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Abstract

This paper describes an active learning approach to thdgunofif grammatical inference, specif-
ically the inference of deterministic finite automata (DFA3Ne refer to the algorithm as the
estimation-exploration algorithm (EEA). This approackets from previous passive and active
learning approaches to grammatical inference in thatitrgidata is actively proposed by the al-
gorithm, rather than passively receiving training datarfreome external teacher. Here we show
that this algorithm outperforms one version of the most péulset of algorithms for grammatical
inference, evidence driven state merging (EDSM), on rangi@enerated DFAs. The performance
increase is due to the fact that the EDSM algorithm only wavkd for DFAs with specific bal-
ances (percentage of positive labelings), while the EEAdsentonsistent over a wider range of
balances. Based on this finding we propose a more generabdifethgenerating DFAS to be used
in the development of future grammatical inference algaoni.

Keywords: grammatical inference, evolutionary computation, deteistic finite automata, active
learning, system identification

1. Introduction

Grammatical inference is a popular machine learning domain (refer to Cicetmallgremer, 2003,
for an overview): it has wide applicability in both computational linguistics adted fields, as
well as giving rise to a host of benchmark problems (Tomita, 1982; Laay,et998) and compe-
titions. Grammatical inference is a special case of the larger problem domantuctive learning
(Bergadano and Gunetti, 1995), which aims to construct models of soneglyind system based
on sets of positive and negative classifications. In one class of gramhiafex@nce methods,
the system is considered to be some kind of language or classifier, andsraoeleepresented as
deterministic finite automata (DFA). Both the target system and models take sifisgsbols as
input (sentences), and produce binary classification as output (laj®|limdicating whether that
sentence belongs to the language or not. The problem of grammaticahitderan also be consid-
ered a special instance of the problem of system identification (Ljun®®)1®8which some target
system is inferred based solely on input/output data.

Grammatical inference methods that employ DFAs as models can be divided miordad
classes: passive and active learning methods. In passive methedsfaraining data is supplied
to the algorithm for model construction. In active learning approachesaltporithm has some

(©2005 Josh Bongard and Hod Lipson.



BONGARD AND LIPSON

influence over which training data is labeled by the target DFA for modeltagi®on. Active
learning approaches are typically iterative, in which membership queggs@posed periodically,
often in response to some deficiency in the currently constructed modeiseda iterative active
approaches the amount of training data available for inference groerstiove, unlike passive
approaches, in which a fixed set of training data is used for model catistn.

Passive methods usually make some assumption about the training data:lalssled training
data is either generated by some auxiliary method randomly, or accordingéomedefined distri-
bution. For example Pitt (1989), Porat and Feldman (1991), Dupof6jl#hd Lang et al. (1998)
assume a randomly-selected set of sample data; Luke et al. (1999) assldnat Reynolds (2005)
assume equal amounts of positive and negative training data when igféreémomita languages
(Tomita, 1982) by using the same training sets as previous researcherané Carr (1978) and
Parekh and Honavar (1996) assume a structurally complete set; Ondifi@aach (1992) assume
a characteristic sample; and Angluin (1981) assumes a live complete settt@gample data has
been generated and labeled, inference is then conducted.

With the exception of randomly-generated training data, it is assumed thaathimgrdata is
collected using some knowledge of the target system to be inferred. Borpdx one necessary
criterion for a structurally complete set of training data is that it coversyestate transition of a
DFA! (Pao and Carr, 1978; Parekh and Honavar, 1993; Dupont et &4)19his requires that
the algorithm which generates the training data knows something about theistraf the DFA,
namely its state transitions. This is advantageous as then it is possible to nfakepace guaran-
tees regarding an inference algorithm working on that training data. Yeawfer real-world usage
of grammatical inference algorithms, it is unreasonable to assume that thealrg&ucture of the
DFA is known: indeed, this is exactly what is being inferred. In this workpsesent an active
learning algorithm that makes few assumptions about the structure of tle¢ Bifé\, and in fact
outperforms one of the best heuristic methods for grammatical inferemieh wnplicitly assumes
that the DFAs are balanced (i.e. produce a more or less equal numbesit¥g and negative
labelings).

The current most powerful passive approach to grammatical inferesiog DFAs as models
are the evidence driven state merging (EDSM) methods (see Cicchelloramkek 2003, for an
overview), a heuristic approach that iteratively compresses an initiallg RFg down to a smaller
one, while preserving perfect classification before and after eanpmassion. In this paper we com-
pare our algorithm’s performance against an EDSM variant implementeditgsland Reynolds
(2005). Evolutionary approaches to grammatical inference also existishwa stochastic search
method seeks the most accurate DFA model through mutation and recombirfaifemious mod-
els: in this work we will also compare our own method, which employs evolutjooamputation
for search, against the evolutionary method proposed by Lucas ambls (2005). However,
like the other passive methods, both heuristic and evolutionary appoactar assume that some
external agent generates either a random or balanced trainfrigegete inference begins.

In the active learning approach to regular language inference pishbgrAngluin (1987) (see
also Berg et al., 2003, and Angluin, 2004), the algorithm iteratively retgumembership queries
for training data it has generated on its own. Despite this active appro&eliniog data generation,
these algorithms also require an external agent—an oracle—that carragpuivalence queries:
the oracle indicates whether the current model is equivalent to the tafgeduld, if it is not, returns

1. See the definition of states and state transitions in Section 2.1 below.
2. A training set containing an equal number of positive and negativelsa.
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new training data that belongs to the target language but does not belhiegaoguage encoded by
the candidate model. Once again, this assumes that the oracle knows sorabthitthe structure
of the target DFA. The algorithm presented here assumes that an osacEnswer membership
gueries, but not equivalence queries. In practical application, auoracle is the target system
itself: the target system will return a classification for a proposed item,gvutiat indicate whether
a proposed model is equivalent to itself or not. The target system caraiadlte goodness of a
model if a large amount of sample data is classified by both itself and the g posdel and the
resulting classifications are compared, but for target systems in whidifidasons are costly, slow
or dangerous, this is not feasible.

Other active learning approaches to language inference also exighdyusll assume com-
pletely passive reception of training data: Sempere and Garcia (1983eguire that samples be
presented in lexicographic order, and the RPNI (Oncina and &4dt8P2, and Lang et al., 1992)
and RPNI2 Dupont (1996) algorithms assume random training data is suipglan external agent,
with the stipulation that positive and negative sample data must be made available.

The method presented in this paper does not assume any passive reoétamning data
from an external agent: rather, the algorithm attempts to evolve senteratgsvtien passed to
the target system, should indirectly extract information about previoustiehidomponents of the
target system. For example, sentences should be sent to a target systedutimg labelling,
cause transitions to states that have never or rarely been visited duewiguys labellings. This
is particularly useful in cases when passively-generated training dihtzawse some states of the
target DFA to be visited much more often than others. In system identificatich, s/stems are
said to have low observability; it is more difficult to observe some componéite gystem than
others using input data generated without recourse to a partial moded efyshem. For this and
other reasons, it is not surprising that active learning approachesréorm passive methods: active
methods have more control over the collection of training data. Howeveptheqgd this paper is to
demonstrate one reason why active methods outperform passive mathoddy, that they perform
well on both balanced and imbalanced DFAs. More specifically, it is shoatrotie of the leading
passive methods, the EDSM method, does poorly because it only pesiaiinen balanced DFAs
using balanced training data.

Large and unbalanced DFAs are one kind of automata that have lowabgiy: these DFAs
contain a large number of states, but tend to produce one labelling much freardéhan the other
labelling, for any given sentence. For example one particular languageita language 1, see
Tomita, 1982) only produces a positive classification for a given binairygs2.4% of the time. In
such cases, generating random training data is not recommendedsd&alor no sentences that
elucidate the pathways to accepting states will be collected. Also, generatargbd training data
is also not recommended, for two reasons. First, there will be a surfeaiofng data elucidating
paths to accepting states, and most likely not enough training data to elucidateatty other
paths to non-accepting states, leading to the generation of a model that weahibh training
data accuracy but low test set accuracy. Secondly, generatingbdltmaining data requires many
labellings by the target system until a sufficient number of the minority labelingsollected. For
example in order to obtain training data with 100 positively labelled data and fHafivedy labelled
data for Tomita language 1, at led _8941 = 4167 labellings of randomly generated sentences
would have to be performed. This is not desirable for the real-worldenfsx of languages or
classifiers for which it is costly, dangerous or slow to perform a targelliag: the two performance
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metrics for grammatical inference are model accuracy, and a minimum ofhserédellings by the
target system.

Here we show that our algorithm outperforms competing methods that assndwenly-generated
training data. For the case of imbalanced DFAs, we attribute this perfornrapcevement to the
discovery of sufficient minority class training data to produce accurate Isia@g@domly-generated
training data contains too little minority class training data. We support this clairhdwisg that
the proposed algorithm performs well over a range of DFAs with diffeatances (percentage
of positive labellings), but that the EDSM method implemented here only mesfarell on DFAs
within a narrow range of balances.

The fact that our algorithm also outperforms competing algorithms on balddie&s suggests
that those DFAs contain state transition pathways that are rarely tradgrsaddomly-generated
training data, but are better traversed by our proposed algorithm. Hovasvof yet we have no
supporting evidence for this stronger claim.

In the next section we briefly describe grammatical inference, as welisagiding our method
for the inference of target DFAs using active training data generatiamaMd document an evo-
lutionary and a heuristics-based method for performing grammatical ifenesing pre-selected
training data. In Section 3 we compare results from our algorithm agairss gigorithms for both
randomly-generated DFAs, and randomly-generated DFAs that hdedmtifbalances. In the final
section we provide some discussion and concluding remarks.

2. Methods

In this section we introduce grammatical inference, and outline three mettiodpgroaching the
problem: evidence-driven state merging, evolutionary approachdgharestimation-exploration
algorithm.

2.1 Grammatical Inference

A deterministic finite automata, or DFA, is a type of finite state automata that carpleseated
using the five-tuplén,Z, T,s,F) wheren is the number of stateg, is the alphabet of the encoded
language T is a transition functions is the start state, arfé is a set of final, or accepting states.
Then, given some sentence made up of a string of symbols taken from lizdatp, and beginning
at the start stats, the first symbol is extracted from the sentence, and based on that Isgmabo
sentence transitions to a new state as indicated.by\ deterministic finite automata follows the
transition dictated by the current sentence symbol, the current state agtdtiéransition function
T with a probability of 1; probabilistic finite automata (which have not yet beeastigated using
our method) include probability distributions that denote the probabilities ofitraning to new
states given the current sentence symbol, the current state and theastsiteotr function.

After a state transition the next symbol is then extracted from the sententbaaed o the
sentence transitions to a new state. This process is continued until all syimbwssentence have
been exhausted. If the last state visited is a membé&t, dhen the sentence receives a positive
classification (the sentence belongs to the language); otherwise, avaag@asisification is assigned
(the sentence does not belong to the language).

The quality of a grammatical inference algorithm is viewed as one that calugesomer’
andF’ (together referred to as a candidate DFA) that matches the labels of afpsehtences
that have already been labelled by the target DFA (the training set aggurehe candidate DFA
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should then produce a high classification accuracy when supplied witFegedif set of unlabelled
sentences (test set accuracy). More specifically, quality can be redasdive ways: generation of
an accurate model using a small set of training data; probability of learrgrtgriet language using
little training data; continued performance for target DFAs with increasingherstates; consistent
performance across DFAs with differing balances; and generatiomadeurate DFA in the face of
training set noise.

2.2 Evidence-Driven State Merging Algorithm

A family of algorithms collectively known as evidence-driven state mergingralgns (EDSMs)
(Trakhtenbrot and Barzdin, 1973; Lang et al., 1998; Cicchello areirier, 2003) have been pro-
posed that can infer some target DFA in which the number of states is unkitiSM algorithms
operate by first generating an augmented prefix tree acceptor (APABh Wy definition perfectly
classifies all sentences in the training set. Subsequent steps then invegiagrstates such that
the DFA still maintains perfect training set accuracy. It has been shaatrstiite merging tends to
increase the test set accuracy of the reduced DFA. However in ta@faccomplete training data,
it is possible that an incorrect merge may occur: a merge that does act &ining set accuracy
but does decrease test set accuracy. All of the work on EDSM algwith concerned with how
merges should be performed in order to minimize test set accuracy deégrada

The EDSM method employed in this paper is adopted from (Lucas and Rey26i05), which
in turn modifies the EDSM method proposed by Price (Lang et al., 1998)alfloeithm works as
follows. Each pair of states in the APTA (or partially folded APTA) are ¢deed for merging. The
score of each merge is calculated by overlapping the roots and subtrbesselected state pair,
and summing the number of overlapped states that are either both acceptjecting states. If
an accepting and rejecting state are found to overlap, that merge is disgldlifie state pair with
the highest score is then selected for merging. In the case of a tie sastath pair that appears
firstin the sequence of upper triangular matrix raster scan @f@en), (0,2),...,(1,2),(1,3),...] is
selected. The merge is then performed, and the previous steps aredepat#l no further merges
can be performed.€. all candidate merges are disqualified).

2.3 Evolutionary Approaches to Grammatical Inference

Evolutionary approaches to grammatical inference have also beenspBrave, 1996; Luke
et al., 1999; Lucas and Reynolds, 2005). Generally, an evolutiongoyithm comprises a popu-
lation of candidate models of the target DFA that compete against each aridethe fitness of a
particular model is given by the percentage of training data that it caaattyriclassify. The model
with the highest fitness at the termination of the run is then evaluated againstldixlled test
data. In this paper we compare our own evolutionary algorithm againsivtietienary method
proposed by Lucas and Reynolds (2005). This approach is deddcxébew.

2.3.1 BroLvING DFAs wiTH A FIXED NUMBER OF STATES

Lucas and Reynolds (2005) proposed an evolutionary approachrtmngatical inference in which
the number of states in candidate models is fixedrddpwheren is believed to be the number
of states in the target DFA. On target DFAs withi< 16 and a range of training set densities, this
methodology outperforms the EDSM method outlined above (see Section 3).
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1. Characterization of the target system

e Define a representation, variation operators and similarity metric for the space of systems
e Define a representation and variation operators for the space of inputs (tests)

e Define a representation and similarity metric for the space of outputs
2. Initialization

e Create an initial population of candidate models (random, blank, or seeded with prior information)

e Create an initial population of candidate tests (random, or seeded with prior information)
3. Estimation Phase

e Evolve candidate models; encourage diversity

e Fitness of a model is its ability to explain all input-output data in training set
4. Exploration Phase

e Evolve candidate tests (input sets)
e Fitness of a test is the disagreement it causes among good candidate models
e Carry out best test on target system, add input/output data to training set
5. Termination
e [terate estimation-exploration (steps 3-4) until the population of models converges on a sufficiently accurate solution, or
the target system exhibits some desired behavior.
e |f no model is found, the search space may be inappropriate, or the target system may be inconsistent
e [f no good test is found, then either:

— all good candidate models are perfect;
— the search method for finding good tests is failing; or
— the target system may be partially unobservable

6. Validation

e Validate best model(s) using unseen inputs

e |[f validation fails, add new data to training set and resume estimation phase

Table 1: Estimation-Exploration Algorithm Overview

In this method a transition functioff’ is encoded as & x 574” matrix, and each element i,
ti’j , lies in the rangé0, 574“ —1]. Each column o’ corresponds to a particular state: the first column
is regarded as the start state. During parsing, state transition is compuitdidws. Transition to
the state indicated ht;, wherei is the current state, and the current symbol from the input sentence
corresponds to thgh letter in alphabek.

Lucas and Reynolds (2005) realized that it is not necessary to eFolveaddition toT’, but
rather that it can be constructed indirectly frafh and the training data. For each stateTih
compute the ratio of positive and negative training sentences that termirthia atate: if more
positive sentences terminate there, then consider that state an accepéingtseawise, consider it
a rejecting state.
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Rather than employing a generational genetic algorithm, this method employs a tanltiH
climber. A random instance of’ is selected, and then a mutation is introduced: if the mutation
causes a decrease in training set accuracy, revert to the origin@therwise, keep the mutation,
and perform another mutation. If 10,000 mutations have been attempted with novengent,
store the current’ and create a new randoi. Continue this process until® perfectly labels
the training data, or until a total of 1,000,000 mutations have been attemptedn RetdT’ with
the highest training set accuracy.

2.4 The Estimation-Exploration Algorithm

Both the heuristic and evolutionary method described above assumeepagsience: a set of
labelled data is presented to the algorithm, and the algorithm produces aatendiddel of the
target DFA. We have developed an active learning methodology forrimgeDFAs (as well as
other nonlinear target systems) which we refer to as the estimation-expfogdgjorithm (EEA).
The algorithm is composed of two phases, as are most active learningnsy@tfer to Baram
et al., 2004, for an overview of active learning): the estimation phasiusstances of training
data obtained from the target system to construct a set of candidate fribdedsploration phase
generates a new sentence (an instance of training data) that causes Indésagr@ement among
the candidate models. This new sentence is then supplied to the target sysidime astimation
phase then begins again with- 1 training data points. The estimation phase in our algorithm
corresponds to the learning algorithfhas described by Baram et al. (2004), and the exploration
phase corresponds to the querying functipnThe utility of an active learning system corresponds
to how well 2 and Q, perform together, compared to a control method whem@perates alone on
randomly-generated unlabelled data (refer to Baram et al. (20040 forexview of active learning).

The estimation-exploration algorithm is essentiallyoa- evolutionaryprocess comprising two
populations. One population is of candidate models of the target systene whweodel’s fitness
is determined by its ability to correctly explain observed data from the targééray The other
population is of candidate unlabelled sentences, each of whose fithestgiisithed by its ability
to cause disagreement among model classifications (thereby elucidatingunoelgainties), or by
exploiting agreement among models to achieve some desired output (thapétayizing on model
certainties). The query by committee algorithm (Seung et al., 1992) firgbpeal that a good test
is one that causes maximal agreement among a set of different candigisierée however, the
method by which differing yet accurate learners and disagreementgdests are generated was
not given. In the estimation-exploration algorithm, evolutionary algorithmsiseel both to syn-
thesize accurate yet differing models, as well as useful tests. If ssfotethe two populations
challenge each other and drive an ‘arms-race’ towards inferentieeaodel or towards elicit-
ing some desired output from it. In previous papers (Bongard and hjZi4b,a) we outlined a
methodology for applying the estimation-exploration algorithm to other kindsoofimear target
systems. The general methodology is given in Table 2.3.1, and the spegiiitagion to grammat-
ical inference is given below.

2.4.1 (HARACTERIZATION OF THE TARGET SYSTEM

Like Lucas and Reynolds (2005), we choose to represent the taFfeailbd candidate models as
2 x ninteger matrices. For target DFAs with alphabets containing more than two dkeradarger
matrix or a different encoding would be required. For the case of thett&®BA, nis known. For
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the work presented here, however, we assume that the learning algddagsmot know the number

of states in the target system, but has some idea as to the upper bounck Ffeordbm target DFAs
presented in Section 3.1, we compare our results against those of lnec&egnolds (2005), in
which the number of states in a candidate model was fixed & beve set the maximum number

of states in a candidate model to bei@ order to make less assumptions about the size of the target
DFA. The second difference between our method and that of LucaReynblds (2005) is that we
exert selection pressure favoring smaller DFAs, in the hope of discgverore general models, as
will be explained in the subsection documenting the estimation phase below.

It is always assumed that the first state is the start state. In addition, tie¢ B4f§ contains
an additional binary vector of lengththat indicates whether statds an accepting or rejecting
state F). For each candidate DFA mod&l we computeF’ using the method described in Section
2.3.1, as originally proposed by Lucas and Reynolds (2005). Due toifffraidies of devising a
similarity metric between the target DFA and a given candidate model, we hagercho denote
similarity between a model and target DFA as the test set accuracy of ttielasmodel. If it were
possible to define a similarity metric between the target and a model DFA, it weuytdsible to
quantitatively determine how well an inference algorithm was doing by piesatig measuring the
similarity of candidate models against a target DFA. This would serve as atiatidohase before
using the algorithm in a practical application, where it is assumed there is ngureeaf target-
model similarity, except for a model’s ability to consistently match the classificagicoduced by
the target.

In the exploration phase, for the grammatical inference problem a trainimgsteonsidered to
be an unlabelled binary senterg&eEach sentence is represented as a binary vector of lepgth
wheresmax is the maximum sentence length to be found in the training or test set. An additional
integer variablé is selected fronj0, smax| with a uniform distribution, and indicates how long the
encoded sentence is. Ik smax then the trailing digitsl,| +1,...,smax are ignored during the
labelling of the sentence.

2.4.2 INITIALIZATION

The algorithm begins inference by generating an unlabelled sentenaadtin, which is then
labelled by the target DFA. The training set, consisting of a single labellédrsss is then provided
to the candidate models in the estimation phase.

During the first pass through the estimation phase, a random populatiandiiate models is
generated. In order to generate a pool of competing candidate modgtephiation of models in
the estimation phase is partitioned into two equally-sized, reproductively iddate populations:
no candidate model can place offspring into the other sub-populationn Weesstimation termi-
nates, the two most fit candidate models from each sub-population alegumtde the exploration
phase. This partition has no additional computational costs, as the two popsilaf models take
the same time to evaluate as a single population with twice as many models.

During subsequent passes through the estimation phase, the two be#d frmethe previ-
ous pass are introduced into their respective sub-populations. Thémegnslots are filled with
randomly-generated candidate models.

At the beginning of each pass through the exploration phase, the popuistieeded with
random binary sentences.
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2.4.3 ESTIMATION PHASE

It is important to maintain a diverse set of candidate models in the estimation, guag®t dis-
agreement among models can be measured effectively at the exploratems pdany diversity
maintenance techniques exist, but here we take the simplest approadhobaseolving in two,
separate niches. Starting with an initial populationpoandidate models (witlp/2 models in
each of the two sub-populations), the population is evaluated, fit modeteleted, copied and
mutated, and less fit models are deleted. No recombination operators arg/etnipléhe current
implementation. The pass continues for a fixed number of generatihns (
The fitness of a candidate model is given by
T lti —myl
[

fT’ =1 ) (1)

wheret; is the labelling provided for th¢th sentence by the target DFA, ang is the labelling
provided for the same sentence by the model DFA. Then a candidate matebthinsft = 1
perfectly labels all of the training sentences seen so far, and models with lower valuds: of
have lower accuracies. Within each sub-population, genomes are tted isoorder of decreasing
fithess, such that the model with the highest fitness is at the top of the list @isneithin the sub-
population, and the least fit model is at the bottom of the list. If two or more modegksthe same
fithess, then those models are sorted among themselves based on the ruiniberal states that
were visited during processing of alraining sentences seen so far, such that the topmost model in
the subset used the least number of states, and the bottommost model usedithe

Once all of the models in both sub-populations have been evaluated, d pairdidate models
from within the same sub-population are selected. Each genome has &predpadility of being
selected. The lower model in the sorted list is overwritten by a copy of the Irhagteer up in the
list. This ensures that models with higher fithess produce more offspringntioaels with lower
fithess, and smaller models produce more offspring that models of largeasi equal fitness:
selection pressure favors more accurate and more compact modelsh thbdels have the same
fithess and the same size, then each model in the pair has an equal probaislithacing, or being
replaced by the other model. Also, this selection method ensures that thewithdble best fithess
and least size in each sub-population is never overwritten.

When a model is copied, it undergoes mutation. Mutation involves the seledtamnamdom
valuet(;, and the replacement of the value found there by a new integer chase{0fi2n — 1] with
a uniform distribution.

A total of %p pairs are selected for replacement and mutation in each sub-populatiereattbf
each generation. Note that a genome may be selected more than once desagthgeneration,
and that it may produce more offspring, or be overwritten by a more fib@ller model. Also
note that a mutated offspring may be selected for copying and further muthtiomg the same
generation.

2.4.4 EXPLORATION PHASE

The exploration phase maintains a population of the same size as that of thdieatphase ),
and evolves candidate sentences for the same number of genergliohstie end of each genera-
tion, 37'0 pairs of sentences are selected, copied and mutated as described avibegsection: the
sentence with higher fitness is copied over the sentence with lower fitmestheacopied sentence
is then mutated.
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The fitness for a given sentence is set to the amount of disagreemetitahs¢éntence causes

when labelled by a pool df candidate models:
le(:l Cj
Sl )
wherec;j is the classification of the candidate sentence by mgd@&entences that do not differ-
entiate between the candidate models—all models produce the same classificdtiaim fy = 0
(poorest quality); sentences that produce the maximum classificatiomemridtainfy = 1 (best
quality). This fitness function relies on the fact that the most agreementiigadent to half of the
models returning a negative classification, and the other half returningitivpalassification. For
target DFAs that do not produce binary classifications, this functioriditmave to be generalized.

When a sentence is evolved that induces high classification varianctharggntence is clas-
sified by the target DFA, then the resulting classification will usually lend suppk/2 candidate
models during the next pass through the estimation phase, and providecviggainst the re-
maining half. It is important to note that for the experiments reported Hgrean only assume
two values: 0 or 1, hence there is no gradient within the search spade.isTthe simplest im-
plementation of the algorithm. We expect that increasing the number of subgbions or using
other diversity maintenance techniques such as deterministic crowdindqiwtaii995) would im-
prove these results by inducing a gradient in the search space. Futtkéswplanned to assess the
performance benefit of population diversity.

Mutation is executed slightly differently from the estimation phase: with an quyodlability,
either the sentence or the length parametee selected for mutation. If the sentence is selected, a
random bit is chosen and flipped] ifs chosenl| is reset to a random value j@, smax. In this way
the algorithm can modify both the content and length of a candidate string.

fg = 1-2/0.5-

2.4.5 TERMINATION

A typical run would terminate when the population of models converges. lexperiments re-
ported here, however, the number of iterations was set to use exactignteeraimber of sentence
labellings as the benchmark algorithms we compare it to require. The algorittategietimes,
wheret is the number of sentences in the training set used by the competing algorithmeduits
in the labelling oft sentences by the target DFApasses through the estimation phase, tand
passes through the exploration phase (the first sentence propokdibfting is a random sentence).
After thetth pass through the estimation phase, the most fit model from the first gutbagion is
output for validation purposes.

2.4.6 \ALIDATION

Validation involves computing the accuracy of the best candidate model mviapsly unseen set
of test sentences.

3. Results

The estimation-exploration algorithm was compared against two sets of Bfést DFAS gener-
ated randomly in accordance with the method described in (Lang et al., i@3®nerating DFAs
with differing sizes; and DFAs generated using a more generalized methbdréates DFAs of
differing sizes and balances.
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3.1 Random DFAs

Sets of target DFAs of increasing size were generated for comparetoedén the EDSM method
described in Section 2.2 (indicated as ‘EDSM’ in Figure 2), the evolutionsthod proposed by
Lucas and Reynolds (2005) (indicated as ‘Lucas’ in Figure 2), the e#bimeaxploration algorithm
with the exploration phase disabled (random sentences are proposedéam#t DFA and indicated
as ‘Passive EEA in ensuing figures), and the estimation-exploratiomi#igo(indicated as ‘Active
EEA in ensuing figures). Although the passive variant of the EEA psegs sentences to the tar-
get DFA for labeling, it is considered passive because it does nekebctionstruct training data;
rather, it outputs random training data. This stresses the importancevaiasteking informative
sentences for target labeling.

As prescribed by the generative method introduced by Lang et al. \li®9@8&arget DFAs were
generated by creating random digraphs witti4g wheren is the desired number of active states:
an active state is one that is visited by at least one test or training sentemug ldbelling. Graphs
are continually generated until one is produced which has a depth dafeRbg,n— 2, where the
depth of a DFA is determined to be the maximum over all states of the length ofdheststring
which leads to that state:

d = max, s, Minystrings leading to stase!€NIthy)- 3)
Once a target DFA is generated, each state is labelled as either acceptajpgctng with equal
probability.
The total number of binary strings available for labelling is given as
L(2log,m)+3]
Stotal = 2, (4)
ota iZO

in accordance with the Abbadingo method (Lang et al., 1998) for gengnatimdom DFAs, where
| (2log,n) + 3] is the maximum possible string length. This approach ensures that all biriagsstr
from the null string to length(2log,n) + 3| can be found in either the training or test set.

Strings selected for membership in the training set for the passive methitidedin Sections
2.2 and 2.3.1 were selected at random (with a uniform distribution) from grniis set of possible
strings. Given a desired training set densifyhe number of strings chosen for the training set can
then be computed ds= |dSpig)-

In order to fairly compare our active learning method against passiveoaigtive have elected
to equalize the number of labellings performed by the target DA the number of training
sentences that are labelled), and the number of labellings performedbtigdate models during
inference. Because EDSM methods do not maintain a population of candiddtds but rather it-
eratively compress a single one, in order to compare our method agaiEf 8 method outlined
here we equalize the amount of labelled data that both algorithms have txcess

In Lucas and Reynolds (2005), the total number of candidate model lajsetfins equal to
the number of training sentences times the number of mutations considereg killrclimbing:
m= |dSptq X 10° =t x 10°, whered is training set density antlis the number of training
sentences. In the estimation-exploration algorithm a total of

t
pgkt—1) + pg_zli
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labellings are performed, whemeis the population size ang is the number of generations for
both phases, and thyxg indicates the total number of either sentences or models that are evaluated
during a single pass through either phakendicates the number of candidate models output by
the estimation phaseso pgk(t — 1) indicates how many labellings are performed duringtthel
passes through the exploration phase. The second term indicates hgwabelings are performed
during thet passes through the estimation phase: during the first pass there is otdypeltiag per
candidate model; during the second pass there are two labellings per matst; an.

We can ensure that our method performs the same or fewer model labe#lihgsas’ method
by arbitrarily settingp = g, and solving forp as follows:

pgk(t—1)+pgz\i = m (5)
p2(2(t—1)+ili) = tx10® (6)
t x 100

P9 = L\/ -1 +30 1) ")

Note thatk = 2 here because we patrtition the estimation phase populations into two sulbtjm s

3.1.1 THE EFFECT OFCOMPRESSIONPRESSURE ONINFERENCE

One advantage of the EEA over the EDSM methods is that it allows for both ressipn and
expansion of models: EDSM methods only allow for compression at eachastdmlo not allow
re-expansion. The advantage of this is illustrated in Figure 1, which tefiar application of the
EEA to a randomly-generated DFA witih= 8 states. Two other variants were also applied to
the same DFA. The passive variant disables the exploration phase dftnithen, so that at each
cycle through the algorithm, a random sentence is output to the target DF&b&ling. The third
variant is identical to the active variant, except for two modifications. Ringt fithess function
that favors smaller DFAs is disabled: when two candidate models are sedextdmbth achieve the
same training set accuracy, the first model is copied over the second mitldel probability of
0.5, regardless of whether the second model is smaller than the first.dS#m®maximum number
of states that any candidate model can encode in this variant was irtifeaise2n = 16 to 80.
At the end of each pass through the estimation phase for each variantsttisettaccuracy of the
best candidate model output by the first sub-population is computed. Gnfiréh100 iterations
through each variant are shown.

As can be seen in Figure 1a, the active variant outputs a model consi#tiead! training and
test data after the 93rd pass through the estimation phase. The other tms/aever produce
a perfectly consistent model. Figure 1b indicates that the size-insensatiiant/tends to output
increasingly large DFAs that obtain better training set accuracy (datahowin), but there is no
marked improvement in test set accuracy. Thus the added fithess camhplosiefavors smaller
DFAs does confer some performance benefit by indirectly selecting FéisDhat can generalize
beyond the training set better. Second, it is noted that the size of thedmekitlate model increases
and decreases over the inference process in the active variant BEthelt has been found that
models that solve all training data so far are gradually replaced by ediiddiyt smaller models,

3. In the work reported here two models are output: the best modeldemm of the two sub-populations.
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Figure 1: Performance and Size of Candidate Models. aThe test set accuracies of the best
models output by each pass through the estimation plasehe total number of states
used by each model when labelling the test sentences.

and new training data injected during the inference process causessoiddier models to fail, only

to be replaced with more accurate, larger models. This compression aadséxpis a dynamic
process that occurs as new training data is collected. Once a modelenngigh all training data

is obtained by the active EEA, subsequent passes through the estimatfngaluse a compression
of the candidate model (as long as the model is also consistent with the neingrdaia): the
model withn = 10 is reduced to = 9 during the 99th pass through the estimation phase for the
active EEA variant.

This example illustrates that evolutionary techniques are conducive tonilymaodelling in
machine learning, at least in the specific case of grammatical inferenttegyasllow for dynamic
restructuring of both the size of the model (the number of states) and itsusrfthe connections
between states and whether a state is accepting or rejecting) as new traitairig cbllected using
active learning.

3.1.2 GOMPARATIVE PERFORMANCEAMONG INFERENCEALGORITHMS

Each of four algorithms—EDSM, Lucas’ method, and the active andy®sariants of the EEA—
were run against 3720 target DFAs: 1200 with= 4, 1200 withn = 8, 1200 withn = 16, and
120 withn = 32 states. For the three smaller DFA classes, each algorithm was appli¢ich&80
for each of 12 training set densities against a different DFA. For tlye lae= 32 DFA class, each
algorithm was applied 10 times for each of 12 training set densities to a diffeféA due to slower
run times on these large DFAs.

The total number of training sentences available for inference for e&éhdixe and training
set density is shown in Table 3.1.2. Table 3.1.2 reports the number of modéhigdbeerformed
for each run of Lucas’ algorithm (left-hand figures) and the EEAdptresized figures).

Figure 2 reports the average performance of all four algorithms aghmd$our DFAs and 12
training set densities. Performance is considered to be the test sea@colithe best DFA output
by each algorithm. The test set is comprised of all of the binary senteraewédhe not selected
as training data. In the case of the estimation-exploration algorithm, whichtsutpo candidate
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d\n| 4] 8] 16] 32
001| 2| 10| 40| 163
002| 5| 20| 81| 327
003| 7| 30|122| 491
0.04| 10| 40| 163| 655
0.05| 12| 51|204| 819
0.06 | 15| 61| 245| 982
0.07 | 17| 71| 286 1146
0.08| 20| 813271310
0.09| 22| 91| 368| 1474
0.10 | 25| 102 | 409 | 1638
0.15 | 38 | 153 | 614 | 2457
0.2 | 50 | 204 | 818 | 3276

Table 2: Total Numbers of Target Labellings

d\n

16

32

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.15

0.2

0.002
0.005
0.007
0.010
0.012
0.015
0.017
0.020
0.022
0.025
0.038
0.050

(0.002) 0.010
(0.005)| 0.020
(0.007)| 0.030
(0.010)| 0.040
(0.012)| 0.051
(0.015)| 0.061
(0.017)| 0.071
(0.019)| 0.081
(0.022)| 0.091
(0.024) 0.102
(0.037)| 0.153
(0.049)| 0.204

(0.010)
(0.019)
(0.029)
(0.040)
(0.050)
(0.060)
(0.070)
(0.080)
(0.090)
(0.100)
(0.151)
(0.200)

0.040
0.081
0.122
0.163
0.204
0.245
0.286
0.327
0.368
0.409
0.614
0.818

(0.040)
(0.080)
(0.121)
(0.162)
(0.200)
(0.242)
(0.279)
(0.321)
(0.365)
(0.403)
(0.595)
(0.808)

0.163
0.327
0.491
0.655
0.819
0.982
1.146
1.310
1.474
1.638
2.457
3.276

(0.162)
(0.321)
(0.483)
(0.653)
(0.810)
(0.981)
(1.108)
(1.243)
(1.412)
(1.555)
(2.371)
(3.095)

models after the last pass through the estimation phase and then terminatest thedel is taken
to be the model from the first sub-population. Figure 3 reports the pagenf runs of both the
passive and active EEA variants that produced a model that corréaslsifies all training and test
data. The percentage of runs that produced such models for thesvar&thods described in Lucas

Table 3: Total Numbers of Model Labellings:10°)

and Reynolds (2005) was not reported.

3.2 Unbalanced DFAs

As can be seen in Figure 2, the EDSM method only begins to compete with the BEt#v/for DFAs
with n = 32 states. This seems to suggest that the EDSM methods scale better thauitienary
method proposed here. However an alternate explanation of this otigerigathat the EDSM
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Figure 2: Comparative Performance against Random DFAs.The target DFAs are grouped ac-
cording to sized: n=4,b: n=8,c: n= 16, andd: n= 32) and training set density.
Error bars indicate standard error computed over 100 runs for égatitbm for the first
three DFA sizesd-c), and over 10 runs for target DFAs with= 32 (d).
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Figure 4: a: Balance Distribution for the Random DFAs. The 4 sets of 1200 random DFAs re-
ported in Section 3.1 were grouped according to their size and balantancBa were
calculated using all random strings of length Q {8log,n) + 3|. Each bar indicates the
fraction of DFAs that fall within that particular range of balances. Thaaupow of panel
b shows the distribution of balances for the same set of DFAs. Balancescateulated
only using the strings output by the passive variant of the estimation-etigioralgo-
rithm applied to that DFA. The bottom row reports the balance distributionseo$dime
DFAs using the active variant of the algorithm.

method works increasingly well on the large instances of the class of maldeAs produced by
the generative method proposed by (Lang et al., 1998) and descriBedtion 3.1.

Figure 4a reports the balance distributions of the four DFA sizes produgcditis generative
method. As the figure indicates, DFAs with= 4 states tend to exhibit a uniform distribution of
balances, but as the DFAs increase in size the distribution clusters moe¢ycosund balanced
DFAs that produce a more or less equal distribution of positive and medatiellings. For the
largest class of DFA(= 32), the majority of DFAs have a balance withid@nd 06; the minority
of DFAs produce less than 40% labellings of their minority classification.

This agrees with the original stated purpose of this generative appnehath was to produce
random, balanced DFAs. However, this raises the possibility that methodbded to infer the
DFAs produced by this method may not perform well on other kinds of DEAsh as unbalanced
DFAs. In order to test this, we generalized the generative method toqgedleAs of a desired size
and balance. We then generated a number of DFAs of differing sizelsaadces, and compared
our algorithm against the EDSM algorithm described in Section 2.2. The eeerglized method
is as follows:
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1. Select the desired number of statesand the desired balante The balance must be a real
number in[0, 1].

. Create all random binary strings from length Q t@log,n) + 3.

. Create a random digraph witm® nodes.

A WD

. While the depth of the graph is not 2lpg— 2, go to step 3.

ol

. For each state, label it as accepting with probabllitgtherwise, label it rejecting.

6. Pass each random string through the DFA, and compute the fractionit¥@tabellings. If the
fraction of positive labellings is not ifb— €,b+ €], go to step 5¢ is taken to be some small
tolerance; in the results reported belavis set to 001.

This method will produce DFAs with size centered aroarstates, and with a balance [in—
g,b+gl.

Using this method, a total of 15 DFAs were created: 5 with 8 states, 5 withh = 16 states,
and 5 withn = 32 states. Within each size class, five DFAs were created with balancel 6f2)
0.3, 0.4 and 05. For each DFA, the EDSM and the active variant of the EEA were appldines
using 12 different training set densities. The EDSM and EEA were instadtizsing the same
parameters described in the previous section.

Due to speed limitations, the EEA was not applied tortke32 DFAs using training set densi-
ties above M6. The mean test set accuracies of the EDSM and EEA methods artetefuorthe
n = 8 DFAs in Figure 5, for then = 16 DFAs in Figure 6, and for the = 32 DFAs in Figure 7.
The improvement factor for each DFA and corresponding training setityewvas calculated using
Meea/ Mensw, Wheremeg, is the mean test set accuracy of the EEA for that DFA and that training set
density, andnesy is the mean accuracy for the same DFA and same training set density.

4. Discussion

Several trends can be noted in the mean performances of the algorittonedep Figure 2. First,
the evolutionary approach of Lucas and Reynolds (2005) tends tortaripethe EDSM variant
for smaller target DFAS(< 32), but the EDSM far outperforms Lucas’ algorithm for larger target
DFAs (h = 32). Second, the active EEA variant outperforms all three other algwsittor the
smallest size of target DFA(= 4); is competitive with Lucas’ algorithm for DFAs with= 8 and
n= 16; and is competitive with EDSM on the largest target DFAs-(32).

Third, the passive EEA variant performs poorly against the other tidgeeithms on all larger
DFAS (n > 4). Because the passive variant performs the same or less modeltievedtlaan Lucas’
algorithm, and it randomly selects the same number of training sentencesnweemaude that
our particular method of evolutionary search is inferior to that propogeduisas and Reynolds
(2005). It seems plausible that replacing the evolutionary search tbatsowithin the EEA with
a more powerful search technigue—whether another evolutionary mebhad heuristic variant
such as EDSM—may allow the proposed algorithm to outperform the pdesis of grammatical
inference reviewed here.

The reason that the EDSM begins to compete with the EEA on the fexg82 DFAs is made
clear in Figure 7. The EDSM only performs well on DFAs centerel at0.4 (indicated by the
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Figure 5: Performance of the EEA against EDSM on DFAs withn = 8 states and differing
balances. a:Mean accuracies of the EDSM for differing balances and training seti-de
ties. b: Mean accuracies of the EEA for differing balances and training seditikes c:
Improvement factors of the EEA over the EDSM for differing balanceastaaining set
densities.
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Figure 6: Performance of the EEA against EDSM on DFAs withn = 16 states and differing
balances. a:Mean accuracies of the EDSM for differing balances and training seti-de
ties. b: Mean accuracies of the EEA for differing balances and training seditikes c:
Improvement factors of the EEA over the EDSM for differing balancestaaining set
densities.
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Figure 7: Performance of the EEA against EDSM on DFAs withn = 32 states and differing
balances. a:Mean accuracies of the EDSM for differing balances and training seti-de
ties. b: Mean accuracies of the EEA for differing balances and training seditikes c:
Improvement factors of the EEA over the EDSM for differing balancestaaining set
densities.
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balance- 0.4 bins in Figure 7a), and only slightly worse on DFAs with balances cenggied 0.5
(indicated by the balanee0.5 bins) for the intermediate training set densities. For low training
set densities it does poorly on the DFAs of all balances, and the high&shiy set density it does
well on DFAs of all balances. Finally, on the unbalanced DFAs centamahd Q1 and 02, it only
begins to infer accurate models when supplied with training set densities®&a0d 02.

As Figure 4a illustrates, the generative method proposed by Lang e®988)(nostly produces
random DFAs with balances [0.4,0.6], which corresponds to the range of DFA balances for which
the EDSM is well-suited. In contrast, as the EEA begins to perform suttlgssn the DFAs when
allowed to generate sufficient training data, it begins to perform suitdigssn all of the DFAS,
regardless of balance. As can be seen in Figure 7b, the standartiaes/@ the test set accuracies
mostly overlap within each training set density class for the EEA, while the tilev$aof accuracies
for the EDSM in Figure 7b do not overlap in many cases. This differenb@gidighted by Figure
7c, which shows that for training set densities aba@d the EEA performs significantly better than
the EDSM for all DFA balances excep#0 From this it can be concluded that at least this EDSM
variant performs well on just those DFAs with balances equal to thoshupeal by the generative
method proposed by Lang et al. (1998).

The balance specificity of the EDSM method is also clear in Figure 6a: EDSI well for
DFAs with balances of @ and higher, but requires high training set densities to perform well on
the DFAs with balances below® Alternatively, the EEA begins to perform better on all DFA
balances as training set density increases (Figure 6b). Again thisdiffers highlighted by Figure
6¢, which shows that for training set densities aba@80there is a significant performance increase
of the EEA over the EDSM for the two imbalanced DFAs witk- 0.1 andb = 0.2.

In Figure 5, the balance specificity of the EDSM is less apparent. Howegerre 5¢ indicates
that for DFAs withb = 0.1, the EEA achieves an increasing performance benefit over the EDISM f
increasing training set densities (indicated by the increasing slope of theitimelarkened circle
markers). For instance, the EDSM only achieves a mean test set acoti% for the DFA with
n= 8 andb = 0.1 using 0.2 training set density, while the EEA achieves a mean accura8yof 9
for the same DFA and the same amount of training data.

The reason why the active EEA infers imbalanced DFAs better than the EB&Mde clear
by Figure 4b. For DFAs withn = 32 states, it can be seen that the active EEA generates training
strings that achieve a more balanced labelling (lower righthand panel) tagasisive EEA variant
which outputs random strings for labelling (middle righthand panel). Thispta@ed as follows.
At the outset of inference using the active EEA, training strings arerg&@teat random, because
sufficiently accurate models do not yet exist. As inference procedels,taaining strings are output
to the target system that obtain a minority labelling. This allows for an increabe iaccuracy of
the set of candidate models in the estimation phase. Henceforth, trainingeset®ked that cause
disagreement among the models. This indicates that training strings with higdsfahkeast elicit
a minority labelling from some of the candidate models, and since the modelsvarsontewhat
accurate, this increases the probability of obtaining a new minority labellimg the target system.
As inference proceeds, minority labellings are extracted with increasotgapility, allowing for
the better inference of imbalanced DFAs.

This advantage of active training data generation, compared to passiviedrdata collection,
is also supported by the results reported in Figure 3. Clearly, the activedid€overs models
consistent with all training and test data more often than the passive EEA.
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These results highlight the need to broaden the class of DFAs that avidesd in grammatical
inference. Furthermore, an inference algorithm should be judged stobjuhow well it infers a
DFA of a given size and given training data, but how well an algorithnmsaweDFAs of differing
sizes and balances. This requires rethinking how grammatical inferégatams are compared:
rather than simply providing them with training data already collected from a, B#€Aalgorithms
should be free to request training data labelling, as is done in the actiménigaommunity (Baram
et al., 2004).

4.1 Intelligent Testing

The results reported here support the claim that useful experiments(dothain of grammatical
inference, binary sentences) are those that elicit informative respmsn the target system. What
gualifies as ‘informative’, however, will vary across problem domalisre we have stressed that
one informative type of test are training data belonging to the minority classiailaalanced DFA:
automatically and actively generating such informative tests helps the algadoithutperform other
methods that rely on passively generated random training data.

Itis important to note that there is no explicit reward in the exploration plasaith sentences.
Rather, the ability to cause disagreement between alternative, approxinaetsmeans thét/ 2 of
the models will yield the minority label for such a sample, and because thesdsmoelsomewhat
accurate (but not yet perfect), there is an increased probability thiaseintence will actually elicit
the minority label from the target DFA. This is a useful trait to have in an @rfee method, because
what qualifies as an informative is domain dependent. For example in the dohw@ssification,
training data that lie near the intersection of the decision boundaries atieémdlassifiers would
be more informative than data that lies on the same side of the decision bi@sndar

There may be other kinds of informative sentences in grammatical infeteatare unknow-
ingly being favored by the active EEA variant. For example it seems plaubididor many DFAS,
longer sentences are more informative than shorter sentences. lItrisheleatates closétto the
start state in the transition functidnwill be visited more often than distant states, and longer sen-
tences have a higher probability of reaching these distant states thaer gemtences do. Also,
because longer sentences traverse more state transitions than shetecese and therefore have
a better chance of uncovering differing transitions among candidate magefgedict that longer
strings would tend to produce more disagreement among candidate modedhdintem sentences
can. So, we predict that the active EEA variant will propose, on geglanger training sentences
than a passive algorithm will. Whether longer sentences truly are moremafive than shorter
ones, and whether longer sentences are actually favored by theBE#veariant has not yet been
verified.

Cast in another light, informative tests tend to expose the unobservaldeopéne target sys-
tem, thus accelerating the inference process. In grammatical inferaenttaanced DFAs are less
observable than balanced DFAs: there are either less states thatgtbduwinority labelling than
states that produce the majority labelling, or minority labelling states are moretdistawthe start
state than majority labelling states. It follows then that passive grammaticatmtermpproaches
are inappropriate in these cases, for one of two reasons: either addlgaining set is assumed,
in which case the minority class is grossly over-represented in the trainiagataandom training

4. Here, we assume that distance between states—more specificalljstdred between the start state and a given
state—is viewed as the number of paths that exist between those statése amehn length of those paths.
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data is assumed, in which case the minority class is grossly under-rejgesa&n active approach
to grammatical inference, like the estimation-exploration algorithm, activelyrgtsea training set
that falls between these two extremes, and accelerates inference.

It also seems clear that most real-world systems will be unbalanced: thepatiffroduce
equal numbers of all label types for a randomly generated set of samfae Also, acquiring a
balanced training set will require a large number of target labellings irr dodebtain enough of
the minority labellings. As stated previously, the estimation-exploration algorititasigned for
inference using as few target trials as possible, because real wetidsymay be costly, dangerous
or slow to query.

Furthermore, our method may be useful for indicating what kinds of traishétig is most useful
for the inference of particular kinds of languages, by simply observimgt\winds of sentences are
generated by our method. However, this line of investigation has not getfesued.

4.2 Time Complexity

The running time of the estimation-exploration algorithm is proportional to the tatalber of
labellings (trials) performed by the target DRA.:(

t
T(t) = <.11|CJZli+<91t|tJ2 8)
= O(t?), (9)

where p andg are the population size and number of generations used by the genetithaigor
during each pass through either phases, respectively. The firsatEmonts for the running time
of the estimation phase, which evolves models against all labellings seen Jtnéasecond term
accounts for the running time of the exploration phase, which evolvesdzaadrials and evaluates
each one against each individual in the population of models, to estimatdlaisagreement.

However, in the implementation of the EEA described here, a trial is not ¢edla@gainst all
of the candidate models; a trial is only evaluated against the two best modualg#éah of the two
model sub-populations. This reduces overall running time but doedfeot the time complexity
of the algorithm:

t
Tt) = gp_Zi+thp (10)
= O(t?). (11)

Therefore, the algorithm running time increases polynomially with the total nuwbiaining
strings presented to the target DFA.

However, the completion of the algorithm does not guarantee the outputnoidel that can
correctly classify all training and test strings. Due to the complexity of theniegralgorithm
and its stochastic nature, we have not yet characterized the time compleyitseckto guarantee
the output of such a consistent model. However, Figure 3 provides eaipiaence that for
the random DFAs generated using the method proposed by Lang et @8)(¥model DFA that
correctly classifies all binary strings with lengths of 0|{@log,n) + 3| can be found using the
proposed algorithm. More specifically, for the active EEA, a model cterdisvith all training and
test strings was found in at least 1 of the 100 runs for all training sedititefor then = 4 target
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DFAs (Figure 3a); for all training set densities 008 or higher for then = 8 target DFAs (Figure
3b); for all training set densities of @6 or higher for then = 16 target DFAs (Figure 3c); and for
all training set densities of.07 or higher for then = 32 target DFAs (Figure 3d). This translates
to the ability of the algorithm to find perfectly consistent models when it is allowgatdpose at
least 2 binary strings for labelling byre= 4 target DFA,; at least 40 binary strings for labelling by a
n = 8 target DFA; at least 204 binary strings for labelling by-a 16 target DFA; and at least 1146
binary strings for labelling by a = 32 target DFA (data taken from Table 3.1.2). This indicates
that the ability of the active EEA to produce a model consistent with all traimgest data scales
polynomially with the amount of training data. However, as reported in Sect@®ntl3e balance
of a DFA also has an effect on inference ability for both EDSM and EEA au=th Formulating
time complexities for both methods as a function of both DFA size and balancelkasmallowed
number of target labellings requires further investigation.

5. Summary and Conclusions

Here we have introduced a co-evolutionary approach to grammaticaémerthat differs from
both passive and active learning methods in that training data is not assoimegrovided by an
external agent (either all at once or iteratively), but is generatedchaitgrby the algorithm itself:
one component of the algorithm evolves a pool of candidate models, anédbrdscomponent
evolves a new training sentence that causes maximal disagreement amongrtiesample that
causes the most disagreement is then sent to the target language fordabélnrefer to this
method as the estimation-exploration algorithm, or EEA. We have previousiythisemethod to
infer other kinds of tightly coupled, nonlinear target systems (see Bdragat Lipson, 2005, for an
overview).

It has been shown here that the EEA outperforms another evolutioparpach to random
DFA inference. Furthermore, the EEA outperforms the more powerftieheuristic approaches
(EDSM) on small random DFAs, and is competitive with EDSM on larger renBé&As.

The reason why the EDSM methods seem to perform better as the targstiifféase in size
was investigated. It was found that the EDSM method investigated herendbisprove in ability
as DFAs increase in size, but rather performs well on DFAs with spedfanbes (percentages of
positive labellings), and that the generative method introduced by Laalg(@098) produces large
DFAs with just these balances. It was shown that the EEA performs betieFAs with differing
balances by actively extracting minority labellings from the target DFA.

In order to better gauge the inference ability of grammatical inference nmgthaintroduce
a more general method for generating DFAs with specific sizes and balalc@iture, methods
should be shown to work well not only on large DFAs with limited training daté,afgo consis-
tently on DFAs of the same size but differing balances.

Our algorithm also allows for continual expansion and compression afid¢aie models over
time, in response to new training data: expansion allows for the accommodéat@wdraining
data, and compression usually leads to greater test set accuracyurféret EDSM methods only
allow for state compression, raising the possibility of inaccurate generatizafioother benefit
of the EEA is that the internal search mechanism could be replaced with apoweful search
method: our algorithm functions independently of the search method usideiring models and
generating informative tests. It may be that replacing the current, basligtienary method with a
more powerful stochastic search method (or even a deterministic onesanlE®SM variant) may
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improve our method further. At the moment an upper bound is currentlyregbon the number
of states in a candidate model, but again, the current model search nsacharEEA could be
replaced by one that does not assume an upper bound, as was dake igtlal. (1999).

In many approaches to grammatical inference, either a balanced training assumed, or
random training data is generated. This can be wasteful when infeshoatd be performed with as
few labellings by the target language as possible, because either too littteroutd of the minority
training class is passively collected, or many labellings have to be perfarmedier to collect
enough of the minority class training data for a balanced set. This is of @kiatigortance because
for many real-world languages or classifiers, collection of training datdeacostly, dangerous or
slow. In the EEA, only training sentences that cause maximal disagreemengahe current set of
candidate models are sent to the target DFA for labelling, and here weshawm that this process
builds an informative training set: the set contains sufficient minority classrigadata to produce
accurate models.

In future work we intend to apply our algorithm to probabilistic finite automatateraata
that output probabilities as to which class(es) a sequence may belongy, ttadh absolute class
assignments—as well as noisy sample data: evolutionary methods haveuphgyooven to be
well suited to dealing with probabilistic and noisy systems. One possible agpreauld be to
evolve test sequences that cause the candidate models to disagree mestlasshprobabilities
they predict the target system will output for that sequence. We alsadinteapply our method
to larger languagesn(>> 32) in order to provide evidence that our approach could be useful in
real-world situations.

In closing we suggest that the grammatical inference community consideadning the suite
of target systems and target system generation methods in order to awiiytitee development
of new inference methods that only perform well on the target systenthiped by a particular
generative method.
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