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Abstract

When acquiring an image of a paper document, the image promettie back page sometimes
shows through. The mixture of the front- and back-page imaiges obtained is markedly nonlin-
ear, and thus constitutes a good real-life test case foimeari blind source separation.

This paper addresses a difficult version of this problemresmonding to the use of “onion
skin” paper, which results in a relatively strong nonlirisaof the mixture, which becomes close
to singular in the lighter regions of the images. The separas achieved through the MISEP
technique, which is an extension of the well known INFOMAXthal. The separation results
are assessed with objective quality measures. They show@ovement over the results obtained
with linear separation, but have room for further improveime

Keywords: ICA, blind source separation, nonlinear mixtures, nordingeparation, image mix-
ture, image separation

1. Introduction

When an image of a paper document is acquired, e.g. through scanhatggmphing or photo-
copying, the image printed on the back page sometimes shows through. Tbisnally due to
partial transparency of the paper, and results in the acquisition of a modttine images from the
front and back pages. Itis usually possible to obtain two different migtimeacquiring both sides
of the document. This is a situation that seems suited for handling by blindesseparation (BSS)
techniques. The main difficulty is that the images that are acquired are ramtimetures of the
original images printed on each of the sides of the paper. This is, theyefointeresting test case
for nonlinear BSS methods, with potential application in scanners, phdaesamd in document
processing in general.

This paper addresses a difficult instance of this problem, in which the fregdes used is of the
“onion skin” type. This creates a mixture that has a relatively strong naniityeand that is close
to singular in the lighter parts of the images. For separation we use MISEEh vgha nonlinear
independent component analysis (ICA) technique (Almeida, 20033ERIis a generalization of
the well known INFOMAX technique of linear ICA (Bell and Sejnowski, 539extending it in
two directions: (1) being able to handle nonlinear mixtures, and (2) usitpgibnonlinearities that
adapt to the statistical distributions of the extracted components.
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Besides the separation itself, an important practical issue in this specifitiaitisathe align-
ment of the two mixture images. One might think that, by an appropriate translatibrotation,
the images from the two sides of the document could be brought into goodnaigrwith each
other. It was found, however, that scanners normally introduce sjigbitnetrical distortions that
make it necessary to use local alignment techniques to obtain an image alighatdatadequate
for separation. That alignment issue is also addressed in this papauskedtis an important step
of the image processing that needs to be done.

Published results concerning nonlinear BSS in real-life problems are siilfe®. To the au-
thor’s knowledge, and apart from an earlier version of the preserit pAlmeida and Faria, 2004),
the only published report of blind source separation of a real-life ncerlingxture in which the
recovery of the original sources can be confirmed is (Haritopoulols, &0®2). Some other appli-
cations of nonlinear ICA to real-life data, e.g. (Lappalainen and HonROR0; Lee and Batzoglou,
2003), do not provide means to confirm whether real sources wereard.

This manuscript’s structure is as follows: Section 2 provides a brief ewreof nonlinear
separation methods. Section 3 presents a short summary of the MISEP ntetbotline its basic
principles and to set the notation. Section 4 describes the experimentiéia@ondncluding image
printing, acquisition and alignment. Section 5 presents the experimental regitth are assessed
with objective measures of separation quality. Section 6 concludes.

In the printed version of this paper some of the details of some images may bedotst the
printing process. However, the paper is freely available online, and ieldwtronic online ver-
sion one can zoom in on the images (scatter plots and images of sourcesematdr separated
components) to better view the details. In the pdf version/(MB) the images are encoded in
JPEG format and therefore show some artifacts, which become noticeatliese inspection. The
postscript version shows the images without artifacts, but correspgoradtarger file & 14 MB).
The two versions are available at
http:/iwww.Ix.it.pt/ ~Ibalmeida/papers/AlmeidaJMLRO5. pdf , and
http:/www.Ix.it.pt/ ~Ibalmeida/papers/AlmeidaJMLRO5.ps.zip

The source and mixture images used in this paper are available online at

http:/www.Ix.it.pt/ ~Ibalmeidalica/seethrough
The separation routines that were used to produce the results are lavailab
http:/www.Ix.it.pt/ ~Ibalmeida/ica/seethrough/code/jmir05

2. Overview of Nonlinear ICA Methods

In this section we provide a short overview of some of the main nonlinearn@#thods. This
overview is necessarily very brief, and the reader is referred to anview paper (Jutten and
Karhunen, 2004) for more complete information.

It is interesting to note that one of the very early works on ICA (Schmidhut#92) already
proposed a nonlinear method. Although being based on an interestingpl@ifminimization of
predictability of each extracted component by the other components) itatfeey impractical and
computationally heavy.

The essential uniqueness of the solution of linear ICA (Comon, 1994thegwith the greater
simplicity of linear separation and with the fact that many naturally occurring n&stare essen-
tially linear, led to a quick development of linear ICA. The work on nonlin€z& lprobably was
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slowed down mostly by its inherent ill-posedness and by its greater complexttgevelopment
of nonlinear methods has continued steadily (e.q. Burel, 1992; Deco an@kiBrl995; Marques
and Almeida,, 1999; Palmieri et al., 1999; Theis et/al., 2003). The methodkdhatreceived the
strongest attention in recent years are very briefly outlined in the nex¢j@phs.

Ensemble learning (Lappalainen and Honkela, 2000) is a Bayesian mettpdsasuch, uses
prior distributions as a form of regularization, to handle the ill-posednesgsdgm. It is computa-
tionally heavy, but has produced some interesting results, including amsextteto the separation
of nonlinearly mixed dynamical processes (Valpola and Karhunen,)2002

Kernel-based nonlinear ICA (Harmeling et al., 2003) essentially considiaa#r ICA per-
formed on a high-dimensional space that is a nonlinear transformation ofi¢feal space of mix-
ture observations. In the form in which it was presented in the cited referé used the temporal
structure of the signals to perform the linear ICA operation. This appareelbed it to effectively
deal with the ill-posedness problem, and allowed it to yield some impressivisres artificial,
strongly nonlinear mixtures. The method seems to be quite tractable, in compaitéions.

MISEP (Almeida, 2003b) is an extension of INFOMAX (Bell and Sejnow4ki95) into the
nonlinear domain. It uses regularization to deal with the ill-posednesgpnpbnd is computation-
ally tractable. It is described in more detail in the next section, since it is theocheited in the
present paper.

A special class of methods that deserves mention deals with nonlinear mixtoidsare con-
strained so as to make the result of ICA essentially unique, as in linear IBAMDst representative
class corresponds to the so-called post-nonlinear (PNL) mixtures (datbButten, 1999). These
are linear mixtures followed by component-wise invertible nonlinearities. Tieedst of this class
resides both in its unique separability and in the fact that it correspondsltidentified practical
situations: linear mixtures observed by nonlinear sensors. PNL mixtudedhain extensions have
had a considerable development (see Jutten and Karhunen, 20@fefences).

3. Overview of the MISEP Method

MISEP (Almeida, 2003b) is a generalization of the INFOMAX method of lin€aA I(Bell and
Sejnowski, 1995). We recall that the latter method, although initially introduoe@r a principle
of maximum information preservation, was later shown to be interpretable asiauma likelihood
method (Pearlmutter and Parra, 1996), and also as a method based on theatimimizhe mutual
information (MI) of the extracted components (Hyinen and Oja, 2000). We briefly recall the
latter interpretation, albeit using a reasoning different from the onengivehat reference.

If Y is a vector with random componentswe define the mutual information of the components
of Y as

1(Y) = S H(Y) —H(Y) (1)
|
where, for continuous variables, as is the case htdenotes Shannon’s differential entropy
H(X) =~ [ px)logp(x)dx. @

In this equationp(x) is the probability density of the scalar random varia¥léwe denote proba-
bility density functions byp(-), the function’s argument clarifying which random variable is being
considered; this is a slight abuse of notation, but helps to keep expresampler and does not cre-
ate any confusion). A similar definition holds feli(X), whereX is a random vector, the difference
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being that the random variable is now multidimensional and the integral in (@nfes a multiple
integral, encompassing the whole domairXof

Mutual information is a good measure of statistical dependehfé) measures the amount
of information that is shared among the random varialflest is always positive, except if these
variables are mutually statistically independent, in which case it is 2¢€¥0. is also equal to the
Kullback-Leibler divergence between the product of the marginalitesis[]; p(y;) and the true
joint density, p(y). These two densities are equal if and only if the compon¥négse mutually
independent.

Minimization of the mutual information of the extracted components is therefoomd grite-
rion for independent component analysis. An interesting and usefpépty of mutual information,
that we shall use ahead, is that if we apply invertible, possibly nonline@asformations to the ran-
dom variablesz; = Y;(Y;), the mutual information doesn’t chandéz) = I(Y).

INFOMAX uses a network with the structure depicted in Fig. 1. Blécgerforms the sepa-
ration proper, the separated components bgin§ is linear, corresponding just to a product by a
matrix. The blocksp; are auxiliary, being used only during the training phase. Each of thesksblo
performs an invertible, increasing transformat®e- ;(y;), whose counter-domain is the interval
(0,1).

ol —_ yl ()Ul IS Zl

Figure 1: Network structure used in INFOMAX and in MISEP. In INFOMAK is an adaptive
linear block, and thg); are fixed a priori. In MISEH; can be nonlinear, and bokhand
yJ; are adaptive.

If we choose eacly; as the cumulative distribution function (CDF) of the correspondini is
easy to see that each of tAewill be uniformly distributed in(0, 1), resulting inp(z) = 1 for z in
that interval, andd (Z;) = 0. Therefore,

) = 1(2)
— YH@)-H@)

= —H(2). 3)

Mutual information is hard to minimize directly, but (3) shows that, under thedstateditions, this
minimization is equivalent to the maximization of the output entrbigy ), a maximization which
is much easier to achieve. INFOMAX works by optimiziRgsuch thatH(Z) is maximized. We
won't go into the details here, but the reader can consult (Bell and @skno01995) or (Hywérinen
and Oja, 2000) for a deeper discussion.

As said above, MISEP extends INFOMAX in two directions. The first is ¢paiple to deal with
nonlinear mixtures. This is achieved by allowing bldekin Fig./1, to be nonlinear. We have often
implemented this block by means of a multilayer perceptron (MLP), but esserdiafiyadaptive
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nonlinear structure can be used. For example, a radial basis functieorkehas been used in
(Almeida, 2003a), and a specialized structure in (Almeida and Faria, 2004)

The second direction in which MISEP extends INFOMAX, is by making theuutpnsforma-
tionsy; adaptive. As we have seen above, egicbhould correspond to the CDF of the correspond-
ing extracted source, for the maximization of the output entropy to comelsfpothe minimization
of the mutual information of the extracted components. The a-priori chdittreeap; functions in
INFOMAX can be seen as a user-made, prior assumption about the distibof the sources. In
MISEP they; blocks are adaptive, being implemented by means of adequately constvélifsd
It can be shown that maximization of the output entrbjfy ) leads each of these blocks to estimate
the corresponding CDF, while simultaneously leadihp minimize the mutual informatioh(Y)
(Almeida, 2003b). Therefore, maximizing the output entropy simultaneouwslpta tha; blocks
and leads to the minimization of the mutual informati@¥ ).

An issue that has frequently been discussed is whether nonlinear blircesseparation, based
on ICA, is feasible in practice. This debate has to do with the fact that namli@A, with no
additional constraints, is an ill-posed problem, having an infinite numberloficas that are not
related to one another in any simple way (Darmois, 1953;dtipen and Pajunen, 1999; Marques
and Almeida, 1999). Therefore we cannot expect that, just by extgaictitependent components,
one will be able to recover the original sources that were nonlinearly miXed is to be contrasted
with the situation in linear ICA/BSS in which, under very mild constraints, therdaegssentially
only one solution (Comon, 1994). In linear ICA, if independent comptsare extracted, they
must correspond to the original sources, apart from possible scalthgexmutation. This author
has argued that in the nonlinear case, when the mixture is not too strongipe®ar, adequate
regularization should allow the handling of the ill-posedness of nonlinear $Gll allowing the
approximate recovery of the sources. The nonlinearities considered peier would be classified
by the author as of “medium intensity”. As we shall see below, approximatesgecovery was
possible, and the indetermination of nonlinear ICA didn’t lead to inadeqegration.

4. Experimental Setup

In this section we describe the experimental setup, including details of imagmgr acquisition
and preprocessing

4.1 Source Images

We used five image mixtures as test cases. The corresponding paitg@# snages are shown in
Figs. 2 and 3. The main properties of these image pairs are as follows:

1. In the first pair, each image consists of 25 uniform bars with intensitieésatkauniformly
spaced between black and white, and are randomly ordered. The figs hmaa vertical bars,
and the second image is just the first one rotated By BBus, by construction, the intensities
of the two images are independent, and each of the images has an intenshytibstwhich
is close to uniform.

2. The second pair consists of images of natural scenes with a relatigblgiégree of variability
and relatively small details. This causes a strong “mixing” of intensities, anthih sources
are approximately independent from each other. However, the smaillsdetad to make
image superposition (due to imperfect separation) hard to notice visually.
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In this example we are creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
although, due to the above mentioned noise, these will appear, in the scanned images, as two clusters of
intensity levels.

b

The separation of mixtures of two-level images, such as printed text, may be much easier than the separation of
grayscale images. In fact, at least in the case of mixtures that are not too strong, a simple thresholding
procedure may yield the desired results. Such a procedure can be casily performed by hand with m
processing programs, and should not be hard to automate. In such a case the use of more general blind source
separation methods might be an overkill, both because it would involve a much larger amount of processing
and because it might actually yield worse results. This is an extreme case in which prior knowledge about the
sources can strongly simplify the separation process.

In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing
process should yield much better results that the use of a generic nonlinear separation method. A physical
model could have a small number of parameters 1o be estimated, and would thus allow a much more precise
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
currently addressed through regularization. The parameters of such a model could be estimated by an
independent component analysis criterion.

Another issue of interest is the definition of separation criteria that are more suited for images or for printed
documents than statistical independence. In fact, images and/or text from the opposite pages of a printed
document can casily happen not to be independent from one other. For examples, images of landscapes tend to
be lighter on the top than on the bottom, inducing a correlation between intensities of both. Also, in printed text
with regularly spaced lines, the lines from both sides of the paper may happen to fall on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side. also inducin: significant
correlation between intensities from both sides of the document. It would be interesting to use criteria based on
anotion of image complexity, but these may not be easy to define, and may be even harder to use as criteria for
optimizing a source separation system.

Figure 2: The first three pairs of source images, before printing. Thgasaave been cropped, and
one image in each pair has been horizontally flipped, to correspond to it®pas the
acquired images. Each image was then reduced in resolution and alignedespond,
as well as possible, to the acquired images.
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Separation of nonlinear image mixtures

When acquiring an image of a printed document, the image printed on the
opposite page often shows through, due to partial transparency of the
paper. Here we are dealing with quite a strong case of that effect, because
we’re using onion skin paper which is quite transparent.

The mixture that is obtained is rather nonlinear, as can be observed from
the top figure on the right, which shows a scatter plot of the intensities of
corresponding pairs of points from the two pages of a printed document.
The scatter plot of the original images, shown in the bottom figure, filled a
square, and had only a relatively small number of discrete intensity levels
for each image. The fact that the shape of the scatter plot of Fig. 1 is very
different from a parallelogram shows that the mixture was strongly
nonlinear. The fact that this scatter plot becomes quite narrow in the upper-
tight corner (which corresponds to the lighter intensities in both images)
indicates that, for those intensities, the mixture is close to singular, Finally,
the fact that the discrete levels of Fig. 2 became largely blurred in Fig. 1 is
due 10 noise in the process. The process leading from the sources 10 the
abservations involved printing the images, on both sides of  sheet of onion
skin paper, at 1200 dpi, with a black and white laser printer (with the
inherent halftoning of gray levels), and then scanning both sides of the
printed sheet at 100 dpi. The noise is due, at least, to the printing process
(including the halftoning), to the scanning process and o the non-
uniformity in the onion skin paper, especially in its transparency.

The purpose of separation is o recover, from the mixed images that are
obtained by scanning both faces of the printed document, the images that
had been printe each of its faces, with as little interference from the
other image as possible.

In this example we are creating mixtures that involve natural images, printed text and graphs. The special

[ 1. Introduction

Within the area of unsupervised learning, a problem that has been receiving increasing attention is the one of

transforming a set of patterns into new patterns whose components are mutually statistically independent.

Consider that we are given d-dimensional input data vectors Xx=(x,.x,.---.x,) obeying a probability

distribution with density p_. In general, the various components x of the data will be statistically

interdependent. The problem that we wish to address consists of finding output vectors
¥= ey syy) = fxy

, are mutually i

)

such that the output

If d’=d and fis invertible, we are simply recoding the data without any loss of information. If d”<d we are
reducing the amount of information present in the data. In the latter case. we usually wish (o ensure that the
extracted features y, are the most important ones, in some appropriate sense.

In this paper we will discuss the first sitwation, d”=d . If the output components are independent, then

ry=[]r, 00 @
=l
i.e., the probability density can be factored into a product of the marginal densities of the output components.

If we assume that the data X result from a linear of ind Cl
the function ft0 be linear.

then we can restrict

There are several reasons for the growing interest that independent component analysis has been receiving in
recent yea

¢ It can afford a means to perform source separarion. Assuming that the observed data x result from an
unknown transformation of independent variables z . i.e.
X=g(z) 3y
where the 2=(z.z,,-+,z,) are unknown source, one may ask whether the independent output
components y, that we obtain will coincide with the original z,. We will discuss this issue ahead.

Figure 3: The fourth and fifth pairs of source images, before printinge iage in the last pair has
been horizontally flipped. In the fourth pair no flipping has been perfdrrimeorder to
keep the text's readability. Note, however, that the right-hand image op#iaappears
flipped in the mixtures shown ahead.
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3. The third pair consists of an image of a natural scene, on one side jpdplee, and an image
of printed text (Times New Roman, 12-point font) on the other side. Sincetéas many
large changes of intensity in very small areas, a good “mixing” of the inteaditen both
images takes place, and the two sources are approximately independent.

4. The fourth pair consists of printed text on both sides of the paper, Wétv graphs on one
of the sides. Once again, the intensities from the two sides of the paperefirenixed,
and therefore approximately independent. The peculiarity of this pair isdimae printed
text has a much larger area of white than of black, only a very small pagenf pixels is
simultaneously dark on both sides of the paper. This has some influence eaghration
results that are obtained, as we shall see.

5. The fifth pair consists of images of natural scenes that have large @aith quasi-uniform
intensity. This causes a relatively weak mixing of intensities, making the intensii@stiie
two sides of the paper non-independent. This fact has some impact cepiraison results,
as we shall see. The large, relatively uniform areas of the images makdegctseparation
easier to notice visually than in case 2 above.

The leftmost columns of Figs.| 4 and 5 illustrate the joint distributions of the saorages.
These plots deserve some comments. First of all we should note that, foirthdigributions of
the two sources of each pair to be meaningful, the source images had tjubkddn resolution
and aligned, so as to be in the same relative position as in the acquired mixkmethat pur-
pose each source image was reduced in resolution to the same size asdbparating acquired
mixture images, and was then aligned with the corresponding separatedreamhfrom nonlinear
separation (see Section 4.3 for the alignment procedure and Sectiom the fmnlinear separation
procedure). Both the resizing and the alignment procedures involvadibimterpolation of the
pixel intensities. The result of such interpolation is visible in the edges ofdhednd of the text
characters, in Figs. 2 ahd 3, which show the source images after reasimirelignment.

Some more comments are useful for a better understanding of the souritriticns:

e The “grid” look of the first scatter plot reflects the fact that each of theree images had
only 25 equally spaced intensities. Some intermediate intensities also appeapiot tthee
to the intensity interpolation performed in the resizing and alignment processes

e The second scatter plot shows that, in this case, the two sources are ialiepstndent from
each other. The plot shows some evidence of saturation in the lightesttieten§the right-
hand source image (vertical axis of the scatter plot). Since this saturatiorilie source
image, before printing, it should have no significant influence on the misingeseparation
processes.

e The third and fourth scatter plots also show that the correspondingespaiis are approxi-
mately independent. The distributions of the sources that are images dfidexttzat a very
large percentage of their pixels is white. The non-white pixels show a canisistribution,
instead of just a black level, due to the interpolation performed in the resinthglagnment
processes. The interpolation effect is much more noticeable here thanfirsthmage pair
because, the character sizes being much smaller than the widths of thebaysixels fell
on black-white edges, and only a very small percentage fell completely viithok regions
of the characters.
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Figure 4: Scatter plots of the first three image pairs. From left to right:ceounages, acquired
images, linear separation and nonlinear separation. The three rovesmand to the
three pairs of images of Fig. 2. In each scatter plot, the horizontal axisspmnds to
intensities from the left-hand image and the vertical axis to intensities from thielrand
image. The scale of each plot ranges from black (left/bottom) to white (right/Egch
scatter plot shows 5000 randomly selected points from the correspopaiingf images.
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Figure 5: Scatter plots of the fourth and fifth image pairs. From left to rightirce images, ac-
quired images, linear separation and nonlinear separation. The two coresgond to
the two pairs of images of Fig. 3.

e The fifth scatter plot clearly shows that the sources of this pair are nepérdlent. The plot
shows some evidence of intensity quantization in the darkest levels of thealedt-source
image (horizontal axis of the scatter plot), and of saturation in the lightestsitie=nof the
same image. Since the quantization and saturation are in the source image,pbiefiing,
they should have no significant influence on the mixture and separatioags®s.

4.2 The Mixture Process: Printing and Acquisition

The images from each pair were printed on opposite faces of a shesibof skin paper. Printing

was done with a 1200 dpi laser printer, using the printer's default hafigosystem. Both faces
of the sheet of onion skin paper were then scanned with a desktopescaram resolution of 100
dpi. This low resolution was chosen on purpose, so that the printert®hizal§ grid would not be

apparent in the scanned images. The scanner’s “descreening” ¢pliose purpose is to minimize
the visibility of the halftoning grid) was turned on.

We tried to keep the printing and acquisition processes as symmetrical aslgrosise two
source images in each pair were handled in an identical way, and the twiveatmixture images
in each pair were also handled in an identical way. This implied disabling tm@eca “automatic
image adjustment” feature, which adjusts the acquired image’s brightnedsastcemd gamma
value in a manner that is not specified in the scanner’s documentation.

The second column of scatter plots of Figs. 4 and 5 shows the joint distribuifdhe mixture
components (after alignment, which is discussed in the next section). &@peslof the mixture
distributions show that the mixtures are nonlinear. This is especially clear iirshémage pair,
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in which the joint distribution of the sources is approximately uniform within aasgu A linear
mixture process would have resulted in a mixture uniformly distributed withinalpbogram. The
observed distribution has a shape that is far from a parallelogram ani than-uniform, being
more dense toward darker intensities than toward lighter ones. Both faitatethat the mixture
is nonlinear. The deviation from a parallelogram shape gives an idea afhtlount of nonlinearity.

The mixture distribution, in the first pair, shows no traces of the discretesityelevels that
were present in the source images. This is due to noise introduced by theerprbeess. This
noise comes from three sources, at least: (1) the printing process, wiktalitioning to reproduce
grayscale levels; (2) the noise from the scanning process (from tetstsrof the same scanner this
noise appears to be rather weak, essentially amounting to the intensity qtiantizi@ 256 levels),
and (3) inhomogeneity of the onion skin paper (from our experience pipisaas to be the strongest
source of noise). Later we'll have the possibility to have a better idea abthbamount of noise
introduced by the mixture process.

On close inspection, the mixture scatter plots show that the points are atramgesquare grid.
This is a result of the intensity quantization performed by the scanner.

4.3 Preprocessing

In the preprocessing stage, in each pair of acquired images one of thefirsthorizontally flipped,
so that both images would have the same orientation. Then the images of @askneaaligned
with each other by hand. In preliminary tests we found that even a veejutalignment, using
translation, rotation and shear operations on the whole images, couldrfmmpa good simulta-
neous alignment of all parts of the images. This was probably due to slightegecal distortions
introduced by the scanner. It indicated that an automatic, local alignmen&eded. The use of
the automatic local alignment relaxed the demands placed on the initial manuaiafgn

In the alignment procedure that was finally adopted, the first step cahgisteof a manual
displacement of one of the images by an integer number of pixels in eacliaireso that the two
images would be coarsely aligned with each other. In a second step an tatdéocal alignment
was performed. For this, the resolution of both images was first incréasedfactor of 4 in
each direction, using bicubic interpolation. Then, one of the images watediinto 100x 100
pixel squares (corresponding to 225 pixels in the original image), and for each square the best
displacement was found, based on the maximum of the cross-correlatiothevibther image. The
whole image was then rebuilt, based on these optimal displacements, andlitdioasuas reduced
by a factor of 4. In this way a local alignment with a resolution ¢é pixel was achieved. Note
that, although the alignment consisted only of local translations, it did hanellentiall rotations
and shears that occur in problems of this kind, because these deforsnatiasist just of different
displacements for different points of the image. The fact that we usedathe displacement for
each 25« 25 subimage caused only a negligible misalignment, relative to the true displadéaten
would be appropriate for each pixel.

There is a large variety of image alignment methods described in the literatny@&y due to
such aspects as the kinds of images to be aligned, the purpose of the aligetmiefihe reader can
find an overview, somewhat oriented toward medical images, in (Maint8)19%he method that
we used was designed specifically for handling the problem we needetiv& but bears strong
resemblances to some of the methods mentioned in that overview, and we meleénmoto its
originality.
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As a final preprocessing step, the intensity range of each pair of imeggeaavmalized to the
interval[0, 1], 0 corresponding to the darkest pixel in the image pair and 1 to the lightesFayures
6 and 7 show the acquired images after preprocessing.

As said above, we tried to keep the processing of both images in each pgimasetrical as
possible. An obvious asymmetry is due to the fact that only one image in eackigzamodified
in the alignment procedure. We used a high quality intensity interpolation mdbieubic) in the
alignment procedure, so as to affect the image’s quality as little as posshseseparation results
that we present ahead, based on a symmetry constraint, seem to coafittimetimixture process
was kept very close to symmetrical, despite the asymmetry in the alignment preced

5. Separation Results

One of the main purposes of the work reported in this paper was to assegmliiity and the
advantage of performing nonlinear source separation, in a real-lifitnean mixture problem, by
means of an ICA-based separation system. Therefore we used seperation by linear ICA as a
baseline for comparison. The next sections present the results easepdy linear and nonlinear
ICA, followed by an assessment of the results with objective quality messure

The mixture process that we used was as symmetrical as possible, so thahange of the
source images should result just in a corresponding exchange of therenixtages (apart from
noise). Therefore we applied symmetry constraints to the separation syatedetailed ahead.

5.1 Linear Separation

The linear ICA method that we used was MISEP with a linEadblock, which corresponds to
INFOMAX with adaptive nonlinearities. Eaah block was formed by an MLP with a single input
and a single output, and with a hidden layer of 20 sigmoidal units. The outgiudfteach of these
MLPs was linear, and there were no “shortcut” connections betweenamoubutput. The training
set consisted of 5000 pairs of intensities, from randomly chosen piksl gfethe acquired images.
TheF block was initialized with the identity matrix, and training was performed duringeifiiths,
which were sufficient for convergence. TRélock was constrained to be symmetrical. Symmetry
was not enforced on thg blocks because the distributions of the two sources were, in general,
different from each other.

For each image pair, ten runs of the separation were made. Thesedifffereone another in
the selection of the 5000 pairs of pixels used to form the training set, andiartiem initialization
of the weights of th&y MLPs. The results of the ten runs were very similar to one another. Figures
and 9 show the results that were best, according to quality me@siisee Section 5/3). We see that
a reasonable degree of separation was achieved in all cases, buinserfgzence remained. The
scatter plots in Figs. 4 and 5 (third column) show that, although a certain ambsgparation was
achieved, the nonlinear character of the mixture could not be undonedar liEA, as expected.
Note: The arrangement of the scatter plots’ points into lines (and, in factaigtl-like structure,
although that is less apparent) is a result of the intensity quantization peddry the scanner.

2. All images of mixtures and of separation results displayed in this pager adjusted in brightness and contrast so
as to saturate the 1% brightest and 1% darkest pixels. This is a pro¢eduie commonly used for better display
of images. This adjustment was performed for image display only: aratrfage separation and also not for the
computation of quality measures.
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In this example we are creating mixtures that involve natural images, printed fext 5. T a In this example we are creating mixtures that involve natural images, printed text and grapl
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Figure 6: The first three pairs of acquired images, after preprogessin
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In this example we arc creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
although, due to the above mentioned noise, these will appear, in the scanned images, as two clusiers of
Il‘m’hﬂl

In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing
process should yield much better results that the use of a generic nonlinear separation method. A physical
mmm-mmwmhhmmmmm-@mm
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
miymmmmmmam-mmumwm
independent component analysis criterion.
Another issue of interest is the definition of scparation criteria that are more suited for images or for printed
than statistical i In fact, images and/or text from the opposite pages of a printed
document can casily happen not to be independent from one other. For examples, images of landseapes tend to
be lighter on the top than on the bottom, induci ion between i ities of both. Also, in printed text
with regularly spaced lines, the lines. from both sides of the paper may happen to fal on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side, also inducing a significant
mmmmmmuﬁmkmumwmmmm
awdw%hhmmhmh%mﬂwkmhﬂawwsm-m
oplimizing a source separation system.

Figure 8: “Best” results of linear separation: first three image pairs.
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Figure 9: “Best” results of linear separation: fourth and fifth image pairs.
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5.2 Nonlinear Separation

For nonlinear separation we used MISEP with a nonlirfedslock. This block consisted of a
multilayer perceptron with two inputs, two outputs and a hidden layer of 40 sigihoidts. The
output units were linear, and the hidden units were divided into two gro@@, @ach group being
connected to one of the output units. This MLP also had direct, “shortacutih@ctions between
inputs and outputs. Since the output units were linear, the block could impldimesnt separation
exactly, by setting the weights of the hidden layer’s connections to zero.

As noted above, regularization plays an important role in dealing with the idgy@ss of non-
linear ICA. In our case regularization was achieved by three meansiti@izing the F network to
perform an identity mapping, (ii) constraining that network to be symmetricdl(idnconstraining
that network to be linear during the first 100 training epochs (by keepmgukput weights of the
hidden layer equal to zero during those epochs). Training was st@p@d epochs. At that point
the progress of the optimization was in general very slow. As a test, in age@sthe optimization
was extended to a much larger number of epochs, without any significange in the separation
results. Therefore the exact stopping point that was chosen degg@ar to have had any signifi-
cant influence on the results. Theblocks had the same structure as in the linear separation case.
Each 400-epoch training run took approximately 9 minutes on a 1.6 GHz Pehtig@entrino)
processor.

For each image pair, ten runs of the separation were made, with differghtm selections of
weights (excluding, of course, those weights that were initially set to théift@ematrix or to zero).
Figures 10 and 11 show the best results that were obtained (“best'daugdo quality measure
Q). The scatter plots corresponding to these separations are shown ightreast column of
Figs./4 and 5. Figures 12 and|13 show the worst separation results eéhatoltained (“worst”
again according tQ).

5.3 Measures of Separation Quality

The images shown in the previous section give an idea of the separatidwy, duue their evaluation
is rather subjective. It depends on the viewer, as well as on other damtich as the conditions
under which the images were printed or are viewed. Furthermore, angzecamount of image
superposition can pass unnoticed in regions in which the “main” image has vadebility. For
these reasons we decided to also use objective measures of separalitynvghich are not sensitive
to such effects.

Experience with objective quality measures for nonlinear source depaiastill very limited.
This led us to compute four different quality measures. The fisrt, that wetddyQ;, was simply
the signal to noise ratio (SNR) of the extracted component relative to thespamding sourc@We
should note that, in a nonlinear separation context, the SNR, besides basitive to incomplete
source separation and to noise, is also sensitive to any nonlinear traastim of the intensity scale
that may be caused by the mixture and separation processes. It is wet kimat, in linear separa-
tion, the sources are recovered with unknown scale factors. In nanli@é&-based separation, each
recovered source may be subject to an unknown nonlinear, invertibifdranation. Measur®;
gives a global indication of the distortion of the extracted component reltdithe corresponding

3. For the computation of all quality measures we used the resized anddigaorce images.
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In this example we are creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
ﬂmmduemduabovemnoﬂedmu,mmmuw in the scanned images, as two clusters of
intensity levels,

The separation of mixtures of two-level images, such as printed text, may be much casier than the separation of
grayscale images. Infaa,ukmmmecuefmmmnmmlmmumkmmidmg
procedure may yield the desired results. Such a procedure can be casily performed by hand with most image
processing programs, and should not be hard to automate. In such a case the use of more general blind source
separation methods might be an overkill, both because it would involve a much larger amount of processing
and because it might actually yield worse results. This is an extreme case in which prior knowledge about the
sources can strongly simplify the separation process.

In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing.
process should yield much better results that the use of a generic nonlinear separation method. A physical
mimuhweamﬂlmbqn!mmbemmwwouldilnu-llawnmnr.hnmpmn
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
currently addressed through regularization. The parameters of such a model could be estimated by an
independent component analysis criterion.

Anmhumuofmmmdwdnﬁmmufmmmmmmmmmu for images or for printed

than statistical i In fact, images and/or text from the opposite pages of a printed
document can casily happen not 1o be independent from one other. For examples, images of landscapes tend to
be lighter on the top than on the bottom, inducing a correlation between intensities of both. Also, in printed text
with regularly spaced lines, the lines from both sides of the paper may happen to fall on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side, also inducing a significant
correlation between intensities from both sides of the document. It would be interesting to use criteria based on
anotwnofmug:mmplmty.b\nlhscmymib:wymdcﬁne,mdnuybecvmlmduwmummﬁm
optimizing a source separation system.

Figure 10: “Best” results of nonlinear separation: first three image.pairs

1216



SEPARATING A REAL-LIFE NONLINEAR IMAGE MIXTURE

Separation of nonlinear image mixtures
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Figure 11: “Best” results of nonlinear separation: fourth and fifth imagesp
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In this example we are creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
although, due to the above mentioned noise, these will appear, in the scanned images, as two clusters of
intensity levels.
The separation of mixtures of two-level images, such as prinied text, may be much casier than the separation of
grayscale images. In fact, at least in the case of mixtures that are not 100 strong, a simple thresholding
procedure may yield the desired results. Such a procedure can be casily performed by hand with most image
pmcmingpmmmdmauldmbemmmne.lnnlchlt&ﬂ\euuormmeﬂlblhdnm
separation methods might be an overkill, both because it would involve a much larger amount of processing
and because it might actually yield worse results. This is an extreme case in which prior knowledge about the
sources can strongly simplify the separation process.
In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing.
process should yield much better results that the use of a generic nonlinear separation method. A physical
model could have a small number of parameters to be estimated, and would thus allow a much more precise
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
currently addressed through regularization. The parameters of such a model could be estimated by an
independent component analysis criterion.
Another issuc of interest is the definition of separation criteria that arc more suited for images or for printed
than statistical i In fact, images and/or text from the opposite pages of a printed
document can casily happen not 1o be independent from one other. For examples, images of landscapes tend 1o
be lighter on the top than on the bottom, inducing a correlation between intensities of both. Also, in printed text
with regularly spaced lines, the lines from both sides of the paper may happen to fall on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side, also inducing a significant
comelation between intensities from both sides of the document. It would be interesting to use criteria based on
4 notion of image complexity, but these may not be casy to define, and may be even harder to use as criteria for
optimizing a source separation system.

Figure 12: “Worst” results of nonlinear separation: first three imagespair
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Separation of nonlinear image mixtures
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Figure 13: “Worst” results of nonlinear separation: fourth and fifth imaajes.
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source, including any nonlinear transformation of the intensity scale,dxesidluding incomplete
separation and noise.

Due to the possible presence of a nonlinear transformation of the intersigy sar other three
quality measures were defined so as to be invariant to such transformatibasecond quality
measureQ),, was a signal to noise ratio, modified so that it had the invariance propertianed

above. It was given by _
variance ofS

=" 5 4

variance ofN @
whereS was the source image amtiwas the noise that was present in the extracted component.
This noise was computed as

2

N=f(Y)-S (5)

Y being the extracted component, ahldeing a nonlinear, monotonic transformation chosen so that
Q2 was maximal. In other terms, we chose a nonlinear, monotonic transformatiba ftensity
scale of the extracted component that made it become as close as possildedorédsponding
source in SNR terms, and then used its SNR as the quality measure. The dgtimals computed
in table form. This was possible because the number of intensity levels in eagh isfinite, since
each image has a finite number of pixels.

The other two measures that we used were information-theoretic:

e Q3 was the mutual information between each extracted component and thepoomeng
source. The mutual information was estimated from a set of 5000 randofabtex pixel
pairs, chosen independently from those forming the training set, andorgsuted using the
| estimator described in (Kraskov et al., 2004), wite 3 (k is the nearest neighbor order
used in that estimation algorithm; its recommended range, given in that reéeistetween
2 and 4).

e Q4 was the mutual information between each extracted component and thetegoosce,
computed in the same manner as@y.

Note that other quality measures could easily be envisaged. For exapapleQs would be a
measure similar in spirit to the well known Amari index (Amari et al., 1996),daged on mutual
information, to account for nonlinearities, and using a difference instééadquotient due to its
logarithmic character.

Another kind of measure that might come to mind would be simil&4¢indicating the amount
of interference, from the “wrong” source, that is present in the et@thcomponent) but measured
in terms of SNR instead of mutual information. Such a measure would not hale mach sense,
however, because in a nonlinear context the interference can hévebim some parts of the image
and “negative” in other parts. These positive and negative parts wemnddto cancel out. Therefore
such a measure could sometimes indicate a misleadingly low amount of intefeteracmeasure
like Q4, based on mutual information, such positive and negative interferelocast cancel out,
but instead have a cumulative effect.

As a reference for assessing the amount of separation achieved kgribes methods, we
show in Table 1 the values of the quality measures for the mixture compon&rtpr@processing,
without any separation.

The mean values of the quality measures for each of the ten-run seregsapftons are shown
in Table 2. Note that fo®;, Q, andQs higher values are best, while fQ; lower values are best.
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No separation
Image pair | Quality measure | source 1 source 2

Q1 1.9 1.9

1 Q2 6.2 6.2
Q3 1.21 1.23

Q4 0.48 0.49

Q1 -1.7 6.0

2 Q2 3.7 8.9
Q3 1.11 1.34
Qs 0.56 0.60

Q1 -4.5 6.6

3 Q2 3.8 8.1
Q3 0.38 1.65
Qa 1.35 0.12

Q1 0.9 -2.3

4 Q2 5.6 3.3
Q3 0.56 0.29
Qs 0.23 0.43

Q1 9.6 -6.4

5 Q2 11.7 2.7
Q3 1.85 1.07
Qa 0.86 1.18

Table 1: Values of the objective quality measures for the unseparated enodmponents. In this
and in the following tabl€; andQ, are given in dB an®3; andQ; in bits.
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Linear separation | Nonlinear separation
Image pair | Quality measure | source 1 source 2source 1l  source 2
Q1 9.0 8.7 13.8 13.1
1 Q2 11.9 11.6 14.7 14.2
Q3 2.03 1.96 2.45 2.39
Qs 0.48 0.46 0.23 0.26
Q1 5.2 10.5 9.3 13.9
2 Q2 8.1 12.9 11.0 15.0
Q3 1.56 1.78 1.83 1.95
Qa1 0.37 0.53 0.24 0.40
Q1 4.5 11.2 6.2 11.2
3 Q2 7.8 12.4 9.1 13.8
Qs 0.80 1.99 0.85 2.11
Qa4 0.36 0.18 0.09 0.15
Q1 5.8 3.4 6.0 3.7
4 Q2 8.8 6.7 9.1 7.1
Q3 0.74 0.48 0.75 0.51
Qa1 0.11 0.16 0.11 0.16
Q1 13.4 6.6 14.2 6.4
5 Q2 14.7 7.9 15.3 7.8
Q3 2.13 1.34 2.19 1.29
Qa 0.71 0.46 0.56 0.49

Table 2: Objective quality results. The results shown are the averagadarof the sets of ten test
runs. For each pair (linear and nonlinear, for the same source), shedsailt is shown
in bold if the difference was significant at the 95% confidence level.G101Q, and Q3
higher results are better, while fQ lower results are better.

The cases in which the difference between linear and nonlinear sepanasignificant at the
95% confidence level are shown in bold in the table.

The measure that seemed to correlate best with our subjective evaluatiepastion quality
wasQy, and this is why we chose it for the selection of the “best” and “worst” examghown
in Sections 5.1 and 5.2. The next best vi@as Qs, which was intended to measure the amount
of interference from the “wrong” source, was the one which corrélaterst with our subjective
quality evaluation.

5.4 Assessment of the Results

For the first three image pairs, both the objective quality measures andilgectve evaluation
showed a clear advantage of nonlinear separation over linear sepai&tien the worst results of
nonlinear separation seemed to be better, in general, than the best relfudtarseparation. Com-
parison of the third and fourth columns of scatter plots (Figs. 4 and 5) alsfirms the advantage
of nonlinear separation. This advantage was not so clear, howevehef fourth and fifth image
pairs. We discuss now why we think this was so.
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For the fourth image pair, most objective quality measures still show an tdyaof nonlinear
separation, but this advantage is very small, and our subjective evalsaiioved the results of
linear and nonlinear separation to be very similar in quality. This is also corfibpeomparing
the corresponding scatter plots in Figs. 4 and 5. In this image pair, most piealghite in at least
one of the sources. The source scatter plot is dominated by two lines @$ ploicated on the top
and right-hand edges of the plot. This has the consequence that, withettiBcsmixture that was
involved in the problem under study, linear ICA was able to perform a rathed separation. We
see from the scatter plot of the linearly separated components that theléftaeea, corresponding
to simultaneously dark pixels on both sources, was left unfilled by linear BL&this represented
a rather small percentage of pixels, and had little impact on the overalksiepaguality.

We also see, from the rightmost scatter plot, that nonlinear separation filttueléower-left
area unfilled. This may seem to be due to an incomplete optimization, but we ttettiag the
optimization to a much larger number of epochs without any significant chanipe results. It
is possible that the result shown corresponds to a local optimum. By playthgtive network
structure, with the initial conditions and with the constraints, we were sometineajet a result
in which the lower left area of the scatter plot was filled. However, this madglittle difference
in the subjective or objective quality of the separation.

The results for the fifth image pair show that one of the sources wasdpzstged by the linear
method, while the other was best separated by the nonlinear one. Butfdrenties between the
two methods were rather small, even though most of them were statistically sighifidonlinear
separation apparently suffered a negative impact from the fact thadtliees were not independent
from each other and we were using independence as the separatidarcritée nonlinear separa-
tion network had many more degrees of freedom than the linear one, addh&n to try to make
the extracted components more independent from each other. In dairighpaired the separation
of one of the sources, instead of improving it, since the actual sourgesnetindependent.

An important aspect of the results that we obtained is that, although the mixtoess was
nonlinear, and nonlinear separation could, in principle, introduce atnagbnonlinear transforma-
tion in each separated component, the total amount of nonlinearity introdhycesd mixture and
separation processes was relatively small. This is clear from the sepdnatiges that were shown
(which were only normalized in brightness and contrast, as mentioned)adnodérom the values
of the Q; measure. We also illustrate this, in a more clear form, in|Fig. 14. This figumessho
scatter plot of the first extracted component versus the corresposolimge, for the “average” case
of the first image pair (the “average” case was chosen as the one whloseofQ, was closest to
the average for the ten runs).

From our experience, there were two factors that were important invaichithis low level of
nonlinearity. One was the fact that we linearly “primed” the separation &ty constraining it to
be linear during the first 100 epochs. The other factor was that weapgresat amount of flexibility
to the Y networks, by implementing them with a large number of hidden units. In prevests
in which these networks had only 6 hidden units, the separation results, aasirad byQ,, Qs
or Q4 were not very different from those presented here, but there waféana significant amount
of nonlinearity introduced in the extracted components. This seems to hamechased by thE
block trying to compensate for the limitations of ttpenetworks which could not, by themselves,
make the distribution of eact) close to uniform.

There are some other aspects of the results, and of the experiencestgatned in studying
this problem, that are worth discussing. One of them has to do with the amiourise introduced
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Figure 14: Scatter plot of the first extracted component versus thespainding source, in an “av-
erage” run of nonlinear separation of the first image pair. Horizonial arurce; verti-
cal axis: extracted component.

by the mixture process. We can take advantage of the fact that the smages that contain
text have a large percentage of purely white pixels, which show up asgstvery thin lines in
the corresponding scatter plots in the first column of Figs. 4/and 5, fdndpan idea of the
amount of noise present in the mixtures and in the separated componetasthafmixture, and
also after linear or nonlinear separation, these lines appear broaiethedscatter plots, looking
like fuzzy dark bands. The widths of these bands give an idea of therdnobunoise that was
introduced by the mixing, or by the mixing plus separation. In the separatguitsethe noise
represents a significant percentage of the whole intensity range. Notf¢hseparation process
does not, by itself, introduce any noise. However, since it essentiallgisterof performing a
weighted difference between the two mixture components, it does increaamthunt of noise that
is present, in relative terms.

Another interesting aspect has to do with understanding the “scale” ofuhlgygmeasures
based on mutual information (especially@f since, as we've already sai@, seemed to be less
meaningful). We were surprised by the relatively low values of mutual iné&bion between source
and extracted component, even when the images looked well separat€d ericated relatively
high SNR values after compensation of nonlinearities. For natural scegesme mutual infor-
mation between source and extracted component was roughly around &@Hlésfor text images
it was below 1 bit. We can also observe from Table 2 that, for each souege, a change of 1 dB
in SNR (i.e. inQy) corresponded, approximately, to a change of 0.1 l@4nSmall changes in the
value of mutual information seem to be much more significant than we expesfiare [performing
these tests.

1224



SEPARATING A REAL-LIFE NONLINEAR IMAGE MIXTURE

An important aspect of the mixture process, that we have not mentioned, $® that it didn’t
seem to be a purely point-wise process. The intensity of each source #hageh point appeared
to affect the observed mixture intensities in a small neighborhood of that. pbiis is especially
noticeable by closely examining the separation results in the cases in which the tonbe sup-
pressed was a text image. The cause of this phenomenon probably madaseral diffusion of
light inside the paper. The effect was relatively weak at the scannsgjuteon that we used, but
should become more pronounced at higher resolutions. A more pegfgatagion system should
take this into account. However, non-point-wise nonlinear ICA is still éssinan unstudied topic,
and is beyond the scope of this paper.

Another important aspect has to do with the use of the symmetry constraint.evéecareful
in ensuring that, both during scanning and in the preprocessing stagesithes of the paper were
handled in the same way. This allowed us to use a symmetry constraint in thiatsepaetworks.
Such symmetry conditions in the mixture can probably be obtained when usirsjesrslike our
desktop scanner, in which the paper has to be flipped, and the sameseesofs is used to acquire
both sides. However, industrial scanners, which are used to digitize darantities of documents,
normally acquire both sides of the document at the same time, using two diffatsrof sensors.
Such scanners often are strongly non-symmetric. In such cases the syroorestraint couldn’t
probably be used, or would have to be used only in an initial part of therigaiafter which it
would have to be relaxed. We had no access to images from such s;aamtherefore couldn't
assess what degree of separation would be achievable with them.

Still regarding a possible application to an actual scanning or photocoggirige, there are two
other aspects worth mentioning. One is that it doesn’t seem to be possilalecta fixed separator,
optimized at the factory for a specific device. This is because the mixtuendsat least on the
paper being used, and possibly also on the printing ink, halftoning macesother similar factors.
It seems possible, however, to develop a physical model of the mixturegsoeith a small number
of parameters, and then to find (algebraically or by approximate meansamgt@rized inverse
system. Its parameters may then be estimated through an ICA criterion. MERER suited for
this task, since it can use essentially any parameterized nonlinear systefribltdtk.

Another practical aspect has to do with the possible warping (existengapt#s) in the doc-
ument being processed. We found that even very weak ripples, bastteable in the scanned
images, would result in very strong light and dark bands in the separatg@smiaoth with linear
and with nonlinear separation. This was, of course, a situation in which thenmmiwas spatially
variant, and could not be adequately undone by a spatially invariantisybieour case we solved
the problem by applying a very strong pressure to the cover of the ecavhile scanning the
documents, in order to eliminate the ripples. This might become an important isaygdactical
application.

6. Conclusion

We showed an application of ICA to nonlinear source separation in a regiftiblem of practical
interest. One of the main issues that have been discussed in the last fepcpa@erning nonlinear
ICA, is whether its inherent ill-posedness can be handled in practical sitsatur results show
that it can, at least in this specific problem. We should say, howeverijtttwik quite a bit of
experimentation to find a set of conditions that could be used for all imagg, g&éiding a good
separation with relatively little variability in the separation results. In an earle@k Almeida
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and Faria, 2004) we had not yet been able to achieve an adequateffoegularization, without
resorting to arf block with a specialized form.

We presented comparisons of MISEP-based nonlinear ICA with lineard@éof the main pur-
poses being to demonstrate the feasibility and the advantage of nonlinesg separation through
ICA in a practical situation. It would also be very interesting to compare tidimesar separation
results presented here with those obtained with other nonlinear separattordsiesuch as ensem-
ble learning (Lappalainen and Honkela, 2000), kernel-based nonli@égHarmeling et al., 2003)
or geometric ICA|(Theis et al., 2003). That comparison would have betside the scope of the
present paper. First of all, it would have involved a very large amofatiditional work. Further-
more, the results obtained with a specific method are often much better if the nietiuoed by
someone experienced in its use. We have a reasonable amount of mz@énieising MISEP, but
virtually no experience with any of the other methods. To enable compangemose to make
our test data, as well as our separation routines, available online (seedioé Section 4.3).

Future work will address several different issues, among which weremtion:

e The development of separation criteria that are more adequate for thiemrthan statistical
independence. We have seen that, in this problem, the images to be sepzgtedppen
not to be independent. In such a case the quality of separation suffemsore adequate
separation criterion would not cause such degradation and might alddéb&oavercome
much of the ill-posedness of nonlinear ICA, decreasing the dependermegularization.

e The use of the spatial redundancy of images to reduce the ill-posedribegpooblem, hope-
fully achieving separation with less dependence on regularization. Soblishrd results
(Harmeling et al., 2003) suggest that the use of signal structure may hedjpdoate nonlin-
ear mixtures with much reduced ill-posedness. That may make kernel+haskakar ICA a
good candidate for handling this problem.

e The study of models of the mixture process that involve relatively few paemelt seems
possible to develop physically based and/or empirical models that deperféwrparameters
(such as paper transparency and reflectivity, among others). H#aingarameters, such
models may have no ill-posedness, and may also be able to easily handignmoeisical
systems.
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