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Abstract

When acquiring an image of a paper document, the image printedon the back page sometimes
shows through. The mixture of the front- and back-page images thus obtained is markedly nonlin-
ear, and thus constitutes a good real-life test case for nonlinear blind source separation.

This paper addresses a difficult version of this problem, corresponding to the use of “onion
skin” paper, which results in a relatively strong nonlinearity of the mixture, which becomes close
to singular in the lighter regions of the images. The separation is achieved through the MISEP
technique, which is an extension of the well known INFOMAX method. The separation results
are assessed with objective quality measures. They show an improvement over the results obtained
with linear separation, but have room for further improvement.

Keywords: ICA, blind source separation, nonlinear mixtures, nonlinear separation, image mix-
ture, image separation

1. Introduction

When an image of a paper document is acquired, e.g. through scanning, photographing or photo-
copying, the image printed on the back page sometimes shows through. This is normally due to
partial transparency of the paper, and results in the acquisition of a mixtureof the images from the
front and back pages. It is usually possible to obtain two different mixtures, by acquiring both sides
of the document. This is a situation that seems suited for handling by blind source separation (BSS)
techniques. The main difficulty is that the images that are acquired are nonlinear mixtures of the
original images printed on each of the sides of the paper. This is, therefore, an interesting test case
for nonlinear BSS methods, with potential application in scanners, photocopiers and in document
processing in general.

This paper addresses a difficult instance of this problem, in which the paper that is used is of the
“onion skin” type. This creates a mixture that has a relatively strong nonlinearity, and that is close
to singular in the lighter parts of the images. For separation we use MISEP, which is a nonlinear
independent component analysis (ICA) technique (Almeida, 2003b). MISEP is a generalization of
the well known INFOMAX technique of linear ICA (Bell and Sejnowski, 1995), extending it in
two directions: (1) being able to handle nonlinear mixtures, and (2) using output nonlinearities that
adapt to the statistical distributions of the extracted components.
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Besides the separation itself, an important practical issue in this specific situation is the align-
ment of the two mixture images. One might think that, by an appropriate translation and rotation,
the images from the two sides of the document could be brought into good alignment with each
other. It was found, however, that scanners normally introduce slightgeometrical distortions that
make it necessary to use local alignment techniques to obtain an image alignmentthat is adequate
for separation. That alignment issue is also addressed in this paper, because it is an important step
of the image processing that needs to be done.

Published results concerning nonlinear BSS in real-life problems are still very few. To the au-
thor’s knowledge, and apart from an earlier version of the present work (Almeida and Faria, 2004),
the only published report of blind source separation of a real-life nonlinear mixture in which the
recovery of the original sources can be confirmed is (Haritopoulos et al., 2002). Some other appli-
cations of nonlinear ICA to real-life data, e.g. (Lappalainen and Honkela,2000; Lee and Batzoglou,
2003), do not provide means to confirm whether real sources were recovered.

This manuscript’s structure is as follows: Section 2 provides a brief overview of nonlinear
separation methods. Section 3 presents a short summary of the MISEP method, to outline its basic
principles and to set the notation. Section 4 describes the experimental conditions, including image
printing, acquisition and alignment. Section 5 presents the experimental results, which are assessed
with objective measures of separation quality. Section 6 concludes.

In the printed version of this paper some of the details of some images may be lost due to the
printing process. However, the paper is freely available online, and in theelectronic online ver-
sion one can zoom in on the images (scatter plots and images of sources, mixtures and separated
components) to better view the details. In the pdf version (∼ 7 MB) the images are encoded in
JPEG format and therefore show some artifacts, which become noticeable on close inspection. The
postscript version shows the images without artifacts, but correspondsto a larger file (∼ 14 MB).
The two versions are available at
http://www.lx.it.pt/ ∼lbalmeida/papers/AlmeidaJMLR05.pdf , and
http://www.lx.it.pt/ ∼lbalmeida/papers/AlmeidaJMLR05.ps.zip .

The source and mixture images used in this paper are available online at
http://www.lx.it.pt/ ∼lbalmeida/ica/seethrough .
The separation routines that were used to produce the results are available at
http://www.lx.it.pt/ ∼lbalmeida/ica/seethrough/code/jmlr05 .

2. Overview of Nonlinear ICA Methods

In this section we provide a short overview of some of the main nonlinear ICAmethods. This
overview is necessarily very brief, and the reader is referred to an overview paper (Jutten and
Karhunen, 2004) for more complete information.

It is interesting to note that one of the very early works on ICA (Schmidhuber, 1992) already
proposed a nonlinear method. Although being based on an interesting principle (minimization of
predictability of each extracted component by the other components) it was rather impractical and
computationally heavy.

The essential uniqueness of the solution of linear ICA (Comon, 1994), together with the greater
simplicity of linear separation and with the fact that many naturally occurring mixtures are essen-
tially linear, led to a quick development of linear ICA. The work on nonlinear ICA probably was
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slowed down mostly by its inherent ill-posedness and by its greater complexity,but development
of nonlinear methods has continued steadily (e.g. Burel, 1992; Deco and Brauer, 1995; Marques
and Almeida, 1999; Palmieri et al., 1999; Theis et al., 2003). The methods thathave received the
strongest attention in recent years are very briefly outlined in the next paragraphs.

Ensemble learning (Lappalainen and Honkela, 2000) is a Bayesian method and, as such, uses
prior distributions as a form of regularization, to handle the ill-posedness problem. It is computa-
tionally heavy, but has produced some interesting results, including an extension to the separation
of nonlinearly mixed dynamical processes (Valpola and Karhunen, 2002).

Kernel-based nonlinear ICA (Harmeling et al., 2003) essentially consists oflinear ICA per-
formed on a high-dimensional space that is a nonlinear transformation of theoriginal space of mix-
ture observations. In the form in which it was presented in the cited reference, it used the temporal
structure of the signals to perform the linear ICA operation. This apparentlyhelped it to effectively
deal with the ill-posedness problem, and allowed it to yield some impressive results on artificial,
strongly nonlinear mixtures. The method seems to be quite tractable, in computational terms.

MISEP (Almeida, 2003b) is an extension of INFOMAX (Bell and Sejnowski,1995) into the
nonlinear domain. It uses regularization to deal with the ill-posedness problem, and is computation-
ally tractable. It is described in more detail in the next section, since it is the method used in the
present paper.

A special class of methods that deserves mention deals with nonlinear mixtureswhich are con-
strained so as to make the result of ICA essentially unique, as in linear ICA. The most representative
class corresponds to the so-called post-nonlinear (PNL) mixtures (Taleband Jutten, 1999). These
are linear mixtures followed by component-wise invertible nonlinearities. The interest of this class
resides both in its unique separability and in the fact that it corresponds to well identified practical
situations: linear mixtures observed by nonlinear sensors. PNL mixtures and their extensions have
had a considerable development (see Jutten and Karhunen, 2004, forreferences).

3. Overview of the MISEP Method

MISEP (Almeida, 2003b) is a generalization of the INFOMAX method of linear ICA (Bell and
Sejnowski, 1995). We recall that the latter method, although initially introducedunder a principle
of maximum information preservation, was later shown to be interpretable as a maximum likelihood
method (Pearlmutter and Parra, 1996), and also as a method based on the minimization of the mutual
information (MI) of the extracted components (Hyvärinen and Oja, 2000). We briefly recall the
latter interpretation, albeit using a reasoning different from the one given in that reference.

If Y is a vector with random componentsYi , we define the mutual information of the components
of Y as

I(Y) = ∑
i

H(Yi)−H(Y) (1)

where, for continuous variables, as is the case here,H denotes Shannon’s differential entropy

H(X) = −

Z

p(x) logp(x)dx. (2)

In this equationp(x) is the probability density of the scalar random variableX (we denote proba-
bility density functions byp(·), the function’s argument clarifying which random variable is being
considered; this is a slight abuse of notation, but helps to keep expressions simpler and does not cre-
ate any confusion). A similar definition holds forH(X), whereX is a random vector, the difference
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being that the random variable is now multidimensional and the integral in (2) becomes a multiple
integral, encompassing the whole domain ofX.

Mutual information is a good measure of statistical dependence.I(Y) measures the amount
of information that is shared among the random variablesYi . It is always positive, except if these
variables are mutually statistically independent, in which case it is zero.I(Y) is also equal to the
Kullback-Leibler divergence between the product of the marginal densities, ∏i p(yi) and the true
joint density, p(y). These two densities are equal if and only if the componentsYi are mutually
independent.

Minimization of the mutual information of the extracted components is therefore a good crite-
rion for independent component analysis. An interesting and useful property of mutual information,
that we shall use ahead, is that if we apply invertible, possibly nonlinear, transformations to the ran-
dom variables,Zi = ψi(Yi), the mutual information doesn’t change:I(Z) = I(Y).

INFOMAX uses a network with the structure depicted in Fig. 1. BlockF performs the sepa-
ration proper, the separated components beingyi . F is linear, corresponding just to a product by a
matrix. The blocksψi are auxiliary, being used only during the training phase. Each of these blocks
performs an invertible, increasing transformationzi = ψi(yi), whose counter-domain is the interval
(0,1).

 

 

F 

o 1 

ψ 2 o 2 

ψ 1 
y 1 

y 2 

z 1 

z 2 

Figure 1: Network structure used in INFOMAX and in MISEP. In INFOMAX, F is an adaptive
linear block, and theψi are fixed a priori. In MISEP,F can be nonlinear, and bothF and
ψi are adaptive.

If we choose eachψi as the cumulative distribution function (CDF) of the correspondingYi , it is
easy to see that each of theZi will be uniformly distributed in(0,1), resulting inp(zi) = 1 for zi in
that interval, andH(Zi) = 0. Therefore,

I(Y) = I(Z)

= ∑
i

H(Zi)−H(Z)

= −H(Z). (3)

Mutual information is hard to minimize directly, but (3) shows that, under the stated conditions, this
minimization is equivalent to the maximization of the output entropyH(Z), a maximization which
is much easier to achieve. INFOMAX works by optimizingF such thatH(Z) is maximized. We
won’t go into the details here, but the reader can consult (Bell and Sejnowski, 1995) or (Hyv̈arinen
and Oja, 2000) for a deeper discussion.

As said above, MISEP extends INFOMAX in two directions. The first is being able to deal with
nonlinear mixtures. This is achieved by allowing blockF, in Fig. 1, to be nonlinear. We have often
implemented this block by means of a multilayer perceptron (MLP), but essentiallyany adaptive
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nonlinear structure can be used. For example, a radial basis function network has been used in
(Almeida, 2003a), and a specialized structure in (Almeida and Faria, 2004).

The second direction in which MISEP extends INFOMAX, is by making the output transforma-
tionsψi adaptive. As we have seen above, eachψi should correspond to the CDF of the correspond-
ing extracted source, for the maximization of the output entropy to correspond to the minimization
of the mutual information of the extracted components. The a-priori choice of the ψi functions in
INFOMAX can be seen as a user-made, prior assumption about the distributions of the sources. In
MISEP theψi blocks are adaptive, being implemented by means of adequately constrainedMLPs.
It can be shown that maximization of the output entropyH(Z) leads each of these blocks to estimate
the corresponding CDF, while simultaneously leadingF to minimize the mutual informationI(Y)
(Almeida, 2003b). Therefore, maximizing the output entropy simultaneously adapts theψi blocks
and leads to the minimization of the mutual informationI(Y).

An issue that has frequently been discussed is whether nonlinear blind source separation, based
on ICA, is feasible in practice. This debate has to do with the fact that nonlinear ICA, with no
additional constraints, is an ill-posed problem, having an infinite number of solutions that are not
related to one another in any simple way (Darmois, 1953; Hyvärinen and Pajunen, 1999; Marques
and Almeida, 1999). Therefore we cannot expect that, just by extracting independent components,
one will be able to recover the original sources that were nonlinearly mixed. This is to be contrasted
with the situation in linear ICA/BSS in which, under very mild constraints, there exists essentially
only one solution (Comon, 1994). In linear ICA, if independent components are extracted, they
must correspond to the original sources, apart from possible scaling and permutation. This author
has argued that in the nonlinear case, when the mixture is not too strongly nonlinear, adequate
regularization should allow the handling of the ill-posedness of nonlinear ICA, still allowing the
approximate recovery of the sources. The nonlinearities considered in this paper would be classified
by the author as of “medium intensity”. As we shall see below, approximate source recovery was
possible, and the indetermination of nonlinear ICA didn’t lead to inadequate separation.

4. Experimental Setup

In this section we describe the experimental setup, including details of image printing, acquisition
and preprocessing

4.1 Source Images

We used five image mixtures as test cases. The corresponding pairs of source images are shown in
Figs. 2 and 3. The main properties of these image pairs are as follows:

1. In the first pair, each image consists of 25 uniform bars with intensities that are uniformly
spaced between black and white, and are randomly ordered. The first image has vertical bars,
and the second image is just the first one rotated by 90o. Thus, by construction, the intensities
of the two images are independent, and each of the images has an intensity distribution which
is close to uniform.

2. The second pair consists of images of natural scenes with a relatively high degree of variability
and relatively small details. This causes a strong “mixing” of intensities, and the two sources
are approximately independent from each other. However, the small details tend to make
image superposition (due to imperfect separation) hard to notice visually.
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Figure 2: The first three pairs of source images, before printing. The images have been cropped, and
one image in each pair has been horizontally flipped, to correspond to its position in the
acquired images. Each image was then reduced in resolution and aligned to correspond,
as well as possible, to the acquired images.
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Figure 3: The fourth and fifth pairs of source images, before printing. One image in the last pair has
been horizontally flipped. In the fourth pair no flipping has been performed, in order to
keep the text’s readability. Note, however, that the right-hand image of thatpair appears
flipped in the mixtures shown ahead.
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3. The third pair consists of an image of a natural scene, on one side of thepaper, and an image
of printed text (Times New Roman, 12-point font) on the other side. Since thetext has many
large changes of intensity in very small areas, a good “mixing” of the intensities from both
images takes place, and the two sources are approximately independent.

4. The fourth pair consists of printed text on both sides of the paper, with afew graphs on one
of the sides. Once again, the intensities from the two sides of the paper are well mixed,
and therefore approximately independent. The peculiarity of this pair is that,since printed
text has a much larger area of white than of black, only a very small percentage of pixels is
simultaneously dark on both sides of the paper. This has some influence on the separation
results that are obtained, as we shall see.

5. The fifth pair consists of images of natural scenes that have large areas with quasi-uniform
intensity. This causes a relatively weak mixing of intensities, making the intensities from the
two sides of the paper non-independent. This fact has some impact on the separation results,
as we shall see. The large, relatively uniform areas of the images make imperfect separation
easier to notice visually than in case 2 above.

The leftmost columns of Figs. 4 and 5 illustrate the joint distributions of the sourceimages.
These plots deserve some comments. First of all we should note that, for the joint distributions of
the two sources of each pair to be meaningful, the source images had to be adjusted in resolution
and aligned, so as to be in the same relative position as in the acquired mixtures.For that pur-
pose each source image was reduced in resolution to the same size as the corresponding acquired
mixture images, and was then aligned with the corresponding separated component from nonlinear
separation (see Section 4.3 for the alignment procedure and Section 5.2 for the nonlinear separation
procedure). Both the resizing and the alignment procedures involved bicubic interpolation of the
pixel intensities. The result of such interpolation is visible in the edges of the bars and of the text
characters, in Figs. 2 and 3, which show the source images after resizingand alignment.

Some more comments are useful for a better understanding of the source distributions:

• The “grid” look of the first scatter plot reflects the fact that each of the source images had
only 25 equally spaced intensities. Some intermediate intensities also appear in theplot due
to the intensity interpolation performed in the resizing and alignment processes.

• The second scatter plot shows that, in this case, the two sources are almostindependent from
each other. The plot shows some evidence of saturation in the lightest intensities of the right-
hand source image (vertical axis of the scatter plot). Since this saturation is inthe source
image, before printing, it should have no significant influence on the mixtureand separation
processes.

• The third and fourth scatter plots also show that the corresponding source pairs are approxi-
mately independent. The distributions of the sources that are images of text show that a very
large percentage of their pixels is white. The non-white pixels show a continuous distribution,
instead of just a black level, due to the interpolation performed in the resizing and alignment
processes. The interpolation effect is much more noticeable here than in thefirst image pair
because, the character sizes being much smaller than the widths of the bars,many pixels fell
on black-white edges, and only a very small percentage fell completely withinblack regions
of the characters.
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Figure 4: Scatter plots of the first three image pairs. From left to right: source images, acquired
images, linear separation and nonlinear separation. The three rows correspond to the
three pairs of images of Fig. 2. In each scatter plot, the horizontal axis corresponds to
intensities from the left-hand image and the vertical axis to intensities from the right-hand
image. The scale of each plot ranges from black (left/bottom) to white (right/top). Each
scatter plot shows 5000 randomly selected points from the correspondingpair of images.
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Figure 5: Scatter plots of the fourth and fifth image pairs. From left to right: source images, ac-
quired images, linear separation and nonlinear separation. The two rows correspond to
the two pairs of images of Fig. 3.

• The fifth scatter plot clearly shows that the sources of this pair are not independent. The plot
shows some evidence of intensity quantization in the darkest levels of the left-hand source
image (horizontal axis of the scatter plot), and of saturation in the lightest intensities of the
same image. Since the quantization and saturation are in the source image, before printing,
they should have no significant influence on the mixture and separation processes.

4.2 The Mixture Process: Printing and Acquisition

The images from each pair were printed on opposite faces of a sheet of onion skin paper. Printing
was done with a 1200 dpi laser printer, using the printer’s default halftoning system. Both faces
of the sheet of onion skin paper were then scanned with a desktop scanner at a resolution of 100
dpi. This low resolution was chosen on purpose, so that the printer’s halftoning grid would not be
apparent in the scanned images. The scanner’s “descreening” option(whose purpose is to minimize
the visibility of the halftoning grid) was turned on.

We tried to keep the printing and acquisition processes as symmetrical as possible: the two
source images in each pair were handled in an identical way, and the two acquired mixture images
in each pair were also handled in an identical way. This implied disabling the scanner’s “automatic
image adjustment” feature, which adjusts the acquired image’s brightness, contrast and gamma
value in a manner that is not specified in the scanner’s documentation.

The second column of scatter plots of Figs. 4 and 5 shows the joint distributions of the mixture
components (after alignment, which is discussed in the next section). The shapes of the mixture
distributions show that the mixtures are nonlinear. This is especially clear in thefirst image pair,
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in which the joint distribution of the sources is approximately uniform within a square. A linear
mixture process would have resulted in a mixture uniformly distributed within a parallelogram. The
observed distribution has a shape that is far from a parallelogram and that is non-uniform, being
more dense toward darker intensities than toward lighter ones. Both facts indicate that the mixture
is nonlinear. The deviation from a parallelogram shape gives an idea of the amount of nonlinearity.

The mixture distribution, in the first pair, shows no traces of the discrete intensity levels that
were present in the source images. This is due to noise introduced by the mixture process. This
noise comes from three sources, at least: (1) the printing process, with the halftoning to reproduce
grayscale levels; (2) the noise from the scanning process (from othertests of the same scanner this
noise appears to be rather weak, essentially amounting to the intensity quantization into 256 levels),
and (3) inhomogeneity of the onion skin paper (from our experience this appears to be the strongest
source of noise). Later we’ll have the possibility to have a better idea of thetotal amount of noise
introduced by the mixture process.

On close inspection, the mixture scatter plots show that the points are arranged on a square grid.
This is a result of the intensity quantization performed by the scanner.

4.3 Preprocessing

In the preprocessing stage, in each pair of acquired images one of them was first horizontally flipped,
so that both images would have the same orientation. Then the images of each pair were aligned
with each other by hand. In preliminary tests we found that even a very careful alignment, using
translation, rotation and shear operations on the whole images, could not perform a good simulta-
neous alignment of all parts of the images. This was probably due to slight geometrical distortions
introduced by the scanner. It indicated that an automatic, local alignment was needed. The use of
the automatic local alignment relaxed the demands placed on the initial manual alignment.

In the alignment procedure that was finally adopted, the first step consisted just of a manual
displacement of one of the images by an integer number of pixels in each direction, so that the two
images would be coarsely aligned with each other. In a second step an automatic, local alignment
was performed. For this, the resolution of both images was first increasedby a factor of 4 in
each direction, using bicubic interpolation. Then, one of the images was divided into 100× 100
pixel squares (corresponding to 25×25 pixels in the original image), and for each square the best
displacement was found, based on the maximum of the cross-correlation withthe other image. The
whole image was then rebuilt, based on these optimal displacements, and its resolution was reduced
by a factor of 4. In this way a local alignment with a resolution of 1/4 pixel was achieved. Note
that, although the alignment consisted only of local translations, it did handle the small rotations
and shears that occur in problems of this kind, because these deformations consist just of different
displacements for different points of the image. The fact that we used the same displacement for
each 25×25 subimage caused only a negligible misalignment, relative to the true displacement that
would be appropriate for each pixel.

There is a large variety of image alignment methods described in the literature, varying due to
such aspects as the kinds of images to be aligned, the purpose of the alignment, etc. The reader can
find an overview, somewhat oriented toward medical images, in (Maintz, 1998). The method that
we used was designed specifically for handling the problem we needed to solve, but bears strong
resemblances to some of the methods mentioned in that overview, and we make noclaims to its
originality.
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As a final preprocessing step, the intensity range of each pair of images was normalized to the
interval[0,1], 0 corresponding to the darkest pixel in the image pair and 1 to the lightest one. Figures
6 and 7 show the acquired images after preprocessing.2

As said above, we tried to keep the processing of both images in each pair assymmetrical as
possible. An obvious asymmetry is due to the fact that only one image in each pair was modified
in the alignment procedure. We used a high quality intensity interpolation method (bicubic) in the
alignment procedure, so as to affect the image’s quality as little as possible. The separation results
that we present ahead, based on a symmetry constraint, seem to confirm that the mixture process
was kept very close to symmetrical, despite the asymmetry in the alignment procedure.

5. Separation Results

One of the main purposes of the work reported in this paper was to assess the viability and the
advantage of performing nonlinear source separation, in a real-life nonlinear mixture problem, by
means of an ICA-based separation system. Therefore we used sourceseparation by linear ICA as a
baseline for comparison. The next sections present the results of separation by linear and nonlinear
ICA, followed by an assessment of the results with objective quality measures.

The mixture process that we used was as symmetrical as possible, so that anexchange of the
source images should result just in a corresponding exchange of the mixture images (apart from
noise). Therefore we applied symmetry constraints to the separation systems, as detailed ahead.

5.1 Linear Separation

The linear ICA method that we used was MISEP with a linearF block, which corresponds to
INFOMAX with adaptive nonlinearities. Eachψ block was formed by an MLP with a single input
and a single output, and with a hidden layer of 20 sigmoidal units. The output unit of each of these
MLPs was linear, and there were no “shortcut” connections between inputand output. The training
set consisted of 5000 pairs of intensities, from randomly chosen pixel pairs of the acquired images.
TheF block was initialized with the identity matrix, and training was performed during 200epochs,
which were sufficient for convergence. TheF block was constrained to be symmetrical. Symmetry
was not enforced on theψ blocks because the distributions of the two sources were, in general,
different from each other.

For each image pair, ten runs of the separation were made. These differed from one another in
the selection of the 5000 pairs of pixels used to form the training set, and in therandom initialization
of the weights of theψ MLPs. The results of the ten runs were very similar to one another. Figures8
and 9 show the results that were best, according to quality measureQ2 (see Section 5.3). We see that
a reasonable degree of separation was achieved in all cases, but someinterference remained. The
scatter plots in Figs. 4 and 5 (third column) show that, although a certain amountof separation was
achieved, the nonlinear character of the mixture could not be undone by linear ICA, as expected.
Note: The arrangement of the scatter plots’ points into lines (and, in fact, intoa grid-like structure,
although that is less apparent) is a result of the intensity quantization performed by the scanner.

2. All images of mixtures and of separation results displayed in this paper were adjusted in brightness and contrast so
as to saturate the 1% brightest and 1% darkest pixels. This is a procedurethat is commonly used for better display
of images. This adjustment was performed for image display only: not for image separation and also not for the
computation of quality measures.
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Figure 6: The first three pairs of acquired images, after preprocessing.
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Figure 7: The fourth and fifth pairs of acquired images, after preprocessing.
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Figure 8: “Best” results of linear separation: first three image pairs.
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Figure 9: “Best” results of linear separation: fourth and fifth image pairs.
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5.2 Nonlinear Separation

For nonlinear separation we used MISEP with a nonlinearF block. This block consisted of a
multilayer perceptron with two inputs, two outputs and a hidden layer of 40 sigmoidal units. The
output units were linear, and the hidden units were divided into two groups of 20, each group being
connected to one of the output units. This MLP also had direct, “shortcut” connections between
inputs and outputs. Since the output units were linear, the block could implementlinear separation
exactly, by setting the weights of the hidden layer’s connections to zero.

As noted above, regularization plays an important role in dealing with the ill-posedness of non-
linear ICA. In our case regularization was achieved by three means: (i) initializing theF network to
perform an identity mapping, (ii) constraining that network to be symmetrical, and (iii) constraining
that network to be linear during the first 100 training epochs (by keeping the output weights of the
hidden layer equal to zero during those epochs). Training was stoppedat 400 epochs. At that point
the progress of the optimization was in general very slow. As a test, in a few cases the optimization
was extended to a much larger number of epochs, without any significant change in the separation
results. Therefore the exact stopping point that was chosen doesn’tappear to have had any signifi-
cant influence on the results. Theψ blocks had the same structure as in the linear separation case.
Each 400-epoch training run took approximately 9 minutes on a 1.6 GHz Pentium-M (Centrino)
processor.

For each image pair, ten runs of the separation were made, with different random selections of
the 5000 pixel pairs forming the training set, and with different random initializations of the MLPs’
weights (excluding, of course, those weights that were initially set to the identity matrix or to zero).
Figures 10 and 11 show the best results that were obtained (“best” according to quality measure
Q2). The scatter plots corresponding to these separations are shown in the rightmost column of
Figs. 4 and 5. Figures 12 and 13 show the worst separation results that were obtained (“worst”
again according toQ2).

5.3 Measures of Separation Quality

The images shown in the previous section give an idea of the separation quality, but their evaluation
is rather subjective. It depends on the viewer, as well as on other factors such as the conditions
under which the images were printed or are viewed. Furthermore, a reasonable amount of image
superposition can pass unnoticed in regions in which the “main” image has muchvariability. For
these reasons we decided to also use objective measures of separation quality, which are not sensitive
to such effects.

Experience with objective quality measures for nonlinear source separation is still very limited.
This led us to compute four different quality measures. The fisrt, that we denote byQ1, was simply
the signal to noise ratio (SNR) of the extracted component relative to the corresponding source.3 We
should note that, in a nonlinear separation context, the SNR, besides being sensitive to incomplete
source separation and to noise, is also sensitive to any nonlinear transformation of the intensity scale
that may be caused by the mixture and separation processes. It is well known that, in linear separa-
tion, the sources are recovered with unknown scale factors. In nonlinear ICA-based separation, each
recovered source may be subject to an unknown nonlinear, invertible transformation. MeasureQ1

gives a global indication of the distortion of the extracted component relative to the corresponding

3. For the computation of all quality measures we used the resized and aligned source images.
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Figure 10: “Best” results of nonlinear separation: first three image pairs.
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Figure 11: “Best” results of nonlinear separation: fourth and fifth image pairs.
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Figure 12: “Worst” results of nonlinear separation: first three image pairs.
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Figure 13: “Worst” results of nonlinear separation: fourth and fifth imagepairs.
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source, including any nonlinear transformation of the intensity scale, besides including incomplete
separation and noise.

Due to the possible presence of a nonlinear transformation of the intensity scale, our other three
quality measures were defined so as to be invariant to such transformations. The second quality
measure,Q2, was a signal to noise ratio, modified so that it had the invariance property mentioned
above. It was given by

Q2 =
variance ofS
variance ofN

, (4)

whereS was the source image andN was the noise that was present in the extracted component.
This noise was computed as

N = f (Y)−S, (5)

Y being the extracted component, andf being a nonlinear, monotonic transformation chosen so that
Q2 was maximal. In other terms, we chose a nonlinear, monotonic transformation ofthe intensity
scale of the extracted component that made it become as close as possible to the corresponding
source in SNR terms, and then used its SNR as the quality measure. The optimalf (·) was computed
in table form. This was possible because the number of intensity levels in each image is finite, since
each image has a finite number of pixels.

The other two measures that we used were information-theoretic:

• Q3 was the mutual information between each extracted component and the corresponding
source. The mutual information was estimated from a set of 5000 randomly selected pixel
pairs, chosen independently from those forming the training set, and was computed using the
I (1) estimator described in (Kraskov et al., 2004), withk = 3 (k is the nearest neighbor order
used in that estimation algorithm; its recommended range, given in that reference, is between
2 and 4).

• Q4 was the mutual information between each extracted component and the opposite source,
computed in the same manner as forQ3.

Note that other quality measures could easily be envisaged. For example,Q4−Q3 would be a
measure similar in spirit to the well known Amari index (Amari et al., 1996), butbased on mutual
information, to account for nonlinearities, and using a difference insteadof a quotient due to its
logarithmic character.

Another kind of measure that might come to mind would be similar toQ4 (indicating the amount
of interference, from the “wrong” source, that is present in the extracted component) but measured
in terms of SNR instead of mutual information. Such a measure would not have made much sense,
however, because in a nonlinear context the interference can be “positive” in some parts of the image
and “negative” in other parts. These positive and negative parts wouldtend to cancel out. Therefore
such a measure could sometimes indicate a misleadingly low amount of interference. In a measure
like Q4, based on mutual information, such positive and negative interferencesdo not cancel out,
but instead have a cumulative effect.

As a reference for assessing the amount of separation achieved by thevarious methods, we
show in Table 1 the values of the quality measures for the mixture components after preprocessing,
without any separation.

The mean values of the quality measures for each of the ten-run series of separations are shown
in Table 2. Note that forQ1, Q2 andQ3 higher values are best, while forQ4 lower values are best.
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No separation
Image pair Quality measure source 1 source 2

Q1 1.9 1.9
1 Q2 6.2 6.2

Q3 1.21 1.23
Q4 0.48 0.49
Q1 -1.7 6.0

2 Q2 3.7 8.9
Q3 1.11 1.34
Q4 0.56 0.60
Q1 -4.5 6.6

3 Q2 3.8 8.1
Q3 0.38 1.65
Q4 1.35 0.12
Q1 0.9 -2.3

4 Q2 5.6 3.3
Q3 0.56 0.29
Q4 0.23 0.43
Q1 9.6 -6.4

5 Q2 11.7 2.7
Q3 1.85 1.07
Q4 0.86 1.18

Table 1: Values of the objective quality measures for the unseparated mixture components. In this
and in the following tableQ1 andQ2 are given in dB andQ3 andQ4 in bits.
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Linear separation Nonlinear separation
Image pair Quality measure source 1 source 2 source 1 source 2

Q1 9.0 8.7 13.8 13.1
1 Q2 11.9 11.6 14.7 14.2

Q3 2.03 1.96 2.45 2.39
Q4 0.48 0.46 0.23 0.26
Q1 5.2 10.5 9.3 13.9

2 Q2 8.1 12.9 11.0 15.0
Q3 1.56 1.78 1.83 1.95
Q4 0.37 0.53 0.24 0.40
Q1 4.5 11.2 6.2 11.2

3 Q2 7.8 12.4 9.1 13.8
Q3 0.80 1.99 0.85 2.11
Q4 0.36 0.18 0.09 0.15
Q1 5.8 3.4 6.0 3.7

4 Q2 8.8 6.7 9.1 7.1
Q3 0.74 0.48 0.75 0.51
Q4 0.11 0.16 0.11 0.16
Q1 13.4 6.6 14.2 6.4

5 Q2 14.7 7.9 15.3 7.8
Q3 2.13 1.34 2.19 1.29
Q4 0.71 0.46 0.56 0.49

Table 2: Objective quality results. The results shown are the average foreach of the sets of ten test
runs. For each pair (linear and nonlinear, for the same source), the best result is shown
in bold if the difference was significant at the 95% confidence level. ForQ1, Q2 andQ3

higher results are better, while forQ4 lower results are better.

The cases in which the difference between linear and nonlinear separation was significant at the
95% confidence level are shown in bold in the table.

The measure that seemed to correlate best with our subjective evaluation ofseparation quality
wasQ2, and this is why we chose it for the selection of the “best” and “worst” examples shown
in Sections 5.1 and 5.2. The next best wasQ1. Q4, which was intended to measure the amount
of interference from the “wrong” source, was the one which correlated worst with our subjective
quality evaluation.

5.4 Assessment of the Results

For the first three image pairs, both the objective quality measures and our subjective evaluation
showed a clear advantage of nonlinear separation over linear separation. Even the worst results of
nonlinear separation seemed to be better, in general, than the best results of linear separation. Com-
parison of the third and fourth columns of scatter plots (Figs. 4 and 5) also confirms the advantage
of nonlinear separation. This advantage was not so clear, however, for the fourth and fifth image
pairs. We discuss now why we think this was so.
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For the fourth image pair, most objective quality measures still show an advantage of nonlinear
separation, but this advantage is very small, and our subjective evaluationshowed the results of
linear and nonlinear separation to be very similar in quality. This is also confirmed by comparing
the corresponding scatter plots in Figs. 4 and 5. In this image pair, most pixelsare white in at least
one of the sources. The source scatter plot is dominated by two lines of points, located on the top
and right-hand edges of the plot. This has the consequence that, with the specific mixture that was
involved in the problem under study, linear ICA was able to perform a rather good separation. We
see from the scatter plot of the linearly separated components that the lower-left area, corresponding
to simultaneously dark pixels on both sources, was left unfilled by linear ICA. But this represented
a rather small percentage of pixels, and had little impact on the overall separation quality.

We also see, from the rightmost scatter plot, that nonlinear separation also left the lower-left
area unfilled. This may seem to be due to an incomplete optimization, but we tried extending the
optimization to a much larger number of epochs without any significant changein the results. It
is possible that the result shown corresponds to a local optimum. By playing with the network
structure, with the initial conditions and with the constraints, we were sometimes able to get a result
in which the lower left area of the scatter plot was filled. However, this made very little difference
in the subjective or objective quality of the separation.

The results for the fifth image pair show that one of the sources was best separated by the linear
method, while the other was best separated by the nonlinear one. But the differences between the
two methods were rather small, even though most of them were statistically significant. Nonlinear
separation apparently suffered a negative impact from the fact that thesources were not independent
from each other and we were using independence as the separation criterion. The nonlinear separa-
tion network had many more degrees of freedom than the linear one, and used them to try to make
the extracted components more independent from each other. In doing soit impaired the separation
of one of the sources, instead of improving it, since the actual sources were not independent.

An important aspect of the results that we obtained is that, although the mixture process was
nonlinear, and nonlinear separation could, in principle, introduce an arbitrary nonlinear transforma-
tion in each separated component, the total amount of nonlinearity introducedby the mixture and
separation processes was relatively small. This is clear from the separation images that were shown
(which were only normalized in brightness and contrast, as mentioned above) and from the values
of the Q1 measure. We also illustrate this, in a more clear form, in Fig. 14. This figure shows a
scatter plot of the first extracted component versus the correspondingsource, for the “average” case
of the first image pair (the “average” case was chosen as the one whosevalue ofQ2 was closest to
the average for the ten runs).

From our experience, there were two factors that were important in achieving this low level of
nonlinearity. One was the fact that we linearly “primed” the separation network, by constraining it to
be linear during the first 100 epochs. The other factor was that we gavea great amount of flexibility
to theψ networks, by implementing them with a large number of hidden units. In previoustests
in which these networks had only 6 hidden units, the separation results, as measured byQ2, Q3

or Q4 were not very different from those presented here, but there oftenwas a significant amount
of nonlinearity introduced in the extracted components. This seems to have been caused by theF
block trying to compensate for the limitations of theψ networks which could not, by themselves,
make the distribution of eachZi close to uniform.

There are some other aspects of the results, and of the experience that we gained in studying
this problem, that are worth discussing. One of them has to do with the amount of noise introduced
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Figure 14: Scatter plot of the first extracted component versus the corresponding source, in an “av-
erage” run of nonlinear separation of the first image pair. Horizontal axis: source; verti-
cal axis: extracted component.

by the mixture process. We can take advantage of the fact that the sourceimages that contain
text have a large percentage of purely white pixels, which show up as strong, very thin lines in
the corresponding scatter plots in the first column of Figs. 4 and 5, for having an idea of the
amount of noise present in the mixtures and in the separated components. After the mixture, and
also after linear or nonlinear separation, these lines appear broadenedin the scatter plots, looking
like fuzzy dark bands. The widths of these bands give an idea of the amount of noise that was
introduced by the mixing, or by the mixing plus separation. In the separation results the noise
represents a significant percentage of the whole intensity range. Note that the separation process
does not, by itself, introduce any noise. However, since it essentially consists of performing a
weighted difference between the two mixture components, it does increase the amount of noise that
is present, in relative terms.

Another interesting aspect has to do with understanding the “scale” of the quality measures
based on mutual information (especially ofQ3 since, as we’ve already said,Q4 seemed to be less
meaningful). We were surprised by the relatively low values of mutual information between source
and extracted component, even when the images looked well separated andQ2 indicated relatively
high SNR values after compensation of nonlinearities. For natural scene images, the mutual infor-
mation between source and extracted component was roughly around 2 bits, while for text images
it was below 1 bit. We can also observe from Table 2 that, for each sourceimage, a change of 1 dB
in SNR (i.e. inQ2) corresponded, approximately, to a change of 0.1 bit inQ3. Small changes in the
value of mutual information seem to be much more significant than we expected before performing
these tests.
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An important aspect of the mixture process, that we have not mentioned so far, is that it didn’t
seem to be a purely point-wise process. The intensity of each source imageat each point appeared
to affect the observed mixture intensities in a small neighborhood of that point. This is especially
noticeable by closely examining the separation results in the cases in which the image to be sup-
pressed was a text image. The cause of this phenomenon probably was some lateral diffusion of
light inside the paper. The effect was relatively weak at the scanning resolution that we used, but
should become more pronounced at higher resolutions. A more perfect separation system should
take this into account. However, non-point-wise nonlinear ICA is still essentially an unstudied topic,
and is beyond the scope of this paper.

Another important aspect has to do with the use of the symmetry constraint. We were careful
in ensuring that, both during scanning and in the preprocessing stage, both sides of the paper were
handled in the same way. This allowed us to use a symmetry constraint in the separation networks.
Such symmetry conditions in the mixture can probably be obtained when using a system like our
desktop scanner, in which the paper has to be flipped, and the same set ofsensors is used to acquire
both sides. However, industrial scanners, which are used to digitize large quantities of documents,
normally acquire both sides of the document at the same time, using two different sets of sensors.
Such scanners often are strongly non-symmetric. In such cases the symmetry constraint couldn’t
probably be used, or would have to be used only in an initial part of the training, after which it
would have to be relaxed. We had no access to images from such scanners, and therefore couldn’t
assess what degree of separation would be achievable with them.

Still regarding a possible application to an actual scanning or photocopyingdevice, there are two
other aspects worth mentioning. One is that it doesn’t seem to be possible to have a fixed separator,
optimized at the factory for a specific device. This is because the mixture depends at least on the
paper being used, and possibly also on the printing ink, halftoning process and other similar factors.
It seems possible, however, to develop a physical model of the mixture process, with a small number
of parameters, and then to find (algebraically or by approximate means) a parameterized inverse
system. Its parameters may then be estimated through an ICA criterion. MISEP seems suited for
this task, since it can use essentially any parameterized nonlinear system in theF block.

Another practical aspect has to do with the possible warping (existence ofripples) in the doc-
ument being processed. We found that even very weak ripples, barelynoticeable in the scanned
images, would result in very strong light and dark bands in the separated images, both with linear
and with nonlinear separation. This was, of course, a situation in which the mixture was spatially
variant, and could not be adequately undone by a spatially invariant system. In our case we solved
the problem by applying a very strong pressure to the cover of the scanner while scanning the
documents, in order to eliminate the ripples. This might become an important issue ina practical
application.

6. Conclusion

We showed an application of ICA to nonlinear source separation in a real-life problem of practical
interest. One of the main issues that have been discussed in the last few years, concerning nonlinear
ICA, is whether its inherent ill-posedness can be handled in practical situations. Our results show
that it can, at least in this specific problem. We should say, however, thatit took quite a bit of
experimentation to find a set of conditions that could be used for all image pairs, yielding a good
separation with relatively little variability in the separation results. In an earlier work (Almeida
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and Faria, 2004) we had not yet been able to achieve an adequate formof regularization, without
resorting to anF block with a specialized form.

We presented comparisons of MISEP-based nonlinear ICA with linear ICA, one of the main pur-
poses being to demonstrate the feasibility and the advantage of nonlinear source separation through
ICA in a practical situation. It would also be very interesting to compare the nonlinear separation
results presented here with those obtained with other nonlinear separation methods, such as ensem-
ble learning (Lappalainen and Honkela, 2000), kernel-based nonlinear ICA (Harmeling et al., 2003)
or geometric ICA (Theis et al., 2003). That comparison would have been outside the scope of the
present paper. First of all, it would have involved a very large amount of additional work. Further-
more, the results obtained with a specific method are often much better if the methodis tuned by
someone experienced in its use. We have a reasonable amount of experience in using MISEP, but
virtually no experience with any of the other methods. To enable comparisonswe chose to make
our test data, as well as our separation routines, available online (see theend of Section 4.3).

Future work will address several different issues, among which we can mention:

• The development of separation criteria that are more adequate for this problem than statistical
independence. We have seen that, in this problem, the images to be separatedmay happen
not to be independent. In such a case the quality of separation suffers.A more adequate
separation criterion would not cause such degradation and might also be able to overcome
much of the ill-posedness of nonlinear ICA, decreasing the dependenceon regularization.

• The use of the spatial redundancy of images to reduce the ill-posedness of the problem, hope-
fully achieving separation with less dependence on regularization. Some published results
(Harmeling et al., 2003) suggest that the use of signal structure may help toseparate nonlin-
ear mixtures with much reduced ill-posedness. That may make kernel-basednonlinear ICA a
good candidate for handling this problem.

• The study of models of the mixture process that involve relatively few parameters. It seems
possible to develop physically based and/or empirical models that depend ona few parameters
(such as paper transparency and reflectivity, among others). Havingfew parameters, such
models may have no ill-posedness, and may also be able to easily handle non-symmetrical
systems.
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