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Abstract

Several large scale data mining applications, such as #&égtjorization and gene expression anal-
ysis, involve high-dimensional data that is also inheseditectional in nature. Often such data is
L, normalized so that it lies on the surface of a unit hypersphleopular models such as (mixtures
of) multi-variate Gaussians are inadequate for charaitersuch data. This paper proposes a gen-
erative mixture-model approach to clustering directiateih based on the von Mises-Fisher (VMF)
distribution, which arises naturally for data distributed the unit hypersphere. In particular, we
derive and analyze two variants of the Expectation Maxitioza(EM) framework for estimating
the mean and concentration parameters of this mixture. Koateestimation of the concentra-
tion parameters is non-trivial in high dimensions sincewbives functional inversion of ratios of
Bessel functions. We also formulate two clustering al@ponis corresponding to the variants of EM
that we derive. Our approach provides a theoretical basithéuse of cosine similarity that has
been widely employed by the information retrieval commyraéind obtains the spherical kmeans
algorithm (kmeans with cosine similarity) as a special aafdgoth variants. Empirical results on
clustering of high-dimensional text and gene-expressaia dased on a mixture of vMF distribu-
tions show that the ability to estimate the concentratioapeter for each vMF component, which
is not present in existing approaches, yields superioftsegspecially for difficult clustering tasks
in high-dimensional spaces.

Keywords: clustering, directional distributions, mixtures, von klsFisher, expectation maxi-
mization, maximum likelihood, high dimensional data
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1. Introduction

Clustering or segmentation of data is a fundamental data analysis step thaemaactively inves-
tigated by many research communities over the past few decades (Jainbes, 0988). However,
traditional methods for clustering data are severely challenged by a vafietymplex charac-
teristics exhibited by certain recent data sets examined by the machine leantirdata mining
communities. These data sets, acquired from scientific domains and the videldveb, also im-
pose significant demands on scalability, visualization and evaluation of thgsteethods (Ghosh,
2003). In this paper we focus on clustering objects such as text dotsizieth gene expressions,
where the complexity arises from their representation as vectors thavtaoealg very high dimen-
sional (and often sparse) but aldicectional i.e., the vector direction is relevant, not its magnitude.

One can broadly categorize clustering approaches to be either geadaddo known as para-
metric or probabilistic) (Smyth, 1997; Jaakkola and Haussler, 1999)anmigative (non-parametric)
(Indyk, 1999; Schlkopf and Smola, 2001). The performance of an approach, and oécfisp
method within that approach, is quite data dependent; there is no clusteringdtie#t works the
best across all types of data. Generative models, however, ofteid@rgreater insight into the
anatomy of the clusters. A lot of domain knowledge can be incorporatedemergtive models, so
that clustering of data uncovers specific desirable patterns that onéiisgdor.

Clustering algorithms using the generative model framework, often invehaparopriate ap-
plication of the Expectation Maximization (EM) algorithm (Dempster et al., 19731, &¢hlan and
Krishnan, 1997) on a properly chosen statistical generative mod#idatata under consideration.
For vector data, there are well studied clustering algorithms for poputeargtive models such as a
mixture of multivariate Gaussians, whose effect is analogous to the useld&an or Mahalanobis
type distances as the chosen measure of distortion from the discriminathpeptve.

The choice of a particular distortion measure (or the correspondingaememodel) can be
crucial to the performance of a clustering procedure. There areael@mains where methods
based on minimizing Euclidean distortions yield poor results (Strehl et al.,)20a8 example,
studies in information retrieval applications convincingly demonstrasine similarityto be a more
effective measure of similarity for analyzing and clustering text documémthis domain, there is
substantial empirical evidence that normalizing the data vectors helps toe¢h®biases induced
by the length of a document and provide superior results (Salton and M&8#8B; Salton and
Buckley, 1988). Further, the spherical kmeasisk(reans) algorithm (Dhillon and Modha, 2001),
that performs kmeans using cosine similarity instead of Euclidean distortisbgesm found to work
well for text clustering. Data Sets from such domains, where similarity messurch as cosine,
Jaccard or Dice (Rasmussen, 1992) are more effective than medstivesl from Mahalanobis type
distances, possess intrinsic “directional” characteristics, and are better modeled aBrectional
data(Mardia and Jupp, 2000).

There are many other important domains such as bioinformatics (e.g., Eisén(£998)),
collaborative filtering (e.g., Sarwar et al. (2001)) etc., in which directiola@a is encountered.
Consider the Pearson correlation coefficient, which is a popular similaritgunean both these
domains . Giv%\m:,y € RY, the Pearson product moment correlation between them is given by
Pa.y)= ¢zf‘j<i;1—(i‘l);_3(;f’jyi—wz’ wherex= 35, x,y= 15",y Consider the mapping — &

such thatx™= ﬁ and a similar mapping fay. Then we have(z,y) = &"4. Moreover,
=1\~

1. This paper treatis; normalized data and directional data as synonymous.
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lZ]|2 = ||g|l2 = 1. Thus, the Pearson correlation is exactly the cosine similarity betwesel 3.
Hence, analysis and clustering of data using Pearson correlationsiigialg a clustering problem
for directional data.

1.1 Contributions

In this papet we present a generative model, consisting of a mixture of von Mises+RiskiE)
distributions, tailored for directional data distributed on the surface oftdaypersphere. We derive
two clustering algorithms based on EM for estimating the parameters of the mixtded fram first
principles. The algorithm involves estimatingcancentrationparameterk, for high dimensional
data. The ability to adapt on a per-component basis leads to substantial performance improve-
ments over existing generative approaches to modeling directional datasshdWea connection
between the proposed methods and a class of existing algorithms for clgstggindimensional
directional data. In particular, our generative model has the same relapknmeans as a model
based on a mixture of unit covariance Gaussians has to clakseahs that uses squared Eu-
clidean distances. We also present detailed experimental comparisomsprbfosed algorithms
with spkneans and one of its variants. Our formulation uncovers the theoretical justificaébmd
the use of the cosine similarity measure that has largely been ad-hoc, ied, dragmpirical or
intuitive justification, so far.

Other key contributions of the paper are:

e It exposes the vMF model to the learning community and presents a detaikatgiar es-
timation method for learning mixtures of vMF distributions in high-dimensions. iBusly
known parameter estimates for vMF distributions are reasonable only fediloensional
data (typically only 2 or 3 dimensional data is considered) and are hen@pplicable to
many modern applications such as text clustering.

e We show that hard assignments maximize a tight lower bound on the incompléditesitigpod
function. In addition, our analysis of hard assignments is applicable to anymimodel
learning using EM. This result is particularly important when using mixturegs since
the computational needs for hard assignments are lower than what issfprithe standard
soft assignments (E-step) for these models.

e Extensive experimental results are provided on benchmark text aedeg@nession data sets
to show the efficacy of the proposed algorithms for high-dimensional,taired data. Good
results are obtained even for fairly skewed data sets. A recent stade(e and Langford,
2004) using PAC-MDL bounds for evaluation of clustering algorithms atsnahstrated the
efficacy of the proposed approaches.

e An explanation of the superior performance of the soft-assignmentitgois obtained by
drawing an analogy between the observed cluster formation behavidoeaity adaptive
annealing. See Section 7 for further details.

2. An earlier, short version of this paper appeared@anerative Model-based Clustering of Directional DataPro-
ceedings KDD, 2003.
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1.2 Related Work

There has been an enormous amount of work on clustering a wide vdriitiacsets across multiple
disciplines over the past fifty years (Jain and Dubes, 1988). The mehiedented in this paper are
tailored for high-dimensional data with directional characteristics, ratlaerfthr arbitrary data sets.
In the learning community, perhaps the most widely studied high-dimensioeatidinal data stem
from text documents represented by vector space models. Much of thénthis domain uses dis-
criminative approaches (Steinbach et al., 2000; Zhao and Karypig).2B0r example, hierarchical
agglomerative methods based on cosine, Jaccard or Dice coefficigmtdeveinant for text cluster-
ing till the mid-1990s (Rasmussen, 1992). Over the past few yearsaseesy approaches, ranging
from spectral partitioning (Kannan et al., 2000; Zhao and Karypis42d0 the use of generative
models from the exponential family, e.g., mixture of multinomials or Bernoulli disiobs (Nigam
et al., 2000) etc., have emerged. A fairly extensive list of referencegeaerative approaches to
text clustering can be found in (Zhong and Ghosh, 2003a).

Of particular relevance to this work is tlsgpkneans algorithm (Dhillon and Modha, 2001),
which adapts thé&nmeans algorithm to normalized data by using the cosine similarity for cluster
allocation, and also by re-normalizing the cluster means to unit length.sgikmeans algorithm
is superior to regulakmeans for high-dimensional text data, and competitive or superior in both
performance and speed to a wide range of other existing alternatiiexfatustering (Strehl et al.,
2000). It also provides better characterization of clusters in terms of tibygirepresentative or
discriminative terms.

The larger topic of clustering very high-dimensional data (dimension in thestmals or more),
irrespective of whether it is directional or not, has also attracted griemest lately. Again, most of
the proposed methods of dealing with the curse of dimensionality in this cootew fa density-
based heuristic or a discriminatory approach (Ghosh, 2003). Amongraiare approaches for
clustering high-dimensional data, perhaps the most noteworthy is onestssiaw dimensional
projections of mixtures of Gaussians (Dasgupta, 1999). It turns cubtigeof our proposed meth-
ods alleviates problems associated with high dimensionality via an implicit locahkmgbéehavior.

The vMF distribution is known in the literature on directional statistics (MardiaJapp, 2000),
and the maximum likelihood estimates (MLE) of the parameters have been givarsingle dis-
tribution. Recently Piater (2001) obtained parameter estimates for a mixtuoirdatar, i.e., 2-
dimensional vMFs. In an Appendix to his thesis, Piater (2001) starts orVafoEnulation for
2-D vMFs but cites the difficulty of parameter estimation (especiallgnd eventually avoids do-
ing EM in favor of another numerical gradient descent based scherendy et al. (2003) use a
mixture of two circular von Mises distributions to estimate the parameters usingsaiewton
procedure. Wallace and Dowe (2000) perform mixture modeling for leiroron Mises distribu-
tions and have produced a software called Snob that implements their idekacian and Peel
(2000) discuss mixture analysis of directional data and mention the possibilisyng Fisher distri-
butions (3-dimensional vMFs), but instead use 3-dimensional Kent distits (Mardia and Jupp,
2000). They also mention work related to the clustering of directional datalbthe efforts in-
cluded by them are restricted to 2-D or 3-D vMFs. Indeed, McLachlahReel (2000) also draw
attention to the difficulty of parameter estimation even for 3-D vMFs. Even $imgle component,
the maximume-likelihood estimate for the concentration parameterolves inverting a ratio of
two Bessel functions, and current ways of approximating this operatmimadequate for high-
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dimensional data. It turns out that our estimateddranslates into a substantial improvement in
the empirical results.

The connection between a generative model involving vMF distributions witistantk and
the spkneans algorithm was first observed by Banerjee and Ghosh (2002). A vatiah could
adapt in an on-line fashion leading to balanced clustering solutions watged by Banerjee and
Ghosh (2004). Balancing was encouraged by taking a frequemsjtise competitive learning ap-
proach in which the concentration of a mixture component was made invgreglgrtional to the
number of data points already allocated to it. Another online competitive leassimgme using
vMF distributions for minimizing a KL-divergence based distortion was psepoby Sinkkonen
and Kaski (2001). Note that the full EM solution was not obtained or enguloy either of these
works. Recently a detailed empirical study of several generative manletko€ument clustering,
including a simple mixture-of-vMFs model that constrains the concentratiorie the same for all
mixture components during any iteration was presented by Zhong and @@&8b). Even with
this restriction, this model was superior to both hard and soft versions ltiariate Bernoulli and
multinomial models. These positive results further motivate the current papdiich we present
the general EM solution for parameter estimation of a mixture of vMF distributibhis enhance-
ment leads to even better clustering performance for difficult clusterikg:tagen clusters overlap,
when cluster sizes are skewed, and when cluster sizes are small relatieedimensionality of the
data. In the process, several new, key insights into the nature of Basdft mixture modeling and
the behavior of vMF based mixture models are obtained.

The remainder of the paper is organized as follows. We review the multitwarMaF distri-
bution in Section 2. In Section 3 we introduce a generative model using a micfwmMF distri-
butions. We then derive the maximum likelihood parameter estimates of this modeifdgying
an EM framework. Section 4 highlights our new method of approximakirand also presents
a mathematical analysis of hard assignments. Sections 3 and 4 form thedpasie tlustering
algorithms using soft and hard-assignments respectively, that aregaewjn Section 5. Detailed
experimental results and comparisons with other algorithms are offerediiois6. A discussion
on the behavior of our algorithms and a connection with simulated annealing/$atioSection 7.
Section 8 concludes our paper and highlights some possible directionguoe fvork.

Notation. Bold faced variables, e.gr, u represent vectors; the norfm|| denotes thé, norm;
sets are represented by script-style upper-case lettersXe.g., The set of reals is denoted B
while S9! denotes théd — 1)-dimensional sphere embeddedifA. Probability density functions
are denoted by lower case letters such ag, g and the probability of a set of events is denoted by
P. If a random vector is distributed ag(-), expectations of functions af are denoted b¥,|-].

2. Preliminaries

In this section, we review the von Mises-Fisher distribution and maximum likdlilestimation of
its parameters from independent samples.

2.1 Thevon Mises-Fisher (vMF) Distribution

A d-dimensional unit random vectar (i.e.,z € RY and||z|| = 1, or equivalently: € S4-1) is said
to haved-variate von Mises-Fisher (vMF) distribution if its probability density functi®given by

f (2|, K) = Ca(K)EH', (2.1)
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wherel||u|| = 1,k > 0 andd > 2. The normalizing constaig(K) is given by
Kd/2-1
(2r99/214/2-1(K)’

wherel,(-) represents the modified Bessel function of the first kind and ardeThe density
f(x|pu,K) is parameterized by the mean directi@nand theconcentrationparametek, so-called
because it characterizes how strongly the unit vectors drawn acgaodifiz |, K) are concentrated
about the mean directign. Larger values ok imply stronger concentration about the mean direc-
tion. In particular wherk = 0, f(z|u,K) reduces to the uniform density &1, and ax — oo,
f(x|p,K) tends to a point density. The interested reader is referred to Mardiaugpd(2000),
Fisher (1996) or Dhillon and Sra (2003) for details on vMF distributions.

The vMF distribution is one of the simplest parametric distributions for diredtaeta, and has
properties analogous to those of the multi-variate Gaussian distributiontéoindgf. For example,
the maximum entropy density @7~ subject to the constraint th&fx] is fixed is a VMF density
(see Rao (1973, pp. 172-174) and Mardia (1975) for details).

Ca(K) = (2.2)

2.2 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the parametersiofjle vMF
distribution. The detailed derivation can be found in Appendix A. Xédte a finite set of sample
unit vectors drawn independently followirfdx|u,K) (2.1), i.e.,

X = {xj € Y| a; drawn following f (x|, K) for 1 <i<n}.

Given X we want to find maximum likelihood estimates for the parametesdk of the distri-
bution f (x|u,K). Assuming ther; to be independent and identically distributed, we can write the
log-likelihood of X as

INP(X|p,K) = nincg(K) +Kpe' 7, (2.3)

wherer = 5 x;. To obtain the maximum likelihood estimategofndk, we have to maximize (2.3)
subject to the constraings” u = 1 andk > 0. After some algebra (details may be found in Sec-
tion A.1) we find that the MLE solutiong &ndk may be obtained from the following equations:

T ST
p= =t (2.4)
7 I Ziiaill
Lo
and L(KZ _rl (2.5)
laj2-1(K) N

Since computing involves an implicit equation (2.5) that is a ratio of Bessel functions, it is
not possible to obtain an analytic solution, and we have to take recoursmgrioal or asymptotic
methods to obtain an approximation (see Section 4.1).

3. EM on a Mixture of vYMFs (moVMF)

We now consider a mixture dfvMF (moVMF) distributions that serves as a generative model for
directional data. Subsequently we derive the update equations for esgjitietimixture-density pa-
rameters from a given data set using the Expectation Maximization (EM) Wvarke Let f,(x|0p)
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denote a vMF distribution with paramet@ = (un,Kp) for 1 < h < k. Then a mixture of thesk
vMF distributions has a density given by

k
f(x[©) = hzldhfh(l‘\eh)’ (3.1)

where® = {ay,---,0k,01,---,6} and thea, are non-negative and sum to one. To sample a point
from this mixture density we choose theh vMF randomly with probabilityay,, and then sample a
point (onSY~1) following fn(x|6y). LetX = {x1,---,x,} be a data set af independently sampled
points that follow (3.1). Letz = {z1,--- , zn} be the corresponding set of hidden random variables
that indicate the particular vMF distribution from which the points are sampheglaiticular,z; = h

if x; is sampled fronfy(x|6h). Assuming that the values in the setare known, the log-likelihood

of the observed data is given by

INP(X, Z|©) = illn (0, f (i]05)) . (3.2)

Obtaining maximum likelihood estimates for the parameters would have been egsthez; truly
known. Unfortunately that is not the case, and (3.2) is really a randomabla dependent on the
distribution of Z—this random variable is usually called themplete data log-likelihoodFor a
given(X,0), itis possible to estimate the most likely conditional distributiorZdfX, ©), and this
estimation forms the E-step in an EM framework.

Using an EM approach for maximizing the expectation of (3.2) with the contrafiun = 1
andkp > 0, we obtain (see Appendix A.2),

= 3 plha: ), (3.3)
=S @ip(hiz:.0). (3.4
fin= (3.5)
[[7n|
laj2(Kn) [|7h]| (3.6)

laj2-1(Rn) — Iqp(hlzi,©)

Observe that (3.5) and (3.6) are intuitive generalizations of (2.4) a&l (@spectively, and they
correspond to an M-step in an EM framework. Given these parametetegydve now look at
schemes for updating the distributions Bf( X, ©) (i.e., an E-step) to maximize the likelihood of
the data given the parameters estimates above.

From the standard EM framework, the distribution of the hidden variableal(Bind Hinton,
1998; Bilmes, 1997) is given by

ap fr(xi|©)

hlzi, @) = — N W)
POl @) S o fi(xi]©)

3.7)

It can be shown (Collins, 1997) that tireomplete data log-likelihogdhn p(.X|®), is non-decreasing
at each iteration of the parameter and distribution updates. Iteration ogerttiv@ updates provides
the foundation for ousof t - moVIVF algorithm given in Section 5.
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Our second update scheme is based on the widely used hard-assigenmstichfor unsuper-
vised learning. In this case, the distribution of the hidden variables is giyen

1, if h=argmax p(N|zi,®),
q(h|xi,®) = b (3.8)

0, otherwise

We analyze the above hard-assignment rule in Section 4, and show thatritizes a lower bound
on the incomplete data log-likelihood. Iteration over the M-step and the tssigranent rule leads
to thehar d- noVMF algorithm given in Section 5.

4. Handling Large and High-Dimensional Data Sets

Although the mixture model outlined in section 3 seems quite straight-forwand éme some of
critical issues that need to be addressed before one can apply thetmtadge high-dimensional
data sets:

A. How to computep,h=1,... kfrom (3.6) for high-dimensional data?
B. Is it possible to significantly reduce computations and still get a reakoohistering?

We address both these issues in this section, as they are significangéhigh-dimensional data
sets. The problem of estimating, is analyzed in Section 4.1. In Section 4.2 we show that hard
assignments can reduce computations significantly while giving a reasahadtiering.

4.1 Approximating K

Recall that because of the lack of an analytical solution, it is not possildedotly estimate the
K values (see (2.5) and (3.6)). One may employ a nonlinear root-findesfonatingk, but for
high dimensional data, problems of overflows and numerical instabilities @lsgeh root-finders.
Therefore, an asymptotic approximationkois the best choice for estimating Such approaches
also have the benefit of taking constant computation time as opposed to atiyétenethod.
Mardia and Jupp (2000) provided approximations for estimatifay a single component (2.5),
for two limiting cases (Approximations (10.3.7) and (10.3.10) of Mardia apg JR000, pp. 198)):

N d-—1 : _
K~ 207 valid for larger, (4.2)
- d _ d?(d+8) . _

~dr 1 2 r lid f I 4.2
K dr( +d+2r +(d+2)2(d+4)r> valid for smallir, (4.2)

wherer is given by (2.5).

These approximations assume tiat> d, which is typically not valid for high dimensions
(see the discussion in Section 7 for an intuition). Also, thealues corresponding to the text
and gene expression data sets considered in this paper are in the midatiregahan in the two
extreme ranges af that are catered to by the above approximations. We obtain a more accurate

approximation fork as described below. Withy(K) = Idl;jﬁg?i) observe thaf\(K) is a ratio of
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Bessel functions that differ in their order by just one. Fortunately tbrigts a continued fraction
representation oAy (k) (Watson, 1995) given by

o) 1 (4.3)

d
dt

Aall) = lg/2-1(K) 1
T2

Letting Ag(K) = r we can write (4.3) approximately as

+r,

~
~

S|
xla

which gives the approximation,

_dar

N1
We empirically found (see Section A.3 for details) that the quality of the abppeodaimation can
be improved by adding a correction term-of3/(1—?) to it. Thus we finally get

. rd-r3

R="T—5 (4.4)
The approximation in (4.4) could perhaps be made even more accurateling ather correction
terms that are functions ofandd.? For other approximations &f(including the derivations of (4.1)
and (4.2)) and some related issues, the reader is referred to the detgibsition in Dhillon and
Sra (2003).

To properly assess the quality of our approximation and compare it with #ad.Y4.2), first
note that a particular value ofmay correspond to many different combinationkafndd values.
Thus, one needs to evaluate the accuracy of the approximations overth@fthed-k plane that
are expected to be encountered in the target application domains. Sectiafh he3 Appendix
provides such an assessment by comparing performances oveemiféices of thel-k plane and
over a range of values. Below we simply compare the accuracies at a scattering of pointson th
plane via Table 1 which shows the actual numerical valuestbét the three approximations (4.1),
(4.2), and (4.4) yielded at these points. Thalues shown in the table were computed using (2.5).

(d,r,K) | K=Eq.(4.1) K=Eq.(4.2) K=Eq.(4.4)
(10,0.63366810) 122839 936921 10.1631
(100,0.4694560) 93.2999 593643 60.0833
(500,0.46859300) 469506 296832 300.084

(1000 0.554386800) 112092 776799 800.13

Table 1: Approximationg for a sampling ok andd values.

3. Note that if one wants a more accurate approximation, it is easier teti4dgeaé a starting point and then perform
Newton-Raphson iterations for solvidg (K) —r = 0, since it is easy to evaluaf (k) = 1— Ag(k)2 — %Ad(K).
However, for high-dimensional data, accurately compufigk) can be quite slow compared to efficiently approxi-
matingk using (4.4).
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4.2 Analysisof Hard Assignments

In this subsection, we show that hard assignments should give a reésohetering in terms of the
log-likelihood since they actually maximize a tight lower bound on the incompletékelijrood of
the data. This result is applicable to any mixture model learning using EM, &yir#ttical advan-
tage in terms of lower computational demands seems to be more substantial sifigemixtures
of vMFs. The advantages are derived from the various facts outliekedvb

e First, note that the partition functio@l‘zlon fi(xi|6)), for every data point; need not be
computed for hard-assignments. This may not be a significant diffefencseveral other
models, but this is quite important for vMF distributions. Since the normalizationster
cd(Kn) in fn(xi|Bh) involve Bessel functions, any reasonable implementation of the algorithm
has to employ high-precision representation to avoid under- and oves-flé\s a result,
computing the partition function is computationally intensive. For hard assigisimgris
computation is not required resulting in substantially faster running times rficylar, hard-
assignments nee@(k) computations in high-precision per iteration simply to compute the
normalization term&y(kp),h = 1,...,k. On the other hand, soft-assignments n€dk)
computations in high-precision per iteration for &l(«;|6) so that the partition function
S, a fi(xi]6)) and the probabilitie(h|z;, ®) can be accurately computed.

e A second issue is regarding the space complexity. Since soft assignmemtsite all the
conditional probabilities, the algorithm has to maintakfloating point numbers at a desired
level of precision. On the other hand, hard assignments only need to maimadhuster
assignments of each point, i.e.jntegers. This issue can become critical for large data sets
and large number of clusters.

Hence, a hard assignment scheme is often computationally more efficiestaatle both in terms
of time and space complexity.

We begin by investigating certain properties of hard-assignments. Harghranents have seen
extensively used in the statistics (Coleman et al., 1999; McLachlan and P&€l) as well as
machine learning literature (Kearns et al., 1997; Banerjee et al., 2004 tatistics, the hard as-
signment approach is better known as classification maximum likelihood ajp(dBxtachlan,
1982). Although soft-assignments are theoretically well motivated (CollB%7;INeal and Hinton,
1998), hard-assignments have not received much theoretical attentlosame notable excep-
tions (Kearns et al., 1997). However, algorithms employing hard-assigsiigeing computation-
ally more efficient especially for large data sets, are often typically momipahthan algorithms
that use soft-assignments. Hence it is worthwhile to examine the behaviarddlsignments from
a theoretical perspective. In the rest of this section, we formally studgdaheection between soft
and hard-assignments in the EM framework.

The distributiong in (3.8) belongs to the clas® of probability distributions that assume prob-
ability value 1 for some mixture component and O for all others. In the haigrmment setting, the
hidden random variables are restricted to have distributions that are meofgr Since# is a
subset of all possible distributions on the events, for a typical mixture ntloeelistribution follow-
ing (3.7) will not belong to this subset. The important question is: Is thereyaavaptimally pick
a distribution from#, perform a regular M-step, and guarantee that the incomplete log-likelihoo
of the data does not decrease? Unfortunately, such a way may noiregesteral. However, it
is possible to reasonably lower bound the incomplete log-likelihood of the datg axpectations
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over anoptimaldistributionq € #, as elucidated below. Thus, clustering using hard-assignments
essentially maximizes a lower bound on the incomplete log-likelihood.

We now show that the expectation owgis a reasonable lower bound on the incomplete log-
likelihood of the data in the sense that the expectation gigiitself lower bounded by the expec-
tation of the complete log-likelihood (3.2) over the distributipgiven by (3.7). Further, we show
thatg as given by (3.8) gives the tightest lower bound among all distributiotis.in

Following the arguments of Neal and Hinton (1998), we introduce the fum&ti®, ®) given
by

F(p,©) =Ep[InP(X, Z|0©)] +H(p), (4.5)

whereH (p) gives the Shannon entropy of a discrete distribuforTie E- and the M-steps of the
EM algorithm can be shown lternately maximizéhe functionF. In the E-step, for a given value
of ©, the distributionp’is chosen to maximiz€ (p,©) for that®, and, in the M-step, for a given
value of g, the parameter® are estimated to maximiZe(fj, ©) for the givenp. Considerp given
by (3.7). It can be shown (Neal and Hinton, 1998) that for a gi®ethis value ofp is optimal, i.e,

p = argmaxF(p,©). Then,

F(p,@)z plINP(X, Z[®)] +H(p)
olINP(X, Z|©)] - Ep[InP(Z|(X,0))]

[In( ;f”g )] — E,INP(X|©)]

P(X|©) (4.6)

Since (3.7) gives the optimal choice of the distribution, the functional vdilkeis smaller for any
other choice op.”In particular, ifg’= g as in (3.8), we have

F(q,0) <F(p,®) =InP(X|O).
SinceH (q) = 0, from (4.5) we have
EqlInP(X, Z|©)] <InP(X|0). 4.7)

Thus, the expectation ovgractually lower bounds the likelihood of the data. We go one step further
to show that this is in fact a reasonably tight lower bound in the sense thaxpleetation oveq is
lower bounded by the expectation oyeof the complete data log-likelihood. To this end, we first
prove the following result.

Lemmal If pis given by (3.7) and q is given by (3.8) then,
Ep[INP(Z|(X,0))] < EqInP(Z|(X,0))].
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Proof Let hf = argmaxp(h|xi,®). Then,p(h|zi,®) < p(hf|zi,©),Vh. Using the definitions op
h
andg, we have

n k

Elhz p(h|zi, ©)In p(h|zi, ©)
i=1h=1

k

h|zi,®) In p(h'|xi, ©
<3 3 plhia O mp(e..©)

EplInP(2|(X,0))]

=}

k

n
= Z np(hy |i, © Z p(hlzi,©) = len p(hi'|i, ©
= = =

=}

k

— Zihz q(hlzi, ®)In p(h|x;,©)

=1
= Eq[InP(Z|(X,0))]. [

=}

Now, adding the incomplete data log-likelihood to both sides of the inequalityeprakbove, we
obtain

Ep[INP(Z](X,0))]+InP(X|©) <E4(InP(Z|(X,0))]+InP(X|O),
Ep[In(P(Z|(X,©))P(X|©))] < Eqlln(P(Z](X,©))P(X|©))],
Ep[InP(X, Z|©)] <EqInP(X, Z|O)]. (4.8)
From, (4.7) and (4.8), we infer
Ep[InP(X, Z|©)] < Eq[InP(X, Z|©)] < InP(X|0O).

Letd be any other distribution in the class of distributictswith G(hi|xi, ®) = 1 andgh|z;, © = 0)
for h#£ h;. Then,

n k
E4[InP(Z|X,0)] = Z 4(h|xi,©)In p(h|xi, ©) lenph|ac.,

n

< Zlnp h|zi,©) = _Ziz q(hlzi,©)In p(h|zi,©)
= Eq[InP(2|X,0)].

Hence, the choice af as in (3.8) is optimal. This analysis forms the basis of thed- moVM-
algorithm presented in the next section.

5. Algorithms

The developments of the previous section naturally lead to two algorithms &iedhyg directional
data. The algorithms are centered on soft and hard-assignment sciedree® titledsof t - noVMF
andhar d- mVMF respectively. Theof t - moVIVF algorithm (Algorithm 1) estimates the parameters
of the mixture model exactly following the derivations in Section 3 using EM.dderit assigns soft
(or probabilistic) labels to each point that are given by the posteriomibties of the components
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Algorithm 1 sof t - moVIVF

Input: Setx of data points or$d—1
Output: A soft clustering ofX over a mixture ok vMF distributions
Initialize all ay, pn,Kp, h=1,--- Kk
repeat
{The E (Expectation) step of EM
fori=1tondo
for h=1tokdo
(i |On) — Cq(Kp)erHn®

end for
for h=1tok do . 0
p(hlzi,©) — M
Yieg 0 fi(zil6)
end for
end for

{The M (Maximization) step of EN
for h=1tokdo
ah— £ 51, p(hlai,©)
pn— YL zip(hzi, ©)
F— {|enll/ (nan)
B pn/] penll
Kp — rd—r°
112
end for
until convergence

of the mixture conditioned on the point. On termination, the algorithm gives trepeersd =
{an, ph, Kh}ﬁzl of thek vMF distributions that model the data s€f as well as theoft-clustering
i.e., the posterior probabilitigg(h|x;, ©), for all h andi.

Thehar d- moVMF algorithm (Algorithm 2) estimates the parameters of the mixture model using
a hard assignment, owinner takes allstrategy. In other words, we do the assignment of the
points based on a derived posterior distribution given by (3.8). Aftehénd assignments in every
iteration, each poirttelonggo a single cluster. As before, the updates of the component parameters
are done using the posteriors of the components, given the points. Udial clifference in this case
is that the posterior probabilities are allowed to take only binary (0/1) valugen termination,
Algorithm 2 yields a hard clustering of the data and the paramaeis{ah,uh,Kh}ﬁzl of the k
VMFs that model the input data s¥t

5.1 Revisiting Spherical Kmeans

In this section we show that upon enforcing certain restrictive assumptiotiee generative model,
thespkmeans algorithm (Algorithm 3) can be viewed as a special case of bothdhe- noVMF and
har d- noVMF algorithms.

More precisely, assume that in our mixture of vMFs, the priors of all the compts are equal,
i.e.,an = 1/k for all h. Further assume that all the components have (equal) infinite concentration
parameters, i.exp = K — oo for all h. Under these assumptions the E-step ingbgt - noVMVF
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Algorithm 2 har d- moVIVF

Input: Setx of data points or$d—1
Output: A disjoint k-partitioning of X
Initialize all ay, pn,Kp, h=1,--- Kk
repeat
{The Hardened E (Expectation) step of EM
fori=1tondo
for h=1tokdo
(i |On) — Cq(Kp)erHn®
end for
for h=1tokdo

1, if h=argmaxay fy(xi|6y)
q(hlzi,©) — u
0, otherwise

end for

end for

{The M (Maximization) step of ENl

for h=1tokdo

ap < 3 311 q(h|zi, ©)
pn— Y zid(hlzi, ©)
F— [l /(notn)
h — tn/| ]|
Ky o Tt

h< 1572

end for
until convergence.

algorithm reduces to assigning a point toriarestluster, where nearness is computed as a cosine
similarity between the point and the cluster representative. Thus, a poimill be assigned to
clusterh* = argmaxz{ pn, since

h

T
Ti My

P 1,©) = I, o =
h=1 !

andp(h|x;,®) — 0, ask — oo for all h # h*.

To show thatspkneans can also be seen as a special case ofhtra- moVM, in addition
to assuming the priors of the components to be equal, we further assumeettwainitentration
parameters of all the components are equal, k= K for all h. With these assumptions on the
model, the estimation of the common concentration parameter becomes unesgerdigthe hard
assignment will depend only on the value of the cosine similarityn, andhar d- moVMVF reduces
to spkneans.

In addition to the abovementioned algorithms, we report experimental resuttsather algo-
rithm f skneans (Banerjee and Ghosh, 2002) that belongs to the same class in the sénbketha
spkmeans, it can be derived from the mixture of vYMF models with some restrictive asgsangp In
f skmeans, the centroids of the mixture components are estimated bar it movMF. Thek value
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Algorithm 3 spkmeans

Input: Setx of data points or$d—1
Output: A disjoint k-partitioning { Xn}k_, of X
Initialize up, h=1,--- ,k
repeat
{The E (Expectation) step of EM
SetXp— 0, h=1,--- .k
fori=1tondo
X« Xh U {xi} whereh = argmaxx py
h/

end for
{The M (Maximization) step of EM
for h=1tokdo

ph — zmeﬁm

> zex, ll
end for

until convergence

for a component igxplicitly setto be inversely proportional to the number of points in the cluster
corresponding to that component. This explicit choice simulates a fregsensitive competitive
learning that implicitly prevents the formation of null clusters, a well-known |enobin regular
kmeans (Bradley et al., 2000).

6. Experimental Results

We now offer some experimental validation to assess the quality of clustesodfs achieved by
our algorithms. We compare the following four algorithms on numerous data sets

1. Spherical KMeans (Dhillon and Modha, 20013pkneans.

2. Frequency Sensitive Spherical KMeans (Banerjee and Gho8R)-20skneans.
3. moVMF based clustering using hard assignments (Sectiom&)e—nmo VM.

4. moVMF based clustering using soft assignments (Sectiors8)+ noVMF.

It has already been established tkakans using Euclidean distance performs much worse than
spkmeans for text data (Strehl et al., 2000), so we do not consider it here. @gve model based
algorithms that use mixtures of Bernoulli or multinomial distributions, which haenkshown to
perform well for text data sets, have also not been included in the iexgetis. This exclusion is
done as a recent empirical study over 15 text data sets showed that sergiteg of vMF mixture
models (withk constant for all clusters) outperform the multinomial model except for ong/data
set (Classic3), and the Bernoulli model was inferior for all data setsr{@land Ghosh, 2003b).

6.1 Data Sets

The data sets that we used for empirical validation and comparison of auithigs were carefully
selected to represent some typical clustering problems. We also creaias\vsubsets of some

1359



BANERJEE, DHILLON, GHOSH AND SRA

of the data sets for gaining greater insight into the nature of clusters diszber to model some
particular clustering scenario (e.g., balanced clusters, skewed clustertapping clusters etc.).
We drew our data from five sources: Simulation, Classic3, Yahoo NeWwl) @0 Newsgroup
and Yeast Gene Expressions. For all the text document data sets, e N (Dhillon et al.,
2001) was used for creating a high-dimensional vector space modektttabf the four algorithms
utilized. MATLAB code was used to render the input as a vector space for both the simuldted a
gene-expression data sets.

e Simulation. We use simulated data to verify that the discrepancy between computedaefilues
the parameters and their true values is small. Our simulated data serves tigappogose
of validating the “correctness” of our implementations. We used a slight matiific of
the algorithm given by Wood (1994) to generate a set of data points follosvigfigen vMF
distribution. We describe herein, two synthetic data sets. The first datmsdtmix is
2-dimensional and is used to illustrate soft-clustering. The second ddiaysetx is a high-
dimensional data set that could serve as a model for real world text elstalset the triple
(n,d,k) denote the number of sample points, the dimensionality of a sample point and the
number of clusters respectively.

1. small-mix: This data hagn,d,k) = (50,2,2). The mean direction of each component
is a random unit vector. Each component kas 4.

2. big-mix: This data hagn,d,k) = (50001000 4). The mean direction of each compo-
nent is a random unit vector, and tkevalues of the components are 688, 26683,
267.83, and 6188. The mixing weights for each component ar2dl, 0238, 0252,
and 0259.

e Classic3. Classic3 is a well known collection of documents. It is an easy data set to clus
ter since it contains documents from three well-separated sources.oWor¢he intrinsic
clusters are largely balanced.

1. Classic3: This corpus contains 3893 documents, among which 14QONEIELD doc-
uments are from aeronautical system papers, 1088IMNE documents are from med-
ical journals, and 1460 &I documents are from information retrieval papers. The
particular vector space model used had a total of 4666 features (wortisis each
document, after normalization, is represented as a unit vector in a 4666sionel
space.

2. Classic300: Classic300 is a subset of the Classic3 collection and has 300 documents.
From each category of Classic3, we picked 100 documents at randamidHis par-
ticular data set. The dimensionality of the data was 5471.

3. Classic400: Classic400 is a subset of Classic3 that has 400 documents. This data set
has 100 randomly chosen documents from theDMINE and Gsi categories and 200
randomly chosen documents from theANFIELD category. This data set is specifically
designed to create unbalanced clusters in an otherwise easily separdlialanced
data set. The dimensionality of the data was 6205.

4. Note that the dimensionality in Classic300 is larger than the that of Clagdit®ugh the same options were used in
the MC toolkit for word pruning, due to very different words distributipfesver words got prunned for Classic300
in the 'too common’ or 'too rare’ categories.
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e Yahoo News (K-series). This compilation has 2340 Yahoo news articles from 20 different
categories. The underlying clusters in this data set are highly skewedaia téithe number
of documents per cluster, with sizes ranging from 9 to 494. The skevpnessnts additional
challenges to clustering algorithms.

e CMU Newsgroup. The CMU Newsgroup data set is a well known compilation of docu-
ments (Newsgroups). We tested our algorithms on not only the original dgthw on a
variety of subsets with differing characteristics to explore and undefsitenbehavior of our
algorithms.

1. News20: This standard data set is a collection of 19,997 messages, gatheredfrom 2
different USENET newsgroups. One thousand messages are dmamritfe first 19
newsgroups, and 997 from the twentieth. The headers for each of 8sages are then
removed to avoid biasing the results. The particular vector space modehad®5924
words. News20 embodies the features characteristic of a typical texselatehigh-
dimensionality, sparsity and significantly overlapping clusters.

2. Small-news20: We formed this set by selecting 2000 messages from original News20
data set. We randomly selected 100 messages from each category in thal olaga
set. Hence this data set has balanced classes (though there may b oVldadimen-
sionality of the data was 13406.

3. Same-100/1000 is a collection of 100/1000 messages from 3 very similar newsgroups:
comp.graphics, comp.os.ms-windows, comp.windows.x.

4. Similar-100/1000 is a collection of 100/1000 messages from 3 somewhat similar news-
groups: talk.politics.guns, talk.politics.mideast, talk.politics.misc.

5. Different-100/1000 is a collection of 100/1000 messages from 3 very different news-
groups: alt.atheism, rec.sport.baseball, sci.space.

e Yeast Gene Expressions. Gene-expression data was selected to offer a clustering domain
different from text analysis. As previously motivated, the use of Reacsrrelation for the
analysis of gene expression data is common, so a directional model is wed-gDoincident
to this domain are the difficulties of cluster validation because of the unavailatilityie
labels. Such difficulties make the gene expression data a more challengimedraps a
more rewarding domain for clustering.

Gene expression data is presented as a matrix of genes (rows) bysapnealues (columns).

The expression vectors are constructed using DNA microarray expgamale used a subset
of the Rosetta Inpharmatics yeast gene expression set (Hughes @08)., Phe original data

set consists of 300 experiments measuring expression of 6,048 yeast gaut of these we

selected a subset of 996 genes for clustering (Dhillon et al., 2002bga€b of the 996 genes
the 300-element expression vector was normalized to have unit Euclidgamo¢m.

6.2 Methodology

Except for the gene expression data set, performance of the algorithaiistioe data sets has been
analyzed usingnutual information(MI) between the cluster and class labels. For gene data, due to
the absence of true labels, we have to take recourse to reporting somelifitgures of merit. We
defer a discussion of the same to Section 6.7.
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The MI gives the amount of statistical similarity between the cluster and claals l@over and
Thomas, 1991). IX is a random variable for the cluster assignmentsMargla random variable
for the pre-existing labels on the same data, then their Ml is givdiiXyY ) = E[In %] where
the expectation is computed over the joint distribution(fY) estimated from a particular clus-
tering of the data set under consideration. &ofrt - noVMF we “harden” the clustering produced
by labeling a point with the cluster label for which it has the highest valuestgsior probability
(ties broken arbitrarily), in order to evaluate MI. Note that variants of Blienbeen used to evaluate
clustering algorithms by several researchers. 8D03) used a related concept called variation of
information to compare clusterings. An MDL-based formulation that uses tHeelveen cluster

assignments and class labels was proposed by Dom (2001).

All results reported herein have been averaged over 10 runs. Alithigs were started with the
same random initialization to ensure fairness of comparison. Each runaveedswith adifferent
random initialization. However, no algorithm was restarted within a giveranghall of them were
allowed to run to completion. Since the standard deviations of MI were raboamall for all
algorithms, to reduce clutter, we have chosen to omit a display of erroirbats plots. Also, for
practical reasons, the estimatexofras upper bounded by a large number* (i this case) in order
to prevent numeric overflows. For example, during the iterations, if a clasie only one point,
the estimate ok will be infinity (a divide by zero error). Upper bounding the estimate is similar in
flavor to ensuring the estimated covariance of a multi-variate Gaussian in a eniftGraussians to
be non-singular.

6.3 Simulated Data Sets

First, to build some intuition and confidence in the working of our vMF baseatigitgns we exhibit
relevant details o$of t - m0VMF’s behavior on the small-mix data set shown in Figure 1(a).
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The small-mix data set. A clustering of small-mix.

Figure 1: Small-mix data set and its clusteringsioy t - noVIivVF.

The clustering produced by our soft cluster assignment algorithm isrslolkigure 1(b). The
four points (taken clockwise) marked with solid circles have cluster 1gbel$, 0.85), (0.77,0.23),
(.82,.18) and(.11,.89), where a cluster labép, 1 — p) for a point means that the point has proba-
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bility p of belonging to Cluster 1 and probability-1p of belonging to Cluster 2. All other points
are categorized to belong to a single cluster by ignoring small (less th@h@robability values.
The confusion matrix, obtained by “hardening” the clustering produgesbbt - moVMF for the

0 23
by sof t - moVVF is excellent, though not surprising, since small-mix is a data set with well-segar
clusters. Further testimony &of t - moVMF's performance is served by Table 2, which shows the
discrepancy between true and estimated parameters for the small-mix collection.

small-mix data set is{26 1} As is evident from this confusion matrix, the clustering performed

~ ~ ~

Cluster u o K| K a a
1 (-0.251, -0.968) (-0.279, -0.960) 4 | 3.78| 0.48 | 0.46
2 (0.399,0.917)| (0.370,0.929)| 4 | 3.53| 0.52| 0.54

Table 2: True and estimated parameters for small-mix using- moVIVF.

In the tableu, K, a represent the true parameters ang, @ represent the estimated parameters.
We can see that even in the presence of a limited number of data points in therérmdéta set
(50 points), the estimated parameters approximate the true parameters quite well.

Before moving onto real data sets let us briefly look at the behavior ofltjugitams on the
larger data set big-mix. On calculating Ml as described previously we fthatdall the algorithms
performed similarly with Ml values close to one. We attribute this good perfocear all the

- T~ T~ K—K K—K a—a a—a
ming' @ | avgu' [ max! K | avg‘ K [ | max! ] | an‘ Ia] |

0.994 0.998 0.006 0.004 0.002 0.001

Table 3: Performance abf t - noVMF on big-mix data set.

algorithms to the availability of a sufficient number of data points and similar sikzestiecs. For
reference Table 3 offers numerical evidence about the perfornudrsad t - moVMF on the big-mix
data set.

6.4 Classic3 Family of Data Sets

Table 4 shows typical confusion matrices obtained for the full Classic3eat&\Ve observe that the
performance of all the algorithms is quite similar and there is no added advas¢dadgd by using
the general moVMF model as compared to the other algorithms. This obsargatide explained
by noting that the clusters of Classic3 are well separated and havecesffiumber of documents.
For this clusterindhar d- moVMF yieldedk values of(73213 80953 100004), while sof t - noVIVF
reportedk values of(73155,80821,100295).

Table 5 shows the confusion matrices obtained for the Classic300 dataveettHbugh Clas-
sic300 is well separated, the small number of documents per cluster makesltfem somewhat
difficult for f skneans andspkneans, while har d- moVMF has a much better performance due to
its model flexibility. Thesoft - noVMF algorithm performs appreciably better than the other three
algorithms.

It seems that the low number of documents does not pose a problsof fomoVMF and it ends
up getting an almost perfect clustering for this data set. Thus in this cagatedthe low number
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f sknmeans spkneans har d- moVIVF sof t - moVMF
med | cisi | cran| med | cisi | cran || med | cisi | cran| med | cisi | cran
1019 0 0 1019 0 0 1018 0 0 1019 0 1

1 6 1386 1 6 1386 2 6 1387 1 4 1384
13 | 1454 | 12 13 | 1454 | 12 13 | 1454 | 11 13 | 1456 | 13

Table 4. Comparative confusion matrices for 3 clusters of Classic3 (mepvesent clusters).

f sknmeans spkmeans har d- mVMF sof t - noVMF
med | cisi | cran || med | cisi | cran || med| cisi | cran | med | cisi | cran
29 | 38 | 22 29 | 38 | 22 3 72 1 0 98 0
31 | 27 | 38 31 | 27 | 38 62 | 28 | 17 99 2 0
40 | 35| 40 40 | 35 | 40 35 0 82 1 0 | 100

Table 5: Comparative confusion matrices for 3 clusters of Classic300.

of points per cluster, the superior modeling power of our moVMF basedidiges prevents them
from getting trapped in inferior local-minima as compared to the other algorithmsaiing in a
better clustering.

The confusion matrices obtained for the Classic400 data set are dispidiadale 6. The behav-
ior of the algorithms for this data set is quite interesting. As before, due torthkkisumber of docu-
ments per clustef sknmeans andspkneans give a rather mixed confusion matrix. Ther d- moVM-
algorithm gets a significant part of the bigger cluster correctly and aghisyme amount of sepa-
ration between the two smaller clusters. Floét - moVMF algorithm exhibits a somewhat intriguing
behavior. It splits the bigger cluster into two, relatively pure segments, angesithe smaller two
into one cluster. When 4 clusters are requested fsoht - noOVMF, it returns 4 very pure clusters
(not shown in the confusion matrices) two of which are almost equal sezgrdents of the bigger
cluster.

An engaging insight into the working of the algorithms is provided by conideheir cluster-
ing performance when they are requested to produce greater tharatiiegihnumber of clusters.
In Table 7 we show the confusion matrices resulting from 5 clusters of thesiCBcorpus. The
matrices suggest that the moVMF algorithms have a tendency of trying to maingeén thusters
intact as long as possible, and breaking them into reasonably pure mpduably sized parts when
they absolutely must. This behavior of our moVMF algorithms coupled with thereagons in Ta-
ble 6, suggest a clustering method in which one could generate a slightly higimber of clusters
than required, and then agglomerate them appropriately.

The Ml plots for the various Classic3 data sets are given in Figureq@(al-or the full Clas-
sic3 data set (Figure 2(a)), all the algorithms perform almost similarly atulkeentrmber of clusters.
However, as the number of clusters increasest - mVMF seems to outperform the others by a sig-
nificant margin. For Classic300 (Figure 2(b)) and Classic400 (Fig{z®,2of t - VM seems to
significantly outperform the other algorithms. In fact, for these two data sets- moVMF per-
forms substantially better than the other three, even at the correct nuintlasters. Among the
other threehar d- noVMF seems to perform better thapkneans andf skneans across the range of
clusters.

1364



CLUSTERING WITH VON MISES-FISHERDISTRIBUTIONS
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Figure 2: Comparison of the algorithms for the Classic3 data sets and the Xals data set.
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f skmeans spkmeans har d- mVMF sof t - noVMF
med | cisi | cran || med | cisi | cran || med | cisi | cran | med | cisi | cran
27 | 16 | 55 27 | 17 | 54 56 | 28 | 20 0 0 91

51 | 83 | 12 51 | 82 | 12 44 | 72 | 14 82 | 99 2
23 1 ]132 | 23 1 | 133 1 0O | 165 | 19 1 | 106

Table 6: Comparative confusion matrices for 3 clusters of Classic400.

f skneans spkmeans har d- mVMF sof t - noVMF
med | cisi | cran || med | cisi | cran | med| cisi | cran | med| cisi | cran
2 4 | 312 2 4 | 323 3 5 292 0 1 1107
8 |520| 10 8 | 512 9 511 1 0 5 |1455 | 14
5 | 936 6 5 |94 | 6 514 1 0 526 2 1
1018 | O 1 1018 | O 1 0 2 1093 || 501 0 0
0 0 | 1069 0 0 | 1059 5 |1451 | 13 1 2 276

Table 7: Comparative confusion matrices for 5 clusters of Classic3.

6.5 Yahoo News Data Set

The Yahoo News data set is a relatively difficult data set for clusteringgstrhas a fair amount of
overlap among its clusters and the number of points per cluster is low. In agdhm®clusters are
highly skewed in terms of their comparative sizes.

Results for the different algorithms can be seen in Figure 2(d). Oventire eangesof t - moVM-
consistently performs better than the other algorithms. Even at the coarabiem of clusterk = 20,
it performs significantly better than the other algorithms.

6.6 CMU Newsgroup Family of Data Sets

Now we discuss clustering performance of the four algorithms on the CMibkhi®up data sets.
Figure 3(a) shows the Ml plots for the full News20 data set. All the algoritherform similarly
until the true number of clusters after whishf t - noVMF and spkneans perform better than the
others. We do not notice any interesting differences between the faunthlgs from this Figure.

Figure 3(b) shows Ml plots for the Small-News20 data set and the reselts eourse different.
Since the number of documents per cluster is small (100), as taflomeans andf skmmeans do not
perform that well, even at the true number of clusters, whevefits- noVMF performs considerably
better than the others over the entire range. Adaand- moVMF exhibits good Ml values until the
true number of clusters, after which it falls sharply. On the other hamdhé&data sets that have a
reasonably large number of documents per cluster, another kind ofibeisausually observed. All
the algorithms perform quite similarly until the true number of clusters, aftertwdo€t - novVMVF
performs significantly better than the other three. This behavior can leeveokin Figures 3(d),
3(f) and 4(b). We note that the other three algorithms perform quite simileelytbe entire range of
clusters. We also observe that for an easy data set like Different-#@0MI values peak at the true
number of clusters, whereas for a more difficult data set such as Sirillérthe Ml values increase
as the clusters get further refined. This behavior is expected sinckiiters in Similar-1000 have
much greater overlap than those in Different-1000.
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(b) Comparison of Ml valwesSimall-news20.

M values on news20-diff3

T T
—— fskmeans
-6~ spkmeans

hard-movMF

-8 soft-movMF

Mutual Information value

L L L L L L L L
2 3 4 5 6 7 8 9 10 11
Number of clusters, k

(d) Comparison of Mlues for Different-1000.
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(f) Comparison of Ml valt@sSimilar-1000.

Figure 3: Comparison of the algorithms for the CMU Newsgroup and sormsesib
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Figure 4: Comparison of the algorithms for more subsets of CMU Newsgtat#p

6.7 Yeast Gene Expression Data Set

The gene data set that we consider differs from text data in two majoctaspsrst, the data can
have negative values, and second, we do not know the true label® fdath points.

Owing to the absence of true cluster labels for the data points, we evaluatkisherings by
computing certain internal figures of merit. These internal measures kawegarlier employed for
evaluating clustering of genes (e.g., Sharan and Shamir, 2000 kefxi,x2,...xn} be the set
of data that is clustered into disjoint clusters ..., Xi. Let j denote the mean vector of theh
cluster (1< j <k). The homogeneity of the clustering is measured by

x! Tpj
H (6.1)
9= x| JZMJ EIrk
As can easily be seen, a higher homogeneity means that the individual &evheach cluster are

quite similar to the cluster representative. We also take note of the minimum similarity

T,,.
Hunin = min —H1_ (6.2)
S (Ealiro

Both Havg andHmin provide a measure of the intra-cluster similarity. We now define the inter-cluste
separation as

1 Bl
Swg= = 3 XX 6.3)
O s Al & s
We also take note of the maximum inter-cluster similarity
w1
Snax= Max———1_ (6.4)
5 il ]

Itis easily seen that for a “good” clusteriiSy,g andSnax should be low.
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Recently, researchers (Segal et al., 2003; Lee et al., 2004) hateddt@oking at supervised
methods of evaluating the gene clustering results using public genome dmstanad as the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) and the gene ontol@y &S of now, the
evaluation techniques are still evolving and there is no consensus on li@sttase the databases.
For example, it is becoming clear that a pairwise precision-recall analygisn@ pairs may not
be useful since the databases are currently incomplete due to lack ofekig@iabout all genes.
In the recent past, progress has been made in terms of superviseatiovaiind online tools such
as GoMiner (GoMiner03) have been developed. As future work, weldviikke to evaluate the
performance of our proposed algorithms using such tools.

Figure 5 shows the various cluster quality figures of merit as computediufstecs of our gene
expression data. A fact that one immediately observes ishdrat- moVMF consistently performs
better than all the other algorithms. This comes as somewhat of a surpiseisken almost all
other data setssof t - noVMF performs better (though, of course, the measures of evaluation are
different for gene data as compared to the other data sets that we cedidéote that the figures
of merit forsof t - moVMF are computed after “hardening” the clustering results that it produced.

T T T T T
— FSKMeans —— FSKMeans
-6~ SPKMeans 02k -6~ SPKMeans
hard-moVMF | hard-moVMF
—&- soft-moVMF -5 soft-moVMF

078/5/6/5/9/87

o
©
T

o o
S ®
T T

o
°
T

H__values
9
o o
o
T T
. .
H_values
mi
I
s
b
.

o o
o
T T
|
|
|
|
T
*

o
[
T

-0.1

. . . . . . . . . . . . . . . . . . . . . .
4 6 8 10 12 14 16 18 20 22 24 4 6 8 10 12 14 16 18 20 22 24
Number of clusters (k) Number of clusters (k)

(@) Havg values (bHmin values

0.3

T T
—— FSKMeans
—©- SPKMeans
hard-moVMF
—&- soft-moVMF ||

o
~
T

08

o
[
T

0.6

)
T

I

S

o
T

0.4

S_ values
av

9
S values
max

0.2

—oab 1 —— FSKMeans
-e- SPKMeans
hard-moVMF
—&— soft-moVMF
T T

o5t L L L L L L L L L L 02l L L L L L L L
4 6 8 10 12 18 20 22 24 4 6 8 10 12 14 16 18 20 22 24

1
Number of clusters (k) Number of clusters (k)

(c) Savg values (d)Snax values

Figure 5: Measures of cluster quality for gene data.
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We see from Figure 5(a) that boliar d- moVMF andsof t - noVVF yield clusters that are much
more homogeneous than those furnished biynmeans andspkmeans. The inter-cluster similar-
ities, as measured b§,g and Snax are again the lowest fdrar d- moVMF, thereby indicating that
har d- mVMF gives the best separated clusters of all the four algorithms. Thought#reclaster
similarities do not differ that much between the four algorithsus t - moVMF seems to be forming
clusters with higher inter-cluster similarity than other algorithms. We could exgharbehavior
of sof t - moOVMF by noting that it tends to form overlapping clusters (because of saffrarents)
and those clusters remain closer even after hardening. Siyg@ssentially measures the average
cosine similarity, we note that using our moVMF based algorithms, we are abbhigve clusters
that are more coherent and better separated—a fact that could betattribthe richer model em-
ployed by our algorithms. An inescapable observation is that our vMFdbalgerithms obtain a
better average cosine similarity thapkneans, implying that the richer vMF model allows them to
escape the local minima that trapkneans.

6.8 Running Time

This section shows a brief report of the running time differences bethaeh moVMF andsof t - noVMF.
Table 8 shows these comparisons. These running time experiments wiengnger on an AMD
Athlon based computer running the Linux operating system. From Table 8ewhahar d- moVMF

Clusters| Classic300| Classic3 |  News20
3 0.39s/11.568 3.03s/109.87s 10.18s/619.68s
5 0.54s/17.993 3.59s5/163.09s 14.05s/874.13s
10 - - 18.9s/1512s
20 - - 29.08s/3368s

Table 8: Running time comparison betwe®n d- noVM- andsof t - noVMF. The times are indicated
in the format ‘har d- moVM=/ sof t - moVIVF".

runs much faster thasof t - noVMF, and this difference becomes even greater when the number of
clusters desired becomes higher.

7. Discussion

The mixture of vMF distributions gives a parametric model-based generafizzitibe widely used
cosine similarity measure. As discussed in Section 5.1, the spherical knmgarithen that uses
cosine similarity arises as a special case of EM on mixture of vMFs when, quiter things,

the concentratior of all the distributions is held constant. Interestingly, an alternative and more
formal connection can be made from an information geometry viewpoint (Arh885). More
precisely, consider a data set that has been sampled following a vMF wlistnitvith a giverk, say

K = 1. Assuming the Fisher-Information matrix is identity, the Fisher kernel similadiakkola

and Haussler, 1999) corresponding to the vMF distribution is given by

K(zij) = (DI f(@i]w)T (Ouln fajw) (see (2.2)
= (Ou(pT @) (Ou(p ")) = 2] @),
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which is exactly the cosine similarity. This provides a theoretical justificatiom fong-practiced
approach in the information retrieval community.

In terms of performance, the magnitude of improvement shown bydhe- movMF algorithm
for the difficult clustering tasks was surprising, especially since fordawensional non-directional
data, the improvements using a soft, EM-bakeelans or fuzzy kmeans over the standard hard-
assignment based versions are often quite minimal. In particular, we weoeisuegarding a
couple of issues: (i) why isof t - noviMF performing substantially better thdwar d- novMF, even
though the final probability values obtained $uf t - novIMF are actually very close to 0 and 1; and
(i) why is sof t - novMF, which needs to estimate more parameters, doing better even when there are
insufficient number of points relative to the dimensionality of the space.

It turns out that both these issues can be understood by taking a clokext loows of t - noVMF
converges. In all our experiments, we initializedo 10, and the initial centroids to small ran-
dom perturbations of the global centroid. Hence sfafrt - novMF, the initial posterior membership
distributions of the data points are almost uniform and the Shannon entrapg bidden random
variables is very high. The change of this entropy over iterations for évesR0 subsets is presented
in Figure 6. The behavior is similar for all the other data sets that we studidikelkmeans-based
algorithms where most of the relocation happens in the first two or three iwsatith only minor
adjustments later on, Bof t - movM- the data points are noncommittal in the first few iterations, and
the entropy remains very high (the maximum possible entropy for 3 clustetseciag 3 = 1.585).
The cluster patterns are discovered only after several iterations, arehtiopy drops drastically
within a small number of iterations after that. When the algorithm convergegntinepy is prac-
tically zero and all points are effectively hard-assigned to their reygechiisters. Note that this
behavior is strikingly similar to (locally adaptive) annealing approachesenrhean be considered
as the inverse of the temperature parameter. The drastic drop in entteps &w iterations is the
typical critical temperature behavior observed in annealing.

As text data has only non-negative features values, all the data pointghie finst orthant of
the d-dimensional hypersphere and hence, are naturally very concehtréle gene-expression
data, though spread all over the hypersphere seemed to have someinightcation regions. In
either case, the fina values on convergence are very high, reflecting the concentration datag
and implying a low final temperature from the annealing perspective. Thiéalizing K to a low
value, or equivalently a high temperature, is a good idea because in deatvbarsof t - movMF is
running, thek values will keep on increasing over successive iterations to get to itédrgalvalues,
giving the effect of a decreasing temperature in the process, withgubaoticit deterministic an-
nealing strategy. Also different mixture components can take differdmeésafk, as automatically
determined by the EM algorithm itself, and need not be controlled by anynattieeuristic. The
cost of the added flexibility isof t - nDVMF overspkmeans is the extra computation in estimating
the k values. Thus theoft - novMF algorithm provides a trade-off between modeling power and
computational demands, but one that judging from the empirical resultmssggite worthwhile.
Thehar d- movM- algorithm, instead of using the more general vMF model, suffers becatsed
assignments from the very beginning. Tls&neans andspkneans do not do well for difficult data
sets due to their hard assignment scheme as well as their significantly ledgugodpabilities.

Finally, a word on model selection, since choosing the number of cluste@ns one of the
widely debated topics in clustering (McLachlan and Peel, 2000). Banané@d.angford (2004)
have proposed a new objective criterion for evaluation and model-seidaticclustering algo-
rithms: how well does the clustering algorithm perform as a prediction algoritfhe prediction
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accuracy of the clustering is measured by the PAC-MDL bound (Blum angford, 2003; Baner-
jee and Langford, 2004) that upper-bounds the error-rate ofgti@us on the test-set. The way to
use it for model-selection is quite straight-forward: among a range of nuaflmusters, choose
the one that achieves the minimum bound on the test-set error-rate. Expisronanodel selection
applied to several clustering algorithms were reported by Banerjee argidrd (2004). Interest-
ingly, the movMF-based algorithms almost always obtained the ‘right nunfldusters’—in this
case, the underlying labels in the data set were actually known and the nohideels were con-
sidered to be the right number of clusters. It is important to note that thisddmodel-selection
only works in a semi-supervised setting where a little amount of labeled dataiialde for model
selection.

8. Conclusions and Future Work

From the experimental results, it seems that certain high-dimensional datinskiding text and
gene-expression data, have properties that match well with the modelumg@tesns of the vMF
mixture model. This motivates further study of such models. For example aoreoaisider a hybrid
algorithm that employsof t - mVM for the first few (more important) iterations, and then switches
tohar d- moVMF for speed, and measure the speed-quality tradeoff that this hybridaagipprovides.
Another possible extension would be to consider an online version of th&&ddd algorithms as
discussed in this paper, developed along the lines of Neal and Hinton)(1®8khe algorithms are
particularly attractive for dealing with streaming data when memory is limited, anchéaleling
mildly non-stationary data sources. We could also adapt a local seaatbgstrsuch as the one
in Dhillon et al. (2002a), for incremental EM to yield better local minima for badhdhand soft-
assignments.

The vMF distribution that we considered in the proposed techniques isfoine simplest para-
metric distributions for directional data. The iso-density lines of the vMF didioh are circles on
the hypersphere, i.e., all points on the surface of the hypersphemastant angle from the mean
direction. In some applications, more general iso-density contours magdielole. There are
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more general models on the unit sphere, such as the Bingham distribuédterthdistribution, the
Watson distribution, the Fisher-Bingham distribution, the Pearson typeisthilditions (Shimizu
and lida, 2002; Mardia and Jupp, 2000), etc., that can potentially be appiieable in the general
setting. For example, the Fisher-Bingham distributions have added modeliey pince there are
O(d?) parameters for each distribution. However, the parameter estimation praispegially in
high-dimensions, can be significantly more difficult for such models, as pama@ameters need to
estimated from the data. One definitely needs substantially more data to gderediitmates of the
parameters. Further, for some cases, e.g., the Kent distribution, it ddiffibelt to solve the esti-
mation problem in more than 3-dimensions (Peel et al., 2001). Hence thesecamplex models
may not be viable for many high-dimensional problems. Nevertheless, tteoffdbetween model
complexity (in terms of the number of parameters and their estimation), and saonpfdexity
needs to be studied in more detail in the context of directional data.
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Appendix A. Derivations

For reference, we provide the derivation of Maximum Likelihood Estimai<s) for data drawn
for a single vMF distribution (Section A.1), and Expectation Minimization updatiea@ilae for data
drawn from a mixture ok vMF distributions (Section A.2).

A.1 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the parametersiafjle vMF
distribution. LetX be a finite set of sample unit vectors drawn independently follovfifag s, K)
(see 2.1),i.e.,

X = {a; € S| x; follows f(x|p,K) for 1 <i<n}.
Givenx we want to find maximum likelihood estimates for the paramegieasdk of the distribu-

tion f(x|w,K). Assuming ther; to be independent and identically distributed, we can rewrite the
likelihood of X as

POX] ) = Pl onl i) = [ i) = [ eal0®. (A1)

Taking the logarithm on both sides of (A.1) we obtain
INP(X|p,K) = nincg(k) +Kpe' 7, (A.2)

wherer = 5. To obtain the maximum likelihood estimates @fandk, we have to maxi-
mize (A.2), subject to the constraints u = 1 andk > 0. Introducing a Lagrange multiplie¥,
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the Lagrangian of the objective function is giverrby
L(pt, K, X) = nIncg(K) +Kp e+ A (L—p' p). (A.3)

Differentiating the Lagrangian (A.3) with respectgo A andk and setting the derivatives to zero,
we get the following equations that the parameter estimatdsandk must satisfy:

K
( = —A’]’" A4a
=== (A.4a)
atp=1, (A.4b)
ncy(K) AT
- =—u T. A.4c
(@ f (A.4c)
Substituting (A.4a) in (A.4b) gives us
A=l (A5)
~ r zqzlmi
and p=—=_—%5S=—"— (A.6)
[ I Dy |
Substitutingu from (A.6) in (A.4c) we obtain
) _ vl -
Ca(K) n (A7)

For brevity, let us writes= d /2 — 1 and = (2m)S**; on differentiating (2.2) with respect tq we

obtain L 1K)
, S KSI4(K
%00 =200~ 8200

The right-hand-side simplifies to

e (1) =0 (& 1)

Using the following well known recurrence relation (see Abramowitz anguBt€1974, Sec. 9.6.26)),

Klsi1(K) = KI4(K) — sls(K),

we find that
—Ca(K) _ lspa(k) _ laj2(K)
Cd(K) Is(K)  laj2-1(K)
Thus we can obtain the estimatédy solving
AdR) =T, (A-8)
whereAq(K) = I;;’ﬁi‘gi) andr = ||| /n. SinceAy(K) is a ratio of Bessel functions, it is not possible

to obtain a closed form expression fag 1. We have to take recourse to numerical or asymptotic
methods to obtain an approximation far

5. Strictly speaking, we should introduce the inequality constraint in thealbaggin fork, and work with the necessary
KKT conditions. However ik = 0 thenf (z|pu,K) is the uniform distribution on the sphere, an&if- O then the
multiplier for the inequality constraint has to be zero by the KKT condition, sd_igrangian in (A.3) is adequate.
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A.2 Expectation Maximization (EM)

Suppose the posterior distributiop¢h|x;i, ©), of the hidden variable£|(X,©) is known. Unless
otherwise specified, henceforth all expectations will be taken over thbditon of the (set of)
random variable(s)|(X,©). Expectation of the complete data log-likelihood (see 3.2) over the
given posterior distributio can be written as

EIPLY. Z0)] = 3 Eplin(a T (x0.))

n k

= Zlhz In(an fr(2i|On)) p(hlai,©) (A.9)
i=1h=1
k n

= thi;(lnah) p(hlzi,©) Zl (In fa(xi|6h)) p(hlzxi,©).

In the parameter estimation or M-stépjs re-estimated so that the above expression is maximized.
Note that for maximizing this expectation we can separately maximize the terms dogtairand
6y, as they are unrelated (observe thét|x;, ©) is fixed).

To maximize the expectation with respect to eaghwe introduce a Lagrangian multipli@r
corresponding to the constraiﬁﬁzlah = 1. We form the Lagrangian, and take partial derivatives
with respect to eachy, obtaining

n
le(h]:ci,e) = —AQp. (A.10)
i=
On summing both sides of (A.10) over allve find thatA = —n, hence
1 n
=52 p(hai.©) (A.11)

Next we concentrate on terms containByg= (un, Kn) under the constraintaﬁuh =landk, >0
for 1 <h < k. LetAn be the Lagrange multiplier corresponding to each equality constraint (see
footnote on page 1374). The Lagrangian is given by

n

k
L({4en, Kn, An}io) Z len fn(zi8n)) p(hlzi, ©) Z h (1~ pn i)
h=1i= h=1

k

&

n

21 (Incq(kn)) (h\wi7@)+zil<huﬁwi p(h|ai,©) +An(1— pep pn) | -
= i=

(A.12)

— 1

Taking partial derivatives of (A.12) with respect {wh,)\h,Kh}ﬁzl and setting them to zero, for
eachh we get:

n
pin = 2’;“h 3 @ip(hla:.0), (A.13a)
f pn =1, (A.13b)
Ca(Kn) o T <
h|zi, ©) = — ip(hlzi, ©). A.13c
ca(Kn) 2 p(h|xi,©) Hn i;%p( |xi,O) ( )
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Using (A.13a) and (A.13b) we get

_ Knll e .
=" 5 pitie. 0
Sitizip(h|zi, ©)
P = : (A.14)
" s @ip(hzi, O)]]
Substituting (A.14) in (A.13c) gives us
Cy(Kn) | L1 zip(h|xi,0)]
—_ , A.15
calkn) 371 p(hfz:,0) (A.15)
which can be written as HZ” (hiz1.0)]
i—1 Zi P(N|x;
Ag(Kp) = 1&I=1T Al A.16
(kn) =550 p(hf:.©) (A-16)

whereAq(K) = "‘/Z(KI)( . Note that (A.14) and (A.16) are intuitive generalizations of (A.6) andA.8

_ ~ ajz-1(k)
respectively.

A.3 Experimental Study of the Approximation

In this section we provide a brief experimental study to assess the quality approximation of
the concentration parameter Recall that our approximation (4.4) attempts to solve the implicit
non-linear equation
la/2(K)
la/2-1(K)

We previously mentioned that for large values d¢f close to 1), approximation (4.1) is reason-
able; for small values af (usually forr < 0.2) estimate (4.2) is quite good; Eqgn. (4.4) yields good
approximations for most values of

A particular value of may correspond to many different combinationg @ndd values. Thus,
to assess the quality of various approximations, we need to evaluate tHeinparce across the
(k,d) plane. However, such an assessment is difficult to illustrate through Zagiomal plots. To
supplement Table 1, which showed how the three approximations behaveampling of points
from the(k,d) plane, in this section we present experimental results on some slices of tgs pla
where we either keeg fixed and vary, or we keex fixed and varyd. For all our evaluations, the
r values were computed using (A.17).

We begin by holdingl fixed at 1000, and allow to vary from 10 to 5010. Figure 7 shows the
values of computed& (estimation ofk) using the three approximations. From this figure one can
see that (4.1) overestimates the tryavhile (4.2) underestimates it. However, our approximation
(4.4) is very close to the truevalues.

Next we illustrate the quality of approximation wheris held fixed andl is allowed to vary.
Figure 8 illustrates how the various approximations behave as the dimensiah&itysaried from
d =4 till d = 1454. The concentration parametkewas set at 500 for this experiment. We see
that (4.2) catches up with the true valuexoéfter approximatelyl > 2k (because the associated
values become small), whereas (4.4) remains accurate throughout.

Since all the approximations depend ofwhich implicitly depends om andd), it is illustra-
tive to also plot the approximation errors mss allowed to vary. Figure 9 shows how the three

=T (A.17)
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Comparison of various kappa approximations (d = 1000)
6000 T T T T T

= = = Truek
(41

5000 (4.2)

(4.4)

4000 -

3000 -

Estimated k

2000 -

1000 o 1

il I I I I
0 1000 2000 3000 4000 5000 6000
Kappa (k)

Figure 7: Comparison of true and approximakeealues, withd = 1000

Comparisions of approximations for k=500, d varying
1200 T T

= = = k=500
(4.1)

1000 F (4.2) |
D (4.4)

600 |- 1

Estimated value of k

.
1000 1500
Dimension d

Figure 8: Comparison of approximations for varyithgk = 500.

approximations perform asranges from M5 to Q95. Letf(d,r), g(d,r), andh(d,r) represent the
approximations ta using (4.1), (4.2) and (4.4), respectively. Figure 9 displaysf(d,r)) —r],
|Aq(g(d,r)) —r], and|Aq(h(d,r)) —r] for the varyingr values. Note that the-axis is on a log-scale
to appreciate the differences between the three approximations. We sep tha~ 0.18 (dashed
line on the plot), the approximation yielded by (4.2) has lower error. Tlfereapproximation (4.4)
becomes better.
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Approximation error comparison for (4.1), (4.2) and (4.4)
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Figure 9: Comparison of approximations for varyinfwith d = 1000)
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