information theoretic studies of continuous compressiemneWéw both below.
7.1 Canonical Correlation Analysisand I max

The Gaussian information bottleneck projection derived above uses tegigigenvectors of the
matrix S, 2t =1 — Zy 5, 12,5, 1. Such eigenvectors are also usedamonical correlation anal-
ysis(CCA) (Hotelling, 1935; Thompson, 1984; Borga, 2001), a method stuagtive statistics that
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finds linear relations between two variables. Given two variakleg CCA finds a set of basis vec-
tors for each variable, such that the correlation coefficient betwegardiection of the variables on
the basis vectors is maximized. In other words, it finds the bases in whiclotfeation matrix is
diagonal and the correlations on the diagonal are maximized. The basbe aigenvectors of the
matricesy, 15,5, 15, ands, 15,5, 15, and the square roots of their corresponding eigenvalues
are thecanonical correlation coefficientsCCA was also shown to be a special case of continu-
ous Imax (Becker and Hinton, 1992; Becker, 1996), when the Imaxarnksaare limited to linear
projections.

Although GIB and CCA involve the spectral analysis of the same matrices,hiény some
inherent differences. First of all, GIB characterizes not only thergigetors but also their norm,
in a way that that depends on the trade-off param@teSince CCA depends on the correlation
coefficient between the compressed (projected) versioKsanidY, which is anormalizedmeasure
of correlation, it is invariant to a rescaling of the projection vectors. Irtresh for any value of,
GIB will choose one particular rescaling given by Theorem 3.1.

While CCA is symmetric (in the sense that bothandY are projected), IB is non symmetric
and only theX variable is compressed. It is therefore interesting that both GIB and G&Ahe
same eigenvectors for the projectionaf

7.2 Multiterminal Information Theory

The information bottleneck formalism was recently shown (Gilad-Bachrad. eP003) to be
closely related to the problem of source coding with side information (WA£5). In the lat-
ter, twodiscretevariablesX,Y are encoded separately at raRsR, and the aim is to use them
to perfectly reconstruct. The bounds on the achievable rates in this case were found in (Wyner,
1975) and can be obtained from the IB information curve.

When considering continuous variables, lossless compression at fitgiteisano longer pos-
sible. Thus, mutual information for continuous variables is no longer irg&aple in terms of the
actual number of encoding bits, but rather serves as an optimal me&sfogmation between vari-
ables. The IB formalism, although coinciding with coding theorems in the disceste, is more
general in the sense that it reflects the tradeoff between compressiamf@amation preservation,
and is not concerned with exact reconstruction.

Lossy reconstruction can be considered by introducing distortion mesaasgrdone for source
coding of Gaussians with side information by Wyner (1978) and by BexgdrZamir (1999) (see
also Pradhan, 1998), but these focus on the region of achievabdeurader constrained distortion
and are not relevant for the question of finding the representationdwhjature the information
between the variables. Among these, the formalism closest to ours is thargérBand Zamir
(1999) where the distortion in reconstructikgs assumed to be small (high-resolution scenario).
However, their results refer to encoding rates and as such go to infinthyeadistortion goes to
zero. They also analyze the problem for scalar Gaussian variabtahebone-dimensional setting
does not reveal the interesting spectral properties and phase tramsitiich appear only in the
multidimensional case discussed here.

7.3 Gaussian | B with Side I nformation

When handling real world data, the relevance variabtgten contains multiple structures that are
correlated toX, although many of them are actually irrelevant. The information bottleneck with
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side information IBSI) (Chechik and Tishby, 2002) alleviates this problem using side information
in the form of anirrelevancevariableY — about which information is removedBSI thus aims to
minimize

L=1XT)=B(I(T;Y")=yI(T;Y7)) (21)

This formulation can also be extended to the Gaussian case, in a manner sirthi@ptaginal
GIB functional. Looking at its derivative with respect to the projectioyields

oL

5a = ( 1=B+BY J(ADAT +14) 12A%,
+ B (ASyy+ AT +1g) 12AZ
- By (Azx\y- AT + Id)_lZAZx|y—-

While GIB relates to an eigenvalue problem of the foxk= AZX|yZ;1, GIB with side information
(GIBSI) requires to solve of a matrix equation of the foNA + A*AZX‘WZ;l = A*Azx‘yfzgl,
which is similar in form to a generalized eigenvalue problem. However, unigkelard generalized
eigenvalue problems, but as in the GIB case analyzed in this paper, thwadiges themselves
depend on the projectioh

8. Practical Implications

The GIB approach can be viewed as a method for finding the best lingj@cpon of X, under a
constraint onl (T; X). Another straightforward way to limit the complexity of the projection is to
specify its dimension in advance. Such an approach leaves open thi@guéshe relative weight-
ing of the resulting eigenvectors. This is the approach taken in classids| @itzre the number of
eigenvectors is determined according to a statistical significance test, andafghts are then set
to /1—A;. This expression is the correlation coefficient between'th@CA projections orX and

Y, and reflects the amount of correlation captured byittherojection. The GIB weighting scheme
is different, since it is derived to preserve maximum information under thgoession constraint.
To illustrate the difference, consider the case wHhere 17—&3 so that only two eigenvectors are

used by GIB. The CCA scaling in this caseJid — A1, andv/1—A,. The GIB weights are (up to

a constanthy = /%2 ap = /%22 which emphasizes large gaps in the eigenspectrum, and
can be very different from the CCA scaling.

This difference between CCA scaling and GIB scaling may have implicatiohsmaspects of
learning in practical applications. First, in applications involving compressigsaussian signals
due to limitation on available band-width. This is the case in the growing field sbsetworks in
which sensors are often very limited in their communication bandwidth due tgyeoenstraints. In
these networks, sensors communicate with other sensors and transmittibor about their local
measurements. For example, sensors can be used to monitor chemicalsticitres, temperature
or light conditions. Since only few bits can be transmitted, the information has twimpressed
in a relevant way, and the relative scaling of the different eigenvetiscemes important (as in
transform coding Goyal, 2001). As shown above, GIB describesptimal transformation of the
raw data into information conserving representation.

The second aspect where GIB becomes useful is in interpretation of Glatky, canonical
correlation analysis is widely used for finding relations between multi-var@igraious variables,
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in particular in domains which are inherently high dimensional such as metggr@lon Storch
and Zwiers, 1999) chemometrics (Antti et al., 2002) and functional MRdrains (Friman et al.,
2003). Since GIB weights the eigenvectors of the normalized crosdatiwrematrix in a different
way than CCA, it may lead to very different interpretation of the relative ingyae of factors in
these studies.

9. Discussion

We applied the information bottleneck method to continuous jointly Gaussian kesdlandy,
with a continuous representation of the compressed varibbl®Ve derived an analytic optimal
solution as well as a new general algorithm for this problem (GIB) whichaget solely on the
spectral properties of the covariance matrices in the problem. The soltdioB4$B are character-
ized in terms of the trade-off paramefebetween compression and preserved relevant information,
and consist of eigenvectors of the maﬁ%,z)jl, continuously adding up vectors as more complex
models are allowed. We provide an analytic characterization of the optimaififduetween the
representation complexity and accuracy - the “information curve” - whitdtes the spectrum to
relevant information in an intriguing manner. Besides its clean analytic steyc®iB offers a way
for analyzing empirical multivariate data when only its correlation matrices eamstimated. In that
case it extends and provides new information theoretic insight to the classimaical correlation
analysis.

The most intriguing aspect of GIB is in the way the dimensionality of the reptaen changes
with increasing complexity and accuracy, through the continuous valuesdfdtde-off parameter
B. While both mutual information values vary continuously on the smooth informatiorecthe
dimensionality of the optimal projectiohincreases discontinuously through a cascade of structural
(second order) phase transitions, and the optimal curve moves froamafgic segment to another.
While this transition cascade is similar to the bifurcations observed in the appficaititB to
clustering through deterministic annealing, this is the first time such dimensiamsitions are
shown to exist in this context. The ability to deal with all possible dimensions inggesailgorithm
is a novel advantage of this approach compared to similar linear statisticalqeeb as CCA and
other regression and association methods.

Interestingly, we show how the general IB algorithm which iterates ovérilalitions, can be
transformed to an algorithm that performs iterations over the distributarsimeters This algo-
rithm, similar to multi-eigenvector power methods, converges to a solution in whechuimber of
eigenvectors is determined by the paramgtén a way that emerges from the iterations rather than
defined a-priori.

For multinomial variables, the IB framework can be shown to be related in some bnogises
to maximum-likelihood estimation in a latent variable model (Slonim and Weiss, 200&puld
be interesting to see whether the GIB-CCA equivalence can be extendegive@ a more general
understanding of the relation between IB and statistical latent variable models.

While the restriction to a Gaussian joint distribution deviates from the more glatistribution
independent approach of IB, it provides a precise example to the wagsentations with differ-
ent dimensions can appear in the more general case. We believe that ¢hidf imensionality-
transitions appears for more general distributions, as can be reveatedhin cases by applying
the Laplace method of integration (a Gaussian approximation) to the integrale getteral IB
algorithm for continuoud'.
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The more general exponential forms, can be considered as a kednedizton of 1B (see Mika
et al., 2000) and appear in other minimum-information methods (such as SDRer&dm and
Tishby, 2003). these are of particular interest here, as they behav&éilkissian distributions in
the joint kernel space. The Kernel Fisher-matrix in this case will take tleeofdhe original cross
covariance matrix of the variables in GIB.

Another interesting extension of our work is to networks of Gaussianege®s. A general
framework for that problem was developed in Friedman et al. (2001 ppptied for discrete vari-
ables. In this framework the mutual information is replaced by multi-informatind,the depen-
dencies of the compressed and relevance variables is specified thveu@raphical models. It
is interesting to explore the effects of dimensionality changes in this moreajdraanework, to
study how they induce topological transitions in the related graphical madetame edges of the
graphs become important only beyond corresponding critical valueg dfatieoff parametes.
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Appendix A. Invarianceto the Noise Covariance Matrix

LemmaA.1 For every pair(A, X¢) of a projection A and a full rank covariance matrk, there
exist a matrixA such thatC (A, lg) = L(A, Zg), where } is the n x n; identity matrix.

Proof: Denote by the matrix which diagonalize%, namelyz; =V DVT, and bycthe determinant
c=|vVD-|=|vVD-IVT|. SettingA = vD-VAwe have

LA1) = (1-B)log(|AZ,AT +14|) —log(|la|) + Blog(|AZ,,AT +14]) (22)
= (1-B)log(c|AS,AT +2¢|c) — log(c|=¢|c) + Blog(c|AZy, AT +2¢|C)
(1-B) log(|AZAT +5¢|) — log(|Ze|) + Blog(|AS, AT + ¢ )

where the first equality stems from the fact that the determinant of a matrikigirds the product
of the determinants(]

Appendix B. Properties of Eigenvalues of ZX‘yZ;l and 2y

LemmaB.1 Denote the set of left normalized eigenvector&,gfz, ! by v; (||vi|| = 1) and their
corresponding eigenvalues Ry. Then

1. All the eigenvalues are real and satiffix A; <1
2. 3r; > 0s.t.v] v = §jri.
3. V;rzx‘ij = 5ij)\iri-

The proof is standard (see e.g. Golub and Loan, 1989) and is brbaghtor completeness.
Proof:
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1. The matrice&,, %, andZ,ys, 15,5, * are positive semi definite (PSD), and their eigenval-
ues are therefore positive. Sinkg %, ' = | — 5,5, 15,5, 1, the eigenvalues &, >, * are
bounded between 0 and 1.

1
2. Denote by the matrix whose rows arg’. The matrixVZ; is the eigenvector matrix of
_1 _1 1 _1 _1 _1 1 1
Zx “Zxy2x * since (VZ%) Sx 2ZyZx 2 =V 3x? = (Vi 2t ZF = DVZE. From the
1 _1 1
fact that>y ZZX|yZX 2 js symmetricV 23 is orthogonal, and thug>,V T is diagonal.
3. Follows from ZZVFZX‘yzglzXVj = AiVFZXVj = Aidijj .

O

Appendix C. Optimal Eigenvector

For somef} values, several eigenvectors can satisfy the conditions for non eleged solutions
(Equation 10). To identify the optimal eigenvector, we substitute the vallig&df from Equation
(9) AZ,yAT =rA||A||? andAZ,AT = r||Al|? into the target functior. of Equation (6), and obtain

£~ -pog( M=) ¢ plog(pa- ). 23)

Sincef > 1, this is monotonically increasing kand is minimized by the eigenvector&th;l
with the smallest eigenvalue. Note that this is also the eigenvecmn}‘lzwz;l with the largest
eigenvalue.

Appendix D. Optimal Mixing Matrix

LemmaD.1 The optimum of the cost function is obtained with a diagonal mixing matrix W of the

form
W = diag \/B(l_“)_l,...,w(l_)"‘)_l,o,...,o (24)

A1y Aklk

where{A,...,A¢} are k< ny eigenvalues o}ZX‘yZ;l with critical B valuesp®,,...,BS < B. ri =
vl Zyv; as in Theorem 3.1.

Proof: We writeVth,Z;1 = DV whereD is a diagonal matrix whose elements are the corre-
sponding eigenvalues, and denotefbthe diagonal matrix whosé' element isi. Whenk = ny,
we substituted = WYV into Equation (12), and eliminaké from both sides to obtain
-1 _
«TTKWDMV+WMRW#M)HW:WD
Use the fact thaiV is full rank to multiply byW -1 from the left and by —(WRW 4+ 14)W from
the right
B-1

Tr@mMWH@:mMMW+m
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Rearranging, we have
W'W = [B(I -D) - 1](DR)*, (25)

which is a diagonal matrix.
While this does not uniquely characterl& we note that using properties of the eigenvalues
from lemma B.1, we obtain

IALAT +1g] = [WVZVTWT 4 14| = WRW +1g).

Note thatWW RW' has left eigenvectord/T with corresponding eigenvalues obtained from the di-
agonal matridWTWR Thus if we substituté into the target function in Equation (6), a similar
calculation yields

L=(1-P) _ilog (1w 2ri +1) + B'ilog (1w [[Zrii +1) (26)

where||w] | |2 is theit" element of the diagonal &K/TW. This shows that. depends only on the
norm of the columns o#V, and all matrice®V that satisfy (25) yield the same target function. We
can therefore choose to taléto be the diagonal matrix which is the (matrix) square root of (25)

W = /[B(1 ~ D) ~1(DR) 2 (27)

which completes the proof of the full rank £ ny) case.

In the low rank k < ny) caséWV does not mix all the eigenvectors, but oklgf them. To prove
the lemma for this case, we first show that any such low rank matrix is equiv@eterms of the
target function value) to a low rank matrix that has okilyon zero rows. We then conclude that the
non zero rows should follow the form described in the above lemma.

Consider a, x ny matrix W of rankk < ny, but without any zero rows. L&l be the set of left
eigenvectors ofVW' (that is, WW™ =UAUT). Then, sincWW' is Hermitian, its eigenvectors
are orthonormal, thugJW)(WU)T = A andW’ = UW is a matrix withk non zero rows andy — k
zero lines. Furthermor®y’ obtains the same value of the target function, since

L = log(IW'RWT + 5£|) + Blog(I\W'DRWT + 5Z) (28)

B)log(

B)log(JUWRW UT+UUT5Z|) + Blog([UWDRW U '+ UU T5§))
B)log(|U|IWRW +3Z[|UT|) + Blog(|U [[UWDRW U™+ 22U T|)
B)log(

(
= (
(
(1-B) log(IWRW -+ 5Z) + Blog(\W DRW T + 5¢|),

1—
1—
1—
1—

where we have used the fact thais orthonormal and hend®l| = 1. To complete the proof note
that the non zero rows &Y’ also haven, — k zero columns and thus define a square matrix of kank
for which the proof of the full rank case apply, but this time by projecting dinzensiork instead
of ne. J

This provides a characterization of all local minima. To find which is the globaimum, we
prove the following corollary.

Corollary D.2
The global minimum of is obtained with all\; that satisfyA; < %
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Proof: Substituting the optimalv of Equation (27) into Equation (26) yields
k
L= Z(B—l)log)\i+log(1—)\i)+ f(B). (29)
i=

Since 0<A <1landB > = w L is minimized by taking all the eigenvalues that satify ﬁ
O]

Appendix E. Deriving the Iterative Algorithm

To derive the iterative algorithm in Section 6, we assume that the distribpfigix) corresponds
to the Gaussian variabl& = AX + &. We show below thap(tk;1|x) corresponds tdi;1 =
AkJrlX + Ek+l with EkJrl ~ N(07 zzk+1) and

1
25, = (thk\y (B-1)z, ) (30)
A1 = BZEk+1ztk|y ( — Zyjx ;1)

We first substitute the Gaussigfty|x) ~ N(AkX, ¢, ) into the equations of (17), and treat the
second and third equations. The second equatity) = [, p(x)p(tk|x)dx is a marginal of the
Gaussiarm, = AcX + &, and yields a Gaussign(tx) with zero mean and covariance

T = AAL +Zg, (31)
The third equationp(y|tk) = ﬁ Jx p(X,y) p(t|x)dx defines a Gaussian with mean and covariance
matrix given by:
Wi = By 2 Z (b Hy) = Zy Xy o= Bl (32)
Ty = Ty InZy Thy = Iy — AR, TR
where we have used the fact thgt= , = 0, and define the matriB = =, 5, ' as the regressor

of tx ony. Finally, we return to the first equation of (17), that defipég, 1|x) as

P(te) gD
t _ ke [P(YIX)|[p(yItd)]
( k+l|X) Z(X, B) e (33)
We now show thap(tk1/x) is Gaussian and compute its mean and covariance matrix.

The KL divergence between the two Gaussian distributions, in the expohEguation (33) is
known to be

2y
2D [POMIIPOYI] = log S+ Tr(EZ0 (34)

(M Pyin) "2 (Hyix — By

The only factor which explicitly depends on the value af the above expression|ig, derived in
Equation (32), is linear ib. The KL divergence can thus be rewritten as

Dk [p(YIX)[[p(Y[te)] = c(X) + %(P‘y\x —Bidic) "2, (Hyx — Bi)-
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Adding the fact thap(t) is Gaussian we can write the log of Equation (33) as a quadratic form in
t:

109 P(tics1]X) = Z(X) + (tr1 — B 1) T, o (ke — P, 1)
where

1
ZEk+1 - (BBk Y|tk Bk+ztk> (35)
Moax = AxpaX
At = B Bl 5,0

This shows thap(ty, 1/x) is a Gaussiafik; 1 = Axr1X+ Ekr1, With & ~ N(0,Zg, ).
To simplify the form ofAx, 1, %, ,,, we use the two following matrix inversion lemm&ghich
hold for any matrice&, F, G,H of appropriate sizes whds, H are invertible:

(E-FH'G)™* E'+E'F(H-GE 'F)'GE™ (36)
(E-FH!'G)'FH! = E'FH-GE'F)?

UsingE =%, F =2y, H = 5y, G= 5y, By = 2y, % 1 in the first lemma we obtain

Ztkly %+ B, yite B

Replacing this into the expression &y, ,, in Equation (35) we obtain

Tt = (BL - (B-1%Y) g (37)
Finally using agairE 2y, F = %4y, H =%y, G = %y, in the second matrix lemma, we have
by ‘yztkyZ‘ = Ztk Ztkwat , which turns the expression fé 1 in Equation (35) into
Ag1 = Bzzkﬂz(;ﬁyztkyz—lzyxz—l (38)
Bzzk+1ztk\yAkzxyz Ry
= By I A -y Y

which completes the derivation of the algorithm as described in (17).
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