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Abstract

Several large scale data mining applications, such as text categorization and gene expression anal-
ysis, involve high-dimensional data that is also inherently directional in nature. Often such data is
L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures
of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a gen-
erative mixture-model approach to clustering directionaldata based on the von Mises-Fisher (vMF)
distribution, which arises naturally for data distributedon the unit hypersphere. In particular, we
derive and analyze two variants of the Expectation Maximization (EM) framework for estimating
the mean and concentration parameters of this mixture. Numerical estimation of the concentra-
tion parameters is non-trivial in high dimensions since it involves functional inversion of ratios of
Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM
that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has
been widely employed by the information retrieval community, and obtains the spherical kmeans
algorithm (kmeans with cosine similarity) as a special caseof both variants. Empirical results on
clustering of high-dimensional text and gene-expression data based on a mixture of vMF distribu-
tions show that the ability to estimate the concentration parameter for each vMF component, which
is not present in existing approaches, yields superior results, especially for difficult clustering tasks
in high-dimensional spaces.

Keywords: clustering, directional distributions, mixtures, von Mises-Fisher, expectation maxi-
mization, maximum likelihood, high dimensional data
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1. Introduction

Clustering or segmentation of data is a fundamental data analysis step that hasbeen actively inves-
tigated by many research communities over the past few decades (Jain and Dubes, 1988). However,
traditional methods for clustering data are severely challenged by a varietyof complex charac-
teristics exhibited by certain recent data sets examined by the machine learningand data mining
communities. These data sets, acquired from scientific domains and the world wide web, also im-
pose significant demands on scalability, visualization and evaluation of clustering methods (Ghosh,
2003). In this paper we focus on clustering objects such as text documents and gene expressions,
where the complexity arises from their representation as vectors that are not only very high dimen-
sional (and often sparse) but alsodirectional, i.e., the vector direction is relevant, not its magnitude.

One can broadly categorize clustering approaches to be either generative (also known as para-
metric or probabilistic) (Smyth, 1997; Jaakkola and Haussler, 1999) or discriminative (non-parametric)
(Indyk, 1999; Scḧolkopf and Smola, 2001). The performance of an approach, and of a specific
method within that approach, is quite data dependent; there is no clustering method that works the
best across all types of data. Generative models, however, often provide greater insight into the
anatomy of the clusters. A lot of domain knowledge can be incorporated into generative models, so
that clustering of data uncovers specific desirable patterns that one is looking for.

Clustering algorithms using the generative model framework, often involve an appropriate ap-
plication of the Expectation Maximization (EM) algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 1997) on a properly chosen statistical generative model forthe data under consideration.
For vector data, there are well studied clustering algorithms for popular generative models such as a
mixture of multivariate Gaussians, whose effect is analogous to the use of Euclidean or Mahalanobis
type distances as the chosen measure of distortion from the discriminative perspective.

The choice of a particular distortion measure (or the corresponding generative model) can be
crucial to the performance of a clustering procedure. There are several domains where methods
based on minimizing Euclidean distortions yield poor results (Strehl et al., 2000). For example,
studies in information retrieval applications convincingly demonstratecosine similarityto be a more
effective measure of similarity for analyzing and clustering text documents.In this domain, there is
substantial empirical evidence that normalizing the data vectors helps to remove the biases induced
by the length of a document and provide superior results (Salton and McGill,1983; Salton and
Buckley, 1988). Further, the spherical kmeans (spkmeans) algorithm (Dhillon and Modha, 2001),
that performs kmeans using cosine similarity instead of Euclidean distortion, has been found to work
well for text clustering. Data Sets from such domains, where similarity measures such as cosine,
Jaccard or Dice (Rasmussen, 1992) are more effective than measuresderived from Mahalanobis type
distances, possess intrinsic “directional” characteristics, and are hence better modeled asdirectional
data(Mardia and Jupp, 2000).1

There are many other important domains such as bioinformatics (e.g., Eisen etal. (1998)),
collaborative filtering (e.g., Sarwar et al. (2001)) etc., in which directional data is encountered.
Consider the Pearson correlation coefficient, which is a popular similarity measure in both these
domains . Givenx,y ∈ R

d, the Pearson product moment correlation between them is given by

ρ(x,y) = ∑d
i=1(xi−x̄)(yi−ȳ)√

∑d
i=1(xi−x̄)2

√
∑d

i=1(yi−ȳ)2
, where ¯x= 1

d ∑d
i=1xi , ȳ= 1

d ∑d
i=1yi . Consider the mappingx 7→ x̃

such that ˜xi = xi−x̄√
∑d

i=1(xi−x̄)2
, and a similar mapping fory. Then we haveρ(x,y) = x̃

T
ỹ. Moreover,

1. This paper treatsL2 normalized data and directional data as synonymous.
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‖x̃‖2 = ‖ỹ‖2 = 1. Thus, the Pearson correlation is exactly the cosine similarity between ˜x andỹ.
Hence, analysis and clustering of data using Pearson correlations is essentially a clustering problem
for directional data.

1.1 Contributions

In this paper2 we present a generative model, consisting of a mixture of von Mises-Fisher (vMF)
distributions, tailored for directional data distributed on the surface of a unit hypersphere. We derive
two clustering algorithms based on EM for estimating the parameters of the mixture model from first
principles. The algorithm involves estimating aconcentrationparameter,κ, for high dimensional
data. The ability to adaptκ on a per-component basis leads to substantial performance improve-
ments over existing generative approaches to modeling directional data. Weshow a connection
between the proposed methods and a class of existing algorithms for clustering high-dimensional
directional data. In particular, our generative model has the same relationto spkmeans as a model
based on a mixture of unit covariance Gaussians has to classicalkmeans that uses squared Eu-
clidean distances. We also present detailed experimental comparisons of the proposed algorithms
with spkmeans and one of its variants. Our formulation uncovers the theoretical justificationbehind
the use of the cosine similarity measure that has largely been ad-hoc, i.e., based on empirical or
intuitive justification, so far.

Other key contributions of the paper are:

• It exposes the vMF model to the learning community and presents a detailed parameter es-
timation method for learning mixtures of vMF distributions in high-dimensions. Previously
known parameter estimates for vMF distributions are reasonable only for low-dimensional
data (typically only 2 or 3 dimensional data is considered) and are hence not applicable to
many modern applications such as text clustering.

• We show that hard assignments maximize a tight lower bound on the incomplete log-likelihood
function. In addition, our analysis of hard assignments is applicable to any mixture model
learning using EM. This result is particularly important when using mixtures ofvMFs since
the computational needs for hard assignments are lower than what is required for the standard
soft assignments (E-step) for these models.

• Extensive experimental results are provided on benchmark text and gene-expression data sets
to show the efficacy of the proposed algorithms for high-dimensional, directional data. Good
results are obtained even for fairly skewed data sets. A recent study (Banerjee and Langford,
2004) using PAC-MDL bounds for evaluation of clustering algorithms also demonstrated the
efficacy of the proposed approaches.

• An explanation of the superior performance of the soft-assignment algorithm is obtained by
drawing an analogy between the observed cluster formation behavior andlocally adaptive
annealing. See Section 7 for further details.

2. An earlier, short version of this paper appeared as:Generative Model-based Clustering of Directional Datain Pro-
ceedings KDD, 2003.
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1.2 Related Work

There has been an enormous amount of work on clustering a wide variety of data sets across multiple
disciplines over the past fifty years (Jain and Dubes, 1988). The methods presented in this paper are
tailored for high-dimensional data with directional characteristics, rather than for arbitrary data sets.
In the learning community, perhaps the most widely studied high-dimensional directional data stem
from text documents represented by vector space models. Much of the work in this domain uses dis-
criminative approaches (Steinbach et al., 2000; Zhao and Karypis, 2004). For example, hierarchical
agglomerative methods based on cosine, Jaccard or Dice coefficients were dominant for text cluster-
ing till the mid-1990s (Rasmussen, 1992). Over the past few years several new approaches, ranging
from spectral partitioning (Kannan et al., 2000; Zhao and Karypis, 2004), to the use of generative
models from the exponential family, e.g., mixture of multinomials or Bernoulli distributions (Nigam
et al., 2000) etc., have emerged. A fairly extensive list of references on generative approaches to
text clustering can be found in (Zhong and Ghosh, 2003a).

Of particular relevance to this work is thespkmeans algorithm (Dhillon and Modha, 2001),
which adapts thekmeans algorithm to normalized data by using the cosine similarity for cluster
allocation, and also by re-normalizing the cluster means to unit length. Thespkmeans algorithm
is superior to regularkmeans for high-dimensional text data, and competitive or superior in both
performance and speed to a wide range of other existing alternatives fortext clustering (Strehl et al.,
2000). It also provides better characterization of clusters in terms of theirtop representative or
discriminative terms.

The larger topic of clustering very high-dimensional data (dimension in the thousands or more),
irrespective of whether it is directional or not, has also attracted great interest lately. Again, most of
the proposed methods of dealing with the curse of dimensionality in this context follow a density-
based heuristic or a discriminatory approach (Ghosh, 2003). Among generative approaches for
clustering high-dimensional data, perhaps the most noteworthy is one that uses low dimensional
projections of mixtures of Gaussians (Dasgupta, 1999). It turns out that one of our proposed meth-
ods alleviates problems associated with high dimensionality via an implicit local annealing behavior.

The vMF distribution is known in the literature on directional statistics (Mardia and Jupp, 2000),
and the maximum likelihood estimates (MLE) of the parameters have been given for a single dis-
tribution. Recently Piater (2001) obtained parameter estimates for a mixture forcircular, i.e., 2-
dimensional vMFs. In an Appendix to his thesis, Piater (2001) starts on an EM formulation for
2-D vMFs but cites the difficulty of parameter estimation (especiallyκ) and eventually avoids do-
ing EM in favor of another numerical gradient descent based scheme. Mooney et al. (2003) use a
mixture of two circular von Mises distributions to estimate the parameters using a quasi-Newton
procedure. Wallace and Dowe (2000) perform mixture modeling for circular von Mises distribu-
tions and have produced a software called Snob that implements their ideas. McLachlan and Peel
(2000) discuss mixture analysis of directional data and mention the possibility of using Fisher distri-
butions (3-dimensional vMFs), but instead use 3-dimensional Kent distributions (Mardia and Jupp,
2000). They also mention work related to the clustering of directional data, but all the efforts in-
cluded by them are restricted to 2-D or 3-D vMFs. Indeed, McLachlan and Peel (2000) also draw
attention to the difficulty of parameter estimation even for 3-D vMFs. Even for asingle component,
the maximum-likelihood estimate for the concentration parameterκ involves inverting a ratio of
two Bessel functions, and current ways of approximating this operation are inadequate for high-
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dimensional data. It turns out that our estimate forκ translates into a substantial improvement in
the empirical results.

The connection between a generative model involving vMF distributions with constantκ and
the spkmeans algorithm was first observed by Banerjee and Ghosh (2002). A variant that could
adapt in an on-line fashion leading to balanced clustering solutions was developed by Banerjee and
Ghosh (2004). Balancing was encouraged by taking a frequency-sensitive competitive learning ap-
proach in which the concentration of a mixture component was made inverselyproportional to the
number of data points already allocated to it. Another online competitive learningscheme using
vMF distributions for minimizing a KL-divergence based distortion was proposed by Sinkkonen
and Kaski (2001). Note that the full EM solution was not obtained or employed in either of these
works. Recently a detailed empirical study of several generative models for document clustering,
including a simple mixture-of-vMFs model that constrains the concentrationκ to be the same for all
mixture components during any iteration was presented by Zhong and Ghosh(2003b). Even with
this restriction, this model was superior to both hard and soft versions of multivariate Bernoulli and
multinomial models. These positive results further motivate the current paperin which we present
the general EM solution for parameter estimation of a mixture of vMF distributions. This enhance-
ment leads to even better clustering performance for difficult clustering tasks: when clusters overlap,
when cluster sizes are skewed, and when cluster sizes are small relativeto the dimensionality of the
data. In the process, several new, key insights into the nature of hard vs. soft mixture modeling and
the behavior of vMF based mixture models are obtained.

The remainder of the paper is organized as follows. We review the multi-variate vMF distri-
bution in Section 2. In Section 3 we introduce a generative model using a mixture of vMF distri-
butions. We then derive the maximum likelihood parameter estimates of this model byemploying
an EM framework. Section 4 highlights our new method of approximatingκ and also presents
a mathematical analysis of hard assignments. Sections 3 and 4 form the basis for two clustering
algorithms using soft and hard-assignments respectively, that are proposed in Section 5. Detailed
experimental results and comparisons with other algorithms are offered in Section 6. A discussion
on the behavior of our algorithms and a connection with simulated annealing follows in Section 7.
Section 8 concludes our paper and highlights some possible directions for future work.

Notation. Bold faced variables, e.g.,x,µ represent vectors; the norm‖ ·‖ denotes theL2 norm;
sets are represented by script-style upper-case letters, e.g.,X , Z. The set of reals is denoted byR,
while S

d−1 denotes the(d−1)-dimensional sphere embedded inR
d. Probability density functions

are denoted by lower case letters such asf , p, q and the probability of a set of events is denoted by
P. If a random vectorx is distributed asp(·), expectations of functions ofx are denoted byEp[·].

2. Preliminaries

In this section, we review the von Mises-Fisher distribution and maximum likelihood estimation of
its parameters from independent samples.

2.1 The von Mises-Fisher (vMF) Distribution

A d-dimensional unit random vectorx (i.e.,x ∈ R
d and‖x‖= 1, or equivalentlyx ∈ S

d−1) is said
to haved-variate von Mises-Fisher (vMF) distribution if its probability density functionis given by

f (x|µ,κ) = cd(κ)eκµ
T
x, (2.1)

1349



BANERJEE, DHILLON , GHOSH AND SRA

where‖µ‖= 1, κ≥ 0 andd≥ 2. The normalizing constantcd(κ) is given by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2.2)

where Ir(·) represents the modified Bessel function of the first kind and orderr. The density
f (x|µ,κ) is parameterized by the mean directionµ, and theconcentrationparameterκ, so-called
because it characterizes how strongly the unit vectors drawn according to f (x|µ,κ) are concentrated
about the mean directionµ. Larger values ofκ imply stronger concentration about the mean direc-
tion. In particular whenκ = 0, f (x|µ,κ) reduces to the uniform density onSd−1, and asκ→ ∞,
f (x|µ,κ) tends to a point density. The interested reader is referred to Mardia and Jupp (2000),
Fisher (1996) or Dhillon and Sra (2003) for details on vMF distributions.

The vMF distribution is one of the simplest parametric distributions for directional data, and has
properties analogous to those of the multi-variate Gaussian distribution for data inR

d. For example,
the maximum entropy density onSd−1 subject to the constraint thatE[x] is fixed is a vMF density
(see Rao (1973, pp. 172–174) and Mardia (1975) for details).

2.2 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the parameters ofa single vMF
distribution. The detailed derivation can be found in Appendix A. LetX be a finite set of sample
unit vectors drawn independently followingf (x|µ,κ) (2.1), i.e.,

X = {xi ∈ S
d−1 | xi drawn following f (x|µ,κ) for 1≤ i ≤ n}.

Given X we want to find maximum likelihood estimates for the parametersµ andκ of the distri-
bution f (x|µ,κ). Assuming thexi to be independent and identically distributed, we can write the
log-likelihood ofX as

lnP(X |µ,κ) = nlncd(κ)+κµ
T
r, (2.3)

wherer = ∑i xi . To obtain the maximum likelihood estimates ofµ andκ, we have to maximize (2.3)
subject to the constraintsµT

µ = 1 andκ ≥ 0. After some algebra (details may be found in Sec-
tion A.1) we find that the MLE solutions ˆµ andκ̂ may be obtained from the following equations:

µ̂ =
r

‖r‖ =
∑n

i=1xi

‖∑n
i=1xi‖

, (2.4)

and
Id/2(κ̂)

Id/2−1(κ̂)
=
‖r‖
n

= r̄. (2.5)

Since computinĝκ involves an implicit equation (2.5) that is a ratio of Bessel functions, it is
not possible to obtain an analytic solution, and we have to take recourse to numerical or asymptotic
methods to obtain an approximation (see Section 4.1).

3. EM on a Mixture of vMFs (moVMF)

We now consider a mixture ofk vMF (moVMF) distributions that serves as a generative model for
directional data. Subsequently we derive the update equations for estimating the mixture-density pa-
rameters from a given data set using the Expectation Maximization (EM) framework. Let fh(x|θh)
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denote a vMF distribution with parameterθh = (µh,κh) for 1≤ h≤ k. Then a mixture of thesek
vMF distributions has a density given by

f (x|Θ) =
k

∑
h=1

αh fh(x|θh), (3.1)

whereΘ = {α1, · · · ,αk,θ1, · · · ,θk} and theαh are non-negative and sum to one. To sample a point
from this mixture density we choose theh-th vMF randomly with probabilityαh, and then sample a
point (onS

d−1) following fh(x|θh). Let X = {x1, · · · ,xn} be a data set ofn independently sampled
points that follow (3.1). LetZ = {z1, · · · ,zn} be the corresponding set of hidden random variables
that indicate the particular vMF distribution from which the points are sampled. In particular,zi = h
if xi is sampled fromfh(x|θh). Assuming that the values in the setZ are known, the log-likelihood
of the observed data is given by

lnP(X ,Z|Θ) =
n

∑
i=1

ln(αzi fzi (xi |θzi )) . (3.2)

Obtaining maximum likelihood estimates for the parameters would have been easy were thezi truly
known. Unfortunately that is not the case, and (3.2) is really a random variable dependent on the
distribution ofZ—this random variable is usually called thecomplete data log-likelihood. For a
given(X ,Θ), it is possible to estimate the most likely conditional distribution ofZ|(X ,Θ), and this
estimation forms the E-step in an EM framework.

Using an EM approach for maximizing the expectation of (3.2) with the constraints µ
T
h µh = 1

andκh≥ 0, we obtain (see Appendix A.2),

αh =
1
n

n

∑
i=1

p(h|xi ,Θ), (3.3)

rh =
n

∑
i=1

xi p(h|xi ,Θ), (3.4)

µ̂h =
rh

‖rh‖
, (3.5)

Id/2(κ̂h)

Id/2−1(κ̂h)
=

‖rh‖
∑n

i=1 p(h|xi ,Θ)
. (3.6)

Observe that (3.5) and (3.6) are intuitive generalizations of (2.4) and (2.5) respectively, and they
correspond to an M-step in an EM framework. Given these parameter updates, we now look at
schemes for updating the distributions ofZ|(X ,Θ) (i.e., an E-step) to maximize the likelihood of
the data given the parameters estimates above.

From the standard EM framework, the distribution of the hidden variables (Neal and Hinton,
1998; Bilmes, 1997) is given by

p(h|xi ,Θ) =
αh fh(xi |Θ)

∑k
l=1 αl fl (xi |Θ)

. (3.7)

It can be shown (Collins, 1997) that theincomplete data log-likelihood, ln p(X |Θ), is non-decreasing
at each iteration of the parameter and distribution updates. Iteration over these two updates provides
the foundation for oursoft-moVMF algorithm given in Section 5.
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Our second update scheme is based on the widely used hard-assignment heuristic for unsuper-
vised learning. In this case, the distribution of the hidden variables is givenby

q(h|xi ,Θ) =







1, if h = argmax
h′

p(h′|xi ,Θ),

0, otherwise.
(3.8)

We analyze the above hard-assignment rule in Section 4, and show that it maximizes a lower bound
on the incomplete data log-likelihood. Iteration over the M-step and the hard-assignment rule leads
to thehard-moVMF algorithm given in Section 5.

4. Handling Large and High-Dimensional Data Sets

Although the mixture model outlined in section 3 seems quite straight-forward, there are some of
critical issues that need to be addressed before one can apply the modelto large high-dimensional
data sets:

A. How to computeκh,h = 1, . . . ,k from (3.6) for high-dimensional data?

B. Is it possible to significantly reduce computations and still get a reasonable clustering?

We address both these issues in this section, as they are significant for large high-dimensional data
sets. The problem of estimatingκh is analyzed in Section 4.1. In Section 4.2 we show that hard
assignments can reduce computations significantly while giving a reasonableclustering.

4.1 Approximating κ

Recall that because of the lack of an analytical solution, it is not possible todirectly estimate the
κ values (see (2.5) and (3.6)). One may employ a nonlinear root-finder forestimatingκ, but for
high dimensional data, problems of overflows and numerical instabilities plague such root-finders.
Therefore, an asymptotic approximation ofκ is the best choice for estimatingκ. Such approaches
also have the benefit of taking constant computation time as opposed to any iterative method.

Mardia and Jupp (2000) provided approximations for estimatingκ for a single component (2.5),
for two limiting cases (Approximations (10.3.7) and (10.3.10) of Mardia and Jupp (2000, pp. 198)):

κ̂≈ d−1
2(1− r̄)

valid for large ¯r, (4.1)

κ̂≈ dr̄

(

1+
d

d+2
r̄2 +

d2(d+8)

(d+2)2(d+4)
r̄4

)

valid for small ¯r, (4.2)

where ¯r is given by (2.5).
These approximations assume thatκ� d, which is typically not valid for high dimensions

(see the discussion in Section 7 for an intuition). Also, the ¯r values corresponding to the text
and gene expression data sets considered in this paper are in the mid-rangerather than in the two
extreme ranges of ¯r that are catered to by the above approximations. We obtain a more accurate

approximation forκ as described below. WithAd(κ) =
Id/2(κ)

Id/2−1(κ) , observe thatAd(κ) is a ratio of
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Bessel functions that differ in their order by just one. Fortunately thereexists a continued fraction
representation ofAd(κ) (Watson, 1995) given by

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
=

1

d
κ +

1
d+2

κ + · · ·

. (4.3)

LettingAd(κ) = r̄ we can write (4.3) approximately as

1
r̄
≈ d

κ
+ r̄ ,

which gives the approximation,

κ≈ dr̄
1− r̄2 .

We empirically found (see Section A.3 for details) that the quality of the above approximation can
be improved by adding a correction term of−r̄3/(1− r̄2) to it. Thus we finally get

κ̂ =
r̄d− r̄3

1− r̄2 . (4.4)

The approximation in (4.4) could perhaps be made even more accurate by adding other correction
terms that are functions of ¯r andd.3 For other approximations ofκ (including the derivations of (4.1)
and (4.2)) and some related issues, the reader is referred to the detailed exposition in Dhillon and
Sra (2003).

To properly assess the quality of our approximation and compare it with (4.1)and (4.2), first
note that a particular value of ¯r may correspond to many different combinations ofκ andd values.
Thus, one needs to evaluate the accuracy of the approximations over the parts of thed-κ plane that
are expected to be encountered in the target application domains. Section A.3of the Appendix
provides such an assessment by comparing performances over different slices of thed-κ plane and
over a range of ¯r values. Below we simply compare the accuracies at a scattering of points on this
plane via Table 1 which shows the actual numerical values ofκ that the three approximations (4.1),
(4.2), and (4.4) yielded at these points. The ¯r values shown in the table were computed using (2.5).

(d, r̄,κ) κ̂ = Eq. (4.1) κ̂ = Eq. (4.2) κ̂ = Eq. (4.4)
(10,0.633668,10) 12.2839 9.36921 10.1631
(100,0.46945,60) 93.2999 59.3643 60.0833
(500,0.46859,300) 469.506 296.832 300.084

(1000,0.554386,800) 1120.92 776.799 800.13

Table 1: Approximationŝκ for a sampling ofκ andd values.

3. Note that if one wants a more accurate approximation, it is easier to use (4.4) as a starting point and then perform
Newton-Raphson iterations for solvingAd(κ̂)− r̄ = 0, since it is easy to evaluateA′d(κ) = 1−Ad(κ)2− d−1

κ Ad(κ).
However, for high-dimensional data, accurately computingAd(κ) can be quite slow compared to efficiently approxi-
matingκ̂ using (4.4).
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4.2 Analysis of Hard Assignments

In this subsection, we show that hard assignments should give a reasonable clustering in terms of the
log-likelihood since they actually maximize a tight lower bound on the incomplete log-likelihood of
the data. This result is applicable to any mixture model learning using EM, but the practical advan-
tage in terms of lower computational demands seems to be more substantial when using mixtures
of vMFs. The advantages are derived from the various facts outlined below:

• First, note that the partition function,∑k
l=1 αl fl (xi |θl ), for every data pointxi need not be

computed for hard-assignments. This may not be a significant differencefor several other
models, but this is quite important for vMF distributions. Since the normalization terms
cd(κh) in fh(xi |θh) involve Bessel functions, any reasonable implementation of the algorithm
has to employ high-precision representation to avoid under- and over-flows. As a result,
computing the partition function is computationally intensive. For hard assignments, this
computation is not required resulting in substantially faster running times. In particular, hard-
assignments needO(k) computations in high-precision per iteration simply to compute the
normalization termscd(κh),h = 1, . . . ,k. On the other hand, soft-assignments needO(nk)
computations in high-precision per iteration for allfl (xi |θl ) so that the partition function
∑k

l=1 αl fl (xi |θl ) and the probabilitiesp(h|xi ,Θ) can be accurately computed.

• A second issue is regarding the space complexity. Since soft assignments compute all the
conditional probabilities, the algorithm has to maintainnk floating point numbers at a desired
level of precision. On the other hand, hard assignments only need to maintainthe cluster
assignments of each point, i.e.,n integers. This issue can become critical for large data sets
and large number of clusters.

Hence, a hard assignment scheme is often computationally more efficient andscalable both in terms
of time and space complexity.

We begin by investigating certain properties of hard-assignments. Hard-assignments have seen
extensively used in the statistics (Coleman et al., 1999; McLachlan and Peel, 2000) as well as
machine learning literature (Kearns et al., 1997; Banerjee et al., 2004). In statistics, the hard as-
signment approach is better known as classification maximum likelihood approach (McLachlan,
1982). Although soft-assignments are theoretically well motivated (Collins, 1997; Neal and Hinton,
1998), hard-assignments have not received much theoretical attention with some notable excep-
tions (Kearns et al., 1997). However, algorithms employing hard-assignments, being computation-
ally more efficient especially for large data sets, are often typically more practical than algorithms
that use soft-assignments. Hence it is worthwhile to examine the behavior of hard-assignments from
a theoretical perspective. In the rest of this section, we formally study theconnection between soft
and hard-assignments in the EM framework.

The distributionq in (3.8) belongs to the classH of probability distributions that assume prob-
ability value 1 for some mixture component and 0 for all others. In the hard assignment setting, the
hidden random variables are restricted to have distributions that are members of H . SinceH is a
subset of all possible distributions on the events, for a typical mixture modelthe distribution follow-
ing (3.7) will not belong to this subset. The important question is: Is there a way to optimally pick
a distribution fromH , perform a regular M-step, and guarantee that the incomplete log-likelihood
of the data does not decrease? Unfortunately, such a way may not existin general. However, it
is possible to reasonably lower bound the incomplete log-likelihood of the data using expectations
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over anoptimaldistributionq∈ H , as elucidated below. Thus, clustering using hard-assignments
essentially maximizes a lower bound on the incomplete log-likelihood.

We now show that the expectation overq is a reasonable lower bound on the incomplete log-
likelihood of the data in the sense that the expectation overq is itself lower bounded by the expec-
tation of the complete log-likelihood (3.2) over the distributionp given by (3.7). Further, we show
thatq as given by (3.8) gives the tightest lower bound among all distributions inH .

Following the arguments of Neal and Hinton (1998), we introduce the function F(p̃,Θ) given
by

F(p̃,Θ) = Ep̃[lnP(X ,Z|Θ)]+H(p̃), (4.5)

whereH(p̃) gives the Shannon entropy of a discrete distribution ˜p. The E- and the M-steps of the
EM algorithm can be shown toalternately maximizethe functionF . In the E-step, for a given value
of Θ, the distribution ˜p is chosen to maximizeF(p̃,Θ) for that Θ, and, in the M-step, for a given
value of p̃, the parametersΘ are estimated to maximizeF(p̃,Θ) for the given ˜p. Considerp given
by (3.7). It can be shown (Neal and Hinton, 1998) that for a givenΘ, this value ofp is optimal, i.e,
p = argmax̃pF(p̃,Θ). Then,

F(p,Θ) = Ep[lnP(X ,Z|Θ)]+H(p)

= Ep[lnP(X ,Z|Θ)]−Ep[lnP(Z|(X ,Θ))]

= Ep

[

ln

(

P(X ,Z|Θ)

P(Z|(X ,Θ))

)]

= Ep[lnP(X |Θ)]

= lnP(X |Θ). (4.6)

Since (3.7) gives the optimal choice of the distribution, the functional value of F is smaller for any
other choice of ˜p. In particular, if p̃ = q as in (3.8), we have

F(q,Θ)≤ F(p,Θ) = lnP(X |Θ).

SinceH(q) = 0, from (4.5) we have

Eq[lnP(X ,Z|Θ)]≤ lnP(X |Θ). (4.7)

Thus, the expectation overq actually lower bounds the likelihood of the data. We go one step further
to show that this is in fact a reasonably tight lower bound in the sense that theexpectation overq is
lower bounded by the expectation overp of the complete data log-likelihood. To this end, we first
prove the following result.

Lemma 1 If p is given by (3.7) and q is given by (3.8) then,

Ep[lnP(Z|(X ,Θ))]≤ Eq[lnP(Z|(X ,Θ))].
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Proof Let h∗i = argmax
h

p(h|xi ,Θ). Then,p(h|xi ,Θ) ≤ p(h∗i |xi ,Θ),∀h. Using the definitions ofp

andq, we have

Ep[lnP(Z|(X ,Θ))] =
n

∑
i=1

k

∑
h=1

p(h|xi ,Θ) ln p(h|xi ,Θ)

≤
n

∑
i=1

k

∑
h=1

p(h|xi ,Θ) ln p(h∗i |xi ,Θ)

=
n

∑
i=1

ln p(h∗i |xi ,Θ)
k

∑
h=1

p(h|xi ,Θ) =
n

∑
i=1

ln p(h∗i |xi ,Θ)

=
n

∑
i=1

k

∑
h=1

q(h|xi ,Θ) ln p(h|xi ,Θ)

= Eq[lnP(Z|(X ,Θ))].

Now, adding the incomplete data log-likelihood to both sides of the inequality proven above, we
obtain

Ep[lnP(Z|(X ,Θ))]+ lnP(X |Θ) ≤ Eq[lnP(Z|(X ,Θ))]+ lnP(X |Θ),

Ep[ln(P(Z|(X ,Θ))P(X |Θ))] ≤ Eq[ln(P(Z|(X ,Θ))P(X |Θ))],

Ep[lnP(X ,Z|Θ)] ≤ Eq[lnP(X ,Z|Θ)]. (4.8)

From, (4.7) and (4.8), we infer

Ep[lnP(X ,Z|Θ)]≤ Eq[lnP(X ,Z|Θ)]≤ lnP(X |Θ).

Let q̃ be any other distribution in the class of distributionsH with q̃(h̃i |xi ,Θ) = 1 andq̃(h|xi ,Θ = 0)
for h 6= h̃i . Then,

Eq̃[lnP(Z|X ,Θ)] =
n

∑
i=1

k

∑
h=1

q̃(h|xi ,Θ) ln p(h|xi ,Θ) =
n

∑
i=1

ln p(h̃i |xi ,Θ)

≤
n

∑
i=1

ln p(h∗i |xi ,Θ) =
n

∑
i=1

k

∑
h=1

q(h|xi ,Θ) ln p(h|xi ,Θ)

= Eq[lnP(Z|X ,Θ)].

Hence, the choice ofq as in (3.8) is optimal. This analysis forms the basis of thehard-moVMF
algorithm presented in the next section.

5. Algorithms

The developments of the previous section naturally lead to two algorithms for clustering directional
data. The algorithms are centered on soft and hard-assignment schemesand are titledsoft-moVMF
andhard-moVMF respectively. Thesoft-moVMF algorithm (Algorithm 1) estimates the parameters
of the mixture model exactly following the derivations in Section 3 using EM. Hence, it assigns soft
(or probabilistic) labels to each point that are given by the posterior probabilities of the components
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Algorithm 1 soft-moVMF

Input: SetX of data points onSd−1

Output: A soft clustering ofX over a mixture ofk vMF distributions
Initialize all αh,µh,κh, h = 1, · · · ,k
repeat
{The E (Expectation) step of EM}
for i = 1 ton do

for h = 1 tok do
fh(xi |θh)← cd(κh)e

κhµ
T
h xi

end for
for h = 1 tok do

p(h|xi ,Θ)← αh fh(xi |θh)

∑k
l=1 αl fl (xi |θl )

end for
end for
{The M (Maximization) step of EM}
for h = 1 tok do

αh← 1
n ∑n

i=1 p(h|xi ,Θ)
µh← ∑n

i=1xi p(h|xi ,Θ)
r̄ ←‖µh‖/(nαh)
µh← µh/‖µh‖
κh← r̄d−r̄3

1−r̄2

end for
until convergence

of the mixture conditioned on the point. On termination, the algorithm gives the parametersΘ =
{αh,µh,κh}kh=1 of thek vMF distributions that model the data setX , as well as thesoft-clustering,
i.e., the posterior probabilitiesp(h|xi ,Θ), for all h andi.

Thehard-moVMF algorithm (Algorithm 2) estimates the parameters of the mixture model using
a hard assignment, or,winner takes allstrategy. In other words, we do the assignment of the
points based on a derived posterior distribution given by (3.8). After thehard assignments in every
iteration, each pointbelongsto a single cluster. As before, the updates of the component parameters
are done using the posteriors of the components, given the points. The crucial difference in this case
is that the posterior probabilities are allowed to take only binary (0/1) values.Upon termination,
Algorithm 2 yields a hard clustering of the data and the parametersΘ = {αh,µh,κh}kh=1 of the k
vMFs that model the input data setX .

5.1 Revisiting Spherical Kmeans

In this section we show that upon enforcing certain restrictive assumptionson the generative model,
thespkmeans algorithm (Algorithm 3) can be viewed as a special case of both thesoft-moVMF and
hard-moVMF algorithms.

More precisely, assume that in our mixture of vMFs, the priors of all the components are equal,
i.e., αh = 1/k for all h. Further assume that all the components have (equal) infinite concentration
parameters, i.e.,κh = κ→ ∞ for all h. Under these assumptions the E-step in thesoft-moVMF
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Algorithm 2 hard-moVMF

Input: SetX of data points onSd−1

Output: A disjoint k-partitioning ofX
Initialize all αh,µh,κh, h = 1, · · · ,k
repeat
{The Hardened E (Expectation) step of EM}
for i = 1 ton do

for h = 1 tok do
fh(xi |θh)← cd(κh)e

κhµ
T
h xi

end for
for h = 1 tok do

q(h|xi ,Θ)←







1, if h = argmax
h′

αh′ fh′(xi |θh′)

0, otherwise.
end for

end for
{The M (Maximization) step of EM}
for h = 1 tok do

αh← 1
n ∑n

i=1q(h|xi ,Θ)
µh← ∑n

i=1xiq(h|xi ,Θ)
r̄ ←‖µh‖/(nαh)
µh← µh/‖µh‖
κh← r̄d−r̄3

1−r̄2

end for
until convergence.

algorithm reduces to assigning a point to itsnearestcluster, where nearness is computed as a cosine
similarity between the point and the cluster representative. Thus, a pointxi will be assigned to
clusterh∗ = argmax

h
x

T
i µh, since

p(h∗|xi ,Θ) = lim
κ→∞

eκ x
T
i µh∗

∑k
h=1eκ x

T
i µh

= 1,

andp(h|xi ,Θ)→ 0, asκ→ ∞ for all h 6= h∗.
To show thatspkmeans can also be seen as a special case of thehard-moVMF, in addition

to assuming the priors of the components to be equal, we further assume that the concentration
parameters of all the components are equal, i.e.,κh = κ for all h. With these assumptions on the
model, the estimation of the common concentration parameter becomes unessentialsince the hard
assignment will depend only on the value of the cosine similarityx

T
i µh, andhard-moVMF reduces

to spkmeans.
In addition to the abovementioned algorithms, we report experimental results on another algo-

rithm fskmeans (Banerjee and Ghosh, 2002) that belongs to the same class in the sense that, like
spkmeans, it can be derived from the mixture of vMF models with some restrictive assumptions. In
fskmeans, the centroids of the mixture components are estimated as inhard-movMF. Theκ value
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Algorithm 3 spkmeans

Input: SetX of data points onSd−1

Output: A disjoint k-partitioning{Xh}kh=1 of X

Initialize µh, h = 1, · · · ,k
repeat
{The E (Expectation) step of EM}
SetXh← /0, h = 1, · · · ,k
for i = 1 ton do

Xh← Xh∪{xi} whereh = argmax
h′

x
T
i µh′

end for
{The M (Maximization) step of EM}
for h = 1 tok do

µh←
∑x∈Xh

x

‖∑x∈Xh
x‖

end for
until convergence.

for a component isexplicitly setto be inversely proportional to the number of points in the cluster
corresponding to that component. This explicit choice simulates a frequency sensitive competitive
learning that implicitly prevents the formation of null clusters, a well-known problem in regular
kmeans (Bradley et al., 2000).

6. Experimental Results

We now offer some experimental validation to assess the quality of clustering results achieved by
our algorithms. We compare the following four algorithms on numerous data sets.

1. Spherical KMeans (Dhillon and Modha, 2001)—spkmeans.

2. Frequency Sensitive Spherical KMeans (Banerjee and Ghosh, 2002)—fskmeans.

3. moVMF based clustering using hard assignments (Section 3)—hard-moVMF.

4. moVMF based clustering using soft assignments (Section 3)—soft-moVMF.

It has already been established thatkmeans using Euclidean distance performs much worse than
spkmeans for text data (Strehl et al., 2000), so we do not consider it here. Generative model based
algorithms that use mixtures of Bernoulli or multinomial distributions, which have been shown to
perform well for text data sets, have also not been included in the experiments. This exclusion is
done as a recent empirical study over 15 text data sets showed that simple versions of vMF mixture
models (withκ constant for all clusters) outperform the multinomial model except for onlyone data
set (Classic3), and the Bernoulli model was inferior for all data sets (Zhong and Ghosh, 2003b).

6.1 Data Sets

The data sets that we used for empirical validation and comparison of our algorithms were carefully
selected to represent some typical clustering problems. We also created various subsets of some
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of the data sets for gaining greater insight into the nature of clusters discovered or to model some
particular clustering scenario (e.g., balanced clusters, skewed clusters, overlapping clusters etc.).
We drew our data from five sources: Simulation, Classic3, Yahoo News, CMU 20 Newsgroup
and Yeast Gene Expressions. For all the text document data sets, the toolkit MC (Dhillon et al.,
2001) was used for creating a high-dimensional vector space model thateach of the four algorithms
utilized. MATLAB code was used to render the input as a vector space for both the simulated and
gene-expression data sets.

• Simulation. We use simulated data to verify that the discrepancy between computed valuesof
the parameters and their true values is small. Our simulated data serves the principal purpose
of validating the “correctness” of our implementations. We used a slight modification of
the algorithm given by Wood (1994) to generate a set of data points followinga given vMF
distribution. We describe herein, two synthetic data sets. The first data setsmall-mix is
2-dimensional and is used to illustrate soft-clustering. The second data setbig-mix is a high-
dimensional data set that could serve as a model for real world text data sets. Let the triple
(n,d,k) denote the number of sample points, the dimensionality of a sample point and the
number of clusters respectively.

1. small-mix: This data has(n,d,k) = (50,2,2). The mean direction of each component
is a random unit vector. Each component hasκ = 4.

2. big-mix: This data has(n,d,k) = (5000,1000,4). The mean direction of each compo-
nent is a random unit vector, and theκ values of the components are 650.98, 266.83,
267.83, and 612.88. The mixing weights for each component are 0.251, 0.238, 0.252,
and 0.259.

• Classic3. Classic3 is a well known collection of documents. It is an easy data set to clus-
ter since it contains documents from three well-separated sources. Moreover, the intrinsic
clusters are largely balanced.

1. Classic3: This corpus contains 3893 documents, among which 1400 CRANFIELD doc-
uments are from aeronautical system papers, 1033 MEDLINE documents are from med-
ical journals, and 1460 CISI documents are from information retrieval papers. The
particular vector space model used had a total of 4666 features (words). Thus each
document, after normalization, is represented as a unit vector in a 4666-dimensional
space.

2. Classic300: Classic300 is a subset of the Classic3 collection and has 300 documents.
From each category of Classic3, we picked 100 documents at random to form this par-
ticular data set. The dimensionality of the data was 5471.4

3. Classic400: Classic400 is a subset of Classic3 that has 400 documents. This data set
has 100 randomly chosen documents from the MEDLINE and CISI categories and 200
randomly chosen documents from the CRANFIELD category. This data set is specifically
designed to create unbalanced clusters in an otherwise easily separable and balanced
data set. The dimensionality of the data was 6205.

4. Note that the dimensionality in Classic300 is larger than the that of Classic3.Although the same options were used in
the MC toolkit for word pruning, due to very different words distributions, fewer words got prunned for Classic300
in the ’too common’ or ’too rare’ categories.

1360



CLUSTERING WITH VON M ISES-FISHER DISTRIBUTIONS

• Yahoo News (K-series). This compilation has 2340 Yahoo news articles from 20 different
categories. The underlying clusters in this data set are highly skewed in terms of the number
of documents per cluster, with sizes ranging from 9 to 494. The skewnesspresents additional
challenges to clustering algorithms.

• CMU Newsgroup. The CMU Newsgroup data set is a well known compilation of docu-
ments (Newsgroups). We tested our algorithms on not only the original data set, but on a
variety of subsets with differing characteristics to explore and understand the behavior of our
algorithms.

1. News20: This standard data set is a collection of 19,997 messages, gathered from 20
different USENET newsgroups. One thousand messages are drawn from the first 19
newsgroups, and 997 from the twentieth. The headers for each of the messages are then
removed to avoid biasing the results. The particular vector space model used had 25924
words. News20 embodies the features characteristic of a typical text dataset—high-
dimensionality, sparsity and significantly overlapping clusters.

2. Small-news20: We formed this set by selecting 2000 messages from original News20
data set. We randomly selected 100 messages from each category in the original data
set. Hence this data set has balanced classes (though there may be overlap). The dimen-
sionality of the data was 13406.

3. Same-100/1000 is a collection of 100/1000 messages from 3 very similar newsgroups:
comp.graphics, comp.os.ms-windows, comp.windows.x.

4. Similar-100/1000 is a collection of 100/1000 messages from 3 somewhat similar news-
groups: talk.politics.guns, talk.politics.mideast, talk.politics.misc.

5. Different-100/1000 is a collection of 100/1000 messages from 3 very different news-
groups: alt.atheism, rec.sport.baseball, sci.space.

• Yeast Gene Expressions. Gene-expression data was selected to offer a clustering domain
different from text analysis. As previously motivated, the use of Pearson correlation for the
analysis of gene expression data is common, so a directional model is well-suited. Coincident
to this domain are the difficulties of cluster validation because of the unavailabilityof true
labels. Such difficulties make the gene expression data a more challenging and perhaps a
more rewarding domain for clustering.

Gene expression data is presented as a matrix of genes (rows) by expression values (columns).
The expression vectors are constructed using DNA microarray experiments. We used a subset
of the Rosetta Inpharmatics yeast gene expression set (Hughes et al., 2000). The original data
set consists of 300 experiments measuring expression of 6,048 yeast genes. Out of these we
selected a subset of 996 genes for clustering (Dhillon et al., 2002b). For each of the 996 genes
the 300-element expression vector was normalized to have unit Euclidean (L2) norm.

6.2 Methodology

Except for the gene expression data set, performance of the algorithms on all the data sets has been
analyzed usingmutual information(MI) between the cluster and class labels. For gene data, due to
the absence of true labels, we have to take recourse to reporting some internal figures of merit. We
defer a discussion of the same to Section 6.7.
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The MI gives the amount of statistical similarity between the cluster and class labels (Cover and
Thomas, 1991). IfX is a random variable for the cluster assignments andY is a random variable
for the pre-existing labels on the same data, then their MI is given byI(X;Y) = E[ln p(X,Y)

p(X)p(Y) ] where
the expectation is computed over the joint distribution of(X,Y) estimated from a particular clus-
tering of the data set under consideration. Forsoft-moVMF we “harden” the clustering produced
by labeling a point with the cluster label for which it has the highest value of posterior probability
(ties broken arbitrarily), in order to evaluate MI. Note that variants of MI have been used to evaluate
clustering algorithms by several researchers. Meilă (2003) used a related concept called variation of
information to compare clusterings. An MDL-based formulation that uses the MI between cluster
assignments and class labels was proposed by Dom (2001).

All results reported herein have been averaged over 10 runs. All algorithms were started with the
same random initialization to ensure fairness of comparison. Each run was started with adifferent
random initialization. However, no algorithm was restarted within a given runand all of them were
allowed to run to completion. Since the standard deviations of MI were reasonably small for all
algorithms, to reduce clutter, we have chosen to omit a display of error barsin our plots. Also, for
practical reasons, the estimate ofκ was upper bounded by a large number (104, in this case) in order
to prevent numeric overflows. For example, during the iterations, if a cluster has only one point,
the estimate ofκ will be infinity (a divide by zero error). Upper bounding the estimate is similar in
flavor to ensuring the estimated covariance of a multi-variate Gaussian in a mixture of Gaussians to
be non-singular.

6.3 Simulated Data Sets

First, to build some intuition and confidence in the working of our vMF based algorithms we exhibit
relevant details ofsoft-moVMF’s behavior on the small-mix data set shown in Figure 1(a).
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The small-mix data set. A clustering of small-mix.

Figure 1: Small-mix data set and its clustering bysoft-moVMF.

The clustering produced by our soft cluster assignment algorithm is shown in Figure 1(b). The
four points (taken clockwise) marked with solid circles have cluster labels(0.15,0.85), (0.77,0.23),
(.82, .18) and(.11, .89), where a cluster label(p,1− p) for a point means that the point has proba-
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bility p of belonging to Cluster 1 and probability 1− p of belonging to Cluster 2. All other points
are categorized to belong to a single cluster by ignoring small (less than 0.10) probability values.

The confusion matrix, obtained by “hardening” the clustering produced by soft-moVMF for the

small-mix data set is

[

26 1
0 23

]

. As is evident from this confusion matrix, the clustering performed

by soft-moVMF is excellent, though not surprising, since small-mix is a data set with well-separated
clusters. Further testimony tosoft-moVMF’s performance is served by Table 2, which shows the
discrepancy between true and estimated parameters for the small-mix collection.

Cluster µ µ̂ κ κ̂ α α̂
1 (-0.251, -0.968) (-0.279, -0.960) 4 3.78 0.48 0.46
2 (0.399, 0.917) (0.370, 0.929) 4 3.53 0.52 0.54

Table 2: True and estimated parameters for small-mix usingsoft-moVMF.

In the tableµ,κ,α represent the true parameters and ˆµ,κ̂, α̂ represent the estimated parameters.
We can see that even in the presence of a limited number of data points in the small-mix data set
(50 points), the estimated parameters approximate the true parameters quite well.

Before moving onto real data sets let us briefly look at the behavior of the algorithms on the
larger data set big-mix. On calculating MI as described previously we foundthat all the algorithms
performed similarly with MI values close to one. We attribute this good performance of all the

minµ
T
µ̂ avgµ

T
µ̂ max|κ−κ̂|

|κ| avg|κ−κ̂|
|κ| max|α−α̂|

|α| avg|α−α̂|
|α|

0.994 0.998 0.006 0.004 0.002 0.001

Table 3: Performance ofsoft-moVMF on big-mix data set.

algorithms to the availability of a sufficient number of data points and similar sized clusters. For
reference Table 3 offers numerical evidence about the performanceof soft-moVMF on the big-mix
data set.

6.4 Classic3 Family of Data Sets

Table 4 shows typical confusion matrices obtained for the full Classic3 dataset. We observe that the
performance of all the algorithms is quite similar and there is no added advantageyielded by using
the general moVMF model as compared to the other algorithms. This observation can be explained
by noting that the clusters of Classic3 are well separated and have a sufficient number of documents.
For this clusteringhard-moVMF yieldedκ values of(732.13,809.53,1000.04), while soft-moVMF
reportedκ values of(731.55,808.21,1002.95).

Table 5 shows the confusion matrices obtained for the Classic300 data set. Even though Clas-
sic300 is well separated, the small number of documents per cluster makes theproblem somewhat
difficult for fskmeans andspkmeans, while hard-moVMF has a much better performance due to
its model flexibility. Thesoft-moVMF algorithm performs appreciably better than the other three
algorithms.

It seems that the low number of documents does not pose a problem forsoft-moVMF and it ends
up getting an almost perfect clustering for this data set. Thus in this case, despite the low number
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fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
1019 0 0 1019 0 0 1018 0 0 1019 0 1

1 6 1386 1 6 1386 2 6 1387 1 4 1384
13 1454 12 13 1454 12 13 1454 11 13 1456 13

Table 4: Comparative confusion matrices for 3 clusters of Classic3 (rowsrepresent clusters).

fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
29 38 22 29 38 22 3 72 1 0 98 0
31 27 38 31 27 38 62 28 17 99 2 0
40 35 40 40 35 40 35 0 82 1 0 100

Table 5: Comparative confusion matrices for 3 clusters of Classic300.

of points per cluster, the superior modeling power of our moVMF based algorithms prevents them
from getting trapped in inferior local-minima as compared to the other algorithms—resulting in a
better clustering.

The confusion matrices obtained for the Classic400 data set are displayedin Table 6. The behav-
ior of the algorithms for this data set is quite interesting. As before, due to the small number of docu-
ments per cluster,fskmeans andspkmeans give a rather mixed confusion matrix. Thehard-moVMF
algorithm gets a significant part of the bigger cluster correctly and achieves some amount of sepa-
ration between the two smaller clusters. Thesoft-moVMF algorithm exhibits a somewhat intriguing
behavior. It splits the bigger cluster into two, relatively pure segments, and merges the smaller two
into one cluster. When 4 clusters are requested fromsoft-moVMF, it returns 4 very pure clusters
(not shown in the confusion matrices) two of which are almost equal sized segments of the bigger
cluster.

An engaging insight into the working of the algorithms is provided by considering their cluster-
ing performance when they are requested to produce greater than the “natural” number of clusters.
In Table 7 we show the confusion matrices resulting from 5 clusters of the Classic3 corpus. The
matrices suggest that the moVMF algorithms have a tendency of trying to maintain larger clusters
intact as long as possible, and breaking them into reasonably pure and comparably sized parts when
they absolutely must. This behavior of our moVMF algorithms coupled with the observations in Ta-
ble 6, suggest a clustering method in which one could generate a slightly higher number of clusters
than required, and then agglomerate them appropriately.

The MI plots for the various Classic3 data sets are given in Figures 2(a)-(c). For the full Clas-
sic3 data set (Figure 2(a)), all the algorithms perform almost similarly at the true number of clusters.
However, as the number of clusters increases,soft-moVMF seems to outperform the others by a sig-
nificant margin. For Classic300 (Figure 2(b)) and Classic400 (Figure 2(c)), soft-moVMF seems to
significantly outperform the other algorithms. In fact, for these two data sets, soft-moVMF per-
forms substantially better than the other three, even at the correct number of clusters. Among the
other three,hard-moVMF seems to perform better thanspkmeans andfskmeans across the range of
clusters.
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(a) Comparison of MI values for Classic3. (b) Comparison of MI values for Classic300.
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(c) Comparison of MI values for Classic400. (d) Comparison of MI values for Yahoo20.

Figure 2: Comparison of the algorithms for the Classic3 data sets and the Yahoo News data set.
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fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
27 16 55 27 17 54 56 28 20 0 0 91
51 83 12 51 82 12 44 72 14 82 99 2
23 1 132 23 1 133 1 0 165 19 1 106

Table 6: Comparative confusion matrices for 3 clusters of Classic400.

fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran

2 4 312 2 4 323 3 5 292 0 1 1107
8 520 10 8 512 9 511 1 0 5 1455 14
5 936 6 5 944 6 514 1 0 526 2 1

1018 0 1 1018 0 1 0 2 1093 501 0 0
0 0 1069 0 0 1059 5 1451 13 1 2 276

Table 7: Comparative confusion matrices for 5 clusters of Classic3.

6.5 Yahoo News Data Set

The Yahoo News data set is a relatively difficult data set for clustering since it has a fair amount of
overlap among its clusters and the number of points per cluster is low. In addition, the clusters are
highly skewed in terms of their comparative sizes.

Results for the different algorithms can be seen in Figure 2(d). Over the entire range,soft-moVMF
consistently performs better than the other algorithms. Even at the correct number of clustersk= 20,
it performs significantly better than the other algorithms.

6.6 CMU Newsgroup Family of Data Sets

Now we discuss clustering performance of the four algorithms on the CMU Newsgroup data sets.
Figure 3(a) shows the MI plots for the full News20 data set. All the algorithmsperform similarly
until the true number of clusters after whichsoft-moVMF andspkmeans perform better than the
others. We do not notice any interesting differences between the four algorithms from this Figure.

Figure 3(b) shows MI plots for the Small-News20 data set and the results are of course different.
Since the number of documents per cluster is small (100), as beforespkmeans andfskmeans do not
perform that well, even at the true number of clusters, whereassoft-moVMF performs considerably
better than the others over the entire range. Again,hard-moVMF exhibits good MI values until the
true number of clusters, after which it falls sharply. On the other hand, for the data sets that have a
reasonably large number of documents per cluster, another kind of behavior is usually observed. All
the algorithms perform quite similarly until the true number of clusters, after which soft-moVMF
performs significantly better than the other three. This behavior can be observed in Figures 3(d),
3(f) and 4(b). We note that the other three algorithms perform quite similarly over the entire range of
clusters. We also observe that for an easy data set like Different-1000, the MI values peak at the true
number of clusters, whereas for a more difficult data set such as Similar-1000 the MI values increase
as the clusters get further refined. This behavior is expected since the clusters in Similar-1000 have
much greater overlap than those in Different-1000.
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(a) Comparison of MI values for News20. (b) Comparison of MI values for Small-news20.

2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n 

va
lu

e

MI values on small−news20−diff3

fskmeans
spkmeans
hard−movMF
soft−movMF

2 3 4 5 6 7 8 9 10 11
0.4

0.6

0.8

1

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n 

va
lu

e

MI values on news20−diff3

fskmeans
spkmeans
hard−movMF
soft−movMF

(c) Comparison of MI values for Different-100. (d) Comparison of MI values for Different-1000.
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(e) Comparison of MI values for Similar-100. (f) Comparison of MI valuesfor Similar-1000.

Figure 3: Comparison of the algorithms for the CMU Newsgroup and some subsets.
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(a) Comparison of MI values for Same-100. (b) Comparison of MI valuesfor Same-1000.

Figure 4: Comparison of the algorithms for more subsets of CMU Newsgroupdata.

6.7 Yeast Gene Expression Data Set

The gene data set that we consider differs from text data in two major aspects. First, the data can
have negative values, and second, we do not know the true labels for the data points.

Owing to the absence of true cluster labels for the data points, we evaluate theclusterings by
computing certain internal figures of merit. These internal measures have been earlier employed for
evaluating clustering of genes (e.g., Sharan and Shamir, 2000). LetX = {x1,x2, . . .xn} be the set
of data that is clustered into disjoint clustersX1, . . . ,Xk. Let µ j denote the mean vector of thej-th
cluster (1≤ j ≤ k). The homogeneity of the clustering is measured by

Havg =
1
|X |

k

∑
j=1

∑
x∈X j

x
T
µ j

‖x‖‖µ j‖
. (6.1)

As can easily be seen, a higher homogeneity means that the individual elements of each cluster are
quite similar to the cluster representative. We also take note of the minimum similarity

Hmin = min
1≤ j≤k
x∈X j

x
T
µ j

‖x‖‖µ j‖
. (6.2)

BothHavg andHmin provide a measure of the intra-cluster similarity. We now define the inter-cluster
separation as

Savg =
1

∑i6= j |Xi ||X j |∑i6= j

|Xi‖X j |
µ

T
i µ j

‖µi‖‖µ j‖
. (6.3)

We also take note of the maximum inter-cluster similarity

Smax= max
i6= j

µ
T
i µ j

‖µi‖‖µ j‖
. (6.4)

It is easily seen that for a “good” clusteringSavg andSmax should be low.
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Recently, researchers (Segal et al., 2003; Lee et al., 2004) have started looking at supervised
methods of evaluating the gene clustering results using public genome databases such as the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) and the gene ontology (GO). As of now, the
evaluation techniques are still evolving and there is no consensus on how tobest use the databases.
For example, it is becoming clear that a pairwise precision-recall analysis of gene pairs may not
be useful since the databases are currently incomplete due to lack of knowledge about all genes.
In the recent past, progress has been made in terms of supervised evaluation and online tools such
as GoMiner (GoMiner03) have been developed. As future work, we would like to evaluate the
performance of our proposed algorithms using such tools.

Figure 5 shows the various cluster quality figures of merit as computed for clusters of our gene
expression data. A fact that one immediately observes is thathard-moVMF consistently performs
better than all the other algorithms. This comes as somewhat of a surprise, because in almost all
other data sets,soft-moVMF performs better (though, of course, the measures of evaluation are
different for gene data as compared to the other data sets that we considered). Note that the figures
of merit forsoft-moVMF are computed after “hardening” the clustering results that it produced.
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Figure 5: Measures of cluster quality for gene data.
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We see from Figure 5(a) that bothhard-moVMF andsoft-moVMF yield clusters that are much
more homogeneous than those furnished byfskmeans andspkmeans. The inter-cluster similar-
ities, as measured bySavg andSmax are again the lowest forhard-moVMF, thereby indicating that
hard-moVMF gives the best separated clusters of all the four algorithms. Though the inter-cluster
similarities do not differ that much between the four algorithms,soft-moVMF seems to be forming
clusters with higher inter-cluster similarity than other algorithms. We could explainthis behavior
of soft-moVMF by noting that it tends to form overlapping clusters (because of soft-assignments)
and those clusters remain closer even after hardening. SinceHavg essentially measures the average
cosine similarity, we note that using our moVMF based algorithms, we are able to achieve clusters
that are more coherent and better separated—a fact that could be attributed to the richer model em-
ployed by our algorithms. An inescapable observation is that our vMF based algorithms obtain a
better average cosine similarity thanspkmeans, implying that the richer vMF model allows them to
escape the local minima that trapspkmeans.

6.8 Running Time

This section shows a brief report of the running time differences betweenhard-moVMF andsoft-moVMF.
Table 8 shows these comparisons. These running time experiments were performed on an AMD
Athlon based computer running the Linux operating system. From Table 8 we see thathard-moVMF

Clusters Classic300 Classic3 News20
3 0.39s/11.56s 3.03s/109.87s 10.18s/619.68s
5 0.54s/17.99s 3.59s/163.09s 14.05s/874.13s
10 - - 18.9s/1512s
20 - - 29.08s/3368s

Table 8: Running time comparison betweenhard-moVMF andsoft-moVMF. The times are indicated
in the format “hard-moVMF/ soft-moVMF”.

runs much faster thansoft-moVMF, and this difference becomes even greater when the number of
clusters desired becomes higher.

7. Discussion

The mixture of vMF distributions gives a parametric model-based generalization of the widely used
cosine similarity measure. As discussed in Section 5.1, the spherical kmeans algorithm that uses
cosine similarity arises as a special case of EM on mixture of vMFs when, among other things,
the concentrationκ of all the distributions is held constant. Interestingly, an alternative and more
formal connection can be made from an information geometry viewpoint (Amari, 1995). More
precisely, consider a data set that has been sampled following a vMF distribution with a givenκ, say
κ = 1. Assuming the Fisher-Information matrix is identity, the Fisher kernel similarity (Jaakkola
and Haussler, 1999) corresponding to the vMF distribution is given by

K(xi ,x j) = (∇µ ln f (xi |µ))T(∇µ ln f (x j |µ)) (see (2.1))

= (∇µ(µT
xi))

T(∇µ(µT
x j)) = x

T
i x j ,
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which is exactly the cosine similarity. This provides a theoretical justification fora long-practiced
approach in the information retrieval community.

In terms of performance, the magnitude of improvement shown by thesoft-movMF algorithm
for the difficult clustering tasks was surprising, especially since for low-dimensional non-directional
data, the improvements using a soft, EM-basedkmeans or fuzzy kmeans over the standard hard-
assignment based versions are often quite minimal. In particular, we were curious regarding a
couple of issues: (i) why issoft-movMF performing substantially better thanhard-movMF, even
though the final probability values obtained bysoft-movMF are actually very close to 0 and 1; and
(ii) why is soft-movMF, which needs to estimate more parameters, doing better even when there are
insufficient number of points relative to the dimensionality of the space.

It turns out that both these issues can be understood by taking a closer look at howsoft-moVMF
converges. In all our experiments, we initializedκ to 10, and the initial centroids to small ran-
dom perturbations of the global centroid. Hence, forsoft-movMF, the initial posterior membership
distributions of the data points are almost uniform and the Shannon entropy ofthe hidden random
variables is very high. The change of this entropy over iterations for the News20 subsets is presented
in Figure 6. The behavior is similar for all the other data sets that we studied. Unlike kmeans-based
algorithms where most of the relocation happens in the first two or three iterations with only minor
adjustments later on, insoft-movMF the data points are noncommittal in the first few iterations, and
the entropy remains very high (the maximum possible entropy for 3 clusters can be log23= 1.585).
The cluster patterns are discovered only after several iterations, and the entropy drops drastically
within a small number of iterations after that. When the algorithm converges, theentropy is prac-
tically zero and all points are effectively hard-assigned to their respective clusters. Note that this
behavior is strikingly similar to (locally adaptive) annealing approaches where κ can be considered
as the inverse of the temperature parameter. The drastic drop in entropy after a few iterations is the
typical critical temperature behavior observed in annealing.

As text data has only non-negative features values, all the data points lie inthe first orthant of
the d-dimensional hypersphere and hence, are naturally very concentrated. The gene-expression
data, though spread all over the hypersphere seemed to have some high concentration regions. In
either case, the finalκ values on convergence are very high, reflecting the concentration in thedata,
and implying a low final temperature from the annealing perspective. Then,initializing κ to a low
value, or equivalently a high temperature, is a good idea because in that case whensoft-movMF is
running, theκ values will keep on increasing over successive iterations to get to its finallarge values,
giving the effect of a decreasing temperature in the process, without any explicit deterministic an-
nealing strategy. Also different mixture components can take different values ofκ, as automatically
determined by the EM algorithm itself, and need not be controlled by any external heuristic. The
cost of the added flexibility insoft-moVMF overspkmeans is the extra computation in estimating
the κ values. Thus thesoft-movMF algorithm provides a trade-off between modeling power and
computational demands, but one that judging from the empirical results, seems quite worthwhile.
Thehard-movMF algorithm, instead of using the more general vMF model, suffers because of hard-
assignments from the very beginning. Thefskmeans andspkmeans do not do well for difficult data
sets due to their hard assignment scheme as well as their significantly less modeling capabilities.

Finally, a word on model selection, since choosing the number of clusters remains one of the
widely debated topics in clustering (McLachlan and Peel, 2000). Banerjeeand Langford (2004)
have proposed a new objective criterion for evaluation and model-selection for clustering algo-
rithms: how well does the clustering algorithm perform as a prediction algorithm. The prediction
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Figure 6: Variation of Entropy of hidden variables with number of Iterations(soft-movMF).

accuracy of the clustering is measured by the PAC-MDL bound (Blum and Langford, 2003; Baner-
jee and Langford, 2004) that upper-bounds the error-rate of predictions on the test-set. The way to
use it for model-selection is quite straight-forward: among a range of number of clusters, choose
the one that achieves the minimum bound on the test-set error-rate. Experiments on model selection
applied to several clustering algorithms were reported by Banerjee and Langford (2004). Interest-
ingly, the movMF-based algorithms almost always obtained the ‘right number of clusters’—in this
case, the underlying labels in the data set were actually known and the number of labels were con-
sidered to be the right number of clusters. It is important to note that this formof model-selection
only works in a semi-supervised setting where a little amount of labeled data is available for model
selection.

8. Conclusions and Future Work

From the experimental results, it seems that certain high-dimensional data sets, including text and
gene-expression data, have properties that match well with the modeling assumptions of the vMF
mixture model. This motivates further study of such models. For example, one can consider a hybrid
algorithm that employssoft-moVMF for the first few (more important) iterations, and then switches
tohard-moVMF for speed, and measure the speed-quality tradeoff that this hybrid approach provides.
Another possible extension would be to consider an online version of the EM-based algorithms as
discussed in this paper, developed along the lines of Neal and Hinton (1998). Online algorithms are
particularly attractive for dealing with streaming data when memory is limited, and for modeling
mildly non-stationary data sources. We could also adapt a local search strategy such as the one
in Dhillon et al. (2002a), for incremental EM to yield better local minima for both hard and soft-
assignments.

The vMF distribution that we considered in the proposed techniques is one of the simplest para-
metric distributions for directional data. The iso-density lines of the vMF distribution are circles on
the hypersphere, i.e., all points on the surface of the hypersphere at aconstant angle from the mean
direction. In some applications, more general iso-density contours may be desirable. There are
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more general models on the unit sphere, such as the Bingham distribution, the Kent distribution, the
Watson distribution, the Fisher-Bingham distribution, the Pearson type VII distributions (Shimizu
and Iida, 2002; Mardia and Jupp, 2000), etc., that can potentially be moreapplicable in the general
setting. For example, the Fisher-Bingham distributions have added modeling power since there are
O(d2) parameters for each distribution. However, the parameter estimation problem,especially in
high-dimensions, can be significantly more difficult for such models, as moreparameters need to
estimated from the data. One definitely needs substantially more data to get reliable estimates of the
parameters. Further, for some cases, e.g., the Kent distribution, it can bedifficult to solve the esti-
mation problem in more than 3-dimensions (Peel et al., 2001). Hence these more complex models
may not be viable for many high-dimensional problems. Nevertheless, the tradeoff between model
complexity (in terms of the number of parameters and their estimation), and sample complexity
needs to be studied in more detail in the context of directional data.
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Appendix A. Derivations

For reference, we provide the derivation of Maximum Likelihood Estimates (MLE) for data drawn
for a single vMF distribution (Section A.1), and Expectation Minimization update formulae for data
drawn from a mixture ofk vMF distributions (Section A.2).

A.1 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the parameters ofa single vMF
distribution. LetX be a finite set of sample unit vectors drawn independently followingf (x|µ,κ)
(see 2.1), i.e.,

X = {xi ∈ S
d−1 | xi follows f (x|µ,κ) for 1≤ i ≤ n}.

GivenX we want to find maximum likelihood estimates for the parametersµ andκ of the distribu-
tion f (x|µ,κ). Assuming thexi to be independent and identically distributed, we can rewrite the
likelihood of X as

P(X |µ,κ) = P(x1, . . . ,xn|µ,κ) =
n

∏
i=1

f (xi |µ,κ) =
n

∏
i=1

cd(κ)eκµ
T
xi . (A.1)

Taking the logarithm on both sides of (A.1) we obtain

lnP(X |µ,κ) = nlncd(κ)+κµ
T
r, (A.2)

wherer = ∑i xi . To obtain the maximum likelihood estimates ofµ and κ, we have to maxi-
mize (A.2), subject to the constraintsµT

µ = 1 andκ ≥ 0. Introducing a Lagrange multiplierλ,
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the Lagrangian of the objective function is given by5

L(µ,κ,λ;X ) = nlncd(κ)+κµ
T
r +λ(1−µ

T
µ). (A.3)

Differentiating the Lagrangian (A.3) with respect toµ, λ andκ and setting the derivatives to zero,
we get the following equations that the parameter estimates ˆµ, λ̂ andκ̂ must satisfy:

µ̂ =
κ̂
2λ̂

r, (A.4a)

µ̂
T
µ̂ = 1, (A.4b)

nc′d(κ̂)

cd(κ̂)
=−µ̂

T
r. (A.4c)

Substituting (A.4a) in (A.4b) gives us

λ̂ =
κ̂
2
‖r‖, (A.5)

and µ̂ =
r

‖r‖ =
∑n

i=1xi

‖∑n
i=1xi‖

. (A.6)

Substituting ˆµ from (A.6) in (A.4c) we obtain

c′d(κ̂)

cd(κ̂)
=−‖r‖

n
=−r̄. (A.7)

For brevity, let us writes= d/2−1 andξ = (2π)s+1; on differentiating (2.2) with respect toκ, we
obtain

c′d(κ) =
sκs−1

ξIs(κ)
− κsI ′s(κ)

ξI2
s (κ)

.

The right-hand-side simplifies to

κs

ξIs(κ)

(

s
κ
− I ′s(κ)

Is(κ)

)

= cd(κ)

(

s
κ
− I ′s(κ)

Is(κ)

)

.

Using the following well known recurrence relation (see Abramowitz and Stegun (1974, Sec. 9.6.26)),

κIs+1(κ) = κI ′s(κ)−sIs(κ),

we find that
−c′d(κ)

cd(κ)
=

Is+1(κ)

Is(κ)
=

Id/2(κ)

Id/2−1(κ)
.

Thus we can obtain the estimateκ̂ by solving

Ad(κ̂) = r̄, (A.8)

whereAd(κ) =
Id/2(κ)

Id/2−1(κ) and ¯r = ‖r‖/n. SinceAd(κ) is a ratio of Bessel functions, it is not possible

to obtain a closed form expression forA−1
d . We have to take recourse to numerical or asymptotic

methods to obtain an approximation forκ.

5. Strictly speaking, we should introduce the inequality constraint in the Lagrangian forκ, and work with the necessary
KKT conditions. However ifκ = 0 then f (x|µ,κ) is the uniform distribution on the sphere, and ifκ > 0 then the
multiplier for the inequality constraint has to be zero by the KKT condition, so the Lagrangian in (A.3) is adequate.
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A.2 Expectation Maximization (EM)

Suppose the posterior distribution,p(h|xi ,Θ), of the hidden variablesZ|(X ,Θ) is known. Unless
otherwise specified, henceforth all expectations will be taken over the distribution of the (set of)
random variable(s)Z|(X ,Θ). Expectation of the complete data log-likelihood (see 3.2) over the
given posterior distributionp can be written as

Ep[lnP(X ,Z|Θ)] =
n

∑
i=1

Ep[ln(αzi fzi (xi |θzi ))]

=
n

∑
i=1

k

∑
h=1

ln(αh fh(xi |θh)) p(h|xi ,Θ)

=
k

∑
h=1

n

∑
i=1

(lnαh) p(h|xi ,Θ)+
k

∑
h=1

n

∑
i=1

(ln fh(xi |θh)) p(h|xi ,Θ).

(A.9)

In the parameter estimation or M-step,Θ is re-estimated so that the above expression is maximized.
Note that for maximizing this expectation we can separately maximize the terms containing αh and
θh as they are unrelated (observe thatp(h|xi ,Θ) is fixed).

To maximize the expectation with respect to eachαh we introduce a Lagrangian multiplierλ
corresponding to the constraint∑k

h=1 αh = 1. We form the Lagrangian, and take partial derivatives
with respect to eachαh obtaining

n

∑
i=1

p(h|xi ,Θ) =−λα̂h. (A.10)

On summing both sides of (A.10) over allh we find thatλ =−n, hence

α̂h =
1
n

n

∑
i=1

p(h|xi ,Θ). (A.11)

Next we concentrate on terms containingθh = (µh,κh) under the constraintsµT
h µh = 1 andκh≥ 0

for 1≤ h≤ k. Let λh be the Lagrange multiplier corresponding to each equality constraint (see
footnote on page 1374). The Lagrangian is given by

L({µh,κh,λh}kh=1) =
k

∑
h=1

n

∑
i=1

(ln fh(xi |θh)) p(h|xi ,Θ)+
k

∑
h=1

λh
(

1−µ
T
h µh

)

=
k

∑
h=1

[

n

∑
i=1

(lncd(κh)) p(h|xi ,Θ)+
n

∑
i=1

κhµ
T
h xi p(h|xi ,Θ)+λh(1−µ

T
h µh)

]

.

(A.12)

Taking partial derivatives of (A.12) with respect to{µh,λh,κh}kh=1 and setting them to zero, for
eachh we get:

µh =
κh

2λh

n

∑
i=1

xi p(h|xi ,Θ), (A.13a)

µ
T
h µh = 1, (A.13b)

c′d(κh)

cd(κh)

n

∑
i=1

p(h|xi ,Θ) =−µ
T
h

n

∑
i=1

xi p(h|xi ,Θ). (A.13c)
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Using (A.13a) and (A.13b) we get

λh =
κh

2

∥

∥

∥

∥

n

∑
i=1

xi p(h|xi ,Θ)

∥

∥

∥

∥

,

µh =
∑n

i=1xi p(h|xi ,Θ)

‖∑n
i=1xi p(h|xi ,Θ)‖ . (A.14)

Substituting (A.14) in (A.13c) gives us

c′d(κh)

cd(κh)
=−‖∑n

i=1xi p(h|xi ,Θ)‖
∑n

i=1 p(h|xi ,Θ)
, (A.15)

which can be written as

Ad(κh) =
‖∑n

i=1xi p(h|xi ,Θ)‖
∑n

i=1 p(h|xi ,Θ)
, (A.16)

whereAd(κ) =
Id/2(κ)

Id/2−1(κ) . Note that (A.14) and (A.16) are intuitive generalizations of (A.6) and (A.8)

respectively.

A.3 Experimental Study of the Approximation

In this section we provide a brief experimental study to assess the quality of our approximation of
the concentration parameterκ. Recall that our approximation (4.4) attempts to solve the implicit
non-linear equation

Id/2(κ)

Id/2−1(κ)
= r̄. (A.17)

We previously mentioned that for large values of ¯r (r̄ close to 1), approximation (4.1) is reason-
able; for small values of ¯r (usually for ¯r < 0.2) estimate (4.2) is quite good; Eqn. (4.4) yields good
approximations for most values of ¯r.

A particular value of ¯r may correspond to many different combinations ofκ andd values. Thus,
to assess the quality of various approximations, we need to evaluate their performance across the
(κ,d) plane. However, such an assessment is difficult to illustrate through 2-dimensional plots. To
supplement Table 1, which showed how the three approximations behave ona sampling of points
from the(κ,d) plane, in this section we present experimental results on some slices of this plane,
where we either keepd fixed and varyκ, or we keepκ fixed and varyd. For all our evaluations, the
r̄ values were computed using (A.17).

We begin by holdingd fixed at 1000, and allowκ to vary from 10 to 5010. Figure 7 shows the
values of computed̂κ (estimation ofκ) using the three approximations. From this figure one can
see that (4.1) overestimates the trueκ, while (4.2) underestimates it. However, our approximation
(4.4) is very close to the trueκ values.

Next we illustrate the quality of approximation whenκ is held fixed andd is allowed to vary.
Figure 8 illustrates how the various approximations behave as the dimensionalityd is varied from
d = 4 till d = 1454. The concentration parameterκ was set at 500 for this experiment. We see
that (4.2) catches up with the true value ofκ after approximatelyd ≥ 2κ (because the associated ¯r
values become small), whereas (4.4) remains accurate throughout.

Since all the approximations depend on ¯r (which implicitly depends onκ andd), it is illustra-
tive to also plot the approximation errors as ¯r is allowed to vary. Figure 9 shows how the three
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Figure 7: Comparison of true and approximatedκ values, withd = 1000
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Figure 8: Comparison of approximations for varyingd, κ = 500.

approximations perform as ¯r ranges from 0.05 to 0.95. Let f (d, r̄), g(d, r̄), andh(d, r̄) represent the
approximations toκ using (4.1), (4.2) and (4.4), respectively. Figure 9 displays|Ad( f (d, r̄))− r̄|,
|Ad(g(d, r̄))− r̄|, and|Ad(h(d, r̄))− r̄| for the varying ¯r values. Note that they-axis is on a log-scale
to appreciate the differences between the three approximations. We see that up to r̄ ≈ 0.18 (dashed
line on the plot), the approximation yielded by (4.2) has lower error. Thereafter, approximation (4.4)
becomes better.
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Figure 9: Comparison of approximations for varying ¯r (with d = 1000)
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